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ABSTRACT 

The world is made up of various irregular objects and signals. Although traditional 

mathematical techniques are not able to analyse these signals, it has been identified 

that these signals show common features such as singularities at various scales of 

observation. This indicates the existence of fractals within these signals. In the oil and 

gas industry, seismic data is a collection of reflected audio signals and is an example 

of irregular signals that could also have fractal features. 

Even though we know that global petroleum resources are on the decline, oil and gas 

still remains the main source of energy throughout the world. This makes seismic 

exploration activities all the more important. Present indirect hydrocarbon detection 

techniques using seismic are costly and do not guarantee detection of oil or gas. 

Therefore, a technological advancement in the field of seismic exploration is 

evidently needed. Therefore, this study aims to develop a method for direct detection 

and delineation of hydrocarbons from seismic data. 

In order to analyse the fractal nature of signals, a collection of mathematical steps 

known as fractal analysis is applied to generate a singularity spectrum. Although 

importance has been given on the methods of computing the singularity spectrum, 

there is little study on the effects of different types of singularities on the singularity 

spectrum.  This study aims to understand how the singularity spectrum is affected by 

changes applied to input signals. It is by acquiring this knowledge first that the study 

also intends to develop an algorithm for direct detection of hydrocarbons.  The 

Fraclab toolbox in MATLAB will be extensively used to achieve both of these goals.  

From the study of the changes to singularity spectrum due to change in signals, it was 

observed that the square wave is the most irregular signal when compared with sine 

wave and sawtooth wave. Meanwhile, it was also discovered that a change in the 

amplitude of the periodic signal does not play a part in the final result of the 

singularity spectrum. The study has also observed that when two regular waves 

concatenate, the singularity spectrum produces more than one point due to the 

existence of a singularity or singularities at the point where the two signals 

concatenate. In direct comparison, when two periodic signals are added to one 

another, they only produce a dot on the singularity spectrum indicating that the end 

signal is still monofractal. 
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Seismic modelling revealed some promising results that could be translated into the 

development of a hydrocarbon detection method directly from seismic data. The 

seismic signals of three reservoir fluids that were modelled, namely oil, gas and 

water, resulted in different singularity spectra. It was observed that even when some 

features of the seismic model such as thickness of layers and number of layers were 

changed, the singularity spectrum produced by a particular reservoir fluid is the same. 

This means that each reservoir fluid has its own signature and thus could possibly be 

detected directly from real seismic data.  

Indeed this proved to be true when tested with real seismic data. The windowing 

based technique that was used together with fractal analysis was able to detect and 

delineate the hydrocarbons. A region of high irregularity depicted by the continuous 

wavelet transform indicated the presence of hydrocarbon regions. Then with the 

spectral attribute values of αpeak and asymmetry delineation was found to be possible. 

Gas regions produced results with lowest αpeak values in the region of         

                . The spectra produced in the gas region also produced 

asymmetry values in the following range of values, 0.916025 ≤asymmetry ≤ 

1.069975. There was also a certain range of limiting values that were observed in the 

oil region. For αpeak, the values were within                            while 

the asymmetry constantly remained between 1.253554 and 1.269845. This indicates 

that delineation of hydrocarbon was successful and the values mentioned above can 

be used to differentiate between oil and gas from seismic data. 
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CHAPTER 1 

INTRODUCTION 

1.1    Project Background 

Natural objects like clouds or tress and signals like lightning strikes very rarely have a 

linear pattern. To add on to that, in understanding any signal, it is common that the 

irregular patterns or spikes that contain the data that is important. Characterizing 

these objects or signals by traditional mathematical techniques has proven to be 

inaccurate. However from various studies, these nonlinear objects and signals indicate 

having a similar pattern on more than one scale and are characterized as fractals.  

In order to understand the complex patterns of fractals, an analytical technique called 

fractal analysis that was developed not too long ago is used. This method has picked 

up popularity in recent times as it provides a way for irregular signals to be 

characterized. Applications of fractal analysis has grown and is currently being used 

in many fields like stock market modelling, image processing, medical data and 

networking (Reidi). 

Through fractal analysis, fractal characteristics like holder exponents and fractal 

dimensions are generated. A holder exponent gives the degree of irregularity in a 

function while fractal dimension gives the degree to which a fractal object is 

fragmented. Having computed these values, a singularity spectrum can then be 

plotted to further quantify a non-linear signal. From previously being unable to 

analyse irregular signals accurately, developments in fractal analysis now enable 

accurate analysis of complex signals and at the same time allow for classification of 

these signals under common features like holder exponents and fractal dimensions.  

The evidence that even irregular signals have distinct characteristics generated 

interest in studies on holder exponents and fractal dimensions. Scientific papers that 

focused on holder exponents aimed at using holder exponents for singularity 

detection The common method used in these studies to obtain holder exponents is by 

using wavelet transform (Sohn, Robertson & Farrar, 2002 ,Mallat & Wen, 1992). 
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Wavelet transform is a very important mathematical tool in studying the regularity of 

a signal because it is able to localize a signal in both time and frequency at the same 

time. This was a major improvement from the traditional technique of Fourier 

transform as wavelet transform was capable of giving the local regularity of signals in 

comparison to Fourier transform which gives the overall regularity of a signal.  

Meanwhile, many researchers have also taken fractal dimension as an important 

feature in defining complex signals. For instance two different approaches by which 

fractal dimensions can be obtained were studied and compared in the study by Backes 

and Bruno (2008) although the focus was on the study of complexity of shapes. 

Fractal dimensions have been used to characterize various complex natural features 

like the shape of soils and rocks, the blood vessels in the human body and how they 

branch out and the sometimes the distribution of plants (Jonckheere, Nackaerts, 

Muys, Aardt & Coppin, 2006). 

Putting these two features - namely holder exponents and fractal dimensions - of an 

irregular signal together in one plot gives rise to the singularity spectrum. Extensive 

studies have been undertaken in order to identify and describe the steps in carrying 

out fractal analysis to produce a singularity spectrum (Chhabra et al., 1989, Arneodo, 

Bacry & Muzy, 1995). Furthermore, with the aim of improving the accuracy of the 

singularity spectrum produced, the study done by Faghfouri and Kinsner (2005) has 

also provided some solutions to address the challenges previously faced in the 

computation of a singularity spectrum.  

As mentioned previously, fractal analysis is now gaining popularity in many fields. 

The oil and gas industry is another important field where fractal analysis can be 

implemented. At the moment, the world relies heavily on oil and gas as energy 

sources. As mentioned in by Al Salam and Al Baruni (2009), 39% of the energy 

needs across the world is provided by petroleum while another 23% was contributed 

by gas. As seen in the figures below, the consumption of oil and gas has always been 

on the rise.  
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Figure 1: Diagram on the left depicts history of total oil consumption in the world from 1950-2008 

while diagram on the right shows history of gas consumption in the world for the same period.           

(Al Salam & Al Baruni, 2009) 

It is predicted that this trend will continue and the global use of petroleum will grow 

by another 5% in the first twenty five years of the 21
st
 century. Meanwhile, it is also 

predicted that natural gas will face a massive increase in consumption with an 

expected increase of 57% in the same time frame. These trends are worrying as it will 

lead to a situation where the demand is higher than the supply made available by 

energy companies (Al Salam & Al Baruni, 2009). 

Therefore, the need for better technologies in the exploration of oil and gas has never 

been more evident. This is because oil and gas exploration is usually the most vital 

step as it determines if the area under study has hydrocarbon in amounts that are 

economically profitable to be extracted ("Oil and gas,"). After detailed analysis of 

geological maps to locate major sedimentary basins is completed, further information 

is gathered by commissioning field geological assessments ("Environmental 

management in," 1997). 

Three of the most common methods in conducting these assessments are magnetic, 

gravimetric and seismic. The changes in strength of the magnetic field are recorded in 

the magnetic method. With this information, the type of the rocks present can be 

identified by looking at their magnetic characters. Meanwhile, the gravimetric 

technique detects and records minor changes in the gravitational field at the surface of 

the earth. These measurements are made either by using an aircraft or a survey ship 

("Environmental management in," 1997). 

Nevertheless, of the three methods, seismic surveys are considered the most 

important and are usually the first field activity undertaken. This method uses sound 

waves in order to produce an image of the subsurface geological structures and layers. 
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An energy source usually an airgun is used to transmit acoustic energy that travels 

into the earth in the form of a wave. Each time the wave comes into contact with a 

different layer, some of the energy is reflected back to the surface. At the surface, an 

array of receivers - geophones on land or hydrophones in water – pick up the 

reflected sound waves for processing. The rest of the energy on the other hand 

continues down to detect the geological strata that exists deeper within the earth ("Oil 

and gas,", "Environmental management in," 1997). 

Once the seismic surveys are conducted, the information gathered needs to be 

processed.  Various signal processing methods come into play at this stage. Data 

processing is important as it reduces the effects of common problems like noise or 

multiples. Multiples occur when the same layer reflects the sound wave repeatedly 

("Discovering the underground,"). Processing seismic data also includes enhancing 

the signals and migrating the seismic events to its actual location in space (Albertin et 

al. 2002). Processing of seismic data is vital as this usually sets the tone for 

geophysicists to interpret the data effectively in order to determine the possible 

presence of hydrocarbon zones.   

Since seismic data is non-linear, the possibility of using fractal analysis to analyse the 

data has been an area of study that has interested some scientists. Wilson (n.d.) for 

instance made an attempt to identify the fractal interrelationships in field and seismic 

data. Khan (2007) went a step further by using fractal analysis to detect and delineate 

hydrocarbons. This study sets out to consolidate these findings in applying fractal 

analysis in the detection of hydrocarbons.  

1.2    Problem Statement 

Since fractal analysis is a relatively new area of study, there is a lot still to be learned 

about the characteristics of a fractal signal like fractal dimensions and holder 

exponents. Although importance has been given on the methods of computing the 

singularity spectrum, the studies have stopped short of explaining the effects of 

different types of singularities on the singularity spectrum. In other words, a lot of 

effort has been put into perfecting the methods involved in fractal analysis to generate 

a singularity spectrum but little is known on how various characteristics of signals or 

changes in signals affect the values obtained in a singularity spectrum.  
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Therefore, this study sets out to analyse different signals using fractal analysis and 

observe changes on the singularity spectrum in order to correlate different 

singularities to their effects on the singularity spectrum. It is then hoped that the data 

obtained can be explained with the mathematics behind fractal analysis. 

At the present time where hydrocarbon resources are on the decline, the exploration 

for new oil and gas reservoirs is very important. In the hydrocarbon exploration field, 

seismic surveys play a major role in the detection of hydrocarbons. A lot of signal 

processing is done to the information gathered to enable proper interpretation of the 

seismic data. In interpreting seismic data, there are both indirect and direct methods 

of hydrocarbon detection (Khan, 2007). 

Indirect hydrocarbon detection needs more than just seismic surveys in order to be 

able to detect hydrocarbons. Through this method, the seismic geological models 

have to be improved by physically detecting the oil and gas deposits by obtaining 

core samples (Khan, 2007). Due to this, wells have to be drilled and as a result a lot 

of money is consumed. This method is also time consuming as well logs have to be 

matched to the seismic data so that an accurate geological model can be made. Once 

this model has been made, whether or not oil and gas is present in an economically 

viable amount depends on the proper interpretation of the formation geology (Avseth, 

Mukerji & Mavko, 2005). 

Direct hydrocarbon detection is also currently in practice. This method only analyses 

the frequency components of the seismic data (Khan, 2007). This method is 

undeniably faster than the indirect hydrocarbon detection method. However, with the 

development of fractal analysis, irregular signals can now be quantified. This opens 

up the possibility of improving the effectiveness of direct detection method using 

seismic data as the singularity spectrum characterizes the signals in a more detailed 

manner. Therefore, this paper attempts to develop a direct hydrocarbon detection 

method using fractal analysis for improved hydrocarbon detection.  

1.3    Objectives and Scope of study 

Fractal analysis has proven that it is an important signal processing tool with its 

ability to detect local and global transitions. The first objective of this study is to 

analyse the fractal analysis performed on generated signals. This would be the interim 

objective that is hoped to be achieved in the first semester. The main feature of fractal 
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analysis that is under study would be the singularity spectrum. The study plans to 

investigate the changes on singularity spectrum as the input signals are varied. 

Various characteristics of the signals will be changed like signal amplitude, number 

of cycles of each signal and type of signals to name a few. These signals will be 

analysed using the FracLab toolbox. FracLab is a general purpose signal and image 

processing toolbox based on fractal and multifractal methods.  

Since fractal analysis is made up of a set of mathematical steps, the study also aims to 

relate the changes observed in the singularity spectra produced in FracLab with the 

mathematics behind the analysis. Through such an analysis on the singularity 

spectrum, which signal is considered more singular can be identified. Also, the reason 

why some signals are said to be more singular than others can be explained by 

matching the results obtained in the singularity spectra to the mathematics behind the 

analysis.  

The major objective of this study is to come up with a method for direct detection of 

hydrocarbons. Seismic surveys are done in the early stages of oil and gas exploration 

and whether a reservoir is profitable for production many times depends on the 

seismic data. Therefore, this study aims to use the singularity spectrum generated 

using fractal analysis to develop an algorithm for direct detection of hydrocarbons. 

Since it is a direct method, conclusions can be drawn on a reservoir just by 

interpreting the seismic data. Furthermore, this proposed method should have an 

improved reliability as compared to the current direct method in use. Also, the 

proposed method would not need for an exploration hole to be drilled meaning 

millions of dollars could be saved in the exploration stage. 

1.4    Significance of study 

The discontinuities in a signal contain the most important information of that 

particular signal. Although for a very long time, Fourier transform has been the main 

approach in the study of singularities of a signal, the developments in fractal analysis 

has shown that fractal analysis provides a better way to characterize and understand 

irregular signals. Since most studies have focused on the applications of fractal 

analysis, the understanding on the types of singularities and their effects on the 

singularity spectrum seems to have been overlooked. Therefore, through this study a 
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clearer picture on the effects of changing the characteristics of a signal on the 

singularity spectrum can be obtained. 

Currently, fractal analysis has been applied in some studies related to geological 

studies. For instance Hermann and Lyons (2000) have classified stratigraphy and 

lithology of the earth by using singularity analysis. However there are few studies on 

how fractal analysis can be used on seismic data for direct detection of hydrocarbons. 

The proposed method of hydrocarbon detection by analysing the singularity spectrum 

and characteristics like holder exponents and fractal dimensions give a more reliable 

way of hydrocarbon detection as compared to present methods. This is because the 

present method only looks at the frequency changes in the seismic data to predict 

presence of hydrocarbons. 

1.5    Feasibility of study 

The aim of the study at the end of both phases (FYP1 and FYP2) is to create an 

algorithm that can be used for direct detection of hydrocarbons. The main task that 

needs to be covered in order to reach this ultimate goal is to understand fractal 

analysis. Since this task would be achieved in the first phase, there would be 

sufficient time to use the knowledge gained to formulate an algorithm for direct 

hydrocarbon detection of hydrocarbons from seismic data in the second phase. 

Nevertheless, to validate the capability of the fractal analysis method in detecting 

hydrocarbons, it is vital that actual seismic data is obtained from PETRONAS so that 

the algorithm created can be compared with actual data from the field to proof its 

reliability. 

  



 

  8 

CHAPTER 2 

LITERATURE REVIEW 

2.1    Fractal Analysis 

Albeit being a relatively new mathematical approach towards analysing signals, 

fractal analysis has already found widespread interest due its ability to categorize 

irregular signals. In this chapter, some of the works already done on fractal analysis 

are discussed in relation to the interim aim of this study. Also, studies on the 

characteristics of complex signals like holder exponents, fractal dimensions and 

singularity spectrum are looked into for further understanding. Since the final 

objective of the study is to apply fractal analysis for detection of hydrocarbons, 

studies that have applied fractal analysis on seismic data or in the field of geology are 

discussed too. 

There are many types of nonlinear and nonstationary signals both in time and space 

like electrocardiogram (ECG), electroencephalogram (EEG) , network traffic , 

physiological responses and lightning strikes to name a few. However as mentioned 

in a few studies, common spectral methods like Fourier Transform or other traditional 

signal processing methods are incapable of analysing these signals (Faghfouri & 

Kinsner, 2005, Chakraborty & Okaya). This is true since Fourier Transform assumes 

the signal to be stationary. Therefore, from the frequency spectrum produced, the 

exact time at which different frequencies or singularities occur cannot be ascertained.  

However with the developments in wavelet transform (WT), it was now possible to 

extract both frequency and time factors of a signal simultaneously. This opened up 

the possibility of identifying singularities at its exact moment of occurrence. WT was 

then used as a basis towards developing an approach called fractal analysis that can 

categorize irregular signals.  

Khan (2007) and Reidi have mentioned that fractal analysis is an approach that is able 

to capture the long-term dynamical behaviour and statistical self-similarity of the 
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aforementioned signals. Meanwhile, fractal analysis has also been defined as a 

collection of mathematical steps that are used in order to identify fractal dimensions 

or other fractal characteristics like Holder exponents (Zmeskal, Vesely, Nezadel & 

Buchnicek, 2001). In essence, these studies are in agreement that with fractal 

analysis, the sudden changes or singularities of a signal can be identified and 

characterized using Holder exponents and fractal dimensions. Fractal analysis also 

generates a singularity spectrum that gives a mean for quantifying the complex 

signals further (Faghfouri & Kinsner, 2005). The singularity spectrum computed by 

fractal analysis is a major part in this study as it aims to understand how the 

quantization is done. Nevertheless, before discussing on studies that have dealt with 

singularity spectrum, this study first describes some terms that are important and used 

throughout this study.  

2.1.1    Fractals 

The word fractal relates to highly irregular patterns, shapes and mathematical sets 

(Khan, 2007). One way to describe fractals is that the object or fractal contains 

smaller versions of itself (Weisstein). The concept of characterizing space-time by 

four Euclidean integer changes with the introduction of fractals since with fractals, 

complex shapes can have dimensions that are fractions. (Kinsner, 2005) 

Regular or deterministic fractals are objects or quantities that exhibit self-similarity 

on all scales (Weisstein, Dansereau & Kinsner, 2001, Khan, Mohamad Hani, Firdaus 

& G., Evertsz, Berkner & Berghorn, 1995). Self-similarity means that the object 

would have the same features on any scale.  It is also important to note that in order 

for something to be a regular fractal the scales used must be the same.  

Meanwhile, self-affine fractals are objects that have a self-similar structure but at 

different scales (Khan, Mohamad Hani, Firdaus & G.). For instance, if there exists a 

signal y(t) with an independent variable t,  then the signal would be self-affine if the 

scaling on the amplitude of y(t) is different from the changes to the scale of the 

variable t (Faghfouri & Kinsner, 2005). Some examples of self-affine fractals are 

seismic data, retinal vessels and network traffic.  

Fractals could be seen in two categories, namely monofractals and multifractals. 

Fractals that have one fractal dimension are known as monofractals. Meanwhile 
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functions are called multifractals are if there are more than one fractal dimension to 

describe it. (Kinsner, 2005, Khan, 2007) 

2.1.2    Holder Exponents 

Holder exponents or also known as Lipschitz exponents are used to obtain the local 

measure of regularity of a function (Jouck, 2004, Mallat & Wen, 1992). The 

singularities and irregular structures of a function are of importance since most of the 

vital information that defines the function lie within them (Mallat & Wen, 1992). 

Holder exponents can take positive or negative values where smaller values mean the 

strength of the singularities is higher. (Staal, 1995) 

Fourier Transform used to be the main technique used to analyse singularities in 

signals or functions. However, Fourier transform (FT) is a global analysis of the 

regularity of the signals and assumes the function to be stationary. Since FT produces 

an analysis of only frequencies and does not specify the time when the frequencies 

occur, the exact location of singularities could not be identified (Mallat & Wen, 

1992).  

One mathematical approach that solves the problems found in FT is wavelet 

transform (WT) as it can characterize the local regularity of signals (Mallat & Wen, 

1992). WT gives the time and frequency content of functions simultaneously. 

(Polikar, 2006) Through this method, the exact time and the exact frequency of the 

singularity can be obtained. This is exactly what is needed to analyse singularities in a 

signal.  

An interesting feature of wavelets that is of importance is its ability to adapt its width 

to the frequency (Polikar, 2006, Jouck, 2004). The wavelets produced are narrow for 

high frequency components whereas at lower frequencies the wavelets are wider. Due 

to this feature in wavelets, wavelet transform allows for better understanding of high 

frequency changes or singularities as the resolution of the analysis at high frequency 

is very high (Polikar, 2006, Jouck, 2004). As mentioned earlier, since important 

information regarding a signal is stored in the singularities, this is a favourable feature 

of WT in relation to the study. 

In this study, the tracking of local maxima of WT together with the use of modulus-

maxima lines is the fundamental methods involved in identifying the holder 
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exponents. This method is called the Wavelet Transform Modulus Maxima (WTMM) 

(Evertsz, Berkner & Berghorn, 1995). 

2.1.3    Fractal Dimensions 

The study of the complexity of a function is one of the common ways in analysing it. 

The complexity of a function relates directly to the irregularity of the function. One of 

the methods in determining the complexity of an object or signal would be through 

fractal dimension. Fractal dimension gives information on how fragmented a fractal 

object is or in other words it is a characterization of the self-similarity of the fractal 

(Mandelbrot, 2000). Unlike topological dimension, fractal dimension provides a non-

integer value that quantifies how much of the fractal is found in the space under 

observation (Backes & Bruno, 2008). 

However, not all objects or functions in nature are self-similar. Therefore, a single 

numeric value is not enough to describe the complexity of these fractals. In the 1970s, 

Mandelbrot iterated that objects that are self-affine should be characterized by a 

spectrum of numbers instead of just one dimension (Kinsner, 2005). This led to the 

use of Multi-Scale Fractal Dimension (MFD) method which uses more than one scale 

to quantify the density of fractals in a metric space. From here more than one fractal 

dimension values are obtained these values will then be used in the formation of a 

singularity spectrum.  

2.1.4    Singularity Spectrum 

The statistical properties of the singular exponents or holder exponents are described 

through a singularity spectrum (Chhabra, Meneveau, Jensen & Sreenivasan, 1989). A 

singularity spectrum is used to quantify the degree of irregularity of fractals. For 

monofractals, the singularity spectrum would only produce one dot while mutifractal 

signals would produce a spectrum with all of its holder exponents and fractal 

dimensions (Faghfouri & Kinsner, 2005). The reason for monofractals producing a 

single point on the singularity spectrum is due to the fact there is only one fractal 

dimension and holder exponent to describe them. 

With the understanding of these terms, our study looks at some of the researches that 

have focused on fractal analysis as well as singularity spectrum. Faghfouri and 
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Kinsner (2005) described that there are two important methods in computing a 

singularity spectrum namely the Legendre transform of the Renyi fractal dimension 

spectrum while the second method is by using the Wavelet Transform Modulus 

Maxima (WTMM). The study then proceeds to discuss the WTMM method in detail 

and providing methods to improve the reliability of the method which was proposed 

in an earlier study by minimizing errors and reducing noise as seen in their flowchart 

below. There are also other studies that have also used WTMM to produce the 

singularity spectrum like Khan (2007) and Los and Yalamova (2006).This study will 

also be applying the WTMM method as it is found to be the method that is able to 

detect all the singularities in a signal. Therefore, similar steps can be adapted from 

these research papers to perform fractal analysis.  Nevertheless, several different 

methods applied by others are mentioned in the following paragraph. 

 

Figure 2: (a) WTMM method first proposed (b) Improved method proposed for fractal analysis using 

WTMM (Faghfouri and Kinsner, 2005) 

 

There is also a scientific paper that explains a direct method of computing a 

singularity spectrum from the experimental data (Chhabra et al., 1989). The follow up 

to the study was the application of this fractal analysis method on fully developed 

turbulence. This is a method that is different compared to the WTMM method since 

the need of Legendre transform as one of the steps in obtaining the singularity 

spectrum is effectively removed.  Another study proposed a method called the 

method of moments to compute (Bobrov et al.). This is another method that has been 
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proven to be able to generate a singularity spectrum. The method was then applied in 

the geophysics field to investigate non-stationary properties of geophysical processes. 

2.2    Oil and gas and the importance of seismic exploration in its detection 

Oil and gas are the two main energy sources that meet more than half of the global 

energy demand. In order to identify the reservoirs, oil and gas carry out exploration 

by using various methods. This section onwards will discuss on the major types of 

exploration methods involved. However, emphasis would be given towards seismic 

method. Therefore, current approaches as well as research developments in seismic 

surveying would be discussed as well.  

Although oil and gas are non-renewable energies, there are little signs that the 

dependence towards these energy sources are on the decline as 63 percent of the 

world energy supply comes from these sources ("Environmental management in," 

1997). It has also been pointed out that the volume of oil discovered around the globe 

every five years is on the decline (Magoon 2000). This can be observed in Figure 4 

below.  

 

Figure 3: Figure depicting decline in oil discovery (Magoon, 2000) 

This situation has increased the pressure on oil and gas companies to ramp up efforts 

in discovering more oil and gas reservoirs. Therefore, more money is pumped into 

research in order to develop present exploration technologies. Nevertheless, it is 

important to first have a general idea of the exploration methods that are currently 

employed. 

Of the various exploration tools, the three major survey methods are magnetic, 

gravimetric and seismic. In a magnetic survey, information on the distortions in the 

Earth‟s crust is collected by a magnetometer that is towed by a boat. The aim of doing 

this is to identify subsurface traps. Subsurface rocks have their own magnetic 
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properties that can be measured using this method. From there, it can be identified if 

rocks that usually cause petroleum to move upward into subsurface traps like granite 

exist. Meanwhile, gravimetric method uses a sensor called gravimeter which 

measures the strength of the gravitational field. This exploration tool allows for 

detection of porous materials where petroleum could be found. Apart from that it also 

identifies the location of certain formations that usually trap hydrocarbons ("Oil and 

gas,”).  

Seismic surveying however is the most commonly used method as it is considered the 

best of the three. This process is carried out by sending sound waves into the earth‟s 

crust like the seabed for offshore operations. The time taken for the sound wave to be 

reflected back to the surface is recorded. This information enables geophysicists to 

come up with an image of the subsurface strata and structures. While some of the 

sound wave is reflected, the balance of the sound wave continues to travel deeper into 

the ground to detect other layers. Since seismic waves that are reflected off rock 

layers that are denser produce a different signal when compared to porous materials, 

exploration geophysicists can attempt to use this data to pinpoint the location of oil 

and gas reservoirs. The tools required to conduct a seismic survey is a sound source – 

typically an air-gun on a ship – and also receivers known as hydrophones which are 

towed by the ship ("Oil and gas," ). The three steps involved in seismic method are 

acquisition, processing and interpretation. 

Traditionally in seismic surveying, seismic interpreters try to identify potential 

reservoirs by looking at structural and stratigraphic features that have previously 

proven to be of oil and gas reservoirs. Therefore, seismic interpretation depends a lot 

on experience and knowledge on the subject matter. Also, in these conventional 

techniques reservoir parameters were distinguished from one another by amplitude 

analysis. Also, these conventional methods have solely been used to detect 

hydrocarbons indirectly.  

However with time, new technologies were developed to improve the reliability in 

detecting hydrocarbons. One such method is the amplitude versus offset (AVO) 

analysis. Albeit being an amplitude analysis method, it reduced interference in the 

amplitude caused by layers that were close to each other. This was also still an 

indirect hydrocarbon detection method from seismic data. The frequency content of 

the seismic data was also used to detect hydrocarbons via a method called spectral 
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analysis. The application of this method has seen a drastic increase of late (Maklad, 

2007). The reason for this was due to the fact that this led to the possibility of direct 

hydrocarbon detection. 

2.3    Current Seismic based detection methods and problems or shortcomings 

affiliated to them 

2.3.1    Indirect Hydrocarbon Detection Method 

In the indirect hydrocarbon detection method, the seismic attributes from a seismic 

survey is studied in order to gather data on the physical properties of the layers of 

rock within the ground. These properties range from the thickness of a layer down to 

the porosity of the rock in the layer. This enables the exploration geophysicists to 

come up with a geological model in order to identify possible locations of oil and gas 

reservoirs (Khan, 2007). 

The AVO analysis is a common indirect detection method. Based on kind of seismic 

data in use, there are two types of AVO phenomena with the first one being P-wave 

AVO and the second one being multicomponent AVO. Before the use of AVO, high 

amplitude regions in seismic data were said to be an indication of gas based on 

practical evidence. However this was proven to be an unreliable method for 

predicting existence of gas since hard rocks also produced high amplitude regions in 

the seismic survey. AVO however was able to differentiate these two scenarios. This 

was due to the high levels of sensitivity of the P-waves towards gas sandstones thus 

producing high amplitude reflections for those regions while low amplitudes for 

every other region. Since AVO produces reliable results only when the sand to shale 

impedance contrast is high, it has its limitations (Li et al., 2007, Fatti et al., 1994). 

Therefore in order to confirm the presence of hydrocarbons, after the seismic survey 

is conducted and analysed using AVO, a well is drilled and other exploration tools are 

used to gather more data.  

A study that uses wavelet transform as the basis of its research on estimating Q 

attenuation is by Xiaogui and Scot (1998). Q is the ratio between the peak energy of a 

wave to the energy that is dissipated. When performing seismic interpretations, this 

energy loss must be taken into account. Their study uses Wavelet Transform Modulus 

spectra and Matching Pursuit Decomposition spectra to estimate the Q attenuation. 
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Matching Pursuit Decomposition performs signal decomposition using more than one 

type of wavelet to get a high resolution analysis. This research has proven to be able 

to provide higher accuracy for Q function estimates. This will help in the process of 

fluid and lithological interpretations. While this method does provide an improvement 

in giving a better estimate of attenuation, just this data alone will not suffice in the 

detection of hydrocarbons. However, this study shows a shift towards a growth in the 

application of wavelet transform in seismic analysis.  

 

Figure 4:Wavelet attribute analysis on migrated seismic section (a) The original migrated section (b) 

WT decomposition at voice 7 coloured by WT phase attribute (c) WT decomposition at voice 11 by 

WT phase attribute. (Xiaogui & Scot, 1998) 

 

In indirect hydrocarbon detection method based on seismic data, the travel time of 

seismic waves from the source to receiver needs to be determined with as minimal 

error as possible. This is crucial especially when the seismic-velocity structure of the 

subsurface are being identified. While there are many published algorithms to detect 

the seismic first arrival times, the fractal based algorithm proved to be able to tolerate 

noise levels up to 80% of the average signal amplitude. This study proves that using a 

fractal dimension as an indicator improves accuracy of data. It is a sign that using 

fractal-based attributes provide better results. (Boschetti, Dentith & List, 1996) 
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Figure 5: Comparison between the fractal-based algorithm and three algorithms from the literature. 

The fractal-based algorithm is able to pick the correct arrival time in all the traces while the other 

algorithms may occasionally show relevant errors. 

 

Spectral decomposition is another analysis method that is becoming more common 

and it is used to break down the seismic data into its frequency components. This 

method has been used in studies in order to visualize the stratigraphy of the Earth. 

One of the reasons for this is down to the fact that spectral decomposition helps the 

geophysicist to get data on the small changes in thickness between layers. Even more 

important is its ability to give the exact thickness of the layers (Hall & Trouillot, 

2004). This analysis method allows for interpreters to locate the stratigraphic trap 

which are possible signs of the presence of hydrocarbons. This is vital information 

when modelling the geological map. However, in this method there is no absolute 

way of saying if there are hydrocarbons present unless other well logging tools are 

used for verification. 

Seismic thin bed analysis meanwhile is used to detect and quantify the thickness of 

these beds in seismic data. Frequency domain thin bed analysis of seismic data not 

only uses the spectral decomposition method discussed in the previous paragraph but 

also applies tuning theory to identify the existence of thin beds in seismic data besides 

giving its thickness values. The basis of one study (Barnes, Fink & Laughlin, 2004), 

involves the use of wavelets. In his study, both Gabor and Morlet wavelets were used. 

The study proved an estimate of the bed thickness could be made by correlating 
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observed spectra with model spectra which also provides a useful measure of 

confidence. Although this study has achieved an improvement in the detection and 

classification of the thicknesses of thin beds, discovering hydrocarbons in thin sands 

is still an ongoing research.  

2.3.2    Direct Hydrocarbon Detection 

Direct hydrocarbon detection also involves analysing seismic data using spectral 

decomposition. In doing spectral decomposition, there are various methods 

implemented in research papers like Short windowed Fourier Transform, Morlet 

wavelet based wavelet transform and Matching Pursuit Decomposition (Miao et al., 

2007). 

A direct detection technique by making a comparison between compressional wave 

(P) and shear (SH) wave seismic data was documented. Lab studies have shown that 

P-wave velocities face a significant reduction in velocity when it comes in contact 

with reservoir sand which contains gas. At the same time, it is also learned that SH- 

wave velocities are only marginally affected. Therefore, the study uses the P-wave as 

a direct hydrocarbon indicator (DHI) without a corresponding SH-wave DHI. 

Meanwhile, a P-wave DHI occurring together with a SH-wave DHI means that the 

drop in velocities was caused by lithological changes and not the presence of a 

hydrocarbon (Ensley, 1985). While this study manages to prove the existence of gas 

directly from seismic data there is no mention on detection and delineation of oil. 

One of the researches done on direct hydrocarbon detection from seismic data used 

another spectral decomposition method called instantaneous spectral analysis (ISA) 

and managed to prove that ISA consistently showed low frequency shadows under 

gas reservoirs which can be observed in the figure that follows this paragraph. The 

study also says that ISA has three other ways in helping with the detection of 

hydrocarbons. First, it shows an abnormally large attenuation in a thick or in a highly 

unconsolidated gas reservoir. Next proposed method for hydrocarbon detection using 

ISA is through the observation of the occurrence of frequency-dependent AVO. 

Finally, ISA also shows selective illumination at the “tuning” frequency which can be 

distinct for rocks saturated with brine or gas (Castagna et al., 2003).  More research is 

needed on the three other ways by which the study has claimed ISA could be used for 

hydrocarbon detection. Apart from that, the present ISA method of relying on low 



 

  19 

frequency shadows under gas reservoirs does not help to indicate where exactly the 

reservoir starts or is first detected. It is hoped from our study‟s direct detection 

method, this issue can be addressed.  

 

Figure 6: (a)8-Hz common frequency section. The low-frequency shadow just beneath the reservoir is 

the strongest event on the section (b) 12-Hz common frequency section. The low frequency shadow 

and the reservoir have comparable amplitude (c) 20-Hz section. The low frequency shadow is 

completely attenuated 

 

Wavelet transform‟s potential in the use of direct hydrocarbon detection was explored 

by using tuning-related peak frequency that deviates from the norm in thin reservoirs. 

Just as previously applied in one of the studies for thin beds for indirect detection of 

hydrocarbons, Matching Pursuit Decomposition (MPD) method is used. Once the 

method is applied to the seismic trace, the difference in amplitude between lower 

frequency components to the higher frequency components is observed. It is also 

proven that the existence of low frequency shadows is an indicator of hydrocarbon 

reservoir in this method (Shengie & Castagna, 2002). However, performing many 

iterations of MPD is extremely expensive also takes up a lot of time (Barnes, Fink & 

Laughlin, 2004). Even though a reliable technique for direct detection of hydrocarbon 
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is needed, it should also be economically viable. Therefore, our study will aim to 

develop a technique that takes up a reasonable amount of time and cost. 

The fractal analysis method called the Wavelet Transform Modulus Maxima Lines 

(WTMML) is also used in an attempt to detect hydrocarbons. The WTMMLs is able 

to produce singularity spectra that represent the various discontinuities present in the 

seismic data. The research has shown that the singularity spectra are affected by 

different lithology and different pore fluid types. Even more promising was the fact 

that these changes could be observed even though seismic amplitudes were not able 

to distinguish them.  

The research done by Devi and Cohen (2004) has shown that it is possible to detect 

hydrocarbons using the WTMML method. Although the research mentions that 

singularity spectra that describe lithology can be easily differentiated from singularity 

spectra describing hydrocarbons, there was no further analysis on other spectral 

attributes of the singularity spectrum. Our study beliefs that there are more attributes 

of the singularity spectrum that can be analysed for the detection and delineation of 

hydrocarbons.  

While there has been research in detecting hydrocarbons directly from seismic data, 

there is little mention on delineation process. Most studies have strictly focussed on 

gas. Our study aims to not only detect gas reservoirs, but also oil reservoirs from 

seismic data. Once the detection can be done, the study will also attempt to delineate 

the reservoir fluids by using fractal analysis and the singularity spectra that result 

from the process. 

2.4    Fractal Analysis using Wavelet Transform Modulus Maxima Method to 

compute the singularity spectrum 

The Wavelet Transform Modulus Maxima (WTMM) method is a well described 

method and a lot of research has been put into the betterment of the procedures 

involved. This study would also be using the WTMM method to generate the 

singularity spectra and in this section, all the steps will first be laid out. This section 

will also then describe each step a little further so the significance of each of these 

steps becomes clear to the reader. 

The steps that need to be taken to compute the singularity spectrum are (Staal, 1995): 
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1. Perform continuous wavelet transform on the function f(t) where t is the time 

variable. The mathematical expression of the transform can be seen below, 

             ∫     
  

  

 

    
 
     

 
   

2. Take the absolute value of the Wavelet Transform and find the local maxima as a 

function of position at each scale. A maxima point can be defined as follows:  

 A local extremum of ѡ{f, ψ}(σ0, τ) is that point (σ0, τ0) such that 

             
  

  has a zero crossing at τ = τ0 when τ varies. 

 A modulus maximum is any point (σ0, τ0) such that |ѡ{f, ψ}(σ0, τ)| < |ѡ{f, 

ψ}(σ0, τ0)| when τ belongs to either the right or left of the neighbourhood 

of τ0 and |ѡ{f, ψ}(σ0, τ)| ≤ |ѡ{f, ψ}(σ0, τ0)| when τ0 belongs to the other 

neighbourhood of τ0. 

3. Connect all points that are modulus maxima along the scale-time plane to obtain 

maxima lines 

4. Track the maxima across scales. We track maxima lines for increasing scale σ by 

choosing at each scale the maximum between all previous values at smaller scales 

σ0 < σ.  

5. Compute the partition function Z(σ,q)  

6. Compute the scaling exponents τ(q). The slope of the log-log plots of Z(σ,q) 

versus σ by linear regression is computed to obtain τ(q). This can be represented 

mathematically as the equation below:  

         
   

         

    
 

7. Compute the singularity spectrum. By performing Legendre Transform on τ(q) 

the values of  the Holder exponents, α and fractal dimensions, f(α) can be 

obtained.  

These steps mentioned above forms the fractal analysis approach that will be used in 

this study. The study will now attempt to explain each step so the reader could 

understand the underlying concept within these steps. 
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2.4.1    The Continuous Wavelet Transform (CWT) 

Singular points or irregular points in a signal are points that undergo sudden changes 

that last for a short time. These abrupt changes in frequency cannot be analysed in 

detail by Fourier analysis as it only produces a spectrum of all the frequencies that 

exist in the signal and does not give any information on the exact time when the 

discontinuity occurs. Therefore, wavelet transforms which give both the frequency 

component as well as the time component of a signal becomes a very important 

analysis tool when it comes to detecting singularities.  

In the WTMM method, continuous wavelet transform is applied. The continuous 

wavelet transform is described mathematically as the following (Polikar, 2006, Staal, 

1995): 

             ∫     
  

  

 

    
 
     

 
   

The equation above means that the transformed signal is a function of two variables, 

namely τ and σ where the former is the translation parameter while the latter is the 

scale parameter. Scale here is the inverse of frequency thus that means lower scales 

represent higher frequencies while larger scales represent lower frequencies. The 

analysing wavelet is ψ(t). 

Once the analysing wavelet has been decided upon, continuous wavelet transform 

starts with the smallest value of σ. This means that the analysing wavelet will be in its 

most compressed state in. Taking the smallest scale to be σ = 1 for instance, the 

analysing wavelet then starts its analysis of the signal from τ = 0 until the maximum 

value of τ. What the analysing wavelet does is that it convolves with the analysing 

signal at every value of τ for the scale of σ =1 and returns a value which represents 

the degree of similarity of the signal to the analysing wavelet at that scale which is 

termed as the coefficient of the wavelet transform. When this computation is done, 

the coefficients for the entire signal for the scale σ = 1 will be obtained. Higher 

coefficient values correspond to a higher degree of similarity of the signal to the 

analysing wavelet and vice versa for lower coefficients. The process is then continued 

for all remaining scales.  

The figures below show the CWT process in pictures: 
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Figure 7: (a) Wavelet transform for scale σ =1. Figure shows the analysing wavelet (blue) , narrow 

since it is at the lowest scale trying to capture high frequency components in the signal (yellow) that 

are similar to it (b) Wavelet transform repeated for scale σ =20. (Polikar,2006) 

 

Once the CWT is completed on the signal being analysed, the results are plotted with 

scale occupying the y-axis and translation occupying the x-axis and finally the value 

of the coefficients taking the z-axis. However, typically CWT coefficients are 

described using colour plots as seen in the figure below. The figure below shows that 

the coefficients have a higher value at higher scales. This means that this signal 

contains more low frequency components rather than high frequency components. 

 

 

Figure 8: An example of the coefficients of the continuous wavelet transform pictured in colour form 

in FracLab with the legend denoting the coefficients‟ amplitude based on colours 

2.4.1.1    Finding Modulus Maxima Points 

Once the continuous wavelet transform has been completed, the modulus of the 

coefficients is taken. The modulus maxima points can be identified as follows: 
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 A modulus maximum is any point (σ0, τ0) such that |ѡ{f, ψ}(σ0, τ)| < |ѡ{f, 

ψ}(σ0, τ0)| when τ belongs to either the right or left of the neighbourhood of τ0 

and |ѡ{f, ψ}(σ0, τ)| ≤ |ѡ{f, ψ}(σ0, τ0)| when τ0 belongs to the other 

neighbourhood of τ0. 

 

Figure 9: With reference to the points in the middle in all the pictures above, modulus maximum points 

are the points that have a happy smiley while the ones with the sad smiley are not modulus maxima 

points (Staal, 1995) 

 

 

2.4.1.2    Connecting Modulus Maxima Points to form Modulus Maxima Lines 

The modulus maxima points found earlier are now connected from higher scales 

down to lower scales to form modulus maxima lines. A function cannot be said to be 

singular at a point t0 if there is no modulus maxima reaching down to the finer scales 

at that point. In other words, if three are modulus maxima points at the higher scales 

but none towards the finer scales, then there is no modulus maxima line, hence no 

singularity at that point in time. Therefore, it is important to keep in mind that 

although a singularity will cause a modulus maximum in the wavelet transform, a 

signal does not necessarily have singularities even if it has modulus maxima points in 

its wavelet transform (Mallat and Wen, 1992).  

At this juncture it is important to mention that if a person only wishes to obtain the 

Holder exponent, α, of the signal, then it can be done by finding the maximum slope 

of the lines that remain above the logarithm of the amplitude of the modulus maxima 

line, on a logarithmic scale (Staal, 1995).  
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Figure 10: An example taken from Evertsz, Berkner & Berghorn (1995), showing modulus maxima 

lines in dotted lines for the signal which can be seen on the top half of the plot 

2.4.2    Tracking maxima lines and computing partition function 

As mentioned in the previous section on using WTMM lines to detect Holder 

exponents, this could be a task that would need a lot of computation time and 

resources especially if the signal contains a lot of WTMM lines. This is where using 

partition function can help to reduce the total computation needed.  However, before 

dealing with the partition function, one other step that needs to be done is to track the 

maxima lines for increasing scale σ by choosing at each scale the maximum between 

all previous values at smaller scales σ0 < σ. In other words, at the top of the maxima 

line, we will have the largest coefficient value in the entire length of the maxima line.  

 

Where:  

WTMML (m)  - is the mth wavelet transform modulus maxima line of  

ѡ{f, ψ}(σ,τ) 

q    - is the moment orders 

sup  - denotes the supremum of the WTMML(m) is to be taken 

 

The reason for taking the supremum is to keep Z finite even when the amplitude of 

WTMML becomes small. This case arises when q < 0 and the singularity is positive 

(Staal, 1995). This brings us back to why the maxima line was tracked in the previous 

step. This is to make it easier to obtain the supremum value of the WTMML (m). 

As mentioned earlier, the partition function helps to reduce computations as it is able 

to measure the scaling of moments and high order dependencies of wavelet 

coefficients and the singularity structure all in one. The moment order, q, is 

Signal being 

analysed 
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responsible for detecting the singularities and represents the degree of polynomial 

(Khan, 2007). In simple terms, the analysing wavelet could be regarded as a box with 

its size being the scale, σ, while the modulus maxima lines then helps to indicate how 

to position these boxes to obtain a partition at the considered scale (Muzy, Bacry & 

Arneodo, 1993). 

2.4.3    Computing scaling exponent, τ(q) 

Scaling exponent, τ(q) is responsible for describing the statistical moments and it is 

related to the partition function Z(σ,q) in this manner (Muzy, Bacry & Arneodo, 

1993): 

 

A plot of log of Z(σ,q) versus log of σ is plotted and the gradient for each value of q is 

taken to give the scaling exponents since: 

         
   

         

    
 

 

Figure 11: Partition function plot for different values of q seen on the left. The bottom right plot shows 

the scaling exponent plot for a sine wave in FracLab. The top right corner is the singularity spectrum 

generated 

 

As will be explained in the following step, the values of Holder exponents, α and 

fractal dimensions, f(α) can be extracted. 
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2.4.4    Compute singularity spectrum using Legendre Transform 

It is common practice to relate two parameters, an independent variable and a 

dependent value using a function like f(x) where x is the independent variable while f 

is the dependent variable. There are times when there is a need to describe the same 

function in a more convenient way. This is the function of Legendre Transform. 

However, f(x) must meet two very important conditions (Zia, Redish & McKay, 

2007): 

i. f(x) must be convex and is smooth. What this means is that the second 

derivative of f(x) does not change sign while being smooth means it has to be 

continuously differentiable to a certain extent.  

ii. It must be easier to obtain data from the derivative of f(x) than to use x itself.  

Since the scaling exponent, τ(q) contains the values of Holder exponents, α and 

fractal dimensions, f(α), by performing Legendre Transform to it, this information can 

be obtained. The relation between τ(q), α and f(α) can be seen as follows (Staal, 

1995):  

 

      

  
                                   

Looking at these equations above, q is actually just the slope of f (   since: 

      

  
    

 

This means that, in the partition function Z(σ,q), each q used will give one value of 

Holder exponent,   in the singularity spectrum. To understand this statement, a 

singularity spectrum that was generated for a sine wave signal is shown below and an 

explanation follows after the figure.  
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Figure 12: An example of a singularity spectrum produced on FracLab. The dots have been added to 

show where the gradient, q which is also the mass exponent changes 

 

The above singularity spectrum shows what was meant when we say that each q 

represents one value on the singularity spectrum. Looking at the spectrum above, the 

different gradients can be seen at those points highlighted with a dot. As we know q is 

the gradient of the singularity spectrum. Thus the more number of moment orders, q, 

used in doing the partition function, the more number of Holder exponents can be 

detected. Also, this means that positive q values will reside on the left side of the peak 

of the singularity spectrum while negative q values will reside on the right side of the 

curve with q = 0 being the point at the peak of the curve. 

 

Apart from that, it is important to note that the singularity spectrum is actually a 

probability distribution of Holder exponents,   with fractal dimensions, f(   being 

the probability of occurrence of a particular   (Khan, 2007). Some points can be 

derived from this as well as we can see below (Makowiec, Rynkiewicz, Galaska, 

Wdowczyk-Szulc & Zarczynska-Buchowiecka, 2011): 

 

 The α points on the left extremity and right extremity of the singularity 

spectrum are the least occurring singularities in the signal that is analysed. 

 The α on the left extremity of the singularity spectrum points to the strongest 

singularity in the signal being analysed while the α on the right extremity of 

the singularity spectrum points to the weakest singularity in the signal. 

 For a α that has a fractal dimension, f(α) = 1, that means that the signal being 

analysed contains that singularity the most. 
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Going back to the scaling exponent, τ(q), if it produces a straight line like in Figure 

11, it is bound to have only one gradient, which means it will have only one α value. 

This means that the function that is being analysed is a monofractal signal since it 

only has one type of singularity (Faghfouri and Kinsner, 2005). Meanwhile, a 

multifractal signal is one that produces a singularity spectrum with more than one 

point. For multifractal signals, the τ(q) will be a curve with more than one gradient 

(Faghfouri and Kinsner, 2005).  
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1    Project Activities 

The study will be divided into two phases. The first phase of the study will be focused 

on the first objective and it will be done during the first semester of my final year. 

Meanwhile, in the second phase of the study, the second objective, that is to come up 

with a direct detection method for hydrocarbon detection will be done. 

 

Figure 13: Flowchart of research methodology 

Project Activities 

Phase One (FYP1) 

Study the mathematics of 
Fractal Analysis 

Perform Fractal Analysis on 
Generated Signals 

Phase Two (FYP2) 

Develop Seismic Models 

Fractal Analysis on Seismic 
Models 

Develop and Test Algorithm for 
Direct Detection and Delineation of 
Hydrocarbons on Real Seismic Data 
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3.1.1    PHASE ONE – FYP1 

 

1) Developing a clear understanding of the mathematics behind fractal analysis 

Fractal analysis is a collection of mathematical steps that have to be carried out in 

order to obtain the singularity spectrum. The fractal analysis method used in this 

study is the Wavelet Transform Modulus Maxima (WTMM) method. The steps 

involved have been discussed in length in the literature review section. There are 

some extensive literature on fractal analysis like the work of Staal (1995) and 

Faghfouri and Kinsner (2005).  The steps undertaken to understand the mathematics 

of fractal analysis was to read these literature sources and clear any doubts that came 

up by meeting Dr. Ibrahima Faye. 

2) Perform Fractal Analysis on Various Signals 

To do this, the FracLab toolbox is used. Different signals are generated using 

MATLAB and their singularity spectra are generated using FracLab. These signals 

are changed in various ways, like amplitude, number of cycles of a certain signal, 

type of signal (square wave, triangular wave) among others. Their effects on the 

singularity spectrum are observed and the study will try to categorize singularities and 

their degree of irregularity based on the response seen in the singularity spectrum. 

The study will also try to see if these changes agree with the mathematics that has 

been discussed previously. 

As mentioned in the earlier sections of this paper, this study would be using the 

Wavelet Transform Modulus Maxima (WTMM) method as the fractal analysis 

method to generate the singularity spectrum. FracLab provides this method under its 

multifractal spectra tab. 



 

  32 

 

Figure 14: Snapshot of Fraclab toolbox 

 

The steps involved in obtaining the singularity spectrum using FracLab are as 

follows: 

1. The signal – given the variable y for instance - that we intend to analyse is 

first generated in MATLAB. 

2. The variable, y is then imported into FracLab. 

3. In order to perform fractal analysis using WTMM method, the following 

option is used.  

 Multifractal Spectra >> Functions >> Legendre Spectrum >> CWT Based. 

This means that by using Continuous Wavelet Transform (CWT) and the 

Legendre Spectrum, the singularity spectrum is generated. 

4. Select between using Basic and Advance parameters. Before the singularity 

spectrum is generated, we have to first select between Basic and Advanced 

parameters.  Since at the moment only analysis of test signals are done, basic 

parameters will suffice to describe any pattern that arises from analysing the 

different type of signals. 

5. Singularity spectrum is generated. 

3.1.2    PHASE 2 – FYP 2 

1) Development of seismic models 

A possible application of fractal analysis that this research is interested on is the 

possibility of detection of hydrocarbons directly from seismic data. At present, 

seismic data is used together with other well log data like gamma ray and resistivity 

data to predict the possible location of hydrocarbon reservoirs. Now, with the ability 

of fractal analysis to characterize different irregular signals via the singularity 
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spectrum, the idea of using seismic data alone to detect hydrocarbons can be 

explored. 

This study first conducted tests on seismic models. Seismic data is generated by 

collecting the sound waves that is reflected from the various layers under the earth‟s 

surface. Therefore seismic data is essentially a collection of irregular signals. Seismic 

data is a representation of the acoustic properties of the layers found beneath the 

surface. The acoustic property of each layer is governed by its density and velocity. 

The density and velocity of the layers changes from one layer to the next. The 

location where this change occurs is where the reflection of the sound waves takes 

place.  

With this knowledge the seismic models were generated. The steps behind generating 

a seismic model can be seen as below: 

 

 

 

Figure 15: Steps to develop seismic models 

 

1. Generating reflectivity series 

Each layer within the earth has its own acoustic impedance. Acoustic impedance, 

usually symbolized by Z, can be defined as the product of density and seismic 

velocity, and these two properties are not the same for different rock layers. It is this 

change in acoustic impedance between layers that cause the seismic wave to be 

reflected back to the receivers on the surface. This reflected sound wave is seen as a 

reflection coefficient. The reflection coefficient tells us how much energy is reflected. 

A collection of these reflection coefficients makes up a reflectivity series. 

The reflection coefficient can be expressed by the following equation: 

1. 
• Generate Reflectivity Series 

2. 
• Convolve reflectivity series with a wavelet 

Development of Seismic Model 
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where   R= reflection coefficient 

   ρ2 = density of medium 2 

   ρ1 = density of medium 1 

   V2= velocity of medium 2 

   V1= velocity of medium 1 

In this study, the density and velocity used for each medium can be seen as follows: 

Table 1: Density, Velocity and Acoustic Impedance of different subsurface layers (Khan, 2007) 

Subsurface 

Layers 

Velocity 

(km/sec) 

Density 

(gm/cc) 

Acoustic Impedance 

(gm.km/sec.cc) 

Gas Sand 2.479 1.833 4.544007 

Oil Sand 2.809 2.147 6.030923 

Wet Sand 2.934 2.180 6.39612 

Shale 2.94 2.38 6.9972 

 

With these values, the reflectivity series can be generated based on our own 

parameters for thickness of each layer and the type of layers in the model. It is 

important to note that when setting the thickness of each layer, the layer‟s own 

velocity value must be taken into consideration. Also, the fact that the sound wave 

travels two ways – both downwards then reflected back upwards - within each layer 

before reaching the surface must also be taken into account. In general, the time to 

depth conversion is as following: 

 

Where d = depth 

  V = velocity 

   t = time taken for reflection to reach the surface 

Adapting the formula above, the thickness of each layer can also be set according to 

our preference provided the right velocity value is used for each layer.  



 

  35 

 

Figure 16: An example of the reflectivity series produced 

In generating these seismic models, there are two assumptions made. The first 

assumption is that the density and velocity values of the layers do not change with 

change in depth. Second, the reflected signal is not affected by energy loss i.e. the 

amplitude of the reflection coefficients are the same if the interface between 

subsurface layers where the reflection occurs are the same, regardless of depth. 

2. Convolve Reflectivity Series with a wavelet 

The next step is to convolve the reflectivity series with a suitable wavelet. One of the 

most commonly used wavelets convolved with the reflectivity series to generate a 

synthetic seismogram is the Ricker wavelet. The Ricker wavelet is a zero phase 

wavelet.  

A key factor when it comes to Ricker wavelet is selecting its centre frequency. 

Wavelets used in the field are generally of lower frequencies. The reason for this is 

because the wavelets lose its energy with time in the form of heat during propagation. 

The energy loss is significant especially when the wavelet used is of high frequencies. 

Therefore, in line with real life seismic application, the study uses a Ricker wavelet 

with a centre frequency of 60Hz.   



 

  36 

 

Figure 17: (a) Ricker wavelet with 60Hz centre frequency (b) Reflectivity series after convolved with 

ricker wavelet 

 

 

2) Fractal Analysis on the Seismic Models 

Next, fractal analysis was carried on the seismic models. This is to obtain the 

singularity spectra so as to be able to study the response of the singularity spectrum to 

different reservoir fluids. The two steps involved are mentioned below: 

 

 

i. Generate singularity spectrum by performing fractal analysis 

Using the FracLab toolbox in MATLAB, singularity spectra are generated for each of 

the models using the same fractal analysis steps discussed previously. The choice of 

wavelet and other parameters used in the fractal analysis process is discussed in the 

results and analysis section of the study. 

 

ii. Analyse the results 

From the singularity spectra generated in the previous step, various features of the 

singularity spectrum like the αpeak value, width and asymmetry. αpeak is the value of 

the Holder exponent that occurs the most in the signal under analysis. It means that 

the signal is mostly described by this particular singularity. Meanwhile, width and 

asymmetry is described by the equations below: 

Width =              Asymmetry = 
           
           

 

Width of the singularity spectrum tells us how widely spread the singularities are in a 

signal. Finally, asymmetry values above 1 show that the signal is described by 
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singularities that are more irregular than the αpeak value and vice versa for values 

below 1. 

 

3) Develop and test algorithm for direct detection and delineation of 

hydrocarbons on real seismic data 

In order to develop an algorithm for direct detection of hydrocarbon, real seismic data 

from a wild cat well was obtained. The data obtained is essential for the progression 

of this study as actual seismic data is needed for the development of a reliable direct 

hydrocarbon detection and delineation algorithm. Using fractal analysis as the basis, 

an algorithm for direct detection of hydrocarbons was developed. The following are 

the steps involved in the algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use other singularity spectrum attributes to Delineate 
Reservoir Fluids 

Extract  αpeak values from singularity spectrum of windows 
and perform Continuous Wavelet Transform for Detection 

Perform Fractal Analysis on Windows 

Apply Sliding Window Technique 

Extract Reflection Coefficients (RC) and convolve with 
wavelet 

Generate Well Log Seismograms  

Figure 18: Flowchart of the steps involved in the Direct Detection and Delineation 

Algorithm 
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i. Develop Well Log Seismograms 

From the raw seismic data, a well log Seismogram was generated using the software 

Petrel. The seismogram that is generated for the well under study can be seen in the 

following figure. The seismogram is produced with the sonic logs and density logs 

that were available.  

 

Figure 19: Synthetic seismogram of the well 
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ii. Extract reflection coefficients and convolve with wavelet 

From the well log seismogram, Petrel calculates the reflection coefficients values. 

Just as previously seen with the seismic modelling, the reflection coefficients 

must be convolved with a wavelet. The choice of wavelet has to be a low 

frequency wavelet as used in the field. Therefore, a Ricker wavelet with a center 

frequency of 60Hz is used in this study to produce the seismic trace in MATLAB. 

 

 

Figure 20: Reflection coefficient and acoustic impedance 

 

iii. Apply sliding window technique  

The windowing technique is obtained from the work of Khan (2007) and adapted 

to suit this study. The reflection coefficients are partitioned into numerous signal 

segments or windows. Two crucial factors in applying the windowing technique 

is: 

a. Optimum Window Length 

 This controls the depth of analysis of each window 
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b. Window Displacement 

 In relation to the seismic trace, window displacement is an 

indication of how many samples are covered each time the window 

is moved. 

As explained by Khan (2007), in order to obtain a singularity spectrum from the 

samples in each window, a sufficient number of samples are required in every 

window. Therefore, the seismic trace was upsampled. The upsampling is done in 

MATLAB and a brief explanation can be seen as follows. 

The upsampling of a signal with an integer factor, L will result in the sampling period 

changing from T to T/L. This is performed by inserting (L-1) zeroes between each 

sample in the original signal. Then the upsampled signal goes through a low pass 

filter. The combination of the upsampler and the low pass filter is known as the 

interpolator (Mohamad Hani, 1999). The figure below is the graphical representation 

of the steps: 

 

Figure 21: Upsampling process (Mohamad Hani, 1999) 

 

The seismic trace was upsampled by a factor of 20 and each window contains two 

samples from the original signal. This means each window comprises of 40 samples. 

Since the seismic data from this well was sampled at 0.004s and the relative distance 

between each sample in terms of depth was approximately 1.5m, the depth of analysis 

per window is approximately 3m.  
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Figure 22: Upsampled seismic trace 

 

iv. Perform Fractal Analysis on Windows 

After the seismic trace is partitioned into windows, fractal analysis is performed on 

each window using the FracLab toolbox. The „Morlet – analytic‟ wavelet is chosen as 

the analysing wavelet in this study.  

The Morlet wavelet is a complex wavelet with no order or vanishing moment defined 

unlike the wavelets derived from the derivative of the Gaussian function. Choosing 

the Mexican Hat wavelet– which is the second derivative of the Gaussian function – 

for instance means that only singularities with α values from negative infinity to +2 

can be detected. Meanwhile, using the Morlet wavelet means this issue is dealt with 

since it does not have vanishing moments and can detect a broader range of α value. 

This is suitable for this study since we do not know the range of singularities that are 

found in the seismic data beforehand.  
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Figure 23: (a) Real part of the Morlet wavelet  (b) Imaginary part of the Morlet wavelet 

 

v. Extract α peak values from singularity spectrum of windows and perform 

Continuous Wavelet Transform for Detection 

The singularity spectrum attribute that is used for detection of hydrocarbon is the αpeak 

values. αpeak is the value of the singularity that occurs most in the signal being 

analysed. The αpeak value obtained from each window is plotted and continuous 

wavelet transform is performed on this plot. The results and analysis section will 

explain further on what is expected from the continuous wavelet transform for the 

detection of hydrocarbons. 

vi. Use other singularity spectrum attributes to Delineate Reservoir Fluids 

Once the windows with high energy have been identified from the continuous wavelet 

transform in the previous step, other singularity spectrum attributes like width and 

asymmetry are used together with the αpeak values to delineate the reservoir fluid in 

these regions. The results of the delineation process i.e. the analysis of the width, 

asymmetry and α peak are compared to the well report to identify if indeed the 

regions contain gas or oil. 
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3.2    Tools and Software Required 

Software required:  

 FracLab toolbox in MATLAB 

FracLab was developed for free by the Regularity team at Inria Saclay/Ecole 

Centrale de Paris as a tool that performs general purpose signal and image 

processing through fractal and multifractal methods. The software provides 

the user with various fractal tools to study irregular signals.  

2.   Petrel 

Petrel is a Schlumberger owned software that helps increase reservoir 

performance by improving asset team productivity. In this project, it was used 

to develop synthetic seismograms. 
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3.3    Gantt Chart and Key Milestones 

 

 

 

*S1 – Semester 1 / FYP 1 

*M1 – Milestone 1 – Successful development of seismic models 

*M2 – Milestone 2 – Singularity spectrums for different seismic  

models generated and analysed 

*M3 – Milestone 3 – Submission of progress report 

*M4 – Milestone 4 –Development of direct detection algorithm 

*M5 – Milestone 5 – Submission of Final Report 
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CHAPTER 4 

RESULTS AND ANALYSIS 

4.1    Results and analysis of singularity spectrum for various signals 

4.1.1    Type of signals 

In this test, three types of signals, sine waves, sawtooth waves as well as square 

waves are tested. All other variables like sampling rate and number of periods for 

each type of wave are kept the same. 

 Sine wave – Sampling rate = 10*fo. Period = 1. Amplitude = 1 

 

Figure 24: (a) The sine wave used for this test, (b) Singularity spectrum produced for the sine wave  

 Sawtooth wave – Sampling rate  = 10*fo. Period = 1.Amplitude = 1 

S 

Figure 25: (a) Sawtooth wave used for this test, (b) Singularity spectrum produced for the sawtooth  
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 Square wave – Sampling rate  = 10*fo. Period = 1.Amplitude = 1 

 

          

Figure 26: (a) Square wave used for this test (b) Singularity spectrum produced for the square wave  

 

First looking at the results produced by the sine wave, only a dot is produced. This 

means that only one type of singularity exists in the signal, which is what is expected 

of a sine wave since it is a smooth wave made up of just one frequency component. 

Moving on to the sawtooth wave, its singularity spectrum also reveals that the signal 

only has one type of singularity. This is the expected result since in essence a 

singularity spectrum gives an α value for all singularities present in a signal. In the 

sawtooth wave only one singularity is present, which is when the amplitude drops 

from 1 to 0. Finally, the square wave produced a spectrum of points rather than a 

single point indicating that more than one singularity exists within the signal. The 

square wave has more than one transient and these transients are reflected by the α 

values in the singularity spectrum. 

When comparing the three signals together, we look at the values of x (Holder 

exponent, α) on the singularity spectrum. This is because a smaller Holder exponent 

value means that the signal is more irregular. As expected the sawtooth wave has a 

smaller value for its Holder exponent (α = -1.11) compared to the sine wave since (α 

= -0.2843) it is more irregular than the sine wave. When comparing the singularity 

spectrum of the square wave to the other signals, the left most point (α = -1.817) – the 

strongest singularity - on the spectrum is taken as the comparison point. Since the 

square wave has more transients, the strongest singularity should be seen in the 

square wave and this is depicted by its singularity spectrum. Therefore, the results 

show that the square wave is more irregular than both sawtooth and sine waves.        
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4.1.2    Amplitude 

1) Sine wave –Sampling rate = 10*fo. Amplitude = 0.1,1 and 10. Period = 1  

 

Figure 27: (a) One of the sine waves used for this test (amplitude = 0.1) (b) Singularity spectrum 

produced was a dot and it was the same for all different amplitudes of the sine wave 

2) Sawtooth wave –Sampling rate = 10*fo. Amplitude = 0.1,1 and 10.Period = 1 

 

Figure 28: (a) One of the sawtooth waves used for this test (amplitude = 1), (b) Singularity spectrum 

produced was the same for all different amplitudes of the sawtooth signal 

3) Square wave –Sampling rate = 10*fo Amplitude = 0.1,1 and 10 Period = 1 

 

Figure 29: (a) One of the square waves used for this test (amplitude = 1), (b) Singularity spectrum 

produced was the same for all different amplitudes of the square waves  
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This time for each type of wave, only the amplitude was varied. The basis of fractal 

analysis is wavelet transform which is a mathematical analysis tool to detect 

transients or a rapid fluctuation in frequency. Therefore, it is expected that a change 

in amplitude should not affect the outcome of the singularity spectrum. Indeed for all 

three waves (sine wave, sawtooth and square wave it can be observed that even when 

the amplitude was changed from 0.1 to 1 and finally to 10, the singularity spectrum 

produced in each case was the same. This means the hypothesis that the singularity or 

singularities found within a signal does not change with a change in amplitude holds.  

4.1.3    Adding noise in the form of triangular pulse to the signal 

1) Sine wave: Sampling rate = 10*fo. Amplitude = 1. Cycle(s) = 1 

Noise added = Triangular pulse repeated every 0.002s within the total time of one 

sine cycle of 0.01 seconds 

   

Figure 30: (a) The green signal is the sine wave after noise (blue) is added to it, (b) Singularity 

spectrum produced for the signal in (a)  

 

 

2) Sine wave: Sampling rate = 10*fo. Amplitude = 1. Cycle(s) = 1 

Noise added = Triangular pulse repeated every 0.003 seconds within the total time of 

one sine cycle of 0.01 seconds 
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Figure 31: (a) The green signal is the sine wave after noise (blue) is added to it, (b) Singularity 

spectrum produced for the signal in (a) 

 

3) Sine wave: Sampling rate = 10*fo. Amplitude = 1. Cycle(s) = 1 

Noise added = Triangular pulse repeated every 0.004 seconds within the total time of 

one sine cycle of 0.01 seconds 

 

Figure 32: (a) The green signal is the sine wave after noise (blue) is added to it, (b) Singularity 

spectrum produced for the signal in (a) 

 

From previous tests, we know that the sine wave produces only a dot on the 

singularity spectrum.  However from the results above, it is clearly seen that once a 

certain type of noise - which in this case is the triangular pulse - is added to the signal 

the singularity spectrum changes. Convolving the sine waves to these triangular 

pulses causes a spectrum of points to be generated rather than one point. The 

hypothesis that the study tests is that if the frequency of occurrence of the noise is 

higher the resulting signal will be more irregular. 
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When noise in the form of triangular pulses that repeat every 0.002 seconds are added 

to the signal, the singularity spectrum produces the lowest Holder exponent value (α 

= - 2.939) when compared to the other signals. This means that it is the most irregular 

signal in this group. This agrees with the hypothesis as this signal has the highest 

number of triangular pulse noise added to it. However, this trend does not follow 

through when the repetition of the triangular pulse is reduced; the level of irregularity 

of the signal does not decrease in the same order.  

As it turns out, the triangular pulse repeated every 0.003 seconds produced a 

singularity spectrum with the highest set of Holder exponent values rather than the 

one with the noise repeated every 0.004 seconds. Therefore, the results show that this 

signal is the least irregular signal in this group of signals that were tested. These 

results indicate that it is in fact the positions at which the triangular pulse convolves 

with the sine wave that affects the singularity spectrum more than the number of 

times the triangular pulse convolves with the signal. This is because the singularities 

seen in Figure 25 can be observed to exhibit a much less rapid change in frequency as 

compared to the singularities produced in Figure 24 and Figure 26. 

4.1.4    Concatenate two sine signals of different frequencies 

1)  Freq of Sine wave1 = 100Hz. Freq of Sine wave2 = 10Hz 

 

Figure 33: (a) 100Hz sine wave concatenated with a 10Hz signal, (b) Singularity spectrum produced  
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2) Freq of Sine wave1 = 100Hz Freq of Sine wave2 = 40Hz 

 

Figure 34: (a) 100Hz sine wave concatenated with a 40Hz signal, (b) Singularity spectrum produced  

 

3) Freq of Sine wave1 = 100Hz Freq of Sine wave2 = 50Hz 

 

Figure 35: (a) 100Hz sine wave concatenated with a 50Hz signal, (b) Singularity spectrum produced  

 

4) Freq of Sine wave1 = 100Hz Freq of Sine wave2 = 60Hz 

 

Figure 36: (a) 100Hz sine wave concatenated with a 60Hz signal, (b) Singularity spectrum produced  
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In all the tests that were done in this category, the signals were concatenated at 0.5s. 

The first signal in all cases was a 100Hz sine wave and it was concatenated with sine 

waves of frequencies 10Hz, 40Hz, 50Hz and 60Hz. From the study‟s understanding, 

the singularity spectrum should at least produce two points since two different signals 

are merged. However, taking the results of the concatenation of the 100Hz signal to 

the 10Hz signal, three singularities exist. This is due to the existence of signals with 

two different frequencies plus the point where the signals concatenate (t=0.5s) which 

causes the other singularity. The concatenation of the 100Hz to the 50Hz and 60Hz 

signals produces a singularity spectrum with more than three points. This highlights 

that at t=0.5s more than one singularity exists compared to when the 100Hz signal 

was concatenated to a sine wave with a relatively smaller frequency of 10Hz.  

However, the concatenation of the 40Hz signal to the 100Hz signals generates a 

singularity spectrum with only one point. This could be due to a perfect transition 

between the signals at t=0.5s. 

4.1.5    Addition of two sine waves in the same time period 

In this test, a 100Hz sine wave which was sampled at 10 times its frequency for a 

time period of 0.5 seconds was added with other sine waves with frequencies of 

10Hz, 20Hz, 30Hz and 40Hz.  First the singularity spectrum of just the 100Hz 

sine wave is shown below. 

1. 100Hz signal  

 

Figure 37: (a) A part of the 0.5 seconds long 100Hz sine wave (b) Singularity spectrum produced for 

the sine wave in (a) 
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2.    Addition of 100Hz sine wave to 10Hz sine wave 

 

Figure 38: (a) 100Hz signal added to a 10Hz signal (b) Singularity spectrum produced for the sine 

wave in (a) 

3.  Addition of 100Hz sine wave to 20Hz sine wave 

 

Figure 39: (a) 100Hz signal added to a 20Hz signal (b) Singularity spectrum produced for the sine 

wave in (a) 

4. Addition of 100Hz sine wave to 20Hz sine wave  

 

Figure 40: (a) 100Hz signal added to a 30Hz signal (b) Singularity spectrum produced for the sine 

wave in (a) 
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5.  Addition of 100Hz sine wave to 40Hz sine wave 

 

Figure 41: (a) 100Hz signal added to a 40Hz signal (b) Singularity spectrum produced for the sine 

wave in (a) 

 

The first signal, the 100Hz sine wave signal produces a dot on the singularity 

spectrum as expected. From this test, the study intended to find out what the results 

will be if this signal was added to another sine wave of a different frequency. The 

study expected two points on any singularity spectrum produced due to the existence 

of signals with two different frequencies. However the results above show that the 

addition of two sine waves results in only a dot on the singularity spectrum. A pattern 

on the Holder exponents can also be observed as the dot moves from the most 

singular point for the addition of 100Hz sine wave to the 10Hz sine wave (α = - 

0.4047 ) to the least singular point for the addition of 100Hz sine wave to the 40Hz 

sine wave (α = 0.2634). One look at any of signals tested above gives the impression 

that there will be more than one holder exponent as they exhibit a lot of transients. 

However, this test proves that the addition of two smooth signals result in a signal 

with one singularity.  

4.2    Results and analysis from seismic modelling 

The seismic models that were created were made in such a way to test how the 

singularity spectrum changes when the following three factors were changed: 

1. Reservoir Fluid 

2. Thickness of the layers 

3. Stratigraphy 
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4.2.1    Response of singularity spectrum towards change in Reservoir Fluid 

Since the main aim of seismic exploration activities is to aid with the detection of 

hydrocarbons, it is important to see how the singularity spectrum is affected with 

changes to the reservoir fluids. The three reservoir fluids that were modelled were oil, 

gas and water. The singularity spectrum that was generated from the fractal analysis 

was for a frequency range of 20 – 200 Hz using the „Morlet – analytic‟ wavelet. In 

order to capture a wide range of weak and strong transients, the moment order, q, was 

selected for a range of +6 to -6 with 20 different „q‟ values in between them. 

The Ricker wavelet which was used had a centre frequency of 60Hz and the 

reflectivity series was sampled at 0.002 seconds for every reservoir fluid. Since the 

current model is being tested only for reservoir fluids, the rest of the two parameters 

i.e. thickness of each layer and number of layers were kept constant. In this case, the 

thickness of the layers was kept at 30m each in a 4 layer seismic model.  

          

 

 
 

(a) (b) 

 

(c) 

Figure 42: (a) Singularity Spectrum for Gas (b) Singularity Spectrum for Oil (c) Singularity spectrum 

for Water 
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Table 2: Singularity spectrum attributes for different reservoir fluids 

Reservoir Fluid αpeak Asymmetry Width 

Oil -0.13488 1.04255 9.6*10-4 

Gas -0.48015 1 3.4*10
-4

 

Water 0.21826 0.9985 0.23157 

4.2.2    Response of singularity spectrum towards change in Reservoir Fluid 

To test the reliability of using the singularity spectrum for the detection of 

hydrocarbons, for each of the reservoir fluid, the thickness of the layers were 

changed. The thicknesses of the layers were kept at 30m, 40m and 50m. Just as the 

previous test, the wavelet that was used for the fractal analysis was the „Morlet – 

analytic‟ wavelet. The range of frequency covered by the test was from 20 – 200 Hz. 

In order to capture a wide range of weak and strong transients, the moment order, q, 

was selected for a range of +6 to -6 with 20 different „q‟ values in between them. The 

Ricker wavelet used as the source wavelet again had a centre frequency of 60Hz and 

the reflectivity series was sampled at 0.002 seconds for every reservoir fluid. The 

results obtained are tabulated below. 

Table 3: Singularity spectrum attributes for each reservoir fluid at different thicknesses 

Reservoir 

Fluid 

Thickness of 

layer(m) 

αpeak Asymmetry Width 

Oil 30 -0.13488 1.04255 9.6*10-4 

Oil 40 -0.13488 1.04255 9.6*10-4 

Oil 50 -0.13488 1.04255 9.6*10-4 

Gas 30 -0.48015 1 3.4*10
-4

 

Gas 40 -0.48015 1 3.4*10
-4

 

Gas 50 -0.48015 1 3.4*10
-4

 

Water 30 0.21826 0.9985 0.23157 

Water 40 0.21826 0.9985 0.23157 

Water 50 0.21826 0.9985 0.23157 
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4.2.3    Response of singularity spectrum towards change in stratigraphy 

This study also looks at the effects a change in stratigraphy would have on the 

singularity spectrum produced by the reservoir fluids. The number of layers of the 

reservoir fluids in each model was varied between 4, 6 and 8 layers. The „Morlet – 

analytic‟ wavelet was used for the fractal analysis and the frequency of analysis was 

from 20 – 200Hz. The range of moment order, q, was set from +6 to -6. In between 

those two values, data for 20 different „q‟ values were produced to capture a wide 

range of transients accurately. The source wavelet for the reflectivity series was a 

Ricker wavelet with a centre frequency of 60Hz. The reflectivity series for each 

reservoir model was sampled at 0.002 seconds. 

Table 4: Singularity spectrum attributes for different number of layers of gas 

Reservoir 

Fluid 

No. of  

Layers 

αpeak Asymmetry Width 

Oil 4 -0.13488 1.04255 9.6*10-4 

Oil 6 -0.13488 1.04255 9.6*10-4 

Oil 8 -0.13488 1.04255 9.6*10-4 

Gas 4 -0.48015 1 3.4*10
-4

 

Gas 6 -0.48015 1 3.4*10
-4

 

Gas 8 -0.48015 1 3.4*10
-4

 

Water 4 0.21826 0.9985 0.23157 

Water 6 0.21826 0.9985 0.23157 

Water 8 0.21826 0.9985 0.23157 

4.2.4    Analysis of results from seismic modelling 

The seismic modelling is done to identify if there is a possibility of using fractal 

analysis and singularity spectrum to characterize each reservoir fluid. From our 

understanding, gas is the most irregular of the three as its atoms are constantly 

moving and colliding with each other. Therefore, gas should have the lowest α values 

signalling the highest irregularity.  

Meanwhile, the study also hypothesised before the modelling that oil and gas should 

have α values that are close to each other as they are both in the liquid form. Also, in 

comparison to gas, it is expected that the α values of both liquids should be higher 

signalling that it is more regular in comparison to gas. This is because we know atoms 
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in the liquids do not contain as much energy as gases and much less collision occurs 

between the atoms.  

From the plots above, we have three different criteria i.e. αpeak, width and asymmetry 

from which the spectra can be analysed. Before dealing with those three criteria, just 

taking a look at the three spectra reveals that gas contains the strongest singularities. 

This is because its spectrum contains the smallest α values in the region of -0.48 

compared to water and gas. In the same light, water contains the weakest singularities 

of the three having the highest α values in the region of 0.1 to 0.35.  

Now, looking just at αpeak value, gas has that particular singularity αpeak = -0.48015 

occurring the most in this model. In other words, a stronger singularity - with regards 

to the other two fluids – makes up most of the seismic model of gas.  Meanwhile 

water has the highest αpeak value of 0.21826 among the three meaning a weaker 

singularity describes this reservoir fluid. This agrees with the initial assumption made 

by the study that gas will have the highest energy content which will be displayed by 

having the smallest α value of the three reservoir fluids.  

Moving on to the next characteristic, asymmetry, gas has an asymmetry value of 1. 

This in other words means that the spectrum is symmetrical. What this means in 

terms of singularities present in the gas model is that the weaker and stronger 

singularities are evenly distributed on both sides of αpeak. For oil on the other hand, its 

asymmetry is 1.04255. This means that there are more singularities to the left of αpeak. 

Oil in this model therefore contains more singularities that are stronger than αpeak. The 

opposite takes place with water in this seismic model.  Since it has an asymmetry 

value of 0.9985 which is smaller than one, more singularities are found to the right of 

the αpeak value.  

Width is the final characteristic that is investigated from the singularity spectra. 

Water generates the spectrum that is widest meaning its singularities are more spread 

out. This means that there are a lot of different singularities in the seismic model for 

water. Gas on the other hand has the smallest width meaning that it has fewer 

singularities as a whole to describe it. This could be down to the fact that most of the 

gas particles are at a high energy level described by αpeak and only a small amount of 

particles either exceed or is below this singularity level.  

The interesting thing noted from the three different factors that were tested i.e. 

reservoir fluid type, thickness of layer and stratigraphy, even with the change in these 
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factors each reservoir fluid produced the same singularity spectrum for their 

respective models. This shows that the different reservoir fluids can definitely be 

differentiated from the seismic models alone. These are some promising results and 

shows that there is potential in detecting and delineating a reservoir fluid from 

seismic data. 

4.3    Results and analysis from the testing of the direct detection and delineation 

method on actual seismic data 

Since the seismic modelling provided some positive results by proving that reservoir 

fluids can be characterised by its own specific singularity spectrum, the study 

proceeded to test the direct detection and delineation method with the seismic data 

obtained from a real wild cat well. Due to the confidential nature of these wells and 

its reports, this well will be called Well X or WX for short. From the well summary, 

geologists have confirmed the presence of gas in five reservoirs and also one 

reservoir with oil. These reservoirs are listed out below: 

Table 5: List of reservoirs and reservoir fluid 

Reservoir Name Reservoir Fluid 

WX-1 Gas 

WX-2 Gas 

WX-3 Gas 

WX-4 Gas 

WX-5 Gas 

WX-6 Oil 

 

With this data, the study sets out to test and prove the direct detection and delineation 

method. From the seismogram that was generated using Petrel, the reflection 

coefficients were extracted and convolved with a 60Hz Ricker wavelet to produce the 

seismic trace on MATLAB. The next step is to upsample the seismic trace. The 

original data was sampled at 4ms and the space between each sample was 

approximately 1.5 - meters. The data was upsampled by a factor of 20 and each 

window contains two original samples or in other words 40 samples after the 

upsampling. Therefore, the depth of analysis of each window is approximately 3 

meters.  
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Figure 43: A graphical illustration of the steps to obtain windows 

 

Once all the windows have been obtained, fractal analysis is performed on these 

windows and the αpeak values are extracted and plotted.  

4.3.1    Detection of the reservoirs 

Continuous wavelet transform is then done on this plot. The plot should indicate 

larger coefficient values at the windows where the reservoirs are located. The wavelet 

used for the continuous wavelet transform is „Morlet – analytic‟ wavelet in order to 

be consistent with the wavelet that was used as the basis to obtain the singularity 

spectrum of each window.  
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Figure 44: αpeak plot of all the windows 

 

The continuous wavelet of the αpeak proved to contain high energy at the areas where 

gas and oil were present. 

 

 

Figure 45: Continuous wavelet transform with the regions where gas and oil are present. Gas reservoirs 

are highlighted by the black boxes while oil reservoir is highlighted by the red box 

 

The results obtained from the continuous wavelet transform were positive. As was 

expected, the reservoirs where gases were present are highlighted as singularities. 

This is due to the high energy content of gas particles. The gas reservoirs have been 

marked with black dotted boxes in the figure above. While other regions of the 

transform do have maxima points at the lower scales, from our study, we know that 

for a singularity to exist at a certain time, t0 we must be able to construct a modulus 

maxima line. For this to happen, maxima points must exist from higher scales right 
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down to the finer scales as mentioned in section 2.4.1.2 of this study. It is clear that 

the reservoirs containing gas fit these criteria.  

The dotted red box in figure 39 meanwhile points to the oil reservoir of this well. 

Although in this section a maxima line cannot be plotted, when compared to other 

regions of the continuous wavelet transform, this region is clearly brighter indicating 

the presence of a hydrocarbon and in this case, oil. We know that the energy content 

of oil is generally lower than gas; however from the reports we learn that in the WX-6 

reservoir, the oil content is really low. The volume of oil found is not economically 

viable to be recovered from the reservoir. The volume of oil in the reservoir could 

also have had an effect on the results.  

4.3.2    Delineation of Reservoirs 

With the detection of the reservoirs completed. The study moved to the delineation 

phase. As mentioned in the methodology section, for delineation other spectral 

attributes namely asymmetry and width will be included together with αpeak values. 

The study will list out the singularity spectrum generated at each reservoir followed 

by an analysis. 

4.3.2.1    Delineation of reservoir WX-1 

In the first reservoir, the gas is found primarily in window 55 but windows 54 and 56 

have been included as some interesting features are discovered for analysis. 

  

 

Figure 46: Singularity spectrum of windows 54, 55 and 56 
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Figure 41 below is just an enlarged version of the singularity spectrum of window 55 

from figure 40.  

 

Figure 47: Window 55 or WX-1 

 

We have managed to prove that the regions where reservoirs are found, the energy 

content is high and this is reflected by a smaller αpeak value. Now fractal analysis was 

done on these regions and the singularity spectrum attributes for these regions are 

studied. The study expects the singularity spectrum of the window where the 

reservoir is located should also have a low αpeak value. The study also aims to study 

how the values of width and asymmetry of the singularity spectrum changes. 

Table 6: Spectral attributes of related windows 

Window No. αpeak Width Asymmetry 

54 -2.02472 0.206592 0.999903 

55 -2.04451 0.000477 1 

56 -1.99495 0.014204 1 

 

From the results obtained, we do observe that window 55 has the smallest αpeak value 

(αpeak = -2.04451) of the windows surrounding it. This agrees with what the study‟s 

hypothesis since this is the region with the highest gas content compared to the 

surrounding windows. Meanwhile, window 54 is the start of the reservoir and we see 

that the energy of this window is increasing. In other words, the αpeak of window 54 

(αpeak = -2.02472) is low and is close to the value of that seen in window 55. Also, 

window 56 being the end of reservoir WX-1 produces a singularity spectrum that 
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moves to the right of window 55 with (αpeak= -1.99495). This indicates with the 

reduction of gas in the window, the energy content within it also decreases. This is an 

interesting pattern that was identified from the results. 

The value of width of each singularity spectrum also indicates an interesting pattern. 

The singularity spectrum of window 55 has a significantly smaller width of 0.000477 

as compared to window 54 (0.206592) and window 56 (0.014204). This could prove 

to be a very valuable singularity spectrum attribute for delineation. The reduction in 

the width of window 55 could serve as an indication that there is only one type of 

material in this region and in our case, gas. Singularity spectra of windows 54 and 56 

have much larger widths in comparison since these windows are both the start and the 

end of the reservoir respectively and thus only part of the windows are made up of 

gas while the other could be any other subsurface rock or material.  

From the seismic modelling in the previous section, we found that the asymmetry of 

gas was 1. The results from windows 54 to 56 also have asymmetry values close to 1. 

This could also serve as an indication for the presence of gas. Results from other 

reservoirs should indicate if indeed asymmetry could also be used as a tool for 

delineation. 

4.3.2.2    Delineation of reservoir WX-2 

WX-2 is a thicker reservoir of gas compared to WX-1. The singularity spectrum of 

the first few windows and the last few windows of reservoir WX-2 are shown below 

and analysed accordingly.  

 

Figure 48: Singularity spectrum of windows 73, 72 and 71 
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Figure 49: Singularity spectrum of windows 81, 80 and 79 

 

Figure 42 above is the windows that depict the start of reservoir WX-2 as well as the 

progression into the reservoir. Meanwhile figure 43 shows the singularity spectra of 

windows from within the reservoir towards the end of the reservoir WX-2.  

Table 7: Spectal attributes related to windows at the start of WX-2 

Window No. αpeak Width Asymmetry 

71 -1.99495 0.014204 1 

72 -2.01591 0.002587 1 

73 -2.07547 0.002954 1 

 

The table above summarizes the singularity spectral attributes of the spectra from 

figure 42. Window 71 being the starting point of the reservoir shows has a αpeak value 

of -1.99495 and we observe that the following window moves to the left indicating an 

increase in energy as it goes into the gas reservoir producing a αpeak of -2.01591. Here 

we also observe that from window 71 to 72 there is a drop in the width of the spectra 

from 0.014204 to 0.002587. These results show a similar trend as we had observed 

from WX-1. While the αpeak values have demonstrated an increase in irregularity or 

energy from the start of the reservoir as we move into the reservoir, it has also shown 

that the width decreases when the window moves from the start of the reservoir into 

the reservoir. This shows the window is moving from a region with a mixture of gas 

and other subsurface material to a purely gas containing reservoir. 
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The pattern also follows through as we move deeper into the reservoir, shown by 

window 73. It has the lowest αpeak value of the three windows showing the highest 

irregularity of the three. The value of width which is 0.002954 stays close to the value 

observed in from window 72 indicating we are still in the gas reservoir. To sum up 

the results, we see that the asymmetry of all three windows are 1, a pattern that is 

believed to be another indicator of presence of gas when used together with both αpeak 

and width values. So far, both WX-1 and WX-2 have indicated similar patterns and 

have shown αpeak values in the region of -2. These are positive results that show that 

delineation is possible with our method. 

Table 8: Spectral attributes towards the end of reservoir WX-2 

Window No. αpeak Width Asymmetry 

79 -2.08312 0.065067 1.059427 

80 -2.03981 0.102954 1.004200 

81 -1.99582 0.12348 1 

 

As mentioned previously, WX-2 is a thicker compared to WX-1, thus it is covered by 

more windows. Window 79 to 81 is a progression from within the reservoir towards 

the end of the reservoir. Again, results obtained are as expected. Seeing that window 

79 is still very much in the reservoir, it has the lowest αpeak of the three at -2.08312. Its 

width is also much smaller than the widths of the following two windows meaning 

that it is still in a region where it is made up of mainly one substance i.e. gas.  

Asymmetry values are also in the region of 1 which is – by looking at the results from 

WX-1 and in Table 7 from WX-2 – a possible indication towards existence of gas. 

Since there are three more gas reservoirs, whether these results can be used as a 

marker to pinpoint the existence of gas can be summarised at the end. 

4.3.2.3    Delineation of reservoir WX-3 

WX-3 is described by three windows, windows 107 to 109. The spectra obtained in 

these windows are in the following figures. 
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Figure 50: Singularity spectrum of windows 107, 108 and 109 

 

An enlarged view of window 108 can be seen in figure 45 below. 

 

Figure 51: Singularity spectrum of window 108 

 

From the analysis of WX-1 and WX-2, looking at figure 44, we see a similar trend. 

These results look increasingly positive in proving that the delineation method can be 

used to delineate gas from the seismic data. 

 



 

  68 

 

Table 9: spectral attributes of windows related to WX-3 

 

 

 

The results of WX-3 indicate what we have seen from WX-1 and WX-2. As we move 

from the start of the reservoir at window 107, the αpeak value decreases from -2.08305 

to -2.12644 as it moves into the reservoir at window 108. An increase in irregularity 

is what these results indicate and this is exactly what was expected since we are 

moving into the gas-filled region. Window 109 then has its αpeak moving back to the 

right showing that it‟s coming to the end of the reservoir WX-3.  

Looking at the values obtained for width, as we move into the reservoir at window 

108, the width drops from 0.081493 at window 107 to 0.002053. This significant drop 

has been observed in all of the reservoirs before and is proving to be a useful 

delineation tool. It shows that as we move into the region of mainly gas, the width 

decreases while when the region is a mixture of gas and other subsurface material, the 

width increases. Finally, the asymmetry value just as from reservoirs WX-1 and WX-

2 has remained in the region of 1. Asymmetry is a spectral attribute that has proven 

that it can be used as a delineation tool when used together with αpeak and width 

values.  

4.3.2.4    Delineation of reservoir WX-4 

Reservoir WX-4 is made up of gas as well. It is described by the windows 162, 163 

and 164. The singularity spectra of the windows again move to the left from the start 

of the reservoir to the middle of the reservoir. The singularity spectrum of the final 

window, then moves back to the right signalling that it is leaving the gas reservoir. It 

can be observed in the following figure. 

Window No. αpeak Width Asymmetry 

107 -2.08305 0.081493 1.020400 

108 -2.12644 0.002053 1  

109 -2.03981 0.102954 0.916025 
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Figure 52: Singularity spectra of windows 162-164 

 

Table 10: Spectral attributes of windows in reservoir WX-4 

 

 

 

 

 

The αpeak value decreases from window 162 to window 163. This is expected since we 

move from the start of the gas region into the actual gas region. It is interesting to 

note that the value for αpeak remained within the region of -2.0 to -1.9 in all the 

previous reservoirs as well as in reservoir WX-4.  This together with the pattern 

demonstrated by width, whereby the width of the singularity spectrum decreases 

significantly from the start of the reservoir to the middle of the reservoir are two 

strong points that can be used for the delineation of gas. 

 

These two attributes merged with the final attribute, asymmetry is three 

characteristics of the singularity spectrum that can help with the identification of gas. 

Asymmetry has remained at the value of 1 or close to 1 for all previous reservoirs as 

well as in reservoir WX-4. This indicates that gas produces a symmetrical spectrum 

meaning that its singularities are spread out evenly between the left and right side of 

αpeak. This if we recall from section 4.2 of this study is what was observed from the 

seismic modelling results as well.  

Window No. αpeak Width Asymmetry 

162 -2.02472 0.206582 1 

163 -2.14393 0.130817 1 

164 -1.99582 0.12348 1 
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4.3.2.5    Delineation of reservoir WX-5 

WX-5 is the final reservoir in the WX well where gas is present. It is again clear that 

when we move into the gas reservoir (window 238 in this case) the width and the αpeak 

decreases. An analysis of this reservoir can be seen after the following figure. 

 

Figure 53: Singularity spectra of windows 237, 238 and 239 

 

Table 12: Spectral attributes of the spectra for reservoir WX-5 

 

 

 

 

 

Coming to the final gas reservoir in well WX-5, we have now five sets of data that 

have produced extremely positive results to prove that delineation is possible. In this 

region, we once again see that from the start of the reservoir at window 237 to the 

middle of the reservoir at window 238, αpeak reduces from -2.03628 to -2.10497. This 

not only shows that the decrease in value, but the fact that the αpeak itself is within the 

range of -2 is an interesting point to note as well. Then, at the end of the reservoir the 

αpeak value increases again to -.205840 showing that it has departed from a region of 

high irregularity. 

Window No. αpeak Width Asymmetry 

237 -2.03628 0.144576 1 

238 -2.10497 0.009616 1 

239 -2.05840 0.121146 1 

Table 11: Spectral attributes of the spectrums for reservoir WX-5 
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The width of the singularity spectrum of window 238 which is 0.009616 is much 

smaller than the windows surrounding it. Much like what has been observed from 

reservoirs WX-1 to WX-4, the width is much smaller at the region where the gas is 

most prominent. Finally, asymmetry value has consistently stayed at 1 or a small 

deviation from 1 showing that gas produces a spectrum that has evenly distributed 

singularities. 

In the conclusion of this section, the study will put together all the attributes from 

wells WX-1 to WX-4 together to summarise the delineation of gas. 

4.3.2.6    Delineation of reservoir WX-6 

The WX well has one oil reservoir sitting within windows 91-93.  

 

Figure 54: Singularity spectra of windows 91, 92 and 93 

Although there is only one reservoir containing oil in this well, the study has still 

done an analysis based on the spectral attributes that are listed out in the table below. 

Table 13: Spectral attributes of the spectra for reservoir WX-6 

 

 

 

 

Window No. αpeak Width Asymmetry 

91 -1.70383 0.017036 1.266029 

92 -1.71331 0.017047 1.269845 

93 -1.60587 0.003555 1.253554 
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The study expected a same pattern as observed in the gas regions whereby the energy 

increases from the start of the reservoir to the position where it moves into the 

reservoir. This is because from the detection part of the study, the continuous wavelet 

transform in 4.3.1 shows a slight elevation of energy in the region of reservoir WX-6. 

An increase in energy correlates to a decrease in αpeak value. Looking at window 91 

and 92, this pattern is observed as we see the value of αpeak decreasing from -1.70383 

to -1.71331.  

Meanwhile, the asymmetry value has remained in the region of 1.25 to 1.26 in the 

reservoir WX-6. As we recall from the seismic modelling, oil does have an 

asymmetry of more than 1. It has again been shown here.  

However, in terms of width, the window where the reservoir starts (window 91) and 

the window where we move deeper into the reservoir (window 92) actually show a 

bigger width compared to that of window 93. This could mean that the oil has a 

mixture of other materials as well. However this is not clearly stated in the well 

report, therefore only an assumption can be made at this point. 

4.3.2.7    Summarising the results from delineation 

The delineation method has clearly been proven to work for all the gas reservoirs in 

this well.  

 

For αpeak and asymmetry, the range of values can be seen as follows: 

                          

 

0.916025              1.069975 

 

The values of αpeak have consistently remained in this region for all the windows 

related to gas reservoirs. The range between the αpeak values is 0.1422. Meanwhile 

asymmetry has remained close to 1 and its range of values is 0.15395. These ranges 

are the limiting values of αpeak and asymmetry delineation. 

In addition to that, the pattern observed with the width could serve as an additional 

indication on whether we are approaching a gas reservoir. This is because from the 

results, we have seen that the width of the singularity spectrum of the window 

decreases from the area where the reservoir starts and as we move into the reservoir.  
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For the oil reservoir, the presence of just one oil reservoir dents the proving process. 

However, with the data provided by the well, the following summary can be made 

regarding the values of αpeak and asymmetry: 

                           

 

1.253554             1.269845 

 

The values of αpeak have remained in a range of 0.10744 while the asymmetry has a 

range of 0.01629. The small range of values is a good indication for a possibility of 

the application of the delineation method. However, since there is only one oil 

reservoir in well WX, we would only be able to ascertain that the delineation method 

can work for oil with the study of other wells where oil is present.  

A future study also needs to be done to see if the limiting values seen for gas can be 

used to delineate gases in a region with similar stratigraphy and different stratigraphy 

to strengthen the ability of this delineation method.  
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CHAPTER 5           

CONLUSION AND RECOMMENDATIONS 

5.1    Conclusion 

This study as a whole was divided into two phases whereby the first phase involved 

understanding the mathematics of the fractal analysis method used, which is the 

Wavelet Transform Modulus Maxima (WTMM) method. Fractal analysis was carried 

on signals that were generated on MATLAB and the singularity spectra obtained were 

analysed. Meanwhile, the second phase aimed on the development of the hydrocarbon 

detection and delineation algorithm. This included studying the changes on the 

singularity spectra on seismic models and later testing out the developed direct 

detection and delineation method on real seismic data. 

At the end of the first phase of this study, it was clear that when fractal analysis is 

performed on different signals, changes can be observed on the singularity spectrum 

that is generated. Square waves have proven to be the most irregular signal when 

compared with sine and sawtooth waves of similar frequencies. Adding on to that, it 

amplitude changes in a signal do not affect the outcome of the singularity spectrum, 

only frequency changes do. Also, when two signals are merged – in two possible 

ways, concatenation and addition – the singularity spectra also produce different 

results. Concatenation of signals results in more than one singularity due to the fact 

that there is at least one singularity at the point where the two signals „meet‟. 

Meanwhile, when two sine waves were added to each other, only a dot is observed on 

the singularity spectrum indicating that it is a monofractal signal thus resulting in 

only one singularity.  

In the second phase of the study, seismic models were developed and fractal analysis 

was performed on these models. It helped to set the foundation for the development 

of the direct detection and delineation algorithm as the singularity spectra produced 

for oil, water and gas were analysed. These models were tested with three variables, 
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type of reservoir fluid, thickness of layers and stratigraphy. The most interesting 

discovery from the results of modelling was that each reservoir fluid produced its 

own distinct singularity spectrum. Not only that, the singularity spectrum for the 

respective reservoir fluids remained the same although other factors under test like 

thickness of the layers and stratigraphy changed.  

Next, the spectral attributes of interest from the singularity spectra, namely αpeak, and 

asymmetry were analysed. It was proven that gas is the most irregular of the three 

fluids as it produced the lowest αpeak value of -0.48015. This agrees with our 

understanding since gas has higher energy content due to its atoms that are constantly 

moving and colliding with each other. While oil had the second highest irregularity 

with the αpeak value of -0.13488 and finally followed by water (αpeak = 0.21826). The 

next attribute was asymmetry and gas proved to produce a symmetrical singularity 

spectrum. This means that gas is described by an equal number of points to the left 

and right side of the αpeak value or has evenly distributed singularities. Oil on the other 

hand had an asymmetry of 1.04255. This indicates that oil contains more singularities 

to the left of its αpeak. These significant differences between the gas, oil and water 

singularity spectra were positive results with respect to this study. This is because this 

means delineating of these reservoir fluids looked possible by performing fractal 

analysis. Therefore, the study then proceeded to test its detection and delineation 

method on actual seismic data. 

The seismic data obtained from a wild cat well contained 5 gas reservoirs and one oil 

reservoir. Our detection and delineation technique was using the windowing 

technique adapted from Khan (2007) and obtaining a singularity spectrum for each 

window. The detection was done by performing a continuous wavelet transform on 

the collection of αpeak values of all the windows. The results indicated the existence of 

singularities (or high energy regions) at the locations where gas was present. 

Meanwhile, the oil region was also highlighted as a region with higher energy 

compared to its surroundings. The continuous wavelet transform seen on figure 41 

depicts this clearly. 

With the success of the detection phase, the study moved on to the delineation phase 

where emphasis was given to the other spectral attributes like width and asymmetry 

on top of αpeak values. Before going into the results obtained from these attributes, one 

interesting pattern was observed from our results. The singularity spectrum seems to 
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move to the left from the window where the reservoir starts to the window where the 

analysis is within the reservoir. The spectrum then moves back to the right for the 

window which is related to the end of the reservoir. This means that the spectrum 

moves to a region of lower α values when it is within the gas region signalling higher 

irregularity compared to the surrounding. It then moves to higher α values as it leaves 

the high irregularity region pointing towards a reduction in irregularity. This agrees 

with what we understand about fractal analysis and gases in general. Gases have 

atoms of high energy and are constantly moving which results in a higher irregularity 

compared to other zones containing liquids and solids.  

Now looking at the spectral attributes for αpeak and asymmetry, the range of limiting 

values can be seen as follows: 

                          

 

0.916025              1.069975 

 

Singularity spectra with spectral attributes within this region of values pointed 

towards gases. We find that the asymmetry value remains close to the region of 1.0 as 

we had seen with the results for gases from the seismic modelling. In addition to that, 

the pattern observed with the width serves as an additional indication on whether we 

are approaching a gas reservoir. This is because from the results, we have seen that 

the width of the singularity spectrum of the window decreases from the area where 

the reservoir starts and as we move into the reservoir.  

With the oil reservoir, the same pattern of singularity spectrum movement as seen 

with gas was observed. The spectrum starts from the right (higher α values) and 

moves to the left (lower α values) as we move into the reservoir – an indication of 

increase in irregularity as we approach the oil region. Then we also looked at the αpeak 

and asymmetry values for delineation:  

                           

 

1.253554             1.269845 

 

These were the limiting factors for the delineation of oil. The increase in αpeak values 

as compared to the αpeak values is also as expected since oil is in liquid form and is 
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more regular compared to gas. A similar result had also already been seen in the 

seismic models. These values indicate the clear possibility of using the spectral 

attributes to delineate oil as well. However, more tests are definitely needed for the 

delineation of oil since only one reservoir was tested. 

These results, for both the gas reservoirs as well as the oil reservoir were obtained for 

one wildcat well. Once this algorithm is applied on more wells with hydrocarbons 

present, the complete range of limiting values for the spectral attributes can be 

identified to improve the precision of this method. 

As a closing remark, the study has proven the detection and delineation is possible 

when fractal analysis is used together with the windowing technique. This technique 

could potentially save a lot of time and costs when applied in the field since 

hydrocarbon detection and delineation can be done directly from seismic data. 

5.2    Recommendations for future work 

Further work would definitely be needed to increase the reliability and confidence 

level of using this method. The future works that can be done are: 

 The method needs to be applied on more seismic data from real wells to be 

able to obtain a complete limiting range of values for the spectral 

attributes to improve delineation reliability. 

 The method has to be tested on more oil reservoirs to prove that the 

detection and delineation method is also reliable on oils as it is for gases. 

This is because in this study on one oil reservoir was tested due to a lack 

of seismic data. 

 This method applies fractal analysis based on the Wavelet Transform 

Modulus Maxima method, so future work could test on the other methods 

in fractal analysis for comparison. 
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APPENDICES 

APPENDIX A – MATLAB CODES 

Seismic Model Analysis 

The following MATLAB code was used for one of the models and changed 

accordingly for each model:  

%start of code segment 

z=zeros(1,length(n));  
z(7)=.21256;   %start oil layer 
z(17)=-.21256; %end oil layer 
z(39)=.21256;  % start oil layer 
z(59)=-.21256;  % end oil layer 

  
 figure; 
 stem(n,z)  % produce reflectivity series 

  

  
 f = 60;              % centre frequency of Ricker wavelet 
 n1 = 17;               
 dt = 0.002; 
 t0 = 1/f; 
 T=dt*(n1-1); 
 t=0:dt:T; 
 tau = t-t0; 

  
 s = (1-2*tau.*tau*f^2*pi^2).*exp(-tau.^2*pi^2*f^2); %Ricker wavelet 

eqtn 

  
 y=conv(z,s)   % convolution of wavelet and reflectivity series 
 figure; 
 plot(y) 

 

Direct Hydrocarbon Detection and Delineation 

Codes for upsampling of reflection coefficients for windowing: 

%start of code segment 

%y = Reflection Coefficients 
%y1 = Reflection Coefficients + convolution 
%y2 = Upsampled version of y1 

  
y= Reflection_coefficients; 
x=[1:0.004:3.156]; 
figure; 
plot(x,y); 
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 f = 60; 
 n1 = 17; 
 dt = 0.002; 
 t0 = 1/f; 
 T=dt*(n1-1); 
 t=0:dt:T; 
 tau = t-t0; 

  
 s = (1-2*tau.*tau*f^2*pi^2).*exp(-tau.^2*pi^2*f^2);  
 y1=conv(y,s); 
 x1=[1:0.004:3.220]; 

  
 figure; 
 plot(x1,y1); 
 title('Seismic Trace'); 
 ylabel('Amplitude'); 
 xlabel('msec'); 

  
 y2 = resample (y1,20,1);   %upsampling 
 x2=[1:0.0002:3.2238]; 
 figure; 
 plot(x2,y2); 
 title('Upsampled Seismic Trace'); 
 ylabel('Amplitude'); 
 xlabel('msec'); 

 

Codes for one window, which is then done for every window: 
 
%start of code segment 

%window 1 
%40 samples (y) in each window 
%fractal analysis is performed on each window on FracLab 

  
x = [1:0.0002:1.0078]; 
y = resampled_window1; 

  
figure; 
plot(x,y); 

  

 


