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ABSTRACT

Heavy oil production is one of the challenges faced by the Oil and Gas industry today with

reserves of trillions of barrels. When considering production, heavy oil viscosity must be

reduced to gain mobility and have oil flowing. Between all possible techniques, stearn

stimulation is the most promising.

Steam stimulation is one of the viable methods to exmct heavy oil from oil sand reservoirs.

In this thermal pnocess, steam is injected through the well down to the reservoir to warm it up

to 320oC hence, subjecting the well to high temperatures. These injectants are pumped from

the surface at very high temperatures and pressures and are required to enter the targeted zone

with minimal amount of heat loss to the surrounding formation.

The cement sheath in steam injection wells are required to have good thermal insulation

properties to minimise the amount of heat loss to the formation while ensuring the integfity

and flow assurance of the well.

This research focuses on the thermal conductivity of cement and how the stmctural properties

of cement affect heat transfer from the casing to the surmunding formation. Cement samples

cured at varying temperatures are analysed using a Micro Focus X-Ray Computerised

Tomography (CT) System thus, allowing the mapping of porcs and microfractures within the

internal cement structur€. Cement cured at elevated temperatures show significant differences

in microstructure compared to baseline samples. The thermal conductivity (k-values) of the

samples are then measured and correlated to the pore distribution and curing temperahres.

This will allow for thc modelling of heat flow from the casing to the zurrounding formation.

The end result of this research should identifu the effects of curing temperature on the

thermal properties of cement.
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Chapter I : INTRODUCTION

l.l Background ofStudy

Well-integrity is an important part of health, safety, environment and quality-assurance

programs in the petroleum industry. It is the design, installation, operation and

maintenance of all well equipment and installations to a standard that ensures the safe

containment of produced well fluids and injectants for the life of the well (Callum

Munro,2004)-

Cementing is an important component of well integrity as it is part of the barrier system

in a Tubing/Casing Integrity Management System. In EOR injection wells, the cement

and casing systems are required to withstand high temperatures and high pressures from

the formation as well as from the injectants. The casing and cements are supposed to

allow for the flow of fluids (injectants) from the surface to the targeted zone without

compromising on the integrity of the well. These injectants are pumped from the

surface at very high temperatures and pressures and are required to enter the targeted

zone with minimal amount of heat and pressure losses to the surrounding formation.

However, there is always a certain amount of heat which will be hansferred from the

casing to the surrounding formation. This is because the temperature in the wellbore is

much higher compared to the temperature of the surrounding formation. The dispersion

of heat from the wellbore to the formation will pass through the cement sheath. The

cement is required to have good thermal insulation properties to minimise the amount

of heat lost to the formation (Dwight K. Smith, 1987). It must also be able to ensure the

integrity of the casing.

This research will focus on the thermal conductivity of cement and how the stnrctural

properties of cement affect its thermal conductivity. The structural properties of cernent

will vary based on the setting and curing time and temperatures of the cement. The end

result of this research should identify the effects of curing temperature on the thermal

properties of cement.



1.2 Problem Statement

The use of suitable cements and cementing practices is essential in an EOR injection

well. Thermal insulation properties of cement should be good in order to minimize heat

loss to the surrounding formation. This will ensure the injectant reaches the targeted

formation at the required temperature. The natural thermal insulation properties of
cement are due to the formation of pores and microfractures within the cernent sEuctur€

during the hydration of c€ment at high temperaturcs- These structural features

decelerate the heat transfer between the wellbore and the formation. Hence, varying

cement curing temperatures affect the thermal conductivity of cement.

1.2.1 Problem ldentification

In EOR injection wells, the heat of injected fluid is lost to the surrounding

formation while flowing down through the wellbore to the targetd injection

zone. This causes the injected fluid to arrive at the targeted zone with a

temperature much lower than expected and this directly affects the performance

of the EOR. This heat loss, may also cause loss of circulation and affect the

integrity of the well.

1.2.2 Significence of Project

The aim of this research is to study the thermal conductivity of cement cured

under varying elevated temperatures. This research is significant as there are

very limited resources that focus on the thermal propetties of cement

particularly thermal conductivity. No existing rcsearch has been undertaken on

the effects of cement structure on the thermal properties of cernent This

research will provide an insight into how cernent curing t€mperatwes can afrect

the thermal properties of cement. This is crucial in the estimation of heat loss to

the surrounding formation in EOR injection wells. Injectants in EOR wells can

then be prepared at higher temperatures to countpr the heat loss to the formation.



1.3 Objectives

There ar€ several objectives to be achieved when completing this project The

objectives are:

l. Identiff the structural features (pores, microfractures) of cement that ensure

thcrmal insulation.

2. Qualitatively analyze how cement curing temperature affecB the development

of pores and microfractures within the cement microstrtrcture.

3. Relate the volume of void space (poreq microfractures) in the cement strucfir€

to the thermal conductivity of cement.

4. Analyse and chart trends on how the thermal conductivity of cement is diroctly

affected by the curing temperatur€s of cement.

1.4 Scope of Study

This rcsearch will involve the understanding of heat transfer and tlrermal corductivity.

These topics are related to the Mechanical Engineering coum€, Thcrmodynamics. It

will also involve the study of cement cured at elevded temperahrcs and how this

affects the development of pores and microfracnrrcs within the ce,rnent strnchre. Th
volume of pore sparfs (porosity) and pore distribution within the cenrent stnrctrne is

then related to the thermal insulation pmperties of the cemeirt. The hlpothesis for this

research is the higher the porosity, the lower the therrral conductivity of cement" The

scope of this research will be limit€d to the therrral conductivity/insulation poperties of
cement" It will not cover the shength of cernent"



1.5 Feasibility of the Project within the Scope and Time Frame

The time allocated for this research was 20 weeks. The first step in this project was

getting an introduction to the related topics by reading books, journals and research

papers. All relevant research papers and journals were available either online

(OnePetro) or was requested from the UTP Information Resource Centre. Research was

done in order to understand better, the thermal conductivity properties of the cement

mortars. The process of understanding the properties of cement that affects heat transfer

took 2 month. Although cement mortar fabrication equipment were available at the

Concrete Laboratory at Block 14, cement mortar fabrication took about a month due to

limited and shared facilities with the Civil Engineering Deparfinent. The study and

analysis of the cement microstructure using the Micro Focus X-Ray Computerised

Tomography (CT) System took 2 weeks- The cement mortars were sent to the Physical

Test Laboratory at Malaysian Palm Oil Board (MPOB), Bangr for the thermal

conductivity test to obtain the k-values. This prooess took about a month to complete.

Analysis of the results took an additional week.



CHAPTER 2: Literature Review

2.1 Well Integrity

Well-integrity is an important part of health, safety, environment and quality-assuftmce

programs in the petroleum industry. It is one of the main assets of oil and gas producers.

It is not a matter of chance; it is a matter of choice. It is not a thing to wait for; it is a

thing to be achieved. Well integrity requires the protection of an investment as it covers

the safety of the people, equipment and the business.

Well integrity is defined as the design, construction, installation, operation'

maintenance and abandonment of a well to a standard that ensures the safe containment

and controt of produced well fluids and injectants for the life of the well (Callum

Munro, 2004). In simplified terms, it means keeping the hydrocarbons in the pipe and

the prevention of uncontrolled flow of fluids (Gunnar Andersen, 2006). NORSOK D-

010 defines well integrity as the application of technical, operational and organizational

solutions to reduce risk of uncontrolled release of fluids throughout the lifecycle of the

well.

A typical Well lntegrity Life Cycle consist of 5 phases (Joe Anders,2008):

Design -+ Construct -* Operate + Maintain ---+ Abandon

In each phase, well integrity is vital to ensure the well is operated and maintained in a

safe manner to save money and keep up production. While designing a well, it is

practical to look at its planned life cycle, keeping in mind that the well will be

abandoned in the future. A well can start production as a high-priessure reservoir; then,

later in lii'e, it may require a gas lift, while at a later stage, it may serve as an injector

before it is abandoned. In addition, there might be plans for sidetracks. Some wells may

have a lifetime of a hundred years, including possible sidetracking out of old casings

and a final abandonment that lasts "forever."

Well integrity is a growing concern in the industry. Many fields are maturing and new

reservoirs are getting far more complex. Some of the well integrity challenges currently

being faced include (SINTEF Petroleum Reaserch,20l0):



l. Aging infrastructure

2. lncreasing number of subsea wells

3. Smaller reservoir targets

4. More complex wells with multiple legs

5. New technology and downhole equipment

6. Reservoir with multiple pressure regimes

7. Reusing well infrastructure while changing well applications

8. Well life exceeds design life

9. IIPHT injection and production wells

Well lntegrity Management (WIM) addresses some of the challenges during the drilling

and completion phase of a well. A typical Well Integrity Management (WIM) system

consists of the following (Gunnar Andersen,2006):

l. An Accountable Person

2. Qualified Well Operating Procedures

3. Qualified Intervention Procedures

4. Tubing/Casing/Annulus lntegrity Management and Monitoring Program

5. Well Head and Tree Maintenance and Testing Policy

6. A Downhole-Safety-Valve @HSV) Program

7. A Drilling and Well Operations Policy.

Based on our research on the effects of curing temperature on the thermal properties of
cement, cement is considered as a barrier system within the Tubing/Casing/Annulus

Integrity Management and Monitoring Program. NORSOK D{10 states that cernent is

required to provide a continuous, p€nnan€nt and impermeable hydraulic seal along the

hole of the casing annulus or between casing srings. It is rcquired to prevent flow of
formation fluids, resist pressures from above and below and support the casing and liner

strings structurally. For EOR Injection Wellg cement is required to have good thermal

insulation properties to ensur€ the amount of heat loss of the injectants on the way

down the well is kept to a minimum. This will emsure ttrc integrity of the well is not

compromised.



2.2'l'he Mechanism of Cement Hydration

The mechanism of cement hydration is an interaction of cement with water. Hydration

causes the dissolution of anhydrous compounds to their ionic constituents, the

formation of hydrates (hydroaluminates, hydrosilicates, hydrogarnets) in solution, and

their eventual precipitation due to their low solubility.

The hydration rates of individual clinker materials are dissimilar. The quickest to enter

into reaction is tricalcium aluminate, with tetracalcium alumoferrite coming next and

bellite (dicalcium silicate) undergoing hydration at the slowest. Cement in which bellite

prevails undergoes hydration at a much slower rate than allite (tricalcium silicate)

cement. Gypsum pr€sent in cement rapidly dissolves and interacts with tricalcium

alum inate, lbrming calci um hydrsu lphoalum inate at standard conditions.

When cement is mixed with water, the surface layers of the cement grains enter into

reactions. This causes a supersaturated solution to emerge from which a gel-like mass

of crystals precipitates. The intemal layers of the cement grains get coated with little

permeable gel films. This initial stage of hydration proceeds very intensively, with the

libcration of largc amounts of heat. Once the film has been formed, the hydration

process slows down materially. Only through diffusion, water can gain aocess to the

internal layers of the cement grains that did not partake in the initial reaction.

After sometime, the film breaks up and the internal grain layers become exposed. This

causes the hydration rate to increase once again. This is anended by an intensified

evolution of heat. The cracking of the surface films occur under the effect of a high

osmotic pressure that arises as a result of the liquid phase supersaturation in the pore

space of the film. This second period of intense hydration continues until the particles

get coated with gel films. During this second perid of setting, the cement paste loses

its plasticity and becomes more fragile. It is at this point the cement slurry starts its

change from a true hydraulic fluid that transmis full hydrostatic pressure to a solid set

material that has measurable compressive strength. The cement mass starts gaining

strength, while its hardness increases to a degree where it acquires a lithic stmcture and

becomes almost fully water impermeable.



'[he hydrated compounds that emerge during the first stage of hydration are unstable

(metastable). 'l'he fibrous crystals of the gel particles themselves occupy a larger

volume and contain more water than in a stable state. With the passage of time, the

excess water is released from the gel. With hardening proceeding in dry air, shrinkage

of gel is observed, while in humid environment no shrinkage (contraction) occurs and

the reduction in the volume of gel due to the release of water is compensated for by a

continuous hydration of the cement grain layers which did not react to water. Hence, the

unstable hydrated new groMhs gradually tum into stable forms.

The composition of hydroxides appearing upon hydration and their quantitative

proportions are in a great measure dependent on temperature. With rising temperatures,

it is not only the water content in hydroxides that changes, so does the ratio of
CaO/SiO2 and even the shape of the crystal framework.

The hydration reaction rate exercises a material influence on the setting and hardening

time of the cement paste. It increases with mounting temperatune, prcssure, fineness of
cement grinding and depends on the volumetric waterrement ratio, the cement

composition and that of the water electrolytes.

Thc strength of cement stone depends on the degree of cement hydration. The early

strength of stone is determined by allite that is liable to undergo a fairly quick

hydration. Bellite however is hydrated at a much slower pace, but continuously. It also

plays a vital role in influencing the strength of the cement stone. The strength of the

stone augments most intensively during the first 2-3 days of hardening. But since the

hydration of cement does not terminate over this period of time, the stone gattrers

strength over a period of several weeks and even months. With rising temperature, all

reactions proceed at a greater speed. The cement slurry sets quicker and the stone

acquires its final strength at an earlier date. At elevated temperatures, the final strength

of the stone will be determined by bellite.



2.3 The Effects of Curing Temperature on Cement llydration Rate

The chemistry of cement and its hydration is still not thoroughly understood. Portland

cement is a solid solution of the components tricalcium silicate, dicalcium silicate,

tricalcium aluminate, tetracalcium aluminoferrite, calcium oxide (free lime) and

magnesium oxide (magnesia). 4.0% of glpsum is also added as a retarder.

The hydration products of cement have a more complex chemistry than the clinker. The

main hydration product at normal temperature is calcium hydrate of unknown

composition with variable water content, a calcium sulphoaluminate and lime. At

temperatures above lzO"C, the reactions result in different hydration products.

With mounting temperatures, the hydration proc€ss proceeds at a grcater rate. The

cement slurry sets quicker and the stone acquires its final strength at an earlier dae. At

the same time, the higher the temperature, the sooner the cement stone starts ageing

with a concurrent decline in strength. Furthermore, with an elevated temperature (80'C)

the maximum sfrength of the set Portland cement is below the one at a temperaturc of

20"c.

The longest gain in strength is seen to occur at above 0"C. In such conditions, the

growth of strength can go on for many years. With the temperature exceeding 70"C, the

time needed for attaining the peak sEength is cut down substantially. If at temperatures

below 70oC the manimum strength is independent of the temperaturc, at elevated

temperatures, the level of peak stnength is significantly lower, In other words, the

greatest strength of the stone at a temperature of 80"C is lower than at a teinperature of

40"c.

The fall of the stones strcngth at temp€ranres above 70"C is due to the fact that wittl

the high rate of the hydration process, a smaller number of cement particles have

adequate time to undergo hydration by the time the slurry starts hurdening in these

conditions as compared to a temperature of 40"C. A considerable proportion of cement

is hydrated after it has acquired some degree of initial stnength. Hydration in a solid

state gives rise to the appearance of internal stresses which are conducive to the

reduction in stnength of the Portland cement.



Mounting temperatures have a great influence on the app€arance of pores,

microfractures and the increased perviousness of the set Portland cement. As the

temperature rises above 80"C, the perviousness of the set cement increases linearly. A

particularly sharp growth of permeability is seen with the temperature climbing to a

level above 100-llO'C. At l20oc, the permeability of a 24 hour old Portland cement

stone is roughly ten times that of a stone formed of the same mixturc at 60"C. Causes

underlying the increase of permeability with rising temperatures are basically the same

as those responsible for reduced strength. The heat resistance of cement stone is judged

by the nature of changes in the strength and permeability of it in the course of a

protracted storage at elevated temperatures.

Pressure as a rule has little effect on the strength and permeability of Portland cement.

2.4 Thermal Conductivity

Thermal conductivity is a material property for which the values depend on the

chemical composition, porosity, density, stnrcture, and fabric of the material ( Jumikis,

1966). Thermal conductivity is used to determine heat flow through a material.

The coefficient of thermal conductivity, t [W(m.K)], is a measure of the rats q 0\D d
which heat flows through a material. It is the coefficient of heat transfer across a steady-

state temperature difference (Tz- T) over a distance (x2 --r1), or

q = h (LT/Lx)

Thermal conductivity can be measured by transient heating of a material with a known

heating power generated from a souroe of known geometry and measuring the

temperature change with time. The method assumes isohopic materials.

For a full-space needle proh, the length L can be assumod to be infinite and the

problem is reduced to two dimensions. Given the resistance R of a looped wire in a
needle, the generated heat is

10



q=2f R/L,

where NL is the resistance of the needle per unit length. At any time, / after heating has

started, the temperature I is related to the thermal conductivity t by

T: (q I 4*k) ln(t) + C

where r7 is the heat input per unit lenglh and unit time and C is a constant. A simple way

of calculating the thermal conductivity coefficient ft is by picking Ir and Iz at times tr

and tz, respectively, from the temperature versus time measurement curve (ASTM,

r e93):

k,(tl: q I 4r [n(t2) - ln(rr)l I (72 - Ti

,t"(t) is the apparent thermal conductivity because the tnre conductivity, ft, is approached

only by a sufficiently large heating duration. This method assumes that the

measurement curve is linear and ignores the imperfections of the experiment expressed

in the constant C (Peter Blum, 1997).

ln practice, the conect choice of a time interval is difficult. During the early stage of
heating, the source temperature is affected by the contact resistance between the source

and the surrounding material. During the later stage of heating, the boundary effect of
the finite length of the source aflects the measurement. The position of the optimum

interval generally differs from measurement to measurcment @eter Blum, 1997).

11



CHAPTER 3: METHODOLOGY

3.I Research Methodologr

'fhe asscssment on the effects of curing temperatur€ on the thermal conductivity of

ccment will be based on several studies and experiment conducted on fabricated cement

mortars. The research methodology and project wor'kflow is listed in the flow chart

below:

. Conduct literature review 0nWell lntegrity, Mechanism of Cement Hyir, on,i* r*.;;"r-*--n I
Cement Hydratron Rate andThermal Conductivity I

. Fabrrcation of cement mortars.

o Cement cured tn oven set at varying temperatures (zriC - rodC).

. Structural characteristics (pores/micro fractures) of cement identified.

o Micro FocusX-RayComputerised Tomography (CI)System used to analyze microstructureof set cement.

. Thermal conductivity test (k-value measured)

. Principle: Measurement using a pobe based on uansient hotwire method (Japan lndusrialStandard, JIS Rz5r8)

. Gather and tabulate data.

. Discuss findings from the results obtained and conclude the study to determine if objective has been nret.

. Compilation of all research findings, literature reviews, eryrimental works and outcomes into a dissertation

Flgurc I: Reseorch Methdologt Flow Clwt

t2



3.2 Experimental Setup

The experimental setup involves the fabrication of the cement mortars cured at varying

temperatures. The mixing of cement slurry and curing at elevated temperatures was

carried out by utilizing facilities at the Concrete Laboratory in Block 14. Due to limited

resources, Portland API Class A Cement was used instead of the industrial standard,

API Class G Cement. API Class A is equivalent to regular construction cement.

According to the Drilling Engineering Handbook, the rule of thumb for slurry

preparation is for every 100 kilograms of cement used 46 litres of water is mixed

accordingly. This rule spetifically applies for Portland API Class A Cement. Based on

these ratios, 1.8 kilograms of API Class A cement powder was mixed with 0.828 litnes

of water during the mixing of cement slurry for each mortar. Two mortars were

specifically mixed and cured with the addition of microspheres (Spherelite) to the

cement mixture, Due to the limited amount of microspheres, both samples only used

l07o microspheres by weight of cement as compared to the industry practice of 20o/o

microspheres by weight of cement.

Figure 2: Weighingof Cement Pouder (Weight of Cement + Container = 1g54.3 A)

13



Figure 3: Cement powder transferred into mking bowl

Figure 1: 0.8281 of water measured in a measuing cylinder



After water is poured into the mixing bowl containing cement powder, the cement is

immediately mixed for approximately 5 minutes using a Cement Mortar Mixer.

Figure 5: Miing of Cement (1.8 kg) and Water (0.8281)

Once the cement has be,en mixed, it is poured into a l0 cm x l0 cm x l0 cm cast iron

mould. The cement mould is then vibrated for approximately I minute before being

transferred into the oven. The cement mortars were cured as follows:

Curing Temperature (oC) Minimum Setting Time @ours)

100 I

80 2

60 4

24 (S.c) 9

TaNe l: Minimun ktting Time of Cement Slurry

The table above shows the minimum setting times for the cement mortars. All the

cement mortars fabricated were allowed to set according to their respoctive minimum

setting times. However, some mortars were allowed to be cured for longer durations

than the minimum setting times. This was to see if the additional setting duration

affected the stnrctural properties of cement. The use of the oven was limited to a
maximum of l00oC and24 hours due to [,aboratory Rules and Regulations.
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After, the cement mortar's setting time had lapsed, the cement mortars were rernoved

from the oven and were allowed to cool at room temperatures for approximately 3 to 4

hours before they were removed from their moulds.

From the cement mortars fabricated, I I samples were chosen for the experiment stage:

Samples

No. Curing Temperetur€ (oC) CuringTime (hrs)

I 24 (Standard Condition)

2 60- | 4

3 60_II 4

4 60 _ III 4

5 80-l 2

6 80-It t7

7 80-III 17.5

8 100- I 18.5

9 100-u l9

l0 60 (Microspheres) t
ll 80 (Microspheres) 8

Toblc 2: funfle Daails
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3.3 Experiment 1: Analysis of Cement Micnostructure

The cured cement mortars were analysed using a Computerized Tomography (CT)

Scanner. This was done by utilizing the Micro Focus X-Ray Computerized

Tomography (CT) System at Block 15. This system allowed for the analysis and study

of the internal structure of the cement mortars. The cement mortars were divided into 3

different layers; top, center and bottom. The size and distribution of pores and

microfractures at each layer were qualiatively analyzed" Scan images clearly showing

pore distribution at each layer were saved as image files to be included in the

dissertation.

Figure 7: Micro Foctts X-Ray Computerized Tonography (CT) S}steat

Ftgare t: Cenent Mortar being sM

t7



Figure 9: Scanned Image of Cement Struclure Analysed

Center

Figure I0: Images of Top, Cenler and Bottom of Cement Strtrcture Sqved
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3.4 Erperiment 2: Themel Conductivity Test (Determinetion of k-velues)

The Thermal Conductivity Test was carried out by the Malaysian Palm Oil Board at

Bangi. I I Samples were tested at the Physical Test L,aboratory in the Advanced

Oleochemical Technology Division. The samples were testd at a tesc ternperature of

29"C to 33"C under ambient moisture. Thermal conductivity measunements were &ne

using a pmbe based on the transient hotwire method in accordance with the Japan

Indusrial Standard, JIS R2618. The thermocouple is attached to the surface of a

rectangular proh. The following procedures werc undertaken while measuring the

thermal conductivity (k-value) of the samples:

Flgr.rc 1I: Thernal Cofir*ity Test Ptwfroe

The k-values were then conelated to the pore disuibutio of the smples basd m their

respective curing ternperahres. This correldion is sr@uently utal)"zed"



3.5 Gantt Chart and Key Milestone

September 201 I - lanuary 2Ol2

No Dctril / Wcek I 2 3 1 5 6 7

.L6oL
trl
L.)
ID
c)
Eoa

G'
Hz

t 9 lo ll t2 13 t1
I Selection of

Project Title

2 Preliminary
Research and
Literature
Review

J Submission of
Extended
Proposal

4 Study on
fundamental
concepts
related to
rcsearch

5 Pmposal
Defense

6 Fabrication of
Cernent
Mortars

7 Preparation of
Interim Report

8 Submission of
lnterim Report
(Draft)

9 Submission of
lnterim Report

Flgurc 12: FIP I hrylanrntdon ht fl Chm,

Taslrs

Milestones

I
I
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January 2Ol2 -May 2012

No IDctril / Week I 2 3 4 5 6 7

xa
C)L
!e
L
(D

aI
,l
IDa
E'

=

t I to lt t2 13 lt
I Study on

concepts related
to research

2 Fabrication of
Cement Mortars

J Analysis of
Cement Mortar
Microstructure

4 Industrial
Engagement

5 Thermal
Conductivity
Test

6 Submission of
Progrcss Report

7 Poster
Submission

8 Submission of
Dissertation

I Submission of
Technical Paper

t0 Oral
Presentation

Flgurc 13: FW II l@cnuttotba Cf,rfr Chot

Tasks

Milestones

I
I
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3.6 Equipment & Tools Utilbed

This project rcquired the use of Portland API Class G Cement for the fabrication of the

cement mortars. However, due to limited rcsources, Portland API Class A Cement was

used instead. API Class A cement sharcs a similar composition to rcgular construction

cement. Cement mortar fabrication equipment were available at the Concrete

Laboratory at Block 14. Some of the equipment used during the fabrication of the

cement mortars include, electronic weighing scale, cast iron cement mouldg cement

mortar mixer, vibration table and lab ovens. As the Concrete laboratory is a Civil

Engineering facility, use of equipment was subject to availability.

Figure 11: Cosl lron Cement Mould FiSt ?e 15: Cemat Monar Lfuer

Flgurc 16: Wbration Table FEarc 17: I"abnory Oven
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l'he fabricatcd ccment mortars were analysed using a Micro Focus X-Ray

Computcrizcd 'lirmography (Cl-) System. The Shimadzu inspeXio SI!O(-225CT is a

top-of{he-linc Micro ljrxus X-ray C'l'system, which features a high precision CT stage

and sophisticatcd imagc processing software. This system is ideal for nondestructive

testing and analysis of corc and cement microstmcture. This advance equipment

belongs to the I:OR (lentre at Block 15.

Specifications of the cquipment are provided in the table below:

X-ray generator

Detector

Mountable sample

Open tube Max voltage 225 l(/, Max currert 1000 UA,

High sensitive lrnage intensifier, 9 I 7.5 I 6 I 4.5 incft selectable

300 dia. x 3OO mm H,9 kg

CT ffeld of vlew (FOV) X Y darectaon 5 to 2fi) mm dia Z direction 4.5 to l00mm

CT lmage size 5 12X5 12 1024X1024 2(N8X2048 4{t96X4G)6

Tohlc 3: Shimulzu insJrcXtut SMX-225CT Micro Foctts X-Rry CT $stem Spuificatior

Figure lt: Shimtfuu inspXio SMX-225CT Micro Frcts X-Ray CT $xtem
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The thermal conductivity test (measurernent of k-vatue) on the cemcilt mortacr wt6
caried out at the Physical Test taboratory, Malaysia Palm Oil Bood (MFOB) in

Bangi. The tests were conducted using a KEMTI{ERM QTM-D3 measrlng.xluipmclt

by Kyoto Electronics Manufacturing Co. Ltd. ffis equipnrcnt utilizs a pmbc basd m
the transient hotwire method. It makes thermal condw:tivity rncasurcmcots by kocping a

probe on any reasonably flat surface for 60 seconds. Measrable test mpcrares of
the KEMTHERM QTM-D3 ranges tom -10"C to 20fC. The k-vahs ohincd ac in

SI units: Wm.K.

,r'!,i

- i_1
i-,-4
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CHAPTER 4: RESULTS AND DISCUSSION

4-l Qualitative Analysis of Cement Mortar Cured at Elevated Temperatures

The internal structure of all cured cement samples were analysed using a Micro l:txus

X-Ray Computeriscd Tomography (CT) System. CT Scan lmages at the top. centcr and

bottom of the samples were captured and saved. Porc distribution is represented by thc

black spots in the image.

Cement mortar cured at Standard Condition (24ocl

Top Center Bottom
Figure I9: llic'roslructure images of cemenl mortqr cured at Stundard Corulition (21"(')

The cement mixture for this sample was poured and cured at a room temperature' of
24"C.lt shows very limited pore distribution. There are a few noticeable pores at thc top

of the cement. This is due to the upward movement of excess water due to difference in

density between water and the cement mixture.

Cement mortar cured at 60oC

Top Center Bottom
Figure 20: ldicrostructure images of cement mortar cured ut 6Oo('
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The cement cured at 60"C shows more pore distribution compared to the cemenl cured

at room temperature. It is noticeable that pore distribution within the cement structuni is

higher at the top and gradually decreases towards the bottom. This is due to the advent

of capillary cffect when trapped water particles move upwards during the sc'tting of
cement. This causes the formation of pores within the set cement.

Cement mortar cured at 80oC

Top Center Bottom
Figure 2l: Microslruclure images of cement morlar cwed at 80"('

The cement cured at 80"C shows similar pore distribution characteristics to the cement

cured at 60"C. However. pore count is noticeably higher compared to the sample cured

at 60"C. Causes underlying the increase in porosity at the top of cement structurc

compared to the bottom are basically the same as the sample cured at 60"C

Cement mortar cured at l00oC

Top Center Bottom

Figure 22: Microstructwe images of cement mortqr cured ot l(n"C
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The cement cured at 100"C show's very limited pore disribution as opposed to the trrnd

set by the samples cured at 60"C and 80"C. This sample was supposed to strow a much

higher pore count compared to the previous two samples. The reason as to why therc. is

very limited pore distribution is because all excess waLer particles evaporatc vcrv

quickly at 100"C. T'his happens even befbre the cement has had enough time to hardcn.

However. there may still be pores rvhich are minute in size that were not capturd by

the CT Scan System. We will analyse the thermal conductivity test of this sample in thc

following part and compare it to the other samples.

4. 2 Qualitative Anatysis of Cement Mortar Cured with Micruspheres (Spherelite)

Two samples were mixed and cured with the addition of microspheres (Spherelite) to

the cement mixture, one sample at 80"C and another at 60"C. Due to the limited amount

of microspheres, both samples only used lOplo microspheres by weight of cemcnt as

compared to the industry standard of 20%o. It must also be noted that bentonite w&s not

added to the cement mixture to control the separation of micnrsphercs. llence. thc

microspheres tend to float in the cement slurry.

The addition of microspheres to the cement slurry causes the cement structure to have a

disruption to its continuous phase. There is a distribution of high and low densitl, solid

particles. This will aftbct the thermal conductivity of the cement as heat flows f,ustcr

through high density materialas compared to low density materials.

Cement mortar cured with microepheres (Spherelite) at 6OoC

Top

Figure 23 : Microstructure

Center

images of cement mortar c'ured

Bottom

*'ith micr<xphe,rts at (,{,o('
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Microsphere distribution in this sample is pretty even along the cernent stnrcturE.

Naturally occurring cement pores can also be observed in the sample with pore

distribution being higher at the top and gradually decreasing towands 0te bottorn.

Cement mortar cured with microspheres (Spherelite) at E(PC

Top Center
Figure 21: Microstructwe images of cement morlq ctrzd wilh micrwplrla a illT

Microsphere distribution in the sample cured at 80"C is higher at th€ top of the sample

and decreases towards the bouom. Excess water in this sample has moved upwards aftcr

the pouring of the mixture due to the density difference with the cured mixurrc. This has

allowed the low density microspheres to flow with the water to the top of the canrcnt

structure. Naturally occurring pores can similarly be observed in this sunple with pore

distribution being higher at the top and grdually decreasing towards thc bofloln. ThG

pore count is higher compared to the pore count in ttre prcvious sample.

Bottom
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43 The Effects of Curing Temperature on the Thermel ConductMty of Cemeot

Table 4 shows the Thermal Conductivity Test Results for the I I Samples:

Samples Thermal ConductivitY Test
Curing

Temperature ("C)
Curing

Time (hrs)
k-value

(Wm.Ir)
Testing

Condition (oC)
Averrge k-

velue (W/n.K)

24
(Standard Condition)

0.9223
0.9101

0-9306

3l
29
29

0.921

60-r 4 0.827

0.8333

0.8301

32

32

3l
0.830

60-tl 4 0.8002

0.8055

0.8188

33

3l
30

0.80t

60 _ III 4 0.7774

0.7623
o.772

33

33

3l
0.771

80-r 2 0.7t65
0.7106
0.70t2

33

3r
30

0.709

80_II t7 0.5869

0.5992
0.6095

33

33

32

0.599

80 - IIt 17.5 o.ffi
0.659r
o.&52

33

30

30

0.657

100-l 18.5 0.5803

0.5813

3l
3r 0.58r

100 - rr l9 0.6143

0.6154

0.6r5r

32

30

30

0.6t5

60 (Microsphere) 8 0.5403

0.5405
o.5467

33

32

3t
0.543

80 (Mioosphere) 8 0.4373
0.472
0.4347

33

33

3l
0.440

Table 1: Thermal Condrctivity Test Resul*
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Based on the 3 readings of k-values obtained from the thermal conductivity test of each

sample, an average k-value is calculated for each sample. The average k-value is then

plotted against the respective sample in the form of a graph. The average k-values of the

c€rnent mortar with microspheres cured at 60"C and 80"C are included for comparison

Purposes-

I
o.9

? o.a
E
> o.7J
;0.6o
€ o.s

.l o.+
a,
For
a,i o-2

o.l
o

'"1'1""*".:;$$li.;6
60 $o

Samples

Figure 25: Average k-values (Wn.K) vs. krnplesCuringTenpaue (Y)

From the graph above, it can be observed that the k-value (Wm.K) dsrc with

increasing cement curing temperatures. As the cement curing ternperanre incrcescs, tlE
apPearance of pores within the cement structurc increases This directly aftcrs $c hcr
tamsfer acnoss the cement sheah due to the reduced density within the ccrnern phc A
higher density solid phase has a higher thermal conductivity (k-valrrc) cornpurd b.
lower density solid phase. Hence, as the por€ count within the ccrrcnt $caft imc
with increased curing temperature, the thermal conductivity of the ccrnsrt is Spaly
reduced-

utilizing the MATLAB Software, the Average k-value vs. srmptcscrrtg
Ternperature ("C) graph was polynomially reg€ssed. Tlrc followirts corrdetirn wr
obtained:
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ke,s: 0.0002 "Is + 0.Na1 f* +.OS I3 + 0.22 T2 - 0.45 T + l2

!

a

0

0

005

0

.0 05

{l

{'t5
23156'

lt ailE
Figure 26: 5'h degree polynomial regression od error coeficient

This correlation was obtained based on a 5th degree regression curve that was the best

fit for the Average k-value vs. Samples graph. This correlation has an error coefficient

of 7.218%o.

It must be noted that the samples cured with microspheres were omitted from this

correlation as the samples and test results were inadequate to be correlated. However,

from the average k-values calculated for both samples, it can be notod that cement

mortars cured with microspheres share a similar trend with the normal cement monarss

with the increase of curing temperature reducing is thermal conductivity. Thermat

conductivity values for these samples are also much lower compared to the normal

c€ment samples as the microspheres assist with reducing thermal conductivity while

enhancing thermal insulation properties of the cement sheath.

Although curing times of the samples varied independently with accordance to the

minimum setting time noted in the Experimental Setup, it was not taken into account as

a factor ttrat affecs the thermal properties of the set oement.

ilhd{grencrofresduds=00ltlEl : : : I :

: | : : '. --:l.-- i ...,,,,,,,,"',.rri.r.rrrr::::::::: :i\-= I -Z i \- ii x-' -\az
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l.

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1Conclusion

Based on the completed experimenl the following conclusions can be made:

Higher curing temperatures results in higher pore count within the cernent This

enhances the thermal insulation properties of the @ment.

Pore distribution within the cement stnrcture is higher at the top and gnduElly

decreases towards the bottom. This is due to the advent of capillary effect tvhen

excess water particles move upwards during the setting of cement due to density

differences. This causes the formation of pores within the set ccment

The thermal conductivt$ of cement decreases with increasing pore count Hence

the higher the curing temperatur€, the higher the pore count ed the lower the

thermal conductivity of the cement streath.

The addition of microspheres to the cernent slurry enhances the thermal insrl*ion
properties of cement. Curing of cement slurry with microspheres at cloratod

temp€ra0,lres further increases the thermal insulation properties This is due to the

reduction in thermal conductivity assistod by the increased pore distrihdon.

Based on the correlation deduced by the MATLAB Softu/arc, tlrc arrcrage tftcrmal

conductivity (h") of cement can be estimated. This will allow fordrccstimlti611 of
heat loss to the surounding formation in EOR injection rrclls. Injoctmts in BOR

wells can then be prepared at higher temperaEr€s to counE thc hcd toss b 6c
formation.

3.

4.

5.
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5.2 Recommendations

There is still much work that can be done on this project. The following are some of the

recommendations that should be taken into account for any future research:

l. Portland API Class G Cement should be used as this is the industrial standard that

is used for the cementing of EOR lnjection Wells

Further analysis can be done for cement mortars cured at elevated temperatures as

cement slurries can be cured at temperatures ranging from 24"C to 20O "C to
simulate actuat formation tcmpcraturcs.

The curing times of cement should also be given significant input as this may affect

the structural properties of the set c€ment. Cement curing times for each curing

temperature should vary between the minimum setting times to 3 days.

The addition of microspheres to cement mortars shoutd also be considered.

lv{icrospheres shoutd be mixed into the cement sturry based on the indusriat

practice of a minimum 20Yo by weight of cement. Recommendations 2 and 3

should also be considered during the preparation of cement mortars with

microspheres.

A quantitative analvsis of pore structure within the cement mortars should be done

as this will provide a more accurate study of pore space within the cement

structure. It is suggested that porosity of the cement mortars be measured using a

mercury intrusion porosimeter.

Research should also be done on obtaining the opimum balancc bawecn thermal

insulation properties of cement and cement strength. lncrease in ttrennal insulatim

of the cement sheath is usually at the cost ofcement strength.

)

3.

4.

5.

6.

33



CHAPTER 6: R"E,FER.E,NCES

I. I 17 OLF - Recommended Guidelines Well Integrity (Rev4, 06.06. I I)

2. Callum Munro (20(X): Well Integrityfor Affshore Operators.

3. C.F. Gates & B.G. Holmes, Mobil Oil Corporation: Thermal Well Completiotts ond

Operation.

4. Dr. Kimberly Kurtis, Georgia Institute of Technology: PortlandCenent Hrreafion

5. Dwight K. Smith (1987): SPE Monograph Volune 1-Cementing.

6. F.D. Patchen, Socony Mobil Oil Co. Inc. (l!)60): Reoction atd Prcprties of Silic*
Portland Cement Mixturcs Cured at Elevated Temperdares

7. Feng Lin & Christian Meyer (2009): Ilydration Kinetics Mdeiling of Ceneil
Consideing the Effects of Curing Temprature and Applied Prcssllre

E. Greg Carter eL al. Halliburton Oil Well Cementing Co. (1953): Prqenies of
Cementing Compsitions at Elevated Tempratwes atd Prcswre

9. Gunnar Andersen, President, TecWel A/S (2006): Well-Integrity l{ougenea od
Profinbility.

10. Joe Anders, BP Exploration (2fi)8): Implemcnting a Well Integrity lu@ent
System.

I l. Jtrmikis, Alfreds R. (l%6) : Tlermal Solil Meclunics

12. Nader Ghafoori & Hamidou Diawara (2009): In/lretw of Tenprawe oa Frcsfi

P e rfo rmo ne of Se W orco I ifuting C otrcre t e

13. NORSOK Standard IX)10: Well Integriry In Drilltury lL Vell tlpuiu*
14. PeterBlum (Novembq 2O06): PP Handfuk

15. Peter Matiasovsky & Olga Koronthalyove Pue Srraru And fisd
Conductivity of Poruus hnrganic Llateriols

I 6. RC.K Wor,s & K.C.Yeurg (2006) : Stttrctwz,l lrtegriry of Ca@ d C.;mt
Amrulus in a Tlermalwell UderSleam

17. SINTEF Petroleum Researctr (2010): Well Integrity

:!4


