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ABSTRACT 

In facing many operation challenges such as increased expectation in bottom line 

performances and escalating overhead costs, petrochemical plants nowadays need to 

continually strive for higher reliability and availability by means of effective 

improvement tools. Reliability, maintainability and availability (RAM) analysis has 

been recognised as one of the strategic tools to improve plant's reliability at operation 

phase. Nevertheless, the application of RAM among industrial practitioners is still 

limited generally due to the impracticality and complexity of existing approaches. 

Hence, it is important to enhance the approaches so that they can be practically 

applied by companies to assist them in achieving their operational goals. 

The objectives of this research are to develop frameworks for applying reliability, 

maintainability and availability analysis of gas processing system at operation phase 

to improve system operational and maintenance performances. In addition, the study 

focuses on ways to apply existing statistical approach and incorporate inputs from 

field experts for prediction of reliability related measures. Furthermore, it explores 

and highlights major issues involved in implementing RAM analysis in oil and gas 

industry and offers viable solutions. 

In this study, systematic analysis on each RAM components are proposed and 

their roles as strategic improvement and decision making tools are discussed and 

demonstrated using case studies of two plant systems. In reliability and 

maintainability (R&M) analysis, two main steps; exploratory and inferential are 

proposed. Tools such as Pareto, trend plot and hazard functions; Kaplan Meier (KM) 

and proportional hazard model (PHM), are used in exploratory phase to identify 

critical elements to system's R&M performances. In inferential analysis, a systematic 

methodology is presented to assess R&M related measures. The use of field expert's 

knowledge is also explored as an alternative approach in the estimation process when 
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the available data are found inadequate. Here, a methodological framework on 

elicitation of expert input to assess distribution is proposed and demonstrated. For 

availability analysis, a simulation approach based on Monte-Carlo is presented to 

evaluate system's availability and what-if scenarios for various options to help 

management make strategic decisions and actions. 

This research has demonstrated that the proposed frameworks for applying 

reliability, maintainability and availability analysis are effective and practical in 

analyzing gas processing system and can be used as a strategic tool for improving 

system operational and maintenance performances. 
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ABSTRAK 

Dalam menghadapi pelbagai cabaran operasi seperti peningkatan jangkaan 

keuntungan and kos operasi, kilang petrokimia hari ini perlu berusaha berterusan 

meningkatkan kebolehpercayaan dan ketersediaan melalui alat penambahbaikan yang 

berkesan. Analisa kebolehpercayaan, kebolehsenggaraandan ketersediaan (RAM) 

telah diiktiraf sebagai salah satu alat strategik meningkatkan kebolehpercayaan kilang 

di fasa operasi. Sungguhpun begitu, aplikasi RAM dikalangan pengamal industri 

masih terbatas umumnya disebabkan pendekatan sedia ada tidak praktikal and terlalu 

komplek. Oleh itu, adalah penting untuk meningkatkan pendekatan tersebut supaya ia 

dapat di praktikkan oleh syarikat dalam membantu mereka mencapai sasaran operasi. 

Tujuan penyelidikan ini adalah untuk membangunkan kerangka kerja untuk 

mengaplikasikan analisa kebolehpercayaan, kebolehsenggaraan dan ketersediaan 

keatas system pemprosesan gas semasa fasa operasi dalam meningkatkan pencapaian 

system operasi and penyelengaraan. Disamping itu, kajian in menfokus kepada cara 

untuk mengaplikasikan pendekatan statistik sedia ada dan memasukkan pengetahuan 

pakar medan dalam membuat jangkaan bagi pengiraan berkaitan kebolehcayaan. 

Selain itu, kajian ini meneroka dan menengahkan isu utama dalam perlaksanaan 

analisa RAM di industri min yak dan gas dan mencadangkan jalan penyelesaian. 

Di dalam penyelidikan ini sistematik analisa bagi setiap komponen RAM 

dicadangkan dan peranan mereka sebagai alat yang strategik dalam proses 

penambahbaikan and membuat keputusan dibincang dan didemontrasikan melalui 

kajian kes berkaitan dua sistem di kilang. Di dalam analisa kebolehpercayaan dan 

kebolehsenggaraan (R&M), dua langkah utama; eksploratori dan inferensi diusulkan. 

Teknik seperti Pareto, plot trend dan fungsi risiko; Kaplan Meier (KM) dan model 

risiko berkadar (PHM), digunakan di fasa eksploratori untuk mengenalpasti elemen 

kritikal kepada prestasi R&M sistem. Untuk analisa inferensi, kaedah sistematik 
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dibentangkan bagi menentukan pengukuran berkaitan R&M. Pengunaan pengetahuan 

pakar medan juga di ekplorasi sebagai jalan altematif dalam proses penganggaran 

apabila data sedia ada tidak mencukupi. Di sini, kerangka kaedah untuk elisitasi pakar 

medan dalam menilai distribusi dicadang and didemontrasikan. Untuk analisa 

ketersediaan, pendekatan simulasi Monte-Carlo di kemukakan dalam menilai sistem 

ketersediaan dan senario apa-jika bagi pelbagai pilihan untuk membantu pengurusan 

membuat keputusan and tindakan yang strategik .. 

Hasil penyelidikan ini menunjukkan kerangka analisa yang dicadangkan untuk 

mengaplikasikan analisa kebolehpercayaan, kebolehsenggaraan dan ketersediaan 

adalah efektif dan praktikal dalam menganalisa system pemprosesan gas disamping 

boleh digunakan sebagai alat strategik bagi meningkatkan pencapaian sistem operasi 

dan penyelengaraan. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Challenging Business Operation 

Petrochemical plants nowadays are under increasingly pressure to drive improvement 

in operating margins and profitability due to internal and external factors. The 

management of plant is getting more challenges due to increasingly high expectation 

to operate with higher revenue and minimum loss. Issues such as escalating capital 

and operation cost, intense competition, tighter budget, narrower profit margin, 

stricter environmental regulation, depletion in world's oil and gas reserve, and 

instability in world economy, all put immense pressure on plant management to make 

sure that the plants are running reliably, safely, efficiently and profitably. It is 

paramount that plant equipment operates with high reliability, safety and minimum 

downtime with the optimum operation cost and at the same time meeting high 

demand of production, safety and environmental goals. Recent incident of oil spills in 

Gulf of Mexico that caused an estimated of USD 23 Billion loss to British Petroleum 

(Macalister, 201 0) was an excellent example where equipment reliability has high 

impact on organization's profitability. It was reported that the disaster was partly due 

to the failure of blow out preventer equipment which fails to activate during the event 

("BP Releases Report on Causes of Gulf of Mexico Tragedy", 2010). 



Table 1.1: Main processes for production assurance and reliability improvement at 
Operation phase (ISO 20815 :2008) 

Processes Objectives 
1. Reliability assurance Perform planning, reporting and follow up of 

the production assurance activities to manage 
and demonstrate production assurance. 

2. Project risk management Ensure that all risk elements that could 
jeopardise a successful execution and 
completion of the project are identified and 
controlled in a timely manner 

3. Performance tracking and Collect and analyse operational performance 
analysis data to identify potential improvement 

potentials and to improve the data basis for 
future production assurance and reliability 
management activities. 

4. Management of change Ensure that no changes compromise the 
reliability performance requirements. 

5. Reliability improvement and risk 1. Identify the need for improved system 
reduction reliability performance or reduced risk is a 

project to ensure that performance goals are 
not compromised 
2. Identify and communicate potentials for 
improved equipment or system reliability or 
risk reduction to the system or equipment 
manufacturers based on tracking and analysis 
of performance data 

6. Organisational learning Ensure that product and process failures of the 
past are not repeated. 

With all of these challenges occurring, many organizations are urgently seeking 

for an effective and innovative approach to continuously drive improvement in plant's 

reliability and performance in order to keep profitable, even for a stable and 

considered high performance plant. A general approach for achieving such 

improvement at each phase of plant lifecycle has been proposed and outlined in the 

ISO 20815 (2008). Table 1.1 describes six key means that management should focus 

on to drive improvement at operation phase. To drive profitability, an organization 

needs to strive for continuous improvement through utilization of effective tools and 
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techniques that can identify and quantify potential areas for saving and be part of the 

decision making process. Several improvement programs have been rolled out as part 

of strategic initiatives by management to propel plant's performances, which include 

Total preventive maintenance (TPM); Reliability centred management (RCM); bad 

actors management; Root cause failure analysis (RCF A) and Reliability, availability 

and maintainability (RAM) analysis. Among them, RAM is increasingly getting 

popular and becoming a standard tool in process industry since it focuses directly on 

asset optimization and reduction in maintenance cost (Shaikh and Mettas, 201 0). 

According to William (2001) RAM is considered the main area for plant profitability 

improvement besides yield. With regards to six important areas for reliability 

improvement, RAM approach specifically addresses key items no 3; performance 

tracking and analysis and no 5; reliability improvement and risk reduction. 

1.2 Why Need RAM? 

RAM study has been applied throughout the oil and gas industry to serve as a 

quantified mean to assess plant operational issues and a strategic tool for management 

to increase plant availability and performances. Improvement in availability, even 

small, as is tum out is a significant variable for maximizing plant profitability. As 

pointed out by Sutton (2010), an increase of availability by mere 1% (i.e. 95-96%) 

will eventually drive higher profitability since normally the 90% of availability 

covers all the production cost, whereas profit normally in range of 90 -100% 

availability. In improving plant operational performances, RAM plays these critical 

roles: 

• RAM analysis identifies, measures and ranks plant weak points with respect to 

failure and downtime that affect plant availability, leading to a basis for 

making effective solutions and actions to enhance plant availability. 

• RAM analysis can estimate system availability and assess various alternatives 

and configurations on the basis of quantitative benefits in order to achieve the 

best option or action for improving system availability. Some of these options 

include equipment capacity/reliability, upgrading, redundancy, maintenance 
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strategy, spare part allocation policy, manpower strategy and competing 

solutions. 

• RAM approach provides a decision support tool for management to effectively 

align operational decisions with organization's objective. These decisions are 

based on technical and operational measures which could be applied by 

management to increase plant performances based on recommendations of 

RAM study. A list ofthese measures is shown in Figure 1.1. 

• RAM analysis presents a systematic approach of effectively analysing plant 

failure and maintenance data, which are abundant but usually not fully 

exploited, as a vital source for monitoring plant performance and driving 

continuous improvement activities. 

The financial benefits gained from effective RAM analysis projects are 

tremendous. William (200 1) estimates that the opportunity for RAM contribution to 

refinery profitability improvement without additional capital investment is 0.10-0.20 

USD!bbl, where for poorer performance can even reach 1-2 USD!bbl. Other examples 

of reported financial gains from RAM study are highlighted in Table 1.2, which cover 

a wide spectrum of industrial sectors, applications and values. 

Choices of technology 
Redundancy at system level 
Redundancy at equipment or component level 
Functional dependencies 
Capacities 
Instrumentation I automation philosophy 
Material selection 
Selection of make 
Protection from environment 
Reliability testing 
Self-diagnosis 
Buffer and standby storage 
Bypass 
Spare parts 
Maintenance strategy 
Maintenance support 

Figure 1.1: Different degrees of measure for plant improvement (adapted from ISO 
20815 :2008) 
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Table 1.2: Reported RAM benefits 

Plant Reported improvement 

1. Ethylene Development of availability modeling successfully pinpointed 
plant in US improvement areas to increase the plant's on-stream factor, 

hence assisted the plant in increasing its annual revenue by $1 
million (ARINC, n.d.). 

2. Petrochemical RAM program had identified opportunities in increasing plant 
plant in reliability from 93% (2003) to 95.4% (2004) and reducing 
Thailand maintenance cost by 1 0% throughout the program to assist the 

plant to achieve $2 million profit improvement goal by 2005 
(KBC, 2005). 

3. LNG plant in RAM modeling had assisted the plant to increase production 
Egypt of LNG export and domestic gas supplies by 7% through 

quantification of critical system contributors to production 
loss (GL Noble Denton, n.d.). 

4. Angostura oil RAM study on improved gas availability due to the dedicated 
and gas gas processmg platform and proVISIOn of additional 
facilities, compression capacity indicated that significant cost-benefit of 
offshore approximately $46 MM and 5 bcf deferred gas savings could 
Trinidad be realized through the purchase of a spare compressor bundle 

(IRC, 2009). 

5. Nuclear RAM analysis to improve turbine generator availability 
power plant in successfully saves an estimated maintenance cost of USD 3.5 
Ontario, Canada million annually through more effective plant maintenance 

program (Cockerill, 2005). 
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1.3 Challenges and Issues of RAM studies at Operation Phase 

Based on literature review and industrial feedback, several challenges are identified 

and should be considered when planning and executing RAM study for any system or 

plant in oil and gas industries. Getting sufficient, consistent, high quality and integrity 

plant reliability data is quite difficult and challenging task, and has always been a 

major concern in many reliability studies at operation phase (Madu, 2005). The 

success of any plant reliability study depends highly on quality and availability of 

failure data and on suitability and accuracy of the various assumptions that will be 

used (Rossedi, 2006, Scully and Choy, 1993). Insufficient data leads to many 

assumptions being adopted in the reliability study, which in tum increases degree of 

uncertainties in the analysis results. Alternatively other sources of data such as 

generic industrial standard, handbook and database are being used widely to fill in 

missing data. Important concern related to this application is on compatibility of such 

data to represent actual system under studied. OREDA handbook for example, is 

limited to offshore applications (Vinnem, 2007) where its data come mainly from 

offshore installations in the UK and Norwegian sectors of North Sea yet it has been 

applied widely for study of chemical and refinery plants, and offshore platform 

systems in other regions. 

Another issue is related to the complexity and dynamic nature of system. Many 

problems related to plant system nowadays are complex due to high and increased 

degree of complexity in the system with its multi-systems and network system which 

consist of hardware, software, organizational and human components and their 

interrelationships (Zio, 2009). The representation and modelling of the complexity of 

such system poses a challenge to RAM study due to possibly increase in uncertainties 

associated with system characteristics and their modelling. Uncertainties also derive 

from lack of knowledge about system failures and causes, and understanding of 

system dynamic performance as a result of system aging or improvement. 

Despite various benefits associated with RAM, the adoption of this approach as a 

strategic tool for plant management particularly in the maintenance section, is far 

from satisfactory. Numerous research papers have been published related to reliability 

theory and model and have claimed their roles in resolving various issues related to 
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real system in industrial. Nevertheless, many of them fall short in providing the 

practical solutions to the real problem faced and attracting industrial people to use 

RAM for driving improvement in plant performances. The reasons can be traced back 

to the nature of the RAM approach used in the research. From the literature, the 

following issues have been identified as key factors: 

· I. Focus too much on modelling- Scraf (1997) cites that many research papers 

put less emphasis on the practicality and worthiness of the technique in the 

real applications. Instead, the focus are more on model development and then 

find the applicability of the model rather than the effort on solving real 

problem in the plant. Michelsen (1998) stresses that much of the effort has 

been made to develop system models to perform overall assessment of system 

instead of a simple and practical approach to solve specific problem 

experienced by industry, which is more needed. Bazu and Bajenescu (2011) 

point out that many mathematical approaches on reliability issues are 

restrictive and producing cryptic results since they are developed mainly by 

statisticians. There is a vast tendency among researchers to apply complicated 

mathematical model even when it can be solved with a fairly simple model 

(Ansell and Philips, 1994). According to Scarf (1997), the development of 

more and more complex model are done generally for the sake of novelty, 

which ends up making the model more obscure instead of striving for clarity 

and simplicity. Many mathematical models developed stay only at theoretical 

and are not being used in the industries due to difficulty to find real problem 

suitable for the models (Dekker, 1996). Researchers should avoid over

parameterization of the models which often are too detailed for their 

application to be practically feasible (Zio, 2009). Furthermore, the use of 

complicated model is not going to attract much interest in industry since they 

normally prefer more tractable and simpler model and approach. 

2. Less focus on data gathering process - many studies are also found not paying 

much attention on proper plant data gathering and analysis methodology, a 

critical step in RAM study. Substantial improvement in reliability can only be 

realised when an appropriate system to collect actual failure data and repair 

times exist (Barringer, 2004). This raise issues such as quality, adequacy and 
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integrity related to data which make it rather difficult to develop plausible 

model and validate it. As a result, flawed assumption such as constant failure 

rate is made without first conducting sufficient analysis on maintenance data, 

even though it is in reality not necessarily true. 

3. Pessimistic estimation results- finding on some of RAM results studies shows 

that they tend to be too pessimistic compared to the actual plant performance 

due to the use of conservative data and assumptions in the analysis 

(Michelsen, 1998). This pessimistic result does not reflect the existing 

performance thus cannot be effectively integrated with decision making 

process. 

RAM poor acceptance is also contributed by plant personnel attitude towards 

reliability based studies. Reliability is always hard to sell to plant management and 

maintenance since they generally have weak tradition in reliability application, skills 

and competency, doubt of cost-effective strategy for maintenance optimisation, and 

tendency to discard the validity of generic type information to evaluate their specific 

equipment (Michelsen, 1998). The implementation of reliability studies can also be 

impeded by other constraints such as cost, policy, schedule and certain problems 

related to the existing system inherent reliability (Keller-McNutty and Wilson, 2003). 

Many organizations, due to lack of internal expertise, will have to resort to employing 

external consultants for conducting such analysis, which sometimes can be quite 

expensive. 

To conclude, the pertinent Issues relating to existing approach of reliability, 

maintainability and availability analysis at operation phase are: 

1. It suffers from limited practical applicability mainly due to the use of 

complicated mathematical model and impractical methodology. Consequently, 

many industrial practitioners shy away from the approach and hence fail to 

realize and capitalize its full potential as a strategic analysis tool for driving 

improvement in plant performance. 

8 



2. Generally, it has fairly limited involvement of expert personnel during analysis 

process. The role of expert is basically secluded only on data gathering and 

verification processes. 

3. There is still a lack of case studies on analysis on real problems against myriad 

of issues faced by oil and gas industries. In many case studies, generally the 

approach is not presented in details and uses inaccurate assumption such as 

constant failure and repair rate. 

1.4 Motivation of the Study 

To increase the applications and decision tool roles of RAM related analysis in 

industry, the identified issues above have to be addressed and the gap between theory 

and industrial practicality need to be reduced. Research studies should be more focus 

on solving real and specific problem faced by industry using more practical approach 

(Michelsen, 1998). In doing so, more research based on cases studies are much 

needed in which collaboration can be made with industry by engaging plant 

management and engineers to work together such that more details and effective data 

collection, realistic model and practical results can be achieved. The existing 

literatures are still exhaustive to present all kind of issues in plant due to increasing 

complexity and dynamic nature of today's system. There is no single technique can 

sufficiently cover all plausible conditions, problems and complexity of the real world 

system (Ansell and Philips, 1990), hence more case studies based on real industrial 

experience is deem necessary to explore other issues untouched and render 

appropriate approach to tackle these issues. 

The use of tractable and non-complicated models, yet sufficiently capable of 

resolving problem should be pursued since they can be applied widely even by non

experts in industry. As for industrial people, more open-minded attitude is needed 

with regards to resources (investments and manpower) allocation for reliability 

studies and managing proper maintenance data (Zio, 2009), taking into consideration 

benefits gained from the analysis. More exposure to RAM techniques and its 

potentials should be given to plant management to change their mindset on RAM 
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analysis role as a strategic management decision tool. Another important point is on 

the need to analyse existing maintenance data more effectively and realise their 

significant roles in supporting plant improvement plan. 

1.5 Research Objective 

The following are the objectives of this research: 

1. To develop a framework for applying reliability analysis of gas processing 

system at operation phase to improve system operational and maintenance 

performances 

2. To develop a framework for applying maintainability analysis of gas 

processing system at operation phase to improve system operational and 

maintenance performances 

3. To develop a framework for applying availability analysis of gas processing 

system at operation phase to improve system operational and maintenance 

performances 

To address the existing issues with RAM analysis, the proposed frameworks will 

incorporate the following main elements: 

• Effictive and intensive utilization of plant reliability and maintenance data -

Highly abundance data exist in the plant should be used as the prime source of 

RAM study and critical information on system performance. 

• Applications of practical, non-complex yet tractable method to achieve the 

objective of analysis - The use of simple and practical method will attract 

more interest from industrial practitioners leading to increase in its 

applications in industry. 
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• Exploitation of expert opinion as an important data input - Expert opinions 

can play significant roles in strengthening data analysis process making the 

results more relevant and realistic. 

• Applications of simulation method to achieve best options of system 

configurations - Simulation method has been found to provide the best 

approach to analyse complex system with stochastic equipment and evaluate 

performance of the existing system with various conditions. 

• Applications of statistical techniques for analysis and decision making process 

- The use of statistical-based decision making will increase management and 

engineers' competency in solving problems and driving plant improvement 

activities. 

This research contributes to the general knowledge in reliability field by 

presenting a general framework for conducting RAM analysis at operation phase. This 

framework adds to and enhances the existing approaches by providing feasible and 

detailed means for analysing plant maintenance field data. It also provides plant 

engineers and management with the essential tools for continuous improvement and 

decision making strategies. This research also highlights some real issues faced during 

the study such as lack of field data and offers innovative solutions to overcome them. 

The roles of field experts in the analysis process have also been enhanced particularly 

in the maintainability study for eliciting downtime measures. 

1.6 Research Scope 

The research work covers the analysis of failure and maintenance data of system at 

gas processing system. The scope of the study was limited to assessment at system 

level primarily due to the limitation of related field data at component level. 

Furthermore, the application of the analysis is also limited to the operation phase. 
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1. 7 Thesis Outline 

A brief description on applications, approach and techniques of RAM analysis at 

operation phase is presented in Chapter 2. Apart from that, this chapter discusses the 

reliability and statistical theory related to RAM analysis, to serve as a foundation for 

subsequent case studies analysis. Chapter 3 discusses proposed frameworks for 

applying RAM analysis used in the research. In this research, a RAM analysis is 

broken down into three component of studies; reliability, maintainability and 

availability. Reliability and maintainability studies can be done separately and on their 

own, whereas availability calculation requires combination of reliability and 

maintainability parameters as its inputs. 

The following three chapters (Chapters 4, 5 and 6) present detailed analysis on 

real industrial problems based on the proposed frameworks for each RAM study 

component. Chapter 4 describes reliability analysis approach used for an analysis of a 

gas compression train system at offshore platform. The maintainability analysis 

approach of the same system is addressed in Chapter 5. In this analysis, both planned 

and unplanned system downtime are investigated. In Chapter 6, the availability 

simulation studies of the similar system and an acid gas removal unit (AGRU) system 

in gas processing plant are discussed. Finally, the conclusions and recommendations 

of this thesis are presented in Chapter 7. 
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2.1 Introduction 

CHAPTER2 

LITERATURE REVIEW 

This chapter provides an overview of various techniques applied in RAM study of 

plant system at operation phase. Basic concepts of reliability, maintainability and 

availability, and general approaches to system analysis are also discussed to provide 

the basis for the proposed analysis methodology applied in this research. 

2.2 RAM Application in Operation Phase 

Numerous researches on RAM related studies during operation phase of 

petrochemical and power plants have been reported in literatures covering a wide 

range of applications, objectives, and areas i.e. systems, subsystems and equipment. 

The availability of a natural gas plant was studied by Bosman (1985) to determine the 

optimum cost configurations of number of compressors. Rotab Khan and Zohrul 

Kabir (1995) estimated improvement in ammonia plant's availability through some 

modifications in plant design and changes in overhaul interval. Reliability data 

analysis and modelling approach was applied by Wang and Majid (2000) to model an 

offshore oil platform plant and investigate the effectiveness of preventive 

maintenance interval. Rajee et al. (2000) discussed applications of availability 

analysis on a critical pumping system in the crude distillation unit (CDU) of a refinery 

to assist maintenance in deciding on optimum repair strategy. AlSalamah et al. (2005) 

modelled and examined the reliability and availability of the cooling sea water 

pumping which supply sea water to refineries and petrochemical plants. Sikos and 
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Klemes (20 1 0) conducted a study on effective modelling and optimisation of heat 

exchanger network maintenance and reliability. Shaikh and Mettas (20 1 0) 

demonstrated the application of RAM analysis on a natural gas plant. The study on 

reliability of boiler feed system of a large power plant was presented by Sculli and 

Choy (1993). Arora and Kumar (1997) performed availability study to identify critical 

components of steam and power generating systems in a thermal power plant. 

Equipment criticality of heat recovery steam generator (HRSG) installed in combined 

cycled power plant was evaluated by Carazas et al. (20 1 0). 

2.3 RAM Modelling Approach 

For analysis of a system, there are various methods that can be applied to achieve the 

objective as described in Figure 2.1. For petrochemical plant it is neither economical 

nor feasible to conduct real experiment on the physical system after the plant has been 

commissioned to avoid unnecessary issue with the plant operation. The construction 

of physical model will usually incur high cost thus also is not a good option. Hence, 

the best option for RAM analysis involves utilization of mathematical model of the 

system under studied. 

Experiment with Real 
system 

System 

Experiment with model 
of the system 

Physical model Mathematical model 

Analytical 
approaches 

Simulation 
approaches 

Fig. 2.1: Various methods of analyzing system (Law and Kelton, 2000) 
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Mathematical model can be those of analytical or simulation techniques. Sathaye 

et a/. (2000) expand this classification to include hybrid approaches, a combination of 

analytical and simulation parts. In analytical approach, the system characteristic is 

modelled by set of equations. The evaluation is performed by solving these equations 

either based on closed-form or numerical solutions. Example of analytical techniques 

include event tree, fault tree, reliability block diagram (RBD), Markov and Petri-net 

analysis. Simulation approach uses discrete-event simulation technique such as Monte 

Carlo to describe more details of system conditions, simulate system dynamic 

behaviour and evaluate the required performance measures (Sathaye et al., 2000). 

2.3.1 RAM Techniques at Operation Phase 

ISO 201815 (2008) describes various methods and techniques that can be applied to 

assess the reliability and availability of the operating system. These techniques are 

briefly described below. 

2.3.1.1 Failure Mode and Effects Analysis (FMEA) 

FMEA is a systematic methodology of evaluating inherent reliability of a system by 

considering potential failure modes of each component comprising a system and 

evaluate their effects on the system's reliability. Based on the effects, the criticality of 

each of the failure mode can be assigned and appropriate corrective actions can be 

taken to reduce the chances of failure (Davidson, 1994). FMEA is a 'bottom up' 

analysis and can be performed at any level of assembly. The analysis can be based on 

a hardware and functional approach (O'Connors, 2002). In the hardware approach, the 

hardware failure modes are considered, while in the functional approach the 

functional failures such as 'lost of memory' is used. FMEA can also be used as inputs 

to FTA (Fault tree analysis) and RBD, and vice-versa. While it is usually applied in 

early stage of system design, FMEA can also be applied on existing system to focus 

on problem areas related to system reliability, safety, availability, maintainability, or 

logistics support (Rausand and Hoyland, 2004, ISO 20815, 2008). 
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2.3.1.2 Fault Tree Analysis (FTA) 

FT A is one of the most widely used tools for risk and reliability assessment nowadays 

(Rausand and Hoyland, 2004). It was first introduced by H.A. Watson of Bell 

Telephone Laboratories in early 1960s to conduct analysis on the Air Force 

Minuteman Missile Launch Control System and later enhanced and adopted by other 

industrial sectors such as aviation, nuclear, petrochemical and computer software 

(Ericson, 1999). FT A is used to identify all possible causes of a particular system 

failure mode and provides a basis for determining the probability of occurrence for 

each system failure mode (Davidson, 1994). In the FT Aa failure event of the system is 

first specified and then the system is analyzed in the context of its environment and 

operation to identify all plausible ways in which the failure can occur (Vesely et a/., 

1981 ). Graphically, FT A displays the logical relationship between the top event (a 

specified system failure mode) and the basics events (basic failure causes) via various 

gate symbols (Rausand and Hoyland, 2004). Besides providing a qualitative or 

quantitative mean of analyzing system reliability, FT A offers the following 

advantages to the analyst (Davidson, 1994): 

• assist in identifying the failure or parts of system which have high 

influence on system's reliability and performances 

• enable the analyst to focus on one system failure mode at a time 

• provide a clear and concise means of presenting reliability information to 

management 

• allow failures related to human and no-hardware factors to be evaluated 

Although FT A is usually best used during the design and configuration stages of a 

project where changes for improvements can easily made (Barringer, 1996), it is also 

being applied widely at operation phase in availability assessment purpose. FT A also 

has some practical limitations. To be successful, the analysis need to followa strict 

methodology approach which normally demands more time and efforts. At operation 

phase, where field data is preferred, missed and unrecorded causes on certain failure 

modes may bias the calculated likelihood resulting in inaccurate estimation (Bichou, 
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201 0). Other issues include the assumption that the failure is random, statistically 

independent and not caused by a sequence of events, which are not true in some 

applications (Lazzaroni et a!., 20 II). For example, some common causes may not be 

independent hence might exaggerate the chances of system's failure. Similarly, the 

occurrence of failures sometimes can be induced by sequence of events. 

2.3.1.3 Reliability Block Diagram (RED) 

RBD is a success-oriented network describing the logical reliability-wise connections 

of functioning components required to meet a specified system function (Rausand and 

Hoyland, 2004). When a system has many functions, separate RBD has to be built for 

each function. RBD consists of blocks that are connected through two basic 

topologies namely series and parallel, which represent the logical relationship 

between blocks from a reliability standpoint (DOD, 2005). Based on these logic 

connections, more complicated system configurations such as series-parallel and k

out-of-n voting system can be generated and analysed (Yang, 2007). A block, 

depending on the analysis purpose, may represent a component, a module, or a 

system. Since it physical details are not shown, a block is considered as a black box 

where the reliability of item that a block represents is the only inputs that matters the 

evaluation of system's reliability (Yang, 2007). In a series arrangement, any block 

failure will cause the system to fail. In a parallel configuration, however, the system 

will not fail as long as a given number of alternatives path are functioning. For a 

complex system, the represented RBD is normally consists of many blocks with 

combinations of series and parallel configurations. The constructed RBD is not the 

same as the physical layout of the system since it's based on logic diagram describing 

the function of the system (Rausand and Hoyland, 2004). Generally, RBD is primarily 

used for reliability prediction of non-repairable system. The approach has limitations 

when it is used to analyze system having different failure modes, external events i.e. 

human factors and priority of events (Verma et a/., 2010). Nevertheless, recent 

comparative study indicates that RBD technique has been the most intuitive approach 

for RAM analysis among industrial practitioners (Shaikh and Mettas, 201 0). 
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2.3.1.4 MarkovAnalysis 

Markov analysis has been used widely for reliability and availability assessment of 

large, multi-states and dynamic systems. The reasons are mainly due to its simplicity 

and the quality of existing data which is commonly available in mean lifetimes of 

components and mean repair time (Ansell and Phillips, 1994). Markov can analyze 

system behaviour thoroughly and incorporate details such as repair strategies, 

capacity loss and partial failures, hence suitable for analysis of complex and 

repairable system (Bauer et a!., 2009). Markov analysis steps in principle can be 

summarized as follow (Pintelon and Puyvelde, 2006): 

1. Identify of all system possible states 

2. Determine and quantify all possible transitions between these states 

3. Establish appropriate system of differential equations or transition matrix 

4. Compute the probability of respective state by solving the difference equations 

or multiplying the relevant probabilities 

5. Determine the limiting conditions of the probabilities 

Ericson (2005) argued that Markov technique is not that simple since it involves 

rather detailed mathematical model of the system failure, transition and timing states 

hence its application requires analyst to have good understanding of technique's 

methodology and assumptions. Other limitations on Markov analysis include: 

• The probabilities of changing from one state to another is assumed constant, 

hence indicating that the technique can only be applied when a constant failure 

rate situation is justified (O'Connors et al., 2002) 

• The future states of the system is also assumed independence of all past states 

excluding the immediate preceding state. For repairable system, it means that 

the system is assumed to be in 'as good as new' condition after each repair 

action (O'Connors et al., 2002) 
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• The assumption of stationary transitions probability used in Markov process 

means that the technique is not suitable for modelling a system where the 

transition probabilities are influenced by long-term trends (Rausand and 

Hoyland, 2004) 

For large systems, Markov model can be complicated, hard to construct, compute 

and validate. It is also may be exceedingly large leading to a state space explosion 

problem (Buckl et al., 2007). The number of states in Markov modelling increases 

exponentially with the number of state variables hence make it difficult to solve 

analytically even with the advanced in computer technology (Grassman, 2000). 

2.3.1.5 Monte Carlo Simulation 

Monte Carlo (MC) simulation, first developed in 1940s at Los Alamos National 

Laboratory for investigation of US atom bomb, is a numerical technique based on a 

probabilistic interpretation of quantities obtained from algorithmically generated 

random variables (Birolini, 201 0). This technique has been applied in a wide range of 

disciplines such as applied mathematics, economics, science and engineering. MC 

simulation is found extremely useful in reliability and availability prediction and 

analysis since it provide means and flexibility to evaluate complex system, describe 

realistic aspects of system behaviour and consider various significant factors 

affecting system performances, which can be difficult or impossible to be captured 

and evaluated using analytical approach (Marquez et a/., 2005, Zio et a/., 2006). 

These factors include redundancy, K-out-of-N, maintenance actions with stochastic or 

deterministic characteristics, equipment degradation and aging, repair groups and 

priorities. MC simulation approach utilizes randomly generated samples of the input 

variables for each deterministic analysis, and estimates response statistics after several 

repetitions of deterministic analysis (Haldar and Mahadevan, 2000). In general, this 

process involves four main steps (Sokolowski, 201 0): 

1. Define a distribution of possible inputs for each input variable 
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11. Generate inputs randomly from those distributions usmg 

random number generator 

111. Conduct a deterministic computation using that sets of inputs 

1v. Aggregate the results of the individual computations into the 

final result 

Despite having numerous advantages, MC simulation technique also has few 

limitations. The analysis process may consume longer time, effort and money, and 

over simplification can result in simulation or result not sufficient for the task (Banks 

eta/., 2010). Additionally, the simulation is highly dependent on computer simulation 

program, where the program itself may set certain limitations (Rausand and Hoyland, 

2004). Nevertheless, with the advances in computer hardware and software 

technology, faster simulation can be performed and more advanced simulation 

packages can be developed that permit rapid running of more complex scenarios 

(Banks et al., 201 0). 

With various advantages of simulation approach, there is a great tendency to 

combine analytical techniques with Monte Carlo simulation method in the study of 

reliability and availability. Some the related studies include those by Wang and Pham 

(1997), Ejlali and Miremadi (2004), Zio eta/. (2006) and Herder eta/. (2008). 

2.4 Basic Definitions 

2.4.1 Reliability 

IEC 60050-191 ( 1990) defines reliability of an item as the ability to perform under 

given conditions for a given time interval. Qualitatively, reliability means the ability 

of the item to remain functional. As a quantitative performance measure, reliability 

can be expressed as the probability that the item will perform its required function 

under given conditions for the stated time interval. In other words, reliability specifies 

the probability that no operational interruptions will happen during a stated time 

20 



interval, including for a system with redundant parts where each part can fail and be 

repaired. Hence, the concept of reliability can be applied for both non-repairable and 

repairable items (Birolini, 2007). 

Mathematically, the reliability function R(t) is the probability that an item or 

system will be successfully operating without failure in the interval from time 0 to 

time t and can be expressed as 

R(t) = Pr [~t], t:C:. 0 (2.1) 

where 

R(t) =a non increasing reliability function, where R(t) :::::. 0 and R(O) = 1 

T = a continuous random variable of the time of occurrence of a failure, where ~ 0 

t= time period 

Thus, for a given value oft, R(t) is the probability of the time to failure, T, is 

greater or equal to t. The unreliability or probability of a failure will occur before time 

t can be denoted as F(t), and defined as 

F(t) = 1 - R(t) = Pr [T <t], F(O) = 0 and lirnr..;= F(t) = 1 (2.2) 

The failure probability, F(t) is also known as the cumulative distribution function 

(CDF) of the time to failure distribution. If the time to failure, T, has a probability 

density function (PDF) off(t), then 

f(t) = d.Ji'(t) = _ dR(t) 
at dt 

Hence, given thef(t), the relationship with F(t) and R(t) are given by 

F(t) = J; f(x)d(x) 

R(t) = f" f(x)d(x) 
t 

(2.3) 

(2.4) 

(2.5) 

Both unreliability, F(t) and reliability, R(t) functions actually represent the area 

under curve of the functionf(t). Since R(t), F(t) andf(t) are inter-related, knowing any 

one of the functions is sufficient to determine the others. F(t) is usually used to 
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compute failure probabilities and f(t) is generally applied to understand the failure 

distribution shape (Ebeling, 1997 ). 

2.4. 1.1 Failure Rate 

Failure rate is the conditional probability that a component fails in a small time 

interval given that it has survived from time zero until the beginning of the time 

interval. Failure rate function, h(t) , can be estimated by dividing the probability 

density function over the reliability function 

h(t) = f(t) 
R(t) (2.6) 

Failure rate term has been widely used to describe reliability of both non

repairable components and repairable system leading to some confusion in the 

definition and applications (Ascher and Feingold, 1984, Davidson, 1995, Wasson, 

2006 and Trindale and Nathan, 2008). The more appropriate term for non-repairable 

is the hazard rate, and for repairable is the rate of occurrence offailure (ROCOF). 

2.4.1.2 Bathtub Curve 

The reliability characteristics of a component over it lifetime can be hypothetically 

modelled by a bathtub curve. A bathtub curve concept is also used to describe a 

system with many non-repairable components where the failure of each component is 

statistically identical and independent (Birolini, 2007) as well as a repairable system 

with ROCOF as theY-axis (NIST/SEMATECH, 2011). Bathtub curve can be divided 

into three phases as depicted in Figure 2.2, where each phase can be characterized by 

Weibull and exponential distributions. The first phase is early failures, also known as 

infant mortality and burn-in period. Here, the failure rate is initially higher due to 

issues such as improper manufacturing, installation and poor materials, but is later 

gradually decreasing and level off as those problems are identified, solved and 

reduced and plant personnel's experience increased. In the useful life phase, the 

failure rate is approximately constant as the failures, assumed mostly stress-related 
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occur at random. This flat-portion of bathtub is also referred as component's or 

system's 'normal operating life' where realistically many components or systems 

spend most of their lifetimes operating (Davidson, 1994). Due to its memory-less 

characteristic, it is easier to compute reliability in this phase as the failure process can 

be conveniently modelled by homogeneous Poisson process (HPP) (failure data 

follow exponential distribution). The wear out phase has increasing failure rate 

because of degradation phenomena due to wear out. Wear out is generally caused by 

fatigue, corrosion, creep, friction and other aging factors. Both infant and wear out 

phases can be generally modelled by Weibull distribution. 

Early 
failures 

Useful life 

time 

Figure 2.2: Bathtub curve 

Wear out 

Many repairable systems have long useful life phase due to the impact of effective 

maintenance actions. Even though PM does not improve the system's inherent 

reliability, when implemented appropriately at specified operating intervals it will 

maintain the reliability performance in the useful life, keeping the low failure rate 

leading to a delay in the onset of wear hence extending the length of useful life phase 

(Benbow and Broome, 2009). Effective and timely corrective and preventive 

maintenance actions together with proactive improvement program may minimize the 

effects of degradation and reduce the failure rate over time (Wasson, 2006). This 

phenomenon is illustrated in Figure 2.3. 
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Figure 2.3: Equipment I system useful life phase extension (Wasson, 2006) 

2.4.2 Maintainability 

Maintainability can be defined as "the measure of the ability of an item to be retained 

in or restored to specified condition when maintenance is performed by personnel 

having specified skill levels, using prescribed procedures and resources, at each 

prescribed level of maintenance and repair"(MIL-STD-721 C, 1981 ). Maintainability 

can be expressed either as a probability to restore the system following a failure to 

operational status within a period of time or a measure of the time required to repair a 

certain percentage of all system failures(MIL-HDBK-3388, 1998). At the highest 

level, maintainability can be seen as a product of overall support programme in the 

system where high maintainability reflects the effectiveness of in the design approach, 

manpower allocations, training delivery and supply chain management (Knezevic, 

1997). Several common maintainability measures include the probability of task 

completion, success of task completion, percentual duration of restoration or 

downtime and mean duration of maintenance task or downtime (Knezevic, 1997). 

Downtime is the time interval for which the system is unable to perform as 

required due to fault or maintenance activity (IEC 60050-191, 1990). A formal 

definition is difficult to establish since it varies from one system to another based on 

the operating conditions and elements of downtime, however, it is necessary to define 

the downtime as required for the system under studied (Smith, 2005). During 
24 



operation of a plant, there are many incidents that can cause downtime to the system. 

Hence, clear understanding of which events relate to the calculation of the system 

downtime need to be established and well defined.Downtime is not the same as repair 

time, since the latter is a subset of the downtime. The system downtime consists of 

three main elements; active maintenance time (repair time), logistics delay time and 

administrative delay time (Blanchard and Fabrycky, 2006). The quantification of 

repair time during data collection for system operating stage has been always an issue 

due to scarce of information (OREDA, 2002). Many plants have a good record of 

downtime history but not repair time. Another reason is because the exact 

measurement of each downtime element is difficult to obtain from the data. The 

logistics and administrative delay time may occur at several times with no particular 

sequence during the downtime period thus making it difficult to quantify the exact 

repair time (Smith, 2005). The complexity in segregating downtime elements is 

depicted in Figure 2.4. 

/ J ql .I 

DOWNTIME /.1 
~ . 

Realization Access I Diagnosis I Spares I Replace I Check I Align 
I I I I I 

REPAIR TIME .. 

Logistics time 

I Administrative time 

Figure 2.4: Downtime main elements which include repair time, logistic and 

administrative delay time (Smith, 2005) 

At the operationphase, the measurement and analysis of system downtime are of 

interest of management since they represent the operational characteristics which 

include the operational availability, effectiveness of the current maintenance scheme 
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and logistic support system, and improvement actions. The operational unavailability 

is simply the total downtime over the total operating time. 

2.4.2.1 Maintainability Analysis at Operation Phase 

Many large and complex systems experience high maintenance and support activities 

costs in order to have sustainable operating condition. According to Blanchard and 

Fabrycky (2006), these costs could account for up to 75 percent of the total system 

life cycle cost. High maintenance expenditure is normally due to poor decision 

making and planning when determining the maintainability requirements of the 

operating system in the early phase of system life cycle. Thus, to reduce this cost, 

appropriate maintainability factors and requirement must be considered, defined and 

firmly established in the early part of the system conceptual design phase as well as 

on every subsequent phase of the system life cycle (Blanchard eta!., 1995). Figure 2.5 

shows the maintainability requirements (specified in qualitative and quantitative 

terms) required throughout the system's life cycle. These requirements are generated 

from the outcomes of feasibility analysis, operational requirement and maintenance 

concepts development, and identification of technical performance measure such as 

mean time to failure (MTBF), mean time to repair (MTTR) and mean downtime 

(MDT) (Blanchard et a!., 1995). Maintainability requirements should be built-in into 

each system phase and integrated with other important design factors such as 

reliability, safety, supportability, quality, human factors and producibility, to ensure 

that the system meet its operational and performance objectives (Blanchard and 

Fabrycky, 2006). Appropriate maintainability analysis and tools are used to measure 

the effectiveness of these requirements. The results are then feedback to the design 

team to improvise future system development. 
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Figure 2.5: Maintainability requirements in system life-cycle (Blanchard eta/., 

1995) 

At the operation and support phase, the on-going maintainability analysis provides 

quantifiable assessment of the performance and effectiveness of the maintenance and 

support system, identification of equipment, system and process high cost and 

downtime drivers, and evaluation of maintainability measures and prediction. The 

results of the analysis are then used as valuable information for operation, 

maintenance and design personnel to make maintenance system more effective, plan 

logistic support requirement (i.e workers, tools and materials), carry out improvement 

actions to reduce operation costs, and achieve operational targets, which 

willconstantly change as a result of plant decreasing profit margin and escalating 

operation cost. 

2.4.3 Availability 

IEC 60050-191 (1990) defines availability as the ability of an item to be in a state to 

perform a required function under given conditions at a given instant of time or over a 

given time interval, assuming that the required external resources are provided. The 

availability of equipment or system basically is the function of its reliability and 

maintainability performances; hence both aspects should be focussed when 

considering system's availability improvement actions. High availability can be 
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achieved when the system has high reliability during start and operation. High 

maintainability in terms of the completion of maintenance actions within the specified 

duration will also result in high availability. There are three types of availability and 

they are being applied for different purposes: i) inherent availability, ii) achieved 

availability and iii) operational availability. 

Inherent availability (A;), is solely based on corrective maintenance events (failure 

and CM repair time distribution) and can be expressed as 

MT.BF 
A=---

, MTBI'+MTTR 
(2.7) 

This definition is generally used at design stage when designing for equipment 

parameters, where reliability-maintainability trade-offs can be determined based on 

that expression (Ebeling, 1997). 

Achieved availability (Aa) takes into consideration both corrective and preventive 

maintenance features. It is defined as 

A a= 
MTBM+M 

MTBM 
(2.8) 

MTBM is the mean time between maintenance and M is the mean active 

maintenance timefor all corrective and preventive maintenance actions. More detailed 

definition and formula can be found in Wasson (2006) and Ebeling (1997). Achieved 

availability is used by system developer who has no control over plant's support 

system factors such as logistics and administrative delay time (Wasson, 2006). 

Operational availability (Ao) is a measure of .availability which includes all 

maintenance downtime and delay factors. Mathematically it is defined as 

MTBM 
A=---

o MTBM+MDT 
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MDT is the mean maintenance downtime which includes active maintenance, 

administrative delay and logistics delay downtime for all corrective and preventive 

maintenance actions. Achieved availability is basically the actual availability 

experience by a plant and can also be expressed as the ratio of the total system uptime 

to total cycle time (Reliasoft, 2007). 

Uptime 
A = -----'---

0 O:peratino cycle 
(2.1 0) 

The operating cycle is the overall observation period which includes the total time 

of system uptime and downtime. For illustration consider a system having the uptime 

and downtime profiles as in Figure 2.6. Based on Equation 2.1 0, A0 can be calculated 

as 

To tal Uptime A = _____ .:...._ ___ _ 
0 

Total Uptime+Total Downti·me 
(2.11) 

Ul+U2+U3 
Ao= ---------

(Ul +U2 +U3)+(Dl+D2) 
(2.12) 

Ul .I 
I· 

U2 

·I 
U3 

Uptime 

Downtime --------------- ----------------------------·-·------------ - ------------------------------

~~ ~ 

Observation period 

Figure 2.6: An example of system's profile having uptime and downtime states 
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2. 4. 3.1 Availability Analysis at Operation Phase 

Availability analysis, a last component of RAM study, can become an important and 

strategic tool for management in improving plant operation bottom line and aligning 

plant performance with the organizational objective. Availability analysis presents a 

means to understand the impact of existing maintenance system and maintenance 

resources to the overall system operational availability. Apart from that, more 

importantly this analysis can be used as a management strategic decision tool to make 

right decisions based on sound statistical analysis rather than one's gut feeling or 

experience. Availability analysis can assist management to quantitatively assess 

various improvement actions such as redundancy, reduction in preventive 

maintenance frequency and utilization of new equipment. It also can be used to 

evaluate how much improvement in terms of failure rate and repair time is needed to 

achieve specific operational goal. Identification of potential issues when a system is 

under different operating conditions can also be assessed. 

As explained in Chapter 2, with the increasingly complex characteristics of plant 

system nowadays, a simulation approach has become a preferred method of 

performing availability analysis for evaluating system availability accurately. In the 

study of system maintenance, availability modelling simulation offers the following 

benefits: 

• Identification of critical equipments or components to system's availability 

• Practical and fast mean to evaluate and estimate system performance since 

collecting sufficient actual observation data is time consuming and difficult 

• Systematic analysis of "what if' scenarios to assess impacts of different 

maintenance strategies (e.g. PM action), operation options (e.g. redundancy) 

and R&M performances to overall system availability, hence more effective 

decision making and actions can be made 

Literature on practical application of availability analysis in the oil and gas 

industry is relatively limited. Nevertheless, several attempts to conduct practical 

availability analysis at operation phase of various plants have been made by various 

researchers. Despite these efforts, the adoption of this technique as a strategic tool for 

decision making among industry practitioners is still relatively low. The problem is 
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mainly due to the lack of awareness among management on the capability of the 

analysis in solving current issues and maximising plant production potential. 

Therefore, wider exposure among plant management is needed on the practicality and 

capability of this technique as well as broader involvement of plant personnel in the 

analysis activities. Another issue is, as pointed out by Herder et a/. (2008), most 

research papers do not present detailed steps and problems faced while implementing 

the analysis. Moreover, some of them are not practical, too theoretical and highly 

mathematical for practitioners to comprehend and implement (Dekker, 1996). 

Approach to conduct more case studies based on real industrial application will 

definitely promote this tool among industry and explore more practical issues related 

to the implementation of the analysis. 

2.5 General Approach to System Reliability Study 

An important aspect of reliability analysis of a real plant system is the development of 

model to understand about the behaviour of the system so that prediction of system's 

future condition can be made. Reliability modelling concerns with model 

development to achieve solutions to problems pertaining to estimating, predicting and 

optimizing the performance of the system, assess the impact of various factors to the 

system and corrective actions to mitigate the impact (Blischke and Murthy, 2000). 

Real world system consists of various attributes in which each one has its own 

characteristics and conditions, which requires adequate model to represent them. 

Wasson (2006) defined a system as "an integrated set of operable elements, each with 

explicitly specified and bounded capabilities, working synergically to perform value

added processing to enable a user to satisfy mission-oriented needs in a prescribed 

environment with a specified outcome and probability of success". Modelling process 

can be quite a challenge when the system under study has high level of complexity. In 

reliability study, modelling of system can be made either by using graphical or 

mathematical model (Rausand and Hoyland, 2004 ). Graphical models comprise of 

symbol, diagram and schematic representation of important features of a system 

( Satzinger et a/. ,2007). They are used to represent abstract aspects of a system such 

as processes, data and connections and make it easier to understand complex 

31 



relationship within the system. An example of a graphical model is a system 

reliability block diagram. A mathematical model is an abstract, simplified, 

mathematical construct related to a reality of system or part of it and developed for 

the purpose of analyzing the system (Bender, 2000). It generally consists of various 

mathematical structure and concepts such as functions, variables, equations, constant, 

graph and relation (Meyer, 2004). Rausand and Hoyland (2004) stressed two 

important aspects of modelling that need to be considered. First, it should be simple 

enough for mathematical model to deal with, and second, it should be realistic enough 

such that the deducted conclusions are practically relevant. General approach in 

constructing a mathematical model for understanding real world system is given by 

Giordano et a/. (2009) and it generally involves observation of real system's 

behaviours and identification of factors associated with them, making conjecture 

about relationship between factors, application of mathematical analysis on the model 

developed and interpretation of mathematical conclusions in term of real world issues. 

In reliability analysis, mathematical model is applied to estimate reliability, risk, 

safety parameters and performances measures using relevant statistical and reliability 

theory. It is also used to describe how different components within a system are inter

connected and affecting the overall system performance.The most appropriate 

methodology in conducting a reliability analysis of a real-world system is through a 

systems approach (Murthy et a/.,2008, Blanchard, 2004), which presents an integrated 

framework for solving various issues related to technical, operational, business and 

management (Blischke and Murthy, 2000). In the systems approach, an analytical 

model is developed and validated with the use of data and analyzed using appropriate 

techniques and tools. The analysis is an ongoing process of evaluating system 

performance and various alternatives, which is fundamental for supporting continuous 

improvement efforts. 

The steps in systems approach was given by Blischke and Murthy (2000) and is 

illustrated in Figure 2.7. The first step is to clearly define the problem faced by the 

real world system that needs to be addressed. Simplification of the system 

characteristics and assumptions are required for feasibility of analytical analysis and 

because it's impossible to capture all the factors influencing to the defined problem. 

Generally this simplification can be accomplished by reducing the factors under 
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consideration and assuming simple relationships between the factors to reduce the 

complexity of the problem (Giordano et a/., 2009). In the system characterization, the 

system details related to the problem under studied are made known and suitably 

modelled. A mathematical model then is developed for the system and checked 

whether it adequately represents the real-world system. In case it doesn't, changes are 

made to either in the mathematical formulation or simplification. Ansell and Phillips 

(1994) emphasized that the analysis should be conducted first by using a simple 

model before extending it into a more complex model. This is because many times 

most of the practical plant problems can be solved simply by using a fairly simple 

model. Once the adequate model is achieved, proper analysis of the model is done 

using various techniques based on reliability theory. Here, the analysis results should 

be interpreted appropriately to ensure that they adequately address the identified 

problem. 

According to Blischke and Murthy (2000), reliability analysis can be divided into 

two categories: qualitative and quantitative. Nevertheless, generally both analysis are 

combined during system analysis to produce more comprehensive results (Billinton 

and Allan, 1992). In qualitative approach the main objective is to identify critical 

equipment, failure modes and causes that affect the reliability of the system. Various 

methods are applied in qualitative analysis and they include basic quality tools such as 

histogram, Pareto, scattered plot, and cause and effect diagram and more advanced 

technique such as Failure modes, effects, and criticality analysis (FMEA!FMECA), 

fault tree analysis, event tree analysis and reliability block diagram. 

A quantitative approach concerns with formulation of mathematical model to 

produce quantitative estimates of system reliability. A generic flowchart for 

quantitative analysis of plant reliability data involving repairable items has been 

proposed by Ascher and Feingold (1984) in their important and famous book. Since 

then this model has been further elaborated by many researchers, see for example: 

Rausand and Hoyland (2003); Blischke and Murthy (2000); and Andrew and Moss 

(2002). Barabady and Kumar (2008) extended the method to be applicable for 

maintainability analysis. Similarly, Louit et a/. (2009) enhanced the model by 

incorporating more statistical tests option to facilitate proper time to failure model 

selection. Ansell and Philips (1990), however, argued that ageneric flowchart is too 
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rigid thus impractical for every type of analysis required in the industry since it is 

impossible to describe every eventuality of the problem and condition confronted. 
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Figure 2.7: Systems approach to solve system reliability issues (Biischke and Murthy, 

2000) 
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2.6 General Approach to Maintainability I Downtime Analysis 

According to Knezevic (2009) two commonly used approaches for analysis of the 

empirical downtime data are the 

1. parametric 

n. distribution 

In the parametric approach, the main interest is to get the mean downtime, which 

is computed by dividing the sum of all downtime hours by the total number of 

downtime events. The interval of the mean based on certain confidence limits (i.e 

90%) can be calculated using specific formula and referring to normal distribution 

table. Many reliability databases including OREDA (2002) use similar approach in 

their reporting format. In the distribution approach, the downtime is expressed in 

term of probability distributions, where the downtime is treated as random variable 

since every failure event will always result in different downtime duration due to 

different failure modes, components failure and skill level of maintenance people 

(Ebeling, 1996). Due to this, the distribution approach offers more information than 

the parametric approach (Knezevic, 2009), thus is the preferred method in evaluating 

maintainability measures. Besides that, having downtime data in the distribution form 

is fundamental for applications in Monte-Carlo simulation and Bayesian analysis, 

which are also widely used to predict the maintainability and availability of the 

system. 

The most commonly used probability distributions to describe maintenance 

downtime are the exponential, normal and lognormal (Blanchardet al., 1995). Other 

distributions may include gamma and Weibull (MIL-HDBK-338B, 1998). The 

exponential distribution is usually applied to electronics parts with build-in test 

capability and have fast remove and replace maintenance scheme (Blanchard and 

Fabrycky, 2006). It is however not realistic for many downtimes situations, except in 

the case where most part of the downtimes are attributed to failures searching actions 

(Rausand and Hoyland, 2004). Due to its constant downtime rate characteristics, 

many studies assume this distribution in the downtime model for the sake of 

convenience in modeling rather than practicality. In reality, this assumption is 
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misleading since it presumes there are many failure events that have zero repair time 

(Blanchardet al., 1995). The normal distribution is sometimes assumed for equipment 

having relatively simple removal and replacement tasks that usually can be completed 

within a fixed amount of time with little variations (Blanchardet al., 1995). The 

lognormal distribution is the most common model for repair time or downtime 

distribution for both electronics and mechanical equipment. The shape of the 

lognormal is skewed to the right meaning that most of the downtimes are distributed 

about the center and few will be at the right-tail of the distribution. This characteristic 

seems logical in many downtime events since some downtime is very long due to the 

unavailability of spare parts at site or difficulty of maintenance crew to get access to 

or repair the failure (Rausand and Hoyland, 2004). 

2.7 Non-repairable vs. RepairableSystem 

Plant systems or equipment can be categorized into two; non-repairable and 

repairable, where each one requires different analysis approach. It is very important to 

understand the difference between these two since often industrial practitioners 

improperly use non-repairable technique to analyze data from repairable system 

(Trindale and Nathan, 2008). Non-repairable items are discarded or replaced with a 

new one upon failure. For example, light bulb, transistor and most components in 

plant equipment. The reliability of the item is based on the survival probability over 

its service life (Modarres, 1993).The time to failure is a continuous random variable 

assumed to be independent and identically distributed (liD) and is described by a 

single lifetime distribution. Typical lifetime distributions used in non-repairable items 

are exponential, Weibull, normal and lognormal. Exponential is the most commonly 

used distribution mainly due to its simplicity and memoryless property, in which the 

occurrence of failure is completely random. This characteristic is well suited to model 

the useful life phase (constant failure rate region of bathtub curve) of a component or 

system (Ebeling, 1997). Weibull has been extensively applied for component 

reliability analysis because of its flexibility to model various failure rate function; 

increasing, constant and decreasing, besides its mathematical simplicity (Davidson, 

1994). Fitting a lifetime distribution to failure field data generally involves three 
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steps: i) identifying candidate distribution; ii) estimating distribution's parameters; 

and iii) conducting goodness of fit (Ebeling, 1997). 

Most systems in offshore facilities and petrochemical plant however are 

repairable. Repairable equipment means that upon failures the equipment are repaired 

and restored to the functional state. The probabilistic model for studying the 

occurrence of failures in the repairable system is based on stochastic point processes. 

The point process can be described as the occurrence of randomly distributed events 

in time with negligible events duration (Modarres et a/., 1999). The events here are 

the failure times (time between failures) of a repairable item. Several point process 

models for repairable system are proposed in the literature and they generally can be 

classified under three types of repair actions; perfect repair, minimal repair and 

imperfect repair (Rausand and Hoyland, 2004). 

In the perfect repair model, the equipment upon failure is either repaired or 

restored to 'as good as new' condition. The distribution of time between failures is 

assumed to be independently and identically distributed (liD), hence it can possibly 

be fitted by a lifetime model. When the failure times exhibit exponential distribution 

(constant failure rate throughout the observation time) the process is called an 

homogeneous Poisson process (HPP). The HPP is the simplest model in the point 

process models where the expected cumulative number of failures for given interval 

of time follows Poisson process. If the distribution follows any arbitrary distribution, 

the process is called a renewal process. 

A repairable system consists of components with renewal process may be 

modelled by a perfect repair based on Drenick's theorem, where at the system level 

the superimposition of equilibrium renewal processes tends to be an HPP as the 

number of processes increase (Ansell and Phillips, 1994, Trindale and Nathan, 2008). 

In other words, the system's time to failure distribution is exponential regardless of 

the nature of component's lifetime distribution (Kececioglu, 2002). Nevertheless, this 

assumption must be first verified for liD condition of the time to failure data before it 

can be validly applied (Ascher and Feingold, 1984, Ansell and Phillips, 1994, 

Rausand and Hoyland, 2004) 
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The minimal repair model refers to the condition where a repair done on a system 

resulted in the system in exactly the same condition as it was ('as bad as old') just 

before the failure (Rigdon and Basu, 2000). The inter-arrival time distribution here is 

not liD and the process is modelled by a non-homogeneous Poisson process (NHPP). 

Two models commonly used for NHPP are the power law (Crow model) and log

linear model (Cox-Lewis model). Finally, the imperfect repair model is applied when 

the repair action results in the equipment condition between the 'as good as new' and 

'as bad as old'. The proportional age reduction and proportional intensity variation 

models are examples of two point processes that can be used to describe the imperfect 

repair model (Muralidhan, 2008). 

A general flow for analysing plant maintenance data will be presented in the 

next chapter. 

2.8 Applications of Expert Opinion in R&M Analysis 

In many cases, the data are limited and in poor quality thus make them inappropriate 

for reliability modelling purpose. An alternative way is to use expert opinion. Expert 

is a skilful person who has extensive training and knowledge on the specific area. 

Expert opinion can be defined as the expert's formal judgment on the matter in which 

the expert's opinion is sought (Ayub, 200I).The application of expert opinion has 

been found in various studies covering a wide spectrum of disciplines such as nuclear, 

chemical, aerospace, health and banking industries (Goossens et a!., 2008). In the 

areas of reliability and maintenance analysis particularly in the decision making and 

prediction processes, this application is gaining widespread attention mainly due to 

unavailability of sufficiently good quality maintenance record as well as uncertainties 

in the data(Bedford eta!., 2006). 

Coolen et a!. (1992) used expert inputs to estimate the prior distribution of the 

mean life of heat exchangers. Oien (1998) elicited maintenance engineers' knowledge 

to predict a "naked" failure rate (failure rate if no PM actions were being carried out) 

in light of corrupted maintenance data. The elicitation results are used later to estimate 

the mean time to failure (MTTF) of shutdown valves. Horkstad et a!. (1998) 
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discussedthe elicitation process for acquiring failure rate of an offshore umbilical 

where there is no previous lifetime data exists. The inputs from experts are used in the 

Fault Tree Analysis (FT A) to predict the probability of the umbilical being tensioned. 

The application of expert judgments in estimation of delay time distribution for 

extrusion press failures was presented by Wang (1997). The delay time is the time 

interval between the first time faults is detected and the time of failure. Kudak and 

Ercan (2009) studied the maintenance time of a jet engine aircraft ignition system 

failure during the wartime with inputs from military experts. 

2.8.1 An Overview of Method for Elicitation of Expert Opinion 

The details on elicitation process can be found in Ayub (2001) and Cooke (1991}. In 

general, the elicitation process consists of three stages (Oien, 1998); 

• Preparation 

• Elicitation 

• Calculation 

In the preparation stage, the following mam activities are done; setting the 

problem description and objectives, identification of expert(s), formulation of 

appropriate questionnaire and calculation method. The right design of questionnaires 

is critical for the elicitation process to be successful (Wang, 1997). The question 

should be set and asked with simplicity yet able to extract the required information 

from the actual knowledge of expert (Oien, 1998). 

The number of experts involved in the process varies depending on the elicitation 

technique used, the scope of problem and availability of experts (Fink et a!., 1984). 

Generally, multi and diverse experts are preferable so that the problem will be 

thoroughly considered from many viewpoints hence minimizing the influence of a 

single individuai(Meyer and Brooke, 2001). In a face-to-face interview 

approach,Meyer and Brooke(2001) recommended five to nine experts in order to 

increase chance to provide adequate diversity or information to make inferences. 
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Nevertheless, in reality in some critical industries and specialised operations, it is very 

difficult to get many experts available for elicitation session that typically take a great 

of time, since they can be sparse or tied up with day-to-day tasks. For example, the 

US Nuclear Regulatory Commission recommends no fewer than two but preferably 

three experts should be consulted in the Accident Sequence Precursor (ASP) analysis, 

and allows the use of a single expert where time constraints prevent use of multiple 

experts in the analysis of Significance Determination Process (SOP) (Boring et a/., 

2005). Horkstad eta/. (1998) asserted that the use of one expert when there is no other 

option, when implemented through systematic approach is better than none or can be 

as valuable as having many experts particularly when they indicate strong dependent 

or biased. The elicitation of expert opinions using one to three experts has been 

demonstrated and discussed in various reliability analysis applications in 

(Campodonico and Singpurwalla, 1992, Horkstad et, 1998, Booker and McNamara, 

2004). 

The elicitation stage involves elicitation exercises with the expert. It is normally 

conducted via an interview and discussion format where the assessor plays critical 

role in asking the right questions and minimizing expert's bias (Walls and Quigley, 

2001). Two types of elicitation method are commonly employed; direct and indirect 

(Oien, 1998). The direct method involves a direct estimate of the experts believe on a 

certain issue. The indirect method is applied when seeking the probabilities estimate 

from the probability-illiterate expert. The interview process should not be too long 

and it is recommended to be less than half day, since fatigue will normally start to 

develop after two hours of the session (Cooke and Goossens, 2008). 

In the final stage, calculation of inputs from expert is performed to get the results 

in the required format (e.g., failure rate, lifetime, downtime etc.). Aggregation method 

is applied when to combine data from more than one expert to establish a single 

overall output. Generally, the aggregation methods can be dichotomized into two; 

mathematical and behaviour, although sometimes in reality it may involve 

combination of both (Clemens and Winkler, 1999). In mathematical aggregation 

individual probability distributions are processed using analytical models to produce a 

single probability distribution. On the other hand, behavioural method aims at 

generating some type of agreement among experts through group consensus and 
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interactions among them with the help of facilitator(s). Some well-known behavioural 

approaches include Delphi and nominal group method. In Delphi method the experts 

respond individually to sets of questionnaires, where the results are then combined, 

summarized and returned for experts to revise. This process is repeated until 

consensus is achieved (Al-Fares and Duffuaa, 2009). Nominal group method involves 

a process in which experts are allowed to discuss their opinion directly with others to 

reach consensus results in a controlled environment, is usually a more preferred 

method (Ouchi, 2004). Example of application of nominal group approaches can be 

found in (Forester eta!., 2004, and Booker and McNamara, 2004) 

2.8.2 Eliciting Probability Distribution 

Eliciting probability distribution from expert has always been a challenging and not 

an easy task, particularly when expert has very little knowledge on statistics and 

probability distribution model (Van der Gaag et a/., 1999). Furthermore, the process 

should be done as short as possible due to the expert time constraint (Mazzuchi eta/., 

1991) where he is normally busy and has a tight schedule.Most experts find it difficult 

if not impossible to state what would be a proper distribution model and its 

parameters. Elicitation of inputs in a form of discrete distribution (histogram) instead 

of a continuous distribution has been found to be effective to overcome this problem. 

Experts usually feel this process more comfortable and easy to comprehend since the 

concept of probability of failures is being used instead of probability density 

(Mazzuchi eta/., 1991). In addition, the calculation involved in the discrete model is 

much simpler than the continuous model (Van Noortwijk eta!., 1992). The resulting 

histogram can later be converted into probability density function (pdf) easily using a 

computer software. Another elicitation format which is more effective and popular 

than a discrete is a quantiles or fractiles format (Cooke and Goossens, 2008). In this 

method, expert is required to propose pre-defined fractiles on the subjective 

uncertainty distribution, which are normally set at 5, 50 and 95%. The fractile 

technique has been widely used for eliciting prior distribution in Bayesian inference 

study (Kadane and Wolfson, 1998). In their modelling of prior distribution for 

reliability growth model, Walls and Quigley (200 1) used histogram and fractile 
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techniques to develop a Cumulative Distribution Function (CDF). Here, expert was 

asked to give input on specified distribution percentiles which represent the expert 

belief on the certain concerns. The percentile distribution was later enhanced by 

adding more interval data to form a smooth discrete (histogram) distribution which is 

later converted into a cdf. The corresponding pdf can be later estimated from the cdf. 

It is noted that the literatures on applications of expert opinion in the maintenance 

and reliability field focus primarily on the estimation of failure rate or lifetime 

distribution. Very little attention has been given on the maintenance downtime 

estimation. Hence, in Chapter 5 a practical way of incorporating expert opinion in the 

modelling of maintenance downtime distribution is proposed and demonstrated to fill 

in that knowledge gap. 

2.9 Chapter Summary 

General framework for RAM related study on system at operation phase has been 

discussed in this chapter. Various methods either qualitative or quantitative can be 

utilised to analyse the reliability, maintainability and availability of a system. 

Depending on the study objectives and system conditions, sometimes the methods are 

combined to produce more comprehensive results. While analytical techniques are 

still preferred, the application of simulation techniques is rising due to the increasing 

complexity of system and capability of computing technology. In the analysis of plant 

system, equipment are categorized into non-repairable and repairable. The analysis 

approach will differ based on this distinction. Fitting statistical distribution into 

repairable data, as it is applied for non-repairable, should be avoided unless the 

repairable data is statistically independent and identically distributed (liD). The use of 

expert opinion is increasingly important because of the prevailing poor conditions of 

plant field data. Despite its widespread attention in reliability study, the application of 

expert opinion is found rather limited in maintainability analysis. 
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3.1 Introduction 

CHAPTER3 

METHODOLOGY 

This chapter presents the methodology applied in conducting reliability, 

maintainability and availability analysis of two systems under study: a gas 

compression train of an offshore platform and an acid gas removal unit (AGRU) in a 

gas processing plant. The study focuses on systematic and practical aspects of 

conducting analysis using mainly operating and maintenance data of those systems 

which have been in operation for several years. In this chapter a general approach 

used is discussed for each type of analysis, where the detailed and specific steps are 

left out and will be shown in case studies presented in the following chapters. The 

approach has been formulated in such a way that it provides where possible a simple 

yet practical mean for conducting RAM analysis. Several software are used in the 

analysis tasks and they include Reliasoft's Weibull ++ and Blocksim, SPSS, and 

Excel. 

3.2 Research Approach Overview 

The approach of this research is mainly centredaround several case studies based on 

real industrial data and problem analysis. This approach is in line with the need to 

focus on real plant issues in research studies pertaining to plant maintenance. There 

are, however, few challenges worth mentioning in performing case studies: it is time 

consuming; requires in-depth research; constant communication with plant personnel; 

43 



great patient particularly when dealing with "raw" plant data; and high care when 

drawing generalized conclusion from a few case studies. Nevertheless, this approach 

can potentially generate new and creative insights, and more importantly through 

collaboration can have high validity with industrial practitioners, the ultimate target 

users of the research (Voss, 2009). Furthermore, case studies can help researchers to 

retain the holistic and meaningful characteristics of real-life events which are 

fundamentally important for understanding complex phenomena (Yin, 2003). 

Consequently, itcan open up possibility of generating new ideas in dealing with 

proper method to handle and solve real industrial issues. The finding of case studies 

can be generalized to form a generic theoretical hypothesis or methodology 

framework which can be practically applied in other similar analysis for other system 

(Voss et a/., 2002). 

The focus of this research is on the practical applications of each of the RAM 

study components, namely reliability, maintainability and availability analysis. For 

each of the component, a practical approach of analysis is discussed and demonstrated 

via relevant case studies related to real problems and systems in plant. The analysis on 

reliability and maintainability can be conducted separately for any particular system 

of interest. For availability analysis, however, it requires input from both reliability 

and maintainability analysis results in term of failure and repair distribution 

characteristics on every equipment or subsystem in the system under studied. The 

analysis results from each of the RAM component can be used directly to improve 

plant operational and maintenance performance. Figure 3.1 illustrates the overview of 

the RAM analysis approach used in this research and the relationship between its 

three study components. 
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Figure 3.1: Overview on reliability, maintainability and availability analysis of a 

system in plant 

3.3 Approach Used in System Reliability and Maintainability Analysis 

In this thesis, the proposed approach to reliability and maintainability (R&M) analysis 

of a system in plant can be illustrated using a generic framework in Figure 3.2. In 

general, it involves six major steps, which will be elaborated afterwards. Reliability 

analysis basically focuses on the analysis of system failure data and frequency, 

whereas maintainability analysis looks at the downtime characteristics of the system. 

In this framework, the study of plant maintenance data will be based on qualitative 

and quantitative analysis to determine major factors affecting system reliability and 

maintainability performances so that appropriate actions can be recommended. The 

applications of this proposed R&M analysis approach will be demonstrated in great 

detail in Chapters 4 and 5. 
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Figure 3.2: Proposed generic framework for reliability and maintainability analysis of 

a plant system 

3.3.1 Setting Objectives 

The most important factor for successful reliability study is having clear definition of 

the specific purpose to be achieved at the end of the analysis (Denson, 2006). Only by 

having unambiguous objectives in the beginning and consistently sticking to it 

throughout the whole analysis process, can a proper and effective analysis be 

accomplished (Ansell and Philips, 1989). The objective of the reliability study has 

high influence on the approach and method of modelling and analysis used (A ven and 
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Jensen, 2009). For example, the choice of computational methods (i.e analytical vs. 

simulation) and performance measures and factors to be analyzed. The nature of 

estimates derived also depends on the purpose to which the prediction will be used 

(O'Connor et a!., 2002). For instance, an optimistic figure should be applied when 

determining spare parts requirement, whereas it is more appropriate to use a 

pessimistic figure in a safety analysis. Precise objective will set proper conditions for 

appropriate collection of relevant maintenance data to be used in the analysis. Many 

inherent issues in reliability discipline with respect to selection and application of 

appropriate methodology can be related to the lack of clear objectives at the start of 

study (Bendell, 1988, Denson, 2006). 

3.3.2 Definition of System, Failures and Downtime 

The definition of system being studied, system boundary and operating states, failure 

event and modes need to be clearly specified to put the subsequent analysis steps in 

the right perspective and to minimize uncertainties associated with the data. A distinct 

system boundary shall identify what are components within the system and what are 

excluded from it. The boundary also defines what data are to be collected. Other 

system information such as its descriptions, applications, operating mode and 

environment conditions must also to be clearly specified. At this stage, it is also 

important to define all assumptions made in the reliability model and determine the 

hierarchical level (system, subsystem, component etc.) of which the data will be 

collected and analysis will be conducted. 

Plant failure data can be classified under various failure modes, a description of 

the effect of failure on the equipment ability to perform, and it is critical to identify 

clearly different failure modes for further data analysis and better reliability 

estimation (Center for Chemical Process Safety, 1998). Similarly, there are many 

types of downtime which occur in the plant due to various reasons: failures; 

preventive maintenance; emergency shutdown; etc. Thus all relevant data must be 

clearly identified and segregated for subsequent analysis. 
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3.3.3 Data Gathering 

The quality and accuracy of reliability analysis is highly related to the quality of the 

data collected. High quality data attributes include completeness of the data, 

compliance with data formats and reliable sources of data (ISO 14224, 1999). 

According to Patton (2005), besides quality, the collected data must be checked for: 

• Reliability - data have high degree of consistency 

• Validity- data are meaningful to the analysis's objective 

• Relevancy - data are relevant to the study conducted 

• Redundancy- data collected are all necessary and not redundant. Over-loaded 

of irrelevant information should be avoided. 

• Sufficiency- data are complete with all required information 

• Timeliness- up-to-date data are referred and used 

• Cost - cost of gathering data is considered because more detailed information 

normally requires high investment. 

The primary source of data in this research comes from in-house plant 

maintenance data. Data gathering step is usually the most time and effort consuming 

activity due to the nature of the data and their sources. There are many data available 

in a plant such as those from maintenance, engineering, vendor reports, SAP (CMMS) 

etc. Besides, the data also exist in various forms, thus choosing the relevant one and 

translating them into distribution and failure statistics can be a challenging task and 

normally requires considerable engineering judgment. Maintenance record usually has 

high degree of uncertainty. This is due to the nature of the record itself, which is 

primarily meant to support maintenance planning rather than for failure prediction 

(Davidson, 1994). The focus is more on capturing repair action instead of details on 

failure (causes, mode, time and downtime duration), equipment operating modes and 

environment. Moreover, since recording of failure data highly depends on human, it is 

subject to mistakes, omission and misinterpretation (Smith, 2005). To overcome these 

issues, good cooperation and constant feedback from plant personnel are required. 

Depending on the raw data conditions, some data need to be transformed to more 

meaningful, standardized and simplified format for easy analysis and thus further 
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prolong the data collection process. In certain case, different source of information 

than maintenance data might be useful and relevant for the analysis. For instance, a 

flow rate reading can be used alternatively to track the operation conditions (i.e. 

operating, standby or shutdown) of a pump when there is no or incomplete record on 

pump operation states. In a situation where plant data is insufficient, other sources 

such as OREDA and expert opinion will be employed. The applications of expert 

opinion will be elaborated in the maintainability analysis in Chapter 5. 

The main plant maintenance data used in this research are from three categories 

as outlined by Andrew and Moss (2002): 

1. Inventory data - They consist of information of equipment related to its 

design, operational, functional and environmental characteristics. The data can 

be classified under equipment identification, manufacturing and design, 

maintenance and test, and engineering and process data. This information is 

important to support data analysis, for instance, to compare the particular 

equipment data with the data from same equipment category listed in the 

OREDA. 

2. Failure-event data - This is the most important data and it comprises of the 

detailed record of failure incidents in terms of event date, duration, modes, 

causes, codes, severity and effect on system, repair modes, downtime date and 

duration, and plant or system operational state. 

3. Operating time data- This data is needed for proper calculation of reliability 

measures based on the actual time under which the equipment or system is 

running. The required information includes the time and duration for each 

operating state such as operation, standby and downtime as defined in the 

previous step. 

In some cases where necessary, costing and production data are also required in 

order to present analysis results in monetary terms. These data may include 

production output, product cost and maintenance cost (manpower, material etc.). A 

continuous data verification process with respective personnel is carried out 
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throughout data gathering activity, to ensure that the required level of accuracy is 

attained. 

3.3.4 Exploratory Data Analysis 

This step marks the beginning of data analysis process. This approach is based on 

exploratory data analysis concept which was first introduced by Tukey (1977). 

Exploratory data analysis is the process of using statistical tools and techniques to 

investigate data sets in order to gain insight about the data, understand their important 

characteristics, identify outliers or errors, disclose underlying structure and extract 

important factors (NIST/SEMATECH, 2011) and assist in model formulation 

(Chatfield, 1985). Because of this apparent significance, many researchers propose 

the use of exploratory analysis at the beginning of any plant reliability data analysis 

process (Ansell and Philips, 1994, Blischke and Murthy, 2000, Andrew and Moss, 

2002, O'Connor et a!., 2002 and Todinov, 2005). Chatfield (1985) stresses that 

overlooking exploratory analysis will lead to unnecessary adoption of complicated 

model in the study. 

The purpose of exploratory analysis should be in tandem with the objective of 

study. Prior to performing analysis, the gathered data are normally subjected to further 

data manipulating processes such as categorization, classification, rearrangement and 

reordering of data. For reliability study, Ansell and Philips (1994) propose two levels 

of exploratory analysis: elementary and reliability analysis. In elementary analysis, 

simple plots like histogram, stem and leaf, box-whiskers, Pareto, scattered diagram 

and time series trend can be found useful to get a feel about the data, identifying key 

variables and possible errors in the data. Descriptive statistics such mean, median, 

standard deviation and fractile, are also commonly used to compare and rank factors. 

In the next level of exploratory analysis, more related reliability plots and analysis are 

conducted. These include rate of occurrence of failures (ROCOF), trend plot and 

hazard plots; Kaplan Meier and proportional hazard model. The main outcomes of 

analysis are the identification of key factors affecting system lifetimes and downtime, 

and assessment of trend in system's performance (i.e. improving, deteriorating or 

50 



constant). Knowing these, management can take necessary actions to further improve 

the system performance. 

3.3.4.1 Trend Analysis 

To gain insight about the performance of the system, the graph of the cumulative 

number of failures against cumulative operating time between failures is plotted. This 

trend plot can provide a snapshot of how the system performance is heading to. When 

the inter-arrival time (time between failures) is getting shorter, the plot will tend to 

concave up signifies that the system is deteriorating. The opposite condition is 

observed when the system is improving. A linear plot is an indicator that that the 

system performance is constant. Ascher and Feingold (1984) referred these conditions 

as 'sad', 'happy' and 'non-committal' system respectively. Besides graphical analysis, 

these conditions can be assessed using analytical trend test which basically tests 

whether the process has a monotonic trend or not (stationary). Ascher and Feingold 

( 1984) stressed the important of trend test as the first step of the reliability data 

analysis and model development and this is strongly supported by other researches 

(Lindqvist, 2006, Fu-rong eta!., 2008, Louit et al., 2009). Several trend tests had been 

developed, but the most commonly used is the Laplace test. This test is used to 

statistically test for the null hypothesis that the failure distribution is stationary 

(homogeneous poison process (HPP)) against the alternative of a monotonic trend 

(non-homogenous poison process, NHPP). Other trend tests include MIL-HDBK-189 

(HPP vs. non-HPP), Mann and Lewis-Robinson (renewable process, RP vs. a 

monotone trend) (Ascher and Feingold, 1984). 

3.3.4.2 Laplace Trend Test 

Consider the data consists of a series of n failures observed during the period of (O,tJ). 

Let I; denotes the time to failure of the i th event. The Laplace test statistics, UL is 

defined by 
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where: 

(3.1) 

I;= the time of failure fori th event 

n =total number of failures during the observation period (O,lf) 

t1 = observation end time (termination time). If the observation end time is a 

failure time at nth event (failure truncated), the above expression need to be 

modified by replacing n with n-1. 

Under the null hypothesis, the test UL approximately follows a standard normal 

distribution. Thus large positive or negative UL values suggest that the process is not 

stationary (HPP). The null hypothesis is rejected if UL is smaller or greater than the 

critical value read from the standard normal table for a given significance level. UL 

value greater than 0 indicates degradation (concave up pattern) and less than 0 

signifies improvement (concave down pattern) in the system performance. 

3.3.4.3 Rate of Occurrence of Failure (ROCOF) 

The changes in the pattern of failures can also be detected by examining the failure 

rate trend against the time. For repairable system, the failure rate, or commonly 

known as the failure intensity, can be estimated by calculating the rate of occurrence 

of failure (ROCOF). For a HPP process, the graphical plot of ROCOF over time 

should be constant (does not change over time) since HPP process has a constant 

failure rate. ROCOF for interval i can be estimated by the mean failure rate, v;, which 

is the number of failures occurred in the evenly distributed time interval (1;-I;.J) 

divided by that time interval 
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V;::::::: 
number of failures in (ti-l - t;) 

(3.2) 

3.3.4.4 Kaplan Meier Estimator 

KM estimator (Kaplan and Meier, 1958) is a non-parametric method of estimating the 

reliability (survival) function from life-time data. It can be used for data with 

complete and censored events. The estimated reliability function, R(t), is a step 

function given by 

R(t) = n(~- ~J 
,,s, n; 

(3.3) 

Where R(t) is the estimated reliability for any particular point of time; n; is the 

number of individual at risk just prior to time, I;; and d; is the number of individual 

that fails up during time period /;. Thus, R(t) is based on the conditional probability 

that an individual survives at the end of interval provided that individual was existed 

at the start of the time period. R(t) is the product of these conditional probabilities and 

provides the point estimator for the reliability function at any particular time t. The 

variance of R(t) can be approximated using a Greenwood formula given by 

(3.4) 

KM reliability (survival) function plot can be used to visually compare two 

different factors existed in the data for any difference in trend (which one is 

performing better). Statistical methods are used to test whether there is a significant 

between these two groups. Three statistical methods commonly used are Log-rank 

test, Breslow test and Tarone-Ware test. 
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3.3.4.5 Proportional Hazards Model 

Another method of assessing effect of various factors to the system is the proportional 

hazard model (PHM) proposed by Cox (1972). In PHM analysis, these factors are also 

known as covariates, explanatory variables which can possibly affect the survival time 

(dependent variables). PHM or Cox regression model is the most important 

distribution-free regression model used for the analysis of censored data (Smith, 

2002). According to Cox (1972) the hazard function of the equipment is composed of 

two parts; a baseline hazard function and a covariates dependent function. The model 

assumes a multiplicative effect of covariates to the baseline hazard function. The 

basic form of PHM is given by 

(3.5) 

Where h0(t) is the baseline hazard function, If is the arbitrary function of the row 

vector co variates, z , and fJ is the column vector of unknown regression parameters. If 

can be represented in many functional forms, such as exponential, logistic and 

inverse linear and linear form. Cox (1972) proposed an exponential function due to its 

simplicity. Thus the PHM with k covariates can be expressed as 

k 

h(t: z) = h0 (t)exp([J1z1 + /J2z2 + ... fJkzk) = h0(t)exp(_L/J;z;) (3.6) 
i=l 

h0(t) is modelled as a non parametric thus making the PHM a semi-parametric 

model. The baseline hazard can also be fitted by a specific model such as Weibull, 

Gamma and lognormal thus transforming the hazard function into a parametric model. 

The advantage of having non-parametric model is that there is no need to make any 

assumption about the shape of the underlying failure distribution, thus eliminating the 

uncertainties about the model selection. The corresponding reliability function is 

given by 

(3.7) 
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where Ro(t) is the baseline reliability function. The regression parameter fJ can be 

estimated using partial likelihood method given by 

(3.8) 

where R; is the risk set and z; is the observed covariates at time failure time I; .. The 

calculation of the likelihood method is normally done using numerical method such as 

Newton-Raphson procedure. Test for significance of fJ is performed by analytical 

method such log-rank test, chi-square test and graphical methods. 

For both KM and PHM approaches, the analysis is performed using SPSS 

statistical software. To fit into SPSS analysis, the data must be first prepared in 

appropriate format. 

3.3.5 Inferential Analysis 

The purpose of this step is to determine the best statistical model to represent the data. 

Figure 3.3 illustrates a general methodology used. Two major portions of works 

involved namely testing for independent and identically distributed (liD) data and 

fitting into lifetime distribution. For non-repairable items, the data is assumed liD, 

and hence can be directly assessed for lifetime distribution analysis (LDA). The data 

for repairable items, on the other hand, need to be arranged in chronological ordered 

before they can be tested for liD assumption. The importance of ensuring the data are 

liD before they can be used for prediction model cannot be emphasized enough. The 

existence of trend exhibits that the data are not in steady state thus cannot be fitted 

into any statistical lifetime probability distribution. In this case, a non-stationary 

model such as NHPP might be suitable. The predicted reliability and maintainability 

measures are highly influenced by the types of distribution and its parameters 

(Rausand and Hoyland, 2004), hence the use of inaccurate and poorly fitted 

distribution will definitely produce wrong results. Laplace's test has been widely used 

to test for identically distributed assumption (Ascher and Feingold, 1984) whereas 
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serial correlation test is employed to determine independence condition (Ansell and 

Philips, 1994). Laplace test is also used to determine whether the data can be fitted 

into HPP distribution. Alternative method is based on a steady state trend of a 

ROCOF plot. 

When the data exhibit liD characteristics, they will be fitting into a lifetime 

distribution model following a well established process. First, the distribution is 

selected then its parameters are estimated either using a least square (rank regression) 

or maximum likelihood estimation (MLE) method. Rank regression method is 

preferable when the data is complete and many (more than 30). When data consists of 

suspension data and is small, MLE is the better choice (ReliaSoft, 2005). Next, the 

goodness of fit test is carried out to assess if a hypothesized probability distribution 

for the data provides a good fit. Several types of test exist which include general test 

such as Chi-square, Kolmogorov-Smirnov and Anderson Darling which can fit multi

distribution. For more powerful test on specific distribution, there are specific type 

test that include Bartlett (Exponential), Mann (Weibull), Kolmogorov-Smirnov 

(normal and lognormal), and Cramer-Von Mises (NHPP) (Ebeling, 1997). Weibull ++ 

software uses correlation coefficient and log-likelihood value for goodness of fit when 

analyzing data with rank regression and MLE method respectively. When trying to 

find the best fitting lifetime distribution of reliability data sets, a common approach is 

to use general test to prioritize selection based on the smallest probability value (p

value) out of those hypothesized distributions. Alternatively, a combination of various 

statistical tests can be employed to propose the best distribution for the data. For 

example, in Weibull ++ software three factors namely Kolmogorov-Smirnov test, a 

normalized correlation coefficient and the likelihood value are analyzed based on 

statistical test values and assigned weights to rank distributions based on fit to the 

data. 

3.3.6 Estimation of Reliability and Maintainability Measures 

Based on the appropriate lifetime distribution selected and its associated parameters, 

the measures of reliability and maintainability can be determined. Reliability 
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measures include reliability function, expected MTBF and percentual time to failure. 

Maintainability function, mean duration of maintenance task (MDMT), mean time to 

repair (MTTR) and percentage restoration time are the common measures for 

maintainability. The obtained measures are then to be interpreted accordingly to 

provide a basis for suitable recommendations for system improvement (e.g. which 

equipment is critical, hence should be focused on by management). 
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Figure 3.3: Proposed flow of inferential analysis in R&M studies of plant field data 
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3.4 Availability Analysis 

A simulation-based approach is proposed in the availability analysis of a system, in 

contrast to analytical method used in reliability and maintainability measures. For 

simulation to be effective, great deal of efforts, systematic planning and organization 

are required (Mishra, 2006). General steps in performing simulation analysis can be 

found in Banks et a/. (2010), Averill (2007) and ReliaSoft Corporation (2009). 

Marquez et a/., (2005) and Herder et a/ (2008) provide examples on how availability 

simulation can be approached in analysis of process industry data. The proposed 

approach used in this research is built on that of Bank eta/. (20 1 0) and is illustrated in 

Figure 3 .4. The details of each step are discussed here: 

1. Define the problem, objective and system - The problem and objective must be 

clearly defined at the beginning of the analysis. The objective will specify sets 

of questions to be answered by the study (Banks, 1998). The boundary, 

subsystems or equipment and their relationships, maintenance scheme, 

operating procedures and conditions of the system have also to be clearly 

specified. 

n. Gather data -Relevant process flow diagram and piping and instrumentation 

diagram (P&ID) within the boundary of the system under study are gathered 

and later used to develop the system conceptual reliability block diagram 

(RBD) model. Other vital information to be captured includes the reliability 

and maintainability (R & M) data related to failures and downtime, and the 

operation and maintenance characteristics such as equipment loading and 

maintenance schedule. 

111. Make assumptions on model - Various assumptions used need to be defined 

upfront together with specific measures for assessing the system's 

performances such as reliability, maintainability and availability. These 

assumptions include those related to failure and repair time definitions, 

maintenance operation, perfect switching condition, operation states and 

application of constant failure rate. 
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Figure 3.4: Proposed framework for analysis of system availability 
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IV. Construct RBD model -The aim here is to represent the actual system under 

study with a conceptual model which is adequate and capable of achieving the 

analysis goal. Normally a conceptual model starts with a simple model and 

allows for more complexity to be added on in later stage. RBD is used to 

represent the system configuration in which each block is used to represent a 

component or subsystem or function in the system. Plant personnel 

involvement and verification are needed throughout model development to 

ensure that the model is practically correct. The RBD based conceptual model 

is developed using computer simulation software named Blocksim. In 

Blocksim, RBD and its connecting lines are constructed to describe 

dependencies relationship. Inputs into the model are provided in the form of 

probability distribution of time to failure and repair time derived from the 

results of reliability and maintainability analysis done earlier (Figure 3.5). For 

repair time data, they comprise those of corrective (unplanned shutdown) and 

preventive maintenance (planned shutdown). Other important input is 

maintenance characteristics such as PM types and schedule, and depending on 

the study objective, may also include crew, spare parts logistics and costing. 

FR~iabi~v ~1 
I Model .. 
L-~~~·-·---·J 

CM Downtime PM Downtime 

Figure 3.5: Data input requirement for RBD and each of its block in Blocksim 
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v. Verified? -Before a simulation is run, it is important to verify that the model is 

correct and ensure that plant personnel agree with the model. If this is not met, 

the model has to be reconstructed and re-verified. 

vt. Run simulation - The model having inputs of existing system parameters, 

conditions and historical data is simulated to estimate the system availability 

for a specified duration. Simulation is performed using a Monte-Carlo 

technique by simulating system operation based on failure and downtime 

distributions. During simulation, random failure times and downtime duration 

from each component's distribution are generated. The results from each 

component are then combined according to RBD reliability-wise arrangement 

and analyzed to establish the overall availability of the system. Sensitivity 

analysis, a study on output variations by varying certain variables, can also be 

performed here to reduce model uncertainties. 

vu. Validated? - The result of the simulation is then compared with the 

corresponding real system performance. This process refers to model input

output transformation validation, where the model obtains input parameters 

and transforms them into output of measures of performance of which they are 

validated against the actual system performances (Banks et a/., 2009). 

Changes in the model and its inputs are needed when the accuracy of the result 

is not satisfactory. This is an iterative process, where it is repeated until model 

accuracy is justified. 

VIII. Experimental design -In here "what if' scenarios or improvement options and 

their simulation design have to be determined. Simulation design also involves 

specifying the length, number of runs and mode of initialization for every 

scenario planned (Banks, 1998). Proper number of simulation and duration are 

necessary to produce stable output with minimum variation. 
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1x. Simulation runs - Once the experimental design is set, the simulation is 

conducted to estimate measures of performance relevance to the objective of 

the study for each scenario. 

x. Analyze output - From the simulation output, the availability estimation for the 

system can be made. Other statistical analysis can also be performed based on 

the results of simulation such as criticality analysis of each block in terms of 

reliability, downtime and availability. 

x1. More runs?- Based on the results obtained, decision can be made on whether 

additional runs are needed and what design of those additional runs should be. 

Additional runs are normally required for sensitivity analysis, a study on 

output variations by varying certain variables. It is also performed to 

understand the influence of various factors on the system overall performance. 

xn. Make inference and decision - Based on the output results, appropriate 

conclusions can be made such as estimated system availability after certain 

years of operation based on existing performance, identification of the most 

critical equipment with respect to reliability and downtime, and quantification 

of the effect of redundancy, equipment, manpower and maintenance actions to 

the system's availability. From these findings, effective decisions can be 

formulated accordingly to improve the system. 

3.5 Case Studies 

In this research, two case studies are presented. The first is on a gas compression train 

system at the offshore platform and the second is on an acid gas removal unit system 

in a gas processing plant. The description on both systems is discussed below. 
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3.5.1 Gas Compression Train System 

A gas compression train (GCT) system is an important section of gas compression 

system at a central processing offshore platform, which functions to transfer gas from 

all producing platforms in the field to onshore facilities. The availability of GCT is 

critical to ensure smooth and sufficient supply of gas as demanded by customer. The 

gas production from this field is significant since it is one of the main sources of gas 

and often acts as a buffer in case of supply shortages in other fields. With the increase 

in demand and declining trend in gas fields and capacity, the pressure to operate the 

system in high reliability and availability has increased more than ever. Even though 

there are new producing satellites that will temporary ease the tight supply condition, 

the overall production still depends on the aging GCT system reliability. Hence, in 

order to overcome these challenges, it is vital for the system performances to be 

continuously monitored and improved. 

Figure 3.6 illustrates the gas production flow and gas compression system on the 

offshore platform with gas compressor as the main equipment together with other 

equipment such as separators, scrubbers, glycol contactor and heat exchangers. 

Natural gas produced from wells can be categorized into two; non associated gas and 

associated gas. Non associated gas (NAG) mainly contains pure gas at high pressure 

and flows out from reservoir that contains gas with no or very minimum oil, whereas 

associated gas (AG) refers to a gas that dissolved with oil at high pressure existing in 

reservoir and can also be present as a gas cap above the oil (Hyne, 2001). The NAG 

from a gas well has high temperature that needs to be cooled in by a wellhead cooler 

before being routed to the subsequent processes. The gas then passes a 2-phases gas 

production separator which separates crude and/or condensate from the gas before the 

gas is sent to glycol contactor. The AG comes from oil well is being processed at the 

low pressure (LP) system. After going thru a 3-phases oil production separator which 

separate crude oil, gas and oil water, LP gas is cooled in by a cooler before being 

routed to the gas separator. Here, the remaining crude and/or condensate are being 

separated from the gas. 
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LP gas has to go thru 2 stages of gas compression compare to only 1 stage for HP 

gas to achieve the desired export discharged pressure. Before undergoing the first 

compression stage, LP gas is sent to suction scrubber to separate and dispose the 

remaining liquid in the gas. The compression process is done by a centrifugal 

compressor driven by a gas turbine. Next, the LP gas is cooled in before it joins HP 

gas into a glycol contactor for a dehydration process. Gas dehydration is a process of 

removing water vapour from a gas stream to lower temperature (dew point) at which 

water will start to condense from a gas stream. This will prevent hydrate formation 

and corrosion from condensed water (Arnold and Stewart, 1999).The gas enters the 

glycol contactor from the bottom contactor drum and flows upward. Glycol, a water 

absorption agent, is pumped into the upper part of the drum and it cascades down 

inside the drum coming into contact with the gas and absorbs any water in the gas. 

Next, the gas passes a suction scrubber and a centrifugal compressor for 2"d stage 

compression. After being cooled in by a heat exchanger, the gas is routed to gas 

metering skid before it is sent to onshore facilities via 32", 166 km pipeline. 

3. 5.1.1 GCT Description 

The heart of gas compression system is a gas turbine compressor package consists of 

gas turbine, centrifugal compressor and support equipment. It is a common practice in 

the industry to regard this package as a single system for the purpose of design, 

safety, maintenance data collection and analysis (Wall et al., 2006). In this study, for 

simplicity, this package is referred as a gas compressor train (GCT) system. There are 

two compressor trains; train I and 2, running in parallel to compress gas for export in 

the system. Each train consists of a 32,000 hp aero-derivative gas turbine which 

drives a single barrel casing two-staged inter-cooled centrifugal gas compressor. The 

operation philosophy is to run one train whilst another train is standby during low 

production, and run both trains when the production demand is high. During early 

years of production where the production was low, the plant always ran on one train 

configuration (single loading). However, beginning in 2005, when the production 

picked up, both trains were operated concurrently, except the time when either one of 
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the trains was down due to failure or PM activities. The design capacity for each train 

is 225 mmscfd (million standard cubic feet per day) of gas, and with the combined 

two trains at 550 mmscfd. Figure 3.7 shows a schematic diagram of main 

components of a gas compressor train. Other important components not shown in the 

diagram are ancillary equipment such as lube oil and control systems. The system 

boundary of the GCT is defined and illustrated in Figure 3.8. 

COMPRESSOR 

Note: GG = Gas Generator 

Figure 3.7: GCT diagram which shows a gas turbine drives a centrifugal compressor 
via a speed increaser gear box 
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Figure 3.8: GCT system boundary (adapted from OREDA (2002)) 

67 



3.5.2 Acid Gas Removal Unit (AGRU) system 

The second case study is on an acid gas removal unit (AGRU) system, part of systems 

in a gas processing plant (GPP). There are four GPPs: GPPl; GPP2; GPP3; and 

GPP4, in operation in the petrochemical integrated complex. GPP treats and processes 

raw natural gas (NG) from gas fields offshore of the East Coast of Peninsular 

Malaysia and turns them into various products such as methane (sales gas), ethane, 

propane, butane, and condensate. A GPP's simplified process flow, its various 

systems and products are shown schematically in Figure 3.9. GPP can be operated in 

two operation modes; C2 mode and C3 mode. AGRU operation is running (on-line) 

when GPP is under Cz operation mode, and by-passed in C3 operation mode. 

FeedG as 

2 
Feed Ll ·quid 

li . AG~U. 

·•·I '·:>-• 

PRE- H R DEHYDRATION & 
TREAMENT MERCURY 

UNIT REMOVAL 

~ 
PROPANE 

REFRIGERATION PRODUCT 
UNIT RECOV~RY· 

UNIT 

UTILITY & I 
SUPPORT SYSTEM 

I 

-
'· 

SALES GAS 
COMPRESSION 

1 
LOW TEMPERATURE 
SEPARATION UNIT 

I 

~ ·. ::·(._ ;_-,. . 

SALES GAS 
(METHANE) 

ET HANE 

ROPANE 

UTANE 

p 

B 

PRODUCT 
STORAGE f==> CONDENSATE 

Figure 3.9: Simplified process flow of GPP 

AGRU primary function is to remove H2S (hydrogen sulfide) and C02 (carbon 

dioxide), which are corrosive and toxic contaminants, from NG. This process is also 

known as sweetening, in which the level of sulphur compounds concentration in NG 

is reduced from high (sour gas) to low (sweet gas). H2S can form acid when reacting 

with water, hence can cause corrosive damage to gathering I boosting and 

transmission pipelines, compressors, pneumatic instruments, and distribution 
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equipment. H2S is also odor, poisonous and its total sulfur content is normally 

regulated. C02, on the other hand, is a greenhouse gas and its high content in NG can 

lower the production, transportation and storage efficiency. Beinfield process is used 

to remove these acidic gases from the gas stream by treating NG with Beinfield 

solution containing Potassium Carbonate (K2C03), Vanadium Pentoxide (V205) and 

Diethanolamine (DEA). 

In AGRU system, sour gas enters absorber A-201 at the bottom after passing thru 

heat exchangers. A lean Benfield solution is fed at the top section of the absorber to 

absorb H2S and C02 from the up-flowing sour gas. The resulted sweet gas from the 

absorber is next cooled in heat exchangers and channelled into separator drum M202, 

to separate condensate, before further processing. A rich Beinfield solution containing 

the absorbed acidic gases is then routed to a regenerator (stripper A-202 with reboiler 

T204). Here, the gas is stripped to produce concentrated H2S and C02 overhead gas. 

Lean Beinfield solution is regenerated in T204 reboiler and then fed into storage 

pump M203. From here, the lean solution is returned to the absorber via pumps (P202 

and P201). The generator overhead is condensed in air cooler T206 and collected in 

regenerator accumulators (M204 and M205) before sending for regeneration (reboiler 

T205) and recycle. Acid gases remain uncondensed and exit accumulators for further 

processes (eg. vent out to atmosphere etc.). 

3.6 Chapter Summary 

In this chapter the methodologies used for conducting practical reliability, 

maintainability and availability analysis on plant system are presented. Here, the 

focus is on a realistic approach on how to effectively use and systematically analyse 

field maintenance data for improving system operation and maintenance performance. 

The proposed methods utilize modelling approach based on systems approach to 

model real system, analyse it using appropriate techniques and interpret the results 

accordingly. For reliability and maintainability analysis, a generic framework is 

presented. In this framework, the analysis process consists of six main steps namely: 

setting objectives, definition of system and failure, data gathering, exploratory 

69 



analysis, inferential analysis and finally estimation of reliability and maintainability 

measures. The methodology presented for availability analysis is built upon RBD 

modelling and simulation techniques. To run a simulation, a computer simulation tool 

is needed. In this research, specialized reliability simulation software named Blocksim 

is utilized to achieve the objective. 
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4.1 Introduction 

CHAPTER4 

RELIABILITY ANALYSIS 

Reliability analysis as an important plant improvement tool for assessing the 

performance of existing operational system is discussed and demonstrated in this 

chapter. The analysis process is performed based on a systematic approach proposed 

in the previous chapter. The focus of the study is on real industrial data for a 

repairable system of gas compression train system (GCT) at an offshore platform. 

4.2 Objectives of the Analysis 

Maintenance data with proper statistical analysis techniques can help management to 

assess plant performance by giving insights on how well the perfom1ance of the 

existing or particular system and critical factors influencing the system performance 

(Ansell and Philips, 1994). From discussions with plant personnel, some of the 

common concerns about the plant performance include; 

• How is the performance of the current system? Is it 111 improving or 

deteriorating or steady state? 

• What are the critical factors that influence the system performance? 

• How well is the current maintenance practice? Does it help to enhance the 

system lifetime and reduce the breakdown duration? 

• What is the prediction of the future system performance in terms of failure 

rate, mean time to failure (MTBF), number of failures and availability? 
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A clear understanding of the above aspects about plant condition is fundamental 

for achieving high reliability and perfom1ance plant. Identification of the influential 

factors to system performance is crucial to plant operation so that appropriate actions 

can be rendered. To address those concerns, the following objectives have been set for 

the study of the gas compression train system: 

1. To analyse maintenance data to gain insight into the existing and future system 

performance 

11. To identify dominant factors of system reliability in terms of subsystem and 

failure mode 

111. To assess the influence of other important factors such as preventive 

maintenance (PM) on the system lifetime 

IV. To determine system reliability measures such as failure rate and mean time 

between failures (MTBF) 

4.3 Maintenance Data 

Sufficient, well formatted and quality maintenance data are fundamental for the 

success of reliability and availability analysis of gas compressor train. Field 

maintenance data are being recorded in the computerized maintenance management 

system (CMMS) database and turbo-machinery engineering availability tracking 

record. The latter is the main recording data for monitoring train's availability 

performance and hence, will be used as the prime data source for the reliability and 

availability analysis of the system in this research. CMMS is generally used for 

verification purpose. An example of the availability tracking report is described in 

Figure 4.1. This report contains details of critical failures (failures that cause train to 

shutdown) and maintenance activities. Turbo-machinery engineering group has 

started developing this data record since April 2002, when the system operation was 

handed over to the maintenance team even though the first commercial production of 

gas was in January 2002. Engineers use this. ·report for their continuous monitoring 

and reporting of gas compressor train perforii1ance. The train operation data are 
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captured on a daily basis and the time duration for each event is reported in hours. 

The events are broken down into four categories: 

1. Utilization (UTIL)- normal operation states 

11. Standby (S.B) - standby mode due to low producti01i demand and external 

events such as to emergency shutdown (ESD), plant shutdown and turnaround 

111. Planned shutdown (PSD) - shutdown caused by planned preventive 

maintenance (PM) activities 

IV. Unplanned shutdown (USD)- shutdown as a result of corrective maintenance 

(CM) actions due to failures 

From the report, the following important data for each train can be obtained: 

• Failure frequency, time and downtime duration 

• Failure modes, causes and corrective actions 

• Causes of shutdown i.e. CM, PM, ESD, turn-around and plant shutdown 

• Scheduled maintenance time and duration 

• Train operation modes such as standby, down, single loading and shared 

loading 

• Performance measures i.e. reliability, availability and utilization 

The time between the successive failures data can also be established from the 

report. The time between failures is based on the actual operating days where it is 

calculated only when the train is running, and not counted when it is not in operation 

either due to failure, PM or standby. To facilitate the process, the data are rearranged 

in the special format to capture this critical information together with other important 

information such as start-up failure and operation loading mode. A sample of the 

formatted data can be seen in Appendix A. 

The existing format used by field engineers in the availability tracking report is 

commendable since it keeps track on the exact timing of each event on hourly basis, 

hence make it easier to perform analysis on time between failures (TBF) based on 

operating days. Nevertheless, there are some issues with regard to the historical data. 
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In the early years of data recording, the event data was recorded either as a standby or· 

a shutdown, regardless whether it was unplanned shutdown (USD) caused by failures, 

or planned shutdown (PSD) due to preventive maintenance actions. Stm1ing from 

January 2005, a significant improvement had been made in the recording format, 

where the shutdown data were further divided into USD and PSD for better tracking. 

The data also suffer from common issues such as missing, incorrect and incomplete 

information, for example, the reasons for certain system downtime. Furthermore, 

some of the failure causes are unambiguous, for instance, failures related to 

compressor are not clearly specified whether they belong to turbine compressor or 

centrifugal compressor. To overcome these uncertainties and maintain the integrity of 

the data, clarification on failure and downtime data from respective engineers are 

highly critical. Throughout the study their active involvement and inputs are 

continuously sought to ensure the data and analysis are valid and relevance. 

Besides these two records, other related reliability data can be found in monthly 

turbo-machinery performance reports by turbo-machinery engineering group, root 

cause failure analysis (RCF A) reports and vendor I supplier reports. 
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" nJRBO MACHINERY AVAILABn.TIY AND UTILIZATION 

AUGUST 2005 

HOURS 
DAY (,2420 Tro;n I) C"2450 (Tro;n 2\ 

UTIL. S.B PSD USD TOTAL UTIL. S.B PSD USD TOTAL 
I 24 24 24 24 
2 24 24 24 24 
3 24 24 24 24 
4 24 24 24 24 
5 24 24 24 24 
6 24 24 24 24 
7 21.5 2.5 24 24 24 
8 24 24 24 24 
9 24 24 24 24 

10 24 24 24 24 
II 4 20 24 24 24 
12 24 24 24 24 
13 24 24 24 24 
14 24 24 24 24 
15 24 24 24 24 
16 24 24 24 24 
17 24 24 24 24 
18 24 24 24 24 
19 24 24 24 24 
20 24 24 24 24 
21 24 24 24 24 
22 24 24 24 24 
23 6 18 24 24 24 
24 16 8 24 18 6 24 
25 24 24 19 5 24 
26 24 24 24 24 
27 24 24 24 24 
28 24 24 24 24 
29 24 24 24 24 
30 24 24 24 24 
31 24 24 0.75 23.25 24 

TOTAL 545.5 94.5 78 26 744 709.75 0 II 23.25 744 

UTILIZATION ~. 73.3 UTILIZATION~. 95.4 

AVAILABILITY ~. 86.0 AVAILABILITY 7. 95.4 

RELIABILITY ~. 96.5 RELIABILITY 7. 96.9 

SHUTDOWN~. 10.5 SHUTDOWN~. 1.5 

Note: UTIL; utilization, SB; standby, USD; unplanned shutdown, PSD; planned shutdown 

Figure 4.1: Sample of availability tracking report 

4.4 Exploratory Analysis 

Based on plant engineers' recommendation, the failure data of gas compressor train 

can be categorized into I 0 areas or subsystem for the purpose of data analysis. Table 

4.1 depicts these subsystems and their respective coding. The field data used in the 

analysis are based on the data from 2002 till 2009. 

75 



Table 4.1: GCT subsystems and coding 

No. Subsystem Code 

I Gas Turbine GT 

2 Centrifugal Gas Compressor GC 

3 Starter System STS 

4 Gearbox GB 

5 Fuel System FS 

6 Vibration Monitoring System VMS 

7 Anti-surge Valve System AVS 

8 Lube Oil System LOS 

9 Process and Utilities PRO 

10 Turbine Control System TCS 

4.4.1 Pareto Analysis 

Figures 4.2 and 4.3 describe the failure breakdown charts according to subsystems for 

both trains. For train I, major contributors to system failures are gas turbine (GT) and 

turbine control system (TCS) which both constitute two-thirds of total failures. Gas 

turbine, centrifugal gas compressor and process subsystem are the main causes for 

train 2 failures where together account for about two-thirds of the train failures. For 

the overall GCT (combination of train I and 2), gas turbine related failure is the 

highest contributor toward system breakdown followed by turbine control system as 

indicated in the Pareto chart in Figure 4.4. Further analysis on gas turbine failures 

reveals no dominant failure mode exists as the causes of failures are varied. The 

highest mode, about one-fifth of total failures (4 out of 21 failures), is a start-up 

failure after maintenance actions. This failure mode, however, mainly occurred in 

early years of train operation and has shown decreasing trend recently. The prime 

causes for turbine control system failures are related to faulty transmitter and 

programmable logic controller (PLC). Turbine control system failure has occurred 
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more frequently lately as illustrated in Figure 4.5 and hence should be appropriately 

attended and resolved by turbo-machinery engineers. 
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4% 4% 

GT 
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Figure 4.2: Train I CM breakdown by subsystems 
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Figure 4.3: Train 2 CM breakdown by subsystems 
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4.4.2 Trend Analysis 

The processed operational data of time between failures for both trains is tabulated in 

Table 4.2. The resulted plots for train I and 2 are shown in Figures 4.6 and 4.7, 

respectively. The trend plots for both trains exhibit a linear pattern with no indication 

of monotonously increasing (concave up) or decreasing (concave down) pattern, 

hence signifies that the train performance in neither improving nor deteriorating. To 

test for this assumption, the statistical Laplace test based on Equation 3.1 with failure 

truncated is performed. The calculated Laplace statistics value, UL, for train I and 2 is 

1.409 and 0.484 respectively. These results are found not to be statistically significant 

at 95% confidence level (z = +/- 1.96). Thus the assumption based on the graphical 

method earlier is acceptable that the data do not exhibit any monotonic trend. This 

non-monotonic failure data trend suggests the failure process can be modelled by a 

simple homogeneous Poisson process (HPP) where the inter-arrival time between 

failures follows exponential distribution. 

To look at how the failure rate change over time, the ROCOF based on time 

interval of 200 days is calculated. The plots of estimated ROCOF for respective train 

are shown in Figures II and 12. The plots indicate that there are no increasing or 

decreasing trends in failure rates for both trains. The failure rate for train I looks 

rather constant with little fluctuation throughout the observation time. For train 2, the 

plot also exhibits somewhat constant trend over the time period, however a slight 

increase in failure rate is noticeable near the midpoint of observation period. Based on 

the Equation 3.2, the estimated failure rates for train I and 2 are about 0.013 and 

0.015, respectively. 
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Table 4.2: Time between failures based on operation days 

Train I Train 2 

Failure Time between Cumulative operating Time between Cumulative operating 
No failures (Days) time (Days) failures (Days) time (Days) 
I 15 15 22 22 
2 6 21 31 53 

3 195 216 327 380 
4 295 511 132 512 
5 107 618 77 589 
6 129 747 6 595 
7 65 812 104 699 
8 20 832 17 716 
9 22 854 42 758 
10 118 972 45 803 
II 32 1004 208 lOll 
12 263 1267 22 1033 
13 113 1380 28 1061 
14 5 1385 8 1069 
15 84 1469 56 1125 
16 31 1500 22 1147 
17 ?" _J 1523 7 1154 
18 43 1566 30 1184 
19 217 1783 151 1335 

20 6 1789 17 1352 
21 52 1841 64 1416 
22 126 1967 89 1505 
?" _J 30 1997 100 1605 
24 12 2009 80 1685 
25 0 2012 4 1689 J 

26 68 2080 91 1780 
27 3 2083 124 1904 
28 216 2299 62 1966 
29 27 2326 7 1973 
30 4 2330 26 1999 
31 15 2345 3 2002 
32 ?" _J 2368 103 2105 
33 3 2371 3 2108 
34 179 2550 119 2227 
35 13 2563 26 2253 
36 129 2382 

80 



40 

35 • • • • • 30 • • • • • 25· • • • ~ • ~ • ~ 20 . • • .!!! • • • IS • • • • • 10 • • • • • 
• • 

• 
0 soo 1000 1500 2000 2500 3000 

Operating time (days) 

Figure 4.6: Cumulative failures versus cumulative operating days for train I 
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Figure 4. 7: Cumulative failures versus cumulative operating days for train 2 
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Figure 4.9: Estimated ROCOF for train 2 

4.5 Analysis of Other Factors Influencing System Reliability 

Besides subsystems, there are other factors that can possibly influence the train 

reliability performance, thus worth to be investigated. These possible factors 

sometimes may not be explicitly found in raw data, but can be identified by plant 

experts based on their extensive experience and detailed observation on the system. 

Any of these factors can be considered significant when it can shorten or lengthen 

mean time between failures. Based on discussions with plant personnel, the following 

factors or covariates are suspected to have some influence on the system reliability 

performance: 

1. Train: Both trains are designed to produce the same performance, however 

based on the maintenance data, train 2 experiences longer shutdown duration 

than train I. 

11. Operation loading mode: When both trains are in operation, the load is shared 

equally between them i.e. shared loading. When one train is down, another 

train has to take up the entire load i.e. single loading. This extra loading may 

increase stress on that running train. 
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111. Subsystem: Almost 50% of the failures come from gas turbine and gas 

compressor. It is useful to understand the- impact of these gas turbine and 

compressor related failures to the overall system failure frequencies. 

IV. Failure after start-up: Frequent start up operation due to switching back of 

operation mode to operating state could be detrimental since it may induce 

stresses on the equipment which in turn leads to wear out problem. The 

occurrence of failures right after train being put up into action (including start

up failure) may be a symptom of this deterioration, hence could potentially 

shorten the elapsed time to the next failure. A switching operation is 

considered when train resumes normal operation after being in standby mode 

and shutdown due to failures and PM actions. In the case of standby mode as a 

result of low demand, a start up operation is assumed only when the 

equipment has been in standby for more than four hours. 

v. Maintenance activities: Maintenance activities such as PM and engine wash 

are supposed to reduce number of failures and increase the time between 

failures of the system. Sometimes the maintenance impact can be insignificant 

or detrimental to the system performance. 

4.5.1 Covariatcs Analysis 

To test for the above assumptions and determine influential factor(s) affecting 

reliability, two approaches are used: Kaplan Meier (KM), and Proportional hazard 

model (PHM). 

4.5.2 Modelling of Covariatcs 

Let the time to failures of n number of failures be lo, 11, 12, 13, ... ,111 , with lo < 11 < 12 < .. 

<1". lo is the arbitrary time which mark the beginning of the observation period. The 

time between failures (inter-arrival) are denoted by X;, where X; = I; - 1;. 1• For 

illustration, let consider a PM as the covariate. Assume there is a PM activity being 
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carried out in between I 1 and 12 as illustrated in Figure 4.1 0. In this model the impact 

of that PM on the failure distribution is measured basically by the length of X2; how 

effective is the PM to extend the X2 period. For other covariates, except failure after 

start-up, the model follows the same notation. For example, let assume the 2"d failure 

occurs at time 12 in the presence of a covariate, thus the effect of that covariates can be 

translated in the duration of X2. In the case of failure after start-up covariate, however, 

the covariate's impact is measured based on X3 instead of X2. Here, we are interested 

to know the impact of failure after start-up to the next failure event and not prior to 

that. 

I I I I 
I I I I 

:+--XI x2 X3---+: [+--Xn_.: 
I I I I 
I I I I 

I I ' ' I I I I I 
I I I I I 

Failures 0 [] 0 0 0 ()----+ 

to t 1 PM t2 t3 fn-1 fn Time 

Observation Observation 
period start period end 

Figure 4.10: Modelling of failures for PM covariate 

Once the model is determined, the manipulated data are then analysed for KM and 

PHM using SPSS software. Table 4.3 shows the grouping of covariates used in the 

analysis. Group I is assumed to have more significant effect on survival plot. The 

covariates consist of train, operation mode, sub-system, failure after start-up operation 

and maintenance activities. The maintenance activities, however, had been further 

broken down into two more covariates; PM and PM plus engine wash. The PM 

covariate only includes 4K and 8K ppm but not engine wash. This will enable 

separate assessment to be done on the effectiveness of PM action with and without 

engine wash. The complete formatted data for the analysis is given in Appendix B. 
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Table 4.3: Covariates and their grouping 

Covariates Group 0 Group I 

Train Train I Train 2 

Operation mode Shared load Single load 

Subsystem Other sub-systems Gas Turbine+ Compressor 

Start-up Other failures Failures after start-up 

PM Other failures Failures after PM 

PM+ wash Other failures Failures after PM + engine wash 

4.5.3 Kaplan Meier (KM) Analysis Results 

In this analysis, a statistical log-rank test is employed to test the null hypothesis that 

there is no significant difference between the survival data of group 0 and I for each 

covariate. The result of log-rank statistical tests is tabulated in Table 4.4. The result 

indicates that only a PM plus engine wash covariate has significant effect on the 

system failure distribution (P-value less than 0.05). The result also shows there is no 

significant difference between the two trains performance, thus it can be assumed that 

both trains have similar failure performance. Figure 4. I I describes the survival plot of 

PM plus wash covariate where it shows this covariate has a positive influence in 

extending the system inter-arrival failure time. The details of the analysis results can 

be found in Appendix B. 

Table 4.4: Log-rank statistical test on covariates 

Covariates Train Operation Mode Subsystem Start-up PM PM+ Wash 

Chi sq 0.186 O.QJI 3.34 0.017 2.41 8.52 

Sig. (P value) 0.666 0.860 0.07 0.897 0.12 0.004 
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Figure 4.11: KM plot of cumulative survival for failures after PM plus engine wash 
vs. other failures 

4.5.4 Proportional Hazard Model (PHM) Analysis Results 

The result of PHM analysis on the covariates is tabulated in Table 4.5. For each 

covariate, the test of significance is done by comparing Wald statistic with a Chi 

square distribution with I degree of freedom. The Wald statistics is simply the square 

of z score (a value obtained by dividing the regression estimate, ~' by its standard 

error). A Wald value greater than 3.84 will be significant at 5% level (p-value less 

than 0.05), thus indicates significant effect of that particular covariate. Based on the 

results, PM plus engine wash is the only influential factor with the statistical 

significant value (P value) of 0.044. This p-value is however higher than the one 

derived from KM log-rank test (0.004) since the PHM model includes the effects of 

all covariates in the analysis. A negative value of~ indicates that the hazard is lower, 

thus the time between failure is better for covariates with lower~ value. Hence, train, 

operation mode, subsystem, failure after start-up and PM plus wash covariates are 

associated with longer time between failures, whereas PM is associated with shorter 

time between failures. The impact of covariates to the hazard function can be 

determined by a hazard ratio, Exp W). For PM plus engine wash, the estimated hazard 
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is 0.567 lower than of another group (other failures). In other words, this covariate 

with reduce the hazard of failures by 56. 7%. For other covariates, however, there are 

no significant differences in term of survival function since the p-values are not 

statistically significant at 95% confidence level. The estimated survival plot for PM 

plus engine wash covariate is shown in Figure 4.12 and the corresponding hazard plot 

is described in Figure 4.13. More details on the analysis results can be found in 

Appendix B. 

Table 4.5: PHM analysis on covariates 

Covariates ~ Std error Wald df Sig. (P value) Exp(~) 

Train -.045 .296 .024 I .878 .956 

Operation Mode -.533 .557 .917 I .338 .587 

Subsystem -.368 .323 1.302 I .254 .692 

Failure after start up -.090 .405 .049 I .824 .914 

PM .006 .466 .000 I .989 1.006 

PM + Engine Wash -.837 .416 4.050 I .044 .433 
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Based on the findings of both KM and PHM analysis, the following conclusions 

can be made regarding the covariates: 

I. There is no significant difference 111 term of reliability performance for 

both trains 

II. There is no significant impact of single loading operation mode, failures 

after start-up operation and failures contributed by gas turbine and gas 

compressor on the time between failure distribution 

Ill. The contribution of PM alone to increase the failure time interval is not 

that significant, however, when PM and engine wash are carried out, there 

is a significant improvement in system reliability. 

4.6 Inferential Analysis 

A rough estimation of failure rate has been given earlier for both trains based on the 

smooth characteristics of ROCOF plots. The plots of number of failures against 

cumulative time also suggest that the failure data can be modeled by Homogeneous 

Poisson Process (1-IPP). Nevertheless, before HPP model is assumed, it's necessary to 

ensure that the data are independent and identically distributed (liD). Whilst the 

assumption of identically distributed data has been validated by the trend plot and 

Laplace test, the independent assumption can be tested using a serial correlation test. 

This test is performed by plotting the (i-l)th time between failure (TBF) against the 

ith TBF data, where i = I ,2, .. ,n and n = the number of failure events. The serial 

correlation plots for both trains are shown in Figures 4.14 and 4.15. The graphs show 

the data plots are scattered randomly indicating the lacks of correlation. l-Ienee, the 

liD assumption for the data is valid. 
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Figure 4.14: Dependency test for train I data 
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Figure 4.15: Dependency test for train 2 data 

Using a Weibull ++ software, an exponential distribution is fitted into data for 

train I, train 2 and combination of both and the corresponding probability plots are 

illustrated in Figures 4.16, 4.17, and 4.18, respectively. The goodness of fit statistical 

test using Kolmogorov-Smirnov (K-S) test indicates that the model fits the data 

sufficiently. The summary of the resulted reliability measures and their confidence 

bound are shown in Table 4.6. The estimated failure rates are close to those derived 

from ROCOF calculation. Train 2 shows slightly poorer reliability performance than 
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train I, however, they are not statistically different as it is shown 111 Kaplan Meier 

analysis. 
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Figure 4.16: Probability plots for train I 
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Figure 4.17: Probability plots for train 2 
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Figure 4.18: Probability plots for combination of data from both trains 

Table 4.6: Goodness-of-fit for exponential distribution and reliability measures 

Data K-S Significant Failure rate 95% confidence MTBF 95% 
value P-value* (A.)(per range (days) confidence 

day) range 

Train I 1.117 .165 0.0123 0.0088- 0.0172 81.2 58.3-113 

Train 2 .589 .879 0.0143 0.0 I 03 - 0.0 198 69.9 50.4- 96.9 

Combine 1.168 .130 0.0135 0.0107-0.0170 74.3 58.7-93.7 

Note*: P value> 0.005 indicates good fit 

4.7 Chapter Summary 

In this chapter, the proposed reliability analysis approach has been demonstrated and 

found practical for investigating field maintenance data and providing useful insights 

on the present reliability performance of existing operational system. The study also 

describes the conditions and issues with plant data and highlights the importance of 

plant personnel involvement in the study to reduce many uncertainties in the data. 

Simple analysis such as trend plot and trend test can provide a snapshot of the system 
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performance, hence should be performed in the early part of reliability analysis. 

Besides, they can help to determine whether the data can be modelled by a lifetime 

distribution. The analysis results show that for both trains the time between failures 

data can be sufficiently modelled by exponential distribution. This study also 

demonstrates the use of maintenance data for identifying critical factors to system 

reliability. Besides normal descriptive techniques such as Pareto analysis and trend 

chart to assess historical data and identify major contributors to system failures, this 

study employs methods based on hazard functions; KM and PHM, to evaluate the 

influence of other possible factors which are considered critical by engineers. These 

factors are not explicitly present in maintenance data, but largely derived from plant 

personnel inputs based on their experience and observation. 
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5.1 Introduction 

CHAPTER 5 

MAINTAINABILITY ANALYSIS 

This chapter demonstrates the applications of the proposed maintainability analysis 

approach to assess the effectiveness of existing maintenance system in a plant and 

estimate maintainability measures. Here, maintainability analysis is carried out on two 

different types of maintenance actions; corrective maintenance (CM) and preventive 

maintenance (PM), using a gas compression train (GCT) system as a case study. The 

method used in performing those two studies varies in detail and scope depending on 

the analysis needs and existing data availability and condition. In the CM 

maintainability study, a systematic and simple method based on steady state trend and 

expert inputs for predicting system downtime is presented. For the case of PM, due to 

insufficient data, a novel approach using expert opinion has been proposed. 

5.2 GCT Maintenance System and Practice 

For the gas compressor train under studied, the following PM actions are 

implemented; planned PM (ppm) for every 4,000 (4K) and 8,000 (8K) operation 

hours, and off-line engine wash. There is also gas turbine engine change-out for every 

24,000 (24K) operation hours. During all of these activities, the train system has to be 

shutdown and requires a proper start up process when resuming operation. 

i) 4K and 8K ppm: Based on the manufacturer's recommendation, gas 

compression train need to be serviced once every 4,000 operation hours or 
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- every 6 months. During this 4K ppm, -various critical systems-ofgas turbine,

ancillary and centrifugal compressor are checked. Appropriate maintenance 

repair and parts replacement are carried out to rejuvenate the system 

performance. More extensive and comprehensive tasks are performed during 

8K ppm. Table 5.1 describes the main maintenance tasks undertaken during 

4K and 8K ppm respectively. 

Table 5.1: 4K and 8K ppm maintenance tasks 

Type of PM Area inspected 

4Kppm GT air intake, lube oil, fuel gas, gas compressor seal 

gas, GT compressor section, compressor rotor 

vibration system 

8K ppm GT air intake, lube oil, fuel gas, gas compressor seal 

gas, GT compressor section, GT and gas 

com pressor vibration detection, fire and gas 

detection, pressure switches and transmitters, 

temperature switches and transmitters, over-speed 

protection system 

ii) Engine wash: Regular gas turbine engine wash for the internal blades of the 

compressor section is a common practice in the industry (Forsthoffer, 20 II). 

When a gas turbine is run, over time it becomes fouled with contaminants such 

as salt, soils and sooty hydrocarbon, which enter through air intake and encrust 

the compressor components. Engine wash is the most effective way of 

preventing and removing fouling deposits besides it restores the engine 

efficiency which leads to maximization of power output, fuel efficiency and 

extension of machine component lifetime (Emerson process management, 

2005). Axial compressor deterioration has been known generally as the major 

source of gas turbine power and efficiency loss. An internal study on off-line 

crank I soak engine wash by the engineering team has also confirmed the 

effectiveness of engine wash in improving gas turbine efficiency (1-lasnan et 
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al., 2004). During the off-line engine wash operation, which is normally a 6-

hour task, a gas. turbine is shutdown and then approved chemical and 

deionized water are injected through the intake with the machine cranking at 

starting speed. Based on the maintenance data, engine wash has been 

implemented since 2003 either as a separate PM event or incorporated with 4K 

and 8K ppm. Increased in production demand however, has caused reduction 

in the planned engine wash frequency, since production priority was on getting 

the highest utilization of the system with less downtime. There is a proposal 

by the engineering team to replace 4K ppm with bi-annual engine wash whilst 

maintaining a 8K ppm. This idea however is still pending, mainly due to 

production concern in meeting the output demand. 

iii) Gas turbine engine and compressor bundle change-out: It is a standard 

industrial practice to overhaul GT engine in order to maintain its high 

operation efficiency after it has been in operation for certain period of time in 

view of component life and also induced stresses experienced by hot section 

components. In this compression train system, that time interval has been set 

at 24,000 hours. The removed engine will be sent for overhaul and replaced 

with a spare engine. There is also a centrifugal compressor overhaul operation, 

however with no fix time-based interval. The compressor will normally be 

planned for change-out when there is indication of performance deterioration 

such as incapability of producing the required head or discharged pressure. 

During this change-out, the compressor bundle is replaced with another spare, 

whilst the original one is sent for overhaul. 

5.3 Maintainability Analysis 

A generic approach for conducting a maintainability analysis has been presented in 

Figure 3.2 in Chapter 3. More detailed steps used for study on GCT will be discussed 

next. The flows are developed based on the objectives of the study and the conditions 

of plant maintenance data. The main objectives of the maintainability analysis are as 

follows: 

97 



• To demonstrate the application of proposed ·approach · for effective-· 

maintainability analysis 

• To identify the critical factors I subsystems affecting the system downtime so 

that appropriate actions can be taken to improve them 

• To highlight key and effective downtime improvement activities related to the 

maintenance and logistics support system. These information can be feedback 

to design and operation engineers for further system improvement 

• To assess the maintainability measures of the system which are useful for 

predicting future maintenance system and resources requirements 

5.3.1 Maintenance Data 

In a proper maintainability analysis, a prectse definition of downtime events 

should be established according to the respective operating system. There are many 

factors which can cause downtime for the CGT system, and they should be clearly 

identified and categorized in the data. This is importance to ensure only appropriate 

data are being captured and used for the analysis. The downtime state of the gas 

compression train system is described in Figure 5.1. 
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Figure 5.1: GCT operating states 

5-3.2 Maintenance Downtime Impact on GCT Availability 

Prior to conducting maintainability analysis, it is imperative to understand the 

influence of maintenance downtime to the availability performance of gas 

compression train. The availability of gas compression train is very critical for 

ensuring the platform plant meets its gas production demand. The availability is a 

function of CM and PM downtime duration. CM downtime depends on failure 

frequency and repair time, whereas PM downtime is related to number of PM actions 

and their time duration. Figures 5.2 to 5.5 show availability yearly figure since 2002 

for train I and its corresponding plots on CM frequency, CM and PM breakdown 

trend. Similar graphs for train 2 are shown in Figures 5.6 to 5.9. Table 5.2 describes 

the code for PM type categories. The code for subsystems was given in Table 4.1. 

Train I performance had shown a steady trend with the average availability of 

around 96%. There was, however, a slight drop in 2007 and 2008 where the 

availability was at 92.5% and 90.6% respectively. In 2007, the decrease was mainly 

99 



due to· CM- for GT engme change-out because of turbine nozzle failure which 

oc;curred at the end of 2006. At the time of incident, the GT had been operated for 

more than 31,000 hours, which was beyond the recommended planned change-out of 

24,000 hours. Planned compressor bundle overhaul which took more than 2 weeks to 

complete caused high downtime in 2008. Other causes of high downtime in 2008 

were CM due to lube oil contaminated and flexi hose problem. 

Train 2 started with high availability in 2002 but later deteriorated in 2003 before 

it recovered in 2006. Gas compressor bundle change-out due to broken tie rod bolts 

caused the availability to drop to 81% in 2003. In 2004, the availability trend further 

decreased to 54.6% mainly due to gas compressor high vibration issue which lead to 

another compressor bundle change-out. This time the downtime was much longer due 

to non-availability of spare compressor. Low availability in 2005 (79%) was caused 

by GT tripped on N2 speed pull away resulted in replacement of GT engine. Since 

2006, the performance of train 2 has been encouraging with the availability average 

stood at 97.7%. 
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Figure 5.2: Availability trend for train I 
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Table 5.2: Coding for PM types 

PM types Code 

4K ppm 4K 

8K ppm 8K 

Engine wash EW 

Turbine engine change-out ECO 

Centrifugal compressor bundle change-out ceo 

From the graphs, it can be concluded that CM downtime has significant influence 

on the availability performance of both gas compressor trains compared to number of 

failures (failure frequency). As being discussed in previous chapter and shown in 

Figures 5.3 and 5.7, the plots of failure occurrence for both trains are rather flat and 

do not fluctuate as much as those of availability. The availability performance, on the 

other hand, is highly related to the USD downtime trend; the availability is low when 

CM downtime is high, and vice-versa. PM downtime also affects the availability 

trend, however the impact is relatively smaller. GT engine, centrifugal compressor 

bundle change-out and 8K planned maintenance are found to have some impact on 

GCT availability. 

The improvement trend in availability is therefore predominantly due to the 

improvement (reduction) in maintenance downtime. Based on discussion with plant 

engineers, there are many factors that contribute to the trend but the most influential 

l~1ctor is the improvement actions carried out by the engineering, maintenance and 

production team in the plant which have resulted in continuous reduction in the 

amount of time to complete repair works, planned maintenance and put back 

equipment to operation mode. These important findings should be feedback and 

shared with designers and engineers working with similar system at different 

platforms. Some of those improvement initiatives are described as follows: 
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i. Spare part management: This effort is one of the mam contributors to a 

significant reduction trend in the system downtime for both CM and PM. 

Several actions have been rolled out to reduce operation downtime particularly 

related to material and administrative delay. One of them is a 'Pit crew 

concept', which focuses on team el"lorts. early planning and streamlining work 

during shutdown (1-lasnan el of., 2004). The key steps are the identification of 

critical work path and segregation ofjobs based on location and time they can 

be clone i.e. before, during and after the shutdown. Since 2006, many of the 

critical spares had been placed at the sites, which were previously being stored 

at warehouse I supplier base on onshore or OEM vendors overseas. According 

to field engineer, this initiative has significantly reduced the material delay 

and maintenance downtime. Table 5.3 gives the estimated reduction in 

downtime clue to critical spare parts relocation to sites. 

Table 5.3: Estimated downtime clue to critical failures of subsystem 

Failures subsystem Estimated downtime 

Pre 2006 Post 2006 
(months) (days) 

1. Gas turbine 6 7 
2. Gas compressor 6 14 
3. Starter system 4 2 
4. Gear box 6 7 
5. Fuel system 1 1 
6. Vibration monitoring system 1 1 
7.AVS 2 3 
8. Lube oil system 1 1 
9. Process 1 1 
10. Turbine control system 2 2 
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u. Supplier coi1tract ptoceilure itnproven1ent: ln early 2008, a long term service 

agreement (L TSA) with major OEM suppliers such as Rolls Royce was 

implemented replacing the old bidding process. This initiative has resulted in 

improved maintenance services and part delivery by the suppliers which are 

importance for shortening downtime duration particularly involving spare 

parts logistics. High downtime in 2004 for train 2 was mainly clue to logistics 

issues such as contracting delay, sourcing parts problem and OEM service 

delay. 

iii. Technicians am/ operators skills upgrading: Various programs have been 

implemented to increase the plant workers skills. These include in-class and 

on sites training related to equipment operation, trouble shooting and 

maintenance. These training are conducted continuously for technicians and 

operators as part of on-going efforts to empower them and enhance their 

competencies. 

iv. Engine and Compressor change-out policy: It is highly suspected that the 

turbine engine and gas compressor failures which caused high downtime 

during 2003 to 2005 periods are caused by over utilization of the equipment. A 

prudent approach has been taken to ensure that the equipment change-out 

action will be carried effectively according to the standard industrial practice. 

v. Technician logistics: A maintenance crew sparing policy is implemented in 

early 2009 in which turbo-machinery technician(s) is stationed at the platform 

to advise material personnel on the spare part requirement. 
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· · 5.4 Corrective Maintenance (CM) Maintainability Analysis· 

5.4.1 Exploratory Analysis 

For the purpose of maintainability analysis, the maintenance downtime data for both 

trains are combined since regardless of which train is under maintenance, the repair 

and maintenance works will be performed by the same pool of maintenance crews. 

As shown earlier, the availability performance trend of each train is highly 

influenced by the duration of CM downtime and its improvement. To better assess the 

improvement trend of CM downtime, a plot of average CM downtime per CM event 

is used and is shown in Figure 5.10 together with the ROCOF. This plot clearly 

indicates that there is an improvement trend in the average downtime per CM which 

signifies the effectiveness of the improvement initiatives discussed previously. The 

average availability trend is also shown in Figure 5.11 for comparison. 
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Figure 5.10: Overall GCT CM downtime event and ROCOF trend 
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Figure 5.11: Overall GCT availability trend 

5.4.1.1 Pareto Analysis 

The Pareto of the total CM downtime hours according to subsystem is depicted in 

Figure 5.12. Major downtime contributors are gas compressor (65.6%), gas turbine 

(23.9%), starter system (5.2%) and lube oil system (3.1%). Since this chart represent 

the whole seven operation years, it is necessary to see the downtime breakdown over 

the operation years to find out whether the proportion is still valid in the recent 

operation years. 
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Figure 5.12: CM downtime hours by subsystem (year 2002-2009) 
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- 5.4J2 Downtime Breakdown Over-time 

Figure 5.13 depicts the trend of downtime breakdown of those mam subsystem 

contributors over years. As shown here, high gas compressor downtime occurred in 

2003 and 2004. But since then, it has shown drastic reduction indicating the 

improvement activities carried out by the team paid off. However, downtime due to 

lube oil system has shown an increasing trend lately, which something that the 

management needs to investigate and focus on. 
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Figure 5.13: CM breakdown trend of major contributors 

5.4.2 Estimation of CM Downtime Measures 

Table 5.4 shows the CM downtime data for both trains which are combined and 

arranged chronologically. Based on these data, the graph of cumulative number of 

downtime against cumulative downtime hours is plotted to determine if an upward or 

downward trend exists over time. As shown in Figure 5.14, there is an obvious 

improvement trend since 2006, as indicated by a concave up plot trend. The Laplace 

test value, U, calculated for this data is 6.04, which is larger than the critical value of 

1.95 at 95% confidence level, also confirms the fact that the downtime is in an 
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improving· trend. The serial correlation test as shown in Figure 5.15, however, 

indicates that the data are independent since the data plot are randomly scattered. 

Table 5.4: Downtime data in chronological order 

no Downtime Cumulative no Downtime Cumulative 

(hrs) Downtime (hrs) (l1rs) Downtime (hrs) 

I 10 10 29 8 7791.5 

2 8.5 18.5 30 25 7816.5 

3 16 34.5 31 23 7839.5 

4 72 106.5 32 33 7872.5 

5 62.25 168.75 33 5 7877.5 

6 10 178.75 34 7 7884.5 

7 6 184.75 35 144 8028.5 

8 1630 1814.75 36 38.05 8066.55 

9 59 1873.75 37 24 8090.55 

10 10 1883.75 38 13 8103.55 

II 3998 5881.75 39 14.5 8118.05 

12 6 5887.75 40 1.5 8119.55 

13 9.5 5897.25 41 3 8122.55 

14 408 6305.25 42 3.7 8126.25 

IS 4 6309.25 43 1.5 8127.75 

16 42 6351.25 44 43 8170.75 

17 1.25 6352.5 45 3 8173.75 

IS I 6353.5 46 37 8210.75 

19 4.5 6358 47 2 8212.75 

20 1.5 6359.5 48 0.75 8213.5 

21 26 6385.5 49 4 8217.5 

22 1368 7753.5 50 0.5 8218 

23 II 7764.5 51 18.5 8236.5 

24 0.5 7765 52 0.5 8237 

25 7.25 7772.25 53 I 8238 

26 I 7773.25 54 liS 8353 

27 3.5 7776.75 55 257 8610 

28 6.75 7783.5 56 0.5 8610.5 
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Figure 5.14: CM downtime data trend 
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The decreasing trend in downtime duration also indicates that an approach based 

on assumption of constant repair rate could not be used to accurately estimate 

maintainability measures for the system. Besides, any attempt to model repair time 

using any lifetime model will be in serious flaw since the data are not identically 

distributed. A common approach for analysing data with trend is by modelling using 

NHPP model. This non-stationary model, however, is applicable when the trend is 

monotonic and produces result not in the form of the probability distribution but 

rather specific expected downtime duration within the certain given time. To 

determine the statistical distribution of the above data, two alternative methods 

namely steady-state pattern and expe11 input approaches are proposed. 
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5. 4. 2.1 Data Review for Steady State Pal/ern 

The trend test has indicated that the existing data is not in a steady state (identically 

distributed), hence it is not appropriate to use either the distribution or parametric 

approach in the analysis. A closer look at the cumulative plot highlights that in the last 

four years of operation, the data seem to level off (Figure 5.16). This steady state 

region can be highlighted by constructing a simple linear regression line using a least

squares method on those data as illustrated in Figure 5.17. The resulted line has large 

value of coefficient of determination, R2 at 0.903, which indicates a good measure of 

goodness of fit of the regression line to the data. To test whether the relationship is 

significant, a statistical test can be done using F test (Anderson et al., 2002), with the 

null hypothesis that there is no significant relationship between two variables. A large 

value of F indicates the rejection of the null hypothesis. The F test calculation 

resulted in F value of 300 which is greater than the critical value of 7.5 for Type I 

error, a = .0 I, thus indicates that the null hypothesis can be rejected. Given this 

significance statistical relationship, we can confidently assume that the data in the 

recent four years of operation can be established as appropriate data for representing 

the actual current downtime performance and can be used as a basis for evaluating 

maintainability I downtime measures. The constant downtime rate predicted based on 

the slope of the linear line is 24.4 hours per downtime (slope = 0.0041 

downtime/hours). 
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Figure 5.16: Steady state region in the data plot 
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Figure 5.17: Plot of regression analysis of the steady state region 

5.4.2.2 Expert Input (Censoring) Approach 

Alternative method for getting practical and appropriate data is by seeking relevant 

inputs from field experts on the expected machinery failure frequency and downtime 

duration based on their assessment on the effectiveness of current maintenance system 

and improvement activities. The field experts are those with vast knowledge, skills 

and experience on the operating and maintenance system as well as improvement 

actions undertaken on the system under studied, thus their inputs should be considered 

valuable and reflective of the current performance. In this study, the field experts are 

the mechanical and maintenance engineers who have been involved in the operation 

of the system since its commencement. The experts were given all the failure events 

data and were asked to specify which events that have high probability will not re

occur in the future as the results of improvement initiatives in the system. The 

elicitation results, based on the consensus among the experts, indicate six events 

which are listed in Table 5 and include failures related to gas turbine (3), centrifugal 

compressor (2) and lube oil system (I). 
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Table 5-.5: Downtime everits Considered one- off by experts 

Downtime (Ius) Cause Corrective action 

1630 Compressor bundle Replaced compressor bundle 
change-out due to broken with spare 
tie bolts 

3998 Rotor change out due to Failed compressor bundle 
high vibration was removed and spare 

compressor bundle was 
installed 

1368 Tripped on GG N2 pull Removed engine from skid 
away alarm sequence and replaced GG module 3 
failure 

144 Engine replacement due to Replaced engine with newly 
eroded HPT nozzle overhauled engine 

115 Flexible hose issue Replaced the flexible hose 

257 Lube oil contaminated Replaced the lube oil 

The experts believe that these issues are one-off events thus have very little 

possibility to happen again given effective corrective actions undertaken in the 

system, hence worthy to be excluded from the data. The remaining data are thus 

considered to be appropriately representing the downtime distributions of the system. 

5. 4. 2. 3 Distribution Analysis 

Three commonly used statistical probability distributions (exponential, normal and 

lognormal) are chosen to model the downtime data based on the two proposed 

methods. The conventional method which uses all the data points is also being applied 

for comparison purpose. Table 5.6 shows the results of the calculated distributions' 

parameters using MLE and values of KS test. The calculations of MLE and KS test 

are done using statistical software; Wei bull ++ 7 and SPSS. The KS test value 

represents the Z statistics which is the product of the largest absolute difference 
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· between the empirical and theoretical CDFs and the square -root of the sample size.-

The significant value is derived by comparing the Z-statistics with the table of critical 

value. The specified distribution can be considered fit when the significant value is 

more than 0.005. Based on the results, the lognormal distribution is found to be the 

best fit distribution for all three methods. 

Table 5.6: KS goodness-of-fit test for each data type 

Distribution Exponential Normal Lognormal 

/Data types Param. KS test Sign. Param. KS test Sign. Param. KS test Sign. 

All data i. = 0.0065 4.321 0.000 fl = 153.76 3.215 0.000 fl = 2.385 0.654 0.77 

(J = 595.12 (J = 2.052 

Steady- i. = 0.0397 IS44 0.002 ft=25.21 1.838 0.002 fl = 1882 0.407 0.99 
state 
pattern (J = 51.36 cr=l.717 

Expert ), = 0.0455 194 0.001 ft=21.97 2.52 0.000 fl = 1908 0.545 0.93 
inputs 

(J = 58.34 (J = 1529 

Note: Sign.< 0.005 indicates not a good fit 

5. 4. 2. 4 Maintainability Measures Analysis 

Table 5.7 lists the maintainability measures extracted from the lognormal distribution 

for all the three cases. Besides the mean downtime, the length of downtime at various 

percentages of probabilities (I 0, 50 and 90) of maintenance tasks to be completed can 

also be determined. This in formation is beneficial for management in maintenance 

system planning and for determining the costing, maintenance scheduling, technical 

and non-technical man-power planning, and availability projection. As seen from the 

table, the approach using all data points is rather pessimistic where the mean 

downtime is almost three-times higher than those of the other two methods. At I 0 and 

50 percent of maintenance tasks completion rate, the predicted downtime durations 

for all three cases do not differ much. However, they are distinctly varied at 90% 

completion rate where the expert inputs approach estimates the most optimistic length 

of downtime at 47.8 hours compared to 59.3 and 150.6 hours for steady-state and all-
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data approaches respectively. The maintainability plot for the three approaches ts 

shown in Figure 5.18. 

For comparison, a set of downtime data for 2009 and 20 I 0 is examined and based 

on the lognormal distribution (was calculated to be the best fit distribution for the 

data) the mean downtime is 6.6 hours with standard deviation of 8.9 hours. This result 

is relatively closer to those of the two proposed methods than using the all-data 

approach, thus indicates that the two proposed methods are more practical to be 

applied for establishing the proper downtime distribution. Furthermore, the recorded 

average repair time in OREDA handbook (OREDA, 2002) for combination of both 

gas turbine and centrifugal compressor is 29.3, which is near to the estimation figures. 

The estimation using NHPP model results in higher mean downtime at 120 hours, due 

to poor data fitting. The adoption of all-data approach to determine the downtime 

duration for maintenance planning, on the other hand will produce a pessimistic 

prediction which is a longer downtime allocation than what it is supposed to be. 

Table 5.7: Comparison of maintainability measures for all three approaches 

Ma i ntai nabi I ity All Data Steady State Expert inputs 
Measure 

Distribution Lognormal Lognormal Lognormal 

Parameters ~~ = 2.385 ~~ = 1.882 ~~ = 1.908 
cr = 2.052 cr=l.717 cr = 1.529 

Mean Downtime 
(MDT) (hrs) 89.1 28.7 21.7 

Std 726.5 121.9 66.4 

DT9o 150.6 59.3 47.8 

DT;o 10.9 6.6 6.7 

DT1o 0.78 0.73 0.95 
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Figure 5.18: Maintainability over time based on the three approaches 

5.4.3 Conclusion on CM Maintainability Analysis 

In conclusion, the proposed framework for performing CM maintainability analysis of 

plant system maintenance data can be illustrated in Figure 5.19. This framework 

enhances Blanchard model (Figure 5.1) by providing detailed steps in achieving more 

effective way of giving feedback on system performance at operation phase to the 

design team as well as to other similar operational platform. Relevant feedback on the 

improvement initiatives and lesson learns is essential for ongoing improvement in the 

design and performance of other similar systems. 

116 



I Objectives of analysis 

1 
I System Maintenance Data Collection 

l 
I Data verification & organization J 

I Exploratory analysis 

-Pareto 

-Data trend 

NO 

I ·Failure, downtime data 

·Causes and corrective ac 
·Downtime events definit 

Identification of 

critical factors I 
subsystems 

tions 
ion 

Assume 
Data Review NO NO 

I for steady state 

~"" 
liD? 

- NHPP 
condition 

-Steady-state pattern 
YES 

-Expert inputs 
al correlat1on test 

r ~ 
Distribution Parametric 
Approach Approach 

~ l 
I Parameters estimation (MLE) I Downtime I 

Maintainability 

l 
Measures 

I Goodness of Fit (K-S test) l 
1 

I Best Fit Distribution I 
l 

I 
Downtime I l MaintiJinability Measures 

1 
-Maintenance policy, manpower, Analysis of maintenance and logistic 
spare part planning support system 
-Availability prediction 

l 
l l 

Implement corrective actions 
Feedback to design engineer 

and system modifications 
and other similar operating 

system 

1+-

·Maintainability prediction 

d ·Lessons learne 
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- 5.5 Preventive Maintenance (PM) Maintainability Analysis 

5.5.1 Exploratory Analysis 

The trend over years of PSD downtime with breakdown for various PM types has 

been illustrated in Figures 5.6 and 5.1 0. The trend shows PSD downtime also has 

some effect on the system availability especially in the recent years, where it 

overweights the downtime caused by CM as a results of execution of more PM 

actions. For example, in 2008, train 1 experienced the highest PM downtime with 400 

hours because of planned compressor bundle change-out. For train 2, the 

implementation of GT engine change out pushed up the overall PM downtime in 

2009. In 2008, the increase was mainly due to relatively high 8K PPM downtime. The 

planned compressor bundle and GT engine change out, however, do not happen often, 

since they are normally planned once in every 3-4 years of operation. Nevertheless, 

based on their consequences on the system's availability, proper planning on timing 

and execution are crucial to avoid sudden drop in plant production output. 

For 4K, 8K and EW PM they are regularly performed each year to maintain the 

performances of the trains. As such, they have more data compared to compressor 

and engine change out planned maintenance, hence will be the focus of 

maintainability measures analysis next. The breakdown of PM downtime from 2002 

till 2009 for the overall GCT system is shown in Figure 5.20. Additionally, the Pareto 

of average downtime per PM event is described in Figure 5.21, which indicates CCO 

is the highest average downtime at 336 hours per event. However, it is important to 

note that the data gathered are rather limited as indicated by low PSD downtime 

events recorded in early years of operation. This low PM trend was due to tight 

production schedule which drove plant to extend or prolong time interval between PM 

and unrecorded data. Some of PMs had been performed concurrently with other 

maintenance repair during high CM downtime such as in 2003 and 2004 for train 2, 

hence there were no exact downtime data recorded on them. 
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Figure 5.21: Average downtime on each PM event 

5.5.2 Estimation of 4K, 8K and Engine Wash PM Downtime Measures 

Based on the maintenance data from 2002 till 2008, the shutdown durations for each 

PM is acquired and described in Table 8. The available data are quite limited, thus 

preventing accurate modelling of PM downtime distribution. To overcome this issue, 

an approach based on expert opinion has been proposed. 
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Table 5.8: PM downtime data for year 2002-2008 

PM Downtime data Average Std 90% confidence 
types (hrs) interval 

4K 44 59.75 12.6 30.02 - 80.48 
55.5 
67.5 
72 

8K 68.5 124.9 41.6 56.47-193.33 
78 
94 
104 
174 

Engine 3 9.4 3.75 3.23- 15.57 
wash 5 

5.4 
9 

9.5 
10 
II 
II 
II 
13 
16 

5.5.2.1 Motivationfor Eliciling Expert Opinion 

Even though there are no fixed rules concerning the number of samples required to 

develop statistical distribution of downtime, a large number of data are needed in 

order to distinguish the best fit among various possible models and get more accurate 

measures (Wadsworth, 1997). Since the data are limited and widely dispersed, 

standard statistical methods are generally inadequate to accurately estimate the 

downtime within the required statistical confidence levels. Field experts who are 

involved and familiar with maintenance and engineering aspects of the system can 

provide alternative source of estimation on PM actions duration. This estimation is 

stemmed from experts' observation and experience especially on issues, changes and 

improvement actions undertaken in the maintenance system, thus, can generally 

represent the existing maintainability performance. More importantly, the results of 

the evaluation will reflect more up-to-date information on maintenance capability as a 
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··result of all the Improvement actions lnentioned earlier, hence-· will produce better 

estimate of PM durations for future maintenance and operation planning. Involvement 

of experts in this analysis will also encourage more participation and ownership of 

plant personnel in the study, expose them to the techniques and most importantly tap 

their tacit knowledge. The proposed approach will provide a systematic and effective 

mean of utilization of experts' judgement for prediction which is generally not fully 

exploited in the industry. 

5.5.2.2 Proposed lv!ethodology 

A general method in elicitation of expert opinion, which involves three major steps: 

preparation; elicitation and measurement; has been presented in Chapter 2. Figure 

5.22 depicts a proposed flow in elicitation and measurement steps for estimating PM 

downtime. 

Elicitation on PM downtime distribution was done by interviewing experts who 

were the mechanical and maintenance engineers of that particular offshore plant. They 

had vast experience on that gas compression system operation, failure data and 

maintenance system. The elicitation data derived were based on the consensus 

between them. Before the downtime distribution for each PM action was elicited, 

various factors that affect the distribution had to be identified and considered. Neil 

and Marquez (20 1 0) in their modelling of corrective repair time distribution, refer 

these conditions as "repair lines" where each line has the probability of the occurrence 

and can be categorized by a repair time distribution. Examples of different types of 

repair lines include maintenance first line support, second line support and 

manufacturer support. 

Following a similar approach, in this study we requested the expert to state 

various scenarios which will atTect the downtime duration of PM actions. In contrast 

to Neil and Marquez (20 I 0) approach, which use arbitrary probability numbers in the 

model, this study use expert opinion inputs to estimate the downtime distribution for 

each scenario. The question asked during the interview was rather straight forward 
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"what is -the probability of scenario A to-oceur presently?". However to· make the 

expert more comfortable, an alterna,tive question was also asked "in I 00 events of the 

particular PM, how many times scenario X occurs?''. Table 5.9 presents the result of 

this elicitation process in which four different scenarios were identified. 

l Identify various scenario which can affect PM downtime I 
~ 

I Estimation of probability for each scenario I 
~ 

Estimation of downtime for scenario based on confidence level (95%,50%,5%): 
Q: The repair(downtime)will be completed in __ hours 

! 
Estimation of cumulative distribution function (cdf) I 

! 
!convert to probability density function (pdf) I 

! 
Aggregation of all scenario events pdf 

! 
Estimation PM downtime distribution 

Figure 5.22: Proposed flow for elicitation and measurement processes 

Table 5.9: Expert inputs on various scenarios affecting downtime distribution 

Scenario Description Probability 

1 No fault found during PM 0.9 

2 Minor fault found during PM (eg. Valve) 0.05 
, 

Major fault found during PM (eg. Blade) 0.025 J 

4 Delay due to external factor (eg. Logistics) 0.025 
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·The next process involves the estimation ofprobability distribution of each PM 

type ( 4K, 8K and engine wash) for each scenario. To facilitate the process, the 

average value of each PM event based on historical data was shared with the experts 

for their reference. Due to expert's lack of knowledge on the probability distribution 

family, an indirect elicitation approach using a fractile technique similar to those used 

by Walls and Quigley (200 I) was employed. Here, the expert was required to estimate 

the downtime duration based on specific confidence level in his belief. Instead of 

asking question, the statement approach was used where the expert was asked to 

complete the statement. An example of the statement is as follow: "I'm 95% 

confidence that the specific PM action will be completed in x hours", where the expert 

had to estimate that "x" downtime hours. The estimation of downtime hours were also 

sought for 50% and 5% confidence levels. The result of this process is shown in Table 

5.1 0. 

Table 5.10: Results of eliciting downtime distribution by percentile 

Scenario 2 3 4 

PM types Confidence Downtime (hours) 
level% 

4K 5 48 60 144 72 

50 72 84 192 108 

95 96 108 216 144 

8K 5 72 84 144 96 

50 96 108 192 132 

95 120 132 240 168 

· Engine Wash 5 4 16 124 28 

50 6 18 ISO 42 

95 12 24 180 60 
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5.5.2.3 Modelling of Downtime Distribution 

The expert inputs in Table 5.10 represent indirectly the cumulative distribution 

function (edt) for the downtime distribution. The 50% confidence level represents the 

median in which half of the downtime distribution is below that point. In this study, 

we first assume the downtime to follow a lognormal distribution since this is the most 

commonly used distribution for downtime found in the literature. This assumption, 

however, is subjected to change if the expert believes otherwise. The lognormal cdf 

can be expressed as 

(lnx-tl) 
F(x;tl,s) = <D s 

(5.1) 

where (} and s are the mean and standard deviation of downtime's natural 

logarithm, (jJ is a standard normal distribution cdf and x is the estimated downtime 

hours. The pdf equation is given by 

by 

J(x;e,s) = - 1 -e-('~~~!!)' 
xs )2Jr 

, X> 0 (5.2) 

The mean and standard deviation (std) of the actual downtime distribution is given 

0+1/,.1 ~ 
std=e 12 ve· -1 

For the case of 4K scenario I, Equation (5. I) can be expressed as 
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(5.3) 

(5.4) 

(5.5) 

(5.6) 



(5.7) 

Referring to the normal distribution table, the corresponding equations are as 

follows 

(5.8) 

(5.9) 

(5.1 0) 

Solving for() and s based on these three equations resulted in no single value for each 

parameter. Thus approximation technique using Solver function in Excel worksheet 

was employed. The estimated values of()= 4.27 and s = 0.194 were obtained and later 

being used to create a smoothed cdfplot as shown in Figure 5.23. This histogram plot 

was later shown to the experts for further verification and agreement. 

0.9 !iii Expert inputs 
0.8 

0 Smoothed cdf 
0.7 l 

0.6 -1 
>( 
l:L o.s i 

041 
:~ -1 ~ 
0 ~ J ______ m __ o,-0 __ ~__11 

40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 

Downtime hours (x) 

Figure 5.23: Lognormal cdf for 4K scenario I 
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The corresponding pdf plot is shown in Figure 5.24. The downtime mean and 

standard deviation were calculated to be 72.9 and 14.2 hours respectively. 

O.D35~ 

0.03 ·' 

O.D25 ·' 

i 
0.02 ! 

~ 0.015-

0.01 ! 

I 
0.005 J 

I 

I 

I 
I 
I 

I 

0 -1--,-~,-,--, -. ~.-~1-, -.-1----.---r-_____.....,-1-=;:~:;o--.,-

40 48 56 64 72 80 88 96 104 112 120 128 

Downtime hours (x) 

Figure 5.24: Corresponding lognormal pdf for 4K scenario I 

5.5.2.4 Downtime Dislribution Model 

The complete analysis results on each scenario for each PM type are presented in 

Table 5.11 which shows the proposed distribution and estimated parameters for each 

scenario. Lognormal distribution was accepted to be best model for all types of PM. 

Table 5.11: Summary of pdf distributions and parameters 

PM types Scenario 
lognormal Downtime pdf 

' 
() s mean std 

4K 4.27 0.194 72.9 14.2 

2 4.43 0.169 84.3 14.3 

" 5.26 0.072 193 13.9 J 

4 4.68 0.194 109.8 21.5 

8K 4.56 0.149 96.7 14.5 

2 4.68 0.133 108.7 14.5 

" 5.25 0.149 192.7 28.9 J 

4 4.88 0.162 133.4 21.7 

Engine Wash 1.79 0.259 6.2 1.6 

2 2.89 0.072 18 1.3 

" 5.0 0.113 150.9 17.1 J 

4 3.73 0.229 42.8 9.9 
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To get a ·single distribution for every PM type, all distributions from each scenario 

need to be combined taking into consideration the weighting factor of probability of 

occurrence. This distribution is called a marginal distribution and can be calculated 

using a linear opinion pooling technique (Clemen and Winkler, 1999): 

4 

/(D)= Lf(d I scenario= i)* P(scenario = i) (5.11) 
i=l 

where 

.f(D) = marginal downtime probability distribution for a particular PM type 

.f{d I scenario =i) =the probability distribution for scenario i ( i = 1 ,2,3,4) 

P( scenario =i) =probability of scenario i as given in Table 5.9. 

The resulted marginal distribution for 4K PM is illustrated in Figure 5.25. The 

best estimation of lognormal distribution (Figure 24) based on that marginal 

distribution was determined also using Solver function in Excel. The summary of 

estimated lognormal distribution parameters and calculated sum of squared errors 

(SSE) for all PM types is shown in Table 5.12. 

0.03-

O.o25 · 
·•- marginal distribution 

-v- estimated distribution 

0.02 < 

" ~ 0.015. 

0.01 -

0.005 

Figure 5.25: Marginal distribution and estimated lognormal distribution for 4K 

PM 
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Table 5.12: Estimated lognormal distribution parameters and errors 

4K 

8K 

Engine wash 

4.28 

4.57 

1.8 

0.204 

0.157 

0.278 

5.5.2.5 Plant Maintenance Data vs. Expert Opinion 

SSE 

5.80E-06 

2.60E-06 

1.70E-03 

The conventional method to determine the downtime distribution is by usmg 

historical plant data. The PM downtime distributions from plant maintenance data in 

Table 5.8 are analyzed using Reliasoft Weibull software and the estimated parameters 

are presented in Table 5.13. 

Table 5.13: Downtime distribution based on plant maintenance data 

PM Distribution 0 s std 

4K Lognorma I 4.07 0.254 60.5 15.6 

8K Lognormal 4.59 0.395 I 06.5 43.8 

Engine wash Lognorma I 2.15 0.496 9.7 5.1 

Based on these parameters, the pdf plots of downtime for each PM type are 

plotted and then compared against the one derived from expert opinion. Figures 5.26, 

5.27 and 5.28 show the comparison plot for each PM type. The summary of downtime 

distribution mean and std is shown in Table 5.14. 

128 



O.Q25 

0.02 

----------~ 

- - plant data 

--expert 
opinion 

>< 
~ I I 

I 
I 

I 

)( 
4::::; 

0.015' 

0.01 1 

0.005 I I 
J 

"' "' 
"' <0 
"' "' 0 "' Downtime hours (x) 

Figure 5.26: Expert opinion vs. plant data for 4K 
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Figure 5.27: Expert opinion vs. plant data for 8K 
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Figure 5.28: Expert opinion vs. plant data for Engine wash 
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Table 5.14: Comparison between plant data and elicited expert opinion downtime 
distribution 

Plant data Expert opinion 

4K mean 60.5 73.8 

std 15.6 15.2 

8K mean 106.5 97.7 

std 43.8 15.4 

' Engine Wash mean 9.7 6.3 

std 5.1 1.8 

From the plots it can be clearly seen that expert opinion produces better prediction 

for downtime distributions of 8K and Engine wash. The spread of the distribution is 

much tighter thus resulted in more accurate estimation. In the case of 4K, the 

distribution variation is comparable; however, the experts' prediction on downtime 

mean is higher than the prediction based on plant data. Based on the latest data for 

2009 and 201 0, the average PM recorded downtime for 8K and 4 K PM were 85 and 

95 hours respectively. These data are relatively closer to the value predicted by 

expert, thus also signifies that the expert opinion prediction method produce better 

estimate. There was no Engine wash downtime data recorded in 2009 and 2010. 

5.6 Chapter Summary 

The practical approach and applications of maintainability analysis have been clearly 

demonstrated in this chapter. Furthermore, the study highlights the importance of 

maintainability analysis as part of strategic tool for system improvement at operation 

phase. As such, this analysis is worthy of being considered and performed by plant 

management in more complete and extensive way on regular basis alongside 

reliability analysis. The case study presented has indicated that the GCT system's 
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availability performance is predominantly influenced by trend in maintainability 

rather than trend in reliability, thus further highlights the significance of performing 

maintainability analysis for the system. The proposed framework for maintainability 

analysis of plant maintenance data, presented in Figure 5.19, is found practical to 

measure maintainability of system with improvement trend. The role of field experts 

beyond a traditional method of merely providing and validating maintenance data in 

the analysis process has also been explored in this chapter. Here, their experience and 

judgement are directly used to estimate the duration to complete certain maintenance 

activity. The proposed method as described in Figure 5.22 provides a fresh approach 

of acquiring and employing such tacit knowledge for more effective decision making 

and can also be applied in other types of analysis such as reliability, safety and 

hazards when there is limited data availability. 

131 



6.1 Introduction 

CHAPTER 6 

AVAILABILITY ANALYSIS 

An in-depth discussion on availability analysis with regards to definition and related 

techniques has been presented in Chapter 2. Moreover, in Chapter 3, detailed step of 

the proposed methodology framework for conducting practical analysis at operation 

phase has been discussed. This chapter presents the applications of the proposed 

availability analysis approach and discusses its role as a strategic tool for assessing 

plant system performance and evaluate various plausible options or solutions to 

increase system availability leading to overall improvement in operation profitability. 

To demonstrate the importance of this technique, two case studies are presented; first, 

an acid gas removal unit (AGRU), a system in a gas processing plant; second, a gas 

compression train (GCT) system at an offshore platform, a similar system which has 

been used as a case study in previous reliability and maintainability studies. 

The following two case studies are presented to demonstrate the practical 

applications and importance of availability analysis for enhancing plant availability. 

In both cases, the methodology used for analysis follows the proposed steps in the 

framework for availability analysis described in Chapter 3. 
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6.2 Case Study 1: Availability Analysis on Acid Gas Removal Unit (AGRU) 

6.2.1 Objectives and Scope of the Study 

The plant management has raised the need to study the availability performance of 

AGRU as part of their efforts to improve the overall GPP operational profitability. 

Besides, the management sees the initiative as important for understanding and 

exploring availability modelling simulation technique as a strategic plant 

improvement tool. Upon further discussion with them, the specific objectives for the 

study are set as follows: 

• To model the existing AGRU system 

• To assess the availability of AGRU based on that model and its availability 

performance 

• To identify critical factors I equipment affecting the reliability, maintainability 

and availability performances 

• To assess various options for enhancement of AGRU availability 

The scope of the study is on analysis of AGRU system of GPP3, one of the gas 

processing plants. 

6.2.2 Data Collection and Analysis 

Generally three types of data are needed when performing availability study: Process 

flow diagram (PFD) supported with piping and instrumentation diagram (P&ID); 

Reliability and Maintainability (R&M) data; and maintenance system data. PFD and 

P&ID are needed for the construction of reliability block diagram (RBD) and for 

specification of the boundary for the studied system. R & M data used in this study 

are mainly in-house and collected from various sources such as maintenance records, 

SAP database (a computerised maintenance management system) and engineering 

report. In the absence of any particular information, other sources of data such as 
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OREDA database and pump flow reading are utilized. The process for R&M analysis 

is similar to those presented in Chapter 3. Due to many uncertainties related to data, 

constant verification exercise with field personnel is carried out throughout data 

gathering and analysis to ensure the outcomes are valid and relevant. The data used in 

the study are those from April2008 till June 2010 .. 

Gathering relevant data is the most time consuming and difficult task, due to the 

nature of the data availability in the plant. Most of failure data can be tracked in 

maintenance tripping record, which states when the trip started and ended. However, 

not all data in there, for example, P202 pump data are captured in another record 

which is totally in different format and not as complete as the maintenance tripping 

record. Besides issue with non-centralised failure data storage location, some of the 

existing records also suffer from error, missing and incomplete data. l-Ienee, to 

minimise uncertainties, further verification are performed by cross-checking the data 

with SAP and consulting field experts. 

Extraction and segregation of relevant data on SAP is found rather complicated 

since the SAP is overcrowded with too many infom1ation (e.g. it contains records of 

all actions on the equipment including those planned for the future), has unclear status 

whether a repair action has completed and is prone to human error during recording. 

Furthermore, failure data need to be transformed into operating time-based format, as 

discussed in previous chapters, before they can be analyzed for liD conditions and 

assigned appropriate reliability and maintainability model. This is quite a challenging 

task since maintenance tripping records only capture failure and downtime duration, 

but do not keep track various operating conditions such as operation, standby I idle 

modes and maintenance time. One particular example is when performing R&M 

analysis for P20 1 and P202 pumps, which are subjected to different types of operating 

modes. Since there is incomplete and vague record on operating modes, alternative 

method based on the real time flow rate reading recorded by sensors had been 

proposed by engineers to establish the operating time profile for pumps. In this 

approach, a graph of flow rates against time is plotted for each pump and compared 

with the specific operating conditions represented by the flow readings proposed by 

engineer. Table 6.1 shows the corresponding conditions set for different flow levels 
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of each pump type. The flow profile is also checked against maintenance activities 

such as turn-around (T A), mini T A and plant shutdown. An example of a flow reading 

plot for pump P20 I C of GPP3 is illustrated in Figure 6.1. To differentiate various 

operation modes, the flow is plotted with different codes: I = operating, 0.5 = 

standby, 0.25 = turn-around I AGRU shut down, and 0 = down due to failure. From 

this plot, the time to failure (TTF) of each failure event is detern1ined by accumulating 

all operating time (Coded I) since the previous failure event. Prior to that, all events 

with zero flow rates are verified by comparing them with maintenance failure record 

and consulting respective plant personnel for consistency. 

Table 6.1: Pump operation mode conditions based on flow rate 

Pump I 
Operation mode P201 P202 

Operating Flow rate~ 400 m3/hr Flow rate~ 200 m3/hr 

Standby Flow rate < 400 m3 lhr Flow rate< 200 m31hr 

Down (failure) Zero flow rate and not in Zero flow rate and not in 
standby standby 
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Figure 6.1: GPP3 P20 I C coded flow rate profile 

Flow rate data also provide insight on the existing configuration of pump 

operation. Previously it was assumed that P20 I pumps are operating based on two out 

three arrangements. However, the operation breakdown based on flow rates data 

indicates that most of the time only one pump or slightly more is on operation out of 

three, as illustrated in Figure 6.2. 
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Figure 6.2: Operation mode breakdown of P201 pumps for GPP2, GPP3 and GPP4 
(Notes: P20 I A pump of GPP3 was put out-of service) 
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6.2.3 Assumptions on Model 

Based on the collected data and discussions with plant engmeers the following 

assumptions are made in the study: 

1. Constant failure rate is used for equipment with limited or no failure data 

11. Perfect switching from standby mode to operational mode 

111. Downtime measurement is based on days (per the available flow rate data 

taken at 6 am daily) 

IV. Preventive Maintenance (PM) action is done concurrently with planned plant 

shutdown activities such as TA, mini TA etc. (opportunistic maintenance). For 

that, the simulation model does not include PM downtime distribution 

v. The downtime is assumed to include mean logistic delay and mean 

administrative delay in addition to the actual repair time (operational 

downtime) 

v1. Failures during standby I PM I turnaround are not considered as unplanned 

downtime 

VII. P201 and P202 are on 1 out of 3 configuration (only one is needed for the 

system to run) 

VIII. All static equipment is assumed in perfect condition since there is no failure 

recorded. For equipment with failure data less than 4, the average value is 

used to measure both failure rate and downtime 

6.2.4 RBD Model Construction 

The equivalent RBD model of the AGRU system constructed based on PFD, P&ID 

and plant engineers' inputs is depicted in Figure 6.3. The developed RBD is based on 

reliability wise arrangement which consists mainly of equipment that can potentially 

cause AGRU to down. Hence, the blocks arrangement is not the same as the process 

flow diagram. After the model is verified by the engineers, it is then reconstructed in 

Blocksim software, a specialised software used for availability simulation analysis. 

The equivalent diagrams of RBD in Blocksim are shown in Figures 6.4. In Blocksim, 
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sub-diagram can be used to facilitate model construction and keep the RBD in simple 

and neat arrangement as illustrated in Figure 6.4. Based on the finding of existing 

operational pump configuration, the model uses 1-out-of-3 configuration for p20 l and 

p202, instead of the designed configuration of 2-out-of-3, to produce realistic 

estimation of availability which is comparable with the recorded plant data. P202 and 

p20 l pumps basically have to run in pair with the same configurations for smooth 

operation. 

P2038 1-
• 

1 out-of 2 

Equipment notation: 

M =Vessel 

T =Heat exchanger 
A= Absorber 
P = Pump 
LV= Level control valve 
FV =Flow control valve 

PV = Pressure control valve 

1 out-of 2 

2 out-of 3 2 out-of 3 

r·8 l 
~M-2-02~~------~~~--~0~~-~ 

I !,--,..,,.,.,1 

e--
3 out-of 4 

Figure 6.3: A conceptual RBD model for AGRU system 
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Figure 6.4: AGRU RBD constructed in Blocksim which contains sub-diagrams A20 I, 

A202 and M205 

140 



Before simulation is performed, all relevant information related to reliabilily, 

maintainability and maintenance scheme need to be input into each block of RBD. 

Reliability inputs include type of distribution model and its parameters. In 

maintainability, the required infom1ation is the distribution types and parameters (or 

downtime average for assumed constant repair rate) for CM actions. Since all PM 

activities are carried out during major shutdown, no PM input is required in the 

model. Based on the maintenance data for the period of study, only a small number of 

equipment in the system experiences many failures. Many of equipment have zero 

failures and some have less than three failures. In the latter case, an average value is 

used for estimation of R&M values. In reliability, the estimated value is assumed to 

follow exponential (constant failure rate) and for maintainability it is considered a 

fixed downtime duration. Statistical modelling is not appropriate here due to small 

sample, otherwise it will produce inaccurate model with high uncertainties. The list of 

equipment with R&M data are shown in Table 6.2. These data are then used to 

populate respective block in the RBD. 

Table 6.2: R&M data inputs for GPP3 

Reliability Ma i ntainabi I ity 
Equipment Distribution Parameters Distribution Parameters I downtime 

P3-20 I A Exponential 1..=0.000514 Fixed duration 347.5 hrs 

P3-20 I B Exponential 1..=0.0005 Lognormal ~~ = 4.785, a= 1.29 

P3-201C Exponential 1..=0.0005 Lognorma I ~~ = 4.063, a= 1.47 

P3-202A Exponential /..=4.6 X 10"4 Fixed duration 1344 hrs 

P3-202B Exponential A.=J.986 x 1 o"" Fixed duration 72 hrs 

P3-202C Exponential A.=5.6 x 1 o·5 Fixed duration 372 hrs 

LV-2004 Exponential A.=O.OOO I 075 Exponential /..=0.286 

PV-2014 Exponential 1..=0.0001613 Fixed duration 1.95 hrs 
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Once the RBD is populated with required data and verified by plant experts, the 

next process is to set a proper design for simulation process. In this study, the 

following variables are set: number of iteration = I 000; time duration = I year (8760 

hours); and seed number= I. The simulation outputs are recorded after running I 000 

iterations, where each iteration corresponds to a model run over one year period. An 

example of simulated operating state for the last iteration is illustrated in Figure 6.5. 

The plot shows the simulated up and downtime state for all affected components in 

one operation year. The availability of the system can be calculated based on the 

average uptime and downtime of all iteration results. The corresponding instantaneous 

system availability plot during the simulation run is depicted in Figure 6.6. In early 

part of the plot, the point availability indicates high variation as the number of 

iteration is still small; however it reaches asymptotic level towards the end of 

simulation period as the average value becomes more stable. 

I i I i i I i I I I I ,1' _____ --~- _____ _1_~.--L _: ___ L_! ____ L. __ ~' -·--~ 

0 1752 3504 5256 7008 8760 
nme, (t) 

Figure 6.5: Snapshot of simulated block up I down (operating states) in the last 
iteration 
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Figure 6.6: The instantaneous system's availability value during simulation 

6.2.5 Model Simulation and Validation 

The results of the simulation and the equivalent availability from plant report are 

tabulated in Table 6.3 for comparison and validation. The difference in result is highly 

expected due to different method of calculation and uncertainties related to data, RBD 

and various assumption used. Hence, generally in many studies, the simulation result 

is often used as an indicator of the existing system performance (AI-Thani et a!., 

200 I). This indicator is used as a base value for assessing relative performance of the 

system when the system parameters and operation conditions are changed. 

The estimated availability from simulation is slightly higher than that of plant 

report but still within the acceptable range of accuracy ( < I%). Hence, it can be 

concluded that the model is valid to represent the real AGRU in term of availability 

performance estimation. This model can be referred to as a base case for the existing 

system configuration and performance, and can be used for strategic decision making 

to improve the system. Using this model, engineers can perfom1 various studies on the 

system such as evaluations on the impact of modification in plant design (i.e. adding 

new section or expanding the existing facilities), utilization of new equipment, adding 

standby equipment, changing in spare parts allocation and maintenance system, 
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policy, crew and effectiveness, to system's availability. ·Understanding influential 

factors to. system performance will assist plant management and engineers produce 

right and effective decision making when planning for improvement actions. 

Simulation based on OREDA data is also conducted for comparison (Table 6.3). 

Here, the failure rate of critical failure based on operational time and active repair 

time of centrifugal pump, general pump and control and safety valves are inputted 

into the model. The estimated availability based on 1-out-of-3 pump configuration is 

99.87%, relatively better than the simulation result based on plant data indicating that 

the system real performance is slightly lower than the industrial average. 

Table 6.3: Comparison of actual system availability and simulated results 

Scenario Availability(%) std 95% confidence delta % difference 

AGRU field report 99.4 
(2008-20 I 0) 

Simulation (I year) 99.79 0.0057 99.76-99.83 0.39 0.39 

OREDA (simulation) 99.87 0.0012 99.86-99,88 0.47 0.47 

The simulated availability of the system can also be verified based on analytical 

calculation (static availability) of equipment under steady state condition (constant 

failure and repair rate). The obtained result is 99.77%, which is comparable to the 

simulation result. Detailed calculation of the analytical approach is presented in 

Appendix C. 
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6.2.6 Applications of Availability Simulation as a Decision Support Tool 

6. 2. 6.1 Analysis offactors affecting .system performance 

The above simulation results are based on the assumption that only one out of three 

pumps is needed for operation instead of the specified operation design of 2-out-of-3. 

The existing configuration is set because current gas stream received from offshore 

fields contain relatively low C02 level thus does not require many pumps in 

operation. In the case of failure, the operation can quickly switch to any of two 

standby pumps resulting in minimum duration of system downtime. Depending on 

gas well compositions of incoming gas stream and possibly the inception of newly 

found fields, there is possibility in the future that the plant may receive gas with high 

C02 concentration. At this moment P201 and P202 pumps operation has to be 

reverted to 2 out of 3 configurations. It is imperative to understand what would be the 

resultant impact to AGRU and overall plant performances so that appropriate counter 

measure actions can be planned ahead. The simulation result of the system with 2-out

of 3 against 1-out-of-3 pumps configurations, set as a base case, is shown in Table 

6.4. The impact of running 2-out-of-3 configuration in the model is a 4.16% 

reduction in availability. This is considerably significant value since the equivalent 

loss is estimated to be US$998K per month (based on daily production of 800 

tonnes/day and Ethane price at US$! 000/tonne). Running of simulation using 

OREDA data (2-out-of-3 configurations) resulted in availability of 99.44%, a mere 

0.35% reduction from the base case. When compared to OREDA simulation with 1-

out-of-3 configuration, the difference is 0.43%. These findings indicate that the 

existing system's availability is highly dependent on P201 and P202 performances. 

The availability assessment based on analytical method (Appendix C) for 2-out-of-3 

case resulted in 94.96%, which is relatively close to the simulated result (less than 2% 

discrepancy). 

145 



Table 6.4: 2-out-of-3 configuration vs. base case 

Simulation scenario Availability delta % difference 

1-out-of-3 (base) 99.79 

2-out-of-3 95.64 -4.15 4.16 

From the simulation results, further analysis on equipment performance and their 

contribution to system downtime can also be conducted. The criticality of equipment 

to system's availability can be assessed based on the percentage of time a downing 

event of that equipment caused the system to go down. This percentage is also called 

downing event criticality index and is used to rank equipment criticality with regards 

to system's unavailability (Reliasoft, 2007). Table 6.5 lists the performances of 

critical equipment based on simulation results. As expected P201 pumps top the list, 

followed by pressure control valve PV2014, level control valve L V2008 and p202 

pumps. PV20 14 and L V2008 have high criticality index since any failure of these 

equipment will definitely bring the system down due to their reliability-wise 

arrangement in series. Nevertheless, their downtime durations for each failure event 

are extremely lower than those of P20 I and P202 pumps. Despite running on 2-out

of-3 configurations, P201 and P202 pumps criticality are high mainly due to their long 

downtime. 

Table 6.5: Performances of critical equipment 

Equipment system down criticality no of equipment 
event index failures downtime(hrs) 

P201 2.31 41.87% 11.47 2839.7854 

PV2014 1.424 25.81% 1.424 2.7768 

LV2004 0.903 16.36% 0.903 3.1128 

P202 0.881 15.96% 4.665 3374.6639 
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6.2.6.2 Evaluate availability improvement optionsfor 2-out-ofJ pump configuration 

To mitigate possible loss in production as a result of increased requirement in pumps 

utilization, appropriate counter-measured plans need to be considered by 

management. Generally, increase in system's availability can be achieved either by 

adding redundancy or reducing repair time (downtime) or improving reliability. The 

question is how much improvement is needed? Hence, to assess various possible 

scenarios to achieve at least 99% availability target (close to current performance), the 

following improvement actions are evaluated: 

1. Redundant unit for P20 I and P202 pumps 

11. Reduction in P201 and P202 maintenance downtime 

111. Increase in PV2014 reliability 

In the first case, each unit ofP201 and P201 pumps is put into the system and the 

system is run with 2 out of 4 configurations. There are two possible options in 

choosing the pump type; turbine driven pump (P201/P202 A/B) and electric motor 

driven pump (P201/202 C). For a redundant pump based on turbine driven, reliability 

and maintainability performances similar to P20 I B and P202B are opted since the 

values, particularly downtime, are better than those ofP201A and P202A. 

Improvement in pump reliability (decrease in failure rate) and maintainability 

(decrease in downtime) also can improve system's availability. When compared with 

OREDA data, both failure rate and downtime values of all pumps are higher than 

those of OREDA (OREDA failure rate= 70.52 per 106 hrs; repair time= 39.7 lm), 

however, the difference is more significant for the downtime than for the failure rate. 

Therefore, in this study, the analysis will focus on downtime improvement since it has 

greater impact to increase availability. Two options based on reduction of downtime 

are analysed. ln the first option, the average of downtime for all pumps is set to 5 days 

( 120 lm), while in the second option the downtime average is set to 3 days (72 hrs). 

Based on the ranking of criticality index, PV2014 is a critical equipment next to 

P201, hence it is worth to investigate its impact on overall system's availability. 

Compared to OREDA, the performance of PV20 14 reliability is much worst (6. 79 per 
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I 06 hours vs. 1.613 per I 04 hours), whereas its maintainability is better (9.1 hrs vs. 

1.95 hrs). Hence, in this simulation, PV2014 will use OREDA data as a reliability 

input while maintaining the operational data for downtime. 

From the simulation results of all possible scenarios, sensitivity analysis can be 

done to understand the impact of each improvement option. The results of the 

sensitivity analysis for all five simulated scenarios (two with redundancy, two with 

downtime improvement, and one with reliability improvement) are shown in Table 

6.6. 

Table 6.6: Sensitivity analysis for various improvement options 

No Sensitivity title Estimated Absolute % Remarks 
Availability impact impact 
(%) (%) 

Base case 95.64 2-out-of-3 configuration 

2 Redundancy A* 99.43 3.79 3.97 Add P20 I B and P202B 

3 Redundancy B * 99.55 3.91 4.09 Add P20 I C and P202C 

4 Downtime set at 120 hrs 98.82 3.18 3.33 For all P20 I and P202 

5 Downtime set at 72 hrs 99.49 3.85 4.03 For all P20 I and P202 

6 PV2014 with OREDA data 95.57 -0.07 0.07 Use OREDA failure rate 

Note*: 2 out of4 configurations 

The results show that adding redundancy into the system basically will generate 

an average of 4% improvement in the system's availability performance. This action, 

however, will incur some costs due to new equipment installation. Improvement in 

PV2014's reliability, on the other hand, has no apparent impact to overall system's 

availability, thus it is not a good consideration. The impact of having improvement 

(reduction) in equipment maintenance downtime for comparison is an estimated 

increase of 3 to 4% to system's availability. This seems to be a better option since it 

involves investigation on reasons why the downtime is high and taking appropriate 

corrective actions to rectify the problems. It is expected that high equipment 

downtime is mainly due by current maintenance practise of putting low priority on 

getting back the equipment into operational mode since only one operated pump is 
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sufficiently required to· support production at any time. Another reason is the 

ineffectiveness of repair actions, which based on the data analysis shows some 

failures with long downtime are multi-causes hence require more time to fix. Sending 

faulty equipment to overseas. for repair/overhaul also increases downtime since it 

normally takes longer time for equipment to return. In order to improve equipment 

maintainability hence system's availability, it is necessary for plant to revise its 

maintenance priority of attending pump failure and carry out other improvement 

actions which can cut down maintenance downtime. These actions may include 

improvement in logistics (spare parts allocation and location; repair strategies: in

house or external; etc.), manpower planning and skills, and more effective root cause 

failure analysis, trouble shooting and repair actions. 

6.3 Case Study II: Availability Analysis on Gas Compression Train (GCT) 

6.3.1 Objectives of the Study 

To further demonstrate the strategic roles of availability modelling for effective 

decision making, a case study on GCT is presented. The analysis on reliability and 

maintainability of the system has been discussed in detailed in the previous chapters. 

In this chapter, the availability modelling and simulation are carried out on each of the 

train and on the overall system when both trains are arranged in parallel system. The 

objectives of the study are to develop an appropriate availability model for the GCT 

system and to assess the impact of removing 4K ppm activity from the operation. The 

latter objective stems from the result of discussion with plant maintenance 

management about possible improvement actions to further reduce maintenance and 

operational costs. 
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6.3.2 Development of Availability Model 

Similar to the AGRU system, the GCT system can be modelled using RBD approach 

in Blocksim. In this model, however, RBD blocks are specially created for various 

maintenance activities conducted on the system unlike the normal practice of 

assigning each block to represent individual component in the system. This approach 

is necessary since Blocksim has limitation in capturing more than one PM activity in 

one equipment block. The proposed model for each train consists of 4 blocks as 

illustrated in Figure 6.7, where each block represents each maintenance action. These 

blocks are arranged in series since any occurrence of maintenance event in any block 

will bring down the GCT operation. The schedule and frequency of each PM actions 

are set following the existing system arrangement, where 4K and 8K ppm are done 

once per year, and engine wash (EW) is conducted twice a year. The reliability data 

(time to failure distribution) is input into a CM (corrective maintenance) block. These 

data are taken from the results of reliability analysis which are presented in Chapter 4 

(Table 4.6). For maintainability input, the type and parameters of CM downtime 

distribution of each train is estimated based on 2006 till 2009 data. The data for PM 

downtime distributions (4K, 8K ppm and engine wash) on the other hand, are derived 

from the outcome of expert opinion presented in Chapter 5 (Table 5.12). Other 

important data that need to be input into the PM blocks are the scheduled time for 

performing each of the PM action. The summary of reliability and maintainability 

inputs for train I and 2 are described in Table 6.7 and 6.8 respectively. 

L-.IH'----....l· HL-.11 ~1'-----' 
CM 4k 8k EW 

ppm ppm 

Figure 6.7: RBD configuration for a single GCT which consists ofone CM block 
and three PM blocks 
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Table 6.7: R&M input data for GCT I 

Block Data* Distribution Parameters 

CM TTF Exponential A.: 0.000513 I hr 

CM DT Lognormal ~t: 1.713, o: 1.6852 

4K ppm DT Lognormal ~:4.28, o:0.204 

8K ppm DT Lognormal ~:4.57, o:O.I57 

EW DT Lognormal w 1.8, o:0.278 

Table 6.8: R&M input data for GCT 2 

Block Data* Distribution Parameters 

CM TTF Exponential A.: 0.000596 I hr 

CM DT Lognormal ~:1.702, o:l.2215 

4K ppm DT Lognormal ~:4.28, o:0.204 

8Kppm DT Lognormal ~:4.57, o:O.I57 

EW DT Lognormal w 1.8, o:0.278 

Note*: 'lTF- time to failure. DT- Downtime 

6-3.3 Availability Simulation and Validation 

Simulation runs are carried out for each train based on I 000 iterations for one year 

period. Apart from that, the overall availability of CGT system is assessed by having 

both trains arranged in parallel. Figure 6.8 shows the RBD that describes this 

arrangement. In this model, even though both blocks have been assigned with the 

same PM schedule, a slight change in PM schedule inputs is required in one of the 

train (in this case train 2) by adding 200 hours lagging factor. Otherwise, the PM 

events for both trains will occur concurrently (both trains are down for PM actions on 

the same time), which is not realistic as per current maintenance practise where 

schedule PM are carried out in staggered between both trains to avoid total system 

shutdown. The resulted simulation output is shown in Figure 6.9, which confirms that 

none of similar PM actions happen at the same time. 
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Figure 6.8: CGT system with both trains run in parallel 
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Figure 6.9: Simulated up and down states in the last iteration of simulation for each 

block 
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The simulated values of the availability then can be compared with the availability 

figures recorded in engineering report for year 2009 for validation. The results of 

simulation and recorded plant data are shown in Table 6.9. Comparatively, for both 

trains, there is not much different between the simulated results and the plant data, 

thus indicating the model is valid and can reasonably be used to assess the system 

further. There is however, a significant different for the overall GCT system results. 

This discrepancy is anticipated due to the differences in the calculation of both 

techniques. The plant record determines its overall availability by taking average 

value of both trains; whereas in the simulation, based on the parallel configuration, 

the overall GCT system is down only when both CGTs down in the same time 

interval. 

Table 6.9: Results comparison between simulation and plant data 

Simulation Plant data Delta 

GCT I 

GCT2 

Overall GCT system 

95.99 

96.66 

99.71 

96.8 

96.9 

96.85 

6.3.4 Availability Analysis as a Strategic Improvement Tool 

-0.81 

-0.24 

2.86 

Based on the discussions with maintenance management, they are contemplating on 

running with one PM action; 8K ppm, per year to further improve plant's availability 

and reduce overall plant maintenance cost. Previous analysis using proportional 

hazard model and Kaplan Meier in Chapter 4 indicate that there is no clear evidence 

that PM actions (4K and 8K ppm) have significant influence on system's time-to

failure distribution (except when perform together with Engine wash). Thus, it can be 

safely assumed that the removal of 4K ppm alone most likely will not deteriorate the 

system performance. 

To illustrate the practical use of availability simulation, a scenario in which 4K 

ppm is removed from the maintenance scheme is evaluated. The corresponding 

simulation results are shown in Table 6.1 0. 
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Table 6.10: Estimated impact on availability from removing 4K ppm based on 
simulation 

Existing configuration Without 4K ppm 

Availability Downtime* Availability Downtime* Availability 
(%) (hrs) (%) (hrs) Gains(%) 

Overall GCT system 99.71 25.27 99.95 4.26 0.24 

GCT I 95.99 351.3 97.63 207.6 1.64 

GCT2 96.66 292.7 98.35 144.5 1.69 

Note*: Estimation of overall downtime (CM plus PM) in one operation year 

Based on the results, by removmg 4K ppm maintenance operation, the system 

availability can be increased by only 0.24% when both trains are running in l-out-of 2 

configurations (50% shared loading). However, if the trains are expected to run in 

full capacity (both are running), the estimated gain is higher at an average of 1.66% 

per train. Based on the estimated current price of gas at US$ 4 per mcf (thousand 

cubic feet) and output of 140 MMSCFD per train, the estimated value of output per 

train per day is around US$560K (I MMSCFD = 1000 met). Hence, the equivalent 

saving per train when it is run with this configuration is estimated at US$9.3K per day 

or US$3.42 million/year. In comparison, the estimated amount of saving when the 

system operates in 50% shared loading is only US$1.33K per day (US$487K/year). 

Looking at the current trend where most of the time both trains are running full 

capacity to meet demand, the proposal to eliminate 4K ppm seems very attractive due 

to its significant potential saving hence it is worth consideration. 

6.4 Chapter Summary 

This chapter demonstrates the applications of availability modelling and simulation 

using the proposed methodology framework in Chapter 3 to evaluate the existing 

operational system performances. As demonstrated in the two case studies, the 

availability analysis can be used effectively as a strategic management tool in decision 

making process for improving plant bottom line. Using "what if' approach, various 
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possible scenarios can be simulated and their impact to system's availability can be 

determined. Based on the case studies, the results of availability modelling technique 

using RBD and simulation is found practical to appropriately represent real 

performance of existing systems within the acceptable accuracy range. The 

application of blocks in RBD is not just limited to description of equipment and their 

reliability-wise arrangement in the system, but as in the OCT case study, it can be 

used to represent various maintenance schemes and conditions for appropriate 

availability modelling. The validity of availability analysis, however, is highly 

dependent on the accuracy of reliability and maintainability data. l-Ienee, the use of 

good quality and sufficient field data are critical in the analysis. Involvement of plant 

personnel throughout the study is necessary to furnish, correct and verify all relevant 

data. In the case of lack of relevant data, as in AGRU case study, alternative source of 

information such as flow rate is proposed to describe operating states of equipment (in 

this case pump) more accurately. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Introduction 

This chapter summarizes the findings and highlights the contributions of the research. 

The findings include several important points relating to the case studies and current 

industrial practice based on observation and field feedback. Research contributions to 

the knowledge, in particular the frameworks for applying reliability, maintainability 

and availability analysis as a strategic tool for improving system performance are also 

presented. Further, this chapter discusses on research limitations and recommends 

potential areas for future research. 

7.2 Conclusions 

The proposed framework presented in this thesis is found effective in analysing gas 

processing systems at operation phase for improving their operational and 

maintenance performances. Three proposed frameworks for applying reliability; 

maintainability; and availability analysis, as demonstrated through real industrial case 

studies, can be potentially applied by management as a strategic tool for assessing 

current operation and maintenance conditions, identifying weaknesses in the system 

and deciding on the best improvement option. Each one of the analysis can be 

performed separately or can be integrated into a comprehensive RAM study for 

overall improvement of system performances. 
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The overv1ew of an integrated framework of reliability, maintainability and 

availability analysis was presented in Chapter 3 (Figure 3.1 ). A more comprehensive 

description of the proposed integrated framework is shown in Figures 7.1. The study 

should start with clear objectives before proceeding to further detailed analysis. Both 

reliability and maintainability (R&M) analysis follow a general flow described in 

Figure 3.2, which include exploratory and inferential analysis to produce estimation 

of R&M measures. In case of insufficient data, expert opinion elicitation method 

based on Figure 5.22 can be employed. The results of R&M measures estimation are 

then input into the availability modelling during the RBD construction step. In 

availability analysis, simulation technique is used to estimate system's availability 

and perform "what-if' scenario improvement options. The results of R&M and 

availability analysis can be used to assess the system and recommend appropriate 

actions to improve its performances. 

The case study approach used in this research managed to expose actual and new 

problems faced by industries and in the analysis processes. Issues such as insufficient 

data and data with non-monotonic improvement trend have been highlighted and 

addressed in the study. Although the frameworks were formulated and demonstrated 

on the two gas processing systems, they are equally applicable to other systems in oil 

and gas industries. 

Plant personnel involvement in the analysis processes, particularly experts was 

found crucial in the implementation of the proposed frameworks. The level of 

engagement varied across the analysis depending on the field data conditions and 

system complexity. Besides general tasks of providing inputs on data collection, 

verification and classification processes and validating model, the roles of field 

experts was extended to provide valuable assessment on effectiveness of maintenance 

improvement actions and estimation on data distribution. This level of participation 

has provided a good platform for engineers to incorporate their tacit knowledge on 

plant operation into reliability analysis systematically. Direct involvement of field 

personnel during the study also assisted in promoting the applications of reliability 

analysis and techniques in the organization under studied, which is currently still 

relatively low. 
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7.2.1 Observations from this Research 

This research reveals several important points and real issues related to managing and 

performing reliability analysis in the industry. These points should be considered in 

any reliability related study, to ensure the analysis is effective and the organization 

gains the most benefits. The following are highlights of key findings of this research. 

i) The collection, organization and verification of field data are the most critical 

components of reliability analysis processes since they determine the quality 

and usefulness of the results. These, however, are the most difficult and time 

consuming tasks. It is evidence from the case studies that some of the pertinent 

issues with field data include incomplete, missing, non-centralized and non

standardized data, even for an old operating plant. All of these make the 

analysis process tedious and more challenging. To overcome these problems, 

inputs from field personnel are fundamentally crucial and the use of 

unconventional form of data can be a good option. For example, as 

demonstrated in the study of AGRU, the flow rate value is used to establish 

the operating conditions of pumps in the absent of relevant data. 

ii) Exploratory analysis plays critical roles in reliability and maintainability study 

of field data and should be performed in the early stage of study before more 

in depth statistical analyses. This analysis can provide insights on the 

performance of the system under studied. The plots of cumulative number of 

failures over cumulative operating time, and cumulative downtime numbers 

over cumulative downtime duration, for example, are found very useful in 

gauging current system operational patterns, providing clues on outlook of 

system performance and identifying suitable mathematical model for 

predicting future trends. 

iii) Maintainability analysis is found to be as critical as reliability analysis for 

system at operation phase since it can be a dominant factor influencing the 

availability performance, as demonstrated in the gas compression train system 

case study. The findings from maintainability analysis will reveal the overall 

effectiveness of maintenance system and improvement actions. Important 

161 



attributes from the findings such as lesson learned, best practices and effective 

mitigation actions should be well shared not only with others at operation but 

also be feedback to the design team responsible for the development of similar 

systems in future. Proven improvement program addressing logistics issues 

such as vendor support and spare parts availability should be well established 

before the system commences operation. 

iv) The assumption of constant failure and repair rate (random event) has to be 

tested first by means of statistical analysis, before it can be applied, even 

though it is generally acceptable for failure rate at system level due to the 

effects of various subsystems and components. Similarly an liD test should be 

performed on the field data before they can be analyzed using life data 

analysis (LDA) approach. 

v) Reliability data analysis is not a well-known technique among engineers and 

management even though they are aware of the importance of having reliable 

operation. The analysis is usually done on ad-hoc basis and generally suffers 

from unstructured and unsystematic approach. Issues such as inadequacy, poor 

reliability and traceability of the existing database usually cause the studies to 

take longer time to complete and the results to be subjected to greater 

uncertainty. Other concerns include lack of skills and competency in the 

techniques and prevailing scepticism towards statistical-based analysis results 

amongst management. Nevertheless, the tendency in considering reliability 

analysis as an important improvement tool is rapidly apparent in the 

organization under studied based on their good support and participation in the 

case studies. 
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7 .2.2 Contributions of the Research 

This research aims to fill in the gap found in the literature on the applications of RAM 

analysis in the industries, particularly in oil and gas sector. Main contribution of the 

research is the proposed framework for implementing reliability, maintainability and 

availability analysis effectively to improve gas processingsystem performances. 

This research further enhances the knowledge thus far in the RAM analysis of 

plant system at operation phase in actual industrial applications in the following areas: 

1. It provides generic frameworks on how to perform and apply reliability, 

maintainability and availability analysis individually (Figures 3.1, 3.2 and 3.4) 

and collectively (Figure 7.1) as a strategic tool for plant management to 

evaluate existing performances, identify critical factors and overcome 

operational challenges. 

2. It presents practical approach on how to tap, engage and exploit plant 

personnel and field expert's knowledge in the analysis processes (Figure 5.22). 

The proposed expert elicitation method to quantitatively estimate probable 

distribution of maintenance data can also be applied to other situations where 

the data are scarce and limited. 

3. It addresses the issue of predicting system performance having non-monotonic 

trend as a result of maintenance and operation improvement, as in the case of 

corrective maintenance downtime of gas compression train system. 

Approaches based on linear regression and expert censoring techniques have 

been proposed in that situation (Figure 5.19). 

4. It presents a framework (Figure 5.19) for conducting maintainability analysis 

at operation phase thatenhances the maintainability requirement model 

described by Blanchard et a/. (1995) in Figure 2.5, by looking at ways of 

sharing lessons learned and providing more effective feedback on operation 

performance to both the design team and other plant personnel working on 

similar system. 
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5. It outlines a framework for integrating availability modelling and simulation 

techniques to assess various operational situations and estimate availability 

gained, upon which can be used to assist management in the strategic decision 

making process (Figure 3.4). 

7.3 Limitations of the Research 

The main limiting factor in this research is the unavailability of relevant and quality 

field data which is a crucial element in the analysis processes for producing more 

accurate, complete and meaningful results. The lack of failure data within the system 

hierarchy impede more exhaustive analysis to be conducted. For example, a lifetime 

analysis on components could not be adequately performed because the data are not 

generally well established at the component level compared to those at the equipment 

and system levels. Besides that, there is an issue with limited number of failure data 

due to fewer failure events during the observation period which prevents more in

depth reliability analysis such as data analysis by failure modes. Such analysis is 

important for assessing the impact of certain failure modes and providing some 

physical justification to system lifetime distribution (Doganaksoy eta!., 2002). Some 

data are also not readily broken down into more specific categories. For example, in 

the current recording system of downtime data, main elements of downtime 

breakdown i.e. active repair time, logistics and administrative delay, are not clearly 

distinguished. Consequently, it is not possible to proceed with higher level of analysis 

beyond downtime and single out the main cause of high downtime incident. 

Another issue is the unavailability of costing data, which is an important element 

for analyzing the best economic option. Maintenance and operation optimization 

generally involves trade off of different factors for achieving the most cost effective 

solution. This approach however is not being explored in-depth in the research. The 

main obstacle is on the unwillingness of plant personnel to release information on the 

matter, most possibly due to difficulty to quantify and generalize the impact of failure 

in terms of different cost elements such as labour and spare parts. Despite that, an 

attempt to consider this factor has been presented in Chapter 6 for justifying the 
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proposed preventive maintenance strategy for gas compression train system on the 

basis of gas production rate and its equivalent price. 

7.4 Recommendations for Future Research 

This research indicates maintainability as a significant factor influencing system 

availability at operation phase, hence an in-depth study should be carried out to 

identify the real causes of high downtime. Poor maintainability could be due to 

various factors such as maintenance support policy, operators' allocation and skill, 

process workflow and documentation, spare parts provision and supplier contract 

policy (IEC 60300, 2001). The study should start with breakdown analysis of 

downtime data for each of downtime elements i.e. repair time, logistics and 

administrative delay time, and then further investigate what are the contributing 

factors for each downtime element. Improvement and optimization actions in 

maintenance and support system (e.g. optimization of spare part and manpower 

allocations) can be proposed accordingly after real issues to downtime are identified. 

It is also evident from the case studies that most existing plant field data suffer 

from various issues related to quality and documentation of data. Common problems 

include incomplete, outdated, unorganized, non-centralized and non-standardized 

data. Consequently, many reliability studies usually take longer time to complete as 

significant portion of time have to be spent on finding relevant data and verification 

process. The main cause of the problem can be traced back to the failure data 

management system in the plant, which was established primarily for reporting and 

not for conducting in-depth reliability related analysis. Hence, there is a pressing need 

to study and improve the existing data collection procedures and database system. A 

comprehensive study should be done on how to effectively and systematically gather, 

record, classify, format, verify, centralize and report all related data in a highly 

reliable database to facilitate relevant reliability, maintainability and availability 

analyses. Downtime report, for example, should be structured in such a way that it is 

possible to indicate how much downtime is contributed by each of the downtime 

elements. Having highly systematic and reliable database for plant failure data will 
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definitely reduce the analysis time, provide foundation for further comprehensive 

analysis to be performed and more importantly enable more accurate analysis results. 
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APPENDIX A 

GAS COMPRESSION TRAIN FIELD MAINTENANCE DATA 

Original data from the availability tracking record (field data) need to be rearranged 

and reformatted in order to capture essential information and ease the analysis 

process. The formatted table being used is described in Figure AI. Different colour 

coding is used to distinguish events related to different types of maintenance, 

operation mode (single loading, standby) and failures. From the reorganized data, the 

following investigation can be performed 

• Tracking of cumulative operating time for each train 

• Detem1ining the time between failures (TBF) more accurately based on 

operating time rather than calendar time. This information is crucial for in

depth analysis on reliability trend analysis (liD test) and reliability measures. 

• Analysis on possible key variables (covariates) having influence on GCT 

reliability performances using Kaplan Meier and Proportional Hazards Model. 

From the table, the TBF related to the covariates can be traced and hence 

further analysis can be performed. These covariates include: 

a. Loading configuration (single loading vs shared loading) 

b. Train (train I vs train 2) 

c. Equipment (gas turbine and gas centrifugal compressor) 

d. PM types (8K, 4K ppm, engine wash) 

e. Failure type (start up failure) 
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APPENDIX B 

KAPLAN MEIER AND PROPORTIONAL HAZARDS MODEL ANALYSIS 

Data Inputs 

For Kaplan Meier and proportional hazards model studies, the data need to be 

keyed-in the appropriate format for the analysis to be conducted. The data are 

extracted from the reformatted field data described in Appendix 1. Table B-1 depicts 

the variables, covariates and their coding used in the analysis format. The complete 

formatted data is shown in Table B-2. 

Table B-1: Variable and categorical covariate codings 

Failtime nme between failures 

status Status of failtime data 0= failure occurs 

1 = failure does not occur 

startup Start up failures O=other failures 

1 =fail after start 

operationmode Operation mode O=on sharing load 

1=on si load 

Train Train types O=Train 1 

1=Train 2 

subsystem Subsystems O=other subsystems 

PM 4K and 8K ppm O=other failures 

1 =failures after PM 

PMplusEW 4K, 8K ppm and Engine wash O=other failures 
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Table B-2: Covariates and their coding 

failtime startup operationmode status Train subsystem PM PMplusEW 

15 0 0 0 0 1 0 0 
6 0 0 0 0 1 0 0 

195 0 0 0 0 0 1 1 
295 0 0 0 0 1 0 1 
107 1 0 0 0 0 0 0 
129 0 1 0 0 0 0 0 
65 0 1 0 0 0 0 0 
20 0 0 0 0 0 0 0 
22 1 0 0 0 1 0 0 

118 0 0 0 0 0 0 1 
32 0 0 0 0 1 1 1 
263 1 0 0 0 1 0 1 
113 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 
84 0 0 0 0 1 1 1 
31 0 0 0 0 1 0 0 
23 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 1 
217 0 0 0 0 1 1 1 
6 0 0 0 0 0 0 0 
52 0 0 0 0 1 1 1 

126 1 0 0 0 1 0 0 
30 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
3 0 0 0 0 1 0 0 

68 0 0 0 0 1 1 1 
3 0 0 0 0 0 0 0 

22 0 0 0 1 0 0 0 
31 1 1 0 1 0 0 0 

327 0 0 0 1 1 0 0 
132 0 0 0 1 1 1 1 
77 0 0 0 1 0 1 1 
6 0 0 0 1 0 0 1 

104 1 0 0 1 1 0 1 
17 0 0 0 1 0 0 0 
42 0 0 0 1 1 0 0 
45 0 0 0 1 1 0 1 

208 0 0 0 1 1 0 1 
22 1 0 0 1 1 0 0 
28 0 0 0 1 0 0 0 
8 0 0 0 1 0 0 0 
56 0 0 0 1 1 0 0 
22 0 0 0 1 1 0 1 
7 1 0 0 1 1 0 0 
30 1 1 0 1 1 0 0 
151 0 0 0 1 0 1 1 
17 0 0 0 1 0 0 0 
64 0 0 0 1 1 1 1 
89 0 0 0 1 0 0 0 
100 0 0 0 1 0 1 1 
80 0 0 0 1 0 0 0 
4 0 0 0 1 0 0 0 

91 0 0 0 1 0 0 0 
124 0 0 0 1 1 1 1 
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Kaplan Meier Analysis 

1. Train types 

Table B-3 (a,b,c): Summary of analysis results 

Case Processing Summary 

Train Censored 

TotaiN N of Events N Percent 

Train 1 27 27 0 .0% 

Train 2 27 27 0 .0% 

Overall 54 54 0 .0% 

(a) 

Means and Medians for Survival Time 

Train Mean• Median 

95% Confidence Interval 95% Confidence Interval 

Estimate Std. Error Lower Bound Upper Bound Estimate 

Train 1 77.146 15.657 46.069 106.227 43.000 

Train 2 70.519 13.956 43.164 97.673 45.000 

CNerall 73.633 10.472 53.309 94.356 43.000 

a. Estimation is limited to the largest sur.1val time ifit is censored. 

(b) 

Overall Comparisons 

Chi-Square df Sig. 

Log Rank (Mantel-Cox) .027 1 .870 

Test of equality of sun/ivai distributions for the different levels of 
Train. 

(c) 
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Figure B.l (a,b): Survival and hazard plots for covariate train 
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2. Operation modes 

Table B-4 (a,b,c): Summary of analysis results 

Case Processing Summary 

operation mode Censored 

Total N N of E""nts N Percent 

on sharing load 50 50 0 .0% 

on single load 4 4 0 .0% 

CM!rall 54 54 0 .0% 

(a) 

Means and Medians for Survival Time 

operation mode tv1ean• 

95% Confidence Interval 

Estimate Std. Error Lower Bound Upper Bound Estimate 

on sharing load 74.640 11.193 52.702 96.578 43.000 

on single load 63.750 23.221 18.236 109.264 

Overall 73.833 10.472 53.309 94.358 

a. Estimation is limited to the largestsuNwl time if it is censored. 

(b) 

Overall Comparisons 

Chi-Square df Sig. 

Log Rank (Mantel-Cox) .011 1 .918 

Test of equality of survival distributions for the different levels of 
operation mode. 
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Figure B.2 (a,b): Survival and hazard plots for covariate operation mode 
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3. Subsystems 

Table B-5 (a,b,c): Summary of analysis results 

Case Processing Summary 

subsystem Censored 

TotaiN N ofEYEmts N Percent 

other subsystems 28 28 0 .0% 

Gas Turbine + Gas 26 26 0 .0% 
compressor 

0\.erall 54 54 0 .0% 

(a) 

Means and Medians for Survival Time 

subsystem Mean• 

95% Confidence Interval 

Eslimate Std. Error Lower Bound Upper Bound 

other subsystems 56.786 9.953 37.278 76.294 

Gas Turbine+ Gas 92.192 18.483 55.966 128.418 
compressor 

Ow rail 73.833 10.472 53.309 94.358 

a. Estimation is limited to the largest survival time if it is censored. 

(b) 

Overall Comparisons 

Chi-Square df Sig. 

Log Rank (Mantel-Cox) 3.341 1 .068 

Test of equality of sui"Aval distributions for the different levels of 
subsystem. 

(c) 

(a) 
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Figure B.3 (a,b): Survival and hazard plots for covariate subsystem 
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4. Start-up failures 

Table B-6 (a,b,c): Summary of analysis results 

Case Processing Summary 

failure after start up Censored 

TotaiN N of Events N Percent 

other failures 45 45 0 ~-0% 

fail after start up 9 9 0 .0% 

Overall 54 54 0 .0% 

(a) 

Means and Medians for Survival Tlme 

failure after start up Mean• 

95% Confidence Interval 

Estimate Std. Error Lower Bound Upper Bound Estimate 

other failures 72.778 11.452 50.332 95.224 45.000 

fail after start up 79.111 27.351 25.503 132.719 31.000 

CMrall 73.833 10.472 53.309 94.358 43.000 

a. Estimation is limited to the largest sui"Jival time If it is censored. 

(b) 

Overall Comparisons 

Chi-Square df Sig. 

Log Rank (Mantel-Cox) .038 1 .846 

Test of equality of survival distributions for the different levels of 
failure after start up. 
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Figure 8.4: Survival and hazard plots for covariate start up failure 
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5. PM (4K and 8K ppm) 

Table B-7 (a,b,c) : Summary of analysis results 

Case Processing Summary 

PM Censored 

Total N N of Events N Percent 

other failures 42 42 0 .0% 

failures after PM 12 12 0 .0% 

Overall 54 54 0 .0% 

(a) 

Means and Medians for Surviwl Time 

PM fl.lean• 

95% Confidence Interval 

Estimate Std. Error Lower Bound Upper Bound Estimate 

other failures 64.071 12.279 40.004 88.139 

failures after PM 108.000 16.556 75.551 140.449 

CNeralt 73.833 10.472 53.309 94.358 

a. Estimation is limited to the largestsurJval time If it Is censored. 

(b) 

Overall Comparisons 

Chi-Square df Sig. 

Log Rank (Mantel-Cox) 2.415 1 .120 

Test of equality of survival distributions for the different lewis of 
PM 

(c) 

•• 

.. 

•• 
~----~----~----r---~~ 

''" ... 
failure Urre 

(a) 

.. .. 

. 

• 

30.000 

84.000 

43.000 

" 

"'dian 

95% Confidence Interval 

Std. Error lower Bound Upper Bound 

''" 

4.855 

19.919 

15.309 

... 
fallur• tlrre 

"' 

(b) 

20.484 

44.960 

12.994 

! 
i .---..1 

! 

... .. 

39.516 

123.040 

73.006 

Figure B.5: Survival and hazard plots for covariate PM 
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6. PM (4K and 8K ppm+ Engine wash) 

Table B-8 (a,b,c) : Summary of analysis results 

Case Processing Summary 

PM+ Engine wash Censored 

Total N N of Events N Percent 

other failures 33 33 0 .0% 

failures after PM+wash 21 21 0 .0% 

Overall 54 54 0 .0% 

(a) 

Means and Medians for Survival Time 

PM+ Engine wash Mean• 

95% Confidence Interval 

Estimate Std. Error Lower Bound Upper Bound 

other failures 48.091 10.973 26.584 69.598 

failures after PM+wash 114.286 17.624 79.743 148.829 

Qo.erall 73.833 10.472 53.309 94.358 

a. Estimation is limited to the largest suNval time if it is censored. 

(b) 

Overall Comparisons 

Chi-Square df Sig. 

Log Rank (Mantel-Cox) 8.522 1 .004 

Test of equality of sur.Aval distributions for the differentlevels of 
PM+ Engine wash. 
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Figure B.6: Survival and hazard plots for covariate PM + engine wash 
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Proportional hazards model 

Table 8-9 (a-f) : Summary of analysis results 

Case Processing Summary 

N Percent 

Cases available in analysis Event' 54 100.0% 

Censored 0 .0% 

Total 54 100.0% 

Cases dropped Cases with missing values 0 .0% 

Cases with negative time 0 .0% 

Censored cases before the 0 .0% 

earliest event in a stratum 

Total 0 .0% 

Total 54 100.0% 

a. Dependent Variable: failure time 

(a) 

bcdefg Categorical Variable Codings · · · · · 

Frequency (1) 

startup" O=other failures 45 0 

1 =fail after start up 9 1 

operationmode" O=on sharing load 50 0 

1 =on single load 4 1 

Train" O=Train 1 27 0 

1=Train 2 27 1 

subsystem' O=other subsystems 28 0 

1 =Gas Turbine + Gas 26 1 

compressor 

PM' O=other failures 42 0 

1 =failures after PM 12 1 

PMplusEW' O=other failures 33 0 

1 =failures after PM+wash 21 1 

a. Indicator Parameter Coding 

b. Category variable: startup (failure after start up) 

c. Category variable: operationmode (operation mode) 

d. Category variable: Train (Train) 

e. Category variable: subsystem (subsystem) 

f. Category variable: PM (PM) 

g. Category variable: PMplusEW (PM + Engine wash) 

(b) 
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Block 0: Beginning Block 
Omnibus Tests of Model 

Coefficients 

-2 Log Likelihood 

329.279 

(c) 

Block 1: Method = Enter 

Omnibus Tests of Model Coefficients' 

-2 Log Overall /score Chanae From Previous Steo 

Likelihood Chi-square df Sig. Chi-square df Sig. 

318.711 10.815 6 .094 10.568 6 .103 

a. Beginning Block Number 1. Method = Enter 

(d) 

v arlables n the Equation 

B SE Wald df Sio. 

Train -.045 .296 .024 1 .878 

operationmode -.533 .557 .917 1 .338 

subsystem -.368 .323 1.302 1 .254 

startup -.090 .405 .049 1 .824 

PM .006 .466 .000 1 .989 

PMplusEW -.837 .416 4.050 1 .044 

(e) 

Covariate Means and Pattern Values 

Pattern 

Mean 1 2 

Train .500 .500 .500 

operation mode .074 .074 .074 

subsystem .481 .481 .481 

startup .167 .167 .167 

PM .222 .222 .222 

PMplusEW .389 .000 1.000 

(f) 
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Chanoe From Previous Block 

Chi-square df Sia. 

10.568 6 .103 

Exp(Bl 

.956 

.587 

.692 

.914 

1.006 
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APPENDIX C 

ANALYTICAL AVAILABILITY COMPUTATION 

The structure of components in system can be either in series or parallel. In a series 

structure, the system is available if and only if all of its n components are available. 

An example of a series structure of order n is depicted in Figure C. I. 

Figure C.l: Series structure 

The availability of the system, As, can be calculated based on this function 

(I) 

where A1 is the availability for component I and so on. 

In a parallel structure as illustrated in Figure C.2, the system is available if at least one 

of its n components are available. 

' ' 

'G}-' ' ' ,_ n , 

Figure C.2: Parallel structure 

The respective availability function can be described as 
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A system that is available if and only if at least k olit of n components are available, is 

also known as a k-oo-n structure. An example of RBD for 2-oo-3 system is illustrated 

in Figure C.3. 

[2] 
0 -0--G-
Figure C.3 : 2-oo-3 system 

Alternatively, this structure can be represented by the following equivalent RBD 

(Figure C.4). 

Figure C.4: Equivalent RBD for 2-oo-3 configuration 

Hence, the system availability can be written as 

If each component in the system has the same availability value, A, the system 

availability can be computed by the following binomial expression 

(5) 

where 

n = total components in parallel 

k = minimum number of components required for system success 
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Analytical computation of AGRU system's availability 

First, the MTBF and MTTR for related equipment have to be calculated based on the 

steady state condition. For exponential, the MTBF is just a reciprocal of the failure 

rate, "A. 

MTBF =2. 
A. 

(6) 

The value of MTTR is determined based the mean value. The availability of the 

equipment can be computed as follows 

.1 b"l· MTBF Avat a ttty=---
MTBF+MTTR 

The summary of the computed results is shown in Table C-1 below. 

(7) 

Table C-1: Reliability, maintainability and availability data for each equipment 

Equip. Reliability Maintainability Availability 

Distrib. Parameters MTBF Distrib. Parameters MTTR 
(hrs) I downtime (hrs) 

P201A Expon. /..=0.000514 1945.5 Fixed 347.5 hrs 347.5 0.8485 
duration 

P201B Expon. /..=0.0005 2000 Lognorm. p = 4.785, 275 0.8791 
(J = 1.29 

P201C Expon. /..=0.0005 2000 Lognorm. p = 4.063, 171 0.9211 
cr=1.47 

P202A Expon. /..=4.6 X 10"" 2174 Fixed 1344 hrs 1344 0.6179 
duration 

P202B Expon. "A= 1.986 X 5035 Fixed 72 hrs 72 0.9859 
10"'' duration 

P202C Expon. /..=5.6 X I 0·5 17857 Fixed 372 hrs 372 0.9796 
duration 

LV2004 Expon. /..=0.000 I 07 9302 Expon. /..=0.286 3.5 0.9996 
5 

PV2014 Expon. /..=0.000161 6199 Fixed 1.95 hrs 1.95 0.9997 
3 duration 
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Based on the available equipment data, the AGRU system can be simply represented 

by the following RBD (Figure C.5). 

P201 P202 

Figure C.5: Simplified RBD for AGRU system 

For l-out of-3 configuration, usmg Equation 2 and data from Table A-1, the 

availability ofP201 can be calculated as follows 

Ap2oJ = I -(I - Ar20JA)(l - AP20m)(l - AP20JC) 

AP201 = 1 -(1-0.8485)(1-0.8791)(1-0.9211) 

AP201 = 0.9985 

Similarly, the availability P202 is calculated and the result is 0.9999. 

For 2-out of-3 configuration, the availability of P20 1 can be computed using Equation 

4, 

AP201 = (0.8485)(0.8791) + (0.8485)(0.9211) + (0.845)(0.9211)-

2(0.8485)(0.8791)(0.9211) 

AP201 = 0.9631 

Using the same approach, P202 availability is calculated as 0.9868. 
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The availability of the system can be computed as follows; 

As= Ar201 . Ap202 . ALv2004 . Arv2o14 

For l-out of-3 configuration: 

As= (0.9985)(0.9999)(0.9996)(.9997) = 0.9976 

For 2-out of-3 configuration: 

As= (0.9631 )(0.9868)(0.9996)(0.9997) = 0.9496 

The summary of the results is shown in Table C-2. 

Table C-2: Computed availability for both configurations 

k-oo-n P201 P202 LV2004 PY2014 System 

l-out of-3 0.9985 0.9999 0.9996 0.9997 0.9976 

2-out of-3 0.9631 0.9868 0.9996 0.9997 0.9496 
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