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ABSTRACT 

The Genetic Algorithm is an area in the field of Artificial Intelligence that is 

founded on the principles of biological evolution. Visualization techniques help in 

understanding the searching behaviour of Genetic Algorithm. lt also makes possible 

the user interactions during the searching process. It is noted that active user 

intervention increases the acceleration of Genetic Algorithm towards an optimal 

solution. 

In proposed research work, the user is aided by a visualization based on the 

representation of multidimensional Genetic Algorithm data on 2-0 space. The aim of 

the proposed approach is to study the benefit of using visualization techniques to 

explorer Genetic Algorithm data based on gene values. The user participates in the 

search by proposing a new individual. This is difTerent from existing Interactive 

Genetic Algorithm in which selection and evaluation of solutions is done by the users. 

A tool termed as VIGA-20 (Visualization of Genetic Algorithm using 2-0 Graph) is 

implemented to accomplish this goal. This visual tool enables the display of the 

evolution of gene values from generation to generation to observing and analysing the 

behaviour of the search space with user interactions. Individuals for the next 

generation are selected by using the objective function. Hence, a novel human­

machine interaction is developed in the proposed approach. 

The efficiency of the proposed approach is evaluated by two benchmark 

functions. The analysis and comparison of VIGA-20 is based on convergence test 

against the results obtained from the Simple Genetic Algorithm. This comparison is 

based on the same parameters except for the interactions of the user. The application 

of proposed approach is the modelling the branching structures by deriving a rule 

from best solution of VIGA-20. The comparison of results is based on the different 

user's perceptions, their involvement in the VIGA-20 and the difference of the fitness 

convergence as compared to Simple Genetic Algorithm. 
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ABSTRAK 

Algoritma Genetik ialah satu bidang dalam Kecerdasan Buatan yang diasaskan 

pada prinsip-prinsip evolusi kajihayat. Teknik-teknik visualisasi dapat membantu 

dalam memahami perilaku carian algoritma genetik. Ia juga membolehkan interaksi 

pengguna ketika proses pencarian. Perlu dinyatakan bahawa intervensi pengguna 

secara aktif dapat meningkatkan pencepatan algoritma genetik ke arah penyelesaian 

optima. 

Oi dalam kajian yang dicadangkan, pengguna dibantu oleh visualisasi berdasarkan 

perwakilan data multi-dimensi pada ruang 2-0. Tujuan pendekatan yang dicadangkan 

adalah untuk mengkaji manafaat yang diperolehi apabila menggunakan teknik-teknik 

visualisasi untuk meneroka data algoritma genetik berdasarkan nilai-nilai genetik. 

Pengguna menyertai pencarian tersebut dengan mencadangkan individu baru. lni 

berbeza dari algoritma genetik interaktif yang sedia ada dimana pilihan dan penilaian 

dilakukan sendiri oleh pengguna. Alatan yang digelar sebagai VIGA-20 (Visualisasi 

Algoritma Genetik menggunakan 2-0 Grafik) telah dilaksanakan untuk mencapai 

matlamat ini. Alatan visualisasi ini membolehkan paparan evolusi nilai gen dari 

generasi ke generasi untuk mengamati dan menganalisasi perilaku ruangan carian 

dengan interaksi pengguna. lndividu untuk generasi seterusnya dipilih dengan 

menggunakan fungsi objektif. Oleh kerana itu, terciptalah interaksi manusia-mesin 

baru dalam pendekatan yang. 

Kecekapan dari pendekatan yang dicadangkan dinilai dengan ujian konvergensi 

dan analisis berdasarkan purata dan kecergasan terbaik dari setiap generasi. 

Kemudian, hasil yang diperolehi daripada VIGA-20 dibandingkan dengan Simple 

Genetic Algorithm (SGA) di bawah parameter yang sama kecuali untuk interaksi 
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pengguna. Perbandingan keputusan didasarkan pada perseps1 pengguna yang 

berbeza, penglibatan mereka dalam-VIGA 2D, dan pcrbezaan dari konvergensi 

kecergasan. 
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1.1 Background 

CHAPTER I 

INTRODUCTION 

Computer graphics always aided the researchers in exploring complicated problems 

visually. Visualization is a technique used to represent abstract data in visual form. 

This technique helps the user to explore, interact, reorganize and understand the 

meaning of complicated or hidden data. Visualization plays an important role in 

helping the users to understand the problems graphically (1]. It raises the level of 

understanding for multidimensional data. Another advantage of using this technology 

is a reduction of the work period. Visualization is commonly known as a method of 

seeing the unseen (2]. Visualization does not mean only viewing the graphical 

pictures, but it also includes analysing and interpreting the data [3]. 

The visualization technique also facilitates the development of systems and 

evaluation of data in different applications [4]. This technique also helps to visualize 

the internal process of algorithms which uses black box strategy (only input and 

output parameters are known), to understand their internal functionality and 

behaviour. 

Over the last few years, scientists have begun taking a keen interest in applying 

the visualization techniques for the search space of Genetic Algorithm (GA). These 

techniques are applied to adapt the dynamic changes in the search process and to 

introduce user involvement. In other words, GA may develop as an interactive tool 

with different visualization techniques. This technique is known as the Interactive 

Genetic Algorithm (IGA). The aim of such visualization is to examine the behaviour 

of GA during the evolution process, help with convergence towards an optimal 

solution, or to explore the search process of GA to get more than one best solutions. 



Moreover, the interaction with a user helps this algorithm to converge efficiently and 

in fewer generations towards an optimal solution. 

The GA was proposed by John Holland in 1960's , based on the adaptive 

process of natural systems [5]. GA is a dynamic random searching algorithm, which 

gained massive popularity in very little time because of its effectiveness in solving 

difficult optimization problems. It is described as a search technique, applied in the 

computation evolution to find exact or approximate solutions to optimization and 

searching problems. It is also known as the global optimization algorithm; moreover, 

it also works well on noisy functions having many local optima. The searching 

mechanism of this algorithm is often known as the blind search method because it 

does not require any information about the first derivative or any other restrictive 

assumption before solving a problem. Unlike other techniques of Artificial 

Intelligence (AI), GA is more robust (error free), even in the presence of small noise 

or any small change in the input; it does not break easily. The direct search method 

and robustness quality makes this algorithm more favourable as compared to other 

searching techniques [5, 6]. 

Techniques used by GA are based on natural methods and biological genetics to 

produce the solutions(next population), and it follows the Darwin theory of natural 

selection methods [7, 8]. Therefore, it uses biological terminology to express things. 

The problem is introduced to GA in the genotypic form termed as chromosome 

encoding. Chromosome is a kind of data structure consisting of genes. Each gene 

encodes a parameter or value of the problem, which is being evolved by the GA; these 

are termed as gene values. Construction of this chromosome depends on the specified 

problem. GA works on the population of the individual; in other words, a group of 

individuals is known as a population. It is considered as a tool for solving 

optimization and searching problems in which the result is a population of solutions 

not an individual solution [9]. These solutions (individuals) compete for survival in 

the population in each generation. The better the solution, the higher the chance it has 

to survive for next generation. 

The GA generates a population by selecting random individuals according to their 

fitness. Fitness is a value which determines the optimal individual in the current 
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generation to be selected as a parent for the next generation. In other words, it is a 

value which determines the performance of GA towards best solution. The fitness 

function varies from problem to problem. Individuals go through a process of 

selection after assigning the fitness value for the survival of the fittest. This cycle 

continues until the stopping criterion is met. 

1.2 Thesis Motivation 

Visualization techniques make it possible to create a visual environment for 

understanding the biologically inspired methods in a better way [ ll]. From last few 

years scientist are taking keen interest to use visualization techniques to explorer GA 

search space [12, 13]. This visualization environment makes it possible to view, 

interact and understand the searching process of GA [ 15]. In this way, different 

visualization techniques make it possible to analyse GA solutions in search space and 

to bring some changes in them which was quite difficult in Simple Genetic Algorithm 

(SGA). Also these visualization techniques help to understand the GA convergence 

and to change the parameters or functions during this search process [10]. Moreover, 

artificial selection and evaluation of solutions by the user, help GA to search the 

desired solution in fewer numbers of generations [ 14]. Thus, the human interaction 

can accelerate the searching process of GA for complex problems easily [15]. 

IGA is an extension of GA in which human interaction and evaluation is needed 

to get a solution. This interactive approach of GA is widely used for creative 

applications such as architecture, art, music and design. In IGA, different computer 

graphic techniques are used for solving complex problems. In most of these 

applications, solutions are represented as 2 or 3-0 models [16]. Hence, visualization 

makes it easy to choose different parameters and functions. and get a solution in fewer 

generations. Furthermore, with this technique, the exploration of search space at the 

user level brings more variety of solutions [17]. It is often used to give a facility to the 

user for exploring the search space for other solutions instead of only optimum 

solution. Drawback of these existing applications lies in their continuous dependence 

on the user for performing search and evaluation for the titter solution. Hence this 
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continues search often create a tiresome environment for users. Another limitation of 

these applications is small number of generations. Furthermore, in these existing 

applications the individuals of search space are represented as 2 or 3 model. In this 

way, the existing visualization techniques are unable to determine and observe the 

searching behaviour of GA during evolution process. 

The work done in this thesis is to aid the scientists and researchers in 

understanding the searching behaviour of GA by projecting the multidimensional GA 

data on lower dimension. This visualization is based on displaying gene values of 

each generation. Furthermore, for accelerating the searching process of GA, an idea of 

proposing a new individual into current generation has been introduced. Beside the 

existing applications, in proposed approach human interventions are not forced in 

every generation. The user may interact in any generation during the searching 

process to propose a new individual to be evolved in the next generation. In this way 

the proposed approach in this thesis is to understand and analyse the convergence of 

GA on 2-D graph and to do various interactions towards the best solution with the 

visualization technique as shown in Figure 1.1 . 
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Figure 1.1: An Interactive Visualization for Modelling of Branching Structures 
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1.3 Problem Statement 

Although Simple Genetic Algorithm (SGA) uses its operators and methods to search 

for an optimized solution in a multidimensional (n-D) search space more efficiently as 

compared to a human, however, humans have an excellent ability to examine and 

analyse the entire distribution of individuals in the visualized form that cannot be 

interpreted by the SGA [15]. That is why the IGA combines the algorithmic SGA 

search of the multidimensional (n-d) search space with the human global search in a 

mapped 2-D or 3-D space to represent the GA data [15, 21]. 

Initially, the techniques for visualisation of multidimensional data of GA were 

based on the combined search space or visualization of individuals on 3 or 2-D space 

[19]. Furthermore, these existing techniques for visualization of multidimensional 

data were only for information purpose [ 18]. In the visualization window, user may 

view the selected individuals [15] or combined search space on 3 or 2 or !-Dimension 

but cannot interact with the search space [ 19]. In this way, with these existing 

applications, there is no user level exploration at the internal structure of 

chromosomes (gene values) [18, 20]. In addition, there was no user level 

understanding for the convergence and behaviour of GA used for searching. 

On the other hand IGA is found to be a 11exible and user friendly technique based 

on modelling the individuals of search space. It is used for solving artistically and 

atheistically relevant problems. Most of the Traditional Interactive Genetic Algorithm 

(TIGA) applications require human evaluation and selection in each generation. 

Based on the fitness assigned by the user, individuals are selected for the next 

generation. The main problem of TIGA is the continuous interaction of the user which 

causes fatigue to the user and gives unwanted solutions [ 15. 21, 22]. In addition, users 

can only select or deselect the solution or assign fitness to them but cannot change the 

parameters (gene values). Some main drawbacks of using TJGA are: 

a) In existing applications with the TIGA, individuals of a generation are 

modelled and presented as 2 or 3D model. Only a few parameters may be 

changed by the user, i.e. colour, rotation or scaling [21]. 
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b) In TIGA, fitness depends on the user i.e. the user evaluation and selection is 

used to create individuals for the next generation [21, 22]. This feature is only 

applicable to artistic and aesthetic problems, where the user's interest is more 

towards assigning fitness and evaluating solutions [22], but not on 

understanding the convergence behaviour of the GA. 

c) These existing techniques with TIGA have fewer numbers of generations to 

prevent the user's fatigue. Moreover, a small search space is used for evolving 

individuals [22, 23]. 

The above limitations affect the performance of IGA, especially when it is 

applied to a problem with a large search space or larger number of generations [24]. 

For instance, the evaluation and selection in each generation may create user fatigue. 

Moreover, due to adopting a model view for the solutions, it is also unable to 

visualize the internal structure of the chromosome (gene values). 

Since the user fatigue was a major problem in the TIGA, several techniques has 

been proposed to address this problem. The problem of assigning fitness was resolved 

by introducing a discrete fitness value [25] or an approximation technique [17] with 

the GA process. Although these proposed approaches successes to resolve the 

problem of the assigning fitness by user in each generation, however several other 

techniques were used to evaluate the fitness i.e. user has to spend a particular time on 

each individual [26] for assigning fitness or the user need to select some best 

individuals from each generation [ 15] or the fitness is restricted to some parameters. 

Moreover the selection of parent was also depends on the user. Furthermore these 

existing techniques work with the model based visualization that makes them unable 

to represent the distribution of gene values of the search space. 

In the present work, we invited the user to directly participate m searching. 

Visualization of GA is carried out based on the gene values of the current generation 

and user interaction is only required after several generations. Besides the selection 

of the best individual or parents for the next generation, interference of the user is 

required to propose a new individual in any generation as shown in Figure 1.2. In this 

way, the proposed approach saves the user from the tiresome work of selection and 
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evaluation of solutions in every generation. A human-machine interaction is used in 

which an objective function combines with IGA to assign fitness and GA selection 

method is used to select the parents for next generation. Hence, the active user 

interaction leads to a faster search, resulting in fitter solutions in fewer generations. 

The next section discusses research objectives of this thesis. 

Con\'entional GA. assign 

fitness. performs 

sele~uon. mutation. 
crosso,·er until 

termination condition. 

us~r proposed new 
mdividual. fitness calculated 

using objective function. 
Sele~tion. crosso,·er, 

Proposed 
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Figure 1.2: An Overview from Problem to Solution with the Proposed Approach 

1.4 Research Objectives 

The aim of this research is to investigate an approach that improves upon existing 

IGA techniques and to develop a technique for the user interaction during search 

process. The visualization of multidimensional GA data should be based on lower 

dimension to show the distribution of gene values onto the screen. This visualization 

will give a clear picture of the hidden process of GA involved for searching. Based 

on the aim of this research, the following research objectives are set: 
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I. To investigate a technique for visualization of multidimensional GA data onto 

the screen. 

2. To propose a technique for user intervention with GA search space to 

accelerate its performance. 

3. To develop an efficient and usable tool to achieve the above two objectives. 

4. To investigate the application of the technique for modelling the growth 

process of branching structures. 

5. To verify and validate the results of the proposed approach against the Simple 

Genetic Algorithm (SGA). 

1.5 Thesis Contributions 

The main contribution of this research is to propose an approach to visualize the 

multidimensional GA data and to improve the searching process of GA with a user's 

interventions in different generations. The advantage of the proposed technique is to 

reduce the user fatigue and to accelerate the searching ability of GA with the user 

interactions. This has been achieved by meeting all objectives set in the previous 

section. Additionally, an efficient and a usable visualization tool, VIGA-2D, has been 

developed for this research. This thesis has made the following contributions to the 

existing corpus of knowledge: 

I. Representation of Multidimensional Data Based on Gene Values: To 

address the problem of representing the multidimensional data based on gene 

values, a 2-D graph visualization approach has been adopted. This 

visualization is based on representing each generation on a 2-D graph. In this 

2-D graph, theY-axis shows the gene values and the X-axis shows the genes' 

location for each generation. 

2. Accelerate the GA Performance with User Interventions: To address the 

problem of accelerating the performance of GA with user interventions and 

8 



preventing the user fatigue as discussed in section 1.3, the interaction of the 

user is not forced in every generation. The user may go to several generations 

without interactions. For accelerating the performance of the proposed 

approach, the user interaction is involved to propose a fitter individual in 

current generation. 

This individual becomes a part of the search space in the next generation. An 

objective function is used to calculate fitness of each individual. A dynamic 

population size is used to adjust the new individual into the search space, i.e. 

whenever a user proposes a new individual the size of the population is 

increased by one. 

3. Developing an Efficient and Usable Tool: To accomplish the first two 

objectives, a tool is developed named VIGA-20. This tool is developed with 

all important Graphical User Interface (GUI) components to show the 

performance of the proposed approach with different inputs. In this tool, the 

user may select different GA operators and rates lor crossover and mutation. 

Two selection methods are implemented and it's the user choice to select any 

method. The visualization of fitness I generation 2-0 graph is also a part of 

VIGA-20. This graph helps to understand the convergence of GA towards an 

optimized solution. In order to generate branching structures from the output 

of VIGA-20, a visualization window is implemented with all the important 

components. These components include rotation of the generated structure in 

3-D space, shade, and the light effects and setting for background colour. 

4. Modelling the Growth Process of the Branching Structures: The 

application of the proposed approach is the modelling of the growth process of 

the branching structures using VIGA-20. To accomplish this goal, the 

Parametric L-System is used. For generating the branching structure L­

Systcm symbols arc input by the user and the parameters of the L-System are 

evolved using VIGA-20. It works in three stages. The first stage works with 

the input symbols, the second stage work with evolving parameters for 

Parametric L-System using VIGA-20 and in the third stage, the L-System rule 

generated with the output of VIGA-20 tor modelling the further growth 
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process of the branching structures. The terminating condition for this 

application depends on the user's satisfaction. 

1.6 Thesis Scope 

The research effort made to understand the research presented in this thesis focuses on 

exploring the technique to visualize the multidimensional data of the GA search 

space. Based on the proposed method, a tool (VIGA-2D) is developed in which each 

generation is displayed visually. This visualization gives a clear picture of the 

evolving gene value at different locations. User intervention is the result of proposing 

a new solution. This new individuals become a part of the search space in the next 

generation. The proposed method does not depend on continual interaction of the 

user. The interaction may be done in any generation and any number of times until a 

satisfactory or optimized solution is obtained. The fitness is calculated using an 

objective function and the GA selection method is responsible for selecting the fitter 

solution for the next generation. 

In the proposed work, the visualization technique for the proposed approach is a 

2-D graph. The gene values of the search space are represented on this 2-D graph, 

where the genes having same values are overlapping at the same location. 

Furthermore, based on the system configuration (system screen resolution and 

computational speed) used for developing VIGA-2D, maximum chromosome length 

is 30 for all experimental results. The developed approach also proves the flexibility 

of producing optimized solution for generating branching structures. For this purpose, 

the parameters for the Parametric L-System rules are derived from VIGA-20. 

However, there should be a little knowledge available for the L-System to run the 

application for evolving symbols and parameters. 
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1. 7 Organization of Thesis 

The remainder of this thesis is divided into four chapters. Chapter 2 contains a review 

of the literature relevant to the present study and system. This review begins with the 

discussion of some of the root problems concerning the IGA dependence on human 

evaluation and selection. The next relevant topic included in this review is the 

discussion on existing approaches for projecting multidimensional data on lower 

projection. The following section deals with the various existing approaches for 

human-machine interaction. Finally, a discussion on application of GA for L-System 

concludes this review. Different classes of L-Systems are also discussed in this 

chapter. Most importantly, this chapter discusses the limitations of the existing 

approaches that motivate the proposed research. 

Chapter 3 explains the proposed methodology and discusses its components. 

The explanation covers the proposed visualization technique in detail. It also 

discusses the technique used for interaction and the impact of that interaction on the 

population. This chapter also discusses the feasibility for generating the branching 

structures using the proposed approach. 

Chapter 4 discusses the performance of the proposed approach by comparing its 

results with the Simple Genetic Algorithm. Evaluation is carried out based on human 

interaction, fitness and convergence rate. It also describes the results achieved by 

applying the proposed approach for generating branching structures. 

Chapter 5 concludes this thesis by providing a summary of the work. This 

chapter also summarises the contributions made in the thesis and presents the future 

directions that can be further taken based on this work. 
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CHAPTER2 

REVIEW OF RELATED WORK 

2.1 Chapter Overview 

The Genetic Algorithm (GA) is an etlicient search method that is widely used to 

generate a variety of solutions or an optimized solution (9]. Interactive Genetic 

Algorithm (IGA) uses the same methods and operators as GA does, except for the 

fitness evaluation and selection. The purpose of this chapter is to survey the existing 

techniques and discuss important contributions in the field of I GA. Furthermore, this 

chapter also survey the existing techniques for visualization of multidimensional data 

on lower projection. These existing techniques are discussed to establish a 

background context for the visualization technique developed in this thesis. By 

describing the current literature, this chapter intends to highlight limitations of the 

existing approaches. 

A detailed survey of the existing IGA techniques is discussed in Section 2.2. 

Section 2.3 discusses existing techniques to project high dimensional GA data onto a 

lower projection. Visualization of branching structures and the L-System with its 

theoretical background and different classes is discussed in Section 2.4. This section 

also provides reviews of different existing techniques to optimize the symbols or 

parameters of the L-System with GA. Section 2.5 concludes this chapter by 

summarizing existing and recent work in !GA. 



2.2 Interactive Genetic Algorithm 

The origin of IGA is from 1989, when Interactive Evolutionary Algorithms (lEA) 

were first demonstrated by Dawkins [27] to create a visualization tool to model an 

artwork called bimorphs. Takagi [28], in his survey, reported categories of Interactive 

Evolutionary Computation with two definitions, i.e. narrow and broad definition. 

According to the narrow definition, the human evaluation is used as the fitness value 

for an optimized solution. Some of these applications, and their advantages and 

disadvantages are discussed in detail in Section 2.2.1. 

According to the broad definition, the human-machine interface is used to solve 

different problems using GA. In human-machine interactions, the applications are 

based on a user's preference and selection or it may use some other AI techniques, i.e. 

a classifier or fuzzy logic to approximate fitness values. Takagi and his fellows have 

reported many advantages and limitations of using interactive technique for GA in 

several research works [15, 22, 25, 41, 42]. However, it was noted that most of these 

existing works were subjects of continues involvement of user [15, 22, 41, 42]. The 

detail literature review for these applications is discussed in Section 2.2.2. This 

section concludes with the application of IGA in various fields of science. Section 

2.2.3 will do a review on existing techniques with dynamic population size. Different 

existing application with IGA has been discussed in the Section 2.2.4. 

2.2.1 Human Based Selection and Evaluation. 

The traditional way of using IGA is to assign fitness and to select the parents for the 

next generation with human interaction. In this way, this GA visualization gives a 

suitable solution for the problem in which inference of the user is necessary to have 

an opinion for the evaluation and selection of solutions for next generation [29]. In 

another sense, human intuition and emotion accordingly, are needed to complete the 

evolution process. Another advantage of these existing applications is to help the user 

to draw or select the individuals according to a visual picture of that object in his 

mind. These applications are mostly used for model representation of individuals. 

These techniques are applicable to the problems in which computational time is not a 

14 



critical issue [ 15]. A variety of solutions can be obtained by exploring the search 

space. Using these techniques, human selection can bring an optimal solution, in 

fewer numbers of generations with a smaller population size. This technique has 

been successfully applied to 3-D modelling of different artistic applications, for 

example, fashion design [14], 3D geometric shapes [30] and modelling of 3-D 

flowers [21]. These applications are based on the phenotype or genotype 

representation of a problem. 

In the visualization of 3D geometric shapes [30] and fashion design [14], the 

evaluation and user selection judge the aesthetic quality of the model to be selected as 

parents for the next generation. The individuals of the current generation are 

displayed in genotype form on the screen as a 3D model. In [21], a similar approach is 

adopted for phenotype representation of 3D flowers with a Structured Directed Graph. 

In their approach, each schema (gene) is represented as a graphical shape; in this case 

they used a total of I 0 schemas. The next generation is evolved according to user 

perception, whereas in the last population they have selected a random solution to 

draw a flower. 

In [31], a 3-D graphic model has been created for manufacturing layout designs. 

Two different phases are used to run GA. During the first phase all individuals are 

evaluated by the user. Whereas for the second phase, fitness function is used to assign 

fitness. During the search process, the user may switch to any phase at any time. 

Another interesting application is developed by [32], for ubiquitous 3-D graphic 

models using mobile devices. The evaluation and selection of models are done by the 

user with a mobile device. 

The drawback of these existing approaches lies in their complete dependence on 

the user. On the other hand, assigning fitness to each individual in search space create 

a tiresome environment for the user. 
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Figure 2.1 :A User Interface for Selecting Trees for Recombination and Mutation 

[33] 

The TIGA technique is also used to do the breeding and recombination for the 

next generation [29, 33]. A user interface is created which allows the user to selects 

the models, can manipulate its parameters, and selects the parents for the next 

generation for breeding. The work done in [33] involved a model visualization of 

trees (see Figure 2.1 ). These trees are generated using the L-System. The user 

involvement is to do the selection of parents for recombination and mutation. In this 

way, the generated trees are according to user perception. 

Figure 2.2: Working Mechanism ofGENTree [29] 

A procedural 3-D model of trees [29] (see Figure 2.2) is generated using IGA. 

Evolution starts with the initial population, generated by random parameters. Later on 
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the user may adjust parameters to draw a tree. The user can also give a rating to this 

tree, considered the fitness value. During this evaluation, if the user misses some 

parameters for the adjustment, then it can be done by GA. Moreover, the user rating 

of trees is not necessary in every generation. The main focus of their work is not on 

creating a virtual scene, but rather on giving an idea of how to adjust the parameters 

interactively. The parameters of two different trees are crossover to produce two new 

sets of parameters (offspring), which are again displayed onto the screen for user 

evaluation. Adjustment of the parameters is well addressed in their work; the user 

may select the trees for breeding, and the user may or may not give the fitness 

evaluation for the generated trees. 

The IGA technique is also used to model virtual scenes [34, 35]. For these 

applications, the searching of GA also depends on the user perception. The interface 

window in [34] (see Figure 2.3) represents four virtual scenes developed by 4 

elements namely: terrain surface, clouds, trees and sky. The user interface helps to 

selects the best scene for the next generation. In this application, it is not necessary to 

assign a fitness ranking to each scene. Instead, the user selection is based on an 

element (terrain surface, clouds, trees and sky). The tree generated for this system was 

created by using the parametric context-free L-System. In this way, they have 

contributed to making random virtual scenes for a forest by using TIGA. 

IGA is used for creating visual scenes for generating a software robot [35]. The 

genetic representation is based on homologous chromosomes. User involvement is 

required in each generation that produces fitter solutions for the next generation. 
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Figure 2.3: User Interface for Selecting Virtual Scenes [34] 

Numerous works have been done in previous years to present the evolution process 

using a graphical user interface. All of these systems work with a model of 

individuals. Up to now, IGA has been applied to solve problems in several fields. 

These existing applications are based on addressing both optimization problems and 

the selection of variety of solution for a problem. It has especially enabled production 

of very attractive solutions for artistic problems such as 3-D CG lighting design 

support [22] , animal and plant evaluation using IEC [36], interactive design for 

websites [37], traditional or fashion designing [14],[38] , [39], 3D modelling for 

geometrical shapes [ 40], and optimizing image enhancement filters [ 41]. A further 

survey of using lOA for evaluation and user interaction may be found in a survey 

report by Takagi in [42]. 

Table 2.1 shows some selected existing application based on TIGA. Drawbacks of 

all above discussed applications are that they need the user involvement in each 

generation, which create a tiresome environment for user. Due to model 

representation, the user cannot explore the internal structure and parameters of 

chromosomes (gene values). Furthermore, the interaction in every generation 

becomes infeasible for the optimization problems having large search space. 
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Table 2.1: An Overview of Existing Applications with TIGA 

Human 
User Optimized 

Small 
Research Work Rating & Population 

Evaluation 
Perception solution 

size 

H. Nishinoet al.[30] -) -) -) 

S.B. Cho, et al. [14] -) -) 
-) 

H.J. Min,et al. [21] -) -) 
-) 

R. Curry[3 3] "\} "\} "\} 

A. M. Brintrup, et -) -) 
a1.[31] 

Bruce Merry, et al. -) -) 
[34] -) 

K. Aoki,et al.[22] "\} \j 

H.S. Kim, et al.[39] -) ' \j -) 

N. Hiroaki, et al [16] "\} "\} "\} 

H. Nishino, eta/ -) "\} -) 
[32] 

G- Yi-nan at al [43] -) "\} -) "\} 

2.2.2 Human-Machine Interaction 

In TIGA, the role of user and GA are separated, i.e. the user does the selection and 

evaluation for individuals and GA performs the search [15]. However, it often creates 

fatigue and a tedious environment for the user. Since user fatigue is a main problem in 

IGA, therefore, researchers are taking keen interest in alleviating user fatigue. Several 

approaches have been proposed to solve this problem and to improve the GA 

searching ability towards fitter solution with IGA technique [17, 25, 44]. 

A human- machine interaction is introduced to create an interval level between 

user and system to produce a fitter value. Using this technique, a discrete fitness value 

is introduced [25] to evaluate the solutions for the next generation. They proposed to 

assign same fitness value to all individuals having similar features. In this way, they 

reduce the user fatigue for evaluating and assigning fitness to each individual in the 

search space. Some approximation approaches have also been used to solve the 
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problem for assigning fitness. A Neural Network has been adopted [44] for assigning 

fitness values after learning the human selection behaviour for different individuals 

during the evolutionary process. Feed forward Neural Network is tried [45] for 

predicting human evaluation and displays the individuals in decreasing arrangement. 

However, in their work they reported that predications given by the Neural Network 

were less accurate than fitness function for assigning fitness. 

A Model based visualization is proposed [26] in which the fitness of an individual is 

not assigned by subjective or objective function. The fitness is calculated on the base 

of time spent by a user to make a solution which is satisfied or not satisfied. In this 

way, the difference of this time while evaluating the solution according to user 

satisfaction is considered as the fitness value of the individual. The selection of 

parents for the next generation is done by GA. 

A multivariable problem [17] is addressed to solve the fitness evaluation problem 

using the Neural Network termed as General Regression Neural Network (GRNN). 

GRNN approximates the aesthetic intention of the desirable solution by the user with 

its learning mechanism, whereas IGA is used to evolve the next generation. In this 

way, they save the user from the tiresome work of selecting and assigning fitness to 

the best individual. They applied their proposed approach to designing the cartoon 

style faces on coffee mugs (see Figure 2.4). These designs are displayed on a grid 

window for selection by the user. Figure 2.5 shows the general flow of their system. 

Figure 2.4:Cartoon Faces Generated using GRNN [17] 
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This GRNN application works in two phases. The first phase starts with a random 

population. Then, it evolves generation to generation with the artificial selection of 

designs using IGA. The next generation is derived using asexual crossover and with a 

high rate of mutation. The user may select one or many designs in one generation. 

The selection and deselection of the user history are saved, analysed and formulated 

in the Neural Network memory. After several interactions and generations, the second 

phase is started. The Neural Network is used to approximate implicit mapping 

between the evolved process and the user responses. The user responses are analysed 

and feedback is given to SGA for automatic convergence. 

Figure 2.5: General Flow of System [17] 

The literature survey shows that, most of the applications developed with the 

human-machine interface are also based on the user selection or evaluation. Although 

the fitness is not evaluated by the user, instead; fitness approximation misleads the 

gradual and fuzzy evolutionary process and restricts it under some fixed parameters. 

For example, the fitness values are discrete in nature and user select any best option 

from them [15] or some probability values are taken to evaluate the individuals of 

each generation. Furthermore, there has been no countable work done in these 

applications to improve the searching performance of GA using visualization 

techniques. 

Another idea is to introduce an approach in which user interaction may be 

involved after a few generations or in certain (pre-defmed) generations. The 
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advantage of this approach is that it saves the user from the tedious work of selection 

and evaluation in each generation. The objective function is used to assign fitness to 

the individuals; hence, a large search space can be used for finding the solutions. An 

occasional user intervention is introduced to correct the fitness of individuals used for 

multi-objective optimization [24]. They proposed this approach to solved problems 

with the large search space. They employed this technique to optimize the parameters 

for aircraft design. The user interaction was after certain number of generations. 

Objective function is used to calculate fitness. Figure 2.6 shows their designed 

system. In their work for representing multidimensional data having different 

objectives and constraints, different graphs are used. In total, they have 35 design 

variables separated into 5 groups. The size of the population is 100- 150. 

The drawback of their system is in using different graphs for each group. In this 

way, the overall performance of the system becomes difficult to observe. On the other 

hand, this technique is helpful to elaborate the usefulness of user interaction to pre­

determined generations. In this way, selection or changes in searching becomes easier 

as it is concerned only with particular generations. 
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Figure 2.6: An Aircraft Design using IGA [24] 
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2.2.3 Dynamic Population Size 

Adjustment or variation in population size may be observed in natural environments 

and ecosystems with the change in the number of species. This change depends on the 

availability of natural resources and the capacity in the ecosystem. Hence, population 

size is a flexible parameter in natural systems. Initially, in evolutionary computation, 

this parameter remains a constant over the run; scientists pay more attention towards 

dynamic values for crossover and mutation operators. 

However, a theoretical analysis has been done by [ 46] and described methods for 

an optimal size of a population. Several other researchers have also been conducted to 

address the size of population in different perspectives [47, 48]. In these works, the 

population size parameter is considered as a f1exible parameter and different 

experiments have been done to change the population size during the GA search 

process. In most of the previous works, the focus was to control the size of the 

population with various approaches. Increment or decrement of population size 

depends on some other factors, i.e. fitness rating and threshold value. 

Variation in population size is feasible to evolve engineering problems dealing 

with a large search space. Some experiments have also been done with the variation in 

population size with !GA. A successful work has done in [38] , in which they used 

IGA for evaluating fashion design models with variations in population size. They 

divided their system into two phases, i.e. the Fluctuant and the Stable phase. In the 

fluctuant phase, they used a clustering method, in which all the similar individuals 

work in the form of group or cluster. The population size is large in this phase. The 

user evaluates the centre of the cluster, and the fitness of all other neighbouring 

individuals is calculated on the basis of the centre's fitness. The size of the population 

and the similarity threshold are constant in this phase. In the stable phase, the 

similarity threshold is varies with the evolution, thus improving the clustering of the 

population. They adopted variant population sizes in this phase. The increases or 

decreases in population size depend on the similarity threshold. Some elitism 

individuals arc reserved in this phase, which help to generate improved offspring for 

the next generation. 
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2.2.4 Applications ofiGA 

Applications on GA have extended from computer sc1ence to other fields, i.e. 

engineering [24], physics, social science, economics, molecular biology , biomedical 

engineering [49] and many other fields [9,50]. On the other hand, IGA is suitable for 

problems which cannot be easily solved easily by conventional GA, especially where 

the interference of the user may change the general behaviour of GA, i.e. in aesthetic 

and artistic problems [14, 51], in image processing applications (41, 52, 53], the 

travelling salesman's problem (54], chemical optimization problem, engineering 

design problems [24, 55], and modelling of artificial scenes or trees (56]. All of these 

above mentioned applications are developed using different techniques of IGA to get 

optimized solutions. IGA is suitable for applications where the objective function is 

unable to the assign fitness value or if it is useless. This technique also serves as a 

useful tool for understanding complex architectural designs and civil engineering 

applications. One of the main advantages of this method is that it has the potential to 

obtain solutions according to the user's desire, and to produce many variations in 

obtained solutions. 

2.3 Multidimensional Data on Lower Dimension 

Visualization of multidimensional data on lower dimension is used for comprehensive 

representation for scientific results, and their interpretation or validation [65, 066]. 

Besides the modelling and visualization of scientific data, these techniques are also 

used to visualize the hidden process of algorithms including the biological inspired 

algorithms such as GA [15]. The visualization of GA searching data is based on 

different techniques, used to transform multidimensional data to one or two 

dimensions, i.e. Principal Component Analysis, Biplots [57], Distance Maps [58], 

Sammon Mapping [59, 60], Coverage Maps [61], Distance Maps (61], State Space 

Matrices [62], SOM (15], and Correlation Tours and Grand Tours [63]. Beside these 

techniques, Tom Routen [64] proposed a distance distribution histogram for 

calculating distance between chromosomes for population. This technique is only 
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helpful to detennine the frequency of chromosomes. There is no information found 

for the distribution of chromosome in the search space found using this technique. 

Most of these existing techniques do not have common mapping for all 

generations. As a result, there is a lack of consistent relationships between the plotted 

points for subsequent generations. The mathematical complexity of these techniques 

also makes them impractical to apply for real problems. 

Based on the techniques involved in the visualization, it is broadly divided into 

two main categories: (a) Information visualization and (b) Scientific Visualization. 

Information Visualization (Info Vis) includes visual representation of non-numerical 

data [65, 66]. Info Vis represents any technique for displaying abstract data and 

helping to view a large amount of data at once [67]. In other words, Info Vis helps to 

analyze and understand data in a better way. DitTerent data mining techniques are 

represented using Info Vis [68, 69]. In this way, business applications are the main 

category to which Info Vis is applied. Moreover, Web based information [70] is a new 

trend used to share information through information visualization. Given this idea, the 

Web becomes the largest source of information. Moreover, financial data and report 

are also visualized using the information visualization technique [71]. 

Scientific Visualization (SciVis) includes modelling, representation or simulation 

of scientific data. This visualization helps to understand the data derived from 

numerical calculations or from any scientific experiment. SciVis covers a large 

number of scientific fields, for example simulations of physics based models or 

chemical processes [72], mathematical modelling [73], and virtual reality applications 

[74], and biomedical problem based modelling i.e. 3-D modelling for the brain [75], 

protein structure [76], and MRI [58]. However, visualization of complicated and 

multidimensional data of GA may also explore using different techniques that covers 

in SciVis. 

For example, m [15], a 2-D map visualization technique is used for GA for 

improving the searching ability with user interventions. For visualization of GA, they 

used SOM to map the individuals from n-Dimensional space onto a 2-D space. On a 

2-D space, the individuals are represented with different colour intensities. For 
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example, an individual with a higher fitness having has a dark color as compared to an 

individual with a lower fitness, or new selected individuals are represented in 

different color. 

In their work, the participation of humans is to select the parents for the next 

generation. For the current search space, a user guesses for the possible fitter 

individual and sends it to the GA as a parent for the next generation. GA replaces this 

proposed fitter individual with the lowest fitness individual in the search space. By 

using SOM during this mapping, all the individuals of n-D mapping become 

neighbors on the 2-D space. In this way, the new selected individual in the 2-D space 

takes closest place to the global optimum in n-D space due to a topological 

relationship. The GA converged to the next generation with the newly added 

individual. 

During visualization in [15], the best solution of the current search space is 

displayed in a different color, which makes it easy for a user to select the nearest titter 

individual. In their proposed approach, it is not clear how they are calculating the 

fitness for individuals. Furthermore, 2-D mapping is based on all previous 

generations; for example, if there are 40 individuals, it means 20 individuals x 2 

generations. For this reason, SOM is retained in every generation to keep the possible 

points in 2-D space as 200 x 200. Users need to select the 3 individuals among which 

the fitter individual will be the parent for the next generation. Another problem with 

the SOM is that it cannot keep the absolute distance difference in 2-D space, so only 

estimated distance is mapped to the n-D space again. Fmthermore, due to interaction 

in each generation, fewer numbers of generations arc evolved. 

Several computer graphic techniques are used to project the high-dimensional 

data on one or two dimensions, i.e. scatter plots, parallel coordinates or different 

colour schemes [ 19]. These visualization techniques give both phenotype and 

genotype representations of GA data, which is carried out in the form of chromosome 

or gene values. A pseudo colour strategy is adopted in [ 19] to display all the 

individuals of the current generation onto one screen( see Figure 2. 7). The brightness 

of individuals change with the fitness value while with the objective value, the hue 

changes. This approach is applied to solve the knap sack problem. The chromosome 
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encoding is binary; hence, two colours, blue and red, are used to distinguish between 

gene values 0 and 1 respectively. The user views the individuals of each generation 

visually and decides the termination condition. Since the colour scheme is applicable 

to individuals having binary coding, therefore, it is not practical to apply this scheme 

on any other genetic encoding. 
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Figure 2. 7: Brightness and Hue in Current Generation [ 19] 

A Target Line [18] is projected onto one space for high dimensional data, where 

all chromosomes are a point on target line as shown in Figure 2.8. The size of the 

point shows the number of chromosomes projected on it, hence, the larger the size the 

more chromosomes on it. The colour of the target line indicates the number of points 

on that part of the line which works as a bar; hence, the darker the line more points 

projected on it. With the selection of any part of bar, a scale shows the percentage of 

the population in that area. The user may also change the position of the target line in 

the search space. However, this change will not inform that what position of the target 

line could be optimal for visualization of a particular run. 
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Figure 2.8: Projecting High Dimensional Data onto Lower Projection [ 18] 

Computer graphic techniques are also involved with the visualization of the 

smallest element of GA known as gene values or allele. Visualization of gene values 

gives a comprehensive overview of the complicated structure of a chromosome [19] . 

This technique is used to observe what area of the search space is explored by GA. A 

travelling sales person [54] is a well known problem in which optimized solution for 

paths to the cities is obtained. By projecting this data in 3 dimensions, the IGA with 

user interaction is a suitable idea to solve this problem as shown in Figure 2.9. 
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Figure 2.9: Travels Sales Man Problem on 3-D cuboids [54] 
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2.4 Visualization of Branching Structures 

Computer graphic techniques are also used to interpret and visualize the branching 

structures. These techniques are used to create realistic models for branching 

structures. In this way, natural looking scenes are generated using these techniques. In 

branching structures there are ditierent functional modules. These modules work and 

are arranged together as functional modules to make a branching structure. The 

geometrical structure of each functional module is similar to the whole. Hence, each 

module has sub modules and these sub modules have more sub modules. By 

increasing the levels of the modules, the branching structure becomes complicated. 

The natural patterns applied by nature for these branching structures can be 

visualized using the L-System. The L-System is a rule based system used to interpret 

these repeated structures. This rule based system start from a simple form, i.e. axiom 

and move towards a complex structure [77]. The turtle graphics are used to build a 

geometrical interpretation of L-System strings. The following section discusses the 

functionality of the L-System and its classes. In Section 2.4.2, there is a brief 

overview on the Parametric L-System. Existing work for using GA for evolving 

symbols or parameters of the L-System are discussed in Section 2.4.3. This section 

concludes with the discussion on different applications of L-System. 

2.4.1 Functionality of L-System 

The L-System is a mathematical formalism used widely for modelling and 

visualization plants and branching structures with computer graphic techniques. 

Lindenmayer [78] was a biologist who proposed the L-System for the first time in 

1968.He used a rewriting mechanism for generating cell division in multi-cellular 

organisms. Later on he also used it for modelling plant growth. But Honda [79] was 

the first scientist who introduced plant modelling. The L-System works in the same 

way as the Chomsky grammar does but there is a difference in the method of applying 

productions rules, thus making L-Systems different tfom all other rewriting 

mechanisms. The rules of the L-system are applied in parallel [80], simultaneously 

replacing all the letters in a string in one step. While in Chomsky grammar the rules 
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are applied in sequence, one string is replaced in each step. The parallel replacement 

also makes a difference between procedural modelling and rule based modelling [77]. 

This property reflects the biological inspiration of the L-system. These rules work 

recursively to model complex plant and branching structures. The L-System is 

categorized on the basis of the grammar they use, because ditierent grammars 

generate different formal languages [81]. This categorization represents different 

classes of the L-System. These are described below: 

• Context free L-System: A system in which each production rule refers only 

to an individual symbol or module and not to its neighbours. The sequence 

generated by this L-System is self similar at all levels. 

• Context Sensitive L-System: In the context sensitive L-systems [82, 83], the 

production rule depends not only on a single symbol but also on its 

neighbours. These L-Systems are used to add environmental parameters, i.e. 

weather, clouds and gravity [34]. 

• Deterministic L-System: Deterministic L systems always produce the same 

development sequence. In other words, when there is only one rule for all 

levels of iteration. 

• Non Deterministic L-System: If more than one successor is used to create 

production rules than it is known as a non-deterministic L-System. During 

derivation, at least one symbol or module should have more than one 

production rule for these L-Systems. 

• Bracketed L-System: The Bracketed L-System is an extension to the L­

System for generating tree like structures. The concept of using branching 

symbols with the L-System was introduced by [78]. To represent branching 

structures in the turtle graphics [79] , two symbols are used: 

= push the current state of turtle onto the stack. 

= pop a state from the stack and make it the current state of turtle. 
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2nd Iteration 

1st Iteration 

F 

Axiom 

Axiom= F 

F ->F[ +F][ +F][ -F[ -F] [ +F]][ +F[-F] [ +F]] 

An example for [push, pop] in/out from stack with a= 45.95 for all angles. 

These classes of the L-System depend on the way of determining the production 

rules thus, they vary from each other. Different classes may be combined together to 

produce more attractive results. The developed rules may be deterministic, i.e. 

context free which are known as the simplest form of the L-System, and work with 

symbols, or they may be context sensitive, i.e. different parameters or probability 

values are used with the rules. The Parametric L-System is a new form of the L­

System, is used to model the growth process of a tree or plant by defining rules. In the 

Parametric L-System random values assigned to the symbols, to create more natural 

looking models. 

2.4.2 Parametric L-System 

The simple form of the L-System was unable to model the growth process of plants 

due to its discrete nature. Therefore, the Parametric L-System was introduced; it is a 

further extension of the L-System and is used to visualize the growth process of 

plants. In Parametric L-System, numerical parameters are associated with the 
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symbols. These parameters control the effect of production rules during iterations. In 

other words, the idea behind the Parametric L-System is to use parallel rewriting with 

parametric words instead of strings of symbols [82]. This mechanism brings more 

variety of branching structures by assigning dynamic values of parameters during 

expansion. 

In recent years, the Parametric L-System has been widely used for modelling and 

visualizing the growth steps for tree and plant structure. They may be called as 

development models which generate beautiful, smooth, fast growing animations for 

branching structures. Some main features of using the Parametric L-System are [82]: 

1. Instead of multiple discrete units, the Parametric L-System expresses a wide 

range of angles and their length. 

2. It uses arithmetic expressions, especially for demonstrating the growth process 

of plants. 

3. The presence of numerical parameters makes it easier to change the structure 

by only interacting with I changing the numerical values. 

4. The Parametric L-System has the ability to control iteration from one step to 

the next, resulting in a smooth visualization. 

Parametric L-S Rule 

Constants: AngOl = 435.74, 

Ang02 = 832.63, rot = 20.95 , 
width = 1.932 

Axiom: !(1) F (200) I (15) A 

Rule 01: A-> !(width) F(50) [-(rot) 
F(150) A] I(Ang01) F (150) [&(rot) F 
(50) A] I (Ang02) [&(rot) F(50) A] 

Rule 02: !(w) -> !(w*width) 

Generated Tree Structure with Rule 

Example: Tree generated after 05 Iterations using a Deterministic Parametric 

L-System. 
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2.4.3 Genetic Algorithm for L-System 

The L-System is widely used to generate natural looking scenes, fractals or branching 

structures using computer graphic techniques. However, to construct the rules for the 

L-System is time consuming, and usually these resulting rules are not dynamic in 

nature. Therefore, the researchers use GA to derive L-System rules because of its 

random search ability. This ability of GA helps to derive a number of variant rules. In 

[84] trees structures are generated randomly by GA and compared with a database of 

target tree structures. The symbolic encoding is used; therefore, to make every 

individual meaningful, a repair mechanism is used to improve the symbolic structures 

and to prevent synthetically incorrect results. This repair mechanism is applied on the 

individuals of the population before calculating fitness. The limitation of their works 

is in using a small search space. They have used 2 rules tor generating tree like 

structures and modelling them onto the 2-D space. Therefore, there system has failed 

to cover the complexity of rules and trees. 

L-System rules for different classes may be used together to be optimize using 

GA. For the most part, these systems work with the same phenotype of branching 

structures, and GA is used to optimize the rules for the L-System. A system named 

!world has been developed [85] consisting of modelling different classes of the L­

System, i.e. Parametric, Timed, Stochastic, Bracketed and Real Time. The main 

contribution is to give a facility to the designer, who may manipulate the fitness 

values, and can change sub-population and other settings for the L-System, i.e. 

probability values for the stochastic L-System. 

Besides the symbols, the parameters can also be randomly generated. A 'sketch 

and grow' interface is developed to retrieve an L-System string from user sketch [86]. 

The stroke input is translated into L-System symbols and parameters, which indicates 

the height, main axis and a number of iterations required until which the tree should 

be grown. The rules ofL-System are developed with the help of user input that is used 

to model the further growth of tree according to the number of iterations. For deriving 

the parameters closest to the input of user, GA is used to optimize the parameters. The 

rules derived according to optimized solution are used to generate branching 

structures using turtle interpretation onto 3-D space. 
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Most of the researchers used Evolutionary Strategies (ES) for evolving 

parameters having encoding in the form of vectors of real values [ 49, 87]. System 

GREADEA [ 49] has been developed in which combined evolutionary operators are 

used, i.e. GA is used to derive symbols and an evolution strategy is used to evolve 

parameters. This system describes the structure of the human retina using L-System 

formalism. They have created a database of images for the Parametric DOL-System 

by applying several image processing algorithm techniques on images. However, if 

images which are developed by a scanner laser ophthalmoscope (SLO) are corrupted 

or incomplete, then their defined technique is not able to overcome this problem. 

A parallel evolution approach is adopted by [87]. The symbols and numerical 

parameters of the Parametric DOL-System are evolved by evolutionary algorithms, in 

which symbols are optimized by GA and parameters by using evolution strategies. 

The idea behind their research is to run more than one population in parallel having 

the same size. There parameters are independent from each other in the search space. 

These populations can exchange the best individuals with each other during the 

evolution process. The user interaction only involves selecting the number of 

populations to be evolved and the user could change the mutation, crossover rates and 

desired generation numbers. A simulation of 2-D plant morphology is developed in 

[88]. The variable length (genotype) is based on the given L-System rule. The system 

is divided into two types of selections: (a) User based interactions to achieve desired 

solutions. (b) Automatic evolution is carried out using GA. A bilateral fitness function 

is used to evaluate the fitness of solutions. 

Besides of using evolutionary strategies, a tag function concept is introduced by 

[89] as a replacement of real value parameters. This approach is applied onto the 

modelling of a Leaf. The L-System is used to construct the shape of the leaf by 

rewriting rules, and tag functions are evolved using GA. The purpose of using the tag 

function is to reduce the time for deriving rule in every step, because these functions 

replace derivations which have been done before. The user only requires changing 

these function values instead of deriving an axiom again. However, they have created 

only the leaf shapes using their proposed approach. 
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An interactive approach of GA has also been used successfully to generate tree 

like structures. The Parametric L-System and GA are used to develop an environment 

[33] for the modelling of plants with user involvement. This interaction is based on 

the plants of 9 typical types. The crossover is done between two models chosen by 

user, and mutation operators are applied on one the selected plant models; this process 

continue until obtained the solution. The disadvantage of this application is that the 

whole system works with the visual models, and the complexity of the rules in the 

form of gene values remain hidden from the user's eye. 

Table 2.2: An Overview of Existing Work for Visualization of Branching 

Structures with L-System and GA. 

Symbols Parameters 
Interactive Optimized 

Authors Evolved by Evolved by 
Visualization Solution 

GA GA 
Bian Runqiang, 

..J ..J 
et al. [84] 

Hansrudi Noser, 
..J ..J 

et al.[84] 

R. Curry [33] ..J ..J ..J 

Gabriella Koka, 
..J ..J 

et al. [ 49] 
Kokai, G, 

..J et al. (87] 
Gabriela Ochoa 

..J ..J ..J 
(88] 

Yodthong 
Rodkaew I, et al. v ..J 

[89] 
L E. Da Costa,et 

..J ..J ..J 
al.[0090] 

A. Daniel et al I 
..J l 0091] 

\I 

N. Zakaria (86] --.; --.; 

Table 2.2 shows a list of some selected existing approaches for visualization of 

plants or tress using L-System and GA. All these system give a good overview for all 

the important classes of the L-System but the interaction does not directly play a part 

in changing the evolution process. All of the above existing discussed systems are 
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well address but only to their specific problem. Additionally, all of these existing 

systems are restricted to the static evolution process of GA. One step forward is to use 

the interactive approach of GA to derive the rules for the L-System. 

2.4.4 Application of the L-System 

The L-System works as a powerful tool to generate complicated structures in a 2 or 

30 environment with a small number of rules. Besides modelling and the visualizing 

of plants and trees, the L-System is also used in other applications. For example 

design patterns [92], music rhythm [93], draw sculptures or artistic drawings [95, 96] 

or generate virtual creatures [96]. The context-sensitive L-System is a powerful rule 

based system for generating complex structures with environmental variables [97, 98]. 

The stochastic rules of the L-system are applied to generate random structures with 

the same rules. 

The Parametric L-System is the extension of the L-System used to generate and 

simulate the growth process of plants and trees [84]. It also gives a facility to show 

the complicated structure of human organs, for example, modelling blood vessels of 

the retina [99] or a growth simulation of the stomach in an embryo [100]. L-System 

applications are also widely used to give a virtual environment in games and movies. 

It has been also used to give special effects in movies like, making visible or invisible 

the vessels in Hollow Man 2and the neurons in Fight Club [101]. Recently, the L­

System was also used to create building infrastructure and road networks [ 1 02]. 

Besides this, an interactive L-System [103, 104] is also used to develop a relationship 

between natural and artificial environments. Some advantages of using the Parametric 

L-system are: (a) its ability to use arithmetic expressions in rules, (b) a large variety of 

angles and expressions to control and demonstrate the growth process or to create 

virtual scenes, and (c) its ability to control the derivations in each iteration. 
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2.5 Summary of Chapter 

This chapter has presented the review of current literature that has led to highlight the 

existing techniques for solving problems with lOA. This chapter also provides a 

survey on existing visualization techniques to improve the performance of OA with an 

interactive environment and different visualization techniques used for understanding 

the OA searching mechanism. This chapter has also discussed the limitations of 

existing techniques in previous sections. In this way, this chapter identifies the 

problems in existing approaches, thus making a base for the proposed work. From 

discussing all this literature, it is concluded that the existing techniques for 

visualization based on individuals and continue human interventions with OA search 

space are solutions for artistic problems with a small number of generation. However, 

there is still room for exploring new techniques for the solving problems need large 

number of generations, to avoid continue user interventions and for the visualization 

of OA search space based on gene values. 

Different current approaches are also explored in this chapter for assigning fitness 

using the objective function to show that lOA techniques may also use to visualize the 

large search space. However, it was noticed that in most of the existing techniques 

there is no any techniques to propose a new individual or new gene values at different 

gene locations in the current generation to become a part of the next generation. It is 

also noticed from the existing approaches that the techniques for mappmg 

multidimensional data in lower dimension based on gene values is lacking. 

The existing approaches using OA for optimizing or deriving L-system rules are 

also discussed in this chapter. The Parametric L-System is a class of L-system used to 

generate branching structures and to model the plant growth. These kinds of 

visualizations are also used to develop the background scenes for animated games, 

and virtual reality scenes in movies or in animated cartoon movies. Atier a thorough 

examination of relevant literature, it is also noticed that there are only a few existing 

techniques available to evolve the parameters of the L-System with lOA. The next 

chapter presents our proposed methodology in detail. 
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3.1 Chapter Overview 

CHAPTER3 

PROPOSED APPROACH 

This chapter will describe in detail the procedure and functionality of the proposed 

approach. This chapter will describe in detail the technique used to bring the 

multidimensional data of GA search space on 2-Dimension. Secondly, this chapter 

will address in detail the technique used for accelerating the performance of GA 

towards optimal solution with user interventions. This user intervention in the 

proposed approach is different from existing IGA techniques in which interference of 

human is necessary in every generation for evaluating and assigning fitness to 

individuals. In proposed approach, user may interact in any generation and this 

interaction is used for proposing a new individual into search space. Hence, the users 

are not involved in evaluating and selecting the parents for next generation, which 

prevent them from fatigue. In proposed approach, a human-machine interaction is 

used in which fitness is assigned by the objective function and selection of the parents 

for the next generation is done with the GA. Hence, the proposed methodology works 

with large numbers of generations as compared to the existing techniques of IGA in 

which small number of generations have been used to prevent user fatigue. The 

application of proposed methodology is to derive the Parametric L-System rule for 

further growth of branching structures. This chapter will also discuss the technique 

used to derive the rule from best solution of VIGA-2D used for modelling the further 

growth steps of branching structures. 

This chapter is organised as follows: Section 3.2 describes the problem 

formulation. The proposed approach for interactive visualization of the search space is 

discussed in Section 3.3. Different GA selection and reproduction methods used in 

proposed work are discussed in Section 3.4. Section 3.5 discusses an application used 



in this research which involves the optimization of parameters for a Parametric L­

System used to derive the L-System rules for modelling the growth process of 

branching structures. The chromosome encoding and visual representation of gene 

values for test functions is discussed in Section 3 .6. Section 3. 7 provides a summary 

of the chapter. 

3.2 Problem Formulation 

The objective ofthis research is to propose a technique for an interactive visualization 

of multidimensional (n-0) data of GA on a 2-D space and to accelerate the 

performance of GA with human intervention. For this reason, the user actively 

participates in searching by proposing a new individual in any generation. The new 

individual becomes a part of searching process into next generation. Thus interaction 

of the user leads to a faster convergence of the search and faster convergence results 

with less user fatigue. Prior to becoming a part of the search space, the fitness of the 

new individual is compared with the average fitness of the current generation. Thus 

the higher the fitness of the proposed individual, the more chance it has to be selected 

in the next generation. This interaction also affects the population size; each 

successful interaction will increase the population size. Thus proposing a fitter 

individual using interaction enables the GA to converge more efficiently in fewer 

generations. 

Evaluation: Let a is the search space for GA. Then a ~ {/h fh fh ... fJk}, 

where f3 represents generation evolved in search space for k numbers. Each 

generation f3 consists of c5 chromosome, represented by f3 ~ {6 1, ,52, 63, ........ ... c5m}. 

where m is the size of population. Each chromosome c5 of population consists of gene 

values denoted as A makes a set of c5~ {h .h AJ, .......... J.,j, where l is the length of 

chromosome. Hence the multidimensional data for each generation consists of: 
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For visualization, each generation ~ should be represented on the 2-D graph in 

such a manner that the x-axis represents each gene location and the y-axis displays 

each gene value (/q, A,2, ........... J.1) as shown in Figure 3.1. 

In the proposed research, any generation may be interacted by the user. Let the 

user interact in fJ, generation, and propose new gene values. which are a set of p = { ).1, 

J.2, A3, ........ ... J.f}. These gene values become a part of the next generation as a 

complete set of a, where Om+/= p, and p represents a new proposed individual. Hence, 

it depends on the fitness of individual p, in order for it to become a part of the next 

generation or be discarded by the GA process. In this way, the discarded individuals 

will not be considered as a part of evolution process. The next section will describe 

the functionality of the proposed approach in detail. 

3.3 Background of the Proposed Approach 

The visualization of the GA makes understanding of the search space easier. This 

visualization is based on either displaying the individuals or gene values on lower 

dimension in order to understand the convergence behaviour [ 18, 19] or to make this 

algorithm an interactive technique with the involvement of user [14, 30]. Hence, these 

techniques are useful for observing the effect of the user interaction during the 

searching process. A thorough literature survey, in chapter 2, shows that most of the 

existing IGA application works with a small number of generations [14, 21, 29]. The 
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problem introduced to GA was in the form of models, and the user interaction in each 

generation used to bring the best solution for next generation. In these existing 

applications, the fitness assigned with the some range i.e. 1-5, and the user selects the 

appropriate fitness for the solution. In this way, the selection and evaluation of each 

generation is based on the user's decision. This continues involvement of users often 

create a tiresome environment for them. 

Existing literature shows that a numerous work has been done to reduce the user 

fatigue [15]. For example using Neural Network [44], discrete fitness values [25] or 

by calculating the time spend by a user on a particular individual [26]. However, it 

was noted that all of these existing techniques found on the base of involvement of 

user in every generation. It was also observed that IGA existing techniques were 

based on visualization of individuals as 2 or 3-D models. Thus the user remains 

unaware during the searching process and with the convergence behaviour of GA. 

Based on the limitation of existing applications for IGA, an interactive visualization 

of multidimensional data based on the gene values and to accelerate the performance 

of GA by proposing a new individual is the main focus of the proposed approach. 

3.4 Overview of the Proposed Approach 

In this present research, an interactive visualization technique for the 

multidimensional data of GA on 2-D space is proposed. The proposed technique is 

used to increase the performance of GA towards fitter solutions with the help of 

human interventions. Moreover, the proposed approach is also capable for observing 

and analysing the convergence of GA towards an optimized solution using a graphical 

interface. Different steps have been taken to accomplish this goal. According to the 

problem formulation in Section 3.2, a tool named VIGA-2D (Visualization of Genetic 

Algorithm on 2-D Graph) has been designed and developed (see Appendix A for 

design and implementation). This visualization tool has been developed to show the 

clear picture of the searching process of GA in every generation. 
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Besides the visualization techniques used for representing the GA data, the 

performance of GA depends on many factors including a good fitness function, 

population size and choice of GA operators (crossover and mutation). There are four 

main steps, which are necessary to be taken by GA to complete a cycle [12]: 

a) Representation of the problem in the form of a genotype 

b) Decide on the fitness function, which is based on the expected GA solution 

c) Define the method of reproduction, recombination and mutation 

d) Decide on the termination criteria based on the nature of the problem 

A complete GA process needs all the above mentioned steps to obtain an 

optimized result. These GA steps work in the same sequence for I GA. Since the user 

is involved in IGA to complete the search process, however it needs some 

modifications in regards to the problem. 

All of these steps have been taken in the proposed approach. However in the 

proposed approach, the role of the user is for proposing a new individual in the search 

space instead of assigning fitness to the existing individuals. Listed below are some 

advantages of the proposed work. 

• The proposed approach works with a human-machine interaction. 

• Instead of the fitness value being assigned by the user, the objective function 

is used to calculate fitness for each individual. 

• The visualization is based on the gene values of each generation. 

• Human interaction is not involved with the selection or rating of the solutions; 

instead the user proposes a new individual in any generation. 

• There is no need to keep the generation numbers smaller because the user 

interaction is not necessary in every generation. 

• Any generation may be interacted by the user. 

• The working mechanism of GA operators (crossover and mutation) and 

selection of individuals work as a hidden process. 

• The GA search process continues until the user terminates it. 
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Figure 3.1: An Overview ofVIGA-20 trom Input to Output 

The complete procedure of the proposed approach has been outlined in Figure 

3 .1. The first step is the encoding of a chromosome, which is based on the nature of 

problem (Test functions or the parametric values for the Parametric L-System). For 

test functions, the chromosome depends upon the length of chromosome string and its 

maximum and minimum value range. However, for evolving parameters for the 

Parametric L-System, it is randomly generated based on the user input string and 

initial parameters. After defining the problem to VIGA-20, every generation is 

displayed on 2-0 Graph. The user may go to next generation without interaction and 

he can do interaction in any generation. All operators i.e. selection, mutation and 

crossover works same as for SGA in the proposed approach. The user may select 

different selection method (Roulette Wheel Selection or Tournament Selection), 

crossover (!-point crossover or 2-point crossover), mutation rate and initial 
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population Size. However, with every successful interaction, there will be an 

increment in population size. With the multiple intervention of the user in search 

space, VIGA-20 converges to an optimal solution or a solution according to the 

human perception. For test functions the termination is based on generation number. 

Whereas, for deriving a rule for modelling the branching structures the termination is 

based on user perception. The next section describes in detail the visualization 

technique used to design a 2-D graph for a multidimensional search space for the 

proposed approach. 

3.5 Multidimensional Data Projected on 2-D Graph 

The distribution of multidimensional data on a 2-D graph makes it easy to grasp the 

data at different locations easily. In past, the attention of most of the researchers was 

based on the visualization of individuals of GAin 2 or 3-Dimensional [18, 19, 54]. 

Despite to these existing approaches, the proposed approach intends to distribute the 

gene values of each generation on to a 2-D graph. This allows the user to observe the 

searching behaviour of GA in lower dimension. On the hand, the interaction of user 

will be based on new gene values, as compared to existing works , where user's 

intentions was based on interventions with individuals [ 15,21] . In VIGA-20, the 

horizontal view of the graph represents the gene locations and the vertical view 

represents the gene values of a chromosome. Hence, the data display on the graph 

depends on the range of gene values and chromosome length. This display of data 

involves the calculation for vertical and horizontal view of 2-D Graph and the 

visualization of retrieved gene values on 2-D graph. These calculations and 

techniques have been discussed in following subsections: 

3.5.1 Vertical and Horizontal Ratio for 2-D Graph 

For the representation of GA data on 2-D Graph, the first step is to calculate the ratio 

to set the data within the vertical and horizontal range of design graph. The vertical 

and horizontal ratios were calculated with the following equations: 
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Vertical Ratio: According to the division of the graph for vertical view, the data 

depends on the maximum range of gene values. The ratio for the vertical range is 

calculated according to the Equation (3 .I). 

Vunit= 
Vlength -GAP 

mmax 
(3 .I) 

Where Vunit is the pixel value range along the vertical view, Vlength is the total 

vertical length of the graph; GAP is a ratio to keep all the data on the graph and mrnax 

is the maximum range of genes value. 

Horizontal Ratio: For the horizontal view, the division of the graph depends on 

the chromosome length. The graph is equally divided into fixed length intervals. 

Hence, each interval represents each gene location. 

3.5.2 Retrieving Gene Values from Each Individual 

According to problem formulation each generation ~ consists of a set of individuals 6 

according to population size m and each chromosome is a set of gene values A where I 

is the length of chromosome. Thus the first step involves retrieving the gene values A 

from every location of chromosome in each generation as illustrated in Equation (3.2). 

Gvalue = valuesm,l ( 3.2) 

Where the Gvalue is a particular gene value, values is the range of the gene values, 

m= (O ... population size) and/= (O .... chromosome length). 

Y-axis: After retrieving a particular gene value, the next step is to calculate the 

location of the y-axis, which is based on the calculation of Vunit as shown in Equation 

(3.3). 

y-aX!S = Vlength - ( Gvalue - mm;n) * Vunit (3.3) 

Where V 1ength is the total vertical length of the graph, the Gvalue is the gene value for 

display, mmm is the minimum range of gene values, and Vunit is the pixel ratio along the 

vertical view. 
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X-axis: The final step is to calculate the location of the x-axis, which is based on 

the calculation of the fixed interval as shown in Equation (3.4). 

x-axis = x-axis +interval (3.4) 

Where the interval is a fixed value used to keep all data displayed according to 

the specific gene location. Hence, the calculated value is based on horizontal and 

vertical view along with x and y-axis. 
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Figure 3.2: A 2-D Graph for Visualization of Gene Values for Each Generation 

3.6 Visualization on 2-D Graph 

After setting the vertical and horizontal view of 2-D graph and retrieving gene values 

from each individual of a generation, the next step is involved with the visualization 

of data onto the graph. For visualization of a clear picture of the behaviour of 

searching the solutions in 2-D space, the fitness of gene values is displayed in blue 

level colours having a different colour depth with different sizes. 

For example, the gene values with the best fitness are displayed with a dark 

colour (blue) having a larger size as compared to the gene values with worse fitness 

values which are displayed in a light colour (gray) with a small size. The user selects 

points (new gene values) according to the distribution of gene values with higher 

fitness for a better proposed individual. The geometrical shape "ellipse" is used to 
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display gene values onto the graph. The significance of using different blue colour 

depths and size for different gene values is to make VIGA-2D self-explanatory to 

users. Hence, the user may observe the change in colour depth and size to take the 

decision for doing an interaction with current generation. On the other hand, this 

change in colour and size will also elaborate for understanding the gene distribution 

from generation to generation. 

For the making a difference between the proposed gene values and the existing 

gene values, the proposed gene values are displayed in the red colour. In this way, 

calculated y and x-axis is responsible to displaying a single value as shown in Figure 

3 .2. This visualization of gene values are based on different blue colour and size 

based on their fitness in search space. 

3.7 User's Interventions in Proposed Approach 

User intervention is the main part of the proposed approach. In most of the existing 

IGA applications user's intentions are required in each generation for the selection of 

parents and evaluation of solution for assigning fitness, which creates a tiresome 

environment for the user. To overcome this tiresome problem of user, several 

techniques were introduced in the past i.e. the approximation of fitness values using a 

neural network [ 44, 45] or to assign a discrete fitness value for the evaluation of 

individuals [ 44]. However, these existing techniques worked with the fixed range of 

parameters and fitness values. Furthermore, in these existing applications the user 

selects the parents for the next generation. 

In this proposed research work, the user may evolve many generations without 

interactions. The user is not involved with the selection of existing individuals. On 

the other hand, the designed interface for representing the gene values on 2-D graph 

also helps the user to decide the generation for interaction. For example, two different 

colours, blue and green, are used to demonstrate the current fitness. If the green 

colour is highlighted it means that the current generation has less average fitness as 

compared to the previous one, and the user may interact to improve the overall fitness. 
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If the highlighted colour is blue, it means that the GA searching is towards an optimal 

solution. Since an approach to interact with the GA searching process after several 

generations is adopted, based on the architecture of our problem, the searching 

process of GA is divided into two phases: 

a) In the first phase, the user does not interact with the current generation. 

The fitness is calculated by the objective function, crossover, and mutation 

is performed and the next generation is created with a stable population 

size. Hence, this phase works in a traditional way for evolving the next 

generation with the visualization technique. 

b) In the second phase, the user interacts with the current generation as 

shown in Figure 3.3. The interaction of the user is saved as a new 

individual (N,h,1ct). The Nchild is passes to the objective function to calculate 

its fitness. The fitness of the proposed individual is compared with the 

average fitness (Favemgc) of the current generation. If the fitness of the 

proposed individual is higher than an average fitness of current generation 

then it becomes the part of search space in next generation, otherwise it is 

discarded by GA. Crossover and mutation is applied on the new 

population in the traditional way and the next generation is created with 

the plus-one strategy population size. This is illustrated in Algorithm I. 
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Let Epop be the existing population with (Psi:eJ size of population. 

If the user interacts with current generation then 

I. Save the new individual Nchtld· 

2. Calculate thefitness (Fchild) of Nchild using the objective function 

If ( Fchild > Faverage) 

Increase size of population: Psi:e' = P.,i:e + 1. 

Epop ' = Epop + Nchild 

Else Discard the Nchild 

3. Next generation. 

Algorithm I: Making the Proposed Individual as a Part of the Search Process 

3.7.1 Retrieving Interacted Values as a Gene Values 

Since the user interacts directly on the graph, this interaction is based on the pixel 

values. This pixel values work as new proposed gene values and act in the search 

space as a new individual. Each interaction is limited to the maximum and minimum 

range for a particular genes value. These pixel values are converted into data values 

(gene values) according to the calculation ofx andy axis as given below: 

Retrieving values from y-axis: The y-axis is involved in retrieving data according to 

the upper and lower bounds of each genes value. Equation (3.5) is used to convert 

pixel values into data values. 

G = VJength-Ypixel 
value 

Vuntt+ mmin 
(3.5) 

Where the Gvalue is the gene value for display, Vlength is the total vertical length of 

the graph, Yp1xel is the y-axis position on the graph, Vunit is the pixel ratio along the 

vertical view, and mmin is the minimum range of gene values. 
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Retrieving values from x-axis: The x-axts ts involved to specify the gene 

location for each gene value. The length of the chromosome may vary according to 

the input of the user. However, the maximum chromosome length was 30 for all 

experiments. As discussed above, the x-axis is divided into equal intervals according 

to the maximum length of the chromosome. These intervals are used to convert pixel 

values into data values for the x-axis. 
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Figure 3.3: User Interaction on the Current Generation. 

3.7.2 Dynamic Population Size for VIGA-2D 

In the proposed research, each human interaction proposes a new individual instead of 

selecting any existing individuals for next generation; the problem was to make this 

new individual as a part of the search space in the next generation. A dynamic 

population size is proposed to overcome this problem. In this way the population size 

increases by one with the interaction of the user. In contrast to this, in most of the 

previous works, the issue was to control the size of the population with various 

approaches [47, 48]. In these existing works, variation (increment or decrement) of 

the population size depends on some other factors, i.e. fitness rating and threshold 

value. Variation in population size was also noticed in a IGA technique to model the 
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fashion design on the screen , in which the population size increase or decrease with 

the interaction of the users [38). . 

In the proposed work, the mam purpose of using the dynamic s1ze of the 

population is not to lose the existing individuals but to enhance the search space 

interactively. Whenever user interacts with the current generation, the fitness of the 

proposed individual is calculated using the objective function. If the proposed 

individual is not optimal as compare to the existing individuals of the current 

generation, then the proposed individual discard by GA. The interactive tool helps 

the user to monitor the feasibility of GA to adopt the new individual in its searching 

process. For example, the increment in population size depends on the number of 

successful interactions that can be monitored by the user onto the interactive tool 

window. In this way, the user can observe the successful interaction with the 

increment in population size. In other words, if the user's interaction produces a 

worse individual, then the population size remains stable. 

3.7.3 Visualization of Convergence Graph 

Visualization of the fitness convergence graph works in a traditional way. A 2-D 

graph is implemented for monitoring the convergence of fitness in each generation. 

The graph is based on the visualization of the best, average and worst fitness value for 

each generation as shown in Figure 3.4. Importantly, this graph also helps to invites 

user for interaction, particularly, when the user observes no change in fitness from the 

last few generations, the user may interact with the GA process and propose a new 

individual to converge GAin a better way. This convergence graph also help to make 

the decision for terminating the GA process after achieving the desired convergence 

rate. In this graph the 'horizontal view' is used to display the generation number and 

the 'vertical view' is used to show the fitness value. Visualization of this graph is 

based on the number of generations being evolved and the difference in fitness value 

for each generation. For visualization of convergence graph, the vertical and 

horizontal ratios are calculated by the following equations: 
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Vertical Ratio: The vertical view of the graph depends on the maximum range of 

the fitness value. The ratio for the vertical range is calculated according to the 

Equation (3 .6). 

Vzength -GAP 
Yunit= 

mmax 
(3.6) 

Where v,,,, is the pixel value range along the vertical vtew, Vtengrh is the total 

vertical length of the graph, GAP is a value used to keep all data displayed inside the 

graph, and mmax is the maximum range of the fitness value. 
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Figure 3.4: Fitness/Generation Graph: theY-axis Shows the Fitness Values and X­

axis shows the Generations. 

Horizontal Ratio: The horizontal view of the graph shows the generation 

number. The ratio for the horizontal view is calculated according to the Equation 

(3.7). 

hun it 
htength -GAP 

hinterval 
(3.7) 

Where humr ts the pixel value along the horizontal vtew, htengrh is the total 

horizontal length of the graph, GAP is a ratio to keep all data displayed inside the 

graph, and h;urerval is the intervals for displaying data in the x-axis according to the 

generation number. 

X-axis: The maximum and minimum values of the x-axis are change according 

to the changes in the generation numbers. The x-axis is calculated according to the 

following Equation (3.8): 
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x-axis ~ GAP +i * hunil (3.8) 

Where GAP is a value used to keep all data displayed inside the graph, i ~ (0.. k) 

is the generation number, and hunit is the pixel ratio along the horizontal view. 

Y-axis: For the y-axis, the higher and lower boundaries for fitness values are 

given by default. The graph is updated with every generation. Equation (3.9) shows 

the calculation for the y-axis. 

y-axis ~ V1ength - (fitness; - mmin) * Vunit (3.9) 

Where Vtength is the total vertical length of the graph, .fitness is the fitness value to 

display, i~ (0 .. k) is the generation number , mmin is the minimum fitness value and 

Vunit is the pixel ratio along the vertical view. 

The visualization of convergence graph shows the best, average and worse fitness 

for the each generation. Three different colours i.e. red, blue and green are used to 

display these fitness values respectively. The geometrical shape "ellipse" is used to 

display different fitness values. The size of the ellipse is the same for all fitness 

values. 

3.8 GA Operators and Methods used in Proposed Approach 

The VIGA-20 process starts in the traditional way as proposed by Goldberg [9]. 

Figure 3.5 shows that the initial population (t) is randomly generated. Then population 

(t) is evaluated using some criteria (fitness function) and this population enters into a 

loop and a new population is selected (t+ 1) from population (t), where crossover and 

mutation is performed, and after evaluation, a new population replaces the older one 

(t). And this loop continues until it meets the stopping criteria. The total number of 

individuals in a population shows the size of the population. However, during the 

searching process, human interaction may occur in any generation. As a result of 

interaction and proposing of a new individual, there will be an increase in population 

size. This interaction process is already discussed in detail in section 3. 7. The 
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following subsections will discuss the GA selection methods and different crossover 

and mutation operators applied for the GA process in this thesis. 

Encoding Chromosome 

Fitness Function 

Selection Method 

GA operators 

Add proposed genes 
values into search 

space 

Increase 
population size 

Next 
Generation 

N 

User 
interaction 

Evaluate 
genes values 

for each 
generation 

Visualization 
on 2-D graph 

Satisfied 
solution 

Stop 

Figure 3.5: Pipeline for the Proposed Approach. 

3.8.1 Selection 

Selection is a process for choosing the best individuals to work as parents for the next 

generation. This selection is based on the fitness (selection pressure) of individuals. 

The best individuals are favoured according to a degree of selection pressure [105]. 

The higher the selection pressure, higher the chance for selection of the best 

individuals. The convergence rate is also determined by selection pressure. Thus the 

convergence rate becomes higher with a high selection pressure and GA finds the 

optimal solution faster [I 06]. As a result of selection, the chosen individuals are 

added to a mating pool in which the reproduction is occurs. In GA, different selection 

methods are used to provide selection pressure with different characteristics. Among 

them, the most common selection methods are used in the proposed approach; they 

are Roulette wheel selection and Tournament selection. 
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In the Roulette wheel selection method, the first step is to calculate the fitness 

(F(cm)) for each chromosome (em)-

The second step is to calculate the total fitness of the population as shown in Equation 

(3 .1 0). 

"\'PDP size(f( )) T fitness= L..m= i Cm (3.1 0) 

Where Tfitness is the total fitness and m ~ I, 2 ...... .... ,pop _size and(fitness (em)) is 

the fitness of the chromosome in the population. An empty mating pool is created and 

filled with the selected individuals based on their fitness value. The fitter individuals 

have a higher chance to be selected and added into the mating pool. A new population 

is generated based on the fitness value with respect to probability of distribution. 

The third step is to calculate the selection probability Pm for each chromosome Cm 

using equation (3.11 ). 

Pm 
T fitness 

(3.11) 

The fourth step is to calculate the cumulative probability qm for each chromosome 

Cm using Equation (3.12). 

(3 .12) 

Adding the fitter individuals to the mating pool are continued until the population 

is full, for this process, a random number r is generated. 

If r :"': q 1 , then the first chromosome c 1 will be selected 

Else 

Select k1h chromosome Cm such that qm.1< r < qm. 

After selection of individuals for the new population, the recombination and 

mutation occur. 
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Tournament selection is based on a tournament between members (i.e. an 

individual of the population) to provide a selection pressure [ l 05]. This selection 

method is computationally more efficient. These individuals are selected from the 

population randomly. The tournament selection pressure is increased by an increase 

in tournament size (T,) or vice versa. The winner is the individual having the higher 

fitness among T, and it is added to the mating pool. It involves the following steps: 

I. With the probability p, selects the best individual from the tournament I pool. 

2. Select the second best individual 

p*(l-p) 

3. Select the third best individual 

p*((l-p)"2) 

The tournament selection remains continue until the mating pool is full. A new 

population is created by selecting two random individuals as parents from the mating 

pool. After performing crossover on these parents, a child is created. Mutation is 

applied on the created child and a new population is created for the next generation. 

3.8.2 Crossover 

Recombination or crossover is an act of exchanging information or genetic material 

between parents to produce new children. This exchange is based on selection of 

better genes to produce good solutions referred to as "building blocks for the next 

generation". For reproducing well adapted individuals with new genetic material, two 

types of crossover operators are performed in the proposed approach, i.e. one point 

crossover and two point crossover [I 08]. 

3.8.3 Mutation 

Mutation also plays an important role during the GA process to bring new features 

into the next generation [I 09]. It occurs by giving some probability value during 

evolution. Mutation is used to alter current alleles of genes with different alleles. The 
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position for mutation is selected randomly. A mutation rate m, is defined. For example 

if m, is 0.0 l, then only l% of the genes in the population will be mutated. The 

mutation is performed on the genes which are less than the mutation rate m, . Every 

gene has an equal chance to be mutated. After completion of the mutation, the new 

child (individual) is added to the population. 

ln the proposed work, the uniform mutation [11 OJ is used. Uniform mutation 

works with the alteration of genes by the selection of a uniform random value within 

the upper and lower bound of a particular gene. The next population is generated after 

one completes process of selection, crossover and mutation. Thus the one generation 

of GA depends on the selection, recombination, mutation and evaluation. After 

mutation, a new child is added to the population,B(t+l). 

3.8.4 Termination Criteria 

The termination condition is an important part of GA, which helps the algorithm to 

decide on going to the next generation or stopping the evolution process. This 

termination criterion is checked after each generation. There are many ways to 

terminate the GA search process depending on the nature of the problem, i.e. number 

of generations, computational time, and threshold value or according to the user's 

perception [2]. In !GA, it is very difficult to determine termination criteria 

theoretically. The applications of !GA are user dependent, so it depends on the user to 

decide the termination of the current evolution. The decision of the user for 

termination may depend on the convergence of fitness to optimized solution or it may 

depend on the user's requirement or the number of generations evolved. In the 

proposed work, two termination criteria are used: (I) Termination of the process 

depends on the user. (2) Number of generations. 
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3.9 Application: Modelling the Growth Process of Branching Structures using 

Parametric L-System 

Parametric L-System has been proved to be a successful rewriting mechanism to 

demonstrate the growth process of plants and trees [82]. The application of the 

proposed approach is to optimize the parameters for deriving the rules for the 

Parametric L-System while symbols for the structure are given by the user. The best 

solution obtained from VIGA-2D works as associated parameters, used for deriving 

rules for the Parametric L-System. 

The deriving of rules for Parametric L-System using GA is a further extension to 

the work done in [86], in which a sketch interface is developed to retrieve an L­

System string from user's sketch for a tree. The stroke input is translated into L­

System symbols and parameters, which indicates the height, main axis and a number 

of iterations from which the tree should be grown. The rules of the L-System are 

developed with the help of user's input that is used to model the further growth of the 

tree according to the number of iterations. For deriving the parameters closest to the 

input of the user; GA is used to optimize the parameters. The rules derived from the 

optimized solution are then used to generate branching structures using the turtle 

interpretation onto 3-D space. 

In the proposed work, the process initiated with the L-System string given by the user. 

Initial parameters for the branching structure, i.e. the branching angle, length and 

width of trunk are given by the user. Whereas the parameters used for scaling and 

deriving the rules are randomly generated by the system. Initial parameters given by 

the user and randomly generated parameters works as a target solution in VIGA-2D. 

All these parameters work as real values for chromosome encoding in VIGA-2D. 

User can do multiple interactions for proposing a new individual and user may see the 

output (generated branching structure) in any generation. The overall process works in 

the same manner as discussed in section 3.4. In order to visualize the growth process 

of generated structure, the optimized solution from the last generation acts as deriving 

rules for Parametric L-System. The steps involved in the process are shown in 

Algorithm 2. 
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I: Initialize the process with user input (L-string) and initial 

parameters 

2: Generate random chromosome from initial parameters (Oparam) to 

initiate the VIGA-2D process. 

3: Calculate the fitness of each GA generated solution (Gparam) as 

compare to Oparam with fitness function: 

fitness= jL.l=1(Gparam;- Oparam;) 2 

Repeat 

4: Until terminate according to user perception 

5: Derive L-System rule from best solution obtained from current 

generation. 

6: Model the next growth step according to the L-System rule 

Algorithm 2: Steps taken for Deriving Rules with L-string and VIGA-2D. 

In order to generate branching structures using VIGA-2D, the graphical interface 

is divided into 3 stages. The first stage is involved with the user input for generating 

L-System string. The second stage is involved with the VIGA-2D search process for 

optimizing the parameters and the third stage is responsible for deriving rule and the 

visualization of the branching structure in 3-D space as shown in Figure 3.6. The 

termination of the VIGA-2D searching process depends on the user. During 

visualization, the fitness graph shows the overall performance of the process as 

discussed in subsection 3.7.3. Besides displaying branching structures repeatedly, the 

user may estimate the performance of finding a good solution through this graph. The 

following subsection will discuss these stages architecture and the functionality of 

each stage in further detail. 
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Figure 3.6: An Overview of the Designed Interface for Deriving the Rule for 

Parametric L-Systcm. 

3.9.1 User Input (L-String). 

The L-System language consists of terminal and non terminal symbols. Non terminal 

symbols known as repeated symbols arc used to generate more strings of symbols. 

Terminal symbols are used for scaling, rotation and movement, and they remain same 

during all iteration levels. The bracketed L-System is applied to generate tree like 

structures. In the proposed work, the Deterministic Parametric L-System is used to 

create the rule according to the following form: 

Predecessor -7 Successor 

Where the predecessor will be recursively expanded and replaced with the relevant 

successor m each iteration. The graphical interpretation is based on the turtle 

interpretation [80]. In the proposed work, the turtle interpretation is based on as 
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discussed in [Ill, 112). The three dimension coordinating system is adopted with 3 

vectors (H, L, and U) used for directions, in which, H represents the head or front 

vector, L represents the left vector and U represents the up vector. The default angle is 

Hat 90 degree (see Appendix B for detail). 

In the proposed approach, the problem 1s to optimize the parameters of 

Parametric L-System for deriving the rule. For this reason, it covers the translated 

symbols from the user input and their initial parameters. These symbols are based on 

the user input in all 3 directions. The following example illustrates the mechanism of 

generating the random chromosome to initiate the VIGA-20 searching process. 

Let the input string given by the user is =!F [ +} F[-}. The total numbers of symbols 

used in this example is 7. After modelling the initial structure with the user input, the 

L-String gets the following form: !F[+!F[+}F[-}}F[-'F[+}F[-}}. For the initial 

structure, width of the trunk, height of the main branch and angles of the sub branches 

are also input by the user. The next step is to create the random parametric values 

which work as a chromosome for VIGA-20. The length of the chromosome is based 

on the total number of symbols in the L-String including the width and length for each 

sub branch, represented by the symbol A. 
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Figure 3.7: Representation of the Parameters for Chromosome Encoding 

3.9.2 Evolving Parameters using VIGA-2D 

The deriving of parametric rules for Parametric L-System is based on the different 

parameters. The genetic encoding of these parameters is real values, which works as a 

chromosome for VIGA-20. Figure 3.7 shows the construction of the chromosome 

according to the parameters retrieved from the branching structures. Each of these 

parameters represents different gene values and has a particular range. A random 

generator is used to assign random values according to upper and lower bounds for 

different gene values. 

The chromosome length is a dynamic length and depends on the number of 

symbols given in the input L-System string (L-String). The searching mechanism is 

indirect with a non-linear equation. As real values are evolved, the GA process 

evolves until it eventually converges to the nearest optimized solution or the best 

solution. Based on the formal parameters; the fitness function is defined as follows: 
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Evaluation Function: The optimal or nearest real values are measured by 

summing the squares of the differences between the indexing of the original values at 

each position and the values generated by GA. This is represented by Equation (3.13). 

f= (3.13) 

Thus f will be the fitness value of the current evolving individual, Gparam is the 

GA generated solution and Oparam is the target solution and i=(O .. I) is the length of 

the chromosome. This fitness function evaluates the titness measured for each 

individual indicating its suitability to be selected. 

3.9.3 Visual Representation of Parametric Values 

The visualization is involved to represent gene values for every generation on the 

screen. Every gene value has a particular range in constructed chromosome. Equation 

(3.2) is used to display the gene values on the screen. Figure 3.8 shows the 2-D graph 

for the parameters. The gene locations of the genes value on the graph are displayed 

in the same the sequence as in the chromosome. Each gene has a particular meaning 

in phenotype form and a particular range of values. For example, the first index is 

allocated to the line parameter which is the 'F' symbol having the range from 5.0 -

39.99, the second index is allocated to the width parameter which is the '!' symbol 

having the range from 3.0 - 8.0 and all remaining gene values range are also in the 

range between 0.3-0.8. To display all gene values in equal scale, all genes value 

except the first one are scaled up to 3.0-8.0 for visual purposes. 
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Figure 3.8: Visualisation of Gene Values on a 2-0 Graph for Parameters 

3.9.4 Deriving Rule for the Parametric L-System 

Termination of VIGA-20 is based on the user perception. After termination, the best 

solution obtained from the last generation of VIGA-20 works as parameters for L­

System string to derive the rule for the Parametric L-System. For deriving rule, the 

parameters are combined with the symbols, based on the gene location and its 

phenotype meanings, i.e. according to the symbols. The rules of the L-System are 

based on two parts which are the axiom and the rules. The axiom is known as the 

starting point of generative grammar. In the presented application, the axiom is 

constant for rule. It is implemented with one symbol "A" with corresponding 

parameters as follows: 

w ~axiom (r,g,b)A(x, w) 

Where,(r,g,b) are the colour values for Red, Green and Blue, "A" is used for a 

recursive purpose, x shows parametric value for the line symbols "F", and w shows 

the parametric value for width symbols "w ". 
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For the L-System, rules can vary in numbers, depending on the complexity of the 

generated structure. We developed one rule from the output ofVIGA-2D. This rule is 

applied to the non-terminal symbol of the axiom. The construction of this rule is as 

follows: 

A(x, w) -> !(w) F(x) [ +(81)A(r,, wr,)J F(x1) [ +(82) A(r2, wr2)} 

...... F(x,J [ &(8n) A(rn. wr,J} 

In the above rule, the parameters, i.e. r1, wr1,r2, wr2.rn. wrn, are randomly generated 

for the chromosome; whereas, the value for the parameters, i.e. x and w are given by 

the user. The value for 8 is constant for all angles. Following are the assumptions and 

limitations for deriving the rule for generating the branching structures. 

I. For assigning the parameter to the symbol, () are used, i.e. "! (2. 53)" shows 

that the width of the branches is 2.53. 

2. To separate the predecessor from successor"-> "is used. 

3. The predecessor may also receive a variable using ( ), t.e. A (x.w). This 

variable is used in the successor as parameter. 

4. The number of iteration shows the complexity of the generated structure. 

5. In the production rule, the A behaves recursively for n number of iterations, 

where the value of n is the number of iterations. 

For example, if the L-String given by the user is !F[+}F[-], the angle for each branch 

'8' is 22 and the initial parameters are 37, 4 and 28. Then, after the initial structure, 

the L-String becomes: !F[+!F[+]F[-}}F[-IF[+}F[-}}. For VIGA-2D and the length 

of the random chromosome will be 21, based on the total number of symbols in the L­

String. Hence, the randomly generated chromosome for the above L-String will be 

3~~2&2Q~31,2~~3QJ1,2Ql~&2~3~2~J~ll2~~~ 
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After evolving the VIGA-2D for n-number of generations, the following is the 

derived rule with integration of the L-String and the best solution obtained from 

VIGA-2D: 

w (0.24,0.6,0)A(l9,8) 

# A(x, w)-> !(w)F(x){ +(22)$A(x*0.81, w*0.8l)!(w*0.81) 

F(x*08J){ +(22)$A(x*0.81, w*0.51)] F(x*0.35)[-(22) 

$A(x*O 61, w*0.2l)}}F(x*0.81){-(22)$A(x*0.53, w *0 . 
. 65)!(w*0.3l)F(x*O. 69)[ +(22)$A(x*O. 72, w*0.88)} 

F(x*O. 76){-(22)$A(Y:*0.51, w*0.45)}] 

In this way, every generation in which the user wants to generate a tree is used to 

derive a rule from its best solution. This searching process remains continue until user 

terminates it. 

3.10 Test Functions with VIGA-2D 

In this thesis two test functions were examine in order to test the perfonnance of the 

proposed approach and to evaluate the efficiency as compare to SGA . These two test 

functions are DeJong's [113], and Rosen brock function [ 114]. Table 3.1 shows the 

names of the functions with its objective function and the limits of the upper and 

lower bounds. Chromosome encoding for these test functions is real value encoding. 

GA operators and selection methods work in the same way as discussed in Section 

3.4. 
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Table 3.1: List of Test Functions and their Limitations Evolved with the Proposed 

Approach 

Function 
Fitness Function Limits 

Name 
n 

f(x) = Ixf 
i=1 

DeJong's F1 [-5.12,5.12] 
And the global minimum is: 

f(x)=O, x(i)=O, i=l :n. 

F2 = Lf 1 100(x2 - xi) 2 + (1 - xl )z 

Rosenbrock And the global minimum is: [-5.12,5.12] 

x; = 1 , f(x) = 0, i=l:n. 

The visual representation of gene values for test functions works in the same way 

as for parameters of Parametric L-System (see Section 3.5.2). The equation for 

displaying these gene values is calculated according to Equation (3.2), where the 

value is according to the minimum and maximum range given by the user. 
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3.11 Summary of Chapter 

This chapter has proposed a new approach to visualize the multidimensional data of 

GA in a 2-D space. The implemented 2-D graph represents the visualization of gene 

values and provides a way to interact the GA process by the user. In proposed 

approach, the intervention of the user is not involved with the selection and assigning 

of fitness to the existing individuals. The purpose of this interaction is to propose a 

new individual, based on different gene values selected by the user during the 

evolution process. This proposed individual is within the upper and lower bounds of 

the gene values and works as a new born child in the next generations. 

For making the user's interventions effective, different visualization techniques, 

i.e. the usage of different colours and size for displaying the gene values, displaying 

the average fitness value of the current generation on the screen and the visualization 

of convergence graph are used to help the user in understanding the searching process. 

An objective function is used to calculate fitness for the solutions in each generation. 

Therefore, user interventions are not forced in every generation. 

This chapter also shows in detail the working mechanism of the proposed 

approach to derive the rule for the Parametric L-System. This rule is used to model 

the growth process of the branching structure according to the user input. For testing 

purpose, two benchmark functions are selected. The success of an approach depends 

on complete and accurate evaluation. The next chapter will discuss the experimental 

results based on evolving the selected benchmark functions and evolving parameters 

for deriving rule for the Parametric L-System. 
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4.1 Chapter Overview 

CHAPTER4 

EVALUATION OF RESULTS 

This chapter evaluates the proposed approach as discussed in Chapter 3. For effective 

and thorough evaluation of the proposed approach, a range of different experiments 

have been carried out. These experiments were based on different inputs, number of 

interactions, length of chromosomes, and a number of generations. In order to analyse 

the convergence of VIGA-2D, it was studied through difTerent experiment to observe 

it convergence at an optimal or sub-optimal solution. The main purpose of proposed 

approach is to accelerate the performance of GA as it has been addressed in several 

existing techniques [15, 44, 26]. For this reason all the experimental results were 

compared to SGA in order to evaluate the ability of the proposed approach to 

converge to an optimized solution or to best solution according to the user perception. 

In contrast to the previous approaches, the proposed research involves the 

visualization of multidimensional data on a 2-D graph based on gene values. In the 

proposed approach, user interaction is based on proposing a new individual to 

accelerate the convergence of GA towards optimal solution. The main idea of 

proposed approach is to find an optimal solution with several interactions in fewer 

generations having small population size. The fitness is calculated by the fitness 

function; hence, a human-machine combination allows this approach to be applied 

successfully to difTerent problems. As human interaction is the main part of the 

proposed methodology, most of the discussion in this chapter will be on user 

interactions and their effects on the GA searching process. 



To demonstrate the performance and efficiency of the proposed approach for an 

optimal solution, the evaluation results are presented in Section 4.4 with a discussion 

of applying the proposed approach for benchmark functions. For this purpose, two 

benchmark functions were chosen with different features. First function selected was 

DeJong function [113]; converge at global optima. Second function was Rosenbrocck 

function [114] having many local optima and difficult to converged. In this way the 

proposed approach has been evaluated with two different kinds of functions. 

However both of these functions are subjects of minimization. For analysing the 

performance of VIGA-20, for evolving parameters for deriving rule for the 

Parametric L-System are presented in Section 4.5. Based on the nature of the 

proposed approach, the results are mainly divided into the following two 2 categories: 

a) Experiment 1 (Objective Analysis): The performance of VIGA-20 was 

evaluated with benchmark functions. For comparative evaluation, the same 

GA parameters and operators, i.e. length of chromosome, size of population, 

number of generations, selection method, crossover and mutation rate were 

used to evolve the SGA. Hence, difference of convergence rate of VIGA-20 

was compared with SGA. The comparison between SGA and VIGA2D has 

been done with same number of generations. 

b) Experiment 2 (Subjective Analysis): The performance of the proposed 

approach was evaluated with the user. Five different users run VIGA-20 with 

different chromosome lengths, selection methods, operators and number of 

generations to evolve the parameters. These parameters were used to derive 

the rule for the Parametric L-System. This rule was then used to model the 

growth steps of branching structures according to the user input. The 

termination of searching process was based on the user perception. 

After this, some experiments were conducted to run VIGA-20 with different 

selection methods and operators to evaluate the advantages of using the visualization 

technique for the searching process of GA. Following are some observations which 

will remain constant for all experiments. 
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• Analysis of user interactions 

• Evaluate the convergence rate based on the best and average fitness of each 

generation. 

• Explore the gene values according to given colour scheme. 

• GA progress towards a better or optimized solution 

4.2 Specification of the System and Dataset 

The experiments were conducted on an Intel(R)Core(TM)2 Quad CPU Q6600 

running at the CPU speed of 2.40 GHz with a 3.0 GB RAM. The operating system 

was a Microsoft Window XP Professional edition version 2002. For human 

perception, the interfaces and frames were best viewed on an LCD with resolution of 

I 024 X 768 pixels. In all experiments, JDK 1.6 was used to run the proposed 

program developed in JA V A.JA VA 2 and 3-D graphics version 1.5.1 is used to 

implement different graphical modules. 

4.3 Benchmark Functions (Objective Analysis) 

For evolving the benchmark functions, as described above, the selection method, 

operators, crossover and mutation rate remained the same for all experiments. The 

selected parameters for evolving VIGA-2D and SGA i.e. selection method, 

parameters, rate and operators for benchmark functions was based on several testing 

of proposed approach and SGA with different parameters. After analyzing and 

evaluating the performance of VIGA2-D and SGA with these different parameters, 

following operators and selection method has been set for all experiments for both 

algorithms. 

• Roulette Wheel Selection method was used 

• One point crossover was performed 

• Mutation was performed with the mutation rate of 0.05. 
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• Termination condition was the number of generations 

• Each experiment was performed I 0 times 

• Chromosome length used for the experiments was n = I 0 and 20 

• Two graphs were drawn for comparison between SGA and VIGA-2D 

I. Average Fitness (Total average of all averages of 10 runs each). 

2. Best Fitness (Total average of the best fitness of I 0 

runs each) 

Each experiment was performed I 0 times with same chromosome length. The 

population size was I 0 for chromosome length n= I 0. Whereas for chromosome length 

n=20, population size was 20. Each experimental result was performed with I 0 

interactions for keeping consistency in all experiments. In a total I 00 generations was 

evolved for every run for VIGA-2D, however, SGA was evolved to a number of 

generations to get the closest optimized solution as compared to VIGA-20. For 

visualization aspects of VIGA-20, the curve of convergence rate is directed to 

upward direction due to implementation aspects. However, both functions are the 

subjects of minimization. The discussion of all experiments will be based on average 

result calculated after 10 runs for both benchmark functions. The Appendix C shows 

the detail tables for interactions, accepted and discarded proposed individuals with 

both functions. 

4.3.1 DeJong's Function 

It is the first function of DeJong's [113], known as sphere model. This function is smooth, 

continues, convex, unimodal, symmetric and converge at global optima. For evaluating the 

performance of the proposed approach with De Jong's Function, experiments have 

been done with SGA and VIGA-20. Table 4.1 shows all important parameters taken 

for DeJong's Function. 
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Table 4.1: DeJong's Function Specification 

De Jone:'s Function n= 10 n=20 
Runs 

Generations 
Population size 

Total Interactions 
Average Accepted Interactions 
Average Discarded Interactions 

Average Population Size after Interactions 
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Figure 4.1: Fitness I Generation Graph for De .Tong's Function for n=IO and 20. 

Figure 4.1 shows the fitness I generation graph with VIGA-2D and SGA. In this 

experimental result it was noticed that until the generation 20 the convergence of 

SGA and VIGA-2D was at the same rate. The first average interaction was done at 

generation 17 for all runs. The second interaction was done at generation 23 for all 
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runs. After these two interactions there was a prominent difference noted between the 

fitness value of VIGA-2D and SGA. The last interaction was done at the average 

generation of 83 for all runs, with a total of l 0 average interactions. The average 

population size was 18 at termination time. On average, 2 proposed individual was 

discarded by VIGA-2D. 

For n = 20, the population size was 20 and the generations size was I 00 for 

VIGA-2D and 236 for SO A. The convergence of VIGA-2D was higher as compared 

to SGA after the l st interaction. The average first interaction was done at the 

generation 17 for all runs. In total, l 0 interactions were done with the average 

population size of 29. On average, l proposed individual was discarded by VIGA-2D. 

The last interaction was done at the average generation of 90 for all runs. 

Table 4.2: Comparison between VIGA-2D and SGA after 10 runs for DeJong's 

Function upto I 00 Generations 

n=lO n-20 
Best Average Best Average 

Fitness Fitness Fitness Fitness 

VIGA-2D 
0.979798 0.92806 0.90073 0.872481 

SGA 
0.609368 0.58445 0.18287 0.169025 

Difference 0.37043 0.34361 0.71786 0.689611 

A prominent difference was noticed while evolving this function with and without 

VIGA-2D. For keeping consistency in Table 4.2, difference noted was based on 

generations 100 for both algorithms. For n =10, the difference between SGA and 

VIGA-2D was found to be 0.34361 for the average fitness. Whereas the difference of 

both algorithms at n=20 was 0.689611 for the average fitness. Table 4.2 shows that 

the proposed approach was successful to converge with the best fitness of 0.979798 

for n =10 and 0.90073 for n = 20 after 100 generations. However for SGA 

approximately same difference was noted after 181 generations for n= I 0 and after 236 

generations for n=20. Hence, these differences in the convergence rate and 

generations show that the interaction at different generations with the proposed 

approach helps the De Jong function to optimize much faster as compare to SGA with 

a small population size. 
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4.3.2 Rosenbrock's Function 

The Rosenbrock function [114] is a non-convex classic optimization function. It is 

also known as banana function or the 2"ct function of De Jong. This function is 

frequently used to analyse the performance of optimization problems. The global 

minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is 

trivial, however convergence to the global optimum is difficult. Table 4.3 shows all 

important parameters taken for Rosenbrock's function for the evaluation of the 

proposed approach as compared to SGA. 

Table 4.3: Rosenbrock's Function Specifications 

Rosenbrock's Function 
n = 10 n=20 

Runs 10 10 
Generations 100 100 

Population size 10 20 
Total Interactions 10 10 

Average Accepted Interactions 7 7 
Average Discarded Interactions ' 3 .) 

Average Population Size after Interactions 17 27 

Figure 4.2 shows the fitness/ generation graph for Rosenbrock function. For n=10, 

the first average interaction was done at the average generation number 17 for all 

runs. With the average of 7 successful interactions for VIGA-2D converging with a 

higher fitness rate as compared to SGA. In total, 10 interactions had been done. The 

population size was I 0 and a total of I 00 generations were evolved. 

For n=20, the first average interaction was done at the average generation number 

16 for all runs. With the average of 7 successful interactions, VIGA-2D converges 

with a higher fitness rate as compared to SGA. On average, 3 proposed individuals 

were discarded by GA. The population size was 20 and the total generations evolved 

were 100. 
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Figure 4.2: Fitness/Generation Graph for Rosenbrock's Function for n =10 and 20. 

Table 4.4: Comparison between VIGA-2D and SGA after I 0 runs for Rosenbrock's 

Function upto I 00 Generations 

n=IO n=20 
Best Average Best Average 

Fitness Fitness Fitness Fitness 

VIGA-2D 
0.08694 0.081295 0.04345 0.04038 

SGA 0.008627 0.008568 0.00728 0.005968 

Difference 0.078313 0.072727 0.03617 0.034412 

The graphs in Figure 4.2 (a) and (b) show a difference between fitness 

convergence of SGA and VIGA-2D. After I 0 times of execution the difference for 

average fitness between VIGA-2D and SGA for n = I 0 was 0.072727 and for n = 20 it 

was 0.034412. Table 4.4 lists all the best and average fitness found with the two 
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different variable lengths after I 00 generations. It was noted that for SGA with n= I 0, 

Rosenbrock function converged to nearest fitness value to VIGA-2D after 200 

generations and for n=20 it was after 400 generations. Due to multimodal feature of 

Rosenbrock function both of algorithm were not successor to a good fitter value. 

Overall the performance of VlGA-2D was satisfied as compared to SGA with 

different generations in presented experimental results. 

4.4 Discussion with Benchmark Functions 

In the presented experiments, the performance of VIGA-2D was compared with SGA 

along with two benchmark functions. The observation was based on the convergence 

rate of VIGA-2D towards an optimized solution with human interactions and without 

interaction for the convergence rate of SGA. 

The results show that the interaction of humans brings a prominent difference 

between convergence rates from generation to generation. It was noticed that 

proposing new individuals in several generations brings a prominent change in the 

searching process. Additionally, in the proposed approach an increment in population 

size after each successful interaction also gives a wider search space, which helps 

VIGA-2D to converge actively as compare to SGA. However it was noted that for De 

Jong's Function due to its unimodal feature , there was not a large difference in 

convergence with n = I 0 and 20. Overall, the performance of VIGA-2D was better 

than SGA for converging towards a fitter solution in different generations. 

Test function Rosenbrock also showed a better performance with VIGA-2D for 

both variable lengths as compare to SGA. Although the convergence with VIGA-2D 

has not shown a good performance tor this function, the overall performance was 

satisfactory as compared to SGA. For VIGA-2D, the performance of the rosebrock 

function was noted at the same convergence for n = I 0 and 20. A difference was 

noted after 45 generations, although there were 5 average interactions have been done 

before 45 generations for both variable lengths. 
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The difference of convergence rate between VIGA-2D and SGA shows that the 

designed graphical interface gives a suitable understanding to the users for the 

distribution of the gene values in different generations and to do several interactions. 

It was noted that for a user, it was a difficult to take decision to make the interactions 

in the initial 20 generations for the benchmark functions. However, it was observed 

that after 20 generations, the gene distribution on 2-D graph became easy to 

understand and to do the interactions. Figure 4.3 (a) shows the visual representation of 

Rosenbrock's function for generation I 0, in which the gene values are distributed in 

the overall search space. Figure 4.3 (b) shows the gene distribution with 3 interactions 

and Figure 4.3 (c) shows the gene distribution without interactions after 40 

generations. A prominent difference was noticed in the gene distribution with and 

without interactions for the same generation numbers. 
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Figure 4.3: Gene Distribution with VIGA-2D for Rosenbrock's Function for n=IO. 
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It was also noticed that the proposed approach has some limitations especially 

from the human interaction perspective, i.e. lengthy chromosome that may create user 

fatigue. Therefore the maximum length of a chromosome suggested for benchmark 

functions was 20. In VIGA-20, every successful interaction of user will increase 

population size. Thus, for VIGA-20 the initial population size that was l 0 and 20 

became 18 and 29 after l 00 generation with 8 and 9 successful interactions for n= l 0 

and 20 respectively for Rosenbrock function. Thus this dynamic increment in 

population size gives a larger search space to the benchmark function interactively. 

For SGA, the population size was I 0 and 20 for all generations. Based on the 

difference of convergence rate for VIGA-20 and SGA, it was noted that the proposed 

approach has been proven to be efficient as compared to SGA with both benchmark 

functions. 

4.5 Modelling the Branching Structures (Subjective Analysis) 

The application of the proposed approach is to evolve the parameters to derive the 

rules for the Parametric L-System. The proposed technique for deriving the rules for 

the Parametric L-System is the further extension of the sketch and grow interface 

developed for trees [86]. In this existing work, the basic parameters of a drawn sketch 

are sent to SGA as an optimization problem. After optimization, rules are derived 

with the L-System symbols retrieved from the initial model sketch by the user and the 

parameters obtained from best solution of GA. The user may see the next iterations of 

the growth process in a 3-0 space. In the proposed work, the searching ability of GA 

is used to generate rules for the Parametric L-System with the intervention of the user. 

Instead of 'sketch and grow' the initial structure, input to VIGA-20 is given by the L­

String and the parameters. Furthermore, in proposed approach interactions points or 

generations for interactions were not initially described to users. Hence the purpose is 

to evaluate the understanding of users with User Interface and to decide the 

interactions according to tips given on VIGA-20 tool for understanding gene 

convergence and to do interaction. On the hand, in proposed approach the interactions 
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are not fixed to some pre-defined parameters. Additionally, the termination of 

proposed approach is based on user perception. 

The best solution obtained from the VIGA-20 is used to model the further growth 

steps of branching structures. In order to achieve this goal, the proposed approach 

was evaluated with different GA operators and input L-String. These experiments 

were based on different users evolved the parameters for deriving the rules for the 

Parametric L-System. For these experimental results, five participants were invited to 

run the VIGA-20 with different parameters. These participants were undergraduate 

and postgraduate students of the ages 22 to 40 years old. All the participants do not 

have background relevant to the proposed approach; so that the proposed approach 

should be evaluated on the basis of different users' abilities and perceptions according 

to their knowledge (see Appendix D for user's background). For example, a few of 

these users have a good knowledge of the L-system rules and the Parametric L­

System but have no knowledge for GA. Moreover, some of the users have no 

knowledge regarding the rules or the grammar of the L-System, but have a good 

knowledge about GA. In this way, the resultant branching structures and convergence 

rate were recorded with different observations, based on the users' skills. Experiment 

demo were given to these users for understanding the nature of the proposed 

approach. The participants were also informed that they can interact at any generation 

during the searching process. They were also informed about the different colours 

used in visualization for understanding the searching process. 

Initially, every participant runs VIGA-20 with different operators to explore 

different output based on different selection and mutation and crossover rate. 

However, later on, all users were requested to use common GA operators, selection 

method and population size to keep the consistency. From among these several 

experiments with same parameters, one result from each participant was selected to be 

presented and discussed here. The rest of the results can be found in Appendix D. 

However, users were allowed to run VIGA-20 with different chromosome lengths 

and numbers of generation. In regards to this, the following are some assumptions and 

value which remained constant for all experiments. 
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• The ax10m IS predefined. For every experiment the ax10m 1s = (0.24, 

0.6,0)A(x,w), where x and ware optimizes using VIGA-2D. 

• The chromosome length for the parameters was dynamic, based on the user' 

input for the symbols. 

• The input string may have different lengths with the maximum of 15 symbols. 

The approximated time for each process was from ten minutes to half an hour for 

Experiment I. For Experiment 2, it was 5 minutes due to the constant number of 

generations. 

The process was initiated with the user input string. This string was composed of 

the different symbols used to generate the initial branching structures. The initial 

parameters were also input by the user. This input string and the parameters help to 

generate a target solution for VIGA-2D by generating random values. The length of 

the random chromosome and the initial population of VIGA-2D were based on the 

length of the user input string (see Section 3.5.2). For the input chromosome, different 

gene locations have different ranges of values. During the searching process, the user 

may interact several times, propose new gene values and model the structure at any 

generation. For modelling the branching structures two modules 'F' and 'A' are used, 

where 'F' is responsible for producing the line and 'A' is used as the interpretation 

point. The following are the different experiments which have been done with the 

proposed approach. 

• Experiment I: Evaluate the performance of VIGA-2D according to human 

perception and comparison with SGA. 

• Experiment 2: Generate the structures with a constant generation number. 

Each experiment has been done with 5 participants. Each subjective result 1s 

named by "Result", for example, Result I belongs to User I. The overall performance 

of the process was observed through 2-D graph for gene evolution in different 

generations, fitness convergence and generated branching structures. Except for the 

generation number, which depends on the termination done by the user and level of 

iterations in Experiment I, all other GA parameters were the same for all 

experimental results which are as follows: 
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• Roulette Wheel Selection method was used. 

• One point crossover was performed. 

• Mutation was performed with a mutation rate 0.05. 

• Initial population size was 10. 

4.5.1 Experiment 1: Evaluate the Performance ofVIGA-2D According to 
Human Perception and Comparison with SGA. 

The objective of this experiment is to terminate the searching process according to 

human perception after generating the branching structures in different generations. 

The purpose of this experiment is to evaluate and observe the human understanding 

with gene distribution on 2-D Graph and human interventions for generating the 

branching structures with VIGA-2D. VIGA-2D was evolved up to a number of 

generations according to the user or until there was no further improvement in the 

solutions. The user may model the branching structure at any generation. The results 

presented here are the branching structures modelled by the user at different 

generation numbers. 

In literature survey done in chapter 2, it was noted that in the traditional IGA, the 

optimized results were based on user perception, in which users play an important role 

and provide a means of subjective analysis [15, 17]. Most of the existing IGA 

techniques were based on the user interactions in each generation for assigning the 

fitness and for selecting the parents for the next generation. This continues interaction 

of user often creates a tiresome environment for the user [15]. In addition, it was also 

noted that in existing techniques for IGA, a numerous work has been done to reduce 

the user fatigue. However, in these existing research works, it was noticed that a 

learning mechanism was introduced to assign the fitness to the individuals [ 44, 45]. 

For example, Takagi uses a discrete fitness value [25] to assign the fitness. In [44, 

45] a Neural Network approximation approach has been used for assigning the fitness 

to individuals. Main drawbacks of these existing methods were to assign fitness 

values with some fixed parameters and user involvement was also compulsory to 

select parents for the next generation. Hence, there was no any existing technique, in 

84 



which, the searching process of GA can be accelerated by human interventions 

without continues user involvement in each generation. 

Several existing techniques had been noticed in literature reviews to model the 

branching structures using SGA [33, 84, 85]. Besides using SGA, Roger Curry [33] 

used an interactive approach of GA in which, assigning of fitness was in every 

generation. In their work, the objective was on generating the next generation with 

mutation or crossover between parents. The decision for selecting parents for the next 

generation was on the basis of user perception. 

The proposed approach is based on the human-machine interaction. The 

contribution of the user is to propose a new individual into the current generation 

instead of evaluating the existing solutions. The purpose of proposing new solutions 

through interaction is to accelerate the performance of the GA searching ability. 

Moreover, the interaction of the user was not necessary in each generation. 

In order to evaluate the performance of the proposed approach with user 

interaction, experiments were carried out to compare the results with and without user 

interaction during the search space. These experiments were based on generating the 

branching structures with SGA and VIGA-20. All the operators, selection methods 

and parameters used to evolve SGA were the same as in VIGA-2D.The level of 

iteration number for generating structures was 2 for both algorithms. 

Result I 

Input string by user: !F[+}Ff-] 

Input parameters : 20, 3,26 

L-String : !F{+!F[+JF[-JJF[-!F[+JF[-JJ 

Input to VIGA-2D 

Random Generated Chromosome ( n=21): 

20,3,26,5,30,16,29,27,30,7, 15,34, 12, 15,8, 12,30,32,8,6,2 
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Structure Drawn with 
L-String 

Generated With SGA 

Next iteration level with 
L-String 

Generated With VIGA-2D 

Generation 29 

Generation 59 

Generation 75 

Figure 4.4: Result I: Branching Structures with VIGA-20 and SGA 
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Figure 4.4 shows generated branching structures with and without user 

interactions. In this experimental result the branching structures were generated at 29, 

59 and 75 generations. Rule derived for this experimental result in generation 29, 59 

and 75 shows a variation in parameters for SGA and VIGA-2D. It was observed that 

the in generation 29, both algorithms had not obtained a satisfactory solution. 

Although for VIGA-2D 4 interactions had been made before generation 29. A 

difference was noted in generation 59 between both algorithms for generated 

branching structures. In generation 75 VIGA-2D was successful in creating an 

acceptable structure as compared to SGA. The graph of fitness I generation in Figure 

4.5 shows the difference in the convergence of fitness between SGA and VIGA-2D. 

In total, 14 interactions had been made by the user in 75 generations. From 14 

interactions, 3 proposed individuals were discarded during the searching process as 

shown in Table 4.5. However, there was not any significant difierence noted for 

generations 59 to 75 for derived rule and generated branching structures with VIGA-

2D. The discarded proposed solutions were also in the same phase. The user decided 

to terminate the process at generation 75 by concluding that there was no any major 

difference between generated structures after generation 60. 

Table 4.5: Result 1: List of Accepted and Discarded Proposed Individuals at Different 

Generations 

Model 
Interactions at 

Best Best Discarded 
Generated at 

Generations 
Fitness for Fitness for at 

Generation VIGA-2D SGA Generation 
29 11,16,21,27 0.459565 0.8459905 Null 
59 33,38,42,46,50,58 0.456618 0.79642953 38 
75 60,67,72,74 0.50019 0.5998333 67,72 
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Figure 4.5: Fitness/Generation Graph for Result l 

Result 2 

Input string by user: !F[-]F[+]F 

Input parameters : 27, 3, 21, 19 

L-String : !F[-!F[-}F[+}F}F[+!F[-}F[+]F}F 

Input to VIGA-2D 

Randomly Generated Chromosome (n=24): 

60 

27,3,21, 19, 18, 6, 12,22, 13,25, 17,21,26,32, I 1,3 1,32,33,22,20, 16, 15,9,20 
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Structure Drawn with L- Next iteration level with 
String L-String 

Generated With SGA Generated With VIGA-20 

Generation 30 

Generation 51 

Generation 78 
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Generated With SGA Generated With VIGA-D 

Generation I 00 

Generation II 0 

Figure 4.6: Result 2: Branching Structures with YIGA-2D and SGA 

The structures drawn in Figure 4.6 show the results for the searching process until 

II 0 generations, with 24 chromosome length for both algorithms. The branching 

structures were generated at generation numbers 30, 51, and 78, 100 and 110. The 

branching structures generated in generations 51, 78 and I 00 shows a difference 

between SGA and YIGA-2D. However, there was not a prominent difference between 

the branching structure generated in generation 110 with SGA and YIGA-2D. The 

interaction Table 4.6 shows that the users did a number of interactions and 

continuously modelled the structure to bring an acceptable output according to his 

perception. From the analysis of user interactions, it is found that 4 proposed solutions 

were discarded by VIGA-2D for this experiment. The first structure was drawn at the 

generation number 30, and the population size was 13 with 3 interactions. In total, 

there were 15 interactions. At the time of termination the population size was 22. The 

fitness I generation graph in Figure 4. 7 shows the difference between the convergence 

of SGA and VIGA-2D for this experimental result. The results show that the 
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structures drawn in generation 30 and 110 have the closest parameter values for 

derived rule. The user decided to terminate the searching processing at generation 

110. 

Table 4.6: Result 2: List of Accepted and Discarded Proposed Individuals at Different 

Generations 

Modelled at Interactions at 
Best Best Discarded 

Fitness for Fitness for at 
Generation Generations 

VIGA-2D SGA Generation 
30 13,19,25 0.668730 0.634901 Null 
51 34,43,50 0.652150 0.664003 43 
78 60,73,77 0.65 0.907469 Null 
100 83,89,94,99 0.605640 0.908350 89,94 
110 105,109 0.67453687 0.6385139 Null 

: ... 

~ 
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~ 075 
i 
a> 0.7 

f\ 
; : 

065 

0 .6 

0 55o!-------::-'20:-----40~---=so'::-----::-Leo:------:,~oo:---.....,-:! 
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Figure 4.7: Fitness/Generation Graph for Result 2. 
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Result 3 

Input string by user: !F[[-F}}F[+F} 

/nputparameters : 10, 7, 34, 28, 30, 31 

L-String : !F[[-!F[[-F]]F[+F}F}}F[+!F[[-F}}F[+F]F} 

VIGA-2D 

Randomly Generated Chromosome (n= 27): 

1 0,7,34,28,30, 15, 13,13,29,21 ,23,30, 14,34,20, 19, 17,22,25,31 , 13,9, II, 1 

9,15,5,11 

Generated with L-String Next iteration level with 
L-String 

Generated With SGA Generated With VIGA-2D 

Generation 31 
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Generated With SGA Generated With VIGA-2D 

Generation 42 

Generation 62 

Generation 77 

Figure 4.8 : Result 3: Branching Structures with VIGA-2D and SGA 

In Figure 4.8, branching structures were generated after 31, 42, 62 and 77 

generations. The branching structures and derived rule in 42 and 62 generations 

shows a difference in parameters with VIGA-2D as compared to SGA. Table 4.7 

shows the best fitness values in both generations while modelling the structure. In 

total, 77 generations were evolved with the chromosome length of27. For VIGA-2D, 

13 interactions were done from which 4 proposed solutions were not accepted by 

VIGA-20. The convergence rate of VJGA-2D was noticed to be at optimal fitness 
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values at all recorded generations as compared to SGA The graph of fitness I 

generation in Figure 4.9 shows the difference of the best and the average fitness for 

both algorithms. 

Table 4.7: Result 3: List of Accepted and Discarded Proposed Individuals at Different 

Generations 

Modelled at 
Generation 

31 
42 
62 
77 

Interactions at 
Best Best 

Generations 
Fitness for Fitness for 
VIGA-2D SGA 

11,15,19,23,27, 0.681395 0.7645259 
32,37,40 0.709436 0.8661985 
47,50,59 0.6972804 0.8498823 

65,74 0.6977822 0.8677557 
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Figure 4.9: Fitness/ Generation Graph for Result 3 
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Result 4 

Input string by user: !F[-F[+F]F][-F] 

Input parameters : 27, 3, 34, II, 22, 33 

L-String : !F[-F[+F}F][-F] 

VIGA-20 

Randomly Generated Chromosome (n= 12): 

27,3,34, 11 ,22,33, 17,28,5,32,6, 14 

Generated with L-String Next iteration level with 
L-String 

Generated With SGA Generated With VIGA-2D 

Generation 19 
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Generated With SGA Generated With VIGA-2D 

Generation 52 

Generation 69 

Generation 85 

Figure 4.10: Result 4. Branching Structures with VIGA-2D and SGA 

Figure 4.10 shows another result comparison between branching structures 

generated with and without user interaction. The first structure was generated at 

generation 19. Both SGA and VIGA-2D were evolved until 85 generations. The 

derive rules and generated branching structures in generations 19, 52, 69 and 85 show 

a difference between parametric values for both algorithms. In total, 14 interactions 

had been done for VIGA-2D from which, 2 proposed individuals were discarded. It 

was noted that the structures generated at generation 69 by both algorithms have a 
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minor difference between fitness as shown in Table 4.8. The user continues with the 

next generations and generated another structure at generation 85, and in generating 

the structure with SGA at generation 85 again the difference in fitness was noted. For 

VIGA-2D the population size at the termination point was 22. The fitness I generation 

graph in Figure 4.11 shows the convergence difference for SGA and VIGA-2D for 

this experiment. According to the fitness I generation graph, the convergence of SGA 

and VIGA-2D was noted to have the same fitness values in the initial generations. It 

was also noted that for VIGA-2D the average fitness was higher as compared to SGA 

for a few generations. However, in the last 20 generations a difference was noted 

between both algorithms' fitness values. Hence, continues interactions make VIGA-

2D to converge at optimal fitness as compares to SGA. Hence, this convergence 

difference successful to bring an optimized solution at the generation 85 with VIGA-

2D. 

Table 4.8: Result 4: List of Accepted and Discarded Proposed Individuals at Different 

Generations 

Modelled at Interaction at 
Best Best Discarded 

Fitness for Fitness for at 
Generation Generation 

VIGA-2D SGA Generation 
19 8, 16 0.32311 0.419880936 16 
52 28,32,42,49 0.474974 0.554346462 Null 
69 57,61 ,66, 69 0.375366 0.366878727 61 
85 72,77,82,85 0.386652 0.589236795 Null 
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Figure 4.11: Fitness/Generation Graph for Result 4 

Result 5 

Input string by user: !F[F][&]F 

Input parameters : 12, 5, 10, 15 

L-String : !F[F][&!F[F][&!F[F][&]F]F]F 

VIGA-2D 

Randomly Generated Chromosome (n= 18): 

12,5, 10, 15, 19,29, 12,25, 19,22, 1 0, 19,24,6, 19,8,28,33 

Generated with L-String Next iteration level with 
L-String 
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Generated With SGA Generated With VIGA-2D 

Generation 23 

Generation 3 7 

Generation 75 

Figure 4.1 2: Result 5. Branching Structures with VIGA-20 and SGA 

The result generated in Figure 4.12 shows the branching structures until 75 

generations. For all the generated structures VIGA-20 shows efficient results as 

compared to SGA. The branching structures generated in generation 23, 37 and 75 

show a difference between SGA and VIGA-2D. A total 19 interactions were done, 

from which 3 proposed individuals were discarded by VIGA-2D. Hence, at the time 

of termination the population size was 19. Table 4.9 shows the generations which 
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were interrupted by the users' for VIGA-2D. Figure 4 .13 shows the fitness 

convergence graph for this result. 

Table 4.9: Result 5: List of Accepted and Discarded Proposed Individuals at Different 

Generations 

Modelled at 
Generation 

23 
37 
75 

Interactions at 
Generations 

12,18,22 
25,31,35 

41,50,57, 61,69,73 

07 

065 

06 

~055 

J! 05 
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Best 
Fitness for 
VIGA-2D 
0.54147 
0.53197 
0.51980 

Best Fitness/Generations 
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066 
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a- OS 
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osa ~ 

Gener•I•On 

Average Fitness/Generations 

Best 
Fitness for 

SGA 
0.610982 
0.451425 
0.531601 

Figure 4.13: Fitness I Generation Graph for Result 5 

4.5.1.1 Discussion with Experiment 1. 

Discarded 
at 

Generation 
Null 
35 

50.61 

In order to understand the efficiency of the proposed approach with intervention of 

the user, branching structures were generated with SGA and VIGA-2D. Table 4.10 

shows the entire parameter list and the difference of average and best fitness for both 
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algorithms. The users may generate the branching structure in any generation to see 

the output, so that they can decide to terminate or go to more generations. The 

decision of termination of process depends on the modelled branching structure as 

compare to initial model or the convergence rate. Although, the averages and best 

fitness for both algorithms have a very small difference at the time of termination for 

most of the results, the generated branching structures with both algorithms seem to 

have a difference in the angles and different parametric values in different 

generations. With the comparison of averages and best fitness difference for both 

algorithms, it was found that the convergence rate for VIGA-20 shows a better 

performance as compare to SGA. However, for Result I the average fitness of SGA 

was found to be lower as compared to SGA with the difference of 0.0342. For Result 

2, the user evolved 110 generations, did not successfully bring the VIGA-20 to a 

better convergence rate and the difference for the average fitness of both algorithms 

was found to be -0.043196. For Result 3, the average fitness difference for both 

algorithms was -0.0633, for Result 4 it was -0.03507 and for Result 5 it was 0.0197. 

Table 4.10 also shows all the details of the parameters taken for this experiment. 

According to the Table 4.1 0, the total number of interactions noted for all the results 

were close to each other; whereas, the number of generations evolved by all the users 

was different. Overall, the performance of VIGA-20 shows a prominent difference 

while generating the branching structures as compared to SGA. 

I 0 I 



Table 4.10: List of Parameters used for Different Experimental Results in Experiment 1 

Result 1 Result 2 Result 3 Result 4 Result 5 
Parameters VIGA-

SGA 
VIGA-

SGA 
VIGA-

SGA 
VIGA-

SGA 
VIGA-

SGA 
20 20 20 20 20 

Population Size 10 10 10 10 10 10 10 10 10 10 
No of 

75 75 110 110 77 77 85 85 75 75 
Generations 

Total 14 N/A 15 NIA 13 NIA 14 NIA 12 N/A 
Interactions 

Accepted 
II NIA 12 NIA 09 N/A 12 N/A 09 NIA 

Interactions 
Discard 

03 N/A 03 N/A 04 NIA 02 NIA 03 N/A 
Interactions 

Population size 21 10 22 10 
19 

10 22 10 19 10 
after Interactions 

Average Fitness 0.76179 0.79590 0.8455 0.88869 0.8319 0.8943 0.58303 0.61818 0.62538 0.60567 

Best Fitness 0.50019 0.59983 0.67453 0.63851 0.6977 0.8677 0.38665 0.58923 0.5198 0.53160 
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4.5.2 Experiment 2: Generating Structures with Constant Generation Number 

For the traditional IGA applications, the applications were based on the constant 

number of generations, in which the interaction of the user was necessary in each 

generation for evaluating and assigning the fitness to the solutions [21, 33]. The 

proposed approach is different from these applications and does not require user 

interaction in each generation. The fitness of the solutions was calculated with the 

objective function and there is no need to evaluate the solutions for the next 

generation. 

Experiment 2 is based on constant number of generations and interactions in order 

to evaluate the performance of the proposed approach with different users. For this 

experiment input string and initial parameters were same for all users. The purpose of 

this experiment was to monitor the behaviour of VIGA-2D with fixed parameters. 

This experiment also helped to prove the random searching ability of GA. The main 

feature of this searching technique is to generate different solutions, even with the 

same input. All 5 users participated in this experiment. The following are the rate 

and operators that remain constant for all users for this experiment: 

• Number of generations evolved = 40 

• Number of interactions =05 

Input by User: !F[[-F]]F[+F] 

Input Parameters: II, 7, 29, 28, 26, 7 

L-String .· !F[[ -!F[[ -F]]F[ +F]F]]F[ +!F[[ -F]]F[ +F] F] 

VIGA-2D for all results 

Randomly Generated Chromosome (n=27): 

II, 7,29,28,26,23,22,23,32, I2,5,32,30, 3I,33,23,28, I 0,29,23,29, I2,22,3 
3,25,34,29 
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Structure drawn with L­
String 

Result I 

Result 3 

Next Iteration Level with 
L-String 

Result2 

Result 4 

Result 5 

Figure 4.14: Branching Structures Generated with Constant Number of Generations. 
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Table 4.11: List of Discarded and Accepted Proposed Individuals at Different 

Generations for Experiment 2. 

Interaction at 
Best Fitness for Discarded Results Generation 

VIGA-2D Interactions 
Numbers 

I 
12, 18,23, 

0.6997 18 
27,33 

2 14, 18,22,26,30 0.81865 22,26 

3 
6,11,18, 

0.62872 6, II 
24,28 

4 
10,17,25, 

0.64350 30 
30,35 

5 9, 14,19,23,27 0.68505 Null 

Presented results were based on the fixed parameters, number of generations and 

iterations. Structures drawn after 40 generations with all users are shown in Figure 

4.14. The chromosome length for these experimental results was 27. Table 4.11 shows 

the list of generations in which user interacts, and the generations at which the 

proposed solutions were accepted or rejected. For Result 2 and 3, two individuals and 

for Result I and 4, one proposed individual were rejected with VIGA-2D. Whereas, 

for Result 5all 5 proposed individuals were accepted by the VIGA-2D. 
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Figure 4.15: Fitness/Generation Graph with Constant Number of Generations 

Table 4.12: List of Parameters used for VlGA-20 Process with Constant Number of 

Generations 

Parameters Result! Result 2 Result 3 Result 4 Result 5 
Population Size 10 10 10 10 10 

No. of Generations 40 40 40 40 40 
Totallnteractions 5 5 5 5 5 

Accepted Interactions 4 3 3 4 5 
Discard Interactions I 2 2 I 0 
Population size after 

14 13 13 14 15 
Interactions 

Average Fitness 0.8213 0.91276 0.92646 0.7009 0.85520 
Best Fitness 0.6997 0.81865 0.62872 0.64350 0.68505 

4.5.2.1 Discussion with Experiment 2 

The understanding of users with fixed parameters was observed in Experiment 2. 

Table 4.12 shows all the parameters and effect on these parameters with user 

interactions. Table 4.12 shows that after 40 generations all the experimental results 

converged at closely same best fitness value except result 2. However, the average 

fitness value for all experimental results shows a difference from each other. 
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It was observed that fixed parameter for the interactions and generations create 

confusion to most of the user to make a decision for interactions. While running the 

VIGA-20, most of the time the users were observed while they decided on the 

generations for interactions. However, a few users were observed to be more 

comfortable as the generations and interactions were already decided on. Figure 4.15 

shows the fitness/generation graph for all experimental results. The generated 

structures with Experiment 2 also show a clear difference in derived rule with 

different users. 

4.6 Advantages of using Visual Aspects ofVIGA-2D 

GA is often known as a blind search method [5, 6] because it does not require any 

information about the first derivative or any other restrictive assumption before 

solving a problem. Unlike other techniques of AI, GA is more robust (error free), 

even in the presence of small noise or any small change in the input; it does not break 

easily. The searching mechanism of this algorithm works differently with different 

selection methods, operators and input. In past, the graphical representation of GA 

was based on either the individuals of each generation [34] or a representation of a 

complete population or generation in the form of graphs or plots [57-60]. Using these 

existing techniques, the gene distribution of the GA process remains hidden from the 

user. Moreover, these existing visualization techniques for GA do not facilitate 

analysis of the change in the searching behaviour of GA according to the change in 

operators, selection methods or in chromosome. 

The main idea of the proposed research is the representation of multidimensional 

data on a 2-D graph for each generation. Presentation of the GA process on a 2-D 

graph makes it easy for a user to evaluate the gene distributions at different places. 

The experiment was done to elaborate the advantage of using the proposed 

visualization technique for monitoring the general behaviour of the GA searching 

process. For this purpose, different selection methods and operators are used to 

evaluate and discuss the performance and effectiveness of the proposed GUI. In this 
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experiment, the GA process was evolved until different numbers of generations to 

monitor the gene distributions. The length of input chromosome was 24 for all 

experimental results and population size was I 0. The discussion and analysis of the 

following results are based on the genes distributions in different generations. 

4.6.1 Roulette Wheel Selection Method, 1-Point Crossover and Mutation Rate 
0.05. 

The experimental results in Figure 4.16 show the gene distributions for parameters at 

generation I, 20, 40 and 60. This experiment had been done with roulette wheel 

selection method, !-point crossover and with mutation rate was 0.05. In these results, 

the noted difference was in the first location of gene values. The figure 4.16 (a) shows 

the gene distribution in the first generation. It was noticed that initially gene values 

were exists at the first gene location in first generation. However, with the evolving of 

more generations less gene values distribution were noted at first gene locations (see 

Figure 4.16 (b)). After the 201
h generation, there were 2 interactions by the user and 

the distribution of gene values improved in 40 and 60 generations. Overall, gene 

distributions at different generations with roulette wheel selections were equally 

distributed. It was noted that with roulette wheel selection method, the gene values 

were fairly distributed in different generations. 
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Figure 4.16: VIGA-2D with Roulette wheel selection. 

4.6.2 Tournament Selection Method, 1-Point Crossover and Mutation Rate 0.05 

For results in Figure 4.17, tournament selection was used. The mutation rate was 0.05 

and !-point crossover was used. It was observes that, the gene distribution at different 

generations with tournament selection were not equally distributed as compared to the 

roulette selection method. Although in the generation 40 (see Figure 4.17 (c)) there 

was an improvement in the gene distribution, in the generation 60 the 2-D Graph 

shows again a poor gene distribution. The interactions were done in generation 18, 22, 

32 and 46. Different experiments show that for deriving rules for the Parametric L­

System, roulette wheel selection was more efficient as compared to tournament 

selection. This difference is noted because of unknown direction of gene values, 

which were randomly generated to initiate the process. Another reason is in the fact 

that for tournament selection, fitter individuals are selected only one time for matting 

pool [105], however for roulette wheel selection method a fitter individual may be 

selected several times based on its cumulative probability. 
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Figure 4.17: VIGA-20 with Tournament Selection 

4.6.3 Mutation Rate 0.5, 1-Point Crossover and Roulette Wheel Selection 
Method 

Mutation rate is the most important and sensitive operator used to control the optimal 

convergence [116, 117]. For example a higher mutation rate may lead loss of the 

potential solutions [ 115] or a smaller mutation rate may not able to give the desired 

output. An optimal rate for mutation is an important part to get an optimal solution 

[116, 118]. In other sense, the performance of GA highly depends on the mutation 

rate. The decision of selecting optimal mutation rate depends on nature of problem. 

However in proposed approach the difTerencc of distribution of gene values with 

assigning different mutation rate can be easily monitored using VIGA-20. 
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Figure 4.18: V1GA-2D with High Mutation Rate= 0.5 

A few experiments have been done to see and analysis the gene distribution based 

on different mutation rates. From these experiments it has been concluded that smaller 

mutation rate helps to generate an optimal solution for evolving parameters and 

benchmark functions presented in this thesis. Figure 4.18 shows the results with gene 

distributions with high mutation rate. For this result, the roulette wheel selection 

method with !-point crossover was used. In the first generation (see Figure 4.18 (a)), 

the entire gene values were found at the same gene location for each gene value. After 

the generation 20, there was a distribution of gene values to some other places. lt was 

noted in Figure 4.18 (d) that in generation 40, most of the gene locations had not an 

optimal gene distribution. Graphical presentation of gene values had given a very 

clear picture of the poor performance of GA with a higher mutation rate. Hence using 

VIGA-2D, it was noted that the high mutation rate can lead to less equal distribution 

of gene values in the search space. In turn, it helps in preventing the searching ability 

of GA to bring the optimized solution in less time or generations. 

4. 7 Discussion and User Analysis 

GA is the search technique used in computing field to find exact or approximate 

solutions for optimization and searching problems. Finding optimized solution of GA 

depends on the nature of the problem. Ifthe problem is based on an integer or a string, 

then to find the optimized solution it is easier as compared to the problem in which 

the problem is based on real values. In the proposed research, the problem that was 
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given to GA was to optimize the parameters for L-System rules, which were real 

values. Therefore, most of the chances were to get the nearest optimized solution as 

compared to get the optimized solution. 

The purpose of developing VIGA-2D was to monitor the distribution of gene 

values with different frequencies and locations. 1be key objective of the proposed 

approach was to accelerate the performance of GA searching by proposing a fitter 

solution in the search space. For this reason, the understanding of gene distribution of 

the search space on 2-D Graph play important role for optimal user interactions. 

During evolving different problems, the performance of VIGA-2D was closely 

observed. Different experiments with VIGA-2D shows that user interactions for 

benchmark functions was easier as the searching process goes to higher generations as 

compared to the parameters evolved for the Parametric L-System. For the benchmark 

function, in the first 20 generations, the decision of interactions was based on the 

colour intensity as compared to the higher generations in which all the gene values 

were distributed at some specific location. It was observed that in the experiment with 

DeJong's function the human decision for interactions was easy as compared to the 

Rosenbrock' s function because of the slow convergence towards an optimum solution 

in Rosenbrock' s function. 

Figure 4.19 shows the gene distribution for DeJong's function. The 2-D graph for 

SGA and VIGA-2D shows a difference between the gene distributions in different 

generations. It was noted that the gene distributions for the initial generation was 

almost the same for both algorithms as shown in Figure 4.19 (a). However, m 

generation 21, the performance of VJGA-2D with 2 interactions has improved as 

compared to SGA for the same generation number. For VIGA-2D, the searching 

process was interacted by user at generation number 16, 21, 34, and 45. In total, 4 

interactions were done with the initial population size 20. In generation 45, the 

difference between genes distributions shows a prominent difference m the 

distribution of gene values into the search space with the help of user interactions. 
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The fitness of parameters tor Parametric L-System rule was based on the 

difference calculated between the target solution (randomly generated) and the GA 

solution (see Equation 3.14). Hence, a minimum fitness value of individuals leads to 

bring the optimized solution. Besides the understanding this fitness convergence rate, 

the gene distributions on the 2-D graph have no specific direction. The distribution of 

gene values on the 2-D graph can only be monitored by the colour intensities and the 

size of the gene values. Therefore, while doing the interactions with the search 

process for optimizing parameters, the user needs to pay more attention to analysing 

the behaviour of VIGA-2D from generation to generation as compared to the 

benchmark functions. 

While doing the experiment with users tor generating the branching structures in 

Experiment I and Experiment 2, the understanding of the user, i.e. observing 

behaviour with the proposed approach was closely monitored. It should be noted here 

that the participants of both experiments were the same. Different experiments and 

observations show that the overall performance and understanding of the users with 

experiment I was more efficient as compared to the experiment 2. One main reason 

was the use of constant values for interaction and the number of generations for 

Experiment 2. It was observed that the user faced confusion when balancing between 

generations and interactions. As compared to Experiment I, in which users were not 

forced to run the VIGA-2D with a constant number of generations and interactions; 

this gave a more flexible environment to the user in order to bring the desired 

solution. For Experiment I, it could be difficult to analyse the best results because tor 

every user length of L-String and number of generations was different. Therefore, 

different convergence rates were noticed tor different results as shown in Table 4.1 0. 

However, for Experiment 2, the different results were based on the same L-String 

length and number of generations, which brought about a clear picture of 

understanding and evolving ofVIGA-2D with different users. 

Although the overall performance and decision for human interaction also 

depends on a fitness I generation graph, during the interactions, the users were more 

interested in viewing the output as compared to monitoring the convergence rate. It 

was observed that in Experiment I, the decision of terminating the searching process 

115 



were more satisfying to the users as compared to a constant generation numbers, i.e. 

in Experiment 2. 

Moreover, it was noted that there was no consistency in doing the interactions. 

Some users did more interactions in the initial generations as compared to higher 

generations. It was also noted that some users were more interested in modelling the 

branching structures as compared to understanding the VIGA-20 environment. 

The decision for doing interaction in any generation was a critical point in the 

proposed algorithm. A continuous observation has been done on the users 

understanding for the next interactions. These observations are briefly described 

below: 

a) The user interacted in the current generation when there were a lesser number 

of gene values at a particular place. 

b) The gene value's colour intensity was low (towards the gray colour) at any 

particular gene location. 

c) User feels that a group of gene values were at the same gene location from 

many generations. 

d) In VIGA-20, the propose colour was green which shows that the current 

generation fitness was not optimal as compare to previous generation. 

e) Fitness I generation graph was not converging towards an optimal fitness 

value. 

Experiment I was based on the decision of the user for modelling the branching 

structures. It was observed that there were several assumptions and observations taken 

by different users to terminate the procedure. For example: 

a) According to the user, the distribution of gene values was equally distributed. 

b) Most of the genes values' colour intensity was high (Dark Blue Colour), 

meaning that the majority of the search space had fitter solutions. 

c) There was no any difference found between the distributions of gene values 

even with interactions. 
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d) There was not any difference found between the generated structures in the 

last few generations. 

The colour intensity also played an important role for the decision of the 

interactions. The user observed the variation of colour and size of the ellipse with 

more interest as compared to the fitness convergence. 

Analysis of the proposed approach for parameters depends on the frequency of 

genes at each gene location. In VIGA-2D during the search process, proposing new 

gene values at different locations helped to fill up the gap between the evolution 

processes. It was also noticed that the worse gene values at some locations were 

bringing the GA quite far from its target solutions. To overcome this problem, the 

interaction may have been an immediate action to bring the gene values closer to the 

better frequency in the next generations. 

The impact of variation in population size was also analyzed. It was observed that 

the increment in population size also impacts on the performance of the searching 

process. It should be noted here that increment in population size depends on 

successful interactions by users. With each interaction, the search space becomes 

wider. In most of the experiments results it was noted that the resultant population 

size was 50% larger than the initial size. Hence in VIGA-2D, dynamic population size 

was based on using wider search space interactively. 

On the other hand, the proposed methodology gives a chance for GA to make a 

decision to absorb the proposed values as a part of the evolution or to discard it. In 

this way, the user performance could easily be monitored with the effect on 

population size. It was also observed that proposing less optimal gene values or 

allocating null values, directly impacts on the performance of the algorithm, i.e. it 

may produce unnecessary noise and distortion in search space. But due to the usage of 

the fitness function for assigning fitness, the GA may solve this problem in few 

generations or more quickly by inviting more user interactions. 
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4.8 Summary of Chapter 

The proposed approach has been evaluated with both objective and subjective 

experiments. For benchmark functions, the proposed approach has been compared 

with SGA with having two different variables lengths and with I 0 runs for each 

chromosome length. Hence, 10 runs for each experimental result with two different 

variable lengths ensure that the proposed approach is thoroughly evaluated. The 

presented results for benchmark functions were based on average result after 10 runs. 

The results show that the proposed approach outperformed SGA especially in large 

variable lengths. Through different experiments and observations, it was found that 

the 2-D graph visualization technique based on gene distributions is a better technique 

to monitor all changes going on in the search space. By using 2-D visualization 

technique, interaction of user, which is, based on gene values can be controlled and 

monitored easily and clearly. The user can monitored the gene values at different 

locations using 2-D Graph. Further, a 2-D graph also helps to look into details the 

process of the searching behaviour used by GA, specifically, which part of search 

space has optimal or less optimal gene values. 

For testing the performance of VIGA-2D with parameters, different variable 

lengths of chromosomes were input to VIGA-2D. Different selection methods, 

crossover and mutation rates were also used to do the experiments. Multiple runs of 

VIGA-2D also show that there is a difference in the performance of GA by using 

different operators or their values. 

The evaluation of results with different problems and inputs shows that this 

approach successfully converges to an optimum I fitter solution. It is also observed in 

the analysis, that the proposed approach able to display the complete picture of the 

multidimensional search space of GA. Hence, the visualization of gene values on 2-D 

graph would be a good technique to show the frequency of genes at any particular 

location. The next chapter concludes this thesis by summarizing the work and 

describing the main contributions. 
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5.1 Chapter Overview 

CHAPTERS 

CONCLUSION AND FUTURE WORK 

This chapter concludes this research by presenting a summary of the work presented 

in this thesis. The strength of the proposed approach with different experimental 

results is also briefly discussed. Some suggestions about possible areas of future 

research directions are briefly outlined in this chapter. 

5.2 Thesis Summary 

This thesis has described a novel approach for the visualization of multidimensional 

GA data to 2-D space. This visualization is based on the displaying of gene values of 

each generation on a 2-D graph. 

In the proposed research work. for accelerating the performance of the GA an 

idea of proposing a new individual into the search space is introduced. This new 

proposed individual then becomes a part of the next generation after an evaluation 

test. This evaluation test is for analysing the fitness of the proposed individual so that 

it will take an active part in the next generation. Since, for existing IGA techniques, 

the main problem was to reduce the user's fatigue [ 15]; so, in proposed approach, the 

human interaction is not forced in every generation, and fitness is calculated using the 

fitness function. A dynamic population size is used to make the proposed individual 

part of the search space in the next generation. The termination criterion of the 

proposed approach is on user perception or on generation number for an optimal 



solution. The graphical interface is designed in such a way that it gives the complete 

knowledge of converges from generation to generation. An interactive tool named 

VlGA-20 has been developed for this purpose. 

5.2.1 Visualization of Genetic Algorithm on 2-D Graph 

VlGA-20 is an interactive tool developed for visualization of a multidimensional data 

on a 2-0 graph. The vertical view of this graph represents the gene values and the 

horizontal view represents the gene locations. The user directly interacts on the graph 

for proposing new values. 

The graphical interface is designed in such a way that it gives the complete 

knowledge of converges from generation to generation. For example the gene values 

visualize with different size and different depth for blue colour according to their 

fitter status in search space. In which, gene values having high fitness value are 

displayed with large size and high depth colour for blue as compare to gene values 

with worse fitness displayed with small size and having light depth colour for blue 

(gray). Beside this, fitness versus generation graph is visualized for understanding and 

analyzing convergence of GA. This graph shows the visualization of the worst, 

average and best fitness in every generation. 

5.2.2 Evaluation of Experimental Results 

The performance of VIGA-20 had been analyzed with the help of subjective and 

objective analysis. For objective analysis, the experimental results were based on 2 

benchmarks functions. The performance evaluation of VIGA-20 was done with the 

comparison of SGA using the same parameters. Secondly, the VIGA-20 was 

evaluated by 5 users participating in the experiment in order to visualize the test for 

subjective analysis. For this purpose, real values were evolved by the proposed 

approach to derive the rules for the Parametric L-System. The experiments performed 

with VIGA-20 shows that it has the ability to perform efficiently as compared to 

SGA. However it is also concluded that the performance of VIGA-20 depends on the 
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optimal user's interactions. In other words, user's participation in several generations 

in the form of proposing a new individual helps to accelerate the performance of GA. 

5.3 Future Work 

Working on the completion of this thesis has generated several interesting and 

promising ideas which will be explored in the future to address the problem of 

visualization of the Interactive Genetic Algorithm more efficiently. Moreover, the 

future work described in this section will further be investigated for better 

understanding of the visualization technique for GA. 

A key area where VIGA-2D can be improved is the way it helps a user to do 

interactions. At present, VIGA-2D concludes that the user does the interactions based 

on understanding the difference of size and colour of gene values in current 

generation. This approach may be improved by drawing a line between gene values 

having same fitness value. This line may help to show the relationship between gene 

values located in the same individual. 

A way forward would be to use clustering technique to map gene values according 

to their fitness on 2-D graph. The user then could interact on each cluster to propose a 

new gene value. Hence proposed gene values will work as an individual in the next 

generation. 

A further enhancement would be implementing a sketch interface for generating 

initial branching structure L-System. During subjective analysis of the proposed 

approach it was observed that the users found difficulty to input L-string and initial 

parameters. However, besides this manual input a user interface may be implemented 

to sketch the initial structure to be further evolved by VIGA-2D. In this way, the user 

should not need to learn the complex grammar of the L-system to run VIGA-2D. 
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APPENDIX A 

DESIGN AND IMPLEMENTATION 

A friendly GUI makes the usage of GA more interesting. This appendix discusses all 

the important aspects and features of the design tool named VIGA 2-D. This tool is 

implemented using Java programming with 2 and 3D Graphics. 

A.l INTERACTIVE VISUALIZATION TOOL (VIGA-20) 

VIGA-2D is based on the GA methods and operators described in Chapter 3. When 

VIGA-2D starts, a window for setting up all the parameters and methods is loaded 

onto the screen. Figure A.! shows all the important components and data flow 

between them. The details for all the important functions are described in the 

following sections. 
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Figure A.!. GUI Design for Proposed Approach 
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A.2 Start-up Window 

The start-up window is the first window of the VIGA-2D tool as shown in Figure A.2. 

This window allows the user to give the input values or to select different GA 

operators and selection methods. By default values are given to initialize all 

parameters, GA operators and selection methods. If there is no input by the user than 

the GA process starts with these default values. Different dialog boxes are used to 

control the correct input and to check empty input fields. 
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VIGA-20 works for the L-System and tests functions with the same GUI. If the 

test functions tab is selected then the next selection is for choosing the function to be 

evolved by VIGA-20. There are two different variable lengths, i.e. I 0 and 20 for 

benchmark functions. Text fields are used to take input for the minimum and 

maximum values from the user. A GA parameters' panel is implemented to take 

inputs in all GA operators, to select the desired selection method and to assign the 

population size to initialize the process. 

VlGA-20 For Test Functions 

·~·DeJong's F1 Minimum Value ,2048, 

• Rosenbrock Maximum Value i2 048' 

Variable length Eol~ 

If the Parametric L-System is selected then the initial parameters and string for 

generating the branching structure is input by the user or default values are used to 

initialize the GA process. A combo box is implemented proposing different strings 

for symbols with different lengths. The maximum length of the string allowed is 15. 
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Input by User 

New String 

1F[+]F[-J! 

For Width 

Select frorn List 

.5 For Length [15 

Branch Length "F" :I 2 Branch Angle 
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EvolVe Parameters Using V1GA-20 
-·. ------- ~---

For parameters, the overall value range is from 5.0 to 49.99. For GA parameters 

default values are given and can be changed by the user. There is an option to select 

the selection method which is the Roulette selection method and Tournament 

selection method. 
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After input of all the parameters, the next process is to initialize the GA process. For 

test functions, the interactive window becomes enabled for the selected function. 

While for the Parametric L-System, the GA process is started with the randomly 

generated chromosome. The radio button "Draw Initial Structure" is used to see the 

branching structure generated by the user input. 

A.3 Interactive Window 

After selecting different options from the navigation window, an interactive window 

is loaded onto the screen. This interactive window consists of a navigation box, 

fitness panel, fitness I generation graph, text area with all individuals of the current 

generation and the interactive 2-D graph as shown in Figure AJ. The fitness panel, 

fitness/ generation graph and text area with all individuals is implemented only to 

view the progress and functionality of GA from generation to generation_ The 

interactive 2-D graph can be interacted by the user. The navigation box has all the 

functionality to control the user interactions. Four different colour labels are used to 

show the intensity of the individuals in the search space. Lighter colours show the 

worst solution whereas dark colours show the best solution. Two labels are used to 

analyze the fitness of individuals in the current generations as compared to the 

previous generation. Overall, the performance and convergence of solutions from 

generation to generation depends on the user. 

a. Navigation Box: 

The navigation box shows the current generation number and population size. 

The next generation button is used to bring a new generation onto the screen, 
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whereas the "Update" button is used to update the current generation with the 

proposed values. For the Parametric L-System, the navigation box has the 

"draw tree" button used to generate the branching structure with the best 

solution of the current generation. 
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Figure A.3. Designed Interactive Window 
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b. Fitness Panel: 

The purpose of implementing the fitness panel is to show the fitness of the 

best solution for the current generation and previous generation on the screen. 

In this way, it becomes easier for a user to understand the flow and the 

expected fitness values in the next generation. lienee, it is also helpful to 

show the convergence rate of GA towards an optimal solution. Three labels 

for best, average and worst fitness are also placed in this panel to monitor the 

fitness/ generation graph according] y. 

F~ness Panel 

c. Fitness/Generation Graph: 

• Worst F~ness 

• Average F~ness 

• Best F~ness 

Current Fitness 
0.79 

Previous Fitnes 
0.796 

The fitness versus generation graph was implemented based on the worst, best 

and average fitness. This graph is also helpful to the user in understanding the 

GA convergence graphically. The upper and lower boundaries of the x-axis 

are computed according to the range of the value. For the y-axis the higher 

and lower boundaries are given by default. 
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d. All Individuals of the current search space: 

A text area is used to display all individuals of the current search space. This 

test area holds all the history of the previous generations in the form of 

solutions and their fitness values. 

e. 2-D Graph: 

The interactive 2-D graph is based on the array values and total length of the 

array. In the 2-D graph these array values are represented on the x and y-axis. 

On the y-axis, the representation of this graph is based on the minimum and 

maximum values of the array. While the x-axis shows the location of each 

element in the array according to the array length. 
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Figure A.4. 2-D Graph with X andY -axis 
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Figure A.S. Complete Interactive Window 

A.4 Graphical window for Parametric L-System. 

An interactive visualization 3-D space is implemented to draw the branching 

structures as shown in Figure A.6. For visualization of the output of GA, we have 

selected the best individuals from each generation. This selection is based on the 

higher fitness of individuals from a specific generation. One rule has been created 

from this best solution. The axiom is constant for all rules. The Red, Green, Blue 

(RGB) colour scheme is used in the axiom; each colour scheme is in the range of (0-

l ). Furthermore, the user can go to more or less iterations in the visualization window. 

Light and shade effects are also given to create more natural looking structures. 

However, these parameters are constant and do not evolved using GA. The user can 

also rotate the generated structures in a 3-D view. Check box toggles can be activated 

by the user for rotation, to enable or disable the cylinder, for homomorphism and to 

apply ant aliasing. By default, the cylinder and homomorphism properties are enabled. 

3 control buttons are used to increase, decrease or to initiate the iteration. The button 

having the '0' label shows the zero level of iteration which will return the axiom or it 

may call to reset all iterations. The setting button is used to change background 

colour, and enable or disable shadow and background. 
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Figure A.6. Graphical Window for the Parametric L-System 
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APPENDIX B 

PARAMETRIC L-SYSTEM 

The Parametric L-System works with the set of symbols, relational operators and 

asthmatic operations. However turtle geometry is used to interpret all these symbols' 

operators and parameters to construct the rules. 

B.l Parametric L-System 

In the Parametric L-System, the parameters arc associated with symbols. Let the 

alphabet be denoted by V, and the set of parameters is the set of real numbers R. A 

module with letter A E V and parameters (pi, p2 ....... pn) E R is denoted by A (pi, p2 

.... pn). Every module belongs to set Vx R *, where R * is a finite sequence of all 

parameters. The real-valued actual parameters appearing in words have a counterpart 

with formal parameters which may be used in the specification of L-system 

productions. 

Let I be the set of formal parameters. The combination of formal parameters and 

numeric constant using arithmetic operators ( +, -, *, /), the logical operators ( &&, ! , 

II) , the relational operators (>, <, >=, <= , =) and parenthesis ( ()) will make a 

complete set of I having all constructed logical and arithmetic expressions. These 

are noted as C (I) for logical expressions and E(Il for arithmetic expressions. A 

Parametric OL-system is an ordered quadruplet G = (V,I, w. P), where, 

• Vis the alphabet of the system. 

• I is the set of formal parameters. 

• D.J E (V x R *) + is a nonempty word called axioms. 

• P (V x I*) x C (L) x (V x E(L) *) * is a finite set of productions. 
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In applying the production rules specified in the L-System, the predecessor will be 

recursively expanded and replaced with the relevant successors and it fulfils the 

condition if it is given by using arithmetic expressions. If there is no condition given, 

then it is considered as empty statement, hence, the resulting structure is drawn by 

using the deterministic Parametric L-System. The following example shows the 

deterministic Parametric L-System: 

Axiom: F (a) 

In the above example there is one module F in the axwm with the parameter a 

respectively. It consists of one production rule that rewrite the occurrence ofF with 

the precise successor modules. Geometric Interpretations are used to manipulate 

these symbols to draw the structure onto the computer screen. 

8.2 Geometric Interpretation 

When using the L-System, two factors are very important to consider when 

generating any branching structure on the computer, i.e. (a) Development rules 

(control the growth) and (b) Geometric aspects of different angles [81]. Initially, the 

L-systems were conceived as a formal theory of development. Geometric aspects 

were not considered. Later, geometrical interpretations were proposed. Hogeweg and 

Hesper in 1974 [119] and Frijters and Lindenmayer in [120], for the first time 

discussed graphical interpretation for the L-System in their papers. Their work 

emphasised using the bracketed L-System as the branching topology for modelling 

plants. Geometric aspects were added in the post processing phase. 

A later extension was found in the work of Smith [121] to use the L-System for 

modelling realistic 1mages usmg computer graphic techniques. However, 

Prusinkiewicz for the first time added geometric commands directly with the L­

System and extended these commands with the bracketed L-System [Ill] and in 2 
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or 30 space [112] . His work is based on LOGO turtle geometry [122] . A turtle is an 

object moved on a Graph (F). The current orientation of turtle in space is represented 

by 3 vectors: H, L, U, indicating the turtle's heading, the direction to the left, and the 

direction to the right. The symbols used to control this orientation are described in 

Table B.2. These turtle graphics are used to build a geometrical interpretation of L­

system strings. 

L 

& 

u 
+ 

I 

Turtle Interpretation in 30 space. 

H 

\ 

The discussion of turtle interpretation is derived from the work of Prusinkiewicz 

eta. I [80] and Hanan [123]. These turtle interpretations work either in 2 or 3-0 space. 

All of these three orientations are perpendicular to each other, so by calculating any 

two of them, the third can be calculated by using the equation: L = H x U. Using this 

notation, the calculation for the rotation of the turtle is calculated using [H' L' U'] = 

[H L U] R. 

Where, R is the 3 x 3 rotation matrix [ 124]. Standard rotation matrices are used to 

calculate the rotation in any direction around a angle. 
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1 0 0 

0 coso. -sin a. 

0 SlllO. coso. 

COSO. 0 -SlllO. 

0 1 0 

sn1a 0 cosa 

cosa sina 0 

Rdu) = -sina cos a 0 

0 0 1 

Table B.l.Turtle Symbols used to draw in 3-D space. 

Symbols Direction Orientation 
F(s) Move forward a step of Draw a line 

lengths 
f(s) Move forward a step of Draw no line 

lengths 
+,- Turn left and right Matrix Ru(<l) 
& A , Pitch down and up Matrix RL( 6) 
I, I Roll left and right Matrix RH 

I Turning around Matrix Ru(l80°) 

[ , l Push and pop the Use for 
current state from Branching 

stack. 

The input given by the user is restricted, controlled and formulated into the L-System 

language according to the symbols. The following are the symbols with their direction 

and orientation used to control the turtle position in the proposed application. 
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Moving and Drawing Symbols: 

Symbol 'F' is used to demonstrate the line to the L-System in the following manner: 

•!• F(a) : Move forward a step of length a> 0. Draw a line from the previous 

status to the new one and the turtle position changes to (x', y', z'), where 

• x'=x + aHx, 

• y'= y+aHy, 

• z'=z+aH, . 

Direction Commands: 

The direction commands work when the user gives angles to either the left or right 

direction along with 90 degrees. However, the user may also give the direction 

commands for the z-axis. If the given branch angle is around the U vector and the 

given rotation angle (o)is smaller or larger than 90 then it calculates the following 

symbols and rotating angles: 

•!• +(o) : If it rotates around U by an angle of o degrees in the right direction. 

•!• -(o) : If it rotates around U by an angle of o degrees in the left direction. 

If the given branch is around the L vector and the given rotation angle (o)is smaller or 

larger than 90 then it calculates the following symbols and rotating angles: 

•!• &( o) : Pitch down by an angle of o degrees , Rotate around L . 

•!• A (o) : Pitch up by an angle of o degrees, Rotate around L . 
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Commands for drawing attributes: 

For drawing attribute, the thickness of the main trunk may also be given as a symbol 

and each branch also has a ratio for width. 

•!• ! : Set the cylinder thickness value. 

Branch Controlling Commands (Bracketed L-System): 

•!• [ : Push the current state into the stack 

•!• ] : Pop the current state from the stack. 
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APPENDIX C 

INTERACTIONS FOR TEST FUNCTIONS 

The tables in this appendix show the complete list of all interactions and total number 

of the interactions, and the average interaction for each run. Furthermore the proposed 

individuals accepted by the VIGA-2D and total number of the proposed individuals 

discarded by VIGA-2D for each test function are also listed here. It also shows the 

average number of discard and accepted proposed individuals in each run, where R I 

to Rl 0 represents each run. 
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Table C.!: Accepted and Discarded Interactions in all Runs for DeJongs' Function 
n=IO 

Successful Interactions at Generation Number Average 
Generation 

Interactions Rl R2 R3 R4 RS R6 R7 RS R9 RIO 
Number for 

Accepted 
Interactions 

I 16 17 21 18 21 16 16 15 15 16 17.1 
2 22 29 25 28 25 18 21 21 21 23.3 
3 28 28 35 32 37 32 24 28 27 27 29.8 
4 36 33 43 38 45 41 30 35 33 31 36.5 
5 44 38 50 44 52 36 40 39 38 42.3 
6 54 46 54 51 42 46 45 44 47.75 
7 52 65 66 58 49 53 51 56.2 
8 58 69 72 57 59 58 62.1 
9 73 79 86 71 66 75 
10 88 82 92 91 88 71 75 83.8 

Average 
Generation 

Discarded Interactions at Generation Number 
Number 

for 
Discarded 

Interactions 
I 0 
2 25 25 
3 0 
4 0 
5 0 
6 61 60 60.5 
7 60 62 52 58 
8 67 68 73 59 66.7 
9 76 71 86 66 64 72.6 
10 76 89 71 78.6 

Table C.2.Number of interactions, Successful Interactions, and Discarded Interactions 

for DeJong's Function n =10. 

Average 
Generatio 

Parameters Rl R2 R3 R4 RS R6 R7 RS R9 RIO n Number 
for 

lnteractio 
n 

Total 10 10 10 10 10 10 10 10 10 10 10 
Interactions 

Accepted 7 7 8 9 8 7 8 10 8 9 8.1 
Interactions 

Discard 3 3 2 I 2 3 2 0 2 I 1.9 
Interactions 
Population 
Size after 17 17 18 19 18 17 18 20 18 19 18.1 

Interactions 
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Table C.3: Accepted and Discarded Interactions in all Runs for DeJong's Function 
n=20 

Successful Interactions at Generation Number Average 
Generation 

Interactions 
Rl R2 R3 R4 RS R6 R7 R8 R9 RIO 

Number for 
Accepted 

Interactions 
I 17 14 17 15 16 17 17 19 18 18 !6.8 
2 23 20 24 23 21 25 26 26 26 22 23.6 
3 28 28 31 32 26 33 40 32 34 29 31.3 
4 32 37 38 38 35 39 50 40 42 34 38.5 
5 37 46 45 46 43 47 61 48 54 42 46.9 
6 43 58 51 53 51 51 72 58 63 54 55.4 
7 50 68 55 62 57 67 74 60 61.6 
8 55 66 69 61 65 87 76 85 69 63.3 
9 66 87 74 80 71 94 78.6 
10 88 92 88 88 91 96 90.5 

Average 
Generation 

Discarded Interactions at Generation Number Number for 
Discarded 

Interactions 
I 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 58 86 72 
8 76 76 
9 71 92 83 76 80.5 
10 80 79 95 85 84.7 

Table C.4. Number of Interactions, Successful Interactions, and Discarded 

Interactions for DeJong's Function n =20. 

Average 

Parameters Rl R2 R3 R4 RS R6 R7 R8 R9 RIO 
Generation 
Number for 
Interaction 

Total Interactions 10 10 10 10 10 10 !0 !0 10 10 9.6 
Accepted 

10 9 10 10 8 8 7 9 10 8 8.9 
Interactions 
Discarded 

0 I 0 0 2 2 3 I 0 2 I. I 
Interactions 

Population Size 
30 29 30 30 28 28 27 29 30 28 28.9 

after Interactions 
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Table C.5: Accepted and Discarded Interactions in all Runs for Rosenbrock's 
Function n= I 0 

Successful Interactions at Generation Number Average 
Generation 

Interactions 
Rl R2 R3 R4 RS R6 R7 R8 R9 RIO 

Number for 
Accepted 

Interactions 

I 15 16 17 17 16 17 16 16 19 20 16.9 
2 22 22 23 23 23 22 24 25 27 23.4 
3 23 28 29 28 31 29 31 31 34 29.3 
4 28 33 36 37 33 36 40 38 39 35.5 
5 33 39 41 43 40 44 48 45 48 42.3 
6 38 45 45 49 47 44.8 
7 46 51 58 51 59 65 55 
8 57 66 58 69 70 64 
9 75 72 76 74.3 
10 72 81 74 75.6 

Average 
Generation 

Discarded Interactions at Generation Number Number for 
Discarded 

Interactions 

I 
2 19 19 
3 27 0 
4 34 34 
5 42 42 42 
6 50 50 52 56 53 56 52.8 
7 54 60 62 64 60 
8 54 62 69 69 72 65.2 
9 64 74 68 79 82 80 75 74.5 
10 88 84 84 89 89 82 84 85.7 

Table C.6.Number of Interactions, Successful Interactions, and Discarded Interactions 

for Rosenbrock's Function n =10 

Average 

Parameters Rl R2 R3 R4 RS R6 R7 R8 R9 RIO Generation 
Number for 
Interaction 

Total Interactions 10 10 10 10 10 10 10 10 10 10 10 
Accepted Interactions 7 9 8 7 7 6 5 6 6 7 6.8 
Discard Interactions 3 I 2 3 3 4 5 4 4 3 3.2 
Population Size after 17 19 18 17 17 16 15 16 16 17 17 

Interactions 
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Table C.6: Accepted and Discarded Interactions in all Runs forRosenbrock 's Function 
n=20 

Successful Interactions at Generation Number Average 
Generation 

Interactions Rl R2 R3 R4 R5 R6 R7 R8 R9 RIO 
Number for 

Accepted 
Interactions 

I 19 17 15 16 16 17 17 16 16 16 16.5 
2 25 23 21 21 22 23 23 22 22 20 22.2 
3 30 29 26 28 29 29 30 28 28 26 28.3 
4 36 35 31 33 35 34 37 35 35 32 34.3 
5 44 40 39 42 41 44 42 38 41.2 
6 42 46 52 49 50 43 47 
7 60 56 47 54 60 57 57 50 55.1 
8 61 52 58 67 63 60.2 
9 77 67 72 
10 73 63 86 74 72 73.6 

Average 
Generation 

Discarded Interactions at Generation Number Number for 
Discarded 

Interactions 

I 0 
2 0 
3 0 
4 0 
5 37 41 39 
6 53 48 49 48 49.5 
7 52 54 53 
8 70 60 61 63 58 62.4 
9 80 67 60 64 75 66 68 65 68.1 
10 87 69 82 71 79 77.6 

Table C.8.Number of Interactions, Successful interactions, and Discarded Interactions 

for Rosenbrock's Function n =20. 

Average 

Parameters Rl R2 R3 R4 RS R6 R7 R8 R9 RIO Generation 
Number for 
Interactions 

Total Interactions 10 10 10 10 10 10 10 10 10 10 10 
Accepted 6 8 8 7 6 5 8 8 9 7 7.2 

Interactions 
Discarded 4 2 2 3 4 5 2 2 I 3 3 

Interactions 
Population Size after 26 28 28 27 26 25 28 28 29 27 27.2 

Interactions 
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APPENDIXD 

DATASET AND USERS SPECIFICATIONS 

This appendix shows more results with different users. The dataset of different L­

String is also included in this appendix. 

Table D.1 Dataset for L-String 

I !F[+]F[-] 

2 !F[[ +F[ -F]]F 

3 !F[-]F[+]F 

4 !F[+F]F 

5 !F[-F[+F]F][-F] 

6 !F[+][-[+F]] 

7 !F[+]FFF 

8 ![+]F[-]F 

9 !F["F][ +F] 

10 !F[+[&F]F] 

11 !F[["F]-F] [ +F[ "F]] 
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Table D.2 User's specifications (First three users are undergrad students and last 2 are 

post graduate students) 

User 1 Very new to the computer graphics and visualization, having no idea 

about GA. New to L-System. 

User 2 Very new to the computer graphics and visualization, having no idea 

about GA. New to L-System. 

User 3 Having idea about GA nature and optimization. Having no idea about 

IGA and L-System. 

User4 Well known to modelling and simulation. Knows the area of 

optimization. 

User 5 Well known to Grammar formalism of L-system. Complete 

knowledge of Computer Graphics. Having no idea of I GA. 
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Input by user 19 Generation 52 Generation 69 Generation 85 Generation 

20 Generation 21 Generation 42 Generation 97 Generation 

Input by user 21 Generation 31 Generation 53 Generation 86 Generation 

Figure D. l: Generated Structure with user perception 

Input Result l Result 2 Result 3 Result4 Result 5 

Result 6 Result 7 Result 8 Result 9 Result 1 0 

Figure D.2: Generating Structures with Constant Generation Numbers with Different 

Users. 
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Experiment 1: Result 1 

Input string by user: 'F[+}F[-} 

Input parameters : 20, 3,26 

L-String :! Ff+! F{+]Ff-1/Ff-! Ff+JF/-1/ 

Input to VIGA-2D 

Random Generated Chromosome ( n=ll): 

20,3,26,5,30, 16,29,27,30,7, 15,34, 12, 15,8, 12,30,32,8,6,2 

SGA VIGA-2D 

Generation 29 Generation 29 

Axiom: (0.24,0. 6,0)A(4,6) Axiom: (0.24,0.6,0)A(34,5) 

Rule:# A(x,w)->l(w)F(x)[+(20)$A Rule: # A(x,w)->l(w)F(x) 

(x*0.81 ,w*0.64)!(w*0.81 )F(x*0.73)[ +(20)$ [+(20)$A(x*0.81 ,w*0.81 )!(w*0.55)F( 
A(x*0.81 ,w*0.61 )]F(x*0.57) [-(20)$A x*0.7[) +(20)$A(x*0.81,w*0.81)] 

(x *0.81, w*0.81 )]] F(x *0.8 I)[ -(20)$A(x*0.6 F(x*0.44)[- 20)$A (x*0.81, 

4,w*0.81) !(w*0.78)!(w*0.78)F(x*0.81) w*0.81 JJF(x*0.81 )[-(20)$A(x*0.85, 

[ +(20)$A(x*0.83, w*0.81 )]F(x*0.86)[-
w*0.51 )l(w*0.81) F(x *0.81 )[ +(20)$A 

(20)$A (x*0.55,w*0.82)]] (x*0.81 ,w*0.66)] F(x*0.81 )[- (20)$ 

A(x*O. 81 ,w*0.65) II 

Generation 59 Generation 59 

Axiom: (0.24,0.6,0)A(7 ,3) Axiom: (0.24,0Ml)A(30,4) 

Rule:# A(x,w)->l(w)F(x)[+(20)$A Rule: # A(x,w)-!(w)F(x)[+(20) 

(x*0.42, w*0.85)!( w*0.83 )F(x*0.81 )[ +(20)$ $A( X* 0.69, w *0 .6 7) I ( w *0. 68 )F (X *0. 8 
A(x*0.81 ,w*0.61 )]F(x*0.76)[-(20)$A 5)[ +(20)$A(x *0.86, w*0.36)] F(x *0.44 

(x*0.81 ,w*0.81 )]] F(x*0.81)[-(20) 
)[ -(20)$A( x *0.81, w*0.49)]]F(x *0.88) 

$A(x*0.64,w*0.81) !(w*0.73)F(x*0.81) 
[ -(20)$A(x*0.65,w*0.67)!(w*0.81) 
F( x *0. 8 [)+(20 )$A( x * 0 .3], w*O. 88 )F( x 

[ +(22)$A(x *0.8 I, w*0.56)]F(x*O. 71 )[ -22) *0. 76)[- (20)$A(x*0.81 ,w*0.72)]] 
$A(x*0.68,w*0.61)]] 

Generation 75 Generation 75 

Axiom: (0.24,0.6,0)A(37,7) Axiom: (0.24,0.6,0)A(37,7) 

Rule:# A(x,w)->l(w)F(x)[+(20)$A Rule: # A(x,w)->l(w)F(x)[+ 

(x*0.42,w*0.72)!(w*0.74)F(x*0.81) 1 [ +(20) (20)$A(x*0.63, w*0.63) I (w*0.62)F(x 
$A(x*0.32,w*0.33)]F(x*0.53) I[- *0.4 7)[ +(20)$A(x *0.62, w*0.56)]F(x * 
(20)$A(x*0.81 ,w*0.81 )]]F(x*0.6 0. 79)[ -(20)$A(x *0.65, w*0.55) ]]F(x *0 

5)[-(20)$A(x*0.64,w*0.81) !(w*0.78 *0.55) ]]F(x *0.81 )[ -(20)$A(x *0.48, 

)F(x *0.4[)+(20)$A(x*0.81, w*0.62)] F(x *0.4 ,w*0.51 )!(w*0.77)F(x*0.67)[ +(20)$A 
7)[- 20)$A(x*0.72,w*0.42)]] (x *0.63, w*0.61) ]F(x *0.66)[-

(20)$A(x *0.65, w*O .63)]] 
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Experiment 1: Result 2 

Input string by user: !F[-]F[+]F 

Input parameters : 27, 3, 21, 19 

L-String : !F[-'F[-}F[+]F}F[+'F[-}F[+]F}F 

Input to VIGA-20 

Randomly Generate Chromosome (n=24): 

27,3,2 I, 19, 18, 6, I 2,22, 13,25, I 7,2 1,26,32, I 1,3 1,32,33,22,20, I 6, I 5,9,20 

SGA 

Generation 30 

Axiom: (0.24,0.6,0)A(24,8) 

Rule:# A(x,w)->!(w)F(x)[-(20)$A 

(x*0.45, w*0.45)!( w*0.8l )F(x *0.52)[­
(20)$A(x*0.8l ,w*0.86)]F(x*0.87) 

[ +(20)$A(x*0.8l ,w*0.53)]F(x*0.8l )]F(x*O. 
3 [)+(20)$A(x *0.3 8,w*0.45)! (w*0.6l )F(x*O. 
81 )[ -(20)$A(x *0.81 

, w*0.45)]F(x*0.8l )[ +(20)$A(x *0.45, w*0.4 
5)]F(x*0.8l )]F(x*0.8l) 

Generation 51 

Axiom: (0.24,0.6,0)A(23,8) 

Rule : # A(x,w)->!(w)F(x)[­
(20 )$A(x *0 .45, w*O .4 5)! ( w*O. 67)F( x * 0. 8 [)­
(20)$A(x *0.45, w*O. 73)] 

F(x*0.52)[ +(22)$A(x *0.46, w*0.53)]F(x*0.8 
9) l]F(x*0.38)[ +(20)$A(x *0.3 8,w*0.45)!(w 
*0. 79)F(x*0.8l )[-
(20)$A(x *0.81, w*0.45)]F(x*0.3 [)+(20)$A( 
x*0.45, w*0.48)]F(x*O. 81) ]F(x *0.81) 
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VIGA-20 

Generation 30 

Axiom: (0.24,0.6,0)A(23,4) 

Rule:# A(x,w)->'(w)F(x)[-
(20 )$A( x *0 .4 5, w*O .4 5) I ( w *0. 3 5)F( X 

*0. 73)[-(20)$A(x*0.45 

,w*0.8l )]F(x*0.8l )[+(20)$A(x*0.73, 
w*0.8l )]F(x*0.37)]F(x*0.33)[+(20)$ 
A(x*0.8l ,w*0.45)!(w*0.73)F(x*0.37) 
[-(20)$A 

(x*0.36,w*0.45)]F(x*0.8l)[ +(20)$A( 
x*0.45,w*0.45)]F(x*0.37)]F(x*0.8l) 

Generation 51 

Axiom: (0.24,0.6,0)A(24,4) 

Rule: # A(x,w)->!(w)F(x)[-
(20 )$A( X *0 .4 5, w*O. 4 5) I ( w* 0. 83 )F( X 

*0.81 )[-(20)$A(x*0.45 

, w*0.8l )]F(x*0.59)[ +(20)$A(x *0.42, 
w*0.8l )]F(x *0.37)]F(x*0.33)[ +(22)$ 
A(x*0.73,w*0.73)!(w*0.71 )F(x*0.8[) 
-(20)SA 

(x *0.45, w*0.45)]F(x *0.51) 

[ +(20)$A(x *0.45, w*0.45)]F(x*0.3 7) I 
]F(x*0.8l) 



SGA 

Generation 78 

Axiom: (0.24,0.6,0)A(5,6) 

Rule:# A(x,w)->!(w)F(x)[-(20)$A 

(x*0.49, w*0.81 )!(w*0.62)F(x*0.8[)-
(20 )$A( x *0 .45, w *0 .3 3)] F( x *0. 52)[ +(20 )$A 
(x*0.31 ,w*0.51 )]F(x*0.8])F(x*0.54) I [ +(22) 
$A(x *0 .54,w*O .85)!(w*O .42)F(x*O .71 )[­
(20)$A(x*0.45 

, w* 0. 45)] F( x *0 .36)[ +(20 )$A( x *0. 7 6, w*O .8 
4 )]F(x *0. 7])F(x*0.4 7) 

Generation I 00 

Axiom: (0.24,0.6,0)A(5,6) 

Rule:# A(x,w)->!(w)F(x)[-(20)$A 

(x*0.85, w*0.45) !(w*O. 71 )F(x*0.49)[­
(20)$A(x *0.45, w*O. 76)]F(x*0.4 7) 

[+(20)$A(x*0.65,w*0.71 )]F(x*0.35) I]F(x* 
0.88)[ +(22)$A(x*0.54, w*O. 71 )!(w*0.57)F(x 
*0.52)[ -(20)$A 

(x*0.45, w*0.45)]F(x*0.36)[ +(20)$A(x*0.45 
,w*0.45)11]F(x*0.79)]F(x*0.63) 

Generation 110 

Axiom: (0.24,0.6,0)A(28,6) 

Rule:# A(x,w)->!(w)F(x)[-(20)$A 

(x*0.85,w*0.45)!(w*0.51 )F(x*0.47)[­
(20)$A(x *0.45, w*O. 76) ]F(x *0.46) 

[ +(20)$A(x *0.65, w*O. 71 )]F(x*0.67)]F(x*O. 
88)[ +(20)$A(x *0.3! ,w*0.45)(w*O. 76)F(x *0. 
52)[ -(20)$A(x*0.89 

, w*0.45)]F(x *0.51 )[ +(20)$A(x *0.45, w*0.4 
5)]F(x*O .79)]F(x*0.54) 
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VIGA-20 

Generation 78 

Axiom: (0.24,0.6,0)A( 18,8) 

Rule: # A(x,w)->!(w)F(x)[-
(20 )$A( x *0. 4 5, w* 0 .57)! ( w*O .4 7)F( x 
*0.68)[ -(20)$A(x*0.45, 

w*0.45) ]F(x *0. 7[)+(20)$A(x*0.63,w 
*0.81 )]F(x*0.8])F(x*0.65)[ +(20)$A(x 
*0. 54, w*O .45)! ( w* 0. 7 3 )F( x * 0. 8 [)­
(20 )$A( x *0. 4 5, w*O .4 5)] F( x *0 .57)[+( 
20 )$A( x *0. 58, w* 0. 3 9)] F( X *0. 44) ]F( X 
*0.81) 

Generation I 00 

Axiom: (0.24,0.6,0)A(26,7) 

Rule: # A(x,w)->!(w)F(x)[­
(20)$A(x *0.5', w*0.45)(w*0.82)F(x* 
0.42)[ -(20)$A(x*0.45, 

w*0.51)]F(x*0.51 )[ +(20)$A(x*0.54, 
w*0.67) ]F(x*O .46)]F(x*0.56)[ +(20)$ 
A( x * 0. 64, w* 0. 4 5)! ( w *0. 73 )F( X *0. 83) 
[-(20) 

$A( X* 0.54, W * 0. 4 5)] F( x * 0. 55)[ +(20 )$ 
A( X *0. 68, w*O. 46)] F( x *0 .3] )F ( x *0. 53 
) 

Generation 110 

Axiom: (0.24,0.6,0)A(31 ,5) 

Rule : # A(x,w)->'(w)F(x)[-
(20 )$A( x *0 .45, w*O .45)! ( w*O. 6 8)F( x 
*0.5 8)[ -(20)$A(x *0.82, 

w*0.51 )]F(x*0.51 )I [+(20)$A(x*0.54, 
w*O. 79)]F(x*O. 73) ]F(x*O. 76)[ +(20)$ 
A(x*0.81 ,w*0.45) II !(w*0.61 )F(x*O. 
87)[-(20) 

$A(x*0.65, w*0.51 )]F(x*0.61 )[+(20)$ 
A( x * 0. 45, w*O. 4 5)] F( x *0. 63)] F( X *0. 8 
I) 



Experiment 1: Result 3 

Input string by user: 'F[[-F}}F[+F] 

Input parameter., : 10, 7, 34, 28, 30,3/ 

L-String : 1F[[- 1F[[-F}}F[+F]F}}F[+!F[[-F}}F[+F]F} 

VIGA-20 

Random Generated Chromosome (n= 27): 

I 0,7,34,28,30, 15, 13, 13,29,21,23,30, 14,34,20, 19, 17,22,25,31, 13,9, II, 19, 15,5, II 

SGA 

Generation 31 

Axiom: (0.24,0.6,0)A(/2,8) 

Rule:# A(x,w)->!(w)F(x)[[-
(20 )$A( x *0 .45, w* 0 .45)! ( w* 0.4 3) F( x *0. 57)[ 
[-(20)$A(x*0.81 ,w*0.45) 

F(x*0.81) 111F(x *0.42)[ +(20)$A(x*0.54, w* 
0.81 )F(x*0.63 )1F(x *0. 78) I]]F(x*0.81 )[ +(20 
)$A(x*0.45, w*0.45)!(w*O. 71 )F(x*0.65)[[­
(20)$A(x*0.45, 

w*0.81 )F(x*0.65)11F(x*0.64)[ +(20)$A(x *0. 
73,w*0.81 )F(x*0.81) 11F(x*0.82)1 

42 Generation 

Axiom: (0.24,0.6,0)A(38,4) 

Rule:# A(x,w)->!(w)F(x)[[-(20)$A 

(x*0.51, w*0.45)!(w*0.51 )F(x*0.56)l[­
(20)$A(x*0.81 ,w*0.45)F(x*0.57) 

11F(x *0.82)[ +(20)$A(x*0.35, w*0.45)F(x*O. 
82) 1F(x *0. 78) 111F(x *0.81 )[ +(20)$A(x*0.45, 
w*0.85)! (w*0.3 8)F(x *0.5 [)[­
(20)$A(x*0.45,w*0.81) 

F( x *0. 79) 11 F( x *0. 64 )[ +(20 )$A( x * 0. 8 8, w* 0. 
81 )F(x*0.81) 1F(x*0.82) 1 
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VIGA-20 

Generation 31 

Axiom: (0.24,0.6,0)A(33,4) 

Rule:# A(x,w)->'(w)F(x)[[­
(20)$A(x *0.45, w*0.45)!( w*O. 83)F(x 
*0.59)[[ -(20)$A(x*O. 73,w 

w*0.51 )F(x *0.81) 11F(x*0.81 )[ +(20)$ 
A(x*0.45,w*0.49)F(x*0.61) 1F(x*0.44 
) ]]F(x*0.39 )[ +(20)$A(x*0.45, w*0.81 
)!( w*0.59)F(x*0.81 )[[-
(20)$A(x*O. 7F, w*O. 

.57)(x *0.66) 111F(x*0.32)[ +(20)$A(x * 
0.65,w*0.81 )F(x*0.81 )1F(x*0.6]) 

42 Generation 

Axiom: (0.24,0.6,0)A(35,3) 

Rule: # A(x,w)->!(w)F(x)[[-
(20 )$A( x *0 .45, w*O .45) I ( w* 0. 4 9) F (X 

*0.51 )[[ -(20)$A(x*0.81, w 

* 0. 7 5 )F( X *0 .64) 11 F( x *0. 59)[ +(20 )$A( 
x * 0.4 5, w*O. 4 5) F( x *0. 55) 1 F( x *0. 54) 11 
F(x*0.52)[+(20)$A(x*0.45,w*0.81 )'( 
w*0.61 )F(x *0.56)[[-
(20)$A(x*0.31 ,w*0.4 

5)F(x *0.61 )]]F(x*0.75)[ +(20)$A(x*O. 
81, w*0.45)F(x *0.61 )1F(x *0.86)1 



SGA VIGA-20 

Generation 62 Generation 62 

Axiom: (0.24,0.6,0)A(30,4) Axiom: (0.24,0.6,0)A(34,2) 

Rule : # A(x,w)->l(w)F(x)[[- Rule: # A(x,w)->!(w)F(x)[[-
(20)$A(x*0.85, w*0.45)1(w*0.51 )F(x *0.55 )[ (20)$A(x *0.45, w*0.45) I ( w*0.63 )F(x 
[ -(20)$A(x *0.45, w*0.45) '0.64 )[[ -(20)$A(x '0.81, 

F( X '0. 8])] F( X* 0.4 5 )[ +(20 )$A( X *0. 3 5, w *0. 4 w' 0.4 5) F( X' 0. 62) ]] F( x * 0.46 )[ +(20 )$ 
5)F(x *0 .3 I )]F(x '0.41 )]]F(x *0.81 )[ +(20)$A( A(x*0.69,w*0.82)F(x*0.71 )]F(x'O. 71 
x *0.45, w*0.45)1(w'0.36)F(x *0.65)[[- ) ]]F(x*0.54 )[ +(20)$A(x *0.45,w*0.45 
(20)$A(x*0.45, ) I (w*0.64 )F(x '0.81 )[[-

w'0.45)F(x*O. 73 )]]F(x*0.64 )[ +(20)$A(x'O. 
(20)$A(x'O 31,w*O. 

45,w*0.69)F(x *0.81 )]F(x'0.82)] 57)F(x •o. 73)]] F(x*0.38)[ +(20)$A(x' 
0.45, w'0.45)F( x*0.81)] F(x '0. 77)] 

Generation 77 Generation 77 

Axiom: (0.24,0.6,0)A(37,3) Axiom: (0.24,0.6,0)A(38,3) 

Rule:# A(x,w)->!(w)F(x)[[-(20) Rule: # A(x,w)->l(w)F(x)[[-

$A(x'0.31 ,w*0.45)!(w'0.54)F(x'0.32)[[-
(20)$A(x*0.5 5, w'0.62) l(w*O. 72)F(x 

(20)$A(x '0.45,w'0.45)F(x *0. 
*0 .58)[[ -(20)$A(x *0.45 

58)]]F(x*0.51 )[ +(20)$A(x*0.45,w*0.72)F(x 
, w*0.45)F(x*0.3 5) I]] F(x*0.3 7)[ +(20) 
$A(x *0.45, w*O .45)F(x *0.61 )]F(x *0. 7 

*0 .6 5)] F (X *0. 7 8) ]] F(x *0. 7 4 )[ +(20 )$A( x * 0. 4 
6)]]F(x*0.32)[ 1 (20)$A(x*0.79,w*0.4 

5, w*0.45)!(w*0.59)F(x *0.65)[[-
5) I (w*0.64 )F( X *0.5 8)[[-

(20)$A(x*0.45, w*0.45) 
(20)$A(x*0.45, 

F(x *0. 73 )]]F(x*0.64 )[ +(20)$A(x*0.45, w*O. 
w * 0. 4 5) F( x *0. 68) ]] F( x * 0.3 [)+(20 )$A 

45)F(x*O. 78)] F(x*0.59)] 
(x*0.72,w*0.45)F(x*0.81 )]F(x*0.75)] 

Experiment 1: Result 4 

Input string by user: !F[-F[+F]F][-F] 

Input parameter.• : 27, 3, 34, II, 22, 33 

L-String : 'F[-F[+F}F}[-F} 

VIGA-20 

Random Generated Chromosome (n~ 12): 

27,3,34, II ,22,33, 17,28,5,32,6, 14 
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SGA VIGA-20 

Generation I 9 Generation 19 

Axiom: (0.24,0.6,0)A(/5, 7) Axiom: (0.24,0.6,0)A(29, 4) 

Rule:# A(x,w)->!(w)F(x)[- Rule:# A(x,w)->!(w)F(x)[-
(20)$A(x*0.8l,w*0.81 )F(x*0.81 )[ +(20)$A( (20)$A(x*0.44, w*O. 73 )F(x*0.81) 
x *0.5F, w*0.81) 1 (x*0.81 )]F(x*0.81 )][- [ +(20)$A (x*0.81 ,w*0.76) 
(20)$A(x*0.81 ,w*0.45) 

F(x *0.81)] F(x *0.81 )][-
F(x*0.89)] (20)$A(x*0.82, w*0.81 )F(x*0.8 

1 )] 

Generations 52 Generation 52 

Axiom: (0.24,0.6,0)A(8,4) Axiom: (0.24,0.6,0)A(17,3) 

Rule:# A(x,w)->!(w)F(x)[-(20)$A Rule: # A(x,w)->!(w)F(x)[-

(x*OJ5,w*0.79)F(x*0.31 )[ +(20)$A( 
(20)$A(x*0.84, w*0.56)F(x *0.81) 
[+(20)$A(x*0.5F ,w*0.56) 

(x*0.37,w*0.81) 11 F(x*0.62)]F(x*0.81 )][-
(x*0.43 )]F(x *0.65)][-

(20)$A(x *0.83, w*0.88) 
(20)$A(x*0.81 ,w*0.79)F(x*0.31 )] 

F(x*0.89)] 

Generation 69 Generation 69 

Axiom: (0.24,0.6,0)A(33,6) Axiom: (0.24,0.6,0)A(23,3) 

Rule : # A(x,w)-> '(w)F(x)[- Rule: # A(x,w)->!(w)F(x)[-
(20)$A(x*0.35, w*0.5 I )F(x*0.3[)+(20)$A(x (20)$A(x*0.5F,w*O. 5)(x*0.61) 
*0.3 7, w*0.81 )F(x*O. 76) ]F(x *0.4 ])[- [+(20)$A (x*0.49 ,w*0.76) 
(20)$A(x*0.45, w*OA 7) 

F(x *0.81) ]F(x*O. 75)][- (20)$A(x* 
F(x*0.48)] 0.8l,w*0.79) F(x*0.84)] 

Generation 85 Generation 85 

Axiom: (0.24,0.6,0)A(29,3) Axiom: (0.24,0.6,0)A(29,3) 

Rule:# A(x, w)-> '(w)F(x)[- Rule: # A(x,w)->!(w)F(x)[-
(20)$A(x*0.35, w*0.51 )F(x*0.3 [)+(20)$A(x (20)$A(x*O. 71, w*0.44 )F(x *0. 73 )[ +(2 
*0.37, w*0.81 )F(x*0.76)]F(x*0.4])[- O)$A(x*0.44, w*0.79) 
(20)$A(x*0.45, w*OA 7) 

F(x *0.81) ]F(x *0. 71 )] [- (22)$A 
F(x*0.48)] (x*O 81 ,w*O. 31 )F(x*0.67)] 
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Experiment 1: Result 5 

Input string by user: IF[F}[&]F 

Input parameters : 12, 5, 10,15 

L-String : IF[F}[&IF[F}[&'F[F}[&}F}F}F 

VIGA-20 

Random Generated Chromosome (n= 18): 

12,5, I 0, 15, 19,29, 12,25, 19,22, I 0, 19,24,6, 19,8,28,33 

SGA VIGA-20 

Generation 23 Generation 23 

Axiom: (0.24,0. 6,0)A(4,8) Axiom: (0 24,0 6,0)A(35,4) 

Rule: II A(x,w)->'(w)F(x)[F(x* Rule:# A(x,w)->l(w)F(x)[F(x* 

0.37)][&(20)$A(x*0.81 ,w*0.81 )!(w*0.81 )F 0. 58)] [ &(20 )$A ( x *0. 59, w*O. 58)! ( w* 
(x*0.81 )[F(x*0.3])[&(20)$A(x*0.81 ,w*0.68 0.55)F(x*0.56) I [F(x*0.52)][&(20)$A 
)!( w*0.81 )F(x*0.68)[F(x*O. 79)] [ &(20)$A(x (x*0.55,w*0.49)!(w*0.61 )F(x*0.55) I 
*0.45, w*0.45)]F(x*0.81 )] F(x*0.81) I]F(x*O. [F(x*0.4 7)] [ &(20)$A(x *0.55, w*0.42) 
84) ]F(x*0.68) I]F(x*0.61 )]F(x*0.51) 

.. 

Generation 37 Generation 37 

Axiom: (0.24,0.6,0)A(21 ,7) Axiom: (0.24,0.6,0)A(32,6) 

Rule:# A(x,w)->!(w)F(x)[F(x* Rule: # A(x,w)->'(w)F(x)[F 

0.57)] [ &(20)$A(x *0.81, w*0.81 )!( w*0.85)F (X *0. 8]) [ &(20 )$A( X *0. 59, w* 0. 57)! ( W 

(x*0.81 )[F(x*0.3])[&(20)$A(x*0.81 ,w*0.45 *0.61 )F(x*0.55)[F(x*0.53)][&(20)$A 
) ! ( w* 0.5 7)F( x * 0 .68) [F( x *0 .55)] [ &(20 )$A( x (x*0.55,w*0.65)!(w*0.68)F(x*0.81 )[ 
*0.45, w*0.45)] F(x *0.81) ]F(x*0.81) I]F(x*O. F(x *0. 79)][ &(20)$A(x *0.45, w*0.54)] 
47) F(x *0.39)]F(x '0.81) ]F(x *0.42) 

Generation 75 Generation 75 

Axiom: (0.24,0.6,0)A(J 2,4) Axiom: (0.24,0.6,0)A(30,5) 

Rule:# A(x,w)->'(w)F(x)[F(x* Rule: # A(x,w)->!(w)F(x)[F(x 

0.87)][ &(20)$A(x*0.41 ,w*0.81)'(w*O. 72)F *0.57)][&(20)$A(x*0.51 ,w*0.53)'(w 
( x *0 .3 [)F( X *0. 57)] [ &(20 )$A( X *0. 3 3, w*O. 4 5 *0.83 )F(x *0.58 )[F(x *0.64 )] [ &(20)$A 
)!(w*0.41 )F(x*0.72) I [F(x*0.88)][&(20)$A( (x *0.48, w*OAS)' (w*0.81 )F(x*0.65)[ 
x*0.45, w*0.45) ]F(x*0.84 )]F(x *0. 74 )]F(x *0. F(x*0.31 )][&(20)$A(x*0.45,w*0.84)] 
48) F(x *0. 76) ]F(x *0.88)]F(x *0. 76) 
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Experiment 2 

Input by User . !F[[-F]]F[+F] 

Input Parameters: II, 7, 29, 28, 26, 7 

L-String ! F[[ -! F[[ -F]]F[ +F]F]]F[ +! F[[ -F]]F[ +F]F] 

VIGA-20 for all results. 

Random Generated Chromo.,ome (n=27): 

, II, 7,29,28,26,23,22.23,32, I2,5,32,30,3I,33,23,28, I0,29,23,29, I2,22,33,25,34,29 

Result I: 

Axiom: (0.24,0.6,0)A(3I,4) 

Rule: # A(x, w)-> 1(w)F(x)[[-(20)$A(.<*0.45, w*0.45) 1(w*0.49)F(x*0.8 

I )[[-(20)$A (x *0. 45, w*O. 48)F(x*O. 38) ]1 F(x*O. 47)[ + (20)$A (x *0. 63, w* 

0. 35)F(x *0. 8I )1 F(x*0.44)11 F(x *0. 5[) + (20)$A(x *0. 45. w*O. 45) I (w*O 4I )F(x*O. 46) [[­
(20)$A (x *0. 72, w*O. 45)F(x*O. 82) I 11 F(x*O 47)[ +(20)SA 

(x*0.47, w*0.45)F(x*0.67) I 1 F(x*O 62)1 

Result 2: 

Axiom: (0.24,0 6,0)A(3I, 7) 

Rule: # A(x, w)-> !(w)F(x)[[ -(20)$A(x *0.45, w*0.45)'(w*0.83 )F(x*0.8 

7)[[ -(20)$A(x*0.61, w*0.64 )F(x*0.52) I]]F(x *0.63)[ +(20)$A(x *0.81, 

w*0.57) II F(x*0.83 )]F(x *0.5])]F(x*0.67)[ +(20)$A(x *0.45.w*0.45)!( w*0.66)F(x *0. 
6[)[ -(20)$A(x*0.45, w*0.45)F(x*0.5 8) l]]F(x*0.65)[ +(2 

O)$A(x*0.65, w*0.45)F(x *0.46) l]F(x*0.87)] 

Result 3: 

Axiom: (0 24,0 6,0}A(37,8) 

Rule: # A(x, w)-> 1(w)F(x)[[-(20)$A(x*O. 77, w*0.45) 1(w*0.56)F(x*O. 7 

8) [[-(20)$A (x*O. -15, w*O. 45)F(x*O. 8I )}} F(x*O. 49)[ +(20)$A (x*O 89, w* 

0.45)F(x *0.3 6) I 1 F(x*0.51 )}}F(x*O.BI )[ + (20)$A (x *0.45, w*O. 45) I (w *0.32)F(x*0.8I) 
[[-(20)$A(x*0.4F, w*0.81)(x*0.53)11 F(x*0.81)[ +(20)$A 

(x *0. 45, w*O. 45)F(x *0. 69) I 1 F(x *0. 6IJ1 

Result 4: 

Axiom: (0 24,0 6,0)A(l9,3) 

Rule: # A(x, w)-> 1(w)F(x)[[-(20)$A(x*O. 74, w*0.51) 1(w*0.32)F(x*O. 79)[[­
(20)$A(x *0. 45, w*O. 67)F(x*0.41 )11 F(x*O. 89)[ + (20)$A(x*O 45, 

w*O. 45)F(x*O. 84)1 F(x *0. 84) I 11 F(x*O 31 )[ + (20)$A (x*O. 45, w*O. 39 )I (w*O. 8I )F(x*O. 
81 )[[-(20)$A (x*O. 55, w*O. 61 )F(x*O. 86)11 F(x*0.8I )[ +(2 

O)$A(x*0.86, w*0.45)F(x*0.5I) I 1 F(x*0.55)1 
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Result 5: 

Axiom: (0.24,0.6,0)A(28,8) 

Rule: # A(x, w)-> '(w)F(x)[[-(20)$A(x*0.81, w*0.45)'(w*O. 77)F(x*O. 72)[[­
(20)$A(x*O. 66, w*0.45)F(x*0.58)}} F(x*O. 71)[ +(20)$A(x*0.45, w*045)F(.t*0.68)} F( 
x*O. 81)}} F(x*O. 81 )[ + (20)$A (x *0. 5'. w*O. 45)(w*O. 77)F(x*O. 82)[[-(20)$A (x*O 45 

, w*O. 45)F(x*O. 81) I}} F(x*O. 76)[ + (20)$A (x*O. 85, w*O. 45)F(.t *0. 36)} F(x*O 62)} 
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