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ABSTRACT

In facing many operation challenges such as increased expectation in bottom line
performances and escalating overhead costs, petrochemical plants nowadays need to
continually strive for higher reliability and availability by means of effective
improvement tools. Reliability, maintainability and availability (RAM) analysis has
been recognised as one of the strategic tools to improve plant’s reliability at operation
phase. Nevertheless, the application of RAM among industrial practitioners is still
limited generally due to the impracticality and complexity of existing approaches.
Hence, it is important to enhance the approaches so that they can be practically

applied by companies to assist them in achieving their operational goals.

The objectives of this research are to develop frameworks for applying reliability,
maintainability and availability analysis of gas processing system at operation phase
to improve system operational and maintenance performances. In addition, the study
focuses on ways to apply existing statistical approach and incorporate inputs from
field experts for prediction of reliability related measures. Furthermore, it explores
and highlights major issues involved in implementing RAM analysis in oil and gas

industry and offers viable solutions.

In this study, systematic analysis on each RAM components are proposed and
their roles as strategic improvement and decision making tools are discussed and
demonstrated using case studies of two plant systems. In reliability and
maintainability (R&M) analysis, two main steps; exploratory and inferential are
proposed. Tools such as Pareto, trend plot and hazard functions; Kaplan Meier (KM)
and proportional hazard model (PHM), are used in exploratory phase to identify
critical elements to system’s R&M performances. In inferential analysis, a systematic
methodology is presented to assess R&M related measures. The use of field expert’s

knowledge is also explored as an alternative approach in the estimation process when

vii



the available data are found inadequate. Here, a methodological framework on
elicitation of expert input to assess distribution is proposed and demonstrated. For
availability analysis, a simulation approach based on Monte-Carlo is presented to
evaluate system’s availability and what-if scenarios for various options to help

management make strategic decisions and actions.

This research has demonstrated that the proposed frameworks for applying
reliability, maintainability and availability analysis are effective and practical in
analyzing gas processing system and can be used as a strategic tool for improving

system operational and maintenance performances.
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ABSTRAK

Dalam menghadapi pelbagai cabaran operasi seperti peningkatan jangkaan
keuntungan and kos operasi, kilang petrokimia hari ini perlu berusaha berterusan
meningkatkan kebolehpercayaan dan ketersediaan melalui alat penambahbaikan yang
berkesan. Analisa kebolehpercayaan, kebolehsenggaraandan ketersediaan (RAM)
telah diiktiraf sebagai salah satu alat strategik meningkatkan kebolehpercayaan kilang
di fasa operasi. Sungguhpun begitu, aplikasi RAM dikalangan pengamal industri
masih terbatas umumnya disebabkan pendekatan sedia ada tidak praktikal and terlalu
komplek. Oleh itu, adalah penting untuk meningkatkan pendekatan tersebut supaya ia

dapat di praktikkan oleh syarikat dalam membantu mereka mencapai sasaran operasi.

Tujuan penyelidikan ini adalah untuk membangunkan kerangka kerja untuk
mengaplikasikan analisa kebolehpercayaan, kebolehsenggaraan dan ketersediaan
keatas system pemprosesan gas semasa fasa operasi dalam meningkatkan pencapaian
system operasi and penyelengaraan. Disamping itu, kajian in menfokus kepada cara
untuk mengaplikasikan pendekatan statistik sedia ada dan memasukkan pengetahuan
pakar medan dalam membuat jangkaan bagi pengiraan berkaitan kebolehcayaan.
Selain itu, kajian ini meneroka dan menengahkan isu utama dalam perlaksanaan

analisa RAM di industri minyak dan gas dan mencadangkan jalan penyelesaian.

Di dalam penyelidikan ini sistematik analisa bagi setiap komponen RAM
dicadangkan dan peranan mereka sebagai alat yang strategik dalam proses
penambahbaikan and membuat keputusan dibincang dan didemontrasikan melalui
kajian kes berkaitan dua sistem di kilang. Di dalam analisa kebolehpercayaan dan
kebolehsenggaraan (R&M), dua langkah utama; eksploratori dan inferensi diusulkan.
Teknik seperti Pareto, plot trend dan fungsi risiko; Kaplan Meier (KM) dan model
risiko berkadar (PHM), digunakan di fasa eksploratori untuk mengenalpasti elemen
kritikal kepada prestasi R&M sistem. Untuk analisa inferensi, kaedah sistematik
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dibentangkan bagi menentukan pengukuran berkaitan R&M. Pengunaan pengetahuan
pakar medan juga di ekplorasi sebagai jalan alternatif dalam proses penganggaran
apabila data sedia ada tidak mencukupi. Di sini, kerangka kaedah untuk elisitasi pakar
medan dalam menilai distribusi dicadang and didemontrasikan. Untuk analisa
ketersediaan, pendekatan simulasi Monte-Carlo di kemukakan dalam menilai sistem
ketersediaan dan senario apa-jika bagi pelbagai pilihan untuk membantu pengurusan

membuat keputusan and tindakan yang strategik..

Hasil penyelidikan ini menunjukkan kerangka analisa yang dicadangkan untuk
mengaplikasikan analisa kebolehpercayaan, kebolehsenggaraan dan ketersediaan
adalah efektif dan praktikal dalam menganalisa system pemprosesan gas disamping
boleh digunakan sebagai alat strategik bagi meningkatkan pencapaian sistem operasi

dan penyelengaraan.
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CHAPTER 1

INTRODUCTION

1.1 The Challenging Business Operation

Petrochemical plants nowadays are under increasingly pressure to drive improvement
in operating margins and profitability due to internal and external factors. The
management of plant is getting more challenges due to increasingly high expectation
to operate with higher revenue and minimum loss. Issues such as escalating capital
and operation cost, intense competition, tighter budget, narrower profit margin,
stricter environmental regulation, depletion in world’s oil and gas reserve, and
instability in world economy, all put immense pressure on plant management to make
sure that the plants are running reliably, safely, efficiently and profitably. It is
paramount that plant equipment operates with high reliability, safety and minimum
downtime with the optimum operation cost and at the same time meeting high
demand of production, safety and environmental goals. Recent incident of oil spills in
Gulf of Mexico that caused an estimated of USD 23 Billion loss to British Petroleum
(Macalister, 2010) was an excellent example where equipment reliability has high
impact on organization’s profitability. It was reported that the disaster was partly due
to the failure of blow out preventer equipment which fails to activate during the event

(“BP Releases Report on Causes of Guif of Mexico Tragedy”, 2010).



Table 1.1: Main processes for production assurance and reliability improvement at
Operation phase (ISO 20815:2008)

Processes

Objectives

1. Reliability assurance

Perform planning, reporting and follow up of
the production assurance activities to manage
and demonstrate production assurance.

2. Project risk management

Ensure that all risk elements that could
jeopardise a successful execution and
completion of the project are identified and
controlled in a timely manner

3. Performance tracking and
analysis

Collect and analyse operational performance
data to identify potential improvement
potentials and to improve the data basis for
future production assurance and reliability
management activities.

4. Management of change

Ensure that no changes compromise the
reliability performance requirements.

5. Reliability improvement and risk
reduction

1. Identify the need for improved system
reliability performance or reduced risk is a
project to ensure that performance goals are
not compromised

2. Identify and communicate potentials for
improved equipment or system reliability or
risk reduction to the system or equipment
manufacturers based on tracking and analysis
of performance data

6. Organisational learning

Ensure that product and process failures of the
past are not repeated.

With all of these challenges occurring, many organizations are urgently seeking

for an effective and innovative approach to continuously drive improvement in plant’s

reliability and performance in order to keep profitable, even for a stable and

considered high performance plant.

A general approach for achieving such

improvement at each phase of plant lifecycle has been proposed and outlined in the

ISO 20815 (2008). Table 1.1 describes six key means that management should focus

on to drive improvement at operation phase. To drive profitability, an organization

needs to strive for continuous improvement through utilization of effective tools and
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techniques that can identify and quantify potential areas for saving and be part of the
decision making process. Several improvement programs have been rolled out as part
of strategic initiatives by mahagement to propel plant’s performances, which include
Total preventive maintenance (TPM); Reliability centred management (RCM); bad
actors management; Root cause failure analysis (RCFA) and Reliability, availability
and maintainability (RAM) analysis. Among them, RAM is increasingly getting
popular and becoming a standard tool in process industry since it focuses directly on
asset optimization and reduction in maintenance cost (Shaikh and Mettas, 2010).
According to William (2001) RAM is considered the main area for plant profitability
improvement besides yield. With regards to six important areas for reliability
improvement, RAM approach specifically addresses key items no 3; performance

tracking and analysis and no 5; reliability improvement and risk reduction.

1.2 Why Need RAM?

RAM study has been applied throughout the oil and gas industry to serve as a
quantified mean to assess plant operational issues and a strategic tool for management
to increase plant availability and performances. Improvement in availability, even
small, as is turn out is a significant variable for maximizing plant profitability. As
pointed out by Sutton (2010}, an increase of availability by mere 1% (i.e. 95-96%)
will eventually drive higher profitability since normally the 90% of availability
covers all the production cost, whereas profit normally in range of 90 -100%
availability. In improving plant operational performances, RAM plays these critical

roles:

* RAM analysis identifies, measures and ranks plant weak points with respect to
failure and downtime that affect plant availability, leading to a basis for
making effective solutions and actions to enhance plant availability.

* RAM analysis can estimate system availability and assess various alternatives
and configurations on the basis of quantitative benefits in order to achieve the
best option or action for improving system availability. Some of these options

include equipment capacity/reliability, upgrading, redundancy, maintenance



strategy, spare part allocation policy, manpower strategy and competing

solutions.

» RAM approach provides a decision support tool for management to effectively

align operational decisions with organization’s objective. These decisions are

based on technical and operational measures which could be applied by

management to increase plant performances based on recommendations of

RAM study. A list of these measures is shown in Figure 1.1.

* RAM analysis presents a systematic approach of effectively analysing plant

failure and maintenance data, which are abundant but usually not fully

exploited, as a vital source for monitoring plant performance and driving

continuous improvement activities.

The financial benefits gained from effective RAM analysis projects are

tremendous. William (2001) estimates that the opportunity for RAM contribution to

refinery profitability improvement without additional capital investment is 0.10-0.20

USD/bbl, where for poorer performance can even reach 1-2 USD/bbl. Other examples

of reported financial gains from RAM study are highlighted in Table 1.2, which cover

a wide spectrum of industrial sectors, applications and values.

Operational

Measures

Technical
Measures

Choices of technology

Redundancy at system level
Redundancy at equipment or component level
Functional dependencies

Capacities

Instrumentation / automation philosophy
Material selection

Selection of make

Protection from environment

Reliability testing

Self-diagnosis

Buffer and standby storage

Bypass

Spare parts

Maintenance strategy

Maintenance support

Figure 1.1: Different degrees of measure for plant improvement (adapted from ISO

20815:2008)



Table 1.2: Reported RAM benefits

Plant Reported improvement
1. Ethylene Development of availability modeling successfully pinpointed
plant in US improvement areas to increase the plant’s on-stream factor,

hence assisted the plant in increasing its annual revenue by $1
million (ARINC, n.d.).

2. Petrochemical
plant in
Thailand

RAM program had identified opportunities in increasing plant
reliability from 93% (2003) to 95.4% (2004) and reducing
maintenance cost by 10% throughout the program to assist the
plant to achieve $2 million profit improvement goal by 2005
(KBC, 2005).

3. LNG plant in
Egypt

RAM modeling had assisted the plant to increase production
of LNG export and domestic gas supplies by 7% through
quantification of critical system contributors to production
loss (GL Noble Denton, n.d.).

4. Angostura oil
and gas
facilities,
offshore
Trinidad

RAM study on improved gas availability due to the dedicated
gas processing platform and provision of additional
compression capacity indicated that significant cost-benefit of
approximately $46 MM and 5 bef deferred gas savings. could
be realized through the purchase of a spare compressor bundle
(IRC, 2009).

5. Nuclear
power plant in
Ontario, Canada

RAM analysis to improve turbine generator availability
successfully saves an estimated maintenance cost of USD 3.5
million annually through more effective plant maintenance
program {Cockerill, 2005).




1.3 Challenges and Issues of RAM studies at Operation Phase

Based on literature review and industrial feedback, several challenges are identified
and should be considered when planning and executing RAM study for any system or
plant in oil and gas industries. Getting sufficient, consistent, high quality and integrity
plant reliability data is quite difficult and challenging task, and has always been a
major concern in many reliability studies at operation phase (Madu, 2005). The
success of any plant reliability study depends highly on quality and availability of
failure data and on suitability and accuracy of the various assumptions that will be
used (Rossedi, 2006, Scully and Choy, 1993). Insufficient data leads to many
assumptions being adopted in the reliability study, which in turn increases degree of
uncertainties in the analysis results. Alternatively other sources of data such as
generic industrial standard, handbook and database are being used widely to fill in
missing data. Important concern related to this application is on compatibility of such
data to represent actual system under studied. OREDA handbook for example, is
limited to offshore applications (Vinnem, 2007) where its data come mainly from
offshore installations in the UK and Norwegian sectors of North Sea yet it has been
applied widely for study of chemical and refinery plants, and offshore platform

systems in other regions.

Another issue is related to the complexity and dynamic nature of system. Many
problems related to plant system nowadays are complex due to high and increased
degree of complexity in the system with its multi-systems and network system which
consist of hardware, software, organizational and human components and their
interrelationships (Zio, 2009). The representation and modelling of the complexity of
such system poses a challenge to RAM study due to possibly increase in uncertainties
associated with system characteristics and their modelling. Uncertainties also derive
from lack of knowledge about system failures and causes, and understanding of

system dynamic performance as a result of system aging or improvement.

Despite various benefits associated with RAM, the adoption of this approach as a
strategic tool for plant management particularly in the maintenance section, is far
from satisfactory. Numerous research papers have been published related to reliability
theory and model and have claimed their roles in resolving various issues related to
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real system in industrial. Nevertheless, many of them fall short in providing the

practical solutions to the real problem faced and attracting industrial people to use

RAM for driving improvement in plant performances. The reasons can be traced back

to the nature of the RAM approach used in the research. From the literature, the

following issues have been identified as key factors:

1.

Focus too much on modelling ~ Scraf (1997) cites that many research papers
put less emphasis on the practicality and worthiness of the technique in the
real applications. Instead, the focus are more on model development and then
find the applicability of the model rather than the effort on solving real
problem in the plant. Michelsen (1998) stresses that much of the effort has
been made to develop system models to perform overall assessment of system
instead of a simple and practical approach to solve specific problem
experienced by industry, which is more needed. Bazu and Bajenescu (2011)
point out that many mathematical approaches on reliability issues are
restrictive and producing cryptic results since they are developed mainly by
statisticians. There is a vast tendency among researchers to apply complicated
mathematical model even when it can be solved with a fairly simple model
(Ansell and Philips, 1994). According to Scarf (1997), the development of
more and more complex model are done generally for the sake of novelty,
which ends up making the model more obscure instead of striving for clarity
and simplicity. Many mathematical models developed stay only at theoretical
and are not being used in the industries due to difficulty to find real problem
suitable for the models (Dekker, 1996). Researchers should avoid over-
parameterization of the models which often are too detailed for their
application to be practically feasible (Zio, 2009). Furthermore, the use of
complicated model is not going to attract much interest in industry since they

normally prefer more tractable and simpler model and approach.

Less focus on data gathering process — many studies are also found not paying
much attention on proper plant data gathering and analysis methodology, a
critical step in RAM study. Substantial improvement in reliability can only be
realised when an appropriate system to collect actual failure data and repair

times exist (Barringer, 2004). This raise issues such as quality, adequacy and
7



integrity related to data which make it rather difficult to develop plausible
model and validate it. As a result, flawed assumption such as constant failure
rate is made without first conducting sufficient analysis on maintenance data,

even though it is in reality not necessarily true.

3. Pessimistic estimation results — finding on some of RAM results studies shows
that they tend to be too pessimistic compared to the actual plant performance
due to the use of conservative data and  assumptions in the analysis
(Michelsen, 1998). This pessimistic result does not reflect the existing
performance thus cannot be effectively integrated with decision making

process.

RAM poor acceptance is also contributed by piant personnel attitude towards
reliability based studies. Reliability is always hard to sell to plant management and
maintenance since they generally have weak tradition in reliability application, skills
and competency, doubt of cost-effective strategy for maintenance optimisation, and
tendency to discard the validity of generic type information to evaluate their specific
equipment (Michelsen, 1998). The implementation of reliability studies can also be
impeded by other constraints such as cost, policy, schedule and certain problems
related to the existing system inherent reliability (Keller-McNutty and Wilson, 2003).
Many organizations, due to lack of internal expertise, will have to resort to employing
external consultants for conducting such analysis, which sometimes can be quite

expensive.

To conclude, the pertinent issues relating to existing approach of reliability,

maintainability and availability analysis at operation phase are:

1. It suffers from limited practical applicability mainly due to the use of
complicated mathematical model and impractical methodology. Consequently,
many industrial practitioners shy away from the approach and hence fail to
realize and capitalize its full potential as a strategic analysis tocl for driving

improvement in plant performance.



2. Generally, it has fairly limited involvement of expert personnel during analysis
process. The role of expert is basically secluded only on data gathering and

verification processes.

3. There is still a lack of case studies on analysis on real problems against myriad
of issues faced by oil and gas industries. In many case studies, generally the
approach is not presented in details and uses inaccurate assumption such as

constant failure and repair rate.

1.4 Motivation of the Study

To increase the applications and decision tool roles of RAM related analysis in
industry, the identified issues above have to be addressed and the gap between theory
and industrial practicality need to be reduced. Research studies should be more focus
on solving real and specific problem faced by industry using more practical approach
(Michelsen, 1998). In doing so, more research based on cases studies are much
needed in which collaboration can be made with industry by engaging plant
management and engineers to work together such that more details and effective data
collection, realistic model and practical results can be achieved. The existing
literatures are still exhaustive to present all kind of issues in plant due to increasing
complexity and dynamic nature of today’s system. There is no single technique can
sufficiently cover all plausible conditions, problems and complexity of the real world
system (Ansell and Philips, 1990), hence more case studies based on real industrial
experience is deem necessary to explore other issues untouched and render

appropriate approach to tackle these issues.

The use of tractable and non-complicated models, yet sufficiently capable of
resolving problem should be pursued since they can be applied widely even by non-
experts in industry. As for industrial people, more open-minded attitude is needed
with regards to resources (investments and manpower) allocation for reliability
studies and managing proper maintenance data (Zio, 2009), taking into consideration
benefits gained from the analysis. More exposure to RAM techniques and its

potentials should be given to plant management to change their mindset on RAM
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analysis role as a strategic management decision tool. Another important point is on

the need to analyse existing maintenance data more effectively and realise their

significant roles in supporting plant improvement plan.

1.5 Research Objective

The following are the objectives of this research:

l.

To develop a framework for applying reliability analysis of gas processing
system at operation phase to improve system operational and maintenance

performances

To develop a framework for applying maintainability analysis of gas
processing system at operation phase to improve system operational and

maintenance performances

To develop a framework for applying availability analysis of gas processing
system at operation phase to improve system operational and maintenance

performances

To address the existing issues with RAM analysis, the proposed frameworks will

incorporate the following main elements:

Effective and intensive utilization of plant reliability and maintenance data —
Highly abundance data exist in the plant should be used as the prime source of

RAM study and critical information on system performance.

Applications of practical, non-complex yet tractable method to achieve the
objective of analysis — The use of simple and practical method will attract
more interest from industrial practitioners leading to increase in its

applications in industry.
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o FExploitation of expert opinion as an important data input — Expert opinions
can play significant roles in strengthening data analysis process making the

results more relevant and realistic.

o Applications of simulation method to achieve best options of system
configurations — Simulation method has been found to provide the best
approach to analyse complex system with stochastic equipment and evaluate

performance of the existing system with various conditions.

» Applications of statistical techniques for analysis and decision making process
— The use of statistical-based decision making will increase management and
engineers’ competency in solving problems and driving plant improvement

activities.

This research contributes to the general knowledge in reliability field by
presenting a general framework for conducting RAM analysis at operation phase. This
framework adds to and enhances the existing approaches by providing feasible and
detailed means for analysing plant maintenance field data. It also provides plant
engineers and management with the essential tools for continuous improvement and
decision making strategies.This research also highlights some real issues faced during
the study such as lack of field data and offers innovative solutions to overcome them.
The roles of field experts in the analysis process have also been enhanced particularly

in the maintainability study for eliciting downtime measures.

1.6 Research Scope

The research work covers the analysis of failure and maintenance data of system at
gas processing system. The scope of the study was limited to assessment at system
level primarily due to the limitation of related field data at component level.

Furthermore, the application of the analysis is also limited to the operation phase.
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1.7 Thesis Outline

A brief description on applications, approach and techniques of RAM analysis at
operation phase is presented in Chapter 2. Apart from that, this chapter discusses the
reliability and statistical theory related to RAM analysis, to serve as a foundation for
subsequent case studies analysis. Chapter 3 discusses proposed frameworks for
applying RAM analysis used in the research. In this research, a RAM analysis is
broken down into three component of studies; reliability, maintainability and
availability. Reliability and maintainability studies can be done separately and on their
own, whereas availability calculation requires combination of reliability and

maintainability parameters as its inputs.

The foliowing three chapters (Chapters 4, 5 and 6) present detailed analysis on
real industrial problems based on the proposed frameworks for each RAM study
component. Chapter 4 describes reliability analysis approach used for an analysis of a
gas compression train system at offshore platform. The maintainability analysis
approach of the same system is addressed in Chapter 5. In this analysis, both planned
and unplanned system downtime are investigated. In Chapter 6, the availability
simulation studies of the similar system and an acid gas removal unit (AGRU) system
in gas processing plant are discussed. Finally, the conclusions and recommendations

of this thesis are presented in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of various techniques applied in RAM study of
plant system at operation phase. Basic concepts of reliability, maintainability and
availability, and general approaches to system analysis are also discussed to provide

the basis for the proposed analysis methodology applied in this research.

2.2 RAM Application in Operation Phase

Numerous researches on RAM related studies during operation phase of
petrochemical and power plants have been reported in literatures covering a wide
range of applications, objectives, and areas i.e. systems, subsystems and equipment.
The availability of a natural gas plant was studied by Bosman (1985) to determine the
optimum cost configurations of number of compressors. Rotab Khan and Zohrul
Kabir (1995) estimated improvement in ammonia plant‘s availability through some
modifications in plant design and changes in overhaul interval. Reliability data
analysis and modelling approach was applied by Wang and Majid (2000) to model an
offshore oil platform plant and investigate the effectiveness of preventive
maintenance interval. Rajee er al. (2000) discussed applications of availability
analysis on a critical pumping system in the crude distillation unit (CDU) of a refinery
to assist maintenance in deciding on optimum repair strategy. AlSalamah et al. (2005)
modelled and examined the reliability and availability of the cooling sea water

pumping which supply sea water to refineries and petrochemical plants. Sikos and
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Klemes (2010) conducted a study on effective modelling and optimisation of heat
exchanger network maintenance and reliability. Shaikh and Mettas (2010)
demonstrated the application of RAM analysis on a natural gas plant. The study on
reliability of boiler feed system of a large power plant was presented by Sculli and
Choy (1993). Arora and Kumar (1997) performed availability study to identify critical
components of steam and power generating systems in a thermal power plant.
Equipment criticality of heat recovery steam generator (HRSG) installed in combined

cycled power plant was evaluated by Carazas et al. (2010).

2.3 RAM Modelling Approach

For analysis of a system, there are various methods that can be applied to achieve the
objective as described in Figure 2.1. For petrochemical plant it is neither economical
nor feasible to conduct real experiment on the physical system after the plant has been
commissioned to avoid unnecessary issue with the plant operation. The construction
of physical model will usually incur high cost thus also is not a good option. Hence,
the best option for RAM analysis involves utilization of mathematical model of the

system under studied.

System
| I
Experiment with Real Experiment with model
system of the system
|
Physicalmodel Mathematical model

|
| |

Analytical Simulation
approaches approaches

Fig. 2.1: Various methods of analyzing system (Law and Kelton, 2000)
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Mathematical model can be those of analytical or simulation techniques. Sathaye
et al {2000) expand this classification to include hybrid approaches, a combination of
analytical and simulation parts. In analytical approach, the system characteristic is
modelled by set of equations. The evaluation is performed by solving these equations
either based on closed-form or numerical solutions. Example of analytical techniques
include event tree, fault tree, reliability block diagram (RBD), Markov and Petri-net
analysis. Simulation approach uses discrete-event simulation technique such as Monte
Carlo to describe more details of system conditions, simulate system dynamic

behaviour and evaluate the required performance measures (Sathaye et al., 2000).

2.3.1 RAM Techniques at Operation Phase

ISO 201815 (2008) describes various methods and techniques that can be applied to
assess the reliability and availability of the operating system. These techniques are

briefly described below.

2.3.1.1 Failure Mode and Effects Analysis (FMEA)

FMEA is a systematic methodology of evaluating inherent reliability of a system by
considering potential failure modes of each component comprising a system and
evaluate their effects on the system’s reliability. Based on the effects, the criticality of
each of the failure mode can be assigned and appropriate corrective actions can be
taken to reduce the chances of failure (Davidson, 1994). FMEA is a ‘bottom up’
analysis and can be performed at any level of assembly. The analysis can be based on
a hardware and functional approach (O’Connors, 2002). In the hardware approach, the
hardware failure modes are considered, while in the functional approach the
functional failures such as ‘lost of memory’ is used. FMEA can also be used as inputs
to FTA (Fault tree analysis) and RBD, and vice-versa. While it is usually applied in
early stage of system design, FMEA can also be applied on existing system to focus
on problem areas related to system reliability, safety, availability, maintainability, or

logistics support (Rausand and Hoyland, 2004, ISO 20815, 2008).
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2.3.1.2 Fault Tree Analysis (FTA)

FTA is one of the most widely used tools for risk and reliability assessment nowadays
(Rausand and Hoyland, 2004). It was first introduced by H.A. Watson of Bell
Telephone Laboratories in early 1960s to conduct analysis on the Air Force
Minuteman Missile Launch Control System and later enhanced and adopted by other
industrial sectors such as aviation, nuclear, petrochemical and computer software
(Ericson, 1999). FTA is used to identify all possible causes of a particular system
failure mode and provides a basis for determining the probability of occurrence for
each system failure mode (Davidson, 1994). In the FTAa failure event of the system is
first specified and then the system is analyzed in the context of its environment and
operation to identify all plausible ways in which the failure can occur (Vesely ef al.,
1981). Graphically, FTA displays the logical relationship between the top event (a
specified system failure mode) and the basics events (basic failure causes) via various
gate symbols (Rausand and Hoyland, 2004). Besides providing a qualitative or
quantitative mean of analyzing system reliability, FTA offers the following

advantages to the analyst (Davidson, 1994):

e assist in identifying the failure or parts of system which have high

influence on system’s reliability and performances
e enable the analyst to focus on one system failure mode at a time

e provide a clear and concise means of presenting reliability information to

management
o allow failures related to human and no-hardware factors to be evaluated

Although FTA is usually best used during the design and configuration stages of a
project where changes for improvements can easily made (Barringer, 1996), it is also
being applied widely at operation phase in availability assessment purpose. FTA also
has some practical limitations. To be successful, the analysis need to followa strict
methodology approach which normally demands more time and efforts. At operation
phase, where field data is preferred, missed and unrecorded causes on certain failure

modes may bias the calculated likelihood resulting in inaccurate estimation (Bichou,
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2010). Other issues include the assumption that the failure is random, statistically
independent and not caused by a sequence of events, which are not true in some
applications (Lazzaroni ef al., 2011). For example, some common causes may not be
independent hence might exaggerate the chances of system’s failure. Similarly, the

occurrence of failures sometimes can be induced by sequence of events.

2.3.1.3 Reliability Block Diagram (RBD)

RBD is a success-oriented network describing the logical reliability-wise connections
of functioning components required to meet a specified system function (Rausand and
Hoyland, 2004). When a system has many functions, separate RBD has to be built for
each function. RBD consists of blocks that are connected through two basic
topologies namely series and parallel, which represent the logical relationship
between blocks from a reliability standpoint (DOD, 2005). Based on these logic
connections, more complicated system configurations such as series-parallel and k-
out-of-n voting system can be generated and analysed (Yang, 2007). A block,
depending on the analysis purpose, may represent a component, a module, or a
system. Since it physical details are not shown, a block is considered as a black box
where the reliability of item that a block represents is the only inputs that matters the
evaluation of system’s reliability (Yang, 2007). In a series arrangement, any block
failure will cause the system to fail. In a parallel configuration, however, the system
will not fail as long as a given number of alternatives path are functioning. For a
complex system, the represented RBD is normally consists of many blocks with
combinations of series and parallel configurations. The constructed RBD is not the
same as the physical layout of the system since it’s based on logic diagram describing
the function of the system (Rausand and Hoyland, 2004). Generally, RBD is primarily
used for reliability prediction of non-repairable system. The approach has limitations
when it is used to analyze system having different failure modes, external events i.e.
human factors and priority of events (Verma et al., 2010). Nevertheless, recent
comparative study indicates that RBD technique has been the most intuitive approach

for RAM analysis among industrial practitioners (Shaikh and Mettas, 2010).
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2.3.1.4 Markov Analysis

Markov analysis has been used widely for reliability and availability assessment of
large, multi-states and dynamic systems. The reasons are mainly due to its simplicity
and the quality of existing data which is commonly available in mean lifetimes of
components and mean repair time (Ansell and Phillips, 1994). Markov can analyze
system behaviour thoroughly and incorporate details such as repair strategies,
capacity loss and partial failures, hence suitable for analysis of complex and
repairable system (Bauer et al., 2009). Markov analysis steps in principle can be

summarized as follow (Pintelon and Puyvelde, 2006):
1. Identify of all system possible states
2. Determine and quantify all possible transitions between these states
3. Establish appropriate system of differential equations or transition matrix

4. Compute the probability of respective state by solving the difference equations

or multiplying the relevant probabilities
5. Determine the limiting conditions of the probabilities

Ericson (2005) argued that Markov technique is not that simple since it involves
rather detailed mathematical model of the system failure, transition and timing states
hence its application requires analyst to have good understanding of technique’s

methodology and assumptions. Other limitations on Markov analysis include:

» The probabilities of changing from one state to another is assumed constant,
hence indicating that the technique can only be applied when a constant failure

rate situation is justified (O’Connors et al., 2002)

*  The future states of the system is also assumed independence of all past states
excluding the immediate preceding state. For repairable system, it means that
the system is assumed to be in ‘as good as new’ condition after each repair

action (O’Connors ef al., 2002)
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= The assumption of stationary transitions probability used in Markov process
means that the technique is not suitable for modelling a system where the
transition probabilities are influenced by long-term trends (Rausand and

Hoyland, 2004)

For large systems, Markov model can be complicated, hard to construct, compute
and validate. It is also may be exceedingly large leading to a state space explosion
problem (Buck! et al, 2007). The number of states in Markov modelling increases
exponentially with the number of state variables hence make it difficult to solve

analytically even with the advanced in computer technology (Grassman, 2000).

2.3.1.5 Monte Carlo Simulation

Monte Carlo (MC) simulation, first developed in 1940s at Los Alamos National
Laboratory for investigation of US atom bomb, is a numerical technique based on a
probabilistic interpretation of quantities obtained from algorithmically generated
random variables (Birolini, 2010). This technique has been applied in a wide range of
disciplines such as applied mathematics, economics, science and engineering. MC
simulation is found extremely useful in reliability and availability prediction and
analysis since it provide means and flexibility to evaluate complex system, describe
realistic aspects of system behaviour and consider various significant factors
affecting system performances, which can be difficult or impossible to be captured
and evaluated using analytical approach (Marquez et al., 2005, Zio et al., 2006).
These factors include redundancy, K-out-of-N, maintenance actions with stochastic or
deterministic characteristics, equipment degradation and aging, repair groups and
priorities. MC simulation approach utilizes randomly generated samples of the input
variables for each deterministic analysis, and estimates response statistics after several
repetitions of deterministic analysis (Haldar and Mahadevan, 2000). In general, this

process involves four main steps (Sokolowski, 2010):

i.  Define a distribution of possible inputs for each input variable
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il.  Generate inputs randomly from those distributions using

random number generator
iii.  Conduct a deterministic computation using that sets of inputs

iv.  Aggregate the results of the individual computations into the

final result

Despite having numerous advantages, MC simulation technique also has few
limitations. The analysis process may consume longer time, effort and money, and
over simplification can result in simulation or result not sufficient for the task (Banks
et al., 2010). Additionally, the simulation is highly dependent on computer simulation
program, where the program itself may set certain limitations (Rausand and Hoyland,
2004). Nevertheless, with the advances in computer hardware and software
technology, faster simulation can be performed and more advanced simulation
packages can be developed that permit rapid running of more complex scenarios

(Banks et al., 2010).

With various advantages of simulation approach, there is a great tendency to
combine analytical techniques with Monte Carlo simulation method in the study of
reliability and availability. Some the related studies include those by Wang and Pham
(1997), Ejlali and Miremadi (2004), Zio et al. (2006) and Herder ef al. (2008).

2.4 Basic Definitions

2.4.1 Reliability

IEC 60050-191 (1990} defines reliability of an item as the ability to perform under
given conditions for a given time interval. Qualitatively, reliability means the ability
of the item to remain functional. As a quantitative performance measure, reliability
can be expressed as the probability that the item will perform its required function
under given conditions for the stated time interval. In other words, reliability specifies

the probability that no operational interruptions will happen during a stated time
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interval, including for a system with redundant parts where each part can fail and be
repaired. Hence, the concept of reliability can be applied for both non-repairable and

repairable items (Birolini, 2007).

Mathematically, the reliability function R(¢) is the probability that an item or
system will be successfully operating without failure in the interval from time 0 to

time £ and can be expressed as

RW)=Pr[T21], £0 2.1
where
R(¥) = a non increasing reliability function, where R(t) >0 and R(0) =1
T = acontinuous random variable of the time of occurrence of a failure, where 7> 0

= time period

Thus, for a given value of ¢, R(?) is the probability of the time to failure, T, is
greater or equal to ¢. The unreliability or probability of a failure will occur before time

t can be denoted as F(?), and defined as

F(t)=1-R(t) = Pr[T <], F(0)=0and lim,,_F(&) =1 (2.2)

The failure probability, F(#) is also known as the cumulative distribution function
(CDF) of the time to failure distribution. If the time to failure, 7, has a probability
density function (PDF) of /{2), then

dF(t) _  dR(t)

fiy="2= == 23)

Hence, given the f{?), the relationship with F(?) and R(1) are given by
F) = [§ f(x)d(x) (2.4)
R®) = [~ F(x)d(x) (2.5)

Both unreliability, F(#} and reliability, R(?) functions actually represent the area
under curve of the function f{?). Since R(t}, F(?) and f{1) are inter-related, knowing any

one of the functions is sufficient to determine the others. F(#) is usually used to
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compute failure probabilities and f{?) is generally applied to understand the failure
distribution shape (Ebeling,1997). '

2.4.1.1 Failure Rate

Failure rate is the conditional probability that a component fails in a small time
interval given that it has survived from time zero until the beginning of the time
interval. Failure rate function, h(z) , can be estimated by dividing the probability

density function over the reliability function

O]

h(t) =
© R(t) (2.6)

Failure rate term has been widely used to describe reliability of both non-
repairable components and repairable system leading to some confusion in the
definition and applications (Ascher and Feingold, 1984, Davidson, 1995, Wasson,
2006 and Trindale and Nathan, 2008). The more appropriate term for non-repairable

is the hazard rate, and for repairable is the rate of occurrence of failure (ROCOF).

2.4.1.2 Bathtub Curve

The reliability characteristics of a component over it lifetime can be hypothetically
modelled by a bathtub curve. A bathtub curve concept is also used to describe a
system with many non-repairable components where the failure of each component is
statistically identical and independent (Birolini, 2007) as well as a repairable system
with ROCOF as the Y-axis (NIST/SEMATECH, 2011). Bathtub curve can be divided
into three phases as depicted in Figure 2.2, where each phase can be characterized by
Weibull and exponential distributions. The first phase is' early failures, also known as
infant mortality and burn-in period. Here, the failure rate is initially higher due to
issues such as improper manufacturing, installation and poor materials, but is later
gradually decreasing and level off as those problems are identified, solved and
reduced and plant personnel’s experience increased. In the useful life phase, the

failure rate is approximately constant as the failures, assumed mostly stress-related
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occur at random. This flat-portion of bathtub is also referred as component’s or
system’s ‘normal operating life’ where realistically many components or systems
spend most of their lifetimes operating (Davidson, 1994). Due to its memory-less
characteristic, it is easier to compute reliability in this phase as the failure process can
be conveniently modelled by homogeneous Poisson process (HPP) (failure data
follow exponential distribution). The wear out phase has increasing failure rate
because of degradation phenomena due to wear out. Wear out is generally caused by
fatigue, corrosion, creep, friction and other aging factors. Both infant and wear out

phases can be generally modelled by Weibull distribution.

Useful life Wear out

Early
failures

Failurerate

time

Figure 2.2: Bathtub curve

Many repairable systems have long useful life phase due to the impact of effective
maintenance actions. Even though PM does not improve the system’s inherent
reliability, when implemented appropriately at specified operating intervals it will
maintain the reliability performance in the useful life, keeping the low failure rate
teading to a delay in the onset of wear hence extending the length of useful life phase
(Benbow and Broome, 2009). Effective and timely corrective and preventive
maintenance actions together with proactive improvement program may minimize the
effects of degradation and reduce the failure rate over time (Wasson, 2006). This

phenomenon is illustrated in Figure 2.3.
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Figure 2.3: Equipment / system useful life phase extension (Wasson, 2006)
2.4.2 Maintainability

Maintainability can be defined as “the measure of the ability of an item to be retained
in or restored to specified condition when maintenance is performed by personnel
having specified skill levels, using prescribed procedures and resources, at each
prescribed level of maintenance and repair”(MIL-STD-721C, 1981). Maintainability
can be expressed either as a probability to restore the system following a failure to
operational status within a period of time or a measure of the time required to repair a
certain percentage of all system failurestMIL-HDBK-338B, 1998). At the highest
level, maintainability can be seen as a product of overall support programme in the
system where high maintainability reflects the effectiveness of in the design approach,
manpower allocations, training delivery and supply chain management (Knezevic,
1997). Several common maintainability measures include the probability of task
completion, success of task completion, percentual duration of restoration or

downtime and mean duration of maintenance task or downtime (Knezevic, 1997).

Downtime is the time interval for which the system is unable to perform as
required due to fault or maintenance activity (IEC 60050-191, 1990). A formal
definition is difficult to establish since it varies from one system to another based on
the operating conditions and elements of downtime, however, it is necessary to define

the downtime as required for the system under studied (Smith, 2005). During
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operation of a plant, there are many incidents that can cause downtime to the system.
Hence, clear understanding of which events relate to the calculation of the system
downtime need to be established and well defined.Downtime is not the same as repair
time, since the latter is a subset of the downtime. The system downtime consists of
three main elements; active maintenance time (repair time), logistics delay time and
administrative delay time (Blanchard and Fabrycky, 2006). The quantification of
repair time during data collection for system operating stage has been always an issue
due to scarce of information (OREDA, 2002). Many plants have a good record of
downtime history but not repair time. Another reason is because the exact
measurement of each downtime element is difficult to obtain from the data. The
logistics and administrative delay time may occur at several times with no particular
sequence during the downtime period thus making it difficult to quantify the exact
repair time (Smith, 2005). The complexity in segregating downtime elements is

depicted in Figure 2.4.

DOWNTIME |
>
Realization | Access | Diagnosis| Spares | Replace | Check | Align
I |

, L | l REPAIR'I]'IME J
NNt/

L ]
] Logistics time

i
i Administrative time

Figure 2.4: Downtime main elements which include repair time, logistic and

administrative delay time (Smith, 2005)

At the operationphase, the measurement and analysis of system downtime are of
interest of management since they represent the operational characteristics which

include the operational availability, effectiveness of the current maintenance scheme
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and logistic support system, and improvement actions. The operational unavailability

is simply the total downtime over the total operating time.

2.4.2.1 Maintainability Analysis at Operation Phase

Many large and complex systems experience high maintenance and support activities
costs in order to have sustainable operating condition. According to Blanchard and
Fabrycky (2006), these costs could account for up to 75 percent of the total system
life cycle cost. High maintenance expenditure is normally due to poor decision
making and planning when determining the maintainability requirements of the
operating system in the early phase of system life cycle. Thus, to reduce this cost,
appropriate maintainability factors and requirement must be considered, defined and
firmly established in the early part of the system conceptual design phase as well as
on every subsequent phase of the system life cycle (Blanchard ef al., 1995). Figure 2.5
shows the maintainability requirements (specified in qualitative and quantitative
terms) required throughout the system’s life cycle. These requirements are generated
from the outcomes of feasibility analysis, operational requirement and maintenance
concepts development, and identification of technical performance measure such as
mean time to failure (MTBF), mean time to repair (MTTR) and mean downtime
(MDT) (Blanchard er al., 1995). Maintainability requirements should be built-in into
each system phase and integrated with other important design factors such as
reliability, safety, supportability, quality, human factors and producibility, to ensure
that the system meet its operational and performance objectives (Blanchard and
Fabrycky, 2006). Appropriate maintainability analysis and tools are used to measure
the effectiveness of these requirements. The results are then feedback to the design

team to improvise future system development.
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Figure 2.5: Maintainability requirements in system life-cycle (Blanchard et al.,
1995)

At the operation and support phase, the on-going maintainability analysis provides
quantifiable assessment of the performance and effectiveness of the maintenance and
support system, identification of equipment, system and process high cost and
downtime drivers, and evaluation of maintainability measures and prediction. The
results of the analysis are then used as valuable information for operation,
maintenance and design personnel to make maintenance system more effective, plan
logistic support requirement (i.e workers, tools and materials), carry out improvement
actions to reduce operation costs, and achieve operational targets, which
willconstantly change as a result of plant decreasing profit margin and escalating

operation cost.

2.4.3 Availability

IEC 60050-191 (1990) defines availability as the ability of an item to be in a state to
perform a required function under given conditions at a given instant of time or over a
given time interval, assuming that the required external resources are provided. The
availability of equipment or system basically is the function of its reliability and
maintainability performances; hence both aspects should be focussed when

considering system’s availability improvement actions. High availability can be
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achieved when the system has high reliability during start and operation. High
maintainability in terms of the completion of maintenance actions within the specified
duration will also result in high availability. There are three types of availability and
they are being applied for different purposes: i) inherent availability, ii} achieved

availability and ii1) operational availability.

Inherent availability (4,), is solely based on corrective maintenance events (failure

and CM repair time distribution) and can be expressed as

MTBF
Ar—————— 2.7)
MTBF+MTTR

This definition is generally used at design stage when designing for equipment
parameters, where reliability-maintainability trade-offs can be determined based on

that expression (Ebeling, 1997).

Achieved availability (4,) takes into consideration both corrective and preventive

maintenance features. It is defined as

MTEM

- MTEM +M 2.8)

a

MTBM is the mean time between maintenance and M is the mean active
maintenance timefor all corrective and preventive maintenance actions. More detailed
definition and formula can be found in Wasson (2006) and Ebeling (1997). Achieved
availability is used by system developer who has no control over plant’s support

system factors such as logistics and administrative delay time (Wasson, 2006).

Operational availability (4,) is a measure of availability which includes all

maintenance downtime and delay factors. Mathematically it is defined as

MTEBM

N MTBM +MDT (2.9)

G
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MDT is the mean maintenance downtime which includes active maintenance,
administrative delay and logistics delay downtime for all corrective and preventive
maintenance actions, Achieved availability is basically the actual availability
experience by a plant and can also be expressed as the ratio of the total system uptime

to total cycle time (Reliasoft, 2007).

4 Uptime
° Opegrating cycle

(2.10)

The operating cycle is the overall observation period which includes the total time
of system uptime and downtime. For illustration consider a system having the uptime
and downtime profiles as in Figure 2.6. Based on Equation 2.10, 4, can be calculated

as

Total Upti
A= otal Uptims @.11)

" Total Uptime + Total Downtime

78
A +U2+U3 2.12)
(U1+U2+U3)+(D1+D2)
Ul | U2 | | U3
— r o *
Uptime
Downtime

L Observation period N

Figure 2.6: An example of system’s profile having uptime and downtime states
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2.4.3.1 Availability Analysis at Operation Phase

Availability analysis, a last component of RAM study, can become an important and
strategic tool for management in improving plant operation bottom line and aligning
plant performance with the organizational objective. Availability analysis presents a
means to understand the impact of existing maintenance system and maintenance
resources to the overall system operational availability. Apart from that, more
importantly this analysis can be used as a management strategic decision tool to make
right decisions based on sound statistical analysis rather than one’s gut feeling or
experience. Availability analysis can assist management to quantitatively assess
various improvement actions such as redundancy, reduction in preventive
maintenance frequency and utilization of new equipment. It also can be used to
evaluate how much improvement in terms of failure rate and repair time is needed to
achieve specific operational goal. Identification of potential issues when a system is

under different operating conditions can also be assessed.

As explained in Chapter 2, with the increasingly complex characteristics of plant
system nowadays, a simulation approach has become a preferred method of
performing availability analysis for evaluating system availability accurately. In the
study of system maintenance, availability modelling simulation offers the following
benefits:

¢ Identification of critical equipments or components to system’s availability

e Practical and fast mean to evaluate and estimate system performance since

collecting sufficient actual observation data is time consuming and difficult

e Systematic analysis of “what if” scenarios to assess impacts of different

maintenance strategies (e.g. PM action }, operation options (e.g. redundancy)
and R&M performances to overall system availability, hence more effective

decision making and actions can be made

Literature on practical application of availability analysis in the oil and gas
industry is relatively limited. Nevertheless, several attempts to conduct practical
availability analysis at operation phase of various plants have been made by various
researchers. Despite these efforts, the adoption of this technique as a strategic tool for

decision making among industry practitioners is still relatively low. The problem is
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mainly due to the lack of awareness among management on the capability of the
analysis in solving current issues and maximising plant production potential.
Therefore, wider exposure among plant management is needed on the practicality and
capability of this technique as well as broader involvement of plant personnel in the
analysis activities. Another issue is, as pointed out by Herder et al. (2008), most
research papers do not present detailed steps and problems faced while implementing
the analysis. Moreover, some of them are not practical, too theoretical and highly
mathematical for practitioners to comprehend and implement (Dekker, 1996).
Approach to conduct more case studies based on real industrial application will
definitely promote this tool among industry and explore more practical issues related

to the implementation of the analysis.

2.5 General Approach to System Reliability Study

An important aspect of reliability analysis of a real plant system is the development of
model to understand about the behaviour of the system so that prediction of system’s
future condition can be made. Reliability modelling concerns with model
development to achieve sclutions to problems pertaining to estimating, predicting and
optimizing the performance of the system, assess the impact of various factors to the
system and corrective actions to mitigate the impact (Blischke and Murthy, 2000).
Real world system consists of various attributes in which each one has its own
characteristics and conditions, which requires adequate model to represent them.
Wasson (2006) defined a system as “an integrated set of operable elements, each with
explicitly specified and bounded capabilities, working synergically to perform value-
added processing to enable a user to satisfy mission-oriented needs in a prescribed
environment with a specified outcome and probability of success”. Modelling process
can be quite a challenge when the system under study has high level of complexity. In
reliability study, modelling of system can be made either by using graphical or
mathematical model (Rausand and Hoyland, 2004 ). Graphical models comprise of
symbol, diagram and schematic representation of important features of a system
( Satzinger et al. ,2007). They are used to represent abstract aspects of a system such

as processes, data and connections and make it easier to understand complex
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relationship within the system. An example of a graphical model is a system
reliability block diagram. A mathematical model is an abstract, simplified,
mathematical construct related to a reality of system or part of it and developed for
the purpose of analyzing the system (Bender, 2000). It generally consists of various
mathematical structure and concepts such as functions, variables, equations, constant,
graph and relation (Meyer, 2004). Rausand and Hoyland (2004) stressed two
important aspects of modelling that need to be considered. First, it should be simple
enough for mathematical model to deal with, and second, it should be realistic enough
such that the deducted conclusions are practically relevant. General approach in
constructing a mathematical model for understanding real world system is given by
Giordano ef al. (2009) and it generally involves observation of real system’s
behaviours and identification of factors associated with them, making conjecture
about relationship between factors, application of mathematical analysis on the model

developed and interpretation of mathematical conclusions in term of real world issues.

In reliability analysis, mathematical model is applied to estimate reliability, risk,
safety parameters and performances measures using relevant statistical and reliability
theory. It is also used to describe how different components within a system are inter-
connected and affecting the overall system performance.The most appropriate
methodology in conducting a reliability analysis of a real-world system is through a
systems approach (Murthy et al.,2008, Blanchard, 2004), which presents an integrated
framework for solving various issues related to technical, operational, business and
management (Blischke and Murthy, 2000). In the systems approach, an analytical
model is developed and validated with the use of data and analyzed using appropriate
techniques and tools. The analysis is an ongoing process of evaluating system
performance and various alternatives, which is fundamental for supporting continuous

improvement efforts.

The steps in systems approach was given by Blischke and Murthy (2000) and is
illustrated in Figure 2.7. The first step is to clearly define the problem faced by the
real world system that needs to be addressed. Simplification of the system
characteristics and assumptions are required for feasibility of analytical analysis and
because it’s impossible to capture all the factors influencing to the defined problem.

Generally this simplification can be accomplished by reducing the factors under
32



consideration and assuming simple relationships between the factors to reduce the
complexity of the problem (Giordano et al., 2009). In the system characterization, the
system details related to the problem under studied are made known and suitably
modelled. A mathematical model then is developed for the system and checked
whether it adequately represents the real-world system. In case it doesn’t, changes are
made to either in the mathematical formulation or simplification. Ansell and Phillips
(1994) emphasized that the analysis should be conducted first by using a simple
model before extending it into a more complex model. This is because many times
most of the practical plant problems can be solved simply by using a fairly simple
model. Once the adequate model is achieved, proper analysis of the model is done
using various techniques based on reliability theory. Here, the analysis results should
be interpreted appropriately to ensure that they adequately address the identified

problem.

According to Blischke and Murthy (2000), reliability analysis can be divided into
two categories: qualitative and quantitative. Nevertheless, generally both analysis are
combined during system analysis to produce more comprehensive results (Billinton
and Allan, 1992). In qualitative approach the main objective is to identify critical
equipment, failure modes and causes that affect the reliability of the system. Various
methods are applied in qualitative analysis and they include basic quality tools such as
histogram, Pareto, scattered plot, and cause and effect diagram and more advanced
technique such as Failure modes, effects, and criticality analysis (FMEA/FMECA),

fault tree analysis, event tree analysis and reliability block diagram.

A quantitative approach concerns with formulation of mathematical model to
produce quantitative estimates of system reliability. A generic flowchart for
quantitative analysis of plant reliability data involving repairable items has been
proposed by Ascher and Feingold (1984) in their important and famous book. Since
then this model has been further elaborated by many researchers, see for example:
Rausand and Hoyland (2003); Blischke and Murthy (2000); and Andrew and Moss
(2002). Barabady and Kumar (2008) extended the method to be applicable for
maintainability analysis. Similarly, Louit et a/. (2009) enhanced the model by
incorporating more statistical tests option to facilitate proper time to failure model

selection, Ansell and Philips (1990), however, argued that ageneric flowchart is too
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rigid thus impractical for every type of analysis required in the industry since it is

impossible to describe every eventuality of the problem and condition confronted.
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Figure 2.7: Systems approach to solve system reliability issues (Blischke and Murthy,
2000)
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2.6 General Approach to Maintainability / Downtime Analysis

According to Knezevic (2009) two commonly used approaches for analysis of the

empirical downtime data are the

i. parametric

ii. distribution

In the parametric approach, the main interest is to get the mean downtime, which
is computed by dividing the sum of all downtime hours by the total number of
downtime events. The interval of the mean based on certain confidence limits (i.e
90%) can be calculated using specific formula and referring to normal distribution
table. Many reliability databases including OREDA (2002) use similar approach in
their reporting format. In the distribution approach, the downtime is expressed in
term of probability distributions, where the downtime is treated as random variable
since every failure event will always result in different downtime duration due to
different failure modes, components failure and skill level of maintenance people
(Ebeling, 1996). Due to this, the distribution approach offers more information than
the parametric approach (Knezevic, 2009), thus is the preferred method in evaluating
maintainability measures. Besides that, having downtime data in the distribution form
is fundamental for applications in Monte-Carlo simulation and Bayesian analysis,
which are also widely used to predict the maintainability and availability of the

system.

The most commonly used probability distributions to describe maintenance
downtime are the exponential, normal and lognormal (Blanchardes al., 1995). Other
distributions may include gamma and Weibull (MIL-HDBK-338B, 1998). The
exponential distribution is usually applied to electronics parts with build-in test
capability and have fast remove and replace maintenance scheme (Blanchard and
Fabrycky, 2006). It is however not realistic for many downtimes situations, except in
the case where most part of the downtimes are attributed to failures searching actions
(Rausand and Hoyland, 2004). Due to its constant downtime rate characteristics,
many studies assume this distribution in the downtime model for the sake of

convenience in modeling rather than practicality. In reality, this assumption is
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misleading since it presumes there are many failure events that have zero repair time
(Blanchardet al., 1995). The normal distribution is sometimes assumed for equipment
having relatively simple removal and replacement tasks that usually can be completed
within a fixed amount of time with little variations (Blancharder al., 1995). The
lognormal distribution is the most common model for repair time or downtime
distribution for both electronics and mechanical equipment. The shape of the
lognormal is skewed to the right meaning that most of the downtimes are distributed
about the center and few will be at the right-tail of the distribution. This characteristic
seems logical in many downtime events since some downtime is very long due to the
unavailability of spare parts at site or difficulty of maintenance crew to get access to

or repair the failure (Rausand and Hoyland, 2004).

2.7 Non-repairable vs. RepairableSystem

Plant systems or equipment can be categorized into two; non-repairable and
repairable, where each one requires different analysis approach. It is very important to
understand the difference between these two since often industrial practitioners
improperly use non-repairable technique to analyze data from repairable system
(Trindale and Nathan, 2008). Non-repairable items are discarded or replaced with a
new one upon failure. For example, light bulb, transistor and most components in
plant equipment. The reliability of the item is based on the survival probability over
its service life (Modarres, 1993).The time to failure is a continuous random variable
assumed to be independent and identically distributed (IID) and is described by a
single lifetime distribution. Typical lifetime distributions used in non-repairable items
are exponential, Weibull, normal and lognormal. Exponential is the most commonly
used distribution mainly due to its simplicity and memoryless property, in which the
occurrence of failure is completely random. This characteristic is well suited to model
the useful life phase (constant failure rate region of bathtub curve) of a component or
system (Ebeling, 1997). Weibull has been extensively applied for component
reliability analysis because of its flexibility to model various failure rate function;
increasing, constant and decreasing, besides its mathematical simplicity (Davidson,

1994). Fitting a lifetime distribution to failure field data generally involves three
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steps: 1) identifying candidate distribution; ii) estimating distribution’s parameters;

and iii) conducting goodness of fit (Ebeling, 1997).

Most systems in offshore facilities and petrochemical plant however are
repairable. Repairable equipment means that upon failures the equipment are repaired
and restored to the functional state. The probabilistic model for studying the
occurrence of failures in the repairable system is based on stochastic point processes.
The point process can be described as the occurrence of randomly distributed events
in time with negligible events duration (Modarres et al., 1999). The events here are
the failure times {time between failures) of a repairable item. Several point process
models for repairable system are proposed in the literature and they generally can be
classified under three types of repair actions; perfect repair, minimal repair and

imperfect repair (Rausand and Hoyland, 2004).

In the perfect repair model, the equipment upon failure is either repaired or
restored to ‘as good as new’ condition. The distribution of time between failures is
assumed to be independently and identically distributed (IID), hence it can possibly
be fitted by a lifetime model. When the failure times exhibit exponential distribution
(constant failure rate throughout the observation time) the process is called an
homogeneous Poisson process (HPP). The HPP is the simplest model in the point
process models where the expected cumulative number of failures for given interval
of time follows Poisson process. If the distribution follows any arbitrary distribution,

the process is called a renewal process.

A repairable system consists of components with renewal process may be
modelled by a perfect repair based on Drenick’s theorem, where at the system level
the superimposition of equilibrium renewal processes tends to be an HPP as the
number of processes increase (Ansell and Phillips, 1994, Trindale and Nathan, 2008).
In other words, the system’s time to failure distribution is exponential regardless of
the nature of component’s lifetime distribution (Kececioglu, 2002). Nevertheless, this
assumption must be first verified for IID condition of the time to failure data before it
can be validly applied (Ascher and Feingold, 1984, Ansell and Phillips, 1994,
Rausand and Hoyland, 2004)
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The minimal repair model refers to the condition where a repair done on a system
resulted in the system in exactly the same condition as it was (‘as bad as old’) just
before the failure (Rigdon and Basu, 2000). The inter-arrival time distribution here is
not IID and the process is modelled by a non-homogeneous Poisson process (NHPP).
Two models commonly used for NHPP are the power law (Crow model) and log-
linear model (Cox-Lewis model). Finally, the imperfect repair model is applied when
the repair action results in the equipment condition between the ‘as good as new’ and
‘as bad as old’. The proportional age reduction and proportional intensity variation
models are examples of two point processes that can be used to describe the imperfect

repair model (Muralidhan, 2008).

A general flow for analysing plant maintenance data will be presented in the

next chapter.

2.8 Applications of Expert Opinion in R&M Analysis

In many cases, the data are limited and in poor quality thus make them inappropriate
for reliability modelling purpose. An alternative way is to use expert opinion. Expert
is a skilful person who has extensive training and knowledge on the specific area.
Expert opinion can be defined as the expert’s formal judgment on the matter in which
the expert’s opinion is sought (Ayub, 2001).The application of expert opinion has
been found in various studies covering a wide spectrum of disciplines such as nuclear,
chemical, aerospace, health and banking industries (Goossens ef al., 2008). In the
areas of reliability and maintenance analysis particularly in the decision making and
prediction processes, this application is gaining widespread attention mainly due to
unavailability of sufficiently good quality maintenance record as well as uncertainties
in the data(Bedford et al., 2006).

Coolen et al. (1992) used expert inputs to estimate the prior distribution of the
mean life of heat exchangers. Oien (1998) elicited maintenance engineers’ knowledge
to predict a “naked” failure rate (failure rate if no PM actions were being carried out)
in light of corrupted maintenance data. The elicitation results are used later to estimate

the mean time to failure (MTTF) of shutdown valves. Horkstad et al. (1998)
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discussedthe elicitation process for acquiring failure rate of an offshore umbilical
where there is no previous lifetime data exists. The inputs from experts are used in the
Fault Tree Analysis (FTA) to predict the probability of the umbilical being tensioned.
The application of expert judgments in estimation of delay time distribution for
extrusion press failures was presented by Wang (1997). The delay time is the time
interval between the first time faults is detected and the time of failure. Kudak and
Ercan (2009) studied the maintenance time of a jet engine aircraft ignition system

failure during the wartime with inputs from military experts.

2.8.1 An Overview of Method for Elicitation of Expert Opinion

The details on elicitation process can be found in Ayub (2001) and Cooke (1991). In

general, the elicitation process consists of three stages (Oien, 1998);
s Preparation
s Elicitation
s Calculation

In the preparation stage, the following main activities are done; setting the
problem description and objectives, identification of expert(s), formulation of
appropriate questionnaire and calculation method. The right design of questionnaires
is critical for the elicitation process to be successful (Wang, 1997). The question
should be set and asked with simplicity yet able to extract the required information
from the actual knowledge of expert (Oien, 1998).

The number of experts involved in the process varies depending on the elicitation
technique used, the scope of problem and availability of experts (Fink et al., 1984).
Generally, multi and diverse experts are preferable so that the problem will be
thoroughly considered from many viewpoints hence minimizing the influence of a
single individual(Meyer and Brooke, 2001). In a face-to-face interview
approach,Meyer and Brooke(2001) recommended five to nine experts in order to

increase chance to provide adequate diversity or information to make inferences.
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Nevertheless, in reality in some critical industries and specialised operations, it is very
difficult to get many experts available for elicitation session that typically take a great
of time, since they can be sparse or tied up with day-to-day tasks. For example, the
US Nuclear Regulatory Commission recommends no fewer than two but preferably
three experts should be consulted in the Accident Sequence Precursor (ASP) analysis,
and allows the use of a single expert where time constraints prevent use of multiple
experts in the analysis of Significance Determination Process (SDP) (Boring ef al.,
2005). Horkstad et al. (1998) asserted that the use of one expert when there is no other
option, when implemented through systematic approach is better than none or can be
as valuable as having many experts particularly when they indicate strong dependent
or biased. The elicitation of expert opinions using one to three experts has been
demonstrated and discussed in various reliability analysis applications in
(Campodonico and Singpurwalla, 1992, Horkstad et, 1998, Booker and McNamara,
2004).

The elicitation stage involves elicitation exercises with the expert. It is normally
conducted via an interview and discussion format where the assessor plays critical
role in asking the right questions and minimizing expert’s bias (Walls and Quigley,
2001). Two types of elicitation method are commonly employed; direct and indirect
(Oien, 1998). The direct method involves a direct estimate of the experts believe on a
certain issue. The indirect method is applied when seeking the probabilities estimate
from the probability-illiterate expert. The interview process should not be too long
and it is recommended to be less than half day, since fatigue will normally start to

develop after two hours of the session (Cooke and Goossens, 2008).

In the final stage, calculation of inputs from expert is performed to get the results
in the required format (e.g., failure rate, lifetime, downtime etc.). Aggregation method
is applied when to combine data from more than one expert to establish a single
overall output. Generally, the aggregation methods can be dichotomized into two;
mathematical and behaviour, although sometimes in reality it may involve
combination of both (Clemens and Winkler, 1999). In mathematical aggregation
individual probability distributions are processed using analytical models to produce a
single probability distribution. On the other hand, behavioural method aims at

generating some type of agreement among experts through group consensus and
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interactions among them with the help of facilitator(s). Some well-known behavioural
approaches include Delphi and nominal group method. In Delphi method the experts
respond individually to sets of questionnaires, where the results are then combined,
summarized and returned for experts to revise. This process is repeated until
consensus is achieved (Al-Fares and Duffuaa, 2009). Nominal group method involves
a process in which experts are allowed to discuss their opinion directly with others to
reach consensus results in a controlled environment, is usually a more preferred
method (Ouchi, 2004). Example of application of nominal group approaches can be
found in (Forester et al., 2004, and Booker and McNamara, 2004)

2.8.2 Eliciting Probability Distribution

Eliciting probability distribution from expert has always been a challenging and not
an easy task, particularly when expert has very little knowledge on statistics and
probability distribution model (Van der Gaag ef al., 1999). Furthermore, the process
should be done as short as possible due to the expert time constraint (Mazzuchi et al.,
1991) where he is normally busy and has a tight schedule.Most experts find it difficult
if not impossible to state what would be a proper distribution model and its
parameters. Elicitation of inputs in a form of discrete distribution (histogram) instead
of a continuous distribution has been found to be effective to overcome this problem.
Experts usually feel this process more comfortable and easy to comprehend since the
concept of probability of failures is being used instead of probability density
(Mazzuchi ef al., 1991). In addition, the calculation involved in the discrete model is
much simpler than the continuous model (Van Noortwijk et al., 1992). The resulting
histogram can later be converted into probability density function (pdf) easily using a
computer software. Another elicitation format which is more effective and popular
than a discrete is a quantiles or fractiles format (Cooke and Goossens, 2008). In this
method, expert is required to propose pre-defined fractiles on the subjective
uncertainty distribution, which are normally set at 5, 50 and 95%. The fractile
technique has been widely used for eliciting prior distribution in Bayesian inference
study (Kadane and Wolfson, 1998). In their modelling of prior distribution for
reliability growth model, Walls and Quigley (2001) used histogram and fractile
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techniques to develop a Cumulative Distribution Function (CDF). Here, expert was
asked to give input on specified distribution percentiles which represent the expert
belief on the certain concerns. The percentile distribution was later enhanced by
adding more interval data to form a smooth discrete (histogram) distribution which is

later converted into a cdf. The corresponding pdf can be later estimated from the cdf.

It is noted that the literatures on applications of expert opinion in the maintenance
and reliability field focus primarily on the estimation of failure rate or lifetime
distribution. Very little attention has been given on the maintenance downtime
estimation. Hence,in Chapter 5 a practical way of incorporating expert opinion in the
modelling of maintenance downtime distribution is proposed and demonstrated to fill

in that knowledge gap.

2.9 Chapter Summary

General framework for RAM related study on system at operation phase has been
discussed in this chapter. Various methods either qualitative or quantitative can be
utilised to analyse the reliability, maintainability and availability of a system.
Depending on the study objectives and system conditions, sometimes the methods are
combined to produce more comprehensive results. While analytical techniques are
still preferred, the application of simulation techniques is rising due to the increasing
complexity of system and capability of computing technology. In the analysis of plant
system, equipment are categorized into non-repairable and repairable. The analysis
approach will differ based on this distinction. Fitting statistical distribution into
repairable data, as it is applied for non-repairable, should be avoided unless the
repairable data is statistically independent and identically distributed (IID). The use of
expert opinion is increasingly important because of the prevailing poor conditions of
plant field data. Despite its widespread attention in reliability study, the application of

expert opinion is found rather limited in maintainability analysis.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology applied in conducting reliability,
maintainability and availability analysis of two systems under study: a gas
compression train of an offshore platform and an acid gas removal unit (AGRU) in a
gas processing plant. The study focuses on systematic and practical aspects of
conducting analysis using mainly operating and maintenance data of those systems
which have been in operation for several years. In this chapter a general approach
used is discussed for each type of analysis, where the detailed and specific steps are
left out and will be shown in case studies presented in the following chapters. The
approach has been formulated in such a way that it provides where possible a simple
yet practical mean for conducting RAM analysis. Several software are used in the
analysis tasks and they include Reliasoft’s Weibull ++ and Blocksim, SPSS, and

Excel.

3.2 Research Approach Overview

The approach of this research is mainly centredaround several case studies based on
real industrial data and problem analysis. This approach is in line with the need to
focus on real plant issues in research studies pertaining to plant maintenance. There
are, however, few challenges worth mentioning in performing case studies: it is time

consuming; requires in-depth research; constant communication with plant personnel;
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great patient particularly when dealing with “raw” plant data; and high care when
drawing generalized conclusion from a few case studies. Nevertheless, this approach
can potentially generate new and creative insights, and more importantly through
collaboration can have high validity with industrial practitioners, the ultimate target
users of the research (Voss, 2009). Furthermore, case studies can help researchers to
retain the holistic and meaningful characteristics of real-life events which are
fundamentally important for understanding complex phenomena (Yin, 2003).
Consequently, itcan open up possibility of generating new ideas in dealing with
proper method to handle and solve real industrial issues. The finding of case studies
can be generalized to form a generic theoretical hypothesis or methodology
framework which can be practically applied in other similar analysis for other system

(Voss et al., 2002).

The focus of this research is on the practical applications of each of the RAM
study components, namely reliability, maintainability and availability analysis. For
each of the component, a practical approach of analysis is discussed and demonstrated
via relevant case studies related to real problems and systems in plant. The analysis on
rehability and maintainability can be conducted separately for any particular system
of interest. For availability analysis, however, it requires input from both reliability
and maintainability analysis results in term of failure and repair distribution
characteristics on every equipment or subsystem in the system under studied. The
analysis results from each of the RAM component can be used directly to improve
plant operational and maintenance performance. Figure 3.1 illustrates the overview of
the RAM analysis approach used in this research and the relationship between its

three study components.
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Figure 3.1: Overview on reliability, maintainability and availability analysis of a

system in plant

3.3 Approach Used in System Reliability and Maintainability Analysis

In this thesis, the proposed approach to reliability and maintainability (R&M) analysis
of a system in plant can be illustrated using a generic framework in Figure 3.2. In
general, it involves six major steps, which will be elaborated afterwards. Reliability
analysis basically focuses on the analysis of system failure data and frequency,
whereas maintainability analysis looks at the downtime characteristics of the system.
In this framework, the study of plant maintenance data will be based on qualitative
and quantitative analysis to determine major factors affecting system reliability and
maintainability performances so that appropriate actions can be recommended. The
applications of this proposed R&M analysis approach will be demonstrated in great
detail in Chapters 4 and 5.
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Figure 3.2: Proposed generic framework for reliability and maintainability analysis of

a plant system

3.3.1 Setting Objectives

The most important factor for successful reliability study is having clear definition of
the specific purpose to be achieved at the end of the analysis (Denson, 2006). Only by
having unambiguous objectives in the beginning and consistently sticking to it
throughout the whole analysis process, can a proper and effective analysis be
accomplished (Ansell and Philips, 1989). The objective of the reliability study has

high influence on the approach and method of modelling and analysis used (Aven and
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Jensen, 2009). For example, the choice of computational methods (i.e analytical vs.
simulation) and performance measures and factors to be analyzed. The nature of
estimates derived also depends on the purpose to which the prediction will be used
(O'Connor et al., 2002). For instance, an optimistic figure should be applied when
determining spare parts requirement, whereas it is more appropriate to use a
pessimistic figure in a safety analysis. Precise objective will set proper conditions for
appropriate collection of relevant maintenance data to be used in the analysis. Many
inherent issues in reliability discipline with respect to selection and application of
appropriate methodology can be related to the lack of clear objectives at the start of
study (Bendell, 1988, Denson, 2006).

3.3.2 Definition of System, Failures and Downtime

The definition of system being studied, system boundary and operating states, failure
event and modes need to be clearly specified to put the subsequent analysis steps in
the right perspective and to minimize uncertainties associated with the data. A distinct
system boundary shall identify what are components within the system and what are
excluded from it. The boundary also defines what data are to be collected. Other
system information such as its descriptions, applications, operating mode and
environment conditions must also to be clearly specified. At this stage, it is also
important to define all assumptions made in the reliability model and determine the
hierarchical level (system, subsystem, component etc.) of which the data will be

collected and analysis will be conducted.

Plant failure data can be classified under various failure modes, a description of
the effect of failure on the equipment ability to perform, and it is critical to identify
clearly different failure modes for further data analysis and better reliability
estimation (Center for Chemical Process Safety, 1998). Similarly, there are many
types of downtime which occur in the plant due to various reasons: failures;
preventive maintenance; emergency shutdown; etc. Thus all relevant data must be

clearly identified and segregated for subsequent analysis.
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3.3.3 Data Gathering

The quality and accuracy of reliability analysis is highly related to the quality of the
data collected. High quality data attributes include completeness of the data,
compliance with data formats and reliable sources of data (ISO 14224, 1999).
According to Patton (2005), besides quality, the collected data must be checked for:

e Reliability - data have high degree of consistency

e Validity - data are meaningful to the analysis’s objective

e Relevancy — data are relevant to the study conducted

e Redundancy — data collected are all necessary and not redundant. Over-loaded
of irrelevant information should be avoided.

¢ Sufficiency — data are complete with all required information

o Timeliness — up-to-date data are referred and used

e Cost — cost of gathering data is considered because more detailed information

normally requires high investment.

The primary source of data in this research comes from in-house plant
maintenance data. Data gathering step is usually the most time and effort consuming
activity due to the nature of the data and their sources. There are many data available
in a plant such as those from maintenance, engineering, vendor reports, SAP (CMMS)
etc. Besides, the data also exist in various forms, thus choosing the relevant one and
translating them into distribution and failure statistics can be a challenging task and
normally requires considerable engineering judgment. Maintenance record usually has
high degree of uncertainty. This is due to the nature of the record itself, which is
primarily meant to support maintenance planning rather than for failure prediction
(Davidson, 1994). The focus is more on capturing repair action instead of details on
failure (causes, mode, time and downtime duration), equipment operating modes and
environment. Moreover, since recording of failure data highly depends on human, it is
subject to mistakes, omission and misinterpretation (Smith, 2005). To overcome these
issues, good cooperation and constant feedback from plant personnel are required.
Depending on the raw data conditions, some data need to be transformed to more

meaningful, standardized and simplified format for easy analysis and thus further
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prolong the data collection process. In certain case, different source of information

than maintenance data might be useful and relevant for the analysis. For instance, a

flow rate reading can be used alternatively to track the operation conditions (i.e.

operating, standby or shutdown) of a pump when there is no or incomplete record on

pump operation states. In a situation where plant data is insufficient, other sources

such as OREDA and expert opinion will be employed. The applications of expert

opinion will be elaborated in the maintainability analysis in Chapter 5.

The main plant maintenance data used in this research are from three categories

as outlined by Andrew and Moss (2002):

1.

Inventory data — They consist of information of equipment related to its
design, operational, functional and environmental characteristics. The data can
be classified under equipment identification, manufacturing and design,
maintenance and test, and engineering and process data. This information is
important to support data analysis, for instance, to compare the particular

equipment data with the data from same equipment category listed in the
OREDA.

Failure-event data — This is the most important data and it comprises of the
detailed record of failure incidents in terms of event date, duration, modes,
causes, codes, severity and effect on system, repair modes, downtime date and

duration, and plant or system operational state.

Operating time data — This data is needed for proper calculation of reliability
measures based on the actual time under which the equipment or system is
running. The required information includes the time and duration for each
operating state such as operation, standby and downtime as defined in the

previous step.

In some cases where necessary, costing and production data are also required in

order to present analysis results in monetary terms. These data may include

production output, product cost and maintenance cost (manpower, material etc.). A

continuous data verification process with respective personnel is carried out
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throughout data gathering activity, to ensure that the required level of accuracy is

attained.

3.3.4 Exploratory Data Analysis

This step marks the beginning of data analysis process. This approach is based on
exploratory data analysis concept which was first introduced by Tukey (1977).
Exploratory data analysis is the process of using statistical tools and techniques to
investigate data sets in order to gain insight about the data, understand their important
characteristics, identify outliers or errors, disclose underlying structure and extract
important factors (NIST/SEMATECH, 2011) and assist in model formulation
(Chatfield, 1985). Because of this apparent significance, many researchers propose
the use of exploratory analysis at the beginning of any plant reliability data analysis
process (Ansell and Philips, 1994, Blischke and Murthy, 2000, Andrew and Moss,
2002, O’Connor ef al., 2002 and Todinov, 2005). Chatfield (1985) stresses that
overlooking exploratory analysis will lead to unnecessary adoption of complicated

model in the study.

The purpose of exploratory analysis should be in tandem with the objective of
study. Prior to performing analysis, the gathered data are normally subjected to further
data manipulating processes such as categorization, classification, rearrangement and
reordering of data. For reliability study, Ansell and Philips {1994) propose two levels
of exploratory analysis: elementary and reliability analysis. In elementary analysis,
simple plots like histogram, stem and leaf, box-whiskers, Pareto, scattered diagram
and time series trend can be found useful to get a feel about the data, identifying key
variables and possible errors in the data. Descriptive statistics such mean, median,
standard deviation and fractile, are also commonly used to compare and rank factors.
In the next level of exploratory analysis, more related reliability plots and analysis are
conducted. These include rate of occurrence of failures (ROCOF), trend plot and
hazard plots; Kaplan Meier and proportional hazard model. The main outcomes of
analysis are the identification of key factors affecting system lifetimes and downtime,

and assessment of trend in system’s performance (i.e. improving, deteriorating or

50



constant). Knowing these, management can take necessary actions to further improve

the system performance.

3.3.4.1 Trend Analysis

To gain insight about the performance of the system, the graph of the cumulative
number of failures against cumulative operating time between failures is plotted. This
trend plot can provide a snapshot of how the system performance is heading to. When
the inter-arrival time (time between failures) is getting shorter, the plot will tend to
concave up signifies that the system is deteriorating. The opposite condition is
observed when the system is improving. A linear plot is an indicator that that the
system performance is constant. Ascher and Feingold (1984) referred these conditions
as ‘sad’, ‘happy’ and ‘non-committal’ system respectively. Besides graphical analysis,
these conditions can be assessed using analytical trend test which basically tests
whether the process has a monotonic trend or not (stationary). Ascher and Feingold
(1984) stressed the important of trend test as the first step of the reliability data
analysis and model development and this is strongly supported by other researches
(Lindgvist, 2006, Fu-rong et al., 2008, Louit et al., 2009). Several trend tests had been
developed, but the most commonly used is the Laplace test. This test is used to
statistically test for the null hypothesis that the failure distribution is stationary
(homogeneous poison process (HPP)) against the alternative of a monotonic trend
(non-homogenous poison process, NHPP). Other trend tests include MIL-HDBK-189
(HPP vs. non-HPP), Mann and Lewis-Robinson (renewable process, RP vs. a

monotone trend) (Ascher and Feingold, 1984).

3.3.4.2 Laplace Trend Test

Consider the data consists of a series of n failures observed during the period of (0,¢).
Let ¢; denotes the time to failure of the i th event. The Laplace test statistics, U, is
defined by
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3.1

where:
t; = the time of failure for 7 th event
n = total number of failures during the observation period (0,#)

Iy = observation end time (termination time). If the observation end time is a
failure time at nth event (failure truncated), the above expression need to be

modified by replacing n with n-17.

Under the null hypothesis, the test U, approximately follows a standard normal
distribution. Thus large positive or negative Uy values suggest that the process is not
stationary (HPP). The null hypothesis is rejected if U, is smaller or greater than the
critical value read from the standard normal table for a given significance level. U,
value greater than 0 indicates degradation (concave up pattern) and less than 0

signifies improvement (concave down pattern) in the system performance.

3.3.4.3 Rate of Occurrence of Failure (ROCOF)

The changes in the pattern of failures can aiso be detected by examining the failure
rate trend against the time. For repairable system, the failure rate, or commonly
known as the failure intensity, can be estimated by calculating the rate of occurrence
of failure (ROCOF). For a HPP process, the graphical plot of ROCOF over time
should be constant (does not change over time) since HPP process has a constant
failure rate. ROCOF for interval / can be estimated by the mean failure rate, v;, which
is the number of failures occurred in the evenly distributed time interval (¢-1/)

divided by that time interval
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, _ number of failures in (i -1t;) (3.2)
t L=ty .

3.3.4.4 Kaplan Meier Estimator

KM estimator (Kaplan and Meier, 1958) is a non-parametric method of estimating the

reliability (survival) function from life-time data. It can be used for data with
complete and censored events. The estimated reliability function, 1?1(1), 1s a step

function given by

R() = ]’I[1 - i] (3.3)
1,5t n,

Where ;2([) is the estimated reliability for any particular point of time; #; is the
number of individual at risk just prior to time, ¢; and d; is the number of individual
that fails up during time period ¢. Thus, 1"\2(:) is based on the conditional probability
that an individual survives at the end of interval provided that individual was existed
at the start of the time period. fi(t) is the product of these conditional probabilities and
provides the point estimator for the reliability function at any particular time f. The

variance of fi(t) can be approximated using a Greenwood formula given by

AA A d
Var(R(1))= R(t)*Y ——— 3.4
(R(1)) = R() f,zs;n,-(".--d,) G4
KM reliability (survival) function plot can be used to visually compare two
different factors existed in the data for any difference in trend (which one is
performing better). Statistical methods are used to test whether there is a significant

between these two groups. Three statistical methods commonly used are Log-rank

test, Breslow test and Tarone-Ware test.
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3.3.4.5 Proportional Hazards Model

Another method of assessing effect of various factors to the system is the proportional
hazard model (PHM) proposed by Cox (1972). In PHM analysis, these factors are also
known as covariates, explanatory variables which can possibly affect the survival time
(dependent variables). PHM or Cox regression model is the most important
distribution-free regression mode! used for the analysis of censored data (Smith,
2002). According to Cox (1972) the hazard function of the equipment is composed of
two parts; a baseline hazard function and a covariates dependent function. The model
assumes a multiplicative effect of covariates to the baseline hazard function. The

basic form of PHM is given by
h(t s 2) = hy (W (B72) (3.5)

Where hy(t) is the baseline hazard function, i is the arbitrary function of the row
vector covariates, z , and gis the column vector of unknown regression parameters. i

can be represented in many functional forms, such as exponential, logistic and
inverse linear and linear form. Cox (1972) proposed an exponential function due to its

simplicity. Thus the PHM with & covariates can be expressed as
k
h(t:z) = hy(t)exp(B,z, + B,z, +..0,2,) = hy(£) exp(z Bz, (3.6)
i=|

ho(t) is modelled as a non parametric thus making the PHM a semi-parametric
model. The baseline hazard can also be fitted by a specific model such as Weibull,
Gamma and lognormal thus transforming the hazard function into a parametric model.
The advantage of having non-parametric model is that there is no need to make any
assumption about the shape of the underlying failure distribution, thus eliminating the
uncertainties about the model selection. The corresponding reliability function is

given by

R(t:z)= R, (1) (3.7)
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where Ry(?) is the baseline reliability function. The regression parameter g can be

estimated using partial likelihood method given by

o exp(Bz,)
Up)- H Drer SXP(B72) 9

where R; is the risk set and z, is the observed covariates at time failure time ¢;. The
calculation of the likelihood method is normally done using numerical method such as

Newton-Raphson procedure. Test for significance of Sis performed by analytical

method such log-rank test, chi-square test and graphical methods.

For both KM and PHM approaches, the analysis is performed using SPSS
statistical software. To fit into SPSS analysis, the data must be first prepared in

appropriate format.

3.3.5 Inferential Analysis

The purpose of this step is to determine the best statistical model to represent the data.
Figure 3.3 illustrates a general methodology used. Two major portions of works
involved namely testing for independent and identically distributed (IID) data and
fitting into lifetime distribution. For non-repairable items, the data is assumed IID,
and hence can be directly assessed for lifetime distribution analysis (LDA). The data
for repairable items, on the other hand, need to be arranged in chronological ordered
before they can be tested for IID assumption. The importance of ensuring the data are
IID before they can be used for prediction model cannot be emphasized enough. The
existence of trend exhibits that the data are not in steady state thus cannot be fitted
into any statistical lifetime probability distribution. In this case, a non-stationary
model such as NHPP might be suitable. The predicted reliability and maintainability
measures are highly influenced by the types of distribution and its parameters
(Rausand and Hoyland, 2004), hence the use of inaccurate and poorly fitted
distribution will definitely produce wrong results. Laplace’s test has been widely used

to test for identically distributed assumption (Ascher and Feingold, 1984) whereas
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serial correlation test is employed to determine independence condition (Ansell and
Philips, 1994). Laplace test is also used to determine whether the data can be fitted
into HPP distribution. Alternative method is based on a steady state trend of a
ROCOF plot.

When the data exhibit IID characteristics, they will be fitting into a lifetime
distribution model following a well established process. First, the distribution is
selected then its parameters are estimated either using a least square (rank regression)
or maximum likelihood estimation (MLE) method. Rank regression method is
preferable when the data is complete and many (more than 30). When data consists of
suspension data and is small, MLE is the better choice (ReliaSoft, 2005). Next, the
goodness of fit test is carried out to assess if a hypothesized probability distribution
for the data provides a good fit. Several types of test exist which include general test
such as Chi-square, Kolmogorov—Smirnov and Anderson Darling which can fit multi-
distribution. For more powerful test on specific distribution, there are specific type
test that include Bartlett (Exponential), Mann (Weibull), Kolmogorov—Smirnov
(normal and lognormal), and Cramer-Von Mises (NHPP) (Ebeling, 1997). Weibull ++
software uses correlation coefficient and log-likelihood value for goodness of fit when
analyzing data with rank regression and MLE method respectively. When trying to
find the best fitting lifetime distribution of reliability data sets, a common approach is
to use general test to prioritize selection based on the smallest probability value (p-
value) out of those hypothesized distributions. Alternatively, a combination of various
statistical tests can be employed to propose the best distribution for the data. For
example, in Weibull ++ software three factors namely Kolmogorov-Smirnov test, a
normalized correlation coefficient and the likelihood value are analyzed based on
statistical test values and assigned weights to rank distributions based on fit to the

data.

3.3.6 Estimation of Reliability and Maintainability Measures

Based on the appropriate lifetime distribution selected and its associated parameters,

the measures of reliability and maintainability can be determined. Reliability
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measures include reliability function, expected MTBF and percentual time to failure.
Maintainability function, mean duration of maintenance task (MDMT), mean time to
repair (MTTR) and percentage restoration time are the common measures for
maintainability. The obtained measures are then to be interpreted accordingly to
provide a basis for suitable recommendations for system improvement (e.g. which

equipment is critical, hence should be focused on by management).
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3.4 Availability Analysis

A simulation-based approach is proposed in the availability analysis of a system, in

contrast to analytical method used in reliability and maintainability measures. For

simulation to be effective, great deal of efforts, systematic planning and organization

are required (Mishra, 2006). General steps in performing simulation analysis can be
found in Banks er al. (2010), Averill (2007) and ReliaSoft Corporation (2009).
Marquez ef al., (2005) and Herder et al (2008) provide examples on how availability

simulation can be approached in analysis of process industry data. The proposed

approach used in this research is built on that of Bank er al. (2010) and is illustrated in

Figure 3.4. The details of each step are discussed here:

ii.

iii.

Define the problem, objective and system - The problem and objective must be
clearly defined at the beginning of the analysis. The objective will specify sets
of questions to be answered by the study (Banks, 1998). The boundary,
subsystems or equipment and their relationships, maintenance scheme,
operating procedures and conditions of the system have also to be clearly

specified.

Gather data —Relevant process flow diagram and piping and instrumentation
diagram (P&ID) within the boundary of the system under study are gathered
and later used to develop the system conceptual reliability block diagram
(RBD) model. Other vital information to be captured includes the reliability
and maintainability (R & M) data related to failures and downtime, and the
operation and maintenance characteristics such as equipment loading and

maintenance schedule.

Make assumptions on model - Various assumptions used need to be defined
upfront together with specific measures for assessing the system’s
performances such as reliability, maintainability and availability. These
assumptions include those related to failure and repair time definitions,
maintenance operation, perfect switching condition, operation states and

application of constant failure rate.
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iv.

Bl AR A A P e S OO

Maintainability
- Model '

Construct RBD model -The aim here is to represent the actual system under
study with a conceptual model which is adequate and capable of achieving the
analysis goal. Normally a conceptual model starts with a simple model and
allows for more complexity to be added on in later stage. RBD is used to
represent the system configuration in which each block is used to represent a
component or subsystem or function in the system. Plant personnel
involvement and verification are needed throughout model development to
ensure that the model is practically correct. The RBD based conceptual model
is developed using computer simulation software named Blocksim. In
Blocksim, RBD and its connecting lines are constructed to describe
dependencies relationéhip. Inputs into the model are provided in the form of
probability distribution of time to failure and repair time derived from the
results of reliability and maintainability analysis done earlier (Figure 3.5). For
repair time data, they comprise those of corrective {unplanned shutdown) and
preventive maintenance (planned shutdown). Other important input is
maintenance characteristics such as PM types and schedule, and depending on

the study objective, may also include crew, spare parts logistics and costing.

| Reliability - " Maintenance. -
g, Model .\ " characteristics
B e LR SN § \ - .

CM Downtime PM Downtime

Figure 3.5: Data input requirement for RBD and each of its block in Blocksim
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vi.

Vil.

viii.

Verified? - Before a simulation is run, it is important to verify that the model is
correct and ensure that plant personnel agree with the model. If this is not met,

the model has to be reconstructed and re-verified.

Run simulation - The model having inputs of existing system parameters,
conditions and historical data is simulated to estimate the system availability
for a specified duration. Simulation is performed using a Monte-Carlo
technique by simulating system operation based on failure and downtime
distributions. During simulation, random failure times and downtime duration
from each component’s distribution are generated. The results from each
component are then combined according to RBD reliability-wise arrangement
and analyzed to establish the overall availability of the system. Sensitivity
analysis, a study on output variations by varying certain variables, can also be

performed here to reduce model uncertainties.

Validated? - The result of the simulation is then compared with the
corresponding real system performance. This process refers to model input-
output transformation validation, where the model obtains input parameters
and transforms them into output of measures of performance of which they are
validated against the actual system performances (Banks et al, 2009).
Changes in the model and its inputs are needed when the accuracy of the result
is not satisfactory. This is an iterative process, where it is repeated until model

accuracy is justified.

Experimental design — In here “what if”’ scenarios or improvement options and
their simulation design have to be determined. Simulation design also involves
specifying the length, number of runs and mode of initialization for every
scenario planned (Banks, 1998). Proper number of simulation and duration are

necessary to produce stable output with minimum variation.

62



ix. Simulation runs - Once the experimental design is set, the simulation is
conducted to estimate measures of performance relevance to the objective of

the study for each scenario.

X.  Analyze output - From the simulation output, the availability estimation for the
system can be made. Other statistical analysis can also be performed based on
the results of simulation such as criticality analysis of each block in terms of

reliability, downtime and availability.

xi.  More runs? — Based on the results obtained, decision can be made on whether
additional runs are needed and what design of those additional runs should be.
Additional runs are normally required for sensitivity analysis, a study on
output variations by varying certain variables. It is also performed to

understand the influence of various factors on the system overall performance.

Xil. Make inference and decision - Based on the output results, appropriate
conclusions can be made such as estimated system availability after certain
years of operation based on existing performance, identification of the most
critical equipment with respect to reliability and downtime, and quantification
of the effect of redundancy, equipment, manpower and maintenance actions to
the system’s availability. From these findings, effective decisions can be

formulated accordingly to improve the system.

3.5 Case Studies

In this research, two case studies are presented. The first is on a gas compression train
system at the offshore platform and the second is on an acid gas removal unit system

in a gas processing plant. The description on both systems is discussed below.
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3.5.1 Gas Compression Train System

A gas compression train (GCT) system is an important section of gas compression
system at a central processing offshore platform, which functions to transfer gas from
all producing platforms in the field to onshore facilities. The availability of GCT is
critical to ensure smooth and sufficient supply of gas as demanded by customer. The
gas production from this field is significant since it is one of the main sources of gas
and often acts as a buffer in case of supply shortages in other fields. With the increase
in demand and declining trend in gas fields and capacity, the pressure to operate the
system in high reliability and availability has increased more than ever. Even though
there are new producing satellites that will temporary ease the tight supply condition,
the overall production still depends on the aging GCT system reliability. Hence, in
order to overcome these challenges, it is vital for the system performances to be

continuously monitored and improved.

Figure 3.6 illustrates the gas production flow and gas compression system on the
offshore platform with gas compressor as the main equipment together with other
equipment such as separators, scrubbers, glycol contactor and heat exchangers.
Natural gas produced from wells can be categorized into two; non associated gas and
associated gas. Non associated gas (NAG) mainly contains pure gas at high pressure
and flows out from reservoir that contains gas with no or very minimum oil, whereas
associated gas (AG) refers to a gas that dissolved with oil at high pressure existing in
reservoir and can also be present as a gas cap above the oil (Hyne, 2001). The NAG
from a gas well has high temperature that needs to be cooled in by a wellhead cooler
before being routed to the subsequent processes. The gas then passes a 2-phases gas
production separator which separates crude and/or condensate from the gas before the
gas is sent to glycol contactor. The AG comes from oil well is being processed at the
low pressure (LP) system. After going thru a 3-phases oil production separator which
separate crude oil, gas and oil water, LP gas is cooled in by a cooler before being
routed to the gas separator. Here, the remaining crude and/or condensate are being

separated from the gas.
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LP gas has to go thru 2 stages of gas compression compare to only 1 stage for HP
gas to achieve the desired export discharged pressure. Before undergoing the first
compression stage, LP gas is sent to suction scrubber to separate and dispose the
remaining liquid in the gas. The compression process is done by a centrifugal
compressor driven by a gas turbine. Next, the LP gas is cooled in before it joins HP
gas into a glycol contactor for a dehydration process. Gas dehydration is a process of
removing water vapour from a gas stream to lower temperature (dew point) at which
water will start to condense from a gas stream. This will prevent hydrate formation
and corrosion from condensed water (Arnold and Stewart, 1999).The gas enters the
glycol contactor from the bottom contactor drum and flows upward. Glycol, a water
absorption agent, is pumped into the upper part of the drum and it cascades down
inside the drum coming into contact with the gas and absorbs any water in the gas.
Next, the gas passes a suction scrubber and a centrifugal compressor for " stage
compression. After being cooled in by a heat exchanger, the gas is routed to gas

metering skid before it is sent to onshore facilities via 32”, 166 km pipeline.

3.5.1.1 GCT Description

The heart of gas compression system is a gas turbine compressor package consists of
gas turbine, centrifugal compressor and support equipment. It is a common practice in
the industry to regard this package as a single system for the purpose of design,
safety, maintenance data collection and analysis (Wall ef al., 2006). In this study, for
simplicity, this package is referred as a gas compressor train (GCT) system. There are
two compressor trains; train 1 and 2, running in parallel to compress gas for export in
the system. Each train consists of a 32,000 hp aero-derivative gas turbine which
drives a single barrel casing two-staged inter-cooled centrifugal gas compressor. The
operation philosophy is to run one train whilst another train is standby during low
production, and run both trains when the production demand is high. During early
years of production where the production was low, the plant always ran on one train
configuration (single loading). However, beginning in 2005, when the production

picked up, both trains were operated concurrently, except the time when either one of
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the trains was down due to failure or PM activities. The design capacity for each train
is 225 mmscfd (million standard cubic feet per day) of gas, and with the combined
two trains at 550 mmscfd. Figure 3.7 shows a schematic diagram of main
components of a gas compressor train. Other important components not shown in the
diagram are ancillary equipment such as lube oil and control systems. The system

boundary of the GCT is defined and illustrated in Figure 3.8.
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gfmpressor GG turbine ::x?r:e Gear CENTRIFUGAL
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Figure 3.7: GCT diagram which shows a gas turbine drives a centrifugal compressor
via a speed increaser gear box
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Figure 3.8: GCT system boundary (adapted from OREDA (2002))
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3.5.2 Acid Gas Removal Unit (AGRU) system

The second case study is on an acid gas removal unit (AGRU) system, part of systems
in a gas processing plant (GPP). There are four GPPs: GPP1; GPP2; GPP3; and
GPP4, in operation in the petrochemical integrated complex. GPP treats and processes
raw natural gas (NG) from gas fields offshore of the East Coast of Peninsular
Malaysia and turns them into various products such as methane (sales gas), ethane,
propane, butane, and condensate. A GPP’s simplified process flow, its various
systems and products are shown schematically in Figure 3.9. GPP can be operated in
two operation modes; C; mode and C; mode. AGRU operation is running (on-line)

when GPP is under C; operation mode, and by-passed in C; operation mode.
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Figure 3.9: Simplified process flow of GPP

AGRU primary function is to remove H,S (hydrogen sulfide) and CO; (carbon
dioxide), which are corrosive and toxic contaminants, from NG. This process is also
known as sweetening, in which the level of sulphur compounds concentration in NG
is reduced from high (sour gas) to low (sweet gas). H,S can form acid when reacting
with water, hence can cause corrosive damage to gathering / boosting and

transmission pipelines, compressors, pneumatic instruments, and distribution
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equipment. H,S is also odor, poisonous and its total sulfur content is normally
regulated. CO,, on the other hand, is a greenhouse gas and its high content in NG can
lower the production, transportation and storage efficiency. Beinfield process is used
to remove these acidic gases from the gas stream by treating NG with Beinfield
solution containing Potassium Carbonate (K2CO3), Vanadium Pentoxide (V205) and
Diethanolamine (DEA).

In AGRU system, sour gas enters absorber A-201 at the bottom after passing thru
heat exchangers. A lean Benfield solution is fed at the top section of the absorber to
absorb H,S and CO, from the up-flowing sour gas. The resulted sweet gas from the
absorber is next cooled in heat exchangers and channelled into separator drum M202,
to separate condensate, before further processing. A rich Beinfield solution containing
the absorbed acidic gases is then routed to a regenerator (stripper A-202 with reboiler
T204). Here, the gas is stripped to produce concentrated H,S and CO; overhead gas.
Lean Beinfield solution is regenerated in T204 reboiler and then fed into storage
pump M203. From here, the lean solution is returned to the absorber via pumps (P202
and P201). The generator overhead is condensed in air cooler T206 and collected in
regenerator accumulators (M204 and M205) before sending for regeneration (reboiler
T205) and recycle, Acid gases remain uncondensed and exit accumulators for further

processes (eg. vent out to atmosphere etc.).

3.6 Chapter Summary

In this chapter the methodologies used for conducting practical reliability,
maintainability and availability analysis on plant system are presented. Here, the
focus is on a realistic approach on how to effectively use and systematically analyse
field maintenance data for improving system operation and maintenance performance.
The proposed methods utilize modelling approach based on systems approach to
model real system, analyse it using appropriate techniques and interpret the results
accordingly. For reliability and maintainability analysis, a generic framework is
presented. In this framework, the analysis process consists of six main steps namely:

setting objectives, definition of system and failure, data gathering, exploratory
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analysis, inferential analysis and finally estimation of reliability and maintainability
measures. The methodology presented for availability analysis is built upon RBD
modelling and simulation techniques. To run a simulation, a computer simulation tool
is needed. In this research, specialized reliability simulation software named Blocksim

is utilized to achieve the objective.

70



CHAPTER 4

RELIABILITY ANALYSIS

4.1 Introduction

Reliability analysis as an important plant improvement tool for assessing the
performance of existing operational system is discussed and demonstrated in this
chapter. The analysis process is performed based on a systematic approach proposed
in the previous chapter. The focus of the study is on real industrial data for a

repairable system of gas compression train system (GCT) at an offshore platform.

4.2 Objectives of the Analysis

Maintenance data with proper statistical analysis techniques can help management to
assess plant performance by giving insights on how well the performance of the
existing or particular system and critical factors influencing the system performance
(Ansell and Philips, 1994). From discussions with plant personnel, some of the

common concerns about the plant performance include;

» How is the performance of the current system? Is it in improving or
deteriorating or steady state?

»  What are the critical factors that influence the system performance?

e How well 1s the current maintenance practice? Does it help to enhance the
system lifetime and reduce the breakdown duration?

e What is the prediction of the future system performance in terms of failure

rate, mean time 1o failure (MTBF), number of failures and availability?
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A clear understanding of the above aspects about plant condition is fundamental
for achieving high reliability and performance plant. Identification of the influential
factors to system performance is crucial to plant operation so that appropriate actions
can be rendered. To address those concerns, the following objectives have been set for

the study of the gas compression train system:

1. To analyse maintenance data to gain insight into the existing and future system
performance

1i. To identify dominant factors of system reliability in terms of subsystem and
failure mode

1. To assess the influence of other important factors such as preventive
maintenance (PM) on the system lifetime

iv. To determine system reliability measures such as failure rate and mean time

between failures (MTBF)

4.3 Maintenance Data

Sufficient, well formatted and quality maintenance data are fundamental for the
success of reliability and availability analysis of gas compressor train. Field
maintenance data are being recorded in the computerized maintenance management
system (CMMS) database and turbo-machinery engineering availability tracking
record. The latter is the main recording data for monitoring train’s availability
performance and hence, will be used as the prime data source for the reliability and
availability analysis of the system in this research. CMMS is generally used for
verification purpose. An example of the availability tracking report is described in
Figure 4.1. This report contains details of critical failures (failures that cause train to
shutdown) and maintenance activities. Turbo-machinery engineering group has
started developing this data record since April 2002, when the system operation was
handed over to the maintenance team even though the first commercial production of
gas was in January 2002. Engineers use this report for their continuous monitoring

and reporting of gas compressor train performance. The train operation data are
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captured on a datly basis and the time duration for each event is reported in hours.

The events are broken down into four categories:

1l

1.

Utilization (UTIL) — normal operation states

Standby (S.B) — standby mode due to low production demand and external
events such as to emergency shutdown (ESD), plant shutdown and turnaround
Planned shutdown (PSD} - shutdown caused by planned preventive

maintenance (PM) activities

. Unplanned shutdown (USD) — shutdown as a result of corrective maintenance

(CM) actions due to failures

From the report, the following important data for each train can be obtained:

Failure frequency, time and downtime duration

Failure modes, causes and corrective actions

Causes of shutdown i.e. CM, PM, ESD, turn-around and plant shutdown
Scheduled maintenance time and duration

Train operation modes such as standby, down, single loading and shared
loading

Performance measures i.e. reliability, availability and utilization

The time between the successive failures data can also be established from the

report. The time between failures is based on the actual operating days where it is

calculated only when the train is running, and not counted when it is not in operation

either due to failure, PM or standby. To facilitate the process, the data are rearranged

in the special format to capture this critical information together with other important

information such as start-up failure and operation loading mode. A sample of the

formatted data can be seen in Appendix A.

The existing format used by field engineers in the availability tracking report is

commendable since it keeps track on the exact timing of each event on hourly basis,

hence make it easier to perform analysis on time between failures (TBF) based on

operating days. Nevertheless, there are some issues with regard to the historical data.



In the early years of data recording, the event data was recorded either as a standby or-
a shutdown, regardless whether it was unplanned shutdown (USD) caused by failures,
or planned shutdown (PSD) due to preventive maintenance actions. Starting from
January 2005, a significant improvement had been made in the recording format,
where the shutdown data were further divided into USD and PSD for better tracking,.
The data also suffer from common issues such as missing, incorrect and incomplete
information, for example, the reasons for certain system downtime. Furthermore,
some of the failure causes are unambiguous, for instance, failures related to
compressor are not clearly specified whether they belong to turbine compressor or
centrifugal compressor. To overcome these uncertainties and maintain the integrity of
the data, clarification on failure and downtime data from respective engineers are
highly critical. Throughout the study their active involvement and inputs are

continuously sought to ensure the data and analysis are valid and relevance.

Besides these two records, other related reliability data can be found in monthly
turbo-machinery performance reports by turbo-machinery engineering group, root

cause failure analysis (RCFA) reports and vendor / supplier reports.
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' TURBO MACHINERY AVAILABILITY AND UTILIZATION
AUGUST 2005
HOURS
DAY ©€-2420 (Trainl) - : C-2450 (Train 2) . .
UTIL. 5.8 PSD UsD TOTAL UTIL. SB PSD Usb TOTAL

1 24 24 24 24
2 24 24 24 24
3 24 24 24 24
4 24 24 24 24
5 24 24 24 24
6 24 24 24 24
7 2i.5 25 24 24 24
8 24 24 24 24
9 24 24 24 24
10 24 24 24 24
it 4 20 24 24 24
12 24 24 24 24
13 24 24 24 24
14 24 24 24 24
15 24 24 24 24
16 24 24 24 24
17 24 24 24 24
8 24 24 24 24
19 24 24 24 24
20 24 24 24 24
21 24 24 24 24
22 24 24 24 24
23 6 18 24 24 24
24 16 8 24 18 6 24
25 24 24 19 5 24
26 24 24 24 24
27 24 24 24 24
28 24 24 24 24
29 24 24 24 24
30 24 24 24 24
31 24 - 24 0.75 23.25 24
TOTAL 5455 94.5 78 26 744 709.75 0 1 23.25 744
UTILIZATION % 733  |UTILIZATION % 95.4
AVAILABILITY % 86.0  |AVALILABILITY % 95.4
RELTABILITY % 96.5 |RELIABILITY % 969
SHUTDOWN % 105  |SHUTDOWN % 1.5

Note: UTIL = utilization, SB = standby, USD = unplanned shutdown, PSD = planned shutdown

Figure 4.1: Sample of availability tracking report

4.4 Exploratory Analysis

Based on plant engineers’ recommendation, the failure data of gas compressor train
can be categorized into 10 areas or subsystem for the purpose of data analysis. Table
4.1 depicts these subsystems and their respective coding. The field data used in the

analysis are based on the data from 2002 till 2009.
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Table 4.1: GCT subsystems and coding

—
No. Subsystem Code
] Gas Turbine GT
2 Centrifugal Gas Compressor GC
3 Starter System STS
4 Gearbox GB
5 Fuel System FS
6 Vibration Monitoring System VMS
7 | Anti-surge Valve System AVS
8 | Lube Oil System LOS
9 Process and Utilities PRO
10 | Turbine Control System TCS

4.4.1 Pareto Analysis

Figures 4.2 and 4.3 describe the failure breakdown charts according to subsystems for
both trains. For train 1, major contributors to system failures are gas turbine (GT) and
turbine control system (TCS) which both constitute two-thirds of total failures. Gas
turbine, centrifugal gas compressor and process subsystem are the main causes for
train 2 failures where together account for about two-thirds of the train failures. For
the overall GCT (combination of train 1 and 2), gas turbine related failure is the
highest contributor toward system breakdown followed by turbine control system as
indicated in the Pareto chart in Figure 4.4. Further analysis on gas turbine failures
reveals no dominant failure mode exists as the causes of failures are varied. The
highest mode, about one-fifth of total failures (4 out of 21 failures), is a start-up
failure after maintenance actions. This failure mode, however, mainly occurred in
early years of train operation and has shown decreasing trend recently. The prime
causes for turbine control system failures are related to faulty transmitter and

programmable logic controller (PLC). Turbine control system failure has occurred
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more frequently lately as illustrated in Figure 4.5 and hence should be appropriately

attended and resolved by turbo-machinery engineers.

YMS O STS 7%
4% 4%

Figure 4.2: Train | CM breakdown by subsystems

6% 3%

Figure 4.3: Train 2 CM breakdown by subsystems
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4.4.2 Trend Analysis

The processed operational data of time between failures for both trains 1s tabulated in
Table 4.2. The resulted plots for train | and 2 are shown in Figures 4.6 and 4.7,
respectively. The trend plots for both trains exhibit a lineér pattern with no indication
of monotonously increasing (concave up) or decreasing (concave down) pattern,
hence signifies that the train performance in neither improving nor deteriorating. To
test for this assumption, the statistical Laplace test based on Equation 3.1 with failure
truncated is performed. The calculated Laplace statistics value, Uy, for train 1 and 2 is
1.409 and 0.484 respectively. These results are found not to be statistically significant
at 95% confidence level (z = +/- 1.96). Thus the assumption based on the graphical
method earlier 1s acceptable that the data do not exhibit any monotonic trend. This
non-monotonic failure data trend suggests the failure process can be modelled by a
simple homogeneous Poisson process (HPP) where the inter-arrival time between

failures follows exponential distribution.

To look at how the failure rate change over time, the ROCOF based on time
interval of 200 days is calculated. The plots of estimated ROCOF for respective train
are shown in Figures 11 and 12. The plots indicate that there are no increasing or
decreasing trends in failure rates for both trains. The failure rate for train 1 looks
rather constant with little fluctuation throughout the observation time. For train 2, the
plot also exhibits somewhat constant trend over the time period, however a slight
increase in fatlure rate is noticeable near the midpoint of observation period. Based on
the Equation 3.2, the estimated failure rates for train 1 and 2 are about 0.013 and

0.015, respectively.
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Table 4.2: Time between failures based on operation days -

Train | Train 2
Failure Time between | Cumulative operating | Time between Cumulative operating

No failures (Days) time (Days) failures {Days) time (Days)
I 15 15 22 22
2 6 21 31 53
3 195 216 327 380
4 295 511 §32 512
5 107 618 77 589
6 129 747 6 595
7 65 812 104 699
$ 20 832 17 716
9 22 854 42 758
10 118 972 45 803
I 32 1004 208 t011
12 263 1267 22 103
13 113 1380 28 1061
14 5 1385 8 1069
15 84 1469 56 1125
16 31 1500 22 1147
17 23 1523 7 1154
18 43 1566 30 1184
19 217 1783 151 1335
20 6 1789 t7 1352
21 52 1841 64 1416
22 126 1967 89 1505
23 30 1997 100 1605
24 12 2009 80 1685
25 3 2012 4 1689
26 68 2080 91 1780
27 3 2083 124 1904
28 216 2299 62 1966
29 27 2326 7 1973
30 4 2330 26 1999
31 15 2345 3 2002
32 23 2368 103 2105
33 3 2371 3 2108
34 179 2550 119 2227
33 13 2563 26 2253
36 129 2382
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4.5 Analysis of Other Factors Influencing System Reliability

Besides subsystems, there are other factors that can possibly influence the train
reliability performance, thus worth to be investigated. These possible factors
sometimes may not be explicitly found in raw data, but can be identified by plant
experts based on their extensive experience and detailed observation on the system.
Any of these factors can be considered significant when it can shorten or lengthen
mean time between failures. Based on discussions with plant personnel, the following
factors or covariates are suspected to have some influence on the system reliability

performance:

i.  Train: Both trains are designed to produce the same performance, however
based on the maintenance data, train 2 experiences longer shutdown duration

than train 1.

ii.  Operation loading mode: When both trains are in operation, the load 1s shared
equally between them i.e. shared loading. When one train is down, another
train has to take up the entire load i.e. single loading. This extra loading may

increase stress on that running train.



iii.  Subsystem: Almost 50% of the failures come from gas turbine and gas
compressor. It is useful to understand the-impact of these gas turbine and

compressor related failures to the overall system failure frequencies.

iv.  Failure after start-up: Frequent start up operation due to switching back of
operation mode to operating state could be detrimental since it may induce
stresses on the equipment which in turn leads to wear out problem. The
occurrence of failures right after train being put up into action (including start-
up failure) may be a symptom of this deterioration, hence could potentially
shorten the elapsed time to the next failure. A switching operation is
considered when train resumes normal operation after being in standby mode
and shutdown due to failures and PM actions. In the case of standby mode as a
result of low demand, a start up operation is assumed only when the

equipment has been in standby for more than four hours.

v.  Maintenance activities: Maintenance activities such as PM and engine wash
are supposed to reduce number of failures and increase the time between
failures of the system. Sometimes the maintenance impact can be insignificant

or detrimental to the system performance.

4.5.1 Covariates Analysis

To test for the above assumptions and determine influential factor(s) affecting
reliability, two approaches are used: Kaplan Meier (KM), and Proportional hazard

model (PHM).

4.5.2 Modelling of Covariates

Let the time to failures of n number of failures be 1y, 5, 15, 13,.. .1, With 19 <1; <13 < ..
<ly. Ip 1s the arbitrary time which mark the beginning of the observation period. The
time between failures (inter-arrival) are denoted by X, where X; = 1, — t,;. For

illustration, let consider a PM as the covariate. Assume there is a PM activity being



carried out in between f; and ¢, as illustrated in Figure 4.10. In this model the impact
of that PM on the failure distribution is measured basically by the length of X>; how
effective is the PM to extend the X> period. For other covariates, except failure after
start-up, the model follows the same notation. For example, let assume the 2" failure
occurs at time /; in the presence of a covariate, thus the effect of that covariates can be
translated in the duration of X>. In the case of failure after start-up covariate, however,
the covariate’s impact 1s measured based on Xj instead of X5. Here, we are interested

to know the impact of failure after start-up to the next failure event and not prior to

that.

1 ] 1 ] | i
1 ] 1 i | L]
Xy — X3 | X3 1 jo— X |
i : ; | i |
I 1 ] 1 I 1
| ; i i i i

Failures | O 15, O —O —C O
ty t, PM t, t fhs t, Time
Observation Observation
period start period end

Figure 4.10: Modelling of failures for PM covariate

Once the model is determined, the manipulated data are then analysed for KM and
PHM using SPSS software. Table 4.3 shows the grouping of covariates used in the
analysis. Group 1 1s assumed to have more significant effect on survival plot. The
covariates consist of train, operation mode, sub-system, failure after start-up operation
and maintenance activities. The maintenance activities, however, had been further
broken down into two more covariates; PM and PM plus engine wash. The PM
covariate only includes 4K and 8K ppm but not engine wash. This will enable
separate assessment to be done on the effectiveness of PM action with and without

engine wash. The complete formatted data for the analysis is given in Appendix B.
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Table 4.3: Covanates and their grouping

Covariates Group 0 Group 1
Train Train 1 Train 2
Operation mode  Shared load Single load

Subsystem
Start-up
PM

PM + wash

Other sub-systems
Other failures
Other failures

Other failures

Gas Turbine + Compressor

Failures after start-up

Failures after PM

Failures after PM + engine wash

4.5.3 Kaplan Meier (KM) Analysis Results

In this analysis, a statistical log-rank test is employed to test the null hypothesis that

there is no significant difference between the survival data of group 0 and 1 for each

covariate. The result of log-rank statistical tests is tabulated in Table 4.4. The result

indicates that only a PM plus engine wash covariate has significant effect on the

system failure distribution (P-value less than 0.05). The result also shows there is no

significant difference between the two trains performance, thus it can be assumed that

both trains have similar failure performance. Figure 4.11 describes the survival plot of

PM plus wash covariate where it shows this covariate has a positive influence in

extending the system inter-arrival failure time. The details of the analysis results can

be found in Appendix B.

Table 4.4: Log-rank statistical test on covariales

Covariates | Train | Operation Mode | Subsystem | Start-up | PM | PM + Wash
Chi sq 0.186 0.031 3.34 0.017 241 8.52
Sig. (P value) | 0.666 0.860 0.07 0.897 0.12 0.004
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Figure 4.11: KM plot of cumulative survival for failures after PM plus engine wash
vs. other failures

4.5.4 Proportional Hazard Model (PHM) Analysis Results

The result of PHM analysis on the covariates is tabulated in Table 4.5. For each
covariate, the test of significance is done by comparing Wald statistic with a Chi
square distribution with 1 degree of freedom. The Wald statistics is simply the square
of z score (a value obtained by dividing the regression estimate, 8, by its standard
error). A Wald value greater than 3.84 will be significant at 5% level (p-value less
than 0.05), thus indicates significant effect of that particular covariate. Based on the
results, PM plus engine wash is the only influential factor with the statistical
significant value (P value) of 0.044. This p-value is however higher than the one
derived from KM log-rank test (0.004) since the PHM model includes the effects of
all covariates in the analysis. A negative value of  indicates that the hazard is lower,
thus the time between failure is better for covariates with lower  value. Hence, train,
operation mode, subsystem, failure after start-up and PM plus wash covariates are
associated with longer time between failures, whereas PM is associated with shorter
ume between failures. The impact of covariates to the hazard function can be

determined by a hazard ratio, Exp (B). For PM plus engine wash, the estimated hazard
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is 0.567 lower than of another group (other failures). In other words, this covariate
with reduce the hazard of failures by 56.7%. For other covariates, however, there are
no significant differences in term of survival function since the p-values are not
statistically significant at 95% confidence level. The estimated survival plot for PM
plus engine wash covariate is shown in Figure 4.12 and the corresponding hazard plot

ts described in Figure 4.13. More details on the analysis results can be found in

Appendix B.
Table 4.5: PHM analysis on covariates
Covariates B Std error Wald | df | Sig. (P value) | Exp(B)
Train -.045 296 024 | 878 956
Operation Mode -.533 557 917 | 338 587
Subsystem -.368 323 1.302 ] 254 .692
Failure after startup | -.090 405 049 | .824 914
PM 006 466 000 ! 989 1.006
PM + Engine Wash | -.837 416 4.050 | 044 433
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Figure 4.13: Hazard plot for PM plus engine wash covariate
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Based on the findings of both KM and PHM analysis, the following conclusions

can be made regarding the covariates:

I.  There is no significant difference in term of reliability performance for
both trains
II.  There is no significant impact of single loading operation mode, failures
afler start-up operation and failures contributed by gas turbine and gas
compressor on the time between failure distribution
111, The contribution of PM alone to increase the failure time interval is not
that significant, however, when PM and engine wash are carried out, there

is a significant improvement in system reliability.

4.6 Inferential Analysis

A rough estimation of failure rate has been given earlier for both trains based on the
smooth characteristics of ROCOF plots. The plots of number of failures against
cumulative time also suggest that the failure data can be modeled by Homogeneous
Poisson Process (HPP). Nevertheless, before HPP model is assumed, it’s necessary to
ensure that the data are independent and identically distributed (IID). Whilst the
assumption of identically distributed data has been validated by the trend plot and
Laplace test, the independent assumption can be tested using a serial correlation test.
This test is performed by plotting the (i-1)th time between failure (TBF) against the
ith TBF data, where i = 1,2,...n and »n = the number of fatlure events. The serial
correlation plots for both trains are shown in Figures 4.14 and 4.15. The graphs show
the data plots are scattered randomly indicating the lacks of correlation. Hence, the

[ID assumption for the data is valid.
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Figure 4.15: Dependency test for train 2 data

Using a Weibull ++ software, an exponential distribution is fitted into data for
train 1, train 2 and combination of both and the corresponding probability plots are
illustrated in Figures 4.16, 4.17, and 4.18, respectively. The goodness of fit statistical
test using Kolmogorov-Smirnov (K-S) test indicates that the model fits the data
sufficiently. The summary of the resulted reliability measures and their confidence
bound are shown in Table 4.6. The estimated failure rates are close to those derived

from ROCOF calculation. Train 2 shows slightly poorer reliability performance than
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train 1, however, they are not statistically different as it is shown in Kaplan Meier
analysis.
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Figure 4.17: Probability plots for train 2
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Figure 4.18: Probability plots for combination of data from both trains

Table 4.6: Goodness-of-fit for exponential distribution and reliability measures

Data K-S  Significant Failure rate  95% confidence MTBF 95%
value  P-value* {(A) (per range (days)  confidence

day) range
Train | 1.117 165 0.0123 0.0088-00172 812 583-113
Train 2 589 .879 0.0143 0.0103-0.0198 0699 50.4-96.9
Combine  1.168 130 0.0135 0.0107-0.0170 743 58.7-93.7

Note*: P value > 0.005 indicates good fit

4.7 Chapter Summary

In this chapter, the proposed reliability analysis approach has been demonstrated and
found practical for investigating field maintenance data and providing useful insights
on the present reliability performance of existing operational system. The study also
describes the conditions and issues with plant data and highlights the importance of
plant personnel involvement in the study to reduce many uncertainties in the data.

Simple analysis such as trend plot and trend test can provide a snapshot of the system
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performance, hence should be performed in the early part of rehability analysis.
Besides, they can help to determine whether the data can be modelled by a lifetime
distribution. The analysis results show that for both trains the time between failures
data can be sufficiently modelled by exponential distribution. This study also
demonstrates the use of maintenance data for identifying critical factors to system
reliabihity. Besides normal descriptive techniques such as Pareto analysis and trend
chart to assess historical data and 1dentify major contributors to system failures, this
study employs methods based on hazard functions; KM and PHM, to evaluate the
influence of other possible factors which are considered critical by engineers. These
factors are not explicitly present in maintenance data, but largely derived from plant

personnel inputs based on their experience and observation.



CHAPTER 5

MAINTAINABILITY ANALYSIS

5.1 Introduction

This chapter demonstrates the applications of the proposed maintainability analysis
approach to assess the effectiveness of existing maintenance system in a plant and
estimate maintainability measures. Here, maintainability analysis is carried out on two
different types of maintenance actions; corrective maintenance (CM) and preventive
maintenance (PM), using a gas compression train (GCT) system as a case study. The
method used in performing those two studies varies in detail and scope depending on
the analysis needs and existing data availability and condition. In the CM
maintainability study, a systematic and simple method based on steady state trend and
expert inputs for predicting system downtime is presented. For the case of PM, due to

insufficient data, a novel approach using expert opinion has been proposed.

5.2 GCT Maintenance System and Practice

For the gas compressor train under studied, the following PM actions are
implemented; planned PM (ppm) for every 4,000 (4K) and 8,000 (8K) operation
hours, and off-line engine wash. There is also gas turbine engine change-out for every
24,000 (24K) operation hours. During all of these activities, the train system has to be

shutdown and requires a proper start up process when resuming operation.

i) 4K and 8K ppm: Based on the manufacturer’s recommendation, gas

compression train need to be serviced once every 4,000 operation hours or
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- every 6 months.- During this 4K ppm,-various critical systems-of-gas turbine, -
ancillary and centrifugal compressor are checked. Appropriate maintenance
repair and parts replacement are carried out to rejuvenate the system
performance. More extensive and comprehensive tasks are performed during
8K ppm. Table 5.1 describes the main maintenance tasks undertaken during

4K and 8K ppm respectively.

Table 5.1: 4K and 8K ppm maintenance tasks

Type of PM Area inspected

4K ppm GOT air intake, lube oil, fuel gas, gas compressor seal
gas, GT compressor section, compressor rotor

vibration system

8K ppm GT air intake, lube oil, fuel gas, gas compressor seal
gas, GT compressor section, GT and  gas
compressor  vibration detection, fire and gas
detection, pressure switches and transmitters,
temperature switches and transmitters, over-speed

protection system

ii) Engine wash: Regular gas turbine engine wash for the internal blades of the
compressor section is a common practice in the industry (Forsthoffer, 2011).
When a gas turbine is run, over time it becomes fouled with contaminants such
as salt, soils and sooty hydrocarbon, which enter through air intake and encrust
the compressor components. Engine wash is the most effective way of
preventing and removing fouling deposits besides it restores the engine
efficiency which leads to maximization of power output, fuel efficiency and
extension of machine component lifetime (Emerson process management,
2005). Axial compressor deterioration has been known generally as the major
source of gas turbine power and efficiency loss. An internal study on off-line
crank / soak engine wash by the engineering team has also confirmed the

effectiveness of engine wash in improving gas turbine efficiency (Hasnan ef
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al., 2004). During the off-liné engine wash operation, which is normally a 6-
hour task, a gas.turbine is shutdown and then approved chemical and
deionized water are injected through the intake with the machine cranking at
starting speed. Based on the maintenance data, engine wash has been
implemented since 2003 either as a separate PM event or incorporated with 4K
and 8K ppm. Increased in production demand however, has caused reduction
in the planned engine wash frequency, since production priority was on getting
the highest utilization of the system with less downtime. There i1s a proposal
by the engineering team to replace 4K ppm with bi-annual engine wash whilst
maintaining a 8K ppm. This idea however is still pending, mainly due to

production concern in meeting the output demand.

iif) Gas turbine engine and compressor bundle change-out: 1t is a standard
industrial practice to overhaul GT engine in order to maintain its high
operation efficiency after it has been in operation for certain period of time in
view of component life and also induced stresses exberienced by hot section
components. In this compression train system, that time interval has been set
at 24,000 hours. The removed engine will be sent for overhaul and replaced
with a spare engine. There is also a centrifugal compressor overhaul operation,
however with no fix time-based interval. The compressor will normally be
planned for change-out when there is indication of performance deterioration
such as incapability of producing the required head or discharged pressure.
During this change-out, the compressor bundle is replaced with another spare,

whilst the original one is sent for overhaul.

5.3 Maintainability Analysis

A generic approach for conducting a maintainability analysis has been presented in
Figure 3.2 in Chapter 3. More detailed steps used for study on GCT will be discussed
next. The flows are developed based on the objectives of the study and the conditions
of plant maintenance data. The main objectives of the maintainability analysis are as

follows:
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e To demonstrate the application of - proposed -approach - for- effective--
maintainability analysis

o To identify the critical factors / subsystems affecting the system downtime so
that appropriate actions can be taken to improve them A

¢ To highlight key and effective downtime improvement activities related to the
maintenance and logistics support system. These information can be feedback
to design and operation engineers for further system improvement

e To assess the maintainability measures of the system which are useful for

predicting future maintenance system and resources requirements

5.3.1 Maintenance Data

In a proper maintainability analysis, a precise definition of downtime events
should be established according to the respective operating system. There are many
factors which can cause downtime for the CGT system, and they should be clearly
identified and categorized in the data. This is importance 1o ensure only appropnate
data are being captured and used for the analysis. The downtime state of the gas

compression train system is described in Figure 5.1.
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Figure 5.1: GCT operating states

5.3.2 Maintenance Downtime Impact on GCT Availability

Prior to conducting maintainability analysis, 1t is imperative to understand the
influence of maintenance downtime to the availability performance of gas
compression train. The availability of gas compression train is very critical for
ensuring the platform plant meets its gas production demand. The availability is a
function of CM and PM downtime duration. CM downtime depends on failure
frequency and repair time, whereas PM downtime is related to number of PM actions
and their time duration. Figures 5.2 to 5.5 show availability yearly figure since 2002
for train 1 and its corresponding plots on CM frequency, CM and PM breakdown
trend. Similar graphs for train 2 are shown in Figures 5.6 to 5.9. Table 5.2 describes

the code for PM type categories. The code for subsystems was given in Table 4.1.

Train 1| performance had shown a steady trend with the average availability of
around 96%. There was, however, a slight drop in 2007 and 2008 where the

availability was at 92.5% and 90.6% respectively. In 2007, the decrease was mainly
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due-to- CM-for -GT engine change-out because -of turbine nozzle failure- which
occurred at the end of 2006. At the time of incident, the GT had been operated for
more than 31,000 hours, which was beyond the recommended planned change-out of
24,000 hours. Planned compressor bundle overhaul which took more than 2 weeks to
complete caused liigh downtime in 2008. Other causes of high downtime in 2008

were CM due to lube oil contaminated and flexi hose problem.

Train 2 started with high availability in 2002 but later deteriorated in 2003 before
it recovered in 2006. Gas compressor bundle change-out due to broken tie rod bolts
caused the availability to drop to 81% in 2003. In 2004, the availability trend further
decreased to 54.6% mainly due to gas compressor high vibration issue which lead to
another compressor bundie change-out. This time the downtime was much longer due
to non-availability of spare compressor. Low availability in 2005 (79%) was caused
by GT tripped on N2 speed pull away resulted in replacement of GT engine. Since
2000, the performance of train 2 has been encouraging with the availability average

stood at 97.7%.
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Figure 5.2: Availability trend for train 1
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Table 5.2: Coding for PM types

PM types Code
4K ppm 4K
8K ppm 8K
Engine wash EW
Turbine engine change-out ECO
Centrifugal compressor bundle change-out CCO

From the graphs, it can be concluded that CM downtime has significant influence
on the availability performance of both gas compressor trains compared to number of
failures (failure frequency). As being discussed in previous chapter and shown in
Figures 5.3 and 5.7, the plots of failure occurrence for both trains are rather flat and
do not fluctuate as much as those of availability. The availability performance, on the
other hand, is highly related to the USD downtime trend; the availability is low when
CM downtime is high, and vice-versa. PM downtime also affects the availability
trend, however the impact is relatively smaller. GT engine, centrifugal compressor

bundle change-out and 8K planned maintenance are found to have some impact on

GCT availability.

The improvement trend in availability 1s therefore predominantly due to the
improvement (reduction) in maintenance downtime. Based on discussion with plant
engineers, there are many factors that contribute to the trend but the most influential
factor is the improvemenlt actions carried out by the engineering, maintenance and
production team in the plant which have resulted in continuous reduction in the
amount of time to complete repair works, planned maintenance and put back
equipment to operation mode. These important findings should be feedback and
shared with designers and engineers working with similar system at different

platforms. Some of those improvement initiatives are described as follows:



Spare part management: This effort 1s one of the main contributors to a
significant reduction trend in the system downtime for both CM and PM.
Several actions have been rolled out to reduce operation downtime particularly
related to material and administrative delay. One of them is a ‘Pit crew
concept’, which focuses on team elforts, early planning and streamlining work
during shutdown (Hasnan e/ al., 2004). The key steps are the identification of
critical work path and segregation of jobs based on location and time they can
be done i.e. before, during and after the shutdown. Since 2006, many of the
critical spares had been placed at the sites, which were previously being stored
at warehouse / supplier base on onshore or OEM vendors overseas. According
to field engineer, this nitiative has significantly reduced the material delay
and maintenance downtime. Table 5.3 gives the estimated reduction in

downtime due to critical spare parts relocation Lo sites.

Table 5.3: Estimated downtime due to critical failures of subsystem

Failures subsystem Estimated downtime
Pre 2006 Post 2006
{months) (days)
1. Gas turbine ) 7
2. Gas compressor 6 14
3. Starter system 4 2
4. Gear box 6 7
5. Fuel system 1 1
6. Vibration monitoring system 1 1
7. AVS 2 3
8. Lube oil system 1 1
9. Process 1 1
10. Turbine control system 2 2
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it. Supplier contract procedure improvement: In early 2008, a' long term service
agreement (LTSA) with major OEM suppliers such as Rolls Royce was
implemented replacing the old bidding process. This initiative has resulted in
improved maintenance services and part delivery by the suppliers which are
importance for shortening downtime duration particularly involving spare
parts logistics. High downtime in 2004 for train 2 was mainly due to logistics
issues such as contracting delay, sourcing parts problem and OEM service

delay.

iii. Technicians and operators skills upgrading: Various programs have been
implemented to increase the plant workers skills. These include in-class and
on sites training related to equipment operation, trouble shooting and
maintenance. These training are conducted continuously for technicians and
operators as part of on-going efforts to empower them and enhance their

competencies.

iv. Engine and Compressor change-out policy: 1t is highly suspected that the
turbine engine and gas compressor failures which caused high downtime
during 2003 to 2005 periods are caused by over utilization of the equipment. A
prudent approach has been taken to ensure that the equipment change-out

action will be carried effectively according to the standard industrial practice.

v. Technician logistics: A maintenance crew sparing policy is implemented in
early 2009 in which turbo-machinery technician(s) is stationed at the platform

to advise material personnel on the spare part requirement.
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5.4 Corrective Maintenance (CM) Maintainability ‘Analysis-- - -

5.4.1 Exploratory Analysis

For the purpose of maintainability analysis, the maintenance downtime data for both
trains are combined since regardless of which train 1s under maintenance, the repair

and maintenance works will be performed by the same pool of maintenance crews.

As shown earlier, the availability performance trend of each train is highly
influenced by the duration of CM downtime and its improvement. To better assess the
improvement trend of CM downtime, a plot of average CM downtime per CM event
is used and is shown in Figure 5.10 together with the ROCOF. This plot clearly
indicates that there is an improvement trend in the average downtime per CM which

signifies the effectiveness of the improvement initiatives discussed previously. The

average availability trend is also shown in Figure 5.11 for comparison.
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Figure 5.11: Overall GCT availability trend

3.4.1.1 Pareto Analysis

The Pareto of the total CM downtime hours according to subsystem is depicted in
Figure 5.12. Major downtime contributors are gas compressor (65.6%), gas turbine
(23.9%), starter system (5.2%) and lube oil system (3.1%). Since this chart represent
the whole seven operation years, it is necessary to see the downtime breakdown over
the operation years to find out whether the proportion is still valid in the recent

operation years.
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Figure 5.12: CM downtime hours by subsystem (year 2002-2009)
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3.4.1.2 Downtime Breakdown Over-time - - -

Figure 5.13 depicts the trend of downtime breakdown of those main subsystem
contributors over years. As shown here, high gas compressor downtime occurred in
2003 and 2004. But since then, it has shown drastic reduction indicating the
improvement activities carried out by the team paid off. However, downtime due to
lube oil system has shown an increasing trend lately, which something that the

management needs to investigate and focus on.
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Figure 5.13: CM breakdown trend of major contributors

5.4.2 Estimation of CM Downtime Measures

Table 5.4 shows the CM downtime data for both trains which are combined and
arranged chronologically. Based on these data, the graph of cumulative number of
downtime against cumulative downtime hours is plotted to determine if an upward or
downward trend exists over time. As shown in Figure 5.14, there 1s an obvious
improvement trend since 2006, as indicated by a concave up plot trend. The Laplace
test value, U, calculated for this data is 6.04, which is larger than the critical value of

1.95 at 95% confidence level, also confirms the fact that the downtime is in an

108



improving trend. The seérial correlation test as shown in Figure 5.15, however
p g s ;

indicates that the data are independent since the data plot are randomly scattered.

Table 5.4: Downtime data in chronological order

no ! Downtime Cumulative no { Downtime Cumulative
(hrs) Downtime (hrs) (hrs) Downtime (hrs)

1 10 10 29 8 7791.5
2 8.5 18.5 30 25 7816.5
3 16 34.5 31 23 7839.5
4 72 106.5 32 33 7872.5
5 62.25 168.75 33 5 1877.5
6 10 178.75 34 7 7884.5
7 6 184.75 35 144 8028.5
8 1630 1814.75 36 38.05 8066.55
9 59 1873.75 37 24 8090.55
10 10 1883.75 38 13 8103.55
11 3998 5881.75 39 14.5 8118.05
12 6 5887.75 40 1.5 8119.55
13 9.5 5897.25 41 3 8122.55
14 408 6305.25 42 3.7 8126.25
15 4 6309.25 43 1.5 8127.75
16 42 6351.25 44 43 8170.75
17 1.25 6352.5 45 3 8173.75
18 ] 6353.5 46 37 8210.75
19 4.5 6358 47 2 8212.75
20 1.5 6359.5 48 0.75 8213.5
21 26 6385.5 49 4 8217.5
22 1368 7753.5 50 0.5 8218
23 I 7764.5 51 18.5 8236.5
24 0.5 7765 52 0.5 8237
25 7.25 7772.25 53 | 8238
26 | 7773.25 54 115 8353
27 3.5 7776.75 55 257 8610
28 0.75 7783.5 56 0.5 8610.5
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Figure 5.15: Test for dependency of CM downtime data

The decreasing trend in downtime duration also indicates that an approach based
on assumption of constant repair rate could not be used to accurately estimate
maintainability measures for the system. Besides, any attempt to model repair time
using any lifetime model will be in serious flaw since the data are not identically
distributed. A common approach for analysing data with trend is by modelling using
NHPP model. This non-stationary model, however, is applicable when the trend is
monotonic and produces result not in the form of the probability distribution but
rather specific expected downtime duration within the certain given time. To
determine the statistical distribution of the above data, two alternative methods

namely steady-state pattern and expert input approaches are proposed.
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5.4.2.1 Data Review for Steady State Pattern

The trend test has indicated that the existing data is not in a steady state (identically
distributed), hence it is not appropriate to use either the distribution or parametric
approach in the analysis. A closer look at the cumulative plot highlights that in the last
four years of operation, the data seem to level off (Figure 5.16). This steady state
region can be highlighted by constructing a simple hnear regression line using a least-
squares method on those data as illustrated in Figure 5.17. The resulted line has large
value of coefficient of determination, R? at 0.903, which indicates a good measure of
goodness of fit of the regression line to the data. To test whether the relationship is
significant, a statistical test can be done using F test (Anderson et al., 2002), with the
null hypothesis that there is no significant relationship between two variables. A large
value of F indicates the rejection of the null hypothesis. The F test calculation
resulted in F value of 300 which is greater than the critical value of 7.5 for Type I
error, & = .01, thus indicates that the null hypothesis can be rejected. Given this
significance statistical relationship, we can confidently assume that the data in the
recent four years of operation can be established as appropriate data for representing
the actual current downtime performance and can be used as a basis for evaluating
maintainability / downtime measures. The constant downtime rate predicted based on
the slope of the linear line is 24.4 hours per downtime (slope = 0.0041

downtime/hours).
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Figure 5.16: Steady state region in the data plot
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Figure 5.17: Plot of regression analysis of the steady state region

5.4.2.2 Expert Input (Censoring) Approach

Alternative method for getting practical and appropriate data is by seeking relevant
inputs from field experts on the expected machinery failure frequency and downtime
duration based on their assessment on the effectiveness of current maintenance system
and improvement activities. The field experts are those with vast knowledge, skills
and experience on the operating and maintenance system as well as improvement
actions undertaken on the system under studied, thus their inputs should be considered
valuable and reflective of the current performance. In this study, the field experts are
the mechanical and maintenance engineers who have been involved in the operation
of the system since its commencement. The experts were given all the failure events
data and were asked to specify which events that have high probability will not re-
occur in the future as the results of improvement initiatives in the system. The
elicitation results, based on the consensus among the experts, indicate six events
which are listed in Table 5 and include failures related to gas turbine (3), centrifugal

compressor (2) and lube o1l system (1).

112



Table 5.5: Downtime events considered one- off by experts

Downtime (hrs)

Cause

Corrective action

1630

3998

1368

144

115

257

Compressor bundle
change-out due to broken
tie bolts

Rotor change out due to
high vibration

Tripped on GG N2 pull
away alarm sequence
failure

Engine replacement due to
eroded HPT nozzle

Flexible hose issue

Lube oil contaminated

Replaced compressor bundle
with spare

Failed compressor bundie
was removed and spare
compressor bundle was
installed

Removed engine from skid
and replaced GG module 3

Replaced engine with newly
overhauled engine

Replaced the flexible hose

Replaced the lube oil

The experts believe that these issues are one-off events thus have very little
possibility to happen again given effective corrective actions undertaken in the
system, hence worthy to be excluded from the data. The remaining data are thus

considered to be appropriately representing the downtime distributions of the system.

3.4.2.3 Distribution Analysis

Three commonly used statistical probability distributions (exponential, normal and
lognormal) are chosen to model the downtime data based on the two proposed
methods. The conventional method which uses all the data points is aiso being applied
for comparison purpose. Table 5.6 shows the results of the calculated distributions’
parameters using MLE and values of KS test. The calculations of MLE and KS test
are done using statistical software; Weibull ++7 and SPSS. The KS test value

represents the Z statistics which is the product of the largest absolute difference
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- between: the empirical and theoretical CDFs and the square -root of the sample size. - --
The significant value is derived by comparing the Z-statistics with the table of critical
value. The specified distribution can be considered fit when the significant value is
more than 0.005. Based on the results, the lognormal distribution is found to be the

best fit distribution for all three methods.

Table 5.6: KS goodness-of-fit test for each data type

Distribution Exponential Normal lognormal
/Data types Param. KStest  Sign, Param, KStest  Sien. Param, KStest  Sign.
All data 7 =10.0063 4321 0.000 n=153.76 3213 0.000 p=2385 0.654 0.77
6 =1595.12 a=2.052
Steady- % =0.0397 1.844 0.002 pn=2521 1.838 0.002 p=13882 0407 099
state '
paltern o=51.36 o=1.717
Expert L =0.0453 1.94 0.001 n=2197 252 0.000 u=1908 0.545 0.93
inputs
a=5834 g =1.529

Note: Sign. < 0.005 indicates not a good fit

5.4.2.4 Maintainability Measures Analysis

Table 5.7 lists the maintainability measures extracted from the lognormal distribution
for all the three cases. Besides the mean downtime, the length of downtime at various
percentages of probabilities (10, 50 and 90) of maintenance tasks to be completed can
also be determined. This information is beneficial for management in maintenance
system planning and for determining the costing, maintenance scheduling, technical
and non-technical man-power planning, and availability projection. As seen from the
table, the approach using all data points is rather pessimistic where the mean
downtime i1s almost three-times higher than those of the other two methods. At 10 and
50 percent of maintenance tasks completion rate, the predicted downtime durations
for all three cases do not differ much. However, they are distinctly varied at 90%
completion rate where the expert inputs approach estimates the most optimistic length

of downtime at 47.8 hours compared to 59.3 and 150.6 hours for steady-state and all-
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data approaches respéctively. The maintainability plot for the three approaches is

shown in Figure 5.18.

For comparison, a set of downtime data for 2009 and 2010 is examined and based
on the lognormal distribution (was calculated to be the best fit distribution for the
data) the mean downtime is 6.6 hours with standard deviation of 8.9 hours. This result
is relatively closer to those of the two proposed methods than using the all-data
approach, thus indicates that the two proposed methods are more practical to be
applied for establishing the proper downtime distribution. Furthermore, the recorded
average repair time in OREDA handbook (OREDA, 2002) for combination of both
gas turbine and centrifugal compressor is 29.3, which is near to the estimation figures.
The estimation using NHPP model results in higher mean downtime at 120 hours, due
to poor data fitting. The adoption of all-data approach to determine the downtime
duration for maintenance planning, on the other hand will produce a pessimistic

prediction which 1s a longer downtime allocation than what it is supposed to be.

Table 5.7: Comparison of maintainability measures for all three approaches

Maintainability All Data  Steady State Expert inputs
Measure
Distribution Lognormal  Lognormal Lognormal
Parameters i =2.385 = 1.882 1=1908
o =2.052 o= 1717 c=1.529
Mean Downtime
(MDT) (hrs) 89.1 28.7 21.7
Std 726.5 121.9 66.4
DToo 150.6 59.3 47.8
DTsq 10.9 6.6 6.7
DT 0.78 0.73 0.95
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Figure 5.18: Maintainability over time based on the three approaches

5.4.3 Conclusion on CM Maintainability Analysis

In conclusion, the proposed framework for performing CM maintainability analysis of
plant system maintenance data can be illustrated in Figure 5.19. This framework
enhances Blanchard model (Figure 5.1) by providing detailed steps in achieving more
effective way of giving feedback on system performance at operation phase to the
design team as well as to other similar operational platform. Relevant feedback on the
improvement initiatives and lesson learns ts essential for ongoing improvement in the

design and performance of other similar systems.
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5.5 Preventive Maintenance (PM) Maintainability Analysis

5.5.1 Exploratory Analysis

The trend over years of PSD downtime with breakdown for various PM types has
been illustrated in Figures 5.6 and 5.10. The trend shows PSD downtime also has
some effect on the system availability especially in the recent years, where it
overweights the downtime caused by CM as a results of execution of more PM
actions. For example, in 2008, train 1 experienced the highest PM downtime with 400
hours because of planned compressor bundle change-out. For train 2, the
implementation of GT engine change out pushed up the overall PM downtime in
2009. In 2008, the increase was mainly due to relatively high 8K PPM downtime. The
planned compressor bundle and GT engine change out, however, do not happen often,
since they are normally planned once in every 3-4 years of operation. Nevertheless,
based on their consequences on the system’s availability, proper planning on timing

and execution are crucial to avoid sudden drop in plant production output.

For 4K, 8K and EW PM they are regularly performed each year to maintain the
performances of the trains. As such, they have more data compared to compressor
and engine change out planned maintenance, hence will be the focus of
maintainability measures analysis next. The breakdown of PM downtime from 2002
till 2009 for the overall GCT system is shown in Figure 5.20. Additionally, the Pareto
of average downtime per PM event is described in Figure 5.21, which indicates CCO
is the highest average downtime at 336 hours per event. However, it is important to
note that the data gathered are rather limited as indicated by low PSD downtime
events recorded in early years of operation. This low PM trend was due to tight
production schedule which drove plant to extend or prolong time interval between PM
and unrecorded data. Some of PMs had been performed concurrently with other
maintenance repair during high CM downtime such as in 2003 and 2004 for train 2,

hence there were no exact downtime data recorded on them.
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Figure 5.20: PM downtime breakdown (year 2002 - 2009)
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Figure 5.21: Average downtime on each PM event

5.5.2 Estimation of 4K, 8K and Engine Wash PM Downtime Measures

Based on the maintenance data from 2002 till 2008, the shutdown durations for each
PM is acquired and described in Table 8. The available data are quite limited, thus
preventing accurate modelling of PM downtime distribution. To overcome this issue,

an approach based on expert opinion has been proposed.
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- - - Table 5.8: PM downtime data for year 2002-2008

PM Downtime data  Average Std 90% confidence
types {hrs) interval

4K 44 59.75 12.6 30.02 - 80.48
55.5
67.5
72

8K 68.5 1249 41.6 56.47-193.33
18
94
104
174

Engine 3 9.4 3.75 3231557

wash 5
5.4
9
9.5
10
11
11
11
13
16

3.3.2.1 Motivation for Eliciting Expert Opinion

Even though there are no fixed rules concerning the number of samples required to
develop statistical distribution of downtime, a large number of data are needed in
order to distinguish the best fit among various possible models and get more accurate
measures (Wadsworth, 1997). Since the data are limited and widely dispersed,
standard statistical methods are generally inadequate to accurately estimate the
downtime within the required statistical confidence levels. Field experts who are
involved and familiar with maintenance and engineering aspects of the system can
provide alternative source of estimation on PM actions duration. This estimation is
stemmed from experts’ observation and experience especially on issues, changes and
improvement actions undertaken in the maintenance system, thus, can generally
represent the existing maintainability performance. More importantly, the results of

the evaluation will reflect more up-to-date information on maintenance capability as a
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““result of all the improvement ‘actions mentioned earlier, hence”will produce better
estimate of PM durations for future maintenance and operation planning. Involvement
of experts in this analysis will also encourage more participation and ownership of
plant personnel in the study, expose them to the techniques and most importantly tap
their tacit knowledge. The proposed approach will provide a systematic and effective
mean of utilization of experts’ judgement for prediction which is generally not fully

exploited in the industry.

3.5.2.2 Proposed Methodology

A general method in elicitation of expert opinion, which involves three major steps:
preparation; elicitation and measurement; has been presented in Chapter 2. Figure
5.22 depicts a proposed flow in elicitation and measurement steps for estimating PM

downtime.

Elicitation on PM downtime distribution was done by interviewing experts who
were the mechanical and maintenance engineers of that particular offshore plant. They
had vast experience on that gas compression system operation, failure data and
maintenance system. The elicitation data derived were based on the consensus
between them. Before the downtime distribution for each PM action was elicited,
various factors that affect the distribution had to be identified and considered. Neil
and Marquez (2010) in their modelling of corrective repair time distribution, refer
these conditions as “repair lines” where each line has the probability of the occurrence
and can be categorized by a repair time distribution. Examples of different types of
repair lines include maintenance first line support, second line support and

manufacturer support.

Following a similar approach, in this study we requested the expert to state
various scenarios which will affect the downtime duration of PM actions. In contrast
to Neil and Marquez (2010) approach, which use arbitrary probability numbers in the
model, this study use expert opinion inputs to estimate the downtime distribution for

each scenario. The question asked during the interview was rather straight forward



“what is-the probability of scenario-A- to-oceur presently?”.- However to-make the --
expert more comfortable, an alternative question was also asked “in 100 events of the
particular PM, how many times scenario X occurs?”. Table 5.9 presents the result of

this elicitation process in which four different scenarios were 1dentified.

Identify various scenario which can affect PM downtime

!

Estimation of probability foreach scenario

}

Estimation of downtime for scenario based on confidence level (95%,50%,5%}):
Q: The repair (downtime) will be completedin hours

b

Estimation of cumulative distribution function (cdf)

|

Convertto probability density function (pdf)

'

Aggregationof all scenario events pdf

!

Estimation PM downtime distribution

Figure 5.22: Proposed flow for elicitation and measurement processes

Table 5.9: Expert inputs on various scenarios affecting downtime distribution

Scenario Description Probability
1 No fault found during PM 0.9
2 Minor fault found during PM (eg. Valve) 0.05
3 Major fault found during PM (eg. Blade) 0.025
4 Delay due to external factor (eg. Logistics) 0.025




"The next process involves the estimation of probability distribution of each PM
type (4K, 8K and engine wash) for each scenario. To facilitate the process, the
average value of each PM event based on historical data was shared with the experts
for their reference. Due to expert’s lack of knowledge on the probability distribution
family, an indirect elicitation approach using a fractile technique similar to those used
by Walls and Quigley (2001) was employed. Here, the expert was required to estimate
the downtime duration based on specific confidence level in his belief. Instead of
asking question, the statement approach was used where the expert was asked to
complete the statement. An example of the statement is as follow: “I'm 95%
confidence that the specific PM action will be completed in x hours”, where the expert
had to estimate that “x” downtime hours. The estimation of downtime hours were also
sought for 50% and 5% confidence levels. The result of this process is shown in Table

5.10.

Table 5.10: Results of eliciting downtime distribution by percentile

Scenario ! 2 3 4
PM types Confidence Downtime (hours)
level %

4K 5 48 60 144 72
50 72 84 192 108
' 95 96 108 216 144
8K 5 72 84 144 96
50 96 108 192 132
95 120 132 240 168

" Engine Wash 5 4 16 124 28
50 6 18 150 42

95 12 24 180 60




5.3.2.3 Modelling of Downtime Distribution

The expert inputs in Table 5.10 represent indirectly the cumulative distribution
function (cdf) for the downtime distribution. The 50% confidence level represents the
“median in which half of the downtime distribution is below that point. In this study,
we first assume the downtime to follow a lognormal distribution since this is the most
commonly used distribution for downtime found in the literature. This assumption,
however, 1s subjected to change if the expert believes otherwise. The lognormal cdf

can be expressed as

F(x,0,5) = m['”"'_gJ

(5.1)

where # and s are the mean and standard deviation of downlime’s natural
logarithm, @ is a standard normal distribution cdf and x is the estimated downtime

hours. The pdf equation is given by

Inxd T

N
f(.\,g,b) - ,\‘SW e

x>0 (5.2)

The mean and standard deviation (std) of the actual downtime distribution is given

by

. IJny.-,.\'2
mean = e (5 ‘ 3)

+| 2 2
.S'Id:eg /2 Ve' —1

(5.4)
For the case of 4K scenario 1, Equation (5.1) can be expressed as
(D[]nllS—QJ = 0.05
y (5.5)
q)[ln72—9J:0'50
y (5.6)
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Referring to the normal distribution table, the corresponding equations are as

follows

(m48—9J=_164 (5.8)

[mi—aj (5.9)

(I|196—0):L64

i
]

N

(5.10)

Solving for # and s based on these three equations resulted in no single value for each
parameter. Thus approximation technique using Solver function in Excel worksheet
was employed. The estimated values of  =4.27 and s = 0.194 were obtained and later
being used to create a smoothed cdf plot as shown in Figure 5.23. This histogram plot

was later shown to the experts for further verification and agreement.
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Figure 5.23: Lognormal cdf for 4K scenario |
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The corresponding pdf plot i1s-shown in Figure 5.24. The downtime mean and

standard deviation were calculated to be 72.9 and 14.2 hours respectively.
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Figure 5.24: Corresponding lognormal pdf for 4K scenario |

5.2.4 Downtime Distribution Model

]

The complete analysis results on each scenario for each PM type are presented in
Table 5.11 which shows the proposed distribution and estimated parameters for each

scenario. Lognormal distribution was accepted to be best model for all types of PM.

Table 5.11: Summary of pdf distributions and parameters

PM types Seenario - lognormal Do»\;ntime pdf
0 s mean . std
4K 1 4.27 0.194 72.9 142
2 4.43 0.169 84.3 14.3
3 5.26 0.072 193 13.9
4 4.68 0.194 109.8 21.5
8K I 4.56 0.149 96.7 14.5
2 4.68 0.133 108.7 14.5
3 5.25 0.149 192.7 28.9
4 4.88 0.162 133.4 21.7
Engine Wash ! 1.79 0.259 6.2 1.6
2 2.89 0.072 18 1.3
3 5.0 0.113 150.9 17.1
4 3.73 0.229 428 9.9
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To get a'single distribution for every PM type, all distributions from each scenario
need to be combined taking into consideration the weighting factor of probability of
occurrence. This distribution is called a marginal distribution and can be calculated

using a linear opinion pooling technique (Clemen and Winkler, 1999) :

f(D)= i f{d | scenario = i)* P(scenario = i) (5.11)

=
where

(D) = marginal downtime probability distribution for a particular PM type
Jf(d | scenario =i) = the probability distribution for scenario i (i =1,2,3,4)
P( scenario =i) = probability of scenario i as given in Table 5.9.

The resulted marginal distribution for 4K PM is illustrated in Figure 5.25. The
best estimation of lognormal distribution (Figure 24) based on that marginal
distribution was determined also using Solver function in Excel. The summary of
estimated lognormal distribution parameters and calculated sum of squared errors

(SSE) for all PM types 1s shown in Table 5.12.
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Figure 5.25: Marginal distribution and estimated lognormal distribution for 4K

PM
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Table 5.12: Estimated lognormal distribution parameters and errors

PM 0 s ~ 'SSE

4K 428 0.204 5.80E-06

8K 457  0.157 2.60E-06
Engine wash i.8 0.278 1.70E-03

3.5.2.5 Plant Maintenance Data vs. Expert Opinion

The conventional method to determine the downtime distribution is by using
historical plant data. The PM downtime distributions from plant maintenance data in
Table 5.8 are analyzed using Reliasoft Weibull software and the estimated parameters

are presented in Table 5.13.

Table 5.13: Downtime distribution based on plant maintenance data

%

PM Distribution 7 5 mean . std

4K Lognormal 4.07 0.254 60.5 15.6

8K Lognormal 4.59 0.395 106.5 43.8
Engine wash Lognormal 2.15 0.496 9.7 5.1

Based on these parameters, the pdf plots of downtime for each PM type are
plotted and then compared against the one derived from expert opinion. Figures 5.26,
5.27 and 5.28 show the comparison plot for each PM type. The summary of downtime

distribution mean and std is shown in Table 5.14.
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Table 5.14: Comparison between plant data and elicited expert opinion downtime
distribution

 Plantdata  Expert opinion

4K mean 60.5 73.8
std 15.6 15.2

8K © mean 106.5 97.7
| std 43.8 15.4

Engine Wash © mean 9.7 6.3
| s 5.1 18

From the plots it can be clearly seen that expert opinion produces better prediction
for downtime distributions of 8K and Engine wash. The spread of the distribution is
much tighter thus resulted in more accurate estimation. In the case of 4K, the
distribution variation is comparable; however, the experts’ prediction on downtime
mean is higher than the prediction based on plant data. Based on the latest data for
2009 and 2010, the average PM recorded downtime for §K and 4K PM were 85 and
95 hours respectively. These data are relatively closer to the value predicted by
expert, thus also signifies that the expert opinion prediction method produce better

estimate. There was no Engine wash downtime data recorded in 2009 and 2010.

5.6 Chapter Summary

The practical approach and applications of maintainability analysis have been clearly
demonstrated in this chapter. Furthermore, the study highlights the importance of
maintainability analysis as part of strategic tool for system improvement at operation
phase. As such, this analysis is worthy of being considered and performed by plant
management in more complete and extensive way on regular basis alongside

reliability analysis. The case study presented has indicated that the GCT system’s



availability performance is predominantly influenced by trend in maintainability
rather than trend in reliability, thus further highlights the significance of performing
maintainability analysis for the system. The proposed framework for maintainability
analysis of plant maintenance data, presented in Figure 5.19, is found practical to
measure maintainability of system with improvement trend. The role of field experts
beyond a traditional method of merely providing and validating maintenance data in
the analysis process has also been explored in this chapter. Here, their experience and
judgement are directly used to estimate the duration to complele certain maintenance
activity. The proposed method as described in Figure 5.22 provides a fresh approach
of acquiring and employing such tacit knowledge for more effective decision making
and can also be applied in other types of analysis such as reliability, safety and

hazards when there is limited data availability.



CHAPTER 6

AVAILABILITY ANALYSIS

6.1 Introduction

An in-depth discussion on availability analysis with regards to definition and related
techniques has been presented in Chapter 2. Moreover, in Chapter 3, detailed step of
the proposed methodology framework for conducting practical analysis at operation
phase has been discussed. This chapter presents the applications of the proposed
availability analysis approach and discusses its role as a strategic tool for assessing
plant system performance and evaluate various plausible options or solutions to
increase system availability leading to overall improvement in operation profitability.
To demonstrate the importance of this technique, two case studies are presented; first,
an acid gas removal unit (AGRU), a system in a gas processing plant; second, a gas
compression train (GCT) system at an offshore platform, a similar system which has

been used as a case study in previous reliability and maintainability studies.

The following two case studies are presented 1o demonstrate the practical
apphcations and importance of availability analysis for enhancing plant availability.
In both cases, the methodology used for analysis follows the proposed steps in the

framework for availability analysis described in Chapter 3.



6.2 Case Study I: Availability Analysis on Acid Gas Removal Unit (AGRU)

6.2.1 Objectives and Scope of the Study

The plant management has raised the need to study the availability performance of
AGRU as part of their efforts to improve the overall GPP operational profitability.
Besides, the management sees the initiative as important for understanding and
exploring availability modelling simulation technique as a strategic plant
improvement tool. Upon further discussion with them, the specific objectives for the

study are set as follows:

* To model the existing AGRU system

¢ To assess the availability of AGRU based on that model and its availability
performance

e To identify critical factors / equipment affecting the reliability, maintainability
and availability performances

e To assess various options for enhancement of AGRU availability

The scope of the study is on analysis of AGRU system of GPP3, one of the gas

processing plants.

6.2.2 Data Collection and Analysis

Generally three types of data are needed when performing availability study: Process
flow diagram (PFD) supported with piping and instrumentation diagram (P&ID);
Reliability and Maintainability (R&M) data; and maintenance system data. PFD and
P&ID are needed for the construction of reliability block diagram (RBD) and for
specification of the boundary for the studied system. R & M data used in this study
are mainly in-house and collected from various sources such as maintenance records,
SAP database (a computerised maintenance management sysltem) and engineering

report. In the absence of any particular information, other sources of data such as
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OREDA database and pump flow reading are utilized. The process for R&M analysis
is similar to those presented in Chapter 3. Due to many uncertainties related to data,
constant verification exercise with field personnel is carried out throughout data
gathering and analysis to ensure the outcomes are valid and relevant. The data used in

the study are those from April 2008 till June 2010..

Gathering relevant data is the most ime consuming and difficult task, due to the
nature of the data availability in the plant. Most of failure data can be tracked in
maintenance tripping record, which states when the trip started and ended. However,
not all data in there, for example, P202 pump data are captured in another record
which is totally in different format and not as complete as the maintenance tripping
record. Besides issue with non-centralised failure data storage location, some of the
existing records also suffer from error, missing and incomplete data. Hence, to
minimise uncertainties, further verification are performed by cross-checking the data

with SAP and consulting field experts.

Extraction and segregation of relevant data on SAP is found rather complicated
since the SAP is overcrowded with too many information (e.g. it contains records of
all actions on the equipment including those planned for the future), has unclear status
whether a repair action has completed and is prone to human error during recording.
Furthermore, failure data need to be transformed into operating time-based format, as
discussed in previous chapters, before they can be analyzed for 1ID conditions and
assigned appropriate reliability and maintainability model. This is quite a challenging
task since maintenance tripping records only capture failure and downtime duration,
but do not keep track various operating conditions such as operation, standby / idle
modes and maintenance time. One particular example is when performing R&M
analysis for P201 and P202 pumps, which are subjected to different types of operating
modes. Since there 1s incomplete and vague record on operating modes, alternative
method based on the real time flow rate reading recorded by sensors had been
proposed by engineers to establish the operating time profile for pumps. In this
approach, a graph of flow rates against time is plotted for each pump and compared
with the specific operating conditions represented by the flow readings proposed by

engineer. Table 6.1 shows the corresponding conditions set for different flow levels



of each pump type. The flow profile is also checked against maintenance activities
such as turn-around (TA), mini TA and plant shutdown. An example of a flow reading
plot for pump P201C of GPP3 is illustrated in Figure 6.1. To differentiate various
operation modes, the flow is plotted with different codes: 1 = operating, 0.5 =
standby, 0.25 = turn-around / AGRU shut down, and 0 = down due to failure. From
this plot, the time to failure (TTF) of each failure event is determined by accumulating
all operating time (Coded 1) since the previous failure event. Prior to that, all events
with zero flow rates are verified by comparing them with maintenance failure record

and consulting respective plant personnel for consistency.

Table 6.1: Pump operation mode conditions based on flow rate

Pump /
Operation mode P201 P202
Operating Flow rate > 400 m’/hr Flow rate > 200 m*/hr
Standby Flow rate < 400 m*/hr Flow rate < 200 m*/hr
Down (failure) Zero flow rate and not in | Zero flow rate and not in
standby standby
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Figure 6.1: GPP3 P201C coded flow rate profile

Flow rate data also provide insight on the existing configuration of pump
operation. Previously it was assumed that P201 pumps are operating based on two out
three arrangements. However, the operation breakdown based on flow rates data
indicates that most of the time only one pump or slightly more is on operation out of

three, as illustrated in Figure 6.2.
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6.2.3 Assumptions on Model

Based on the collected data and discussions with plant engineers the following

assumptions are made in the study:

vi.

Vil.

Viil.

Constant failure rate is used for equipment with limited or no failure data
Perfect switching from standby mode to operational mode

Downtime measurement is based on days (per the available flow rate data
taken at 6 am daily)

Preventive Maintenance (PM) action is done concurrently with planned plant
shutdown activities such as TA, mini TA etc. (opportunistic maintenance). For
that, the simulation model does not include PM downtime distribution

The downtime is assumed to include mean logistic delay and mean
administrative delay in addition to the actual repair time (operational
downtime)

Failures during standby / PM / turnaround are not considered as unplanned
downtime

P201 and P202 are on 1 out of 3 configuration (only one is needed for the
system to run)

All static equipment is assumed in perfect condition since there is no failure
recorded. For equipment with failure data less than 4, the average value is

used to measure both failure rate and downtime

6.2.4 RBD Model Construction

The equivalent RBD model of the AGRU system constructed based on PFD, P&ID

and plant engineers’ inputs 1s depicted in Figure 6.3. The developed RBD is based on

rehability wise arrangement which consists mainly of equipment that can potentially

cause AGRU to down. Hence, the blocks arrangement is not the same as the process

flow diagram. After the model is verified by the engineers, it is then reconstructed in

Blocksim software, a specialised software used for availability simulation analysis.

The equivalent diagrams of RBD in Blocksim are shown in Figures 6.4. In Blocksim,



sub-diagram can be used to facilitate model construction and keep the RBD in simple

and neat arrangement as illustrated in Figure 6.4. Based on the finding of existing

operational pump configuration, the model uses I-out-of-3 configuration for p201 and

p202, instead of the designed configuration of 2-out-of-3, to produce realistic

estimation of availability which is comparable with the recorded plant data. P202 and

p201 pumps basically have to run in pair with the same configurations for smooth

operation.
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Figure 6.3: A conceptual RBD model for AGRU system




T A _ T2d5A

L 1
T202-A Iy T201-B 4
M201 Node 1 Nofe 1 M202
T2028 T201-C T203C
T201-D T203i0

[}D*—D

Lv2004 PV2014 ‘\ A202 L+ Lvao08 MIO]

Fv2003

U £n1-C

T206-A ,"iif‘~\
T204 A202 B Node 1  M204 T207 .. M205.
T206-A

—
F203A

M205 e LV2016
P203-B

Figure 6.4: AGRU RBD constructed in Blocksim which contains sub-diagrams A201,
A202 and M205

140



Before simulation is performed, all relevant information related to rehiability,
maintainability and maintenance scheme need to be input into each block of RBD.
Rehability inputs include type of distribution model and its parameters. In
maintainability, the required information is the distribution types and parameters (or
downtime average for assumed constant repair rate) for CM actions. Since all PM
activities are carried out during major shutdown, no PM input is required in the
model. Based on the maintenance data for the period of study, only a small number of
equipment in the system experiences many failures. Many of equipment have zero
failures and some have less than three failures. In the latter case, an average value is
used for estimation of R&M values. In reliability, the estimated value is assumed to
follow exponential (constant failure rate) and for maintainabtlity it is considered a
fixed downtime duration. Statistical modelling is not appropriate here due to small
sample, otherwise it will produce inaccurate model with high uncertainties. The list of
equipment with R&M data are shown in Table 6.2. These data are then used to

populate respective block in the RBD.

Table 6.2: R&M data inputs for GPP3

Reliability Maintainability
Equipment  Distribution  Parameters Distribution Parameters / downtime
P3-201A Exponential  A=0.000514 Fixed duration  347.5 hrs
P3-201B Exponential  3=0.0005 Lognormal n=4785 ¢=1729
P3-201C Exponential  2=0.0005 Lognormal n=4.063, c=147
P3-202A  Exponential A=4.6x 10 Fixed duration 1344 hrs
P3-202B Exponential  A=1.986 x 10®  Fixed duration 72 hrs
P3-202C Exponential  A=5.6 x 107 Fixed duration 372 hrs
LLV-2004 Exponential  2=0.0001075 Exponential A=0.286
PV-2014 Exponential  A=0.0001613 Fixed duration  1.95 hrs
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Once the RBD is populated with required data and verified by plant experts, the
next process 1S to set a proper design for simulation process. In this study, the
following variables are set: number of iteration = 1000; time duration = 1 year (8760
hours); and seed number = 1. The simulation outputs are recorded after running 1000
iterations, where each iteration corresponds to a model run over one year period. An
example of simulated operating state for the last iteration is illustrated in Figure 6.5.
The plot shows the simulated up and downtime state for all affected components in
one operation year. The availability of the system can be calculated based on the
average uptime and downtime of all iteration results. The corresponding instantaneous
system availability plot during the simulation run is depicted in Figure 6.6. In early
part of the plot, the point availability indicates high variation as the number of
iteration is still small; however it reaches asymptotic level towards the end of

simulation period as the average value becomes more stable.
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6.2.5 Model Simulation and Validation

The results of the simulation and the equivalent availability from plant report are
tabulated in Table 6.3 for comparison and validation. The difference in result is highly
expected due to different method of calculation and uncertainties related to data, RBD
and various assumption used. Hence, generally in many studies, the simulation result
is often used as an indicator of the existing system performance (Al-Thani er al,
2001). This indicator is used as a base value for assessing relative performance of the

system when the system parameters and operation conditions are changed.

The estimated availability from simulation is slightly higher than that of plant
report but still within the acceptable range of accuracy (< 1%). Hence, it can be
concluded that the model is valid to represent the real AGRU in term of availability
performance estimation. This model can be referred to as a base case for the existing
system configuration and performance, and can be used for strategic decision making
to improve the system. Using this model, engineers can perform various studies on the
system such as evaluations on the impact of modification in plant design (i.e. adding
new section or expanding the existing facilities), utilization of new equipment, adding

standby equipment, changing in spare parts allocation and maintenance system,
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policy, crew and effectiveness, to system’s availability. - Understanding influential
factors to. system performance will assist plant management and engineers produce

right and effective decision making when planning for improvement actions.

Simulation based on OREDA data is also conducted for comparison (Table 6.3).
Here, the failure rate of critical failure based on operational time and active repair
time of centrifugal pump, general pump and control and safety valves are inputted
into the model. The estimated availability based on 1-out-of-3 pump configuration is
99.87%, relatively better than the simulation result based on plant data indicating that

the system real performance is slightly lower than the industrial average.

Table 6.3: Comparison of actual system availability and simulated results

Scenario Availability (%) std 95% confidence  delta % difference
AGRU field report 99.4 - - - -
(2008-2010)

Simulation (1 year) 99.79 0.0057 99.76-99.83 0.39 0.39
OREDA (simulation) 99.87 0.0012 99.86-99.88 0.47 0.47

The simulated availability of the system can also be verified based on analytical
calculation (static availability) of equipment under steady state condition (constant
failure and repair rate). The obtained result is 99.77%, which i1s comparable to the
simulation result. Detailed calculation of the analytical approach is presented in

Appendix C.
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6.2.6 Applications of Availability Simulation as a Decision Support Tool

0.2.6.1 Analysis of factors affecting system performance

The above simulation results are based on the assumption that only one out of three
pumps is needed for operation instead of the specified operation design of 2-out-of-3.
The existing configuration is set because current gas stream received from offshore
fields contain relatively low CO, level thus does not require many pumps in
operation. In the case of failure, the operation can quickly switch to any of two
standby pumps resulting in minimum duration of system downtime. Depending on
gas well compositions of incoming gas stream and possibly the inception of newly
found fields, there is possibility in the future that the plant may receive gas with high
CO; concentration. At this moment P201 and P202 pumps operation has to be
reverted to 2 out of 3 configurations. It is imperative to understand what would be the
resultant impact to AGRU and overall plant performances so that appropriate counter
measure actions can be planned ahead. The simulation result of the system with 2-out-
of 3 against l-out-of-3 pumps configurations, set as a base case, is shown in Table
6.4. The impact of running 2-out-of-3 configuration in the model is a 4.16%
reduction in availability. This is considerably significant value since the equivalent
loss is estimated to be US$998K per month (based on daily production of 800
tonnes/day and Ethane price at US$1000/tonne). Running of simulation using
OREDA data (2-out-of-3 configurations) resulted in availability of 99.44%, a mere
0.35% reduction from the base case. When compared to OREDA simulation with 1-
out-of-3 configuration, the difference is 0.43%. These findings indicate that the
existing system’s availability is highly dependent on P201 and P202 performances.
The availability assessment based on analytical method (Appendix C) for 2-out-of-3
case resulted in 94.96%, which is relatively close 1o the simulated result (less than 2%

discrepancy).
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Table 6.4: 2-out-of-3 configuration vs. base case

Simulation scenario  Availability delta % difference

1-out-of-3 (base) 99.79 - -
2-out-of-3 95.64 -4.15 4.16

From the simulation results, further analysis on equipment performance and their
contribution to system downtime can also be conducted. The criticality of equipment
to system’s availability can be assessed based on the percentage of time a downing
event of that equipment caused the system to go down. This percentage is aiso called
downing event criticality index and is used to rank equipment criticality with regards
to system’s unavailability (Reliasoft, 2007). Table 6.5 lists the performances of
critical equipment based on simulation results. As expected P201 pumps top the list,
followed by pressure control valve PV2014, level control valve LV2008 and p202
pumps. PV2014 and LV2008 have high criticality index since any failure of these
equipment will definitely bring the system down due to their reliability-wise
arrangement in series. Nevertheless, their downtime durations for each failure event
are extremely lower than those of P201 and P202 pumps. Despite running on 2-out-

of-3 configurations, P201 and P202 pumps criticality are high mainly due to their long

downtime.
Table 6.5: Performances of critical equipment

Equipment system down criticality no of equipment

event index failures downtime(hrs)
P201 2.31 41.87% 11.47 2839.7854
PV2014 1.424 25.81% 1.424 2.7768
LV2004 0.903 16.36% 0.903 3.1128
P202 0.881 15.96% 4.665 3374.6639
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6.2.6.2 Evaluate availability improvement options for 2-out-of 3 pump configuiation

To mitigate possible loss in production as a result of increased requirement in pumps
utilization, appropriate counter-measured plans need to be considered by
management. Generally, increase in system’s availability can be achieved either by
adding redundancy or reducing repair time (downtime) or improving reliability. The
question is how much improvement is needed? Hence, to assess various possible
scenarios to achieve at least 99% availability target (close to current performance), the

following improvement actions are evaluated:

1. Redundant unit for P201 and P202 pumps
ii.  Reduction in P201 and P202 maintenance downtime

. Increase in PV2014 reliability

In the first case, each unit of P201 and P201 pumps is put into the system and the
system is run with 2 out of 4 configurations. There are two possible options in
choosing the pump type; turbine driven pump (P201/P202 A/B) and electric motor
driven pump (P201/202 C). For a redundant pump based on turbine driven, reliability
and maintainability performances similar to P201B and P202B are opted since the

values, particularly downtime, are better than those of P201A and P202A.

Improvement in pump reliability (decrease in failure rate) and maintainability
(decrease in downtime) also can improve system’s availability. When compared with
OREDA data, both failure rate and downtime values of all pumps are higher than
those of OREDA (OREDA failure rate = 70.52 per 10° hrs; repair time = 39.7 hrs),
however, the difference is more significant for the downtime than for the failure rate.
Therefore, in this study, the analysis will focus on downtime improvement since it has
greater impact 1o increase availability. Two options based on reduction of downtime
are analysed. In the first option, the average of downtime for all pumps is set to 5 days

(120 hrs), while in the second option the downtime average is set to 3 days (72 hrs).

Based on the ranking of criticality index, PV2014 is a critical equipment next to
P201, hence it is worth to investigate its impact on overall system’s availability.

Compared to OREDA, the performance of PV2014 reliability is much worst (6.79 per
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10% hours vs. 1.613 per 10* hours), whereas its maintainability is better (9.1 hrs vs.
1.95 hrs). Hence, in this simulation, PV2014 will use OREDA data as a reliability

input while maintaining the operational data for downtime.

From the simulation results of all possible scenarios, sensitivity analysis can be
done to understand the impact of each improvement option. The results of the
sensitivity analysis for all five simulated scenarios (two with redundancy, two with
downtime improvement, and one with reliability improvement) are shown in Table

6.6.

Table 6.6: Sensitivity analysis for various improvement options

No  Sensitivity title Estimated Absolute % Remarks

Availability  impact impact

(o) (%)
1 DBase case 95.64 - - 2-out-of-3 configuration
2 Redundancy A* 99.43 3.79 3.97 Add P201B and P202B
3 Redundancy B* 99.55 3.91 4.09  AddP201C and P202C
4 Downtime set at 120 hrs 98.82 3.18 3.33 For ail P201 and P202
5  Downtime set at 72 hrs 99.49 3.85 403  Forall P201 and P202
6 PV2014 with OREDA data 95.57 -0.07 0.07  Use OREDA failure rate

Note*: 2 out of 4 configurations
o

The results show that adding redundancy into the system basically will generate
an average of 4% improvement in the system’s availability performance. This action,
however, will incur some costs due to new equipment installation. Improvement in
PV2014’s rehability, on the other hand, has no apparent impact to overall system’s
availability, thus it is not a good consideration. The impact of having improvement
(reduction) in equipment maintenance downtime for comparison is an estimated
increase of 3 10 4% to system’s availability. This seems to be a better option since it
involves investigation on reasons why the downtime is high and taking appropriate
corrective actions to rectify the problems. It is expected that high equipment
downtime is mainly due by current maintenance practise of putting low priority on

getting back the equipment into operational mode since only one operated pump is
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sufficiently required to” support production at any time. Another reason is the
ineffectiveness of repair actions, which based on the data analysis shows some
failures with long downtime are multi-causes hence require more time to fix. Sending
faulty equipment to overseas for repair/overhaul also increases downtime since it
normally takes longer time for equipment to return. In order to improve equipment
maintainability hence system’s availability, it is necessary for plant to revise its
maintenance priority of attending pump failure and carry out other improvement
actions which can cut down maintenance downtime. These actions may include
improvement in logistics (spare parts allocation and location; repair strategies: in-
house or external; etc.), manpower planning and skills, and more effective root cause

failure analysis, trouble shooting and repair actions.

6.3 Case Study 11: Availability Analysis on Gas Compression Train (GCT)

6.3.1 Objectives of the Study

To further demonstrate the strategic roles of availability modelling for effective
decision making, a case study on GCT is presented. The analysis on reliability and
maintainability of the system has been discussed in detailed in the previous chapters.
In this chapter, the availability modelling and simulation are carried out on each of the
train and on the overall system when both trains are arranged in parallel system. The
objectives of the study are to develop an appropriate availability model for the GCT
system and to assess the impact of removing 4K ppm activity from the operation. The
latter objective stems f[rom the result of discussion with plant maintenance
management about possible improvement actions to further reduce maintenance and

operational costs.
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6.3.2 Development of Availability Model

Similar to the AGRU system, the GCT system can be modelled using RBD approach
in Blocksim. In this model, however, RBD blocks are specially created for various
maintenance activities conducted on the system unlike the normal practice of
assigning each block to represent individual component in the system. This approach
1s necessary since Blocksim has limitation in capturing more than one PM activity in
one equipment block. The proposed model for each train consists of 4 blocks as
illustrated in Figure 6.7, where each block represents each maintenance action. These
blocks are arranged in series since any occurrence of maintenance event in any block
will bring down the GCT operation. The schedule and frequency of each PM actions
are set following the existing system arrangement, where 4K and 8K ppm are done
once per year, and engine wash (EW) is conducted twice a year. The reliability data
(time to failure distribution) is input into a CM (corrective maintenance) block. These
data are taken from the results of reliability analysis which are presented in Chapter 4
(Table 4.6). For maintainability input, the type and parameters of CM downtime
distribution of each train is estimated based on 2006 till 2009 data. The data for PM
downtime distributions (4K, 8K ppm and engine wash) on the other hand, are derived
from the outcome of expert opinion presented in Chapter 5 (Table 5.12). Other
important data that need to be input into the PM blocks are the scheduled time for
performing each of the PM action. The summary of reliability and maintainability

inputs for train | and 2 are described in Table 6.7 and 6.8 respectively.

CM 4k 8k EW
ppm ppm

Figure 6.7: RBD configuration for a single GCT which consists of one CM block
and three PM blocks
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Table 6.7: R&M input data for GCT 1

Block Data* Distribution Parameters

CM TTF Exponential A:0.000513 / hr
C™M DT Lognormal p:1.713, 0:1.6852
4K ppm DT Lognormal 11:4.28, 6:0.204
8K ppm DT Lognormal w:4.57,6:0.157
EW DT Lognormal p:l.8,0:0.278

Table 6.8: R&M input data for GCT 2

Block Data* Distribution Parameters

CM TTF Exponential A: 0.000596/ hr
CM DT Lognormal u:1.702, 0:1.2215
4K ppm DT Lognormal p:4.28, 6:0.204
8K ppm DT Lognormal w:4.57, 0:0.157
EW DT Lognormal w:1.8, 0:0.278

Note*: TTF — time 10 failure, DT - Downtime

6.3.3 Availability Simulation and Validation

Simulation runs are carried out for each train based on 1000 iterations for one year
period. Apart from that, the overall availability of CGT system is assessed by having
both trains arranged in parallel. Figure 6.8 shows the RBD that describes this
arrangement. In this model, even though both blocks have been assigned with the
same PM schedule, a shight change in PM schedule inputs is required in one of the
train (in this case train 2) by adding 200 hours lagging factor. Otherwise, the PM
events for both trains will occur concurrently (both trains are down for PM actions on
the same time), which is not realistic as per current maintenance practise where
schedule PM are carried out in staggered between both trains to avoid total system
shutdown. The resulted simulation output is shown in Figure 6.9, which confirms that

none of similar PM actions happen at the same time.
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Figure 6.8: CGT system with both trains run in parallel
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Figure 6.9: Simulated up and down states in the last iteration of simulation for each

block
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The simulated values of the availability then can be compared with the availability
figures recorded in engineering report for year 2009 for vahdation. The results of
simulation and recorded plant data are shown in Table 6.9. Comparatively, for both
trains, there is not much different between the simulated results and the plant data,
thus indicating the model is valid and can reasonably be used to assess the system
further. There is however, a significant different for the overall GCT system results.
This discrepancy is anticipated due to the differences in the calculation of both
techniques. The plant record determines its overall availability by taking average
value of both trains; whereas in the simulation, based on the parallel configuration,
the overall GCT system is down only when both CGTs down in the same time

interval.

Table 6.9: Results comparison between simulation and plant data

Simulation Plant data Delta
GCT 1 95.99 96.8 -(.81
GCT 2 96.66 96.9 -0.24
Overall GCT system 99.71 96.85 2.86

6.3.4 Availability Analysis as a Strategic Improvement Tool

Based on the discussions with maintenance management, they are contemplating on
running with one PM action; 8K ppm, per year to further improve plant‘s availability
and reduce overall plant maintenance cost. Previous analysis using proportional
hazard model and Kaplan Meier in Chapter 4 indicate that there is no clear evidence
that PM actions (4K and 8K ppm) have significant influence on system’s time-to-
failure distribution (except when perform together with Engine wash). Thus;, it can be
safely assumed that the removal of 4K ppm alone most likely will not deteriorate the

system performance.

To illustrate the practical use of availability simulation, a scenario in which 4K
ppm is removed from the maintenance scheme is evaluated. The corresponding

simulation results are shown in Table 6.10,
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Table 6.10: Estimated impact on availability from removing 4K ppm based on
simulation

Existing configuration Without 4K ppm
Availability  Downtime*  Availability  Downtime* Availability
(%) (hrs) (%) (hrs) Gains (%)
Overall GCT system 99.1 25.27 99.95 426 0.24
GCT | 95.99 351.3 97.63 207.6 1.64
GCT?2 96.66 292.7 98.35 144.5 1.69

Note*: Estimation of overall downtime (CM plus PM) in one operation year

Based on the results, by removing 4K ppm maintenance operation, the system
availability can be increased by only 0.24% when both trains are running in 1-out-of 2
configurations {50% shared loading). However, if the trains are expected to run in
full capacity (both are running), the estimated gain is higher at an average of 1.66%
per train. Based on the estimated current price of gas at US$ 4 per mcf (thousand
cubic feet) and output of 140 MMSCFD per train, the estimated value of output per
train per day is around US$560K (1 MMSCFD = 1000 mcf). Hence, the equivalent
saving per train when it is run with this configuration is estimated at US$9.3K per day
or US$3.42 million/year. In comparison, the estimated amount of saving when the
system operates in 50% shared loading is only US$1.33K per day (US$487K/year).
Looking at the current trend where most of the time both trains are running full
capacity to meet demand, the proposal to eliminate 4K ppm seems very attractive due

to its significant potential saving hence it is worth consideration.

6.4 Chapter Summary

This chapter demonstrates the applications of availability modelling and simulation
using the proposed methodology framework in Chapter 3 to evaluate the existing
operational system performances. As demonstrated in the two case studies, the
availability analysis can be used effectively as a strategic management tool in decision

making process for improving plant bottom line. Using “what if” approach, various
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possible scenarios can be simulated and their impact (o system’s availability can be
determined. Based on the case studies, the results of availability modelling technique
using RBD and simulation i1s found practical to appropriately represent real
performance of existing systems within the acceptable accuracy range. The
application of blocks in RBD is not just limited to description of equipment and their
reliability-wise arrangement in the system, but as in the GCT case study, it can be
used to represent various maintenance schemes and conditions for appropriate
availability modelling. The validity of availability analysis, however, is highly
dependent on the accuracy of reliability and maintainability data. Hence, the use of
good quality and sufficient field data are critical in the analysis. Involvement of plant
personnel throughout the study is necessary to furnish, correct and verify all relevant
data. In the case of lack of relevant data, as in AGRU case study, alternative source of
information such as flow rate is proposed to describe operating states of equipment (in

this case pump) more accurately.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

This chapter summarizes the findings and highlights the contributions of the research.
The findings include several important points relating to the case studies and current
industrial practice based on observation and field feedback. Research contributions to
the knowledge, in particular the frameworks for applying reliability, maintainability
and availability analysis as a strategic tool for improving system performance are also
presented. Further, this chapter discusses on research limitations and recommends

potential areas for future research.

7.2 Conclusions

The proposed framework presented in this thesis is found effective in analysing gas
processing systems at operation phase for improving their operational and
maintenance performances. Three proposed frameworks for applying reliability;
maintainability; and availability analysis, as demonstrated through real industrial case
studies, can be potentially applied by management as a strategic tool for assessing
current operation and maintenance conditions, identifying weaknesses in the system
and deciding on the best improvement option. Each one of the analysis can be
performed separately or can be integrated into a comprehensive RAM study for

overall improvement of system performances.
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The overview of an integrated framework of reliability, maintainability and
availability analysis was presented in Chapter 3 (Figure 3.1). A more comprehensive
description of the proposed integrated framework is shown in Figures 7.1. The study
should start with clear objectives before proceeding to further detailed analysis. Both
reliability and maintainability (R&M) analysis follow a general flow described in
Figure 3.2, which include exploratory and inferential analysis to produce estimation
of R&M measures. In case of insufficient data, expert opinion elicitation method
based on Figure 5.22 can be employed. The results of R&M measures estimation are
then input into the availability modelling during the RBD construction step. In
availability analysis, simulation technique is used to estimate system’s availability
and perform “what-if’ scenario improvement options. The results of R&M and
availability analysis can be used to assess the system and recommend appropriate

actions to improve its performances.

The case study approach used in this research managed to expose actual and new
problems faced by industries and in the analysis processes. Issues such as insufficient
data and data with non-monotonic improvement trend have been highlighted and
addressed in the study. Although the frameworks were formulated and demonstrated
on the two gas processing systems, they are equally applicable to other systems in oil

and gas industries.

Plant personnel involvement in the analysis processes, particularly experts was
found crucial in the implementation of the proposed frameworks. The level of
engagement varied across the analysis depending on the field data conditions and
system complexity. Besides general tasks of providing inputs on data collection,
verification and classification processes and validating model, the roles of field
experts was extended to provide valuable assessment on effectiveness of maintenance
improvement actions and estimation on data distribution. This level of participation
has provided a good platform for engineers to incorporate their tacit knowledge on
plant operation into reliability analysis systematically. Direct involvement of field
personnel during the study also assisted in promoting the applications of reliability
analysis and techniques in the organization under studied, which is currently still

relatively low.
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7.2.1 Observations from this Research

This research reveals several important points and real issues related to managing and

performing reliability analysis in the industry. These points should be considered in

any reliability related study, to ensure the analysis is effective and the organization

gains the most benefits. The following are highlights of key findings of this research.

i)

The collection, organization and verification of field data are the most critical
components of reliability analysis processes since they determine the quality
and usefulness of the results. These, however, are the most difficult and time
consuming tasks. It is evidence from the case studies that some of the pertinent
issues with field data include incomplete, missing, non-centralized and non-
standardized data, even for an old operating plant. All of these make the
analysis process tedious and more challenging. To overcome these problems,
inputs from field personnel are fundamentally crucial and the use of
unconventional form of data can be a good option. For example, as
demonstrated in the study of AGRU, the flow rate value is used to establish

the operating conditions of pumps in the absent of relevant data.

Exploratory analysis plays critical roles in reliability and maintainability study
of field data and should be performed in the early stage of study before more
in depth statistical analyses. This analysis can provide insights on the
performance of the system under studied. The plots of cumulative number of
failures over cumulative operating time, and cumulative downtime numbers
over cumulative downtime duration, for example, are found very useful in
gauging current system operational patterns, providing clues on outlook of
system performance and identifying suitable mathematical model for

predicting future trends.

iii) Maintainability analysis is found to be as critical as reliability analysis for

system at operation phase since it can be a dominant factor influencing the
availability performance, as demonstrated in the gas compression train system
case study. The findings from maintainability analysis will reveal the overall

effectiveness of maintenance system and improvement actions. Important
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attributes from the findings such as lesson learned, best practices and effective
mitigation actions should be well shared not only with others at operation but
also be feedback to the design team responsible for the development of similar
systems in future. Proven improvement program addressing logistics issues
such as vendor support and spare parts availability should be well established

before the system commences operation.

iv) The assumption of constant failure and repair rate (random event) has to be

tested first by means of statistical analysis, before it can be applied, even
though it is generally acceptable for failure rate at system level due to the
effects of various subsystems and components. Similarly an IID test should be
performed on the field data before they can be analyzed using life data

analysis (LDA) approach.

Reliability data analysis is not a well-known technique among engineers and
management even though they are aware of the importance of having reliable
operation. The analysis is usually done on ad-hoc basis and generally suffers
from unstructured and unsystematic approach. Issues such as inadequacy, poor
reliability and traceability of the existing database usually cause the studies to
take longer time to complete and the results to be subjected to greater
uncertainty. Other concerns include lack of skills and competency in the
techniques and prevailing scepticism towards statistical-based analysis results
amongst management. Nevertheless, the tendency in considering reliability
analysis as an important improvement tool is rapidly apparent in the
organization under studied based on their good support and participation in the

case studies.
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7.2.2 Contributions of the Research

This research aims to fill in the gap found in the literature on the applications of RAM

analysis in the industries, particularly in oil and gas sector. Main contribution of the

research is the proposed framework for implementing reliability, maintainability and

availability analysis effectively to improve gas processingsystem performances.

This research further enhances the knowledge thus far in the RAM analysis of

plant system at operation phase in actual industrial applications in the following areas:

1.

It provides generic frameworks on how to perform and apply reliability,
maintainability and availability analysis individually (Figures 3.1, 3.2 and 3.4)
and collectively (Figure 7.1) as a strategic tool for plant management to
evaluate existing performances, identify critical factors and overcome

operational challenges.

It presents practical approach on how to tap, engage and exploit plant
personnel and field expert’s knowledge in the analysis processes (Figure 5.22).
The proposed expert elicitation method to quantitatively estimate probable
distribution of maintenance data can also be applied to other situations where

the data are scarce and limited.

It addresses the issue of predicting system performance having non-monotonic
trend as a result of maintenance and operation improvement, as in the case of
corrective maintenance downtime of gas compression train system.
Approaches based on linear regression and expert censoring techniques have

been proposed in that situation (Figure 5.19).

It presents a framework (Figure 5.19) for conducting maintainability analysis
at operation phase thatenhances the maintainability requirement model
described by Blanchard er al. (1995) in Figure 2.5, by locking ét ways of
sharing lessons learned and providing more effective feedback on operation
performance to both the design team and other plant personnel working on

similar system.
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5. 1t outlines a framework for integrating availability modelling and simulation
techniques to assess various operational situations and estimate availability
gained, upon which can be used to assist management in the strategic decision

making process (Figure 3.4).

7.3 Limitations of the Research

The main limiting factor in this research is the unavailability of relevant and quality
field data which is a crucial element in the analysis processes for producing more
accurate, complete and meaningful results. The lack of failure data within the system
hierarchy impede more exhaustive analysis to be conducted. For example, a lifetime
analysis on components could not be adequately performed because the data are not
generally well established at the component level compared to those at the equipment
and system levels. Besides that, there is an issue with limited number of failure data
due to fewer failure events during the observation period which prevents more in-
depth reliability analysis such as data anaiysis by failure modes. Such analysis is
important for assessing the impact of certain failure modes and providing some
physical justification to system lifetime distribution (Doganaksoy et al., 2002). Some
data are also not readily broken down into more specific categories. For example, in
the current recording system of downtime data, main elements of downtime
breakdown i.e. active repair time, logistics and administrative delay, are not clearly
distinguished. Consequently, it is not possible to proceed with higher level of analysis

beyond downtime and single out the main cause of high downtime incident.

Another issue is the unavailability of costing data, which is an important element
for analyzing the best economic option. Maintenance and operation optimization
generally involves trade off of different factors for achieving the most cost effective
solution. This approach however is not being explored in-depth in the research. The
main obstacle is on the unwillingness of plant personnel to release information on the
matter, most possibly due to difficulty to quantify and generalize the impact of failure
in terms of different cost elements such as labour and spare parts. Despite that, an

attempt to consider this factor has been presented in Chapter 6 for justifying the
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proposed preventive maintenance strategy for gas compression train system on the

basis of gas production rate and its equivalent price.

7.4 Recommendations for Future Research

This research indicates maintainability as a significant factor influencing system
availability at operation phase, hence an in-depth study should be carried out to
identify the real causes of high downtime. Poor maintainability could be due to
various factors such as maintenance support policy, operators’ allocation and skill,
process workflow and documentation, spare parts provision and supplier contract
policy (IEC 60300, 2001). The study should start with breakdown analysis of
downtime data for each of downtime elements i.e. repair time, logistics and
administrative delay time, and then further investigate what are the contributing
factors for each downtime element. Improvement and optimization actions in
maintenance and support system (e.g. optimization of spare part and manpower

allocations) can be proposed accordingly after real issues to downtime are identified.

It is also evident from the case studies that most existing plant field data suffer
from various issues related to quality and documentation of data. Common problems
include incomplete, outdated, unorganized, non-centralized and non-standardized
data. Consequently, many reliability studies usually take longer time to complete as
significant portion of time have to be spent on finding relevant data and verification
process. The main cause of the problem can be traced back to the failure data
management system in the plant, which was established primarily for reporting and
not for conducting in-depth reliability related analysis. Hence, there is a pressing need
to study and improve the existing data collection procedures and database system. A
comprehensive study should be done on how to effectively and systematically gather,
record, classify, format, verify, centralize and report all related data in a highly
reliable database to facilitate relevant reliability, maintainability and availability
analyses. Downtime report, for example, should be structured in such a way that it is
possible to indicate how much downtime is contributed by each of the downtime

elements. Having highly systematic and reliable database for plant failure data will
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definitely reduce the analysis time, provide foundation for further comprehensive

analysis to be performed and more importantly enable more accurate analysis results.
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APPENDIX A

GAS COMPRESSION TRAIN FIELD MAINTENANCE DATA

Original data from the availability tracking record (field data) need to be rearranged
and reformatted in order to capture essential information and ease the analysis
process. The formatted table being used is described in Figure A.l. Different colour
coding is used to distinguish events related to different types of maintenance,
operation mode (single ioading, standby) and failures. From the reorganized data, the

following investigation can be performed

¢ Tracking of cumulative operating time for each train

¢ Determining the time between failures {(TBF) more accurately based on
operating time rather than calendar time. This information is crucial for in-
depth analysis on reliability trend analysis (11D test) and reliability measures.

* Analysis on possible key variables (covariates) having influence on GCT
reliability performances using Kaplan Meier and Proportional Hazards Model.
From the table, the TBF related to the covariates can be traced and hence

further analysis can be performed. These covarniates include:

a. Loading configuration (single loading vs shared loading)
b. Train (train 1 vs train 2)

c. Equipment (gas turbine and gas centrifugal compressor)
d. PM types (8K, 4K ppm, engine wash)

e. Failure type (start up failure)
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Figure A.1: Sample of table for reformatted field data
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APPENDIX B

KAPLAN MEIER AND PROPORTIONAL HAZARDS MODEL ANALYSIS

Data Inputs

For Kaplan Meier and proportional hazards model studies, the data need to be
keyed-in the appropriate format for the analysis to be conducted. The data are
extracted from the reformatted field data described in Appendix 1. Table B-1 depicts
the variables, covariates and their coding used in the analysis format. The complete

formatted data is shown in Table B-2.

Table B-1: Variable and categorical covariate codings

AE

Failtime Time between failures -

status Status of failtime data 0= failure occurs

1= failure does not occur

Description

startup Start up failures O=other failures
1=fail after start up

operationmode Operation mode 0=on sharing load
1=on single load

Train Train types 0=Train 1
1=Train 2
subsystem Subsystems O=other subsystems

1=Gas Turbine + Gas compressor

PM 4K and 8K ppm O=other failures
1=failures after PM
PMplusEW 4K, 8K ppm and Engine wash | O=other failures

1=failures after PM+wash

187



Table B-2: Covariates and their coding

PMplusEwW

P

subsystem

Train

status

operationmode

startup

failtime

15

195
295
107
129
65

20
22
1i8
32
263
113

84

31

23
43
217

52
126
30
12

68

22

31

327
132
77

104
17

42

45

208
22

28

56
22

30
151

17

83

100
80

91

124
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Kaplan Meier Analysis

1. Train types

Table B-3 (a,b,c) : Summary of analysis results

Case Processing Summary

Train Censored
Total N N of Events N Percent
Train 1 27 27 0%
Train 2 27 27 0 0%
Overall 54 54 0%
(a)
Means and Medians for Survival Time
Train Mean®* Median
95% Confidence Interval 95% Confidence Intenal
Estimate | Std.Emor | LowerBound | UpperBound | Estimate | Std. Emor | Lower Bound | Upper Bound
Train 1 77.148 15.857 46.069 108.227 43.000 18.174 7.379 78.621
Train 2 70.519 13.956 43.164 97.873 45.000 21.636 2.594 87.406
Overall 73.833 10472 53.309 94.358 43.000 15.309 12994 73.006
a. Estimation is limited to the largest sunvival ime if itis censored.
Overall Comparisons
Chi-Square df Sig.
Log Rank {Mantel-Cox) 027 1 .870
Test of equality of sunvival distributions for the different levels of
Train.
()
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Figure B.1 (a,b): Survival and hazard plots for covariate train

(a)

189

(b)




2. Operation modes

Table B-4 (a,b,c) : Summary of analysis results

Case Processing Summary

operation mode Censored
Total N N of Events N Percent
on sharing load 50 50 0 0%
on single toad 4 4 0%
Overall 54 54 1] 0%

operation mode

(a)

Means and Medians for Survival Time

Cum Survival

(a)

fallure time

(b)

Mean® Median
95% Confidence Interval 95% Confidence Intervat
Estimate | Sid. Error | Lower Bound | UpperBound | Estimate | Std. Emor | LowerBound | Upper Bound
on sharing load 74.640 11.193 52702 96.578 43.000 14.731 14,126 71.874
on single ioad 63.750 23.221 18.236 109.264 31.000 17.500 .000 65.300
Overall 73.833 10.472 53.309 94.358 43.000 15.309 12.994 73.006
a. Estimation is limited to the largest sunvval tima ifitis censored.
Overall Comparisons
Chi-Square df Sig.
Log Rank {Mantel-Cox) .011 1 918
Testof equality of sundval distributions for the different levels of
operation mode.
(c)
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Figure B.2 (a,b): Survival and hazard plots for covariate operation mode
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3. Subsystems

Table B-5 (a,b,c) : Summary of analysis results

Case Processing Summary

(a)

(b)

subsystem Censored
Total N N of Events N Percent
other subsystems 28 28 0%
Gas Turbine + Gas 26 28 0%
compressor
Overall 54 54 0 0%
(a)
Means and Medians for Survival Time
subsystem Mean" Median
95% Confidence Interval 95% Confidence Interval
Estmate | Std. Emor § LowerBound | UpperBound | Estimate | Std. Error | Lower Bound | Upper Bound
other subsystems 56.786 9.953 37.278 76.294 30.000 13.229 4072 55.928
Gas Turbine + Gas 92.192 16.483 55.966 128.418 52.000 14,022 24516 79.484
compressor
)| Onverall 73.833 10472 53.309 94.358 43.000 15.309 12.594 73.006
a. Estimation is limited to the largest survival ime if itis censored.
Overall Comparisons
Chi-Square df Sig.
Log Rank (Mantel-Cox) 3.341 1 068
Test of equality of sunival distributions for the different leveis of
subsystem.
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Figure B.3 (a,b): Survival and hazard plots for covariate subsystem
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4. Start-up failures

Table B-6 (a,b,c) : Summary of analysis results

Case Processing Summary

failure after start up Censored
Total N N of Events N Percent
other failures 45 45 0 [ 0%
fail after start up 9 9 0 0%
Owerall 54 54 0 0%

(a)

Means and Medians for Survival Time

failure after start up Mean® Median
95% Confidence Interval 95% Confidence Interval
Estimate | Std.Error | Lower Bound | UpperBound | Estmate | Std. Emor | Lower Bound | Upper Bound
other failures 72778 11.452 50.332 85.224 45.000 16.096 13.452 76.548
fail after start up 79.111 27.351 25.503 132.719 31.000 1491 28.078 33.922
Overall 73.833 10.472 53.309 94.358 43.000 15.309 12.994 73.006

a. Estimation is limited to the largest sundval ime ifitis censored,

(b)

Overall Comparisons

Chi-Square df Sig.

Log Rank (Mantel-Cox) 038 1 846

Cum Survival

Test of equality of survival distributions for the different levels of
failure after start up.
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Figure B.4: Survival and hazard plots for covariate start up failure
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5. PM (4K and 8K ppm)

Table B-7 (a,b,¢) : Summary of analysis results

Case Processing Summary

PM Censored
Total N N of Events N Percent
other failures 42 42 0%
failures after PM 12 12 0%
Owerall 54 54 0%
(a)
Means and Medians for Survival Time
PM Mean® Median
95% Confidence Interval 95% Confidence interval
Estimate | Std. Emor | LowerBound | Upper Bound | Estimata | Std. Emor | Lower Bound | Upper Bound
other failures 64.071 12.279 40.004 88.139 30.000 4855 20.484 39.516
fallures after PM 108.000 16.556 75.551 140.449 84.000 19.919 44 960 123.040
Owerall 73.833 10.472 53.309 94.358 43.000 15.309 12.994 73.006
a. Estimation is limited to the largest sunival ime ifitis censored.
Overall Comparisons
Chi-Square df Sig.
Log Rank {Mantel-Cox) 2415 1 120
Test of equality of sunival distributions for the differentlevels of
PM
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Figure B.5: Survival and hazard plots for covariate PM
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6. PM (4K and 8K ppm + Engine wash)

Table B-8 (a,b,c) : Summary of analysis results

Case Processing Summary
PM + Engine wash Censored
Total N N of Events N Percent
other failures 33 33 0 0%
failures after PM+wash 21 21 0%
Overall 54 54 0%
(a)
Means and Medians for Survival Time
PM + Engine wash Mean* Median
95% Confidence Interval 95% Confidence Intenval
Estimate | St Eror | Lower Bound { UpperBound | Estimate | Std. Emor | Lower Bound | Upper Bound
other failures 48.091 10.973 26.584 69.598 23.000 4,101 14.961 31.039
failures afler PM+wash 114.286 17624 79.743 148.829 100.000 20.598 59.628 140.372
Owerall 73833 10472 53.309 94.358 43.000 15.309 12,994 73.006
a. Estimation is timited to the largest sundval ime ifitis censored.
Overall Comparisons
Chi-Square df Sig.
Log Rank (Mantel-Cox) 8.522 1 .004
Test of equality of sunival distributions for the different levels of
PM + Engine wash.
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Figure B.6: Survival and hazard plots for covariate PM + engine wash
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Proportional hazards model

Table B-9 (a-f) : Summary of analysis results

Case Processing Summary

N Percent
Cases available in analysis Event” 54 100.0%
Censored 0 .0%
Total 54 100.0%
Cases dropped Cases with missing values .0%
Cases with negative time .0%
Censored cases before the 0%
earliest event in a stratum
Total 0 .0%
Total 54 100.0%
a. Dependent Variable: failure time
(a)
Categorical Variable Codings®“9*'?
Frequency (1)
startup” O=other failures 45 0
1=fail after start up 9 1
operationmode® 0=on sharning load 50 0
1=o0n single load 4 1
Train® 0=Train 1 27 0
1=Train 2 27 1
subsystem® D=other subsystems 28 0
1=Gas Turbine + Gas 26 1
compressor
PM® O=other failures 42 0
. 1=failures after PM 12 1
PMplusEW* O=other failures 33 0
1=failures after PM+wash 21 1

a. Indicator Parameter Coding

b. Category variable: startup ( failure after start up)

c. Category variable: operationmode (operation mode)

d. Category variable: Train (Train)

e. Category variable: subsystem (subsystem)
f. Category variable: PM (PM)
g. Category variable: PMplusEW (PM + Engine wash)

(b)
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Block 0: Beginning Block

Omnibus Tests of Model
Coefficients

-2 Log Likelihood
329.279

(©)

Block 1: Method = Enter

Omnibus Tests of Model Coefficients®

2tlog Overall {score) Change From Previous Step Change From Previous Block
Likelihood | Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.
318.711 10.815 6 .094 10.568 8 103 10.568 & .103
a. Beginning Block Number 1. Method = Enter
(d)
Variables in the Equation
B SE Wald df Sig. Exp(B}

Train -.045 .296 .024 1 878 .956

operationmode -.533 557 917 1 338 .587

subsystem -.368 323 1.302 1 .254 .692

startup -.090 405 .049 1 824 914

PM 006 466 .000 1 .989 1.006

PMplusEW -.837 416 4.050 1 .044 .433

(e)
Covarlate Means and Pattem Values
Pattern
Mean 1 2

Train .500 500 .500

operationmode .074 074 .074

subsystem 481 481 481

startup 167 167 167

PM 222 222 222

PMplusew .389 .000 1.000

)
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Figure B.7 (a-1): Survival and hazards plots for each covariate
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APPENDIX C

ANALYTICAL AVAILABILITY COMPUTATION

The structure of components in system can be either in series or parallel. In a series
structure, the system 1s available if and only if all of its » components are available.

An example of a series structure of order » is depicted in Figure C.1.

Figure C.1: Series structure
The availability of the system, Ay, can be calculated based on this function
As=A;. Ay ... A =TT 4 (N
where A4, is the availability for component 1 and so on.

In a parallel structure as illustrated in Figure C.2, the system is available if at least one

of its n components are available.

(e} 1 ——
— 2 |
[ S— o
— 3 -
— n 4—

Figure C.2: Parallel structure

The respective availability function can be described as

As=1- (1-4) (1-A42) ... (- A =]ioy (1~ 4) (2)
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A system that is available if and only if at least k out of n components are available, is
also known as a k-00-n structure. An example of RBD for 2-00-3 system is illustrated

in Figure C.3.

Figure C.3 : 2-00-3 system

Alternatively, this structure can be represented by the following equivalent RBD

(Figure C.4).

Figure C.4: Equivalent RBD for 2-00-3 configuration
Hence, the system availability can be written as
As=1-(1-A41 42) (1- A; A3) (1- A2 A3) (3)
A=Ay A+ A; A3+ Ay Az - 24, Az Az (4)

If each component in the system has the same availability value, 4, the system

availability can be computed by the following binomial expression

A, = zrzk(’r‘)m(l - AT (5)

where
n = total components in parallel

k = minimum number of components required for system success
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Analytical computation of AGRU system’s availability

First, the MTBF and MTTR for related equipment have to be calculated based on the
steady state condition. For exponential, the MTBF is just a reciprocal of the failure

rate, A.
MTBF = ,11 (6)

The value of MTTR is determined based the mean value. The availability of the

equipment can be computed as follows

MTBF

Availability = MTBFIMITR N

The summary of the computed results is shown in Table C-1 below.

Table C-1: Reliability, maintainability and availability data for each equipment

Equip. Reliability Maintainability Availability
Distrib. | Parameters MTBF | Distrib. Parameters | MTTR
(hrs) / downtime | (hrs)
P20tA | Expon. | A=0.000514 | 19455 | Fixed 347.5hrs | 3475 0.8485
duration
P201B | Expon. | A=0.0005 2000 | Lognorm. | u = 4.785, 275 0.8791
c=129
P201C | Expon. | A=0.0005 2000 | Lognorm. | pu = 4.063, 171 0.9211
c =147
P202A | Expon. | A=4.6 x 10™ 2174 | Fixed 1344 hrs 1344 0.6179
duration
P202B | Expon. | A=1.986 x| 5035 | Fixed 72 hrs 72 0.9859
10" duration
P202C | Expon. | A=5.6x 107 | 17857 | Fixed 372 hrs 372 0.9796
duration
Lv2004 | Expon. | A=0.000107 9302 | Expon. A2=0.286 3.5 0.9996
5
PV2014 | Expon. | x=0.000161 6199 | Fixed 1.95 hrs 1.95 0.9997
3 duration

]
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Based on the available equipment data, the AGRU system can be simply represented

by the following RBD (Figure C.5).

P201 P202

—{ P201A |— —| P202A [—

9

3

k- k-
P2018 @ P202B 00- Lv2004 pPv2014 |—e
n

— P201C |— — p202C —

Figure C.5: Simplified RBD for AGRU system

For l-out of-3 configuration, using Equation 2 and data from Table A-1, the

availability of P201 can be calculated as follows

Ap201 = 1 = (1 = Apaora)(1 — Ap2ois)(1 — Ar201c)

Apzg; =1 - (1 -0.8485)(1 - 0.8791)(1 - 0.9211)

Apzor = 0.9985

Similarly, the availability P202 is calculated and the result is 0.9999.

For 2-out of-3 configuration, the availability of P201 can be computed using Equation
4,

Apaot = Apaoia -Ap20iB + Apoia -Aspaoic + Ap20is -Apoic - 2Ar2014 Ap2ois -Ap201C

Apaor = (0.8485)(0.8791) + (0.8485)(0.9211) + (0.845)(0.9211) -
2(0.8485)(0.8791)(0.9211)

Apygr = 0.9631

Using the same approach, P202 availability is calculated as 0.9868.
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The availability of the system can be computed as follows;

As= Apor . Apaoa - ALvaoos - Apvaois

For 1-out of-3 configuration:

As = (0.9985)(0.9999)(0.9996)(.9997) = 0.9976

For 2-out of-3 configuration:

As = (0.9631)(0.9868)(0.9996)(0.9997) = 0.9496

The summary of the results is shown in Table C-2.

Table C-2: Computed availability for both configurations

k-00-n P201 P202 Lv2004 PV2014 System
l-out of-3 0.9985 0.9999 0.9996 0.9997 0.9976
2-out of-3 0.9631 0.9868 0.9996 0.9997 0.9496
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