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Executive Summary

This report explains some details about the project of "Fatigue-Life Pr€diction Method

in an Engine Material". ffis report is divided into five (5) main chapters; lntroductiorl

Literature Review, Methodology, Result & Discussior5 and Conclusion.

Chapter I, Introduction consists of problem statement that will be used to extract thc

problem for this project and act as a premier guideline to solve and complete this

project. The objective and scope of study within this task will also be included in this

report. In Chapter 2, which is the Literature Review, the author will give a brief

explanation about fatigue in metal, fatigue-life prediction methods that have already

been done and crankshaft material and manufacturing priocess. Gantt chart flow chart

and work procedure will be included in the Methodology part in Chapter 3 to show the

progress and how this final year project is been carried out. The procedure and steps

taken in order to complete this project will be explained.

ln Chapter 4, the author will include all the findings and result for this final year project

as well as the simulation of the crankshaft. The optimization of the crankshaft will also

be included. The rcsult will be discussed and analyzed. Last but not lcast, the author will

conclude this research in the Chapter 5 which is the Conclusion.

The author will include the all the references used upon the completion of this rcport



Abstract

Often, machine members are found to have failed due to the action of repeated or

fluctuating stresses; yet the most careful analysis revealed that the actual maximum

stresses were well below the ultimate strength of the material, and quite @uently even

below the yield strength. The most distinguish characteristic of this failures is that ttre

stresses have b€en repeated a very large number of times. Hence, the failtre is called a

fatigue failure. tn this study, crankshaft has been used as a component to analyze and

evaluate its fatigue perfonnance. Fatigue is the primary cause of failurc in int€rnal

combustion engines due to the cyclic loading conditions and the stress concentratiom in

the crank pin fillet. There are a lot of methods used to predict the f*igrre life. However,

for this projecL only the most common method to predict the fatigue life will be focuse{

namely Stress Life Method and Strain Life Method. These two methods will be

compared and one method will be selected to be used in fatigue life estimation of the

crankshaft. Finite Element Analysis (FEA) will be done using ANSYS to obtain

variation of stress magnitude at critical locations. In addition, the effect of diffeleot

manufacturing pnocess and material will be investigatd to determine the fatipe
performance of the crankshaft.
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CHAPTER 1

INTRODUCTION

l.l Problem Statement

Engine parts are subjected to rcpeated and variable strcsses during their operation.

Fatigue failure gives no indication and warning before it actually occurs. It is sudden

and total, and hence dangerous. It is relatively simple to design against a static

failure, because our knowledge is comprehensive. Fatigue is much more complicated

phenomenon, only partially understoo4 and the engineer seeking compet€nc€ must

acquire as much knowledge of the subject as possible. Therefore, method of

predicting fatigue-life on an engine material is important in order to take any

necessary action to avoid the failure happens.

1.2 Objective

I ) To study, compare and select the most appropriate method in predicting the

fatigue-life of a crankshaft.

2) To study the effect of material and manufacturing proc€.ss towards crankshaft

fatigue performance

3) To identifr the critical location of the crankshaft using Finite Element

Analysis (FEA).

4) To optimized crankshaft design

1.3 Scope of study

For this project" the crankshafts used were forged steel and ductile cast iron from a

one-cylinder gasoline engine. The study will be started from the research about the

fatigue-life prediction method that already been done. Thc method will be compared

and evaluated to select the most appropriate to be used in the projecL The effect of
different material and manufacturing process on fatigue life pcrformancc will be

included in this study. The modeling and analysis of the selectcd part of the engine

will be done using ANSYS. From this software, Finite Element Analysis (FEA) will

be carried out. Finally, the optimization of the crankshaft is will also be done using

ANSYS. The result will then be discussed and evaluated.



CHAPTER 2

LITERATURE REVIEW

2.1 Fatigue in metal

ln most testing of those properties of materials that rclate to the shess-stain diagrart

the load is applied gradually, to give sufficient time for the strain to fully develop.

Furthermore, the specimen is tested to destruction" and so the sfiesses are applied

only once. Testing of this kind is applicable, to what are known as stotic conditiotts.

The condition frequently ariseq however, in which the stnesses vary with time

or they fluctuate between different levels. For examplg a particular fiber on the

surface of a rotating shaft subjected to the action of bending loads undergoes both

tension and compression for each revolution of the shaft. ln this case, some stress is

always present in any one fiber, but now the level of stess is fluctuating. These and

other kind of loading occurring in machine members produce stnesses that are called

variable, rcpated, altemuing or flrctuting stresses. Machine members are

regularly found to have failed under the action of repearcd or fluctuating stness€s.

However, the analysis showed that the actual maximum $resses were well below the

ultimate strength of the material, and even below the yield stnength. The mo$

distinguish characteristic of these failure is that the stresses have been repeated a

very large number of times. Hence the failure is called afatiguefaihne []. tr.igure f
below show the example of the fatigue failure of a kingpin.

Figure l: Overview of futigue fractur€ of kingpin [l]



A fatigue failure has an appearance similar to brittle fractue, as the fracture surfaces

are flat and perpendicular to the stress oris with the absence of necking. The fracture

featurcs of a fatigue failure, however, are quite differcnt from a stratic britle fracturc

arising from three stages of development.

Stage I

o Initiation of one or mone micro+racks due to cyclic plastic deformations

o Crystallographic propagation extending from two to five grains about the

origin

o Cracks are not normally visible to the naked eye

Stage II

o ProgFesses from micro-cracks to macro-cracks forming parallel plateau-like

fracture surfaces separated by longitudinal ridges

o The surfaces can be wary dark and light bands referred to as beuh no* q
clamslell mark

o During cyclic loading, these cracked sunfaces open and clme, nrbbing

together, and the beach mark appearance depends on the charge in ttre level

or frequency of loading and the corrosive natur€ of the environment

Sage III

o Occurs during the final shess cycle when the rernaining material cannot

support the loads, resulting in a suddeq fast fracturc

o Fracture can be brittle, ductilg or a combination of both

o Possible pattern in this stage fractur€ is called clsvrun lirrs, pointtowad thc

origins of the initial cracks

There is a good deal to be learned from the fracture pstt€rns of a fatigue frilurc.

Figure 2 below shows representations of failure surfaces of various part geometrics

under differcnt load conditions and level of stess concentration.
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2.2 Crankshaffi Material and Manufacturing Processes

2.2.1 Crankshaft

For this project, crankshaft is selected as the case study. Since crankshafts arp

continuously subjected to repetitive loading during their operation that could

eventually lead to fatigte failure, it is a suitable component to be used for predicting

its fatigue-life.

Crankshaft is a component in an internal combustion engine (tCE) that

converts the linear motion of the piston into a rotary motion [2]. This rotary motion

is used to drive the automobile or other devices that crankshafu are used in. During

is lifetime, crankshaft involves in high number of cycle of rotating and repetitive

loading. For that r@son, it is common for crankshafts to be designed for an infinite

life.

Figure 3: Example of a 2-plane crankshaft [20]

The shaft is subjected to various forces but generally needs to be analped in trro

positions. Firstly, failure may occur at the position of ma:rimum bending; this may be

at the center of the crank or at either end. ln such a condition the failure is due to

bending and the pnossure in the cylinder is maximal. Secon4 the crank may fail due

to twisting so the con-rod needs to be checked for shear at the position of morimal

twisting. The pressure at this position is the ma:rimal pressue, but only a fraction of

maximal pressure [20].
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2.2.2 Crankshafts Manufacturing Processes (Casting vensus

Forging)

There are a couple of different ways to arrive at the basic shape, and this forms the

basis of whether the crank is a forged or cast piece.

In casting, a mold is made and molten crank material, usually cast irorq is

simply poured in to create the raw casting. Casting is cheap, the tooling is long

lasting, and the raw casting springs from the mold very close to the required final

shape, minimizing the final machining requirements. All of these attributes are

endearing enough to make cast cranks the overwhelming favorite for OEM and mild

performance appl ications.

In creating a forged cranh an entirely different prrcess of metal forming is

used, fittingly referred to as the forging process. In forging a hot chunk of rolled

steel is placed betlveen heavy dies having the pattern of a crankshaft. Under extneme

pressure supplied by a forging presc the metal is squeezed into the crank's basic

shape. The simplest crank forging dies are arranged in a single plane, which produces

a crank forging that has all the crankpins in one plane. To index the crank throws at

90 degrees, the raw forging is trvisted to offset the joumals in two planes to create the

final raw crank blank [9].

An improved forging pnocess involves forging the crank in two planeq so that

all the journals are pressed into their final configuration, eliminating the need to trrist

the crank to index the joumals. The result is fewer internal shesses in the forging as

well as an improved grain flow in the metal. Cranks made with this type of tooling

are referred to as non-twist forgings. Tooling for a non-twis forging is considerably

more complex and less durable than that for a simple flat forging and there is

typically morc excess material to be machined from such a blank to create a finished

crankshaft. Manufacturers producing crank forgings in huge volumes naturally

gravitated to the lower cost and higher tooling life of a flat forgrng. tn the

aftermarket, with smaller production runs and an emphasis on durability for high-end

cranks, non-twist forgings are available for many popular engines [9].



2.2.3 C rankshaft Materials

Crankshafts materials should be readily shaped, machined and heat-treated, and have

adequate strength, toughnesq hardnesg and high fatigue strength. The crankshafts

are manufactured from steel either by forging or casting. Generally automobile

crankshafts were forged in past to have all the desirable properties. However, with

the evolution of the nodular cast irons and improvements in foundry techniqueq cast

crankshafu are now preferred for moderate loads. Only for heavy duty applications

forged shafts are favored. The summary of crankshaft materials for various

applications is tabulated in the Table 1.

Table l: Crankshaft materials and applications

Material Applicrtions

Manganese-molyMenum Steel

rclatively cheap forging steel and is used for

moderate{uty petrol+ngine crankshafts

suitable for both tin-aluminum and lead-

copper plated bearings

2 - 5 7o-N i cke l-chrom ium-

molyMenum Steel

- opted for heavyduty diesel-engine

applications

- slightly morc expensive than manganese-

molybdenum, but has improved mechanical

properties

Nodular/Ductile Cast Irons

- also known as speroidal-gmphite irons or

ductile irons

- have properties of grey cast iron (i.e., low

melting poin! good fluidity and cast-ability,

excellent machinabiliry, and wear resistance)

- have mechanical properties of steel (i.e.,

relatively high strength, hardnesg toughnesg

workability, and harden abil$



2.2.4 Application of Finite Element Method GEfvD in Fatigue

The use of numerical method such as Finite Element Method now a &y commonly

used to gives detail information about structune or component. This method predicts

the behavior that is difficult to find out by theoretical calculation, because large

number of degree of fr,eedom involved in the process. FEM can be used as a tool to

study and analyze fatigue life estimation of crankshaft by computer simulation. Thus,

it can help to reduce time and costs required for prototyping and to avoid numerous

test series when laboratory testing is not available. Various Finite Element analysis

tool such as MSC-Fatigue, ANSYS, and FEMFAT ane cornmonly used now a days

by automobile companies to check durability of their products [5].

Finite Element Analysis (FEA) was performed by Jonathan Williams and Ali

Fatemi [l] on forged steel and cast iron crankshaft to identifi critical location and

investigate the effect of engine speed as well as torsional load on stresses.

Geometries of the two crankshafts were obtained using a digital caliper and a

Coordinate Measuring Machine (CMIO. Both crankshafu were modeled in IDEAS

12 and imported into ABAQUS which was used for the FEA. For the FE model, a

mesh of 122,441quadratic tetrahedral elements was used with a global mesh length

of 5.08 mm and a local mesh length of 0.762 mm at the fillet. In the snrdy, it is
showed that the critical locations on the crankshaft geomety are all located on the

fillet areas because of high stress gradients in these locations which result in high

stress concentration factors.

This study eompar€s the fatigue life prediction methods that have been uscd

in predicting the fatigue life of the crankshafu. One method which is Stness-Life

Method is selected to be used in this study for fatigue prediction purposc. Modeling

and FE was done using ANSYS to identift and justi$ the critical location of the

crankshaft. The crankshafts analyzed in this study are fo.ged steel and ductile iron

crankshaft from one cylinder engine. However, the geometry of these crankshafts

will be simpler from the one that have been used by Williams ct al Il].



2.3 Fatigue-life prediction methods

Traditionally, fatigue life at variable amplitude is predicted by using material

properties from constant amplitude laboratory tests together with the Palmgren-

Miner damage accumulation hypothesis [8].

The three major fatigue life method used in design and analysis are the srras-

life nuthod, the strain-life metlnd and the lircar<lostic trrcture mcclwnic mettrod.

These methods attempt to predict the life in number of cycles to failure, N, for a

specific level of loading. Life of I < N < 103 cycles is generally classified as low-

cycle fatigue, whereas high-cycle fatigue is considered to be N > 103 cycles.

Jonathan Williams and Ali Fatemi [2] have compared to fatigue behavior of

forged steel and ductile cast iron crankshafu from a one-cylinder engine as well

estimated the fatigue life of those crankshaft. Monotonic tensile tests as well as

strain-controlled fatigue tests were conducted using spocimens machined from the

crankshafts to obtain the monotonic and cyclic deformation behavior and fatigue

properties of the two materials. In their study, the procedures and rcsults from

specimen testing are presented and compared, including monotonic tensions,

constant amplitude uniaxial fatigue, and Charpy v-notch tests. A dcscripion of finitc

element analysis (FEA) and result also included. Fatigue life prediction for these two

crankshafts was compared with the result from the component fatigue test The study

showed that forged steel had higher tensile strength and better fatigue performance

than the ductile cast iron. [.oad controlled component fatigue tests werc performed

using the forged stecl and ductile iron crankshafts. For a given bending moment

amplitude, the forged steel crankshaft had a factor of six (6) longer lifc than the

ductile cast iron crankshafu. The fatigue properties from the specimen tc$ weie used

in life prediction of the crankshafts. The study also showed that forged stecl

crankshafu life predictions using S-N approach based on material fatigue test data

provided reasonable, but non+onservative estimation of the component fatigue liveg

as judged by comparison with crankshaft fatigue test data- For the cast iron tre S-N

approach was lcss accurate than for forged steel, but provided a cons€rvativc life

estimate [3].



Chatterly et al- [4] compared the fatigue performance of crankshafts made

from ductile iron, austempered ductile iron (ADI), and forged steel. The ductile iron

and ADI crankshafu werc manufactured to the same dimensions as the forged steel

crankshaft. Each crankshaft was clamped at the two main bearings and a bending

moment was applied by a moment arm attached to one end of the crankshaft. The

crankshafts were tested to 107 cycles or failure. A fatigue limit was established at 106

cycles for the three materials. The results show that when standard fillet rolling

forces arc use4 ADI had ominously lower fatigue stnength than forged steel. Higher

rolling forces improved the fatigue strength of ADI, but were still lowerto forged

steel. However, the study did show that ADI had betrcr fatigue stnength than ductile

iron.

Rahman et al. [5] performed a study on fatigue life prediction of lower

suspension arm using sfain-life approach. The main objectives of this study are to

predict the fatigue life and identift the critical location and to select the suitable

materials for the suspension arm. Aluminum alloys are selected as a suspension arm

material. The structural model of the suspension arm was utilizing the Solid Work.

The finite element model and analysis wer€ performed utilizing the finirc elernent

analysis code. The fatigue life was predicted using the strain-life approach subjected

to variable amplitude loading. The study showed tlrat Ore fillet of the bushing

experiences the largest stresses, wherc the maximum princrpal sitness is maximum.

The study also showed that 7075-T6 aluminum alloy is the suitable material

compared to others material in the optimizafion.

Newman et al. [6] investigate the fatigue life prediction of Ti-6Al-4V alloy

that subjected under various constant amplitude loading conditions on notched and

un-notched specimen. A crack-closure model with a cyclic-plastic-zone-corrected

effective stress-intensity factor range and equivalent-initial-flaw-sizes @IFS) were

used to calculate fatigue lives using only crack-growttr-rate data The stdy showod

that for large crack, load-reduction test method caused elevated thresholds and

slower crack-growth rates than the compression pre-cracking constant.amplitudc

(CrcA) test method. The sudy also conclude that plasicity effect on thc effective

stress intensity factor range werc small, even for very high applied sfess levelq but

the crack-closure transients become dominator for rapid small-crack gronrth.

10



Jensen [7] showed in his study of a V-8 automotive crankshaft tnt the

inertial and gas loads of the engine crpate a multi-axial stess situation in the form of
bending and torsion. This was done through the application of shain gages to the

crankshaft to measurc bending and torsion. Only the morimum torsion and bending

moment were considered and the test was reduced by using the ma:rimum principal

stress theory to a constant amplitude bending test. Resonant bending tests were

conducted on sections of the crankshafts. The fatigue life of the crankslraft was

determined using the S-N approach.

In this projecL the focus will be on the shess-life and strain life metlrcd sincc

these methods have already be implernentcd and has many journal and articles

established using these techniques. The techniques will be studied and oompared to

evaluatc the suitability of the method in prcdicting the fatigue life of the crankshaft-

The rescarch done by Jonathan Williams and Ali Fatemi will be ttc main rpferc,nce

for this project.

11
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3.3 Flow chart

oTopic selection
. Preliminary research

. Fatigue in metal study

. Fatigue failure in engine component research

o Optimization of crankshaft

. Result and Discussion

. Crankshaft operation study

. Crankshaft material and manufacturing processes study

o Fatigue life prediction methods
. Comparison of fatigue prediction method

. Role of FEM in fatigue study

. Learn ANSYS

. Conclusion

14



3.4Work procedures

3.4.1 FatiguelifePrediction Methods

Firstly, preliminary research on fatigue life prediction method will be done to obtain

beneficial and useful information and knowledge necessary for this project. The

information will be collected from joumals, articleg technical papers and reports will

be used as the main reference and guideline for this project. Apart from that, the

result obtained in the research paper can be used as guideline for future works. After

preliminary research is done, one part of the engine will be selected for further study

and simulation purposes. In this projecq crankshaft has been selected for case study

since crankshafts are continuously subjected to repetitive loading during their

operation. The effect of material and manufacturing process of the crankshaft will

also be investigated. The understanding of materials used in the crankshaft is

important because different material will have different fatigue strength. Thug the

study of relationship of crankshaft material to fatigue life will also be done in this

project.

As previously mentioned in the literature r€view, the two most common

methods of predicting the fatigue life will be studied and compared, namely Str,ess-

Life Method (S-nD and Sfain-Life Method (e-M). Only one method will be used to

predict the fatigue life of the crankshaft at given amplitude. However, both

calculation and result of these two methods will be shown in this r€port. In this

project, two types of crankshaft are selected as case study. These two crankshafts are

manufactured using casting and forging proc.esq which is the most common pnocess

used by crankshaft manufacturers. Figurc 4 below show the forged steel and cas[

iron crankshaft.

(a)

Figure 4: Forged steel (a) and

(b)

ductile cast iron (b) crankshafts [2]
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The material properties of forged steel and ductile cast iron material properties are

summarized in the Table 2 below. These properties will be used to calculate the

fatigue life prediction of the crankshafts.

Table 2: Forged steel and ductile cast iron material properties

Monotonic Properties Forged Steel Cest Iron

Average Hardness, HRC 23 l8

Average Hardness, HRB r0r 97

Modulus of Elasticity, E, GPa 22r 178

Yield Strength (0.2o/o offset), YS, Mpa 625 412

Ultimate Strength, Sr, Mpa 827 65E

Percent Elongation, %oEL 54Yo lOo/o

Percent Reduction in Area' o/oRA 58o/o 60/o

Strength Coefficient, K Mpa l3l6 I 199

Strain Hardening Exponent, n 0.152 0.183

True Fracture Strcngth, o1, Mpa 980 562

True Fracture Ductility, eg 87o/o 60/o

Cyclic Propcrties Forged Steel Cast lron

Fatigue Strength Coefficient, or', MPa n24 927

Fatigue Strenglh Exponent b -0.079 -0.087

Fatigue Ductility Coefficient, er' 0.671 0.202

Fatigue Ductility Exponent c -0.597 -0.596

Cyclic Yield Strength, YS', Mpa 505 519

Cyclic Strength Coefficient, K', Mpa I 159 l06l

Cyclic Strain Hardening Exponenq n' 0.128 0.1l4

Source l2'l
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3.4.2 Fatiguelife prediction calculation

Stress Life Method (,S-M

The stress-life approach was the first well{evelop approach for fatigue analysis. It is
suitable to predict fatigue life for applications that involve in a large number of
cycles and has been widery used in automotive industry. Fatigue rife depends
primariry on materiars, roadg environmentar effecs and geometry and it is usuaily
described by s-N curve' The relationship berween the nominal stress amplitde life
can be expressed in Equation (l)

0a = oj(ZN)b (l)

where ao is a stress amplitude, aiis a fatigue coefficieng 2Nlisthe reveals to failures
and b is the fatigue strength component [2].

Strain Life Method (e-Nl

The equation of the plastic-strain is given by

f -r',(r*)'

The equation of the elastic strain is

o+ : ff tzulo

Therefore' from the first equation, we have for the totar-shain ampritude

+=+Qnr)o +e'1(zr'tr)'

(2)

(3)

(4)

where tr/7is the fatigue life; aiis the fatigue strength coefficient; E is the modulus of
erasticity; D is the fatigue strcngth exponent; eiis the fatigue ductility coefficient;
and c is the fatigue ductirity exponent. This equation is arso known as Manson-
Coffin relationship between fatigue life and total strain [l].
These formulas wilt be used to calculate the fatigue life of forged steel and ductile
cast iron crankshafts at given stness or srain amplitude and to obtain fatigue shength
at given cycles.
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3.4.3 Finite Element Analysis (FEA) of crankshafts using AI\ISYS

ln this projecL two crankshafts with difflerent manufacturing methods and materials

are used for further studies. These crankshafts, namely forged steel and ductile cast

iron will be evaluated and compared regarding their fatigue performance using

ANSYS. Finite Element Analysis (FEA) will be performed to identiry critical

locations and to determine the strress concentration factors for purpose of life
prediction. Dynamic load and stress analysis of the forged steel and ductile cast incn

crankshafts werc also performed. The analysis was done and as a rcsult, critical

region on the crankshafts were obtained. The effect of different material used to

manufacture crankshaft will be investigated and discussed. The steps taken to do the

simulation ofthe crankshafts are explained below.

l) Crankhafi geondry and modeling

Figurc 5: Crankshaft dimensions
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F'igure 6: Forged steel and ductile cast iron crankshaft model

l)uc to timc and spccialty constraint. the same geometry will be used lbr both forged

srccl and ductilc cast iron crankshafts. The geometry will be simplified and will be

tlillercnt liorn thc actual gcometry'of the crankshall used as the reference for this

pro.icct. 'l hc cl'lcct ot' dillbrent material is done by changing the material for the

solid ol'thc crankshati gcomctry.

2) Crunkshuft nteshing (CFX- Mesh Method)

F'igure 7: I:orgcd steel and ductile cast iron crankshaft meshing

lhc clcnrcnt sizc ol'this meshing is set to be 5 mm. The meshing resulting in 6193

norlcs and 2(X)ttg numrLLrs of clements produced.
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3) Apply boundary condifions

Figure 8: Boundary condition of forged steel and ductile cast iron crankshaft

The boundary condition is applied according to the test set-up done by

Montazersadgh and Fatemi [2]. The right side of the crankshaft is being fully

constrained. The load was applied either along axis Z or X (as shown is Figure 8)

resulting in strcsses at fillet region.

1) Analysis

Several solutions were selected for comparison purpos€s. To compare the fatigue

performance of forged steel and ductile cast iron crankshafu the solutions used are

Equivalent (von Mises) Stness, and Total Deformation. The result of the analysis will

be presented and discussed in Result and Discussion.
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3.4.4 Optimization of crenkshaft

The purposcs of the optimizations are to reduce the weight of the crankshaft, and

maintain or improve the fatigue performance. The initial geometry of the crurkshaft

is shown in Flgure 6. Using the same boundary conditions and load applied in the

previous analysis, ANSYS software can identiff which arcas tlut can be removed in

order to reduce the weight of the crankshaft.

I) Crankhafi shape rctmvol

Flgurr 9: Crankshaft removal areas

Flgure 9 shows the area of the crankshaft than can bc rcmoved. The removal ofthcsc

arcas will not affect the overall crankshaft operations.
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CHAPTER 4

RESULT AND DISCUSSION

4.1 Fatigue Life Prediction Methods

4.1.1 Stress.life method

The stress-life (-N) method was applied over centuries ago and consider nominal

elastic stresses and how they relate to life. This method is suitable for fatigue

analysis for situations in which only elastic sfiesses and strains are present. The S-N

approach is widely used in especially in design applications where the applied sress

is primary within the elastic range of the material and the resultant lives (cyclic to
failure) are long, such as crankshaft. Since stress-life method is based on stress

levels only, it is the least accurate approach, and does not work well especially in

low-cycle applications. The dividing line between low and high cycle fatigue

depends on the material being considere4 but usually falls between l0 and 105

cycles [16]. However, it is the most traditional metho4 since it is the easiest to

implement for a wide range of applications, has ample supporting data, and

represents high-cycle applications adequately I I ].

To establish the fatigue strength of a material, quirc number of tests are

necesssry because of the satistical nature of fatigue. For rotating-beam test, a
constant bending load is applied, and the number of revolutions (shess reversals) of
the beam rcquired for failurc is recorded. The firs test is made at shess tlut is
somewhat under thc ultimate shenglh of the material. The sccond test is made at a

str€ss that is less than that used in the firsr This process is continued and the rczults

arc plotted as an S-N diagnm [2].

The ordinarc of the S-N diagram is called tlrcfatisue st?tgthS6 a statcrnent

of this strength value must always be accompanied by a statement of the number of
cycles i/ to which it corresponds. S-N diagram can be determined either for a test

specimen or for an actual mechanical element. Even when the material of the test

specimen and that of the mechanical elernent are identical, thenc will be significant

differcnces between the diagrams for the two fifl.
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The Stress-Life (S-N) diagram of forged steel and ductile cast inon are shown in the

graph below. Equation (l) is used to calculate the fatigue life of the crankshafts.

Fatigue limit is defined at 106 cycles.

True Stress vs Revensals to Failure

r00 I

1.E+01 1.E+02 1.E+O3 1.E+O4 1.E+O5 1.E+06

Rcct:db Fa[wc,2ilr

Flgure l0: True stress amplitude versus reversals to failure of forged steel and

ductile cast iron material

Fnom the figure above, at 106 cycleq it indicates ftat the forged stecl has higher

fatigue strength comparc to ductile cast iron. We can see that fte frtigue strmgth of

the ductile cast iron is estimatcd around 280 MPa and for folged sfieel arc 380 MPa.

This shows that the fatigue sfength at 106 cycles for ductile cast iron is about 75Yo of

the fatigue sbength of forged srcel.
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Using the same data from the calculation of stness.life methoq alternating stness

versus cycle for cast iron and forged steel are plotted using ANSYS as shown in

Flgure ll and Figurc 12. The graphs were plotted with log values and mean shess is

negligible.
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From Figure I I and 12, for any given stress amplitude, forged steel material has

higher fatigue str€ngth compare to ductile cast iron. When stress value is set to be at

240 MPa" the number of cycle to failure of ductile cast iron material is 5.6 X ld
cyclewhile forforgedsteel materialis-3./ Xld cycles.Atagivenstressamplitude,

manut'acture a crankshaft using forged steel material offers longer life trat ductile

cast iron material in the high cycle region.

The result obtained from both calculation and simulation using forged steel

and ductile cast iron material shows that the forged steel material possesses higher

tatigue strcngth compared to ductile cast iron. This indicates that manufacture a

crankshatt using forging pnocess provides longer fatigue life than casting process.

Cast iron crankshaft is manufacture using casting pnocess where the material is

poured into the mould and the mould will be broken when everything is cooled

down. When the metal is pourcd into the moul4 it always traps tiny bubbles inside

the metal structurc, resulting inconsistency in metal struchrre. Forging process is

done by hammering a piece of metal to the desirpd geometry or shape. Thus, forging

process produced better consistency and quality in the metal.

Forging process is morc rcliable and less costly. Casting defect occur in a

variety of forms. Because hot working refines grain pattern and imparts high

strength. ductility and rcsisanct propertieq forged product ane mor€ reliable. In

addition, the parts are manufactured without the added cost for tighter prccess

controls and inspection that are required for caSing. Heat treatrnent plays important

role in improving the quality and fatigue pcrformance of the crankshafts. In casting

heat trcatrnent pnocess rcquires close control of melting and cooling processes

because alloy segregation may (rccur. This rezulr in non-uniform hcat tneounent

rcsponse that can affect the straightness of finished pert Forging ofter beffier and

morc predictable rcsponse to heat tr€atment and offer better dimensional stability.

From this comparison, we can conclude that manufrcture crankshafts using

tbrging process is morc prcferable than casting process. Folging prccess can provide

bctter fatigue pcrformance for crankshaft and offer longer senice life for high cycle

applications.

25



4.1.2 StrainJife method

The strain-life method involves more detailed analysis of the plastic deformation at

localized regions wherc the stresses and strains are considered for life estimates. It is

the best approach yet advance to explain the nature of fatigue failure. This method is

based on the observation that in many components, the response of the material in

critical location is strain dependent. When loads are low, stress and strain are linearly

related I t ]. ln this range, strain-controlled and load-contolled test results are

equivalent. For low cycle fatigue, the material behaviors are best model under strain-

controlled conditions.

In applying this metho4 sevcral idealizations must be compounde4 and so

some unceftainties will exist in the resutts. A fatigue failure typically begins at a

local discontinuity such as notch, crach or other area of stress concentration. When

the stress at the discontinuity exceeds the elastic limit plastic strain occurs. If a

fatigue fracture is to occur, there must exist cycle plastic shains U]. Thus, the

investigation of the material behavior subject to cyclic deformation needs to be done.

Most components may appear to have nominalty cyclic elastic shesses but

stress concentrations prescnt in the component may result in local cyclic plastic

deformation. Under these conditiong the local stain-life method uses the local strain

as the governing fatigue parameter. The looal strain-li approach is preferred if the

loading history is inegular and wherc the mean stress and the load sequenc€ cffets

are thought to be of importance [5].

Flgure 13 and l4 in the next page shows the tnre plastic strafuL tnre elastic strain and

total strain amplitude versus reversal to failure for the forged steel and ductile cast

iron crankshafts. Equation (2) and Equation (3) are used to calculate the true plastic

and elastic strain of the crankshafts.
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True Plastic Strain vs Reversal to Failure
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Figure 13: 'l'rue plastic strain versus rcvemals to failure for forged steel and ductile

cast iron materials.
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The total strain amplitude is obtained by adding the plastic strain amplitude and

elastic strain amplitude curves. Equation (4) is used to obtain the total strain

amplitude. Strain-life curves for forged steel and ductile cast iron material are

showed in Figure 15 below.

True Strain vs Revercals to Failure

0.10%

1.E+O9 1.E+12 1.E+15 1.E+18

Rcryersal to Fallurc,2t{f

Figure 15: True strain amplitude versus reversals to failure for forged steel and

ductile cast iron materials

Figure 13 shows that for given plastic amplitude, forged steel has morc than an order

of magnitude longer life than the cast iron. In the Figure 15 above, at given

amplitude, it can be seen that the forged steel provides longer life for both low and

high cycle fatigue region. At long life, forged steel provides approximatcly an order

of magnitude longer life.

Though Equation (4) is a perfectly legitimate equstion for obtaining the fatigue life

of a part when the strain and other cyclic characteristics arc given, it appears to be of

tittle use to the designer. The question of how to determine the total strain at the

bottom of a notch or discontinuity has not been answered. It is possible that strain

concentration factors will become available in rcsearch literature yery soon bocausc

of the increase in the use of finite-element analysis. Morcover, finite element

analysis can of itself approximate the srains that will occur at all points in the

subject stmcturc.
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Figure 14 and 15 below show the superimposed strain versus reversal to failure for

ductile cast iron and forged steel material. The strain curve for both ductile cast iron

and forged steel material are verified using ANSYS. The graphs are shown in

Appendix A4.

Strain vs Reversals to Failure (Cast lron)
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Figure 16: Superimposed strain versus reversal to fiailure for ductile cast iron

Strain vs Reversals to Failure (Forged Steel)
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Figure 17: Superimposed strain versus rcversal to failure for forged seel
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4.2 Finite Element Analysis (FEA) of crankshafts

The finite element method is numerical analysis tochnique for obtaining approximate
solutions to a wide variety of engineering problems. In more and more engin*ring
situations today, we find that it is necessary to obtain approximate solutions to
problems rather than exact closed form solution. In this projecq analysis of forged
steel and ductile cast ircn crankshaft has been investigatcd to detemrine the fatig,e
life performance of these two components. The results arc shown in the figures
below- The value of the equivalent suress, equivalent shain and total dcformation of
the forged steel and ductile cast iron crankshafts will compared and discussod.

4.2.1 Equivalent (von Mises) Strtss

Figurc 18: Equivarent (von Mises) stress of forged sbel cranlshsft
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Figure 19: Equivalent (von Mises) Stness of ductilc cast iron cranksluft

Figure 18 and Figune 19 show the variation of stress magritu& at forgGd sbcl snd

ductile cast iron crankshafu. As previously mentionod in $c medrodologl, thc

boundary conditions are applied according to the tcst sct-up. Fmm thosc figurcs, wc
can see that both crankshafts experience modmum stness valrrc Et trc filla arta
Since the fillet area experience maximurn stness valug the area is ct.qsificd as thc
critical location of the crankshaft (i.e., the area where the fatig,rc failgre is most
likely to occur). The simulation using ANSYS resulted in the samc maximum st.$r
value for forged steel and ductile cast iron crankstrafts which is 149.06 Mpu This is
due to the geometry factor of the crankshaft. For simplification purpossr the sarne
geometry is used for both crankshafts. In the actual applicatioru the designs for
forgod steel and ductile cast iron crankshaft have diftrent geomctry and th.s
resulting in different maximum stness value.
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4.2.2 Total Deformation

Figure 20: Total deformation of forged steel crankshaft

Figure 2l: Total deformation of ductile cast iron crankshaft

The value of the maximum deformation for forged steel is 0.17563 mm and for
ductile cast iron 0.21806 mm. The result indicates that forged steel wilt experience

lower maximum deformation compare to ductile cast iron crankstraft Deformation of
an engine part will reduce the interaction between the pison and the crankshaft. This
will result in wose performance as well as reduce power and less econornic of an

engine. The deformation will also alter the gaps between the intcrconnected par6

causing the distortion of their original shape and surface as well as changing their
relative position [8].



4.3 Optimization of crankshafts

4.3.1 Crankshaft Optimized Geometry

Figure 22: New geometry of crankshaft after shape removat

Figure 23: Equivalent (von Mises) Stness of optimized forged steel crankshaft

Figure 22 shows the final optimization of the forged stoel crankstraft. From the
stress-life estimation and Finite Element Analysis (FEA), the rcsuh strows thu
forged steel crankshaft provides longer fatigue life compared to drrctile cast iron.
Hence, in this section, only forged steel crankshaft will be considered for
optim ization purposes.
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One of the potential modifications for the improvement and weight reduction of the

crankshaft is the addition of compressive residual stress to the fillet area of the

crankpin where the sfiess concentration is maximum and critical aIEa-

Montazersadgh and Ali Fatemi [21] showed that inducing comprcssive rcsidrul

stress increase the fatigue strength of the crankshaft significantly. Based on this

study, the application of residual stress at fillet alea incrcases the fatigue strength by

40%o to 807o, depending on the material properties" the applied force and crankshaft

geometry.

Comparing the value of stress from Figure l8 and Figure 23, it shows that

the maximum strpss value of the forged steel crankshaft is increasing from 149.06

Mpa to 185.6 MPa. However, this increase in shess value is easily compensated by

the beneficial effect of the compressive residual stness from fillet rolling as discussod

earlier.

As previously mentioned in Methodolory, the objective the optimization is to

reduce the weight of the crankshaft. After optimization is done, the weight of the

forged steel crankshaft is reduced by 2oo/o. This was achieved by changing the

dimensions and geomety of the cra,nkshaft counterweight where the shess in that

area is low. The optimization does not change the overall operation of thc crankshaft,

As the total weight of the crankshaft is reduced by 2V/o, the overall cost can also bc

reduced.

Adding filtet rolling was considered in the manufacturing process becausc

filtet rolling can induced comprcssive residual stness in the filla area. As a rcsult, the

strength of the crankshaft will increase and thus significantly irrcreasc the frtiguc lift
of the component.
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CHAPTER 5

CONCLUSIONS

Crankshaft is used in high cycle perfonnance, thus the stness-life (S-nD method

is the most appropriate approach in predicting the fatigue-life performance of

the crankshafts. This method can be very helpful to test fatigue life but only

disadvantage is that the plasticity effect is not considercd and provides poor

accuracy for low cycle fatigue. However, shain life method provides more

detailed analysis involving plastic deformation and useful in low cycle fatigue.

Although this stress life (S-/g method is the least accurate approactL

nevertheless, it is the most traditional metho4 since it is the easiest to

implement for a wide range of applications'

Forging process is proved to have better consistency and quality of metal

compared to casting process. Casting may be a mone economical way to

manufacture a crankshaft but the downside of this mettrod is the bubblc-

trapping problem that may reduce the fatigue strength of the crankshaft-

3) In Finite Element Analysis (FEA) using ANSYS, the critical location is

identified to be at the fillet arca where it experiences the ma:rimum valuc of

stress. This indicates that fillet area is the area which the failure is likely to

occur due to high stress gradient in thes€ locations which result in high shess

conc€ntration. Given the same load applied on the forged *eel and drrctile cas

iron crankshaft, the crankshafts with forged stecl material slrows higher

fatigue str,ength compared to ductile cast iron material and it indicatcs that

forged steel crankshaft offers higher fatigue life'

4) Forged steel crankshaft experience lower manimum deformuion compared to

ductile cast iron crankstraft at the same applied load. This is prcferablc

because deformation can result in poor engine performancc and bccome lcss

economic.

5) Optimizstion of the crankshaft reduced thc weight of the forgcd stoel

crankshaft by 2V/o and can reduce the overall cost.

2)
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APPENDX l: EXAIVIPLE Of CALCIILATIONS

Shess-life method (.Cast Iron)

Formula: o = o;(}N)b

b: -0.087; o'r :927 MPa; o: 100 MPa;

(rrr)-o'0" = ffi,
= 0.L0787

-0.087log2Ny = 1o90.L0787

log2\ = 11.11586

ZNr = 1.3057 X 1011 cYcles

StrainJife method (Cast hon - elastic)

Formula: g_lery

b: -0.087; o'r :927 MPa; E = 178 GP\ LeJ2= l.Wo:0.01

o'01 = ffi(2lv1-ooez
(2il)-o'oez = L-92o2

-0.087 logZNy = logt.92[2

log 2N1 = -3.25678

ZNr : 5.5363 X t0-1 cycles
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APPENDIX 2: STRESS-LIFE DATA

Stress

(MPa)

(2Nr)"

(Cast lron)

(2Nr)"

(Forged Steel)

Log velue

(Cest lron)

Log vdue

(Forged Stee)

100 0.107874865 0.08896797 -o.967079734 -1.05076631l

200 0.2t574973 0.17793594 -0.666049738 -0.7497363t6

300 0.323624595 0.26690391 -0.489958479 -0.573U5057

400 0.431499461 0.35587189 -0.365019743 -0.u870632

500 0.539374326 0.44483986 -0.26810973 -0.351796307

600 0.il724919r 0.53380783 -0.188928484 4.2726ts06t

700 0.755124056 0.6227758 -0.121981694 -0.20566,827r

800 0.86299892t 0.t1174377 -0.063989747 -0.r47676324

900 0.970873786 0.80071174 -0.012837225 4.096s23802

1000 1.07874E652 a.88967972 o.032920266 -0.0507663r l

Stress

(MPa)

Cycle to

Failure,2Nr

(Cast lron)

Cycle to Failurc,

2Nr

(Forged Steel)

Log 2N1

(Cast lron)

Log 2Nr

(Forgcd Stccl)

100 I l.l 1585901 13.30083938 1.305758+l I 1.99912E+13

200 7.65574412 9.490333108 45263081.83 30y2ffi3t
300 s.63170666 7.261329829 42t259.t592 t82528t4.M

400 4.195629228 s.679826834 156m.22703 47U39.2867

500 3.081721032 4.453117809 1207.038249 28386.88961

600 2.17t59t767 3.450823555 r4t.4539533 2823.732sr7

700 1.402088438 2.60339s838 25.239946,98 40t.2322s46

800 0.735514335 1.86932056 5.438940E41 74.01513916

900 0.147554307 1.22t820276 1.404605313 16.66557398

r000 -0.37839386 0.&2611s35 0.4r841393s 4.39t486324
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APPENDIX 3: STRAIN.LIFE DATA

Plastic Strain

Plastic
Strain

Amolitude

(2Nr)'
(Cast lron)

(2Nr)"
(Forged Steet)

Log value (Cast
Iron)

Log velue (Forged
Steel)

O.0l Yo 0.000495 0.000149 -3.305351369 -3.82672252
0.10% 0.0049505 0.00r4903 -2.305351369 -2.E26722s2
1.00% 0.049505 0.0149031 -1.305351369 -t.82672252

10.00% 0.4950495 0.1490313 -0.305351369 -0.82672252
Plastic
Strain

Amnlitude

Cycle to
Failurer 2Nl
(Crst lron)

Cycle to
Failure,2Nr

(Forced Steel)

Log 2N1(Cest
Iron)

Log 2Ns(Forged
Steel)

0.01% 4.74906806 6.409920469 56113.5906 256D25.r2
O.lOYo 3312286/.5 4.734878593 2052.5t552 s4309.8487
1.00% 1.E75504E41 3.059E36717 75.0766/.23 1147.72203

lO.OOYI 0.438723232 1.384794841 2.74614353 24.254610s

Elastic Strain

Plastic
Strain

Amnlitude

(2Nr)'
(Cast lron)

(2Nr)'
(Forged Steel)

Logvrlue (Cest
Iron)

Logvelue (Forged
Steel)

0.01% 0.019201726 0.0t966t922 -1.7t7 -t.7w
o.t0% 0.19201726 0.196619217 -0.717 4.7W
1.00% r.920t726 1.966192171 0.2833 0.2936

10.00% t9.201726 19.66192171 1.2833 r.2936
Plestic
Strain

Amolitude

Cycle to
Failurrc' 2Nr
(Cest lron)

Clcle to
Feilurer 2Nl

(Foreed Steel)

Log 2N1(Crst
Iron)

I,og 2Ns@orgcd
Stcel)

0-01o/" t9.731721M 2t.59967t36 5.39164E+19 3.97E06E+21
0.ro% 8.237468182 8.941443513 t72769939.8 E73863325.7
t.o0% -3.2s678469 -3.716784335 0.000553625 0.000191962

10.00% -14.7510375 -16.37501218 r.774UE-t5 4.21685E-17

Total Strain

Plastic Strein Amplitude Totel Strrin (Cest Imn) Totel Strrin (Forccd StcGIl
0.01 o/o 5.39164E+19 3.97tffE+21
0.10o/o 17277t992.4 873917635.6
l.OV/o 7s.077t9592 1t47.72222

10.00% 2.746143528 24.25464046
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APPENDIX 4: STRAIN.LIFf, CI]RVE OF FORGED STEEL AND DUCTILE

CAST IRON MATERIAL USING AI\SYS

Cast Iron

1.03

2.19c-2

.la
T

$r,es.-r
{
{.
t ssrcs
Ia
!
UI

2,1.-7

4.il5c-9

ia
3

$rrr.-:
{al.
.t r.l.e
Tat0

1.93c5

lEZc-l

l.c.t

Forced Steel

256

9.86.-2

631c.3 1.5Ea.6 3.$c.E !.c+tl
Rcrrcr* to f*rc. 2ll llog tcJcl

631c.3 1.tEc.6 3.$..E tr+ll
Racr*toFlre,2tllbgrd

I

25.r


