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ABSTRACT 

 

This report discusses about the final year project entitled “Application of the Central 

Composite Design and Response Surface Methodology to the Treatment of Wastewater 

Contaminated with Diethanolamine using Fenton’s Reagent”. The purpose of this project is 

to study on the degradation of Diethanolamine using Fenton’s oxidation and to determine the 

optimum dosage of the reagents that gives the maximum rate of degradation. The reagents are 

hydrogen peroxide and ferrous ion. In this project, the degradation of diethanolamine using 

Fenton’s reagent and the influence of reagents dosage is tested through experimental work 

.The optimum conditions for its degradation is determined using statistical approach by using 

central composite design and response surface methodology. Based on the experimental and 

statistical approach, the optimum value of H2O2 concentration, and FeSO4, 7H2O 

concentration are 2.119M and 0.0396M respectively. 
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INTRODUCTION 
 

     1.1 Background Study 

 

              The preservation of our environment is a very important and pressing topic, 

particularly when we deal with energy issues. There are a few types of fossil fuels that are 

widely used for energy production, including petroleum, coal and natural gas. Natural 

gas, the most flexible of all primary fossil fuels, is the fastest growing energy source in 

the world. Natural gas is considered as an environmental friendly clean fuel, offering 

important environmental benefits when compared to other fossil fuels, as the combustion 

of natural gas does not releases any ash or particulate matter. However, natural gas must 

be purified in order to remove impurities, particularly CO2 and H2S down to pipeline 

quality before it can be used for domestic and industrial purposes. 

 

              There are many acid-gas sweetening processes available for removal of CO2 and 

H2S from natural gas. Among the available technologies, amine-based sweetening 

processes are the most prominent and have been the process of choice for removal of CO2 

and H2S from sour gas as it provides flexibility, low cost and high reliability. Some well-

known alkanolamines for scrubbing acidic gases are monoethanolamine (MEA), 

diethanolamine (DEA), methyl-diethanolamine (MDEA) and di-isopropanolamine 

(DIPA) 

 

               However, during amine adsorption-desorption process, a small amount of amine 

is carried over and discharged in to the effluent stream. This carryover usually caused by 

foaming or excessive gas velocities in the absorption tower, leakage due to spills or 

corrosion and during process turnaround.  

 

             Amines containing wastewater is generally characterized by high chemical 

demand (COD), typically about 17,000 mg/L( A.A Omar et.al,). Thus, the wastewater 

from amine sweetening plants cannot be directly discharged to the surrounding water. 

Sometimes, during shutdown and maintenance processes of these facilities, high amount 

of residual alkanolamine may be carried over into the wastewater, as a result of which 

they can disturb the biological treatment system of the plant. 
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              Diethanolamine (DEA) in aqueous solutions is commonly used for scrubbing of 

carbon dioxide from natural gas. The DEA are not readily biodegradable and such 

wastewater cannot be treated in the conventional treatment facility. Advanced Oxidation 

Processes (AOP’s), such as oxidation by Fenton’s reagent, UV/H2O2 and UV/Ozone offer 

a class of techniques of treatment or partial degradation of refractory organics which are 

not readily agreeable to conventional biological oxidation. 

 

              Application of the central composite design will be very much effective in 

analysing the optimum factors in oxidation process by Fenton’s reagent. Central 

composite design is an experimental design, useful in response surface methodology, for 

building a second order (quadratic) model for the response variable without needing to 

use a complete three-level factorial experiment. 

      1.2 Problem Statement  

     

The problem statement is to identify the optimum value of the two important factors that 

affect the partial degradation of the DEA from wastewater using statistical methodology. 

The two factors are ferrous ion concentration and hydrogen peroxide. 

 

Secondly, to identify the suitable statistical approach to find the optimum value of the 

affecting factors for DEA degradation. These limitations of statistical methods can be 

solved by optimizing the important parameters using response surface methodology 

(RSM). RSM is a collection of mathematical and statistical techniques for developing, 

improving and optimizing processes. RSM is used to determine the optimum condition 

for specified parameters and to predict the future response using the response surface 

model. 
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      1.3 Objective 

 

1) To study the application of the central composite design and response surface 

methodology to the treatment of wastewater contaminated with di-ethanolamine using 

Fenton’s reagent by design an experimental methodology using RSM and CCD. 

 

2) To conduct the experiment based on the design of experiments from the RSM and 

CCD. 

 

3) To optimize the degradation of di-ethanolamine using experimental design 

application. 

 

 

       1.4 Scope of study 

 

             The scope of work can be divided into three stages based on the objectives. For 

the first stage of the project, the author will focus on research and literature review on 

previous studies related to this topic. This includes deciding on the DEA and the 

parameters that is going to be studied. The second stage is conducting the experiments. 

The lab experiment would be conducted by varying few parameters such as H2O2 

concentration and effect of FeSO4, 7H2O concentration. The final stage would be in 

finding the optimum condition that gives the maximum rate of degradation of the DEA 
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LITERATURE REVIEW 

2.1 Statistical Analysis 

 

            The optimization of the important parameters is an important problem in the 

development of economically feasible wastewater treatments. Combined interactions of 

medium parameters for the production of the desired product are large and the optimum 

process conditions may be developed using an effective experimental design procedure. 

Response Surface Methodology (RSM), which is a collection of statistical techniques for 

design of experiments, building models, evaluating the effects of factors and searching for the 

optimum conditions, has successfully been used in many processes. Response Surface 

         The objective of this work was to apply Central Composite Design (CCD) based 

Response Surface Methodology (RSM) to analyse the effects of the process parameters on 

wastewater treatment containing diethnolamine, which to identify the optimum value to 

increase the efficiency.  

 

1Figure 2.1 Example of RSM Optimization analysis by 3D model and 2D model 

A 2
6-2 

Fractional Factorial Designs (FFD) was used to pick factors that influence degradation 

of diethanolamine from wastewater treatment significantly and insignificant ones were 

eliminated in order to obtain a smaller, more manageable set of factors. In developing the 

regression equation, the test variables were coded-according to the equation: 

                                                   Xj = (Zj – Z0j) / Δ j                                                                (1) 

Where Xj is the coded value of the independent variable, Zj is the real value of the 

independent variable, Z0j is the value of the independent variable on the centre point and Δ j 

is the step change value. The linear model observed is expressed as follows: 
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                                                                                                  (2) 

Where Y is the predicted response, Xj are input variables which influence the response 

variable Y; β0 is the intercept; β j is the j
th

 linear coefficient. 

                 If the mean of the center points exceeds the mean of factorial points, the optimum 

would be near or with the experimental design space. If the mean of the centre points was less 

than the mean of the factorial points, the optimum would be outside the experimental design 

space and the method of the steepest ascent should be applied. The direction of the steepest 

ascent is parallel to the normal contour line of response curve of the model (Eq. 1) and passes 

through the center point of FFD. Increment is direct ratio to regression coefficientsβ j.  

                 Experiments will be performed along then steepest ascent path until the response 

did not increase anymore. This point would be near the optimal point and can be used as 

center point to optimize the medium parameters. 

                 Once critical factors were identified via screening and significant gross curvature 

was detected in the design space, the central composite design was proceeded obtain a 

quadratic model, consisting of trials plus a star configuration to estimate quadratic effects and 

central points to estimate the pure process variability of the degradation of diethanolamine. 

For two factors, the model obtained was expressed as follows: 

 

              Where Y is the measured response, β0 is the intercept term, β1 and  β2 are linear 

coefficients, β12 is the logarithmic coefficient, β11and  β22 are quadratic coefficients, and X1 

and 

               X2 were coded independent variables. Low and high factor settings are coded as -1 

and 1, the midpoint coded as 0. The factor settings of trails that ran along axes drawn from 

the middle of the cube through the centers of each face of the tube are coded as -1.414 or 

1.414. The SPSS software, version10.25 was used for regression and graphical analysis of the 

data obtained by ridge analysis. The MINITAB software, version 14.1 was used to draw 
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contour plots. The statistical analysis of the model was performed in the form of Analysis of 

Variance (ANOVA) 

 

2.2 Advanced Oxidation Processes 

 

Advance Oxidation Processes (AOP) is the alternative methods for decolourizing and 

reducing waste water effluents generated by industries (Alhamedi et al., 2009). Behnajady et 

al., (2006) stated that AOPs are also a non-destructive physical water treatment processes, 

because they are able to eliminate compound rather than changing them into another medium 

such as solid waste. The use of AOPs, like UV/H2O2 (Korbahti and Rauf, 2008), 

photocatalytic (Attia et al., 2008), Fenton and photo-Fenton processes (Çatalkaya and Sengul, 

2006), has shown promising results as these processes appear to have the ability to 

completely decolorize and partially mineralize the textile industry dyes in short reaction time 

(Rauf et al., 2008), (Körbahti and Rauf, 2008b) and (Bali et al., 2004).  

 

In view of its efficiency and relative ease of operation, one of the best known AOP’s is the 

2O2/UV. Process involving the use of UV radiation and H2O2 are characterized by the 

generation of hydroxyl radicals (Behnajady et al., 2006). UV wavelengths of 200 – 280 nm 

lead to dissociation of H2O2, with mercury lamps emitting at 254 nm being the most used. 

UV/H2O2 systems generate hydroxyl radicals (●OH) which are highly powerful oxidizing 

agents. Hydroxyl radicals can oxidized organic compounds (RH) producing organic radicals 

(●R), which also highly reactive and can be further oxidized (Bali et al., 2004). These 

radicals can then attack the dye molecules to undergo a series of reactions in which the 

organic molecules will be eliminated or converted into a simple molecules or harmless 

compound (Alhamedi et al., 2009). The main reaction that occurs during UV/H2O2 oxidation 

process is as follows: 

 

H2O2 + UV → 2OH●      (2.1) 

H2O2 ↔ HO2
-
 + H

+
      (2.2) 

RH + OH● → H2O + R●→ further oxidation  (2.3) 

where R is the carbon chain. 
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The hydroxyl radicals will oxidize organic compounds producing organic radicals, which also 

a highly reactive and can undergo further oxidation. When generated, these radicals will react 

quickly and usually randomly with most organic compounds. The resulting organic radicals 

then reacts with oxygen to initiate series of degradative oxidation reaction that lead to 

mineralization of products such as CO2 and H2O (Çatalkaya and Sengul, 2006). The other 

possible reactions that may occur during the UV/H2O2 process are hydrogen abstraction, 

electrophilic addition and electron transfer reactions (Behnajady et al., 2006). Although 

AOPs have much kind of advantages in wastewater treatment, one major problem in AOPs is 

the high energy demand for UV lamps which lead to high operational cost. In order to 

minimize the irradiation time, energy consumption, and operational cost, there is necessary to 

optimize the pH condition, temperature, chemical concentration, and pollutant/oxidant ratio, 

therefore are very important (Çatalkaya and Sengul, 2006). For this aim, the application of 

experimental design is the best solution where it will be used to optimize the important 

parameters that affected the efficiency of wastewater treatment. 

 

 

2.3  Fenton’s reagent 

 

              Fenton's reagent is a solution of hydrogen peroxide and an iron catalyst that is used 

to oxidize contaminants or waste waters. Fenton's reagent can be used to destroy organic 

compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE). 

             It was developed in the 1890s by Henry John Horstman Fenton as an analytical 

reagent.Ferrous Iron(II) is oxidized by hydrogen peroxide to ferric iron(III), a hydroxyl 

radical and a hydroxyl anion. Iron(III) is then reduced back to iron(II), a peroxide radical and 

a proton by the same hydrogen peroxide (disproportionation).The hydroxyl free radical 

generated by Fenton’s reagent is a powerful, non-selective oxidant. Oxidation of an organic 

compound by Fenton’s reagent is rapid and exothermic (heat-producing) and results in the 

reduction of contaminants to primarily carbon dioxide and oxygen 

                                       Fe2+ + H2O2 → Fe3+ + OH· + OH−                                            (1) 

                                       Fe3+ + H2O2 → Fe2+ + OOH· + H+                                            (2) 

Reaction (1) was suggested by Haber and Weiss in the 1930s. In the net reaction the presence 

of iron is truly catalytic and two molecules of hydrogen peroxide are converted into two 

hydroxyl radicals and water. The generated radicals then engage in secondary reactions. 
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Iron(II) sulfate is a typical iron compound in Fenton's reagent. The exact mechanisms are 

debated (also non-OH· oxidizing mechanisms of organic compounds have been suggested) 

and, therefore, it may be appropriate to broadly discuss 'Fenton chemistry' rather than a 

'Fenton reaction'. 

In the Electro-Fenton process, hydrogen peroxide is produced in the required amount from 

the electrochemical reduction of oxygen. 

Fenton's reagent is also used in organic synthesis for the hydroxylation of arenes in a radical 

substitution reaction such as the classical conversion of benzene into phenol. 

                                       C6H6 + FeSO4 + H2O2 → C6H5OH                                              (3) 

A recent hydroxylation example involves the oxidation of barbituric acid to alloxane.Another 

application of the reagent in organic synthesis is in coupling reactions of alkanes. As an 

example tert-butanol is dimerized with Fenton's reagent and sulfuric acid to 2,5-dimethyl-2,5-

hexanediol. 

 

2.3 Diethanolamine (DEA)  

 

              Diethanolamine, often abbreviated as DEA, is an organic compound with the 

formula HN(CH2CH2OH)2. This colourless liquid is polyfunctional, being a secondary 

amine and a diol. Like other organic amines, diethanolamine acts as a weak base. Reflecting 

the hydrophilic character of the alcohol groups, DEA is soluble in water, and is even 

hygroscopic. Amides prepared from DEA are often also hydrophilic. 

 

The reaction of ethylene oxide with aqueous ammonia first produces ethanolamine: 

                                             C2H4O + NH3 → H2NCH2CH2OH                                         (1) 

which reacts with a second and third equivalent of ethylene oxide to give DEA and 

triethanolamine. 

                                        C2H4O + H2NCH2CH2OH → HN(CH2CH2OH)2                                 (2) 

                                        C2H4O + HN(CH2CH2OH)2 → N(CH2CH2OH)3                                   (3) 

About 300mil kg are produced annually in this way. The ratio of the products can be 

controlled by changing the stoichiometry of the reactants. 

DEA is used as a surfactant and a corrosion inhibitor. It is used to remove hydrogen sulfide 

and carbon dioxide from natural gas. 
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In oil refineries, a DEA in water solution is commonly used to remove hydrogen sulfide from 

various process gases. It has an advantage over a similar amine ethanolamine in that a higher 

concentration may be used for the same corrosion potential. This allows refiners to scrub 

hydrogen sulfide at a lower circulating amine rate with less overall energy usage. 

DEA is versatile chemical intermediate, principal derivatives include ethyleneimine and 

ethylenediamine. Dehydration of DEA with sulfuric acid gives morpholine: 

Amides derived from DEA and fatty acids, known as diethanolamides, are amphiphilic. 

 

Amines containing wastewater is generally characterized by high chemical oxygen demand 

(COD) typically about 17,000 mg/L. Thus the wastewater from amine sweetening plants 

cannot be directly discharged to the surrounding water; otherwise, it can deplete dissolved 

oxygen in receiving waters, stimulate aquatic plant growth, exhibit toxicity towards aquatic 

life, present a public health hazard, and affect the suitability of wastewater for reuse 

purposes. Treatment of amine wastewater using existing wastewater treatment plant without 

any dilution is very challenging since it can affect the performance of the activated sludge. 
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METHODOLOGY AND PROJECT WORK 

3.1 Statistical Analysis Methodology 

 

          The statistical analysis begins with the experimental design approach in the 

STATGRAPHICS Centurion software. The range values of the two parameters which are the 

X1: H2O2 Concentration and X2: FeSO4, 7H2O Concentration was obtained from the 

literature review. Below are the range values: 

                                      X1: H2O2 Concentration: 0.61-2.44 M 

                                      X2: FeSO4, 7H2O Concentration: 1.8- 40 mM 

Response Surface Design Attributes 

 

Design class: Response Surface 

Design name: Central composite design: 2^2 + star     

Design characteristic: Rotatable 

File name: DEA Optimization 

 

Base Design 

Number of experimental factors: 2 

Number of blocks: 1 

Number of responses: 1 

Number of runs: 13, including 5 counterpoints per block 

Error degrees of freedom: 7 

Randomized: Yes 

 

Factors Low High Units Continuous 

H2O2 Concentration 0.61 2.44 M Yes 

FeSO4 7H2O Concentration 1.8 40 mM Yes 

1Table 3.1 : Hydrogen peroxide concentration and ferrous ion concentration 

 

 

Based on the software, table 3.1 is created with Central composite design: 2^2 + star design 

which will study the effects of 2 factors in 13 runs.  The design is to be run in a single block.  

The order of the experiments has been fully randomized.  This will provide protection against 

the effects of lurking variables.   
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BLOCKS Hydrogen peroxide 

(M)  

Ferrous ion (M) DEA degradation 

(%) 

1 2.81901 0.0209  

2 0.61 0.0018  

3 2.44 0.0018  

4 1.525 0.0209  

5 1.525 0.0209  

6 1.525 0.0209  

7 1.525 0.0209  

8 1.525 0.00611148  

9 0.61 0.04  

10 0.230995 0.0209  

11 1.525 0.0479115  

12 1.525 0.0209  

13 2.44 0.04  

2Table 3.2 The number of experiments and the factor values for the experiment 

Based on table 3.2, a total number of 13 experiments will be conducted. The centre points 

selected for the experiments were 5, to make sure the distribution of the experimental factors 

value, and to increase the efficiency of the experiments. 

Experiments with X1 and X2 value are to measure the DEA degradation value. Once the 

degradation value is identified for all the 13 experiments, the values will be submitted in the 

software to generate the response surface curve for further analysis and studies to identify the 

optimum values of these two factors (X1 & X2) for the DEA degradation. 
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3.2 Experimental Methodology 

 

 
Samples to be analysed for COD were diluted accordingly. Then, 2 mL of the diluted samples were 

transferred to the HACH® high range COD vials. 
 

 
Samples to be analysed using HPLC were transferred to 2 mL screw cap sample vials without dilution. 

 
Samples were cooled and filtered using syringe filter, Whatman Puradisc Aqua 30 with 0.45 mm with 

cellulose acetate membrane to remove suspended solids. 

 
These samples were then placed in a water bath. The temperature set was 60°C to remove any residual 

hydrogen peroxide. This is the temperature were hydrogen peroxide is expected to undergo self-
degradation to water and oxygen according to its Material Safety and Data Sheet. 

 
These samples were treated with two drops of 10 M sodium hydroxide to stop the reaction right after 

sampling. Highly concentrated sodium hydroxide was used to increase the pH of the samples above the 
effective limit of the reaction. The method used for this study was based on the method used by Pontes 

et al. (2010).[P1] 

 
Five mL of samples were collected using a 5-mL pipette. 

 
Upon reaching the specified temperature, hydrogen peroxide was added and the reaction time begins. 

Reaction time was set at 30 minutes and 60 minutes, depending on the experimental run. 

 
Weighed ferrous sulphate crystals were added to the solution. This weight depends on the calculated 

dosage for each particular experimental run. These crystals were solubilised in the reaction solution due 
to the mixing. 

 
pH of the reaction solution was corrected according to the parameter setup for each experimental run. 

 
Measured volume of reaction solution was placed in the reactor. This volume depended on the volume of 

hydrogen peroxide that was dosed for each particular experimental run. Both magnetic stirrer and 
recirculating water bath were switched on at this point. 

 Specific concentration of DIPA was prepared as the reaction solution. 



  

20 
 

3.4 Experimental Approach 

 

               The experiments were conducted in double walled glass reactor (1 L volume), with 

a ground glass cover that can be fixed by clips. The solution of DEA was adjusted to pH 3 by 

drop-wise addition of 2M sulphuric acid and 1M & 10M sodium hydroxide. Temperature was 

maintained by circulating water at a controlled value (30
O
C) through the glass jacket of the 

reactor. Mixing of the internal solution was carried out with a stirring bar and a magnetic 

stirrer placed under the reactor. The requested amount of ferrous sulphate (FeSO4, 7H2O) 

was added and the content was mixed well. This was followed by addition of a measured 

quantity of 30% H2O2. The effective reaction volume was about 800 ml. The reaction started 

immediately and the temperature was maintained by the cooling water circulating through the 

jacket as stated before. Samples of the liquid were withdrawn after 30 minutes using a 

syringe and analysed for the COD, unreacted amine, and residual H2O2. 

Figure 3.1 shows the reactor setup for the mixing of DEA with hydrogen peroxide and the 

ferrous sulphate. The temperature is set to 30
o
C.  Water in and water out is connected to the  

                                                   

2Figure 3.1: The setup of reactor for the experimental runs.      

             The samples prepared according to the experimental procedure. Figure below shows 

the samples examples. The samples are done for all the 13 experiments based on the RSM 

analysis. 
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RESULTS AND DISCUSSION 

 

4.1 Experimental Result 

Table 4.1 below is the result of HPLC test based on the samples (From sample 1 to sample 

13). 

BLOCKS Hydrogen peroxide 

(M)  

Ferrous ion (M) DEA degradation 

(%) 

1 2.81901 0.0209 57.14 

2 0.61 0.0018 34.61 

3 2.44 0.0018 74.47 

4 1.525 0.0209 81.57 

5 1.525 0.0209 75.64 

6 1.525 0.0209 73.26 

7 1.525 0.0209 74.91 

8 1.525 0.00611148 43.22 

9 0.61 0.04 49.36 

10 0.230995 0.0209 46.7 

11 1.525 0.0479115 78.91 

12 1.525 0.0209 75.98 

13 2.44 0.04 93.46 

3Table 4.1: Amount of DEA degradation in percentage 

The DEA degradation is calculated based on the result obtained from the HPLC curve.  

 

                

 
                                                        

                        
       

 

Example for sample 4: 

DEA degradation = [(16 -2.94726)/16] *100  

                              = 0.8157 *100  

                               = 81.57% 

The degradation amount of DEA is calculated based on the HPLC reading on degradation 

performance of DEA. Example of  the HPLC reading is available in appendix 1. 
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4.2 Optimization  

 

Estimated effects for DEA Degradation (Percentage %) 

Effect Estimate Stnd. Error V.I.F. 

average 75.736 4.58063  

A:Hydrogen Peroxide 24.6811 7.24261 1.0 

B:Ferrous ion 21.0533 7.24261 1.0 

AA -20.5748 7.76682 1.01731 

AB 2.12 10.2426 1.0 

BB -11.4298 7.76683 1.01731 

4Table 4.2 Standard errors are based on total error with 7 d.f. 

 

Table 4.2 shows each of the estimated effects and interactions.  Also shown is the standard 

error of each of the effects, which measures their sampling error.  Note also that the largest 

variance inflation factor (V.I.F.) equals 1.01731.  For a perfectly orthogonal design, all of the 

factors would equal 1.  Factors of 10 or larger are usually interpreted as indicating serious 

confounding amongst the effects.   

 

 

3Figure 4.1 Standardized Pareto Chart for DEA Degradation 
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Analysis of Variance for DEA Degradation 

Source Sum of 

Squares 

Df Mean 

Square 

F-Ratio P-Value 

A:Hydrogen 

Peroxide 

1218.32 1 1218.32 11.61 0.0113 

B:Ferrous ion 886.485 1 886.485 8.45 0.0228 

AA 736.216 1 736.216 7.02 0.0330 

AB 4.4944 1 4.4944 0.04 0.8419 

BB 227.199 1 227.199 2.17 0.1846 

Total error 734.376 7 104.911   

Total (corr.) 3715.22 12    

5Table 4.3  Analysis of Variance for DEA Degradation 

 

R-squared = 80.2333 percent 

R-squared (adjusted for d.f.) = 66.1142 percent 

Standard Error of Est. = 10.2426 

Mean absolute error = 5.56466 

Durbin-Watson statistic = 1.44795 (P=0.0891) 

Lag 1 residual autocorrelation = 0.0476383 

 

          Table 4.3 (ANOVA table) partitions the variability in DEA Degradation into separate 

pieces for each of the effects.  It then tests the statistical significance of each effect by 

comparing the mean square against an estimate of the experimental error.  In this case, 3 

effects have P-values less than 0.05, indicating that they are significantly different from zero 

at the 95.0% confidence level.   

         The R-Squared statistic indicates that the model as fitted explains 80.2333% of the 

variability in DEA Degradation.  The adjusted R-squared statistic, which is more suitable for 

comparing models with different numbers of independent variables, is 66.1142%.  The 

standard error of the estimate shows the standard deviation of the residuals to be 10.2426.  

The mean absolute error (MAE) of 5.56466 is the average value of the residuals.  The 

Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant 

correlation based on the order in which they occur in your data file.  Since the P-value is 
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greater than 5.0%, there is no indication of serial autocorrelation in the residuals at the 5.0% 

significance level.   

 

                    4 Figure 4.2: Main Effects plot for DEA Degradation 

Based on the figure 4.2, it can conclude that the DEA degradation level is low when the 

hydrogen peroxide level is low. As you can see, the degradation rate is increasing as the 

Hydrogen peroxide amount is increasing. It reached optimum reaction at 2.44M. After that 

the degradation rate started to reduce. Approximately 80% degradation is achieved at the 

optimum value which is at 2.44M H2O2 concentration. 

Same situation goes to ferrous ion. The degradation rate is low when the amount of ferrous 

ion is low. The degradation rate is increasing continuously until it reaches 0.04M. Starting 

from 0.04M, the degradation rate is significantly stable or showing its reaches the optimum 

value. 

Regression coeffs. for DEA Degradation 

Coefficient Estimate 

constant 10.164 

A:Hydrogen Peroxide 49.6962 

B:Ferrous ion 1113.45 

AA -12.2875 

AB 60.6529 

BB -15665.4 

6Table 4.4: Regression coeffs. for DEA Degradation 

 

0.61

Ferrous ion

0.04

Main Effects Plot for DEA Degradation

53

58

63

68

73

78

83

D
E

A
 D

e
g

ra
d
a

tio
n

Hydrogen Peroxide

2.44 0.0018



  

25 
 

From this value, we can come with the general equation for the DEA degradation process. 

 

                

                                              

                                         

                                        

                       

 

where the values of the variables are specified in their original units.   

Based on the formula, we can conclude that ferrous ion is more significant towards the 

degradation of DEA as compared to hydrogen peroxide. From the equation, the coefficient of 

hydrogen peroxide is 49.6962 while for ferrous is 1113.45. From this, we can conclude that 

ferrous ion will play better role for the degradation process as compared to hydrogen 

peroxide.  

 

                        5 Figure 4.3: Interaction Plot for DEA Degradation 
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(0.0018M) and the maximum value (0.04M) towards the H2O2.  From the plot, we can 

conclude that at low ferrous ion value (0.0018M), the reaction rate increase from 0.61M of 

H2O2 till 2.11M H2O2. Same scenario happens at the 0.04M of ferrous ion. Both 

concentration values of ferrous ion indicate that, optimum value of DEA degradation is at 

2.1M-2.2 M of H2O2. 

 

6Figure 4.4: Normal Probability plot for DEA degradation 

Figure 4.4 shows the relationship between the standardized effects and the DEA degradation 

percentage. We can find the Experimental value and the theoretical value from the table 

below. If the points are in between the range of the theoretical values, then, we can say that 

the degradation performance is good. From, the figure, all the points are in between the 

range. Hence, it has a good degradation performance. 
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Estimation Results for DEA Degradation  

Row Observed 

Value 

Fitted Value Lower 95.0% 

CL for Mean 

Upper 95.0% 

CL for Mean 

1 57.14 72.6133 53.4657 91.7609 

2 34.61 37.9265 18.779 57.0741 

3 74.47 60.4876 41.3401 79.6352 

4 78.89 75.736 64.9045 86.5675 

5 75.64 75.736 64.9045 86.5675 

6 73.26 75.736 64.9045 86.5675 

7 74.91 75.736 64.9045 86.5675 

8 43.22 49.4193 30.2717 68.5669 

9 49.36 56.8598 37.7123 76.0074 

10 46.7 37.7091 18.5615 56.8566 

11 78.91 79.1932 60.0456 98.3408 

12 75.98 75.736 64.9045 86.5675 

13 93.46 83.661 64.5134 102.809 

7Table 4.5: Estimation result for DEA degradation 

Table 4.5 contains information about values of DEA Degradation generated using the fitted 

model.  The table includes: 

   (1) The observed value of DEA Degradation (if any) 

   (2) The predicted value of DEA Degradation using the fitted model 

   (3) 95.0% confidence limits for the mean response 
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The table below shows the percentage error in experimental value as compared to the 

theoretical/fitted value. 

Row Observed Value Fitted Value 
Error in Percentage difference 

(%) 

1 57.14 72.6133 21.30918 

2 34.61 37.9265 8.744545 

3 74.47 60.4876 23.11614 

4 78.89 75.736 4.164466 

5 75.64 75.736 0.126756 

6 73.26 75.736 3.269251 

7 74.91 75.736 1.090631 

8 43.22 49.4193 12.54429 

9 49.36 56.8598 13.18999 

10 46.7 37.7091 23.84279 

11 78.91 79.1932 0.357606 

12 75.98 75.736 0.322172 

13 93.46 83.661 11.71275 

8Table 4.6 Error in Experimental values. 

From table 4.6, we can analyse that most of the value errors are less than 15%. The mean 

error value is around 9.522351%, which is less than 10 %. This error could be because of the 

experimental errors or other random errors cause by the student during the experiment. Errors 

such as inaccurate chemical amount used in experiment could be an example of error. Other 

than that, instrument calibration error also would affect the experimental result. We also can 

consider environmental factors such as light intensity; humidity and surrounding temperature 

in lab which will cause error to the samples. 
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         7 Figure 4.5 Comparison between observed value and fitted value 

Figure 4.5 the comparison between the experimental value and the estimation value from the 

software. From the chart, we can conclude that most of the experimental values are similar to 

the fitted values except for run 1, 3 and 13, where the difference is more than 10 %. 
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4.3 Response Surface Curve 

 

The regression equation was graphically represented by 3D response surface and 2D contour 

plots. From three dimensional response surface curves and contour plots shown in Figures 8, 

the effect of the independent variables and their mutual interaction on the degradation of 

DEA can be seen. 

 

8Figure 4.6: Estimated Response Surface for DEA degradation 

Based on the figure 4.6: 

Optimum value for the degradation of DEA = 84.9137 

Factor Low High Optimum 

Hydrogen Peroxide 0.230995 2.81901 2.11995 

Ferrous ion 0.00611148 0.0479115 0.0396437 

9Table 4.7: Optimum value for DEA degradation 

The maximum or the optimum degradation can happen when the hydrogen peroxide value is 

around 2.11995M and ferrous ion at 0.0396437. 
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4.4 Effect of Hydrogen Peroxide. 

Based on the result obtained, its find that the optimum value for the hydrogen peroxide for 

the DEA degradation is 2.12. The degradation of DEA is low at low hydrogen peroxide 

concentration (0.23M- 0.61M). The degradation is also decreasing after 2.44 Generally, the 

DEA concentration decreased along with time in the presence of H2O2. The degradation 

percentage increased with increasing of H2O2 from 1.525M until 2.44.M. However, further 

increase in H2O2 concentration from 2.44M to 2.819M decreases the degradation percentage. 

This can be explained by two opposing effects. The degradation rate was limited at low 

H2O2 concentration, as the formation of hydroxyl radicals was insufficient. At higher H2O2 

concentration, more hydroxyl radicals were available to attack the aromatic rings leading to a 

faster oxidation rate (Equation 1 and 2). However, above 2.44M, these free radicals preferred 

to react with the excess of H2O2 rather than with the DEA (Legrini et al., 1993, Galindo & 

Kalt, 1999). Hydroperoxyl radicals (HO2•) as the competitive reaction product are much less 

reactive than OH• and increase in H2O2 do not seem to contribute to the degradation of the 

DEA. 

                        H2O2 + UV → 2HO●                           (1) 

                        H2O2 + HO● → H2O + HO2●                (2) 

                        HO2● + HO● → H2O + O2                 (3) 

4.5 Effect of FeSO4, 7H2O concentration 

 

The optimum value of the ferrous ion for the degradation of DEA is 0.0396437M. The 

degradation value is lower when the concentration of ferrous sulphate is in between 

0.0018M-0.006M. Then, the degradation of DEA value increases from concentration 0.02M-

0.04M. Finally, the degradation rate reduces from concentration 0.04M-0.0479M. 

At lower concentration, the amount of Fe
2+

 in the system was not sufficient to generate 

required amount of hydroxyl radicals for substrate oxidation (reaction 4). In contrast, at 

higher concentration excess Fe
2+

 led to the scavenging reaction (5). The hydroxyl radicals 

react with ferrous ion instead of attacking the organic substrate. 

 

Fe
2+

 + H2O2 → Fe
3+

 + ·OH             (4) 

                                           ·OH + Fe
2+

 → Fe
3+                                        

(5) 
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CONCLUSION 
 

               The aim of this project is to study the degradation of DEA using the Fenton’s 

oxidation system and find the optimum operating condition for the degradation process. The 

study covers two important parameters which are H2O2 concentration and FeSO4, 7H2O 

concentration. 

The experiment was design successfully using response surface methodology and central 

composite design. The Experiments were conducted based on the design of experiment from 

the stat graphics centurion software and the optimization of H2O2 concentration and FeSO4, 

7H2O concentration for DEA degradation is achieved 

          The optimum H2O2 concentration and FeSO4, 7H2O concentration for DEA 

degradation is 2.119M and 0.0396M respectively, which is almost similar with literature data 

concerning the Fenton degradation of most organic substrates.   

          Response Surface Methodology (RSM) was performed to optimize the process 

parameters for DEA degradation. A highly significant quadratic polynomial obtained by 

Central Composite Design (CCD) was very useful for determining the optimal process 

parameter values of degradation process that have significant effects on DEA removal. 

          Finally, the objective of this paper is achieved. 
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Appendix 1. HPLC Reading 


