

VideoWall Bench: A Benchmark for Evaluating Hardware Accelerated Video

Decoding on Linux

By

Muhammad Amirul Syahmi Bin Hamzah

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Information & Communication Technology)

SEPTEMBER 2012

Universiti Teknologi PETRONAS

Bandar Seri Iskandar,

31750 Tronoh

Perak DarulRidzuan

2

CERTIFICATION OF APPROVAL

VideoWall Bench: A Benchmark for Evaluating Hardware Accelerated Video

Decoding on Linux

By

Muhammad Amirul Syahmi Bin Hamzah

A project dissertation submitted to the

Information Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION & COMMUNICATION TECHNOLOGY)

Approved by,

(Dr. Suziah Binti Sulaiman)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

3

September 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the reference and acknowledgements,

and that the original work contained herein has not been undertaken or done by

unspecified sources or persons.

(MUHAMMAD AMIRUL SYAHMI BIN HAMZAH)

4

ABSTRACT

VideoWall Bench is a benchmark script for benchmarking video decoding capabilities

using hardware acceleration on Linux. Intel has introduced Video Acceleration API

(VA-API) which enabled and provides access for graphics hardware to do hardware

acceleration. VA API provides a set of video decoders (Codecs) for the H.264 video

standards. Multiple video decoding using video wall methodology is a method of

benchmarking that be implemented in this script. Using this method, users can really

stress the multiple video decoding capabilities of one platform and at the same time

measure processor usage for video decoding process. VideoWall Bench benchmark

video decoding performance by measuring processor utilization, memory utilization,

total frame rate per second (FPS) and time fluctuation in video decoding process.

Additionally, VideoWall Bench also includes set of 1080p and 720p files for input

sequences in video decoding workload process.

5

ACKNOWLEDGEMENT

First and foremost, the author would like to take this opportunity to express his greatest

gratitude and appreciation to my supervisor, Dr. Suziah Binti Sulaiman, who had

continuously monitored his progress throughout the duration of the project. Her

constructive comments and advices, continuous positive support and guidance, and good

suggestions towards project enhancement have guided the project towards its successful

final outcome.

This gratitude also dedicated towards Mr. Muhammad Syazwan Mazlan, Mr. Andreas

Grois and Mr. Dennis E. Mungai for their feedback and kind cooperation which have

helped a lot in developing, improving and implementation of the system prototype. Not

to forget to the committee of Final Year Project of Computer Information Sciences (CIS)

department for excellent organization and management of this course.

Last but not least, I would like to thank my parents for their unconditional support, both

financially and emotionally throughout my degree. In particular, the patience and

understanding shown by my mum and dad during the honours year are greatly

appreciated. Thank you so much.

6

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL .. 2

CERTIFICATION OF ORIGINALITY ... 3

ABSTRACT ... 4

ACKNOWLEDGEMENT .. 5

LIST OF FIGURES .. 8

LIST OF TABLES .. 10

ABBREVIATIONS AND NOMENCLATURES ... 11

CHAPTER 1 .. 12

INTRODUCTION ... 12

1.1 Background of Study .. 12

1.2 Project Significance .. 14

1.3 Problem Statements .. 14

1.4 Objectives ... 15

CHAPTER 2 .. 16

LITERATURE REVIEW .. 16

2.1 Benchmarking .. 16

2.2 Common Goals of Benchmarking .. 17

2.3 CPU Video Decoding and GPU Assisted Video Decoding 19

2.4 Theory of Video Acceleration API (VA API) ... 21

2.5 Comparing VA API with other API ... 21

2.6 Previous Video Decoding Benchmarking System ... 25

2.7 Proposed Solution .. 29

CHAPTER 3 .. 30

METHODOLOGY ... 30

7

3.1 Agile Waterfall Model ... 30

3.2 Software Involved .. 46

3.3 Hardware Involved ... 47

3.4 Gantt Chart ... 48

CHAPTER 4 .. 49

RESULT AND DISCUSSION ... 49

4.1 Results from consulting an expert on multimedia benchmarking 49

4.2 Discussion on the Work Progress ... 53

4.4 Experimental Studies on Intel Atom .. 66

4.5 Experimental Studies on Intel Sandy Bridge ... 69

CHAPTER 5 .. 75

CONCLUSION ... 75

5.1 Conclusion .. 75

5.2 Recommendation .. 75

REFERENCES .. 76

8

LIST OF FIGURES

Figure 1 Multimedia Trends…………………….…………………………... 13

Figure 2 Driver/GPU Video Performance Testing…………………………... 22

Figure 3 Intel VA API vs NVIDIA VDPAU……………………….............. 22

Figure 4 Driver/GPU Video Performance Testing: 1 Core Enabled………… 23

Figure 5 Intel VA API vs NVDIA VDPAU…………………..…………...... 24

Figure 6 Agile Waterfall Model…...……………………………..................... 31

Figure 7 Basic Algorithm for VideoWall Bench………………...………….. 33

Figure 8 System Architecture ………………...…………………………….. 34

Figure 9 Process Flow Chart…………………...………………...………….. 35

Figure 10 Video Decoding Methodology……….………………...………….. 42

Figure 11 Components of run_all_test.pl………..………………...………….. 53

Figure 12 Components of Iter_one_memcpu.pl ………………...……………. 54

Figure 13 Components of One_Decode_wall_p.pl ………………...………….. 56

Figure 14 Components of run_in_back.sh ………..………………...………….. 60

Figure 15 Command to become Superuser…………………………………….. 62

Figure 16 VideoWall_Bench Folder…………………………………………… 62

Figure 17 Video Files in YouTube720p and YouTube1080p .………………… 63

Figure 18 Folder and Video Names in Configuration…………..……………… 63

Figure 19 Directory File………………………………………………………… 64

Figure 20 Command to run VideoWall Bench .………………………………… 64

Figure 21 Running VideoWall Bench.…………………………………………... 65

Figure 22 Result.txt………………………………………….………………….. 65

9

Figure 23 CPU Utilization with VA-API and Without VA-API.……………… 66

Figure 24 CPU Utilization for 720p and 1080p Using VA-API.……………… 67

Figure 25 FPS for 720p and 1080p Using VA-API.………………………….. 68

Figure 26 Maximum Number of Video Decoding for H.264 720p..…………… 69

Figure 27 Maximum Number of Video Decoding for H.264 1080p Files……... 70

Figure 28 Maximum Number of Video Decoding for H.264 1080p Files……… 71

Figure 29
Maximum Number of Video Decoding for H.264 1080P Files on i5

4.3 MHz……………………………………………………………….
72

Figure 30 One file of H.264 Video Decoding 1800x1000 ……………………… 73

Figure 31 GPU Usage for One file of H.264 Video Decoding 1366x768….…… 73

Figure 32 GPU Usage for One file of H.264 Video Decoding 1800x1000……... 74

10

LIST OF TABLES

Table 1 Experimental Results of CPU Video Decoding and GPU Assisted

Video Decoding……………………………………………………….. 20

Table 2 Sample of Command in HD Bench………………………………....... 27

Table 3 Input Sequences of HD-Video Bench…………………………………. 27

Table 4 Comparison between other Benchmarking Systems…….………........ 28

Table 5 Computer Requirements …….……….. 36

Table 6 Error Handling Testing……………………………….…….………..... 44

Table 7 Type of System Testing performed …….………............................ 44

11

ABBREVIATIONS AND NOMENCLATURES

VAAPI Video Acceleration API

FPS Frame Rate per Second

HD High Definition

EEMBC Embedded Microprocessor Benchmark Consortium

SIMD Single Instruction, Multiple Data

SPEC The Standard Performance Evaluation Cooperative

Consortium

CPU Central Processing Unit

GPU Graphic Processing Unit

XvMC X-Video Motion Compensation

GMA Graphics Media Accelerator

VDPAU Video Decode and Presentation API for Unix

BIOS Basic Input-Output System

XvMC X-Video Motion Compensation

12

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nowadays video applications are becoming a very important workload in multiple

computing environments, ranging from mobile media players to Internet servers. In

order to deliver the increasing levels of quality and compression efficiency that new

multimedia applications are demanding, in the recent years a new generation of video

coding standards have been defined (Jörn, Jan, & Peter, 2004). Furthermore, the trend

towards high quality video systems has pushed the adoption of High Definition (HD)

digital video (Thomas, 2005). The combination of the complexity of new video Codecs

and the higher quality of HD systems has resulted in an important increase in the

computational requirements of the emerging video applications (Jörn et al., 2004). The

most important part is current processors in the market also become much more

powerful compared to previous generation processors. Introduction of internal and

external graphic card make the processor become more efficient to process multimedia

workloads especially in video decoding process (Guobin Shen et al., 2005).

While the video quality and resolution across these systems currently varies

considerably based on the computing capabilities of the systems, we can expect two

trends to continue indefinitely into the future: (1) research in information theory will

13

continue to develop increasingly sophisticated methods for maximizing video

compression, and (2) users will demand to watch higher quality video at lower CPU

usage. Furthermore, new architectures are being recommended with the objective of

providing the required performance of HD video applications (Michael, Yukio, &

Takeshi, 2006). All of the improvement that have been to video decoding process such

better the codec compression, and processor technology either using hardware or

software acceleration requires a representative benchmark with a well-defined operation

environment.

Figure 1: Multimedia Trends

VideoWall Bench is an application that has been made for benchmarking video

decoding capabilities using VA API technology. Intel has introduced Video Acceleration

API (VA-API) which enabled and provides access for graphics hardware to do hardware

acceleration. Decoding using hardware acceleration will take minimum processor usage

thus enable the system to decode more video in the same time. This program enable user

to measure processor usage for multiple video decoding and total frame rate per second

of video decoding.

CPU decoding (software acceleration SIMD

approach) to GPU decoding (hardware acceleration

Execution Unit approach

Move from benchmarking the video codec to

benchmarking the system to decode the codec

The adoption of High Definition (HD) digital video

(Thomas, 2005).

New generation of video coding standards consists

of higher level of quality and compression efficiency

(Jörn, Jan, & Peter, 2004).

14

1.2 Project Significance

Video decoding process requires high amount of CPU utilization. One of the examples

that require powerful video decoding capabilities is a Digital Security Surveillance

(DSS). It needs a computer system that capable of handling multiple HD video streams

and driving a large digital display. Therefore a VideoWall Bench was been developed to

benchmark and collect decoding performance data. It will assist developers to fully

utilize their system resources by having an optimum and cost saving decoding system

1.3 Problem Statements

There are 3 main problem statements of this project which are:

 Current video decoding benchmarking system does not optimize hardware

acceleration for external and internal graphics

 Can only benchmark one video decode at one time, thus not maximizing

decoding capability of the system

 Current video decoding benchmark does not include new video codec MKV

There are several multimedia benchmarks, such as Media Bench (Jason et al., 2009),

Berkeley Multimedia Workload (Nathan et al., 2002), EEMBC (Markus, 2005) and HD-

VideoBench (Mauricio et al., 2007), but none of them fulfills all the requirements for a

complete HD video benchmark. Some of them use the reference versions of the

applications that were written with the purpose of validating the standards but not for

high performance. Furthermore, these reference codes usually do not include machine

specific optimizations like SIMD instructions. Additionally, most of the existing

benchmarks focus on the MPEG-2 (or MPEG-4 at the most), but only a few of them

include recent video Codecs like H.264 that incorporates the most recent techniques in

video compression technology. Plus, none of the benchmarking system include new

video codec Matroska video format (MKV). Even in the case of including H.264, none

of them addresses HD applications, which requires a particular and careful selection.

Furthermore, most of the benchmarking system only measured codec performance not

the display performance of the system.

15

1.4 Objectives

This project was been developed to achieve below objectives:

 To develop video decoding benchmarking that optimize hardware acceleration

on Linux

 To write a set of scripts for video decoding benchmarking that could measure:

o Processor and memory usage for one and multiple streams of video

decoding

o Total frame rate per seconds of video decoding

o Time latency of video decoding

 To test the scripts in terms of processor and memory utilization of one system

with different video codecs.

16

CHAPTER 2

LITERATURE REVIEW

2.1 Benchmarking

According to David (2000) benchmarking for computer science can be defined as a

combination of measurement, interpretation and communication of a computer system

speed or size. It is also mention that benchmarking is not necessary dealing with

complete systems. Some may deal with only small portion of the system independent of

other components. Unfortunately components of a computer system interaction is

incredibly complex and have unpredictable frequently ways. Computers performance

evaluation should be representative of applications that run on actual systems.

Four decades ago, computer performance was measured using speed of ADD instruction

or a MULTIPLY instruction. After that synthetic programs and micro benchmarks were

used, in 1980’s computer performance was usually evaluated using small benchmarks,

such as kernels extracted from applications (e.g., Lawrence Livermore Loops, Linpack,

Sorting, Sieve of Eratosthenes, 8-queens problem, Tower of Hanoi) or synthetic

programs such as Whetstone or Dhrystone (Weicker, 1990). Both programs were simple

programs and did not compute anything useful. Many results computed during the

program’s run were not ever printed or used (Wichmann, 1976).

17

Nowadays there are many varieties of applications in computer workloads and it is not

easy to create representative benchmark and have becoming a controversial issue to the

benchmarking industry (John, 2005). She also mentioned that different benchmarks are

appropriate for systems targeted for different purposes. Plus, it is also a fact that simple

numbers such as processor speed 2.4 GHz are easy to understand. Even today, many of

the people buy their computers based on their clock frequency or memory capacity as

opposed to any results based on any benchmark applications.

Benchmark can be many type of different application. Most of the benchmarks used

fixed amount of computation to measure the performance of the computer. The

computer that performs the task in the shortest time is considered as winner. There are

also throughput benchmarks, in which there is no concept of finishing the fixed amount

of work. Throughput benchmarks are used to measure the rate at which work gets done,

that is, a task accomplished in a fixed time is used to compare processors or systems.

The SPEC CPU benchmarks are examples of fixed-computation benchmarks, whereas

the TPC benchmarks are examples of throughput benchmarks. One may also design

benchmarks where neither computation nor time is kept fixed. Misuse/abuse has

happened in the use of these programs and in interpretation of results from these

programs. Synthetic benchmarks have been in disrepute since then. The Standard

Performance Evaluation Cooperative (SPEC) consortium and the Transactions

Processing Council (TPC) formed in 1988 have made available several benchmark suites

and benchmarking guidelines to improve the quality of benchmarking

2.2 Common Goals of Benchmarking

David (2000) mentioned that the goals of any analysis of the benchmarking of a

computers system, or one of its components will depend on the specific situation and the

interests, skills and abilities of the analyst. Below are the several different typical goals

of benchmarking a computer that are useful both to computer system designers and to

users (David, 2000)

18

 Compare alternatives. Purchasing new computer system may be a hassle for

users because they may have several different systems from which to choose.

Different option have different impact both cost and performance. The goal of

the benchmarking in this case is to provide quantitative information about which

computer set up are best under specific conditions.

 Determine the impact of a feature. Adding or removing specific feature may

give an impact to the new systems or existing systems. Therefore this type of

analysis is often referred to as before-and-after comparison since only one well-

defined component of the system is changed.

 System tuning. The goal of benchmarking in system tuning is to discover the set

of parameter that produces the best optimize performance. The overall

performance perceive by the users may consist of different parameter and closely

interconnected. Therefore it is very difficult task to find the best set of

parameters values in maximizing the computer performance.

 Identify relative performance. Computer performance typically has meaning

only in the context of its performance relative to another systems or same

configuration of another system. The goal of this case is to quantify the change in

performance relative to history

 Performance debugging. The goal of benchmarking for this case is to apply

appropriate tools and analysis technique why the program is not meeting

performance expectations.

 Set expectations. Computer users may have some idea what are the new

capabilities that may offer in the next new line of computer generations. In this

case, the task is to set the appropriate expectations for what a system is actually

capable of doing.

19

2.3 CPU Video Decoding and GPU Assisted Video Decoding

In the last decade, some multimedia-oriented SIMD processor extensions such as Intel’s

Matrix Math eXtension (MMX) instructions were introduced to CPU designs. These

instructions improve the performance significantly and is been heavily used throughout

the multimedia applications. However CPU still heavily loaded proving that CPUs

processing power cannot meet the requirement to decode high-definition (HD) video in

real-time even with highly optimized code (Guobin Shen et al., 2005).

Guobin Shen et al. (2005) present a study on accelerating the digital video decoding

using the programmable graphics pipeline of commodity GPU. The GPU is use to off-

load some of CPUs tasks such as video decoding when the CPU is heavily loaded while

GPU is idle.In fact, most today’s GPUs have a special hardware unit that can perform

the video decoding process provided that the video is encoded with an established

international video coding standards such as MPEG-1/2/4 and the wide-accepted

DirectX video accelerator (DXVA) specification. However, the application of such

hardware video decoding unit is very limited. It cannot decode video contents that are

coded with a very popular video coding format such as Windows Media Video (WMV)

and RealVideo.

Guobin Shen et al. (2005) paper also study on how to speed up video decoding using

common DirectX-8 compatible graphics engines. They choose DirectX-8 because of its

powerfulness, programmability, predominance and rich application program interfaces

(APIs). Their study proves that GPUs power can be utilized for applications other than

graphics such as video decoding. Furthermore, since the major task of video de-coding

is already handled by the GPUs graphics engine, it provides a more efficient way to

incorporate video into computer graphics. This is of high interest in today’s gaming

industry.

20

Guobin Shen et al. (2005) also mentioned that the CPU and GPU have to be considered

together because GPU alone cannot meet the requirement of video decoding. Moreover

a CPU plus GPU configuration is far more popular than a dual-processor configuration

in consumer commodity PCs. Guobin Shen et al. (2005) have performed extensive tests

on a PC with an Intel Pentium III 667 MHz CPU, 256 MB memory, and an nVidia

GeForce3 Ti200 GPU. Some of the initial experimental results are reported in table 1.

The test sequences are Football, Total, and Trap.

Table 1: Experimental Results of CPU Video Decoding and GPU Assisted Video

Decoding

The Football sequence is a standard MPEG test sequence in SIF format (320 240) with

very high motion. The Total sequence is a concatenation of several Standard MPEG test

sequences (such as Car phone, Stephan, Silence, Akiyo, Mobile-Calendar etc.) in CIF

format (352 288). The Trap sequence is a high definition version (1280 720) of the

movie trailer of “The Parent Trap” (Disney, 1998). The original frame rate of Trap is

23.98 f/s. In this experiment, they compare the video decoding speed achieved using

CPU only (with MMX technology) against that achieved with GPU acceleration. It is

obvious that the speed is significantly improved by leveraging the power of GPUs

graphics engine. It is interesting to observe that the speed-up of Total sequence is much

higher than that of Football sequence, while the speed-up of Trap is by large the most

significant. This experiment has greatly proved that using GPU acceleration can make a

significance difference compared to CPU only which is used software acceleration.

21

2.4 Theory of Video Acceleration API (VA API)

The Video Acceleration API (VA API) is a public software API specification. It

provides access to graphics hardware acceleration for video processing. The API is

meant to enable hardware accelerated video decode at various entry points for the

current coding standards today such as MPEG-2, MPEG-4/ASP/H.263, MPEG-4

AVC/H.264, and VC-1/WMV9(Video Acceleration API, 2012). The VA API provides

much more functionality than the existing X-Video Motion Compensation (XvMC) API.

XvMC was designed to support MPEG-2 motion compensation only (X-Video Motion

Compensation, 2012).

VA API is use at the X Window System on Unix-based operating systems (including

Linux, FreeBSD, and Solaris). Originally it is designed by Intel for its Graphics Media

Accelerator (GMA) series of GPU hardware. However, the API is not limited to GPUs

or Intel specific hardware, as other hardware and manufacturers can also freely use this

API for hardware accelerated video decoding (Willis, 2009).

2.5 Comparing VA API with other API

Larabel (2011) in his work try to compare the VA-API video playback performance with

Intel Sandy to its performance of using X-Video with the same hardware. This Sandy

Bridge testing was done with an Intel Core i5 2500K CPU, the Intel Bearup Lake

motherboard, 2GB of DDR3 system memory, and an OCZ 60GB Vertex 2 SSD. The

software stack was Ubuntu 10.10 with the Linux 2.6.38 kernel, GNOME 2.32.0, X.Org

Server 1.9.0, xf86-video-intel 2.14.901 driver, GCC 4.4.5, an EXT4 file-system, Mesa

7.11-devel from the beginning of March, and the LibVaGit library from early March.

The performance was also compared to X-Video playback from an ATI Radeon HD

4550 using both the open-source driver stack and the proprietary Catalyst 11.2 driver,

and a NVIDIA GeForce 9500GT with the 270.30 beta driver under the X-Video API and

then with their flagship Video Decode and Presentation API for Unix(VDPAU)

implementation.

22

Figure 2: Driver/GPU Video Performance Testing

Figure 2 show all of the video CPU usage data for the different VA-API / X-Video /

VDPAU video playback tests with the different graphics adapters. The CPU usage with

VA-API and VDPAU performance is far lower than with X-Video. Moreover, common

X extension does not offload much work to the GPU so the CPU is left with a much

greater burden. However, with the Core i5 2500K processor, the CPU usage using X-

Video is still 7~9% for this quad-core part. Between the different drivers / GPUs, the X-

Video performance does not different much.

Figure 3: Intel VA API vs NVIDIA VDPAU

http://www.phoronix.com/vr.php?view=15648

23

Figure 3 shows Phoronix Test Suite data for Sandy Bridge VA-API and NVIDIA

VDPAU for the GeForce 9500GT, it can be clearly see the CPU usage when using

Sandy Bridge with onboard graphics is actually lower than using the Video Decode and

Presentation API for UNIX on the discrete NVIDIA card. The average CPU difference

is just 2% vs. 3.2%. Besides, the CPU usages dramatically increase over the course of

playing "Big Buck Bunny" 1080p H.264 with VDPAU. With VA-API, the CPU topped

out at 4.9% (no other CPU work was going on in the background during any of this

video testing) while the NVIDIA driver spiked to nearly 13%.

Larabel (2011) also try to down-clock the processor below 1600MHz to see how low it

can possibly go with the CPU's performance while still handling Intel VA-API fine and

making X-Video choke. Unfortunately the Intel H67 motherboard doesn't allow down

clocking fewer than 1600MHz. However Larabel (2011) try to limit the CPU's

performance by disabling three of the four CPU cores. The Core i5 2500K is limited to

just one CPU core from the basic input-output system (BIOS).

Figure 4: Driver/GPU Video Performance Testing: 1 Core Enabled

24

Figure 4 shows driver/GPU video performance testing when only 1 core is enabled.

When just a single physical CPU core is exposed, the VA API utilization average is

around 7%, NVIDIA VDPAU is around 10%, and the various X-Video implementations

are 30~35%.

Figure 5: Intel VA API vs NVDIA VDPAU

The NVIDIA VDPAU driver continues poking the CPU more often than VA-API.

Overall Larabel (2011) work already shows the relevancy why VideoWall Bench uses

VA API as the API in the benchmarking system. Using VA API, CPU utilization is

much lower thus it optimizes video decoding process in a system.

25

2.6 Previous Video Decoding Benchmarking System

Media Bench is one of the most famous multimedia benchmark (Lee, Potkanjak, & H.

Mangione-Smith, 1997). This benchmarking system includes a MPEG-2 encoder and

decoder based on the implementation of the MPEG Software Simulation Group

(MSSG) with short input videos in low resolution (352x240 pixels). Besides, the MSSG

codec does not implement SIMD optimizations thus it has low performance of video

decoding. However, to solve the limitation of Media Bench, Media Bench+ was been

develop to solve the limitations of Media Bench by including MPEG-4 and H.263 video

codec, unfortunately it select the reference implementations and they do not address

high definition video (Jason, Wayne, & Bede , 1999).

A new version of the Media Bench which is called Media Bench II has been released in

which includes codecs for MPEG- 2, MPEG-4, H.263 and H.264 (Jason, Frederick,

Joseph, & Wayne, 2009). The MPEG-2 Codec is using the same MSSG

implementation, the MPEG-4 is taken from the FFmpeg Codec library, the H.263

Codec is the Telenor implementation, and the H.264 is taken from the reference

software (called JM). The main problem with this selection is the combination of

reference implementations for some of the Codecs (MSSG for MPEG-2 and JM for

H.264) with highly optimized version for others (FFmpeg for MPEG-4). This shows

inconsistency of quality in terms of optimization thus can jeopardize the result of the

benchmark. Media Bench II also has increased the resolution compared to the original

Media Bench, but unfortunately they do not address HD applications and remains on

Standard Resolution (SD). Additionally, Media Bench II provides only one short input

sequence (10 frames) and the coding options are not tuned for HD applications.

Intel’s addition of MMX to their x86 architecture motivates them to develop the Intel

Media Benchmark. It was been developed because during that time an adequate industry

standard multimedia benchmark did not exist to measure multimedia performance.

However the distribution of benchmark for only x86 architecture have make this

benchmark greatest weaknesses. This made the benchmark system only applicable to

x86 instruction set compatible processors. Moreover the Intel Media Benchmark source

26

code is not publicly available to the users. On the other side The Berkeley Multimedia

Work load solved the problem of the low resolution of the input sequences by including

inputs with higher resolutions and The source code is publicly available and users are

free to take the workload and modify it to suit their needs. Unfortunately they have

selected only the MPEG- 2 Codec into the benchmark program (Nathan & Alan, 2002).

The EEMBC Digital Entertainment benchmark includes codec for MPEG-2 and MPEG-

4 video standards which address low and standard resolutions and provide a different set

of input sequences (Markus, 2005). Most benchmarks perform a fixed workload.

Throughput benchmarks, on the other hand, have no concept of finishing a fixed amount

of work. EEMBC’s approach has always been based on a fixed workload. It uses the

MPEG-x benchmark as an example. A fixed workload approach would process a video

with a specific number of frames, measuring how long it took to process the entire

video. Alternatively, running the benchmark for a fixed amount of time would measure

the number of frames processed. Nevertheless, they do not have recent codec like H.264

and the coding options and input sequences are not publicly available.

The BDTI Video Encoder and Decoder Benchmark is a set of applications

representative of modern video codecs, but they are not complete video codec

applications. The codec seems to be similar to H.264 but the details of the codec. For

each set of standard parameters, BDTI provides a set of input and output test data. To

obtain certification, a solution must process the input test data and generate output data

that matches the test output data provided by BDTI within the specified tolerance.

Performance may be measured in terms of processor loading, total program and data

memory use, cost, and energy consumption (BDTI H.264 Decoder Benchmark, 2006).

HD-Video Bench try to solve all the before mentioned limitations by providing different

a set of different video codec applications optimized for high performance, and

providing a complete set of input sequences and coding options tuned for HD

applications(Mauricio, Esther, Alex, & Mateo, 2007). In HD-Video Bench application

is more likely as a VideoWall Bench. It consists of MPEG-2 Application, MPEG-4

27

benchmarks and H264 Benchmarks. In H264 Benchmarks there are 3 types of

benchmarks that have been included and based on my project which is focus on H264

video decoding FFmpeg H.264 decoder is the closest software that can decode H264

files as VideoWall Bench did. The code is much optimized with SIMD instructions and

widely used in free multimedia players.

Table 2: Sample of Command in HD Bench

.

Table 3: Input Sequences of HD-Video Bench

HD-Video Bench use Mplayer that includes support for multiple video Codecs by using

FFmpeg, libmpeg2, Xvid and other multimedia libraries. Mplayer simplifies the process

of installing and running multiple video libraries because Mplayer selects the

appropriate Codec and uses it to encode or decode the input video. However Mauricio

28

et al. (2007) mentioned that HD-Video Bench is interested on benchmarking the video

Codecs not the displaying process. Therefore they disabled the output of the video to

the screen. Below is the summary for the previous video decoding benchmarking

systems.

Benchmarking

System

Video Supported High Definition Availability of

Source Code

SIMD

Optimization

Media Bench MPEG-2 No No No

Media Bench+ MPEG-2, MPEG-

4, H.263

No No No

Media Bench 2 MPEG-2, MPEG-

4, H.264, H.263

No Yes Only MPEG-2

Intel Media

Benchmark

MPEG-2, MPEG-

4, H.263

No No Yes

The Berkeley

Multimedia

Workload

MPEG-2 Yes Yes Unknown

The EEMBC

Digital

Entertainment

MPEG-2, MPEG-

4

No No Yes

The BDTI Video

Encoder and

Decoder

H.264 Unknown No Unknown

HD Video Bench MPEG-2, MPEG-

4,H264

Yes Yes Yes

Table 4: Comparison between other Benchmarking Systems

29

Mauricio et al. (2007) paper also list the desired characteristics for a video benchmark

 The benchmarks should be complete applications and implement all the features

defined in the standards.

 The Codecs should be optimized for high performance.

 A complete set of input sequences must be provided.

 A detailed description of the coding parameters must be provided.

 Programs and input sequences need to be free.

 The code must be portable.

 Programs must be representative of the multimedia application domain.

2.7 Proposed Solution

Based on all research given, the big differences between VideoWall Bench and the

others are the usage of the VAAPI technology in video decoding application. It enabled

hardware acceleration thus can lower the CPU utilization in the system. Compare with

the FFmpeg H264 which are closest software to VideoWall Bench, it used software

acceleration and cause higher CPU utilization for decoding process. Hardware

acceleration enables the platform to decode more than one video, thus my software has

been developed to decode multiple video files at the same time and the output decode

will be in video wall output. In terms of performance measurement, VideoWall Bench

technology will measure processor utilization, memory utilization, total frame rate per

second and time latency.

30

CHAPTER 3

METHODOLOGY

3.1 Agile Waterfall Model

This chapter will cover the details explanation of methodology that is being used to

make this project complete and working well. Many methodology or findings from this

field mainly generated into journal for others to take advantages and improve as

upcoming studies. The method is use to achieve the objective of the project that will

accomplish a perfect result. In order to evaluate this project, the methodology of

VideoWall Bench is based on Agile and Waterfall model which is more flexible provide

excellent plan for software development. In addition, the author do some self-reference

towards existing network books, websites, research papers and journals as well. There

are few becomes main reference along the project completion. Besides, a good guidance

during internship at Intel Performance Measurement Analysis do helps the project

progress. Plus, the author already started to play around with the Perl script, EEMBC

Test and Mplayer which is to get familiar with all the functions and capabilities.

31

Figure 6: Agile Waterfall Model

Phase 1: Requirement Analysis and Definition

All possible requirements of the system to be developed are captured in this phase.

Requirements are a set of functions and constraints that the end user (who will be using

the system) expects from the system.

VideoWall Bench requirement is to decode multiple video streams and benchmark the

decoding capabilities of the platform. This application also was specially designed to

benchmark H.264 files in 720p and 1080p. Result of benchmark process must consist of

processor utilization, frame rate per second and time latency for video playback. It also

must be portable to all type of Linux operation systems. Not all processors support

VideoWall Bench. In order to use this application, user must make sure that their

processors support Video Acceleration API.

32

As been stated in Wikipedia (Video Acceleration API, 2012), below is the hardware that

supports Video Acceleration API.

 The free and open source drivers of Broadcom Crystal

 The free and open source drivers of the integrated graphics of known as "Intel® HD

Graphics" (Intel HD Graphics 2000/2500/3000/4000)

 The free and open source drivers of the Intel G45 chipset (with Intel GMA

X4500HD integrated graphics), and later

 The closed source proprietary drivers for Intel's Poulsbo Chipset based GMA

500integrated graphics

 The closed source proprietary drivers for Atom E6xx and Penwell supported via

its Media Infrastructure Accelerator (MI-X).

 The closed source proprietary drivers Intel Medfield SoCs with Imagination

Technologies's PowerVR (VXD375/385 and VXE250/285) based integrated

graphics.
[9]

 The closed source proprietary drivers of S3 Graphics's Chrome 400 and later series

are also supported.

 In November 2009, VA-API also gained a new proprietary backend named "xvba-

video" which allows VA-API powered applications to take advantage of AMD

Radeon's proprietary fglrx drivers for its chipsets with UVD2 support via

the XvBAlibrary (X-Video Bitstream Acceleration API designed by AMD), for

closed source proprietary driver only.

 Additionally, VDPAU (Video Decode and Presentation API for Unix), a competing

API designed by NVIDIA, can potentially also be used as a backend for the VA

API. If this is supported, any software that supports VA API then also indirectly

supports a subset of VDPAU.

These requirements are analyzed for their validity, and the possibility of incorporating

the requirements in the system to be developed is also studied. Finally, a requirement

specification document is created which serves the purpose of guideline for the next

phase of the model.

http://en.wikipedia.org/wiki/List_of_Intel_chipsets#Core_2_chipsets
http://en.wikipedia.org/wiki/List_of_Intel_chipsets#Core_2_chipsets
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Poulsbo_(chipset)
http://en.wikipedia.org/wiki/GMA_500
http://en.wikipedia.org/wiki/GMA_500
http://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors#Embedded_processors
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Intel_806xx_product_codes
http://en.wikipedia.org/wiki/Mobile_Internet_device#Medfield_platform_.282011.29
http://en.wikipedia.org/wiki/System-on-a-chip
http://en.wikipedia.org/wiki/Imagination_Technologies
http://en.wikipedia.org/wiki/Imagination_Technologies
http://en.wikipedia.org/wiki/PowerVR
http://en.wikipedia.org/wiki/Video_Acceleration_API#cite_note-ReferenceA-9
http://en.wikipedia.org/wiki/S3_Graphics
http://en.wikipedia.org/wiki/S3_Graphics_Chrome_400
http://en.wikipedia.org/wiki/Proprietary_software
http://en.wikipedia.org/wiki/AMD_Catalyst
http://en.wikipedia.org/wiki/Unified_Video_Decoder
http://en.wikipedia.org/wiki/XvBA
http://en.wikipedia.org/wiki/VDPAU
http://en.wikipedia.org/wiki/NVIDIA

33

Phase 2: System and Software Design

Before starting the actual coding phase, it is highly important to understand the

requirements of the end user and also have an idea of how should the end product looks

like. The requirement specifications from the first phase are studied in this phase and a

system design is prepared. Below is the high level algorithm for video decoding project:

Figure 7: Basic Algorithm for VideoWall Bench

VideoWall Bench is made from Perl language with the integration of Mplayer command

line code. Overall the software design should be in command line so the operating

system will be in optimum condition for testing.

1.0 Start

2.0 Input Sources

2.1 Enter H264 File

2.2 Enter Width and Height for Video resolution

2.3 Enter Number of Video Stream

2.4 Specify Hardware Acceleration or Software

Acceleration

3.0 Program Executions

4.0 Display output

5.0 Log File Compilation

6.0 End

34

Data from

Decoding Process

Configuration

File

User Input

Folder

Name

File Name

Number of

Video

Iter_one_memcpu.pl

Number of Maximum Video
CPU Utilization

Memory Utilization
Total Frame

Decoded Frame
Total FPS

Missed Frames
Time Fluctuation

Screen Size

X
Screen Size

Y
Percent

Error

Allowed

Vmstat 6 5

Mpstat 6 5

One_Decode_wall_p.

pl

HW/ SW

Set Screen

Size Based

on Number

of Video

Run_in_back.sh

Mplayer VA-API

FPS 30

Nosound

Noborder

Decoding Process Result generated

Figure 8: System Architecture

35

Figure 8 shows the system architecture which includes the element of user’s input,

database relationship details and the output to be display to user. An in depth review has

been conducted on the tools that are available in order to select the most appropriate

tools for the development of the VideoWall Bench. As a result, Perl language, Shell

Script and Mplayer VA-API have been chosen for the development of the VideoWall

Bench

Figure 9: Process Flow Chart

In Figure 9 it shows the process flow chart for the VideoWall Bench. It will decode the

720p type first then it will move to 1080p video decode. Each of video resolution

contains three files. The VideWall Bench will decode each file one after another. The

decoding process will be done by Mplayer VA-API and during this time it will capture

CPU utilization, memory utilization, frame per second and time latency of video

decoding. After the decoding process finish it will generate two log files which are .log

and .logt. Both of the log files will be compile into Result text file.

36

Phase 3: Project Development and Debugging

VideoWall Bench

In this part I will elaborate about the project development of VideoWall Bench which

contains two parts:

1. Build the Mplayer VA-API (Collaboration with Andreas Grois)

2. Development of VideoWall Bench Script.

The build of Mplayer VA-API in this VideoWall Bench was collaboration between me

and Andreas Grois. He already successful installing Mplayer VA-API on AMD

processor while for this Mplayer is specifically for Intel processor. He is a member of

the Magic Spin magnetic materials group at the Institut Für Halbleiter- und

Festkörperphysik of the Johannes Kepler Universität Linz, Austria.

Users must build Mplayer VA-API before using VideoWall Bench. There are many

things that need to install before we can build Mplayer VA-API. Users also must make

sure that their hardware supports the usage of hardware acceleration. Below was my

hardware configuration for successful building of Mplayer VA-API.

Item Type

Processor Intel i5-2500k

Operating System Ubuntu 12.10

Motherboard Asus P8Z68-V LX

Memory Kingston 1333 Mhz 2GB x 2

Table 5: Computer Requirements

37

This testing used Ubuntu 12.10, but the methodology will apply for any Linux variation

that supports a kernel version higher than 2.6.4. First one has to create an Ubuntu CD

from a downloaded .iso file. The file can be downloaded from:

http://releases.ubuntu.com/ and below are simple instructions on how to produce the CD:

1. Download the appropriate .iso file from Ubuntu's website - if you are not sure of

what copy to get, get the generic “PC (Intel x86) desktop CD” .iso image.

2. After you select the appropriate .iso file you may need to verify that you indeed

do have a valid image. This is done by checking the MD5 checksum. If the

checksum does not pass you have a corrupt image and will need to download

again.

3. The next step is to get CD-burning software. There are many free options on the

Internet.

The next steps are to install Ubuntu (Linux) on onto a hard drive from the CD. In order

to do this, your Linux system must have a CD/DVD reader and a hard drive connected to

the 2
nd

 Generation platform. Both of these must be recognized by the BIOS. When a

system is powered up with this CD present (assuming the BIOS settings are correct) the

system will boot from this CD instead of the operating system present on any connected

hard drives. If the user installing the Ubuntu operating system so chooses, the entire hard

drive will be erased, making room for Ubuntu.

The next step is to use the Ubuntu CD to install the OS with desired computer name,

user-id (ivi) and password on to a new (blank) hard drive. In my case I used 250 GB

drive but smaller drives will work also. For a lesser number of tests and apps 32GB will

be sufficient. For speedy installation one can use a SSD (flash) hard drive. Initially, we

do not need to be connected to the network however in some cases where you are behind

a “firewall” and require proxy settings connection issues can be resolved.

 For people with proxy/firewall settings, one needs to use either system tools (System 

Preferences  Network proxy) or the browser internet setting to set the proxy after the

installation. One can check with their IT administrator or from a working system to

figure out the settings. Once the settings are correct, one should be able to access

http://releases.ubuntu.com/
http://releases.ubuntu.com/10.10/ubuntu-10.10-desktop-i386.iso

38

Internet content with Firefox, git, apt-get. One may need also to put the following lines

in their .bashrc file:

http_proxy=http://proxy…..: [port]

ftp_proxy=http://proxy…..: [port]

https_proxy=http://proxy…..: [port]

After the initial installation, from (System  Administration  Update Manager) make

sure you have an up-to-date system. And update your desktop:

>>>sudo –i

>>>http_proxy=http://proxy…..: [port]

>>> apt-get clean

>>> apt-get check

>>> apt-get update

Then

>>>sudo –i

>>> apt-get install x11proto-xf86dri-dev libxmu-devlibxi-devlibxmu-

headers libxt-devlibsm-devlibice-dev libexpat1-dev libxext-

devlibxdamage-dev x11proto-damage-dev libxfixes-dev x11proto-fixes-dev

x11proto-gl-dev xserver-xorg-devlibpciaccess-dev x11proto-xinerama-dev

x11proto-xext-dev x11proto-video-dev x11proto-render-dev x11proto-

randr-dev x11proto-fonts-dev libxkbfile-dev libpixman-1-dev x11proto-

dri2-dev libx11-dev libxcb1-dev xtrans-dev x11proto-kb-dev x11proto-

input-dev libxdmcp-devlibxau-dev x11proto-core-dev libtalloc-devxutils-

dev libpthread-stubs0-dev g++ libpthread-stubs0 libglew1.5-dev

gitlibxt-devlibxmu-devlibxi-devllvmautoconflibtool flex bison openssh-

server aptitude x11proto* mesa-utils

>>> apt-get update ; apt-get install openssh-server openssh-client

yasm ; apt-get update ;

>>> /etc/init.d/ssh stop; /etc/init.d/ssh start

Make sure that all updates are completed. One may have to rerun the “Update Manager”

and “apt-get update” multiple time. For obtaining the correct version of Mplayer one

needs subversion, to compile it yasm and build-essential are required. Since the

defaultgcc-4.7 fails to build it, install gcc-4.6. To conveniently build a debian package

out of it I recommend checkinstall:

>>>sudo apt-get install yasm build-essential subversion checkinstall

>>>sudo apt-get install gcc-4.6

39

Then the libraries used by Mplayer can be installed by simply grabbing the build-deps of

it.

>>>sudo apt-get build-depMplayer

Next step is to obtain the Mplayer source and the vaapi patches. The original site

(splitted-desktop.com) does not longer host the patches for Mplayer. Download Andreas

Grois copy shared at http://ubuntuone.com/36afxAZcJfNAyEQA273UgS

After that we need to go to to the directory that we downloaded this file to and untar it.

Enter thedirectory extracted from the archive

Run the script to obtain the Mplayer source code and to apply the vaapi patches. You

don't need to build Mplayer, because for now it would be built without vaapi, therefore

the patch parameter is given to the script, so it stops after patching:

Now enter the Mplayer source folder:

The configure file checks for vaapi by calling a function that does not work on Ubuntu

12.04 and 12.10. To correct this, either manually editthe file, or use Andreas Grois patch

which is available fromhttp://ubuntuone.com/2z4wBZ6gCwcvaUxJzN1hCv.

Then we need to save the patch in the Mplayer-vaapi folder and name it to test.patch.

After that simply apply it to configure by running:

>>tar -xf Mplayer-vaapi.tar.gz

>>>cd Mplayer-vaapi-20110127

>>> ./checkout-patch-build.sh patch

>>>cd Mplayer-vaapi/

>>>patch configure test.patch

http://splitted-desktop.com/
http://ubuntuone.com/36afxAZcJfNAyEQA273UgS
http://ubuntuone.com/2z4wBZ6gCwcvaUxJzN1hCv

40

Next, run configure with any options that need to be configure. User also must have to

make that they uses gcc-4.6, for the build fails with gcc-4.7 and don't forget to enable

vaapi and disable vdpau:

Check the output of configures and if it’s complete, simply run make and wait for the

compile to finish:

Sometimes it will give an "illegal instruction" error which might happen to user that use

virtual machine. User can try "makeclean" to delete the build and add the --enable-

runtime-cpu detection option to configure before building again. And to see if it is

working with vaapi, play some file with vaapi output.

If it works, user can proceed with command:

The files for Mplayer with vaapi should already be at the appropriate folders. The

whereis command will give the location where files named Mplayer reside. Normally,

the program will be located at /usr/bin/Mplayer. There is the folder where to place the

system wide configuration file /etc/Mplayer and the folder /usr/bin/X11 is actually just a

link to /usr/bin, so every file in /usr/bin is also displayed as being in /usr/bin/X11.

However, if we now install packages that depend on Mplayer, they might overwrite our

installation by the stock Ubuntu Mplayer, because officially the package Mplayer is not

installed (since checkinstall failed). So we need to edit the version number to be actually

a number and not vaapi.

So when it asks:

>>>CC="gcc-4.6" ./configure --prefix=/usr --confdir=/etc/Mplayer \--

enable-vaapi --disable-vdpau.

>>>make

>>>./Mplayer -vovaapi -vavaapi [some video file]

>>>sudo make install

41

Choose 3 and give it a number, example like 20110127 to remind us that it's the svn-

version from then. We can easily see if vaapi is used when playing some h.264 video

file. Close to the end of Mplayers output it should give information about the video

output driver used. For a H.264 file that can be played using vaapi, the output should be

something like (of course with the resolution of the video file):

Last but not least to confirm that we are decoding the video file using hardware

acceleration, we can type this command:

>>>Enter a number to change any of them or press ENTER to continue:

>>>VO: [vaapi] 1920x816 => 1920x816 H.264 VA-API Acceleration

[VD_FFMPEG]XVMC-accelerated MPEG-2.

>>>vainfo

LibVa: VA-API version 0.32.0

LibVa: va_getDriverName() returns 0

LibVa: Trying to open /usr/lib/i386-linux-gnu/dri/i965_drv_video.so

LibVa: va_openDriver() returns 0

vainfo: VA-API version: 0.32 (LibVa 1.0.15)

vainfo: Driver version: Intel i965 driver - 1.0.17

vainfo: Supported profile and entrypoints

 VAProfileMPEG2Simple : VAEntrypointVLD

 VAProfileMPEG2Main : VAEntrypointVLD

 VAProfileH264Baseline : VAEntrypointVLD

 VAProfileH264Baseline : VAEntrypointEncSlice

 VAProfileH264Main : VAEntrypointVLD

 VAProfileH264Main : VAEntrypointEncSlice

 VAProfileH264High : VAEntrypointVLD

 VAProfileH264High : VAEntrypointEncSlice

 VAProfileVC1Simple : VAEntrypointVLD

 VAProfileVC1Main : VAEntrypointVLD

 VAProfileVC1Advanced : VAEntrypointVLD

42

Development of VideoWall Bench Script

For this project, the development of the coding was been developed into two phase.

Phase one was full screen methodology and second phase was video wall methodology.

Below is the diagram:

Figure 10: Video Decoding Methodology

Single full screen methodology is a first phase of VideoWall Bench. Using this

methodology, the applications will execute Mplayer VA-API command in the Perl script

to decode video file into multiple stream. All the videos are being play concurrently but

this technique overlaps other videos make other streams not visible to tester.

Project Development

Single Full Screen

Methodology

Video Wall

Methodology

43

Phase 4: Project Testing

I also have to make sure that the code execute correctly and all the result score being

compiled properly by the program. This testing phase also been executed in many type

of operating system to make sure the software can be used in main Linux operating

system. In this phase, the script was tested for their functions. VideoWall Bench will be

tested with all parameter to make sure it works fine and no issue on the code while the

script was been executed. All of the code in VideoWall Bench will be integrated into a

complete system during integration phase and test to check if all modules/units

coordinate with each other and the system as a whole behaves as per the specifications.

This script also has to be tested on other Linux operating system such as Meego and

Ubuntu.

In this stage, all scripts are tested for several kind of error testing as descried in Table 6.

The testing process is also taking place in configuration file to ensure that script of the

VideoWall Bench is properly connected. As for “Iter_one_memcpu.pl” and

“One_Decode_wall_p.pl”, all the data input by the user in this page must be able to be

stored inside its respective database. Meanwhile, for “Result.txt”, it should be able to

retrieve all the data from its connected database without returning any wrong

information or empty data. The testing phase is also important to ensure that the system

can successfully display all the result that has been generated. Each script and its

respective code must be interrelated with each other and hence, provide the correct

calculation in order to obtain the maximum number of video decoding. Table 7

meanwhile shows the type of testing being performed to check the system as a whole.

44

Test

No

Type of Error

Handling Test
Purpose Status

1
Calculation and

Computation Error

To make sure that the system can

correctly perform all mathematical

operations and return the correct values.

Passed

2
Invalid Data Type

Error Handling

To make sure that the system do not

proceed with execution and notify user

when the input data type is wrong. For

example, if the supposed data to be

entered is numbers, and user entered

characters, the system will notify user that

the input data is wrong and the operation

will break.

Passed

3
Empty input error

handling

The system will not proceed with

execution whenever it required the input

data, if there is no input being entered.

Passed

4
Error notification

message

For all error that occurs, the system

should prompted user to notify them.
Passed

Table 6: Error Handling Testing

Test

No

Type of System

Testing
Purpose Status

1 Black Box testing

To test for system requirement and

functionality without considering the

internal architecture of the system.

Passed

2 White Box Testing

To test for internal functionality of the

system. This testing included the coding of

the system.

Passed

3 Unit Testing
To test for the functionality of each

separated system page.
Passed

4
Acceptance

Testing

To ensure the system is completed and

performed as requested by user.
Passed

5 Functional Testing
To ensure the system able to performed all

its intended functionality.
Passed

Table 7: Type of System Testing performed

45

Phase 5: Project Completion

This phase of the waterfall with agile model is virtually a never-ending phase. Generally,

problems with the system developed (which are not found during the development life

cycle) come up after its practical use starts, so the issues related to the system are solved

after deployment of the system. In this phase, completion means the system can be used

for experimental studies that will be discuss further in result and discussion part. During

this phase also I need to make documentation and records all the steps how to install the

programs. This step is very important for other people to use VideoWall Bench script.

Phase 6: Experimental Studies

Experimental studies are last part for VideoWall Bench. Upon the completion of the

system, the author would like to make several testing that will answer the following

questions.

Is there any performance

difference in terms of

processor, fps and

memory utilization

between H.264 and MP4

File

Number of maximum

videos that can be display

at one time using Intel i5

2500k Intel HD 3000

Is there any performance

difference in terms of

processor, fps and

memory utilization for

changing processor speed

in video decoding process

Is there any performance

difference in terms of

processor, fps and

memory utilization for

changing screen size of

video display

46

All the results and findings from the testing will be put on result and discussion part.

Generally, user can change several parameters in the VideoWall Bench

 Frames per second (FPS) (30 fps, 60 fps)

 Screen Size (800x600, 1280x720, 1920x1080)

 Video File

3.2 Software Involved

1. MplayerVaapi

It is a free and open source media player. The program is available for all

major operating systems, including Linux and other Unix-like systems.

MplayerVaapi version is specially made to integrate the LibVa library with

Mplayer media player.

2. LibVa

LibVa is an open source software for video acceleration API. It enables and

provides access to graphics hardware (GPU) acceleration for video processing.

VA API is targeted at the X Window System on Unix-based operating systems.

Accelerated processing includes video decoding, video encoding, sub picture

blending and rendering. The specification was originally designed by Intel for

its GMA (Graphics Media Accelerator) series of GPU hardware. However, the

API is not limited to GPUs or Intel specific hardware, as other hardware and

manufacturers can also freely use this API for hardware accelerated video

decoding.

3. Latest Intel Graphic Driver

It is very important in this project to use latest Intel Graphic Driver which is

supported the usage of LibVa. Without supported graphic driver, video decoding

in VideoWall Bench will not able to use hardware acceleration thus maximizing

the processor utilization.

http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Media_player_(application_software)
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Video_codec
http://en.wikipedia.org/wiki/Video_coding
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Intel_GMA
http://en.wikipedia.org/wiki/Graphics_processing_unit

47

3.3 Hardware Involved

1. Intel Sandy Bridge i5-2500k 3.30 GHz

2. 250GB Hitachi Hard Disk Model HTS54

3. 2GB Kingston 2GB PC1333 D3 x 2 unit = 4GB RAM

4. BenQ G220-HD 22 Inch Monitor

48

3.4 Gantt Chart

Final Year Project Part I

Detail Week 1 2 3 4 5 6 7 8 9 10 11 12

Selection of Project Topic & Supervisor

Submission of Proposal to research cluster

Submission of Extended Proposal

Research Class

Conduct the survey

Submission of Viva: Proposal defense and

Progress Evaluation

Submission of Interim Report

Final Year Project Part II

Detail Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Programming Research

Prototype Development

Submission of Progress Report

I

Submission of Progress Report

II

Pre-SEDEX

Submission of Final Report

Draft

Oral Presentation

Submission of Final

Dissertation

49

CHAPTER 4

RESULT AND DISCUSSION

4.1 Results from consulting an expert on multimedia benchmarking

A number of experts were needed to give guideline that could help to design the

proposed VideoWall Bench script. Therefore during the development of VideoWall

Bench, They are two experts that have been approach through email and Facebook to

give some comments and critics about the VideoWall Bench. One of the experts was Mr.

Muhammad Syazwan Mazlan, System Performance Engineer from Performance

Measurement Analysis at Intel Microelectronics, Penang. He graduated from Universiti

Malaysia Perlis with a Bachelor's Degree Program in Computer Engineering. Regarding

the design of the software, he gave comments on the following issues to be considered:

- Linux Based System

Mr Syazwan likes the idea of having a video decoding benchmarking system on

Linux. Using Linux it is more flexible and Linux has been widely used in

performance benchmarking such as EEMBC performance test.

- Application been developed using Perl Language

Perl language is very popular in the Unix community because it has a rich and

powerful feature set, but is still easy to use. Perl borrows heavily from other

languages such as C and awk. Perl has been ported to many non-Unix

environments, including DOS, OS/2, Macintosh, VMS, and Windows NT. Perl

program can run with little or no modification on many different platforms is

another reason for its popularity.

50

- Multiple Video Decoding

Nowadays processors have more powerful capabilities especially in terms of

multimedia compared to previous years. Therefore it is quite invalids for current

processor to used previous video decoding benchmarking system such as Media

Bench and HD Benchmark. Furthermore most of the video benchmarking

systems are using SIMD optimization which decode video using software

acceleration, thus unable the processor to decode more than 2 videos at one time.

- Optimize for Hardware Accelerated Video Decoding

Hardware accelerated video decoding enable the systems to decode multiple

video at one time. However Mr. Syazwan also suggests that I should make an

option for users to benchmark using software acceleration or hardware

acceleration. By having this option, users can compare performance difference

between decoding using software acceleration and hardware acceleration.

- Performance Measurement.

VideoWall Bench will measure video decoding performance in terms of

processor utilization, memory utilization, frame rate per second and time latency

of the video been play. According to Mr. Syazwan all those variable are valid to

be measured. Besides using top command in Linux, he suggests me to measure

processor utilization using time command. Using time command it will capture

real, user and system time for each video that been decode. Below are the

formulas that have been suggested by Mr. Syazwan.

CPU Utilization= (User Time + System Time)/ Real Time

51

Second expert that have been interviewed through Facebook was Mr. Dennis E. Mungai.

He is a Founder of Brainiarc Eight, a Facebook community page about computer

hardware designs and software reviews. He graduated from Kenyatta University at

Kenya in BSc Software Engineering. He highlights some important matters about video

decoding concept that need to be considered for the development of the VideoWall

Bench.

- Video decoding depends on a number of factors, notably:

First is the codec type used to compress the video streams. For Intel HD 3000

GPU, it supports H.264, VC-1 and MPEG-2 Hardware Decoding pipelines

enabled. However, depending on the codec used and its' implementation level,

not all portions of it can be offloaded to the GPU for processing. Therefore,

uneven GPU shader usage is to be expected. Again, not all H.264 Video Decode

parts are offloaded to the GPU. This driver VA-API enables hardware

accelerated video decode/encode at various entry-points (VLD, IDCT, Motion

Compensation etc.) for the prevailing coding standards today (MPEG-2, MPEG-

4 ASP/H.263, MPEG-4 AVC/H.264, and VC-1/VMW3). It provides an interface

to fully expose the video decode capabilities in today's GPUs.

- The Video Container encapsulating the Video Stream:

Video container is what we inaccurately call the Video Format, e.g. MP4, AVI,

Matroska, etc. Depending on the Media Container Splitters used to split the

container into video and audio streams needed by a media player for decoding

and playback, CPU and GPU usage spikes may be different.

52

- The Media Player in use:

Some media players, notably VLC, do not implement the full H.264 decoding

standard, and may fail in Full Hardware Decoding especially with H.264 content

encoded outside the official Blu-ray standards. The noticeable implication is that

the media decoder will perform software fallback, incurring massive load on the

Video Driver especially where Post-processing is enabled. Secondly, transferring

bit stream data between GPU and CPU cores and re-shuffling it between

pipelines is also memory-expensive, an effect you'll notice with Integrated

Graphics since IGPs share main system memory with their buses.

- The Video Resolution, Aspect Ratio and Bitrates:

CPU and GPU usage is directly proportional to all these three factors.

Concerning frame rates, these are just statistics. With Vertical Sync Enabled

(VSYNC, usually enforced by the Intel Linux Driver by Default), we will not get

any more than 60fps. Video rendering APIs use the same stack rules as 2D image

rendering. A video is just an array of continuous picture frames encoded with a

gap distance (GOP) by a codec, and in most cases, frame rates are explicitly

encoded into the video bit stream’s Meta data.

- GPU Usage in video decoding process

Concerning GPU usage, GPUs are highly paralleled computing units, and it

would take massive data sets to fully utilize a GPU (100% Usage), such as

intensive 3D gaming or 1080p Video Post-processing.

53

4.2 Discussion on the Work Progress

 First File – run_all_test.pl

Figure 11: Components of run_all_test.pl

This file script is to use to run the VideoWall Bench with configuration file. In

this script it will extract the video file name from configuration file into array

test_v[0], test_v[1], test_v[+1] to be executed with iter_one_memcpu.pl script.

After the script finishes its execution, it will print the result into Result.Txt.

 Code Snippets

run_all_test.pl

Open file configuration

Execute video file with

iter_one_memcpu.pl

system(" echo > ./Results.TXT");

while($line=<FILE_IN>){

#print "$line \n " ;

$line=~s/\n$//g;

#print "$line \n " ;

$test2=$line;

#print "$test2 \n " ;

@test_v=split(" ",$test2);

#print "@$test_v \n " ;'

$file_name=@test_v[0]."/".@test_v[1];

if(-e$file_name){

$cmd_l=" perl iter_one_memcpu.pl

".@test_v[0]."/".@test_v[1]." ".@test_v[2];

$cmd_l=~s/\n/ /g;

#print " @test_v \n";

54

 Second File – iter_one_memcpu.pl

Figure 12: Components of Iter_one_memcpu.pl

In this part, user can adjust the screen size x and screen size y. Example such as if the

user set up the screen size x = 1366 and screen size y = 768, it will be divided according

to the number of file that have been set in the configuration file. This section also allow

user to change the percent error allowed during video decoding. Default value for it is

2.5. The percent error allowed field also will determine the number of maximum video

that the system able to decode. Let say if the percent error allowed that has been set is

2.5 and during decoding of 40 videos the percent error accumulated is 3. Therefore the

VideoWall Bench will decode 39 videos or less until the percent error allowed is less

than 2.5. Depending on what system that run VideoWall Bench, each of it will respond

according to their decoding capabilities. In order to capture CPU utilization and memory

utilization, Vmstat and Mpstat are been executed in this script during the video decoding

process. All the information that been capture will be copy into out_Vmstat.txt and

out_Mpstat.txt.

Iter_one_memcpu.pl

Screen Size X

Screen Size Y

Percent Error

Allowed

Vmstat 6 5

Mpstat 6 5

55

 Code Snippets

$size_sx=1800;

$size_sy=1000;

$PERCENT_ERROR_ALLOWED=2.5;

set to 2.5 percent deviation

$HELP_LINE=" perl perl_file.pl video file upper_bound \n";

$num_arg=$#ARGV;

if($num_arg!= 1){print"usage $num_arg : $HELP_LINE ";exit;}

$file_n=shift(@ARGV);

$n_max=shift(@ARGV);

$n_max=$n_max+1;

$n_min=1;

system(" killallmplayer ");

$not_done= 0;

while($not_done< 1){

$n_test=int(($n_min+$n_max)*0.5);

system("Vmstat 6 5 > out_Vmstats.txt & ");

system("Mpstat 6 5 > out_Mpstats.txt & ");

system("\/usr\/bin\/perl .\/one_Decode_wall_p.pl $file_n

$size_sx $size_sy ".$n_test." HW \| grep \"Results :\" 2\>

\/dev\/null \> dummy11.txt");

my$Results=`cat dummy11.txt`;

my$temp=$Results;

$Results=~s/\n//g;

$temp=~s/\n//g;

$temp=~s/.*missed frames%: *//g;

$temp=~s/time fluctuation%/ /g;

$temp=~s/:/ /g;

$temp=~s/ */ /g;

($frames_error,$time_error)=split(/ /,$temp);

$max_error=$frames_error;

if($max_error<$time_error){$max_error=$time_error;}

if($PERCENT_ERROR_ALLOWED>$max_error){

$n_min=$n_test;

$last_r=$Results;

$vm_out=`cat out_Vmstats.txt | tail -1 | cut -c 13-21 `;

$vm_out=~s/\n//g;

$mp_out=`cat out_Mpstats.txt |tail -1 `;

$mp_out=~s/.* //g;

$mp_out=~s/\n//g;

}

else{

$n_max=$n_test;

}

}

print"N-streams: $n_min : free-mem $vm_out : free_cpu $mp_out

$last_r \n";

56

 Third File – One_Decode_wall_p.pl

Figure 13: Components of One_Decode_wall_p.pl

This file script is use to set the Mplayer VA-API to decode the video using

hardware acceleration. In this script user can edit the Mplayer whether to play it

using hardware acceleration or software acceleration. The implementation of

hardware acceleration must be at the video output (-vo) and video input (-va) at

the code. The Perl code which defines the Mplayer configuration looks like this:

Take an example of screen size x= 1800 and screen size y = 1000. It is

impossible for the 22 inch screen monitor to display all 40 videos that have

screen size 1800x1000 for each video. Therefore in order to make sure all the

video decode by Mplayer is been display at the screen, an algorithm of screen

display is been implemented in this code. This algorithm will determine the

screen size of the video based on the number of video file that needed to be

One_Decode_wall_p.

pl

HW/ SW

Set Screen

Size Based

on Number

of Video

$HW_=shift(@ARGV);

$_=$HW_;

if(/SW/){

$HW_=" -vo direct3d "

$HW_=" "

}

else{

$HW_="-vovaapi -vavaapi ";

}

57

playin the configuration file. The Perl code which defines the screen size

algorithm looks like this:

Using formula below it will calculate screen size of x and y based on number of

video files that need to be decode

After the size of x and y have been determine by the formula, this script will

execute Shell Script (run_in_back.sh) which contain Mplayer command line.

This command will generate two logs file which are .log and .logt. Below is the

perl code which execute run_in_back.sh

if($total_n< 65){$nx= 8;$ny= 8;}

if($total_n< 50){$nx= 7;$ny= 7;}

if($total_n< 37){$nx= 6;$ny= 6;}

if($total_n< 26){$nx= 5;$ny= 5;}

if($total_n< 17){$nx= 4;$ny= 4;}

if($total_n< 10){$nx= 3;$ny= 3;}

if($total_n< 5){$nx= 2;$ny= 2;}

if($total_n< 2){$nx= 1;$ny= 1;}

$size_x=int($screen_size_x/$nx);

$size_y=int($screen_size_y/$ny);

if($total_n> 1){

print" .\/run_in_back.sh $file_n $size_x $size_y $x:$y 1>

$file_n"."_"."$n$N.log 2> $file_n"."_"."$n$N.logt \n";

system(" .\/run_in_back.sh $file_n $size_x $size_y $x:$y 1>

$file_n"."_"."$n$N.log 2> $file_n"."_"."$n$N.logt& ");

}

elsif($total_n== 1){

print" .\/run_in_back.sh $file_n $size_x $size_y $x:$y 1>

$file_n"."_"."$n$N.log 2> $file_n"."_"."$n$N.logt \n";

system(" .\/run_in_back.sh $file_n $size_x $size_y $x:$y 1>

$file_n"."_"."$n$N.log 2> $file_n"."_"."$n$N.logt ");

}

58

During the execution of the run_in_back.sh, two dummy file which are

dummy1.txt and dummy2.txt will be created. The purposes of the creation of

these dummy files are to include information regarding the calculation of the

total frame of video decoding, decoded frame and second calculation. All of this

data will be used to calculate the time latency of video decoding. Below is the

Perl code:

$x=0;

$y=0;

$N=$total_n;

@frames_decoded=(0);

@frames_total=(0);

@elapse_secs=(0);

$n=0;

for($j= 0;$j<$ny;$j++){

for($i= 0;$i<$nx;$i++){

$file_log="$file_n"."_"."nN.log";

if($n<$N){

$logfile="$file_n"."_"."nN.log";

$logfilet="$file_n"."_"."nN.logt";

system(" tail $logfile | grep V: | sed \'\/V\:\/p\' | sed

\'s\/.*V\:\/\/g\' | tail \-1 | sed \'s\/\^ *\/\/g\' | sed

\'s\/ *\/ \/g\' | sed \'s\/ \/T\/\' | sed \'s\/.*T\/\/g\' |

sed \'s\/ .*\$\/\/g' | sed \'s\/\\\/\/ \/g\' > dummy2.txt ");

system(" cat $logfilet | grep elapsed | sed \'s\/.*system

\/\/g\' | sed \'s\/elapsed.\/\/g\' | sed \'s\/:\/ \/g\' >

dummy1.txt");

my$elap_time=`cat dummy1.txt`;

my$frames_dec_total=`cat dummy2.txt`;

($frames_decoded[$n],$frames_total[$n])=split(/

/,$frames_dec_total);

($min,$sec)=split(/ /,$elap_time);

$sec_cal=$min* 60.0 +$sec;

$elapse_secs[$n]=$sec_cal;

print" $sec_cal $frames_decoded[$n] $frames_total[$n] \n";

$n=$n+1 ;

}

}}

59

Calculation of total frame, decoded frame, total FPS, missed frames and time

fluctuation need a special formula which are:

1. Total FPS = Number of Video x (Minimum Decode F / Maximum Time)

2. Time Fluctuation = Decode Time Error x100.00

3. Missed Framed = Missed Frame x 100.00

All of the above formulas are been derived from the below if else statements:

if($elapse_secs[$i]<$min_time){$min_time=$elapse_secs[$i];}

if($elapse_secs[$i]>$max_time){$max_time=$elapse_secs[$i];}

if($frames_total[$i]<$min_total_f){$min_total_f=$frames_total[$

i];}

if($frames_total[$i]>$max_total_f){$max_total_f=$frames_total[$

i];}

if($frames_decoded[$i]<$min_decodef){$min_decodef=$frames_decod

ed[$i];}

if($frames_decoded[$i]>$max_decodef){$max_decodef=$frames_decod

ed[$i];}

}

$decode_total_error= 1.0;

if($min_total_f>

0){$decode_total_error=($max_total_f/$min_total_f)-1.0;}

$decode_decode_error= 1.0;

if($min_decodef>

0){$decode_decode_error=($max_decodef/$min_decodef)-1.0;}

$decode_time_error= 1.0;

if($min_time> 0){$decode_time_error=($max_time/$min_time)-1.0;}

$missed_frms=1.0;

if($max_total_f> 0){

$missed_frms=($max_total_f-$min_decodef)/$max_total_f;}

$max_total_f=~s/\n//g;

$min_decodef=~s/\n//g;

$decode_time_error=~s/\n//g;

$t_fps=$N*$min_decodef/$max_time;

$decode_time_error=$decode_time_error*100.00;

$missed_frms=$missed_frms*100.00;

print" Results : Total Frms $max_total_f, Decoded Frms

$min_decodef, Total FPS $t_fps, missed frames%: $missed_frms

time fluctuation% : $decode_time_error \n";

60

 Fourth File – run_in_back.sh

Figure 14: Components of run_in_back.sh

This Shell Script was been created to execute Mplayer VA-API from its

destination folder. It is very important for user to put the correct path of Mplayer

so it will be able to execute successfully. User also may try to copy the code

written in this shell script and paste it at the terminal to see whether Mplayer is

working and decode video successfully. The Mplayer command line in this Shell

Script looks like this:

Run_in_back.sh

Mplayer VA-API

FPS 30

Nosound

Noborder

 Decoding Process

/bin/bash

#echo $DISPLAY

#DISPLAY=:0.0

#export DISPLAY

time/usr/bin/mplayer\

-vavaapi-vovaapi-nosound\

-fps30-noborder -x $2-y $3-geometry $4$1-loop 1\

</dev/null

61

Table 8: Parameter in Mplayer

4.3 System Operation and VideoWall Bench User Guide

1) In order for the users to run VideoWall Bench successfully, users must install

ALL the dependencies, installation package, and Mplayer VA-API completely.

Any skip of steps will lead to the failure of VideoWall Bench execution.

2) After completely installed all the things needed, user can copy VideoWall_Bench

folder and place it at the Desktop. Then open your terminal and type su to

become Superuser. It is a special user account used for system administration. It

allows users to become the root of the system which permits any execution of

files in the operating system. Failing to do so will make Mpstat and Vmstat

command in the Perl script fail to execute.

Parameter Function

time Measure time in Linux to calculate CPU utilization

/usr/bin/Mplayer Call Mplayer application in Install directory

-vavaapi –vovaapi Use Vaapi technology to decode using hardware acceleration

-no sound Disable sound in video file to minimize the CPU utilization

during video decoding

-fps 66 Force selected H264 video to be decoded to 66 fps

62

Figure 15: Command to become a Superuser

3) Then enter to the directory of the VideoWall_Bench whichmine is situated at

Desktop Folder (/home/sayachop/Dekstop/VideoWall_Bench).User also must

make sure thatthe folder of VideoWall_Bench has been root permission

approved. To allow root permission type the command “chmod 777

VideoWall_Bench” at the terminal. If the command

successful,VideoWall_Bench folder will become into green colour like a picture

below

Figure 16: VideoWall_Bench Folder

63

4) There are two types of video files that been provided in VideoWall Bench which

are YouTube_720p and YouTube1080p. Both folders contain six videos that

have same content but different resolution.

Figure 17: Video Files in YouTube720p and YouTube1080p

5) Next step is to check the configuration file (TnC_Short_Raw_Decode_files.cfg).

In this file user can view the name of folder, name of video files and number of

video files that want to decode simultaneously. User also can change to any type

of video, provided that the video folder and the video file are stored in

VideoWall_Bench directory.

Figure 18: Folder and Video Names in Configuration File

64

6) Other than that, user also must have to make sure that the directory of the video

folders and files in copy_to_dir.txt are correct and precise. This is to make sure

that all the result of .log and .logt of the video files will be copied properly into

respective folders.

Figure 19: Directory File

7) After finish with checking all the files, user can now proceed to run VideoWall

Bench. To run VideoWall Bench, user needs to be in VideoWall Bench directory

(home/sayachop/Dekstop/VideoWall_Bench). At this directory, user needs to

execute command “perl run_all_test.pl TnC_Short_Raw_Decode_files.cfg”.

Figure 20: Command to run VideoWall Bench

65

8) The decoding process will be done by following the configuration setting that

has been set by the user.

Figure 21: Running VideoWall Bench

9) After all the files have been successfully been decode by the Mplayer, a

Result.txt file will be generated. This result file will display number of maximum

video that can be decode, processor utilization, memory utilization, total frames,

decoded frames, total FPS, missed frames and time fluctuation.

Figure 22: Result.txt

66

4.4 Experimental Studies on Intel Atom

Video decode playback performance is judged in many ways. There are certain HD

video benchmarking tests that focus on silicon performance in terms of video noise and

spatial quality of video. For this experimental studies, performance is measured by

focusing on CPU utilization, average frames per second being displayed, and time

latency for acceptable user experience. This testing have used same H264 video files

with two different resolutions which are 720p and 1080p. Besides that, I also try to

compare the result between video decoding VA-API and video decoding non VA-API.

Frame display for this video is 1441.

Figure23: CPU Utilization with VA-API and Without VA-API

Figure 23 shows comparison of CPU utilization with VA-API and without VA-API.

From this diagram we can see that CPU utilization with VA-API is very low compare to

CPU utilization without VA-API. This is because using VA-API, the video decoding

process is using hardware acceleration. VA-API is used by calling the Library for VA-

API (LibVa) from operation system and after that the CPU offloads the decoding

process to the graphic driver. Integrated graphics then will play the video on the screen

with minimal CPU utilization.

720p 1080p

C
P

U
 U

sa
g

e

Type of resolution

CPU Utilization Comparison with VA-API and without VA-

API

With VA-API

Without VA-API

67

Video decoding process without VA-API state higher CPU utilization because the

decoding process is been done by CPU itself. The CPU decodes the files and tells the

graphic processor what to show. After that the video decoder paints the picture on the

screen with high CPU utilization. We can see that when using VA-API, 720p files

decoding only take half of CPU usage while 1080p is double of CPU usage that been

consume for 720p. 1080p files consume higher CPU utilization because more rendering

process needed to be done by the processor due to the quality of 1080p which is more

superior then 720p files.

Figure 24: CPU Utilization for 720p and 1080p Using VA-API

Figure 24 shows the result pattern of CPU utilization for 720p and 1080p using VA-API.

The higher the numbers of files being play, the higher the CPU usage that will be

consume by processor. As you can see in the diagram, decoding process for one video

of 1080p will consume double CPU usage of 720p decoding. We also observe that as the

number of videos increase, total CPU utilization is equal to CPU usage of one video

multiplied by number of videos. Using this diagram also we can know how much video

decoding process that can be support by one atom platform. Although the CPU

utilization for video decoding process VAAPI is smaller compare to non-VA-API, user

must reserve some of processor usage for other process to run in the system. Besides

1 2 3 4

C
P

U
 U

sa
g
e

Number of Videos

CPU Utilization for 720p and 1080p Using VA-API

CPU Utilization 720p

CPU Utilization 1080p

68

that, it is also to ensure that the video decoding process will not cause the system hang

or unresponsive due to high CPU usage on video decoding.

Figure 25: FPS for 720p and 1080p Using VA-API

Figure 25 shows FPS pattern for 720p and 1080p using VA-API. A video is typically

encoded with a certain frame rate often but is not always aligned to the profile and level

dictated by the specification. A video decoding system should ideally play back the

video at the full frame rate at which the video stream was encoded. In this test, to

measure the performance of the video decoding system we are using parameter –fps 66

to force the video to be decoded to 66 fps. If the average fps being measured is within

30 fps above which is ideal frame rate, then video playback is generally acceptable. In

this research, the platform able to decode FPS for 720p is higher compared to 1080p

because 720p file bitrates is less than 1080p causing the decoding process to achieve

higher FPS using 720p file. The data also show when the numbers of video files

increase, the FPS for each video files decrease. This is because the processor has to split

up its decoding capabilities into several video files at the same time thus lower the FPS

for each video files. FPS for four videos in 1080p is above 30 fps and it is slightly lower

than 720p. Thus we can conclude that Intel Atom platform have amazing video decoding

capabilities for 720p file and 1080p file. This conclusion is supported by proving the

platform can successfully decode multiple video in 720p or 1080p with 0% of time

latency.

1 2 3 4

F
P

S

Number of Videos

FPS for 720p and 1080p Using VA-API

Average FPS 720p

Average FPS 1080p

69

4.5 Experimental Studies on Intel Sandy Bridge

At this stage, VideoWall Bench has successfully performed all of its intended

functionality. Therefore, four experimental studies were conducted to benchmark the

video decoding capabilities of Intel i5-2500k with Intel HD 3000 Integrated graphic

card. Below were the experimental studies that have been conducted.

1. To find the number of maximum videos that can be display at one time using

Intel i5 2500k Intel HD 3000

2. To test is there any performance difference in terms of processor, fps and

memory utilization between H.264 and MP4 File

3. To test is there any performance difference in terms of processor, fps and

memory utilization using different processor speed.

4. To test is there any performance difference in terms of processor, fps and

memory utilization when decoding using different video size.

Result and Discussion for Experimental Studies 1

Experimental studies 1 was about to find the number of maximum videos that can be

display at one time using Intel i5-2500k. In this test I was using 720p H.264 video files

and 1080p H.264 video files. Figure 26 shows the maximum number of decoding for

720p video files on i5-2500k.

Figure 26: Maximum Number of Video Decoding for H.264 720p Files

50

1238

75.22

29.98

1800

1.55

50

1315

71.63

29.54

1800

0.86

0 500 1000 1500 2000

Number of Video

Free Memory (MB)

Free CPU (%)

FPS Per Video

Decoded Frames

Time Fluctuation (%)

Maximum Number of Video Decoding

for H.264 720p Files

Avatar

Imax

70

In Figure 26 it shows that using i5-2500k, this computer was able to decode 50 videos at

concurrently without having any problem. Decoded frames for videos Avatar and Imax

show a complete decoding process which are 1800/1800. Besides, although there were

50 videos were being played concurrently, the FPS per video for Avatar and Imax shows

a very good number which are 30 FPS per Video.

Figure 27: Maximum Number of Video Decoding for H.2641080p Files

As expected, the result for the maximum number of decoding for 1080p files is lower

than the 720p files. Using 1080p files, i5-2500k can only able to decode 32 videos for

Avatar and 39 videos for Imax. This is because the resolutions of 1080p files are higher

compared to 720p. In terms of time fluctuation and decoded frames shows that these two

files have been decode successfully with a small percentage of delay between them.

However FPS per Video for Imax file which is 18.8 shown that there is higher

possibility that during 39 video decoding, the video stuck and not being played in

normal rate (25 FPS above). We also can observed that in both type of files, the CPU

and memory still have a lot of power and free space but still the number of video

decoding cannot exceed 50 and 39. This behavior has been discussed with Mr. Dennis E.

Mungai.In that regard, memory bandwidth bottlenecks are inherited from system RAM,

and for IGP's, that is a severely constrained environment that is often beyond the user's

control. Integrated GPU like Intel HD 3000, not offer much performance improvement

in regards to Memory Bandwidth. Integrated graphics do not have their own Video

39

265

83.84

18.8

1800

1.78

32

646

79.09

28.1

1800

1.65

0 500 1000 1500 2000

Number of Video

Free Memory (MB)

Free CPU (%)

FPS Per Video

Decoded Frames

Time Fluctuation (%)

Maximum Number of Video Decoding

for H.264 1080P Files

Avatar

Imax

71

RAM and they borrow it from main memory, depending on the Video Driver in use and

the amount of RAM installed.

Result and Discussion for Experimental Studies 2

In second experiment, I want to show is there any performance difference in terms of

processor, fps and memory utilization between H.264 and MP4 File video decoding. I

used two video files which are Avatar and Imax. Both of the video files are same except

one set in H.264 format and another in MP4 format. For this experiment, the technique

that been used also was same like experiment one. Mplayer will try to decode maximum

number of file so we can compare the result with H.264 files. Below is the result for

MP4 File.

Figure 28: Maximum Number of Video Decoding forMP41080p Files

As we can see in Figure 28, the number of video files that can be decoded in MP4

format compared with H.264 is higher. Using MP4 format, i5-2500k can decode up until

50 and 47 videos at the same time compared to H.264 which is only 32 and 39 videos.

Both of the files have same resolution but different video format. Although decoding

using MP4 can achieve higher number of video file, it also excels in terms of FPS per

video. Surprisingly MP4 decoding (50 videos) gets optimum FPS results which are

26.54 and 27. 46. Last but not least during decoding of 50 MP4 videos, it only used 20%

of processing power compared to 83% for 39 videos of H.264. This is because MP4

containers impose the least bandwidth to Mplayer splitters whereas H.264 and AVI

50

965

78.1

27.46

1800

1.53

47

1012

80.43

26.54

1800

1.47

0 500 1000 1500 2000

Number of Video

Free Memory (MB)

Free CPU (%)

FPS Per Video

Decoded Frames

Time Fluctuation (%)

Maximum Number of Video Decoding for

MP4 1080P Files

Avatar

Imax

72

notably which with VC-1 Video, incurs massive bandwidth hits due to entropy encoding

that must remain consistent and in sync at all times. Thus it enables MP4 files to be

decoded in greater number compare to H.264 files.

Result and Discussion for Experimental Studies 3

Nowadays almost all processor can be overclock. Take an example such as Intel i5-

2500k which have a unlock multiplier and it allow user to overclock their computer with

a single click at the advance Bios menu. Therefore in experimental studies 3, I had made

some testing regarding the effect of processor speed towards the performance of video

decoding capabilities. In order to do so, this processor i5-2500k has been overclocked to

4.3 MHz. previously; the speed of the processor is 3.3 MHz

Figure 29: Maximum Number of Video Decoding for H.264 1080P Files on i5 4.3

MHz

As we can see in the Figure 29, overclocking the processor speed not brings any huge

impact towards video decoding performance. It still can only decode 32 Avatar videos

and 39 Imax video at the same time. Besides CPU utilization also almost the same as 3.3

MHz processing speed.

39

310

81.84

22.32

1800

1.5

32

646

77.03

28.1

1800

1.65

0 500 1000 1500 2000

Number of Video

Free Memory (MB)

Free CPU (%)

FPS Per Video

Decoded Frames

Time Fluctuation (%)

Maximum Number of Video Decoding for

H.264 1080P Files on i5 4.3 Mhz

Avatar

Imax

73

Result and Discussion for Experimental Studies 4

In this section it will show the effect of the screen size of video decoding towards the

video decoding capabilities. User can change the screen size x and y at

Iter_one_memcpu.pl.

Figure 30: One file of H.264 Video Decoding 1800x1000

Figure 31: One file of H.264 Video Decoding 1366x768

1

2876

98.1

30

1800

0

1

2930

98.54

30

1800

0

0 1000 2000 3000 4000

Number of Video

Free Memory (MB)

Free CPU (%)

FPS Per Video

Decoded Frames

Time Fluctuation (%)

One file of H.264 Video Decoding 1800x1000

Avatar

Imax

0 1000 2000 3000

Number of Video

Free Memory (MB)

Free CPU (%)

FPS Per Video

Decoded Frames

Time Fluctuation (%)

1

2876

99.1

30

1800

0

1

2930

98.2

30

1800

0

One file of H.264 Video Decoding 1366x768

Avatar

Imax

74

Figure 30 and 31 shows that there were only small differences in terms of CPU

utilization. On 1800x1000 screen size the CPU consumption was only 2% whereby on

1366x768 the CPU consumption was 1%. During video decoding process I also try a

command to check GPU usage. Intel HD 3000 uses intel_gpu_top to monitor into the

GPU usage during video decoding. GPU usage for video decoding on screen size

1800x1000 is 19% compared to screen size 1366x7678 which is 13%. Therefore we can

conclude that the bigger the screen size the higher the GPU usage.

Figure 32: GPU Usage for One file of H.264 Video Decoding 1366x768

Figure 33: GPU Usage for One file of H.264 Video Decoding 1800x1000

75

CHAPTER 5

CONCLUSION

5.1 Conclusion

This VideoWall Bench script successfully achieves its objective which enables the user

to benchmark video decoding capabilities using VA-API. Using this program, user can

know how much processor utilization and total frame rate per second for multiple video

decoding using VA-API. Plus this script support most of the Linux operation system

which is value added for this application compare to other benchmark software. This

script also have been go through comprehensive testing by setting up an experimental

studies to look for CPU usage, total FPS and time latency in video decoding using VA-

API with various manipulated variable such as processor speed, different type of video

format and screen size of the video display.

5.2 Recommendation

In future, this program can be improved by adding integrated graphic usage to check

GPU utilization on video decoding using VA-API. This VideoWall Bench script also

can be port to Android Platform to measure video decoding performance on mobile

devices.

76

REFERENCES

BDTI H.264 Decoder Benchmark. (2006). Retrieved from bdti.com:

http://www.bdti.com/Services/Benchmarks/H264

David, J. L. (2000). Measuring Computer Performance: A Practitioner's Guide.

Department of Electrical and Computer Engineering, University of Minnesota,

Minneapolis.

Guobin Shen, G.-P. G.-Y.-Q. (2005). Accelerate Video Decoding With Generic GPU.

IEE Transactions on Circuits and Systems for Video Technology, 695-693.

Jason, F. E., Frederick, S. W., Joseph, T. A., & Wayne, W. (2009). Media Bench II

video: Expediting the next generation of video systems research.

Microprocessors and Microsystems 33 , 301-318.

Jason, F., Wayne, W., & Bede , L. (1999). Understanding Multimedia Application

Chacteristics for Designing Programmable Media Processors. SPIE Photonics

West, Media Processors ’99, (pp. 2-13).

John, L. K. (2005). Performance Evaluation and Benchmarking. Taylor and Franchis

Group .

Jörn, O., Jan, B., & Peter, L. (2004). Video coding with H.264/AVC: Tools,

Performance, and Complexity. IEEE Circuits and Systems, 7-28.

Larabel, M. (2011, March 7). Intel Sandy Bridge VA-API Video Acceleration

Performance. Retrieved from phoronix.com:

http://www.phoronix.com/scan.php?page=article&item=intel_snb_video&num=

1

Lee, C., Potkanjak, M., & H. Mangione-Smith, W. (1997). Media Bench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems. 30th

International Symposium on Microarchitecture, (pp. 330-335).

77

Markus, L. (2005). Evaluating Digital Entertainment System Performance. IEEE

Computer, 68-72.

Mauricio, A., Esther, S., Alex, R., & Mateo, V. (2007). HD-VideoBench. A Benchmark

for Evaluating High Definition Digital Video Applications. IEEE Int. Symp on

Workload Charaterization, (pp. 120-125).

Mazlan, M. S. (2012, July). Guide on VideoWall Bench Requirements.

Michael, G., Yukio, W., & Takeshi, Y. (2006). Synergistic Processing in Cell's

Multicore Architecture. IEE Micro, 10-24.

Nathan, S. T., & Alan, S. J. (2002). Design and Characterization of the Berkeley

Multimedia Workload. Multimedia Systems, 315-327.

Thomas, S. (2005). Trends and Perspectives in Image and Video Coding. Proceedings of

the IEEE, 6-17.

Video Acceleration API. (2012, June 12). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Video_Acceleration_API

Video Acceleration API. (2012, November). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Video_Acceleration_API

Weicker, R. P. (1990). An Overview of Common Benchmarks. IEEE Computer, 65-75.

Wichmann, H. J. (1976). A Synthetic Benchmark. Computer Journal, 43-49.

Willis, N. (2009, July 1). VA API slowly -- but surely -- making progress. Retrieved

from lwn.net: http://lwn.net/Articles/339349/

X-Video Motion Compensation. (2012, January 16). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/X-Video_Motion_Compensation

