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ABSTRACT

The Genetic Algorithm is an area in the field of Artificial Intelligence that is
founded on the principles of biological evolution. Visualization techniques help in
understanding the searching behaviour ot Genetic Algorithm. It also makes possible
the user interactions during the searching process. It is noted that active user
intervention increases the acceleration of Genetic Algorithm towards an optimal

solution.

In proposed research work, the user is aided by a visualization based on the
representation of multidimensional Genetic Algorithm data on 2-D space. The aim of
the proposed approach is to study the benefit of using visualization techniques to
explorer Genetic Algorithm data based on genc values. The user participates in the
search by proposing a new individual. This is different from existing Interactive
Genetic Algorithm in which selection and evaluation of solutions is done by the users.
A tool termed as VIGA-2D (Visualization of Genetic Algorithm using 2-D Graph) is
implemented to accomplish this goal. This visual tool ¢nables the display of the
evolution of gene values from generation to generation to observing and analysing the
behaviour of the search space with user interactions. Individuals for the next
generation are selected by using the objective function. Hence, a novel human-

machine interaction is developed in the proposed approach.

The efficiency of the proposed approach is evaluated by two benchmark
functions. The analysis and comparison of VIGA-2D is based on convergence test
against the results obtained from the Simple Genetic Algorithm. This comparison is
based on the same parameters except for the interactions of the user. The application
of proposed approach is the modelling the branching structures by deriving a rule
from best solution of VIGA-2D. The comparison of results is based on the different
user’s perceptions, their involvement in the VIGA-2D and the difference of the fitness

convergence as compared to Simple Genetic Algorithm.
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ABSTRAK

Algoritma Genetik ialah satu bidang dalam Kecerdasan Buatan yang diasaskan
pada prinsip-prinsip evolusi kajihayat. Teknik-teknik visualisasi dapat membantu
dalam memahami perilaku carian algoritma genetik. la juga membolehkan interaksi
pengguna ketika proses pencarian. Perlu dinyatakan bahawa intervensi pengguna
secara aktif dapat meningkatkan pencepatan algoritma genetik ke arah penyelesaian

optima.

Di dalam kajian yang dicadangkan, pengguna dibantu oleh visualisasi berdasarkan
perwakilan data multi-dimensi pada ruang 2-D. Tujuan pendekatan vang dicadangkan
adalah untuk mengkaji manafaat yang diperolehi apabila menggunakan teknik-teknik
visualisasi untuk meneroka data algoritma genetik berdasarkan nilai-nilai genetik.
Pengguna menyertai pencarian tersebut dengan mencadangkan individu baru. Ini
berbeza dari algoritma genetik interaktif yang sedia ada dimana pilihan dan penilaian
dilakukan sendiri oleh pengguna. Alatan yang digelar sebagai VIGA-2D (Visualisasi
Algoritma Genetik menggunakan 2-D Grafik) telah dilaksanakan untuk mencapai
matlamat ini. Alatan visualisasi ini membolehkan paparan evolusi nilai gen dari
generasi ke generasi untuk mengamati dan menganalisasi perilaku ruangan carian
dengan interaksi pengguna. Individu untuk generasi seterusnya dipilih dengan
menggunakan fungsi objektif. Oleh kerana itu, terciptalah interaksi manusia-mesin

baru dalam pendekatan yang.

Kecekapan dari pendekatan yang dicadangkan dinilai dengan ujian konvergensi
dan analisis berdasarkan purata dan kecergasan terbaik dari setiap generasi.
Kemudian, hasil yang diperolehi daripada VIGA-2D dibandingkan dengan Simple

Genetic Algorithm (SGA) di bawah parameter yang sama kecuali untuk interaksi
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pengguna. Perbandingan keputusan didasarkan pada persepsi pengguna yang
berbeza, penglibatan mereka dalam-VIGA 2D, dan perbezaan dari konvergensi

kecergasan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Computer graphics always aided the researchers in exploring complicated problems
visually. Visualization is a technique used to represent abstract data in visual form.
This technique helps the user to explore, interact, reorganize and understand the
meaning of complicated or hidden data. Visualization plays an important role in
helping the users to understand the problems graphicaily [1]. It raises the level of
understanding for multidimensional data. Another advantage of using this technology
is a reduction of the work period. Visualization is commonly known as a method of
seeing the unseen [2]. Visualization does not mean only viewing the graphical

pictures, but it also includes analysing and interpreting the data [3].

The visualization technique also facilitates the development of systems and
evaluation of data in different applications [4]. This technique also helps to visualize
the internal process of algorithms which uses black box strategy (only input and
output parameters are known), to understand their internal functionality and

behaviour.

Over the last few years, scientists have begun taking a keen interest in applying
the visualization techniques for the search space of Genetic Algorithm (GA). These
techniques are applied to adapt the dynamic changes in the search process and to
introduce user involvement. In other words, GA may develop as an interactive tool
with different visualization techniques. This technique is known as the Interactive
Genetic Algorithm (IGA). The aim of such visualization is to examine the behaviour
of GA during the evolution process, help with convergence towards an optimal

solution, or to explore the search process of GA to get more than one best solutions.



Moreover, the interaction with a user helps this algorithm to converge efficiently and

in fewer generations towards an optimal solution.

The GA was proposed by John Holland in 1960’s , based on the adaptive
process of natural systems [5]. GA is a dynamic random searching algorithm, which
gained massive popularity in very little time because of its effectiveness in solving
difficult optimization problems. It is described as a search technique, applied in the
computation evolution to find exact or approximate solutions to optimization and
searching problems. It is also known as the global optimization algorithm; moreover,
it also works well on noisy functions having many local optima. The searching
mechanism of this algorithm is often known as the blind search method because it
does not require any information about the first derivative or any other restrictive
assumption before solving a problem. Unlike other techniques of Artificial
Intelligence (Al), GA is more robust (error free), even in the presence of small noise
or any small change in the input; it does not break easily. The direct search method
and robustness quality makes this algorithm more favourable as compared to other

searching techniques {35, 6].

Techniques used by GA are based on natural methods and biological genetics to
produce the solutions(next population), and it follows the Darwin theory of natural
selection methods [7, 8]. Therefore, it uses biological terminology to express things.
The problem is introduced to GA in the genotypic form termed as chromosome
encoding. Chromosome is a kind of data structure consisting of genes. Each gene
encodes a parameter or value of the problem, which is being evolved by the GA; these
are termed as gene values. Construction of this chromosome depends on the specified
problem. GA works on the population of the individual; in other words, a group of
individuals is known as a population. It is considered as a tool for solving
optimization and searching problems in which the result is a population of solutions
not an individual solution [9]. These solutions (individuals) compete for survival in
the population in each generation. The better the solution, the higher the chance it has

to survive for next generation.

The GA generates a population by selecting random individuals according to their

fitness. Fitness is a value which determines the optimal individual in the current

2



generation to be selected as a parent for the next generation. In other words, it is a
value which determines the performance of GA towards best solution. The fitness
function varies from problem to problem. Individuals go through a process of
selection after assigning the fitness value for the survival of the fittest. This cycle

continues until the stopping criterion is met.

1.2 Thesis Motivation

Visualization techniques make it possible to create a visual environment for
understanding the biologically inspired methods in a better way [11]. From last few
years scientist are taking keen interest to use visualization techniques to explorer GA
search space [12, 13]. This visualization environment makes it possible to view,
interact and understand the searching process of GA [15]. In this way, different
visualization techniques make it possible to analyse GA solutions in search space and
to bring some changes in them which was quite difficult in Simple Genetic Algorithm
(SGA). Also these visualization techniques help to understand the GA convergence
and to change the parameters or functions during this search process [10]. Moreover,
artificial selection and evaluation of solutions by the uscr, help GA to search the
desired solution in fewer numbers of generations [14]. Thus, the human interaction

can accelerate the searching process of GA for complex problems easily [15].

IGA is an extension of GA in which human interaction and evaluation is needed
to get a solution. This interactive approach of GA is widely used for creative
applications such as architecture, art, music and design. In 1GA, different computer
graphic techmiques are used for solving complex problems. In most of these
applications, solutions are represented as 2 or 3-D models [16]. Hence, visualization
makes it easy to choose different parameters and functions, and get a solution in fewer
generations. Furthermore, with this technique, the exploration of search space at the
user level brings more variety of solutions [17]. It is often used to give a facility to the
user for exploring the search space for other solutions instead of only optimum
solution. Drawback of these existing applications lies in their continuous dependence

on the user for performing search and evaluation for the fitter solution. Hence this

3



continues search often create a tiresome environment for users. Another limitation of
these applications is small number of generations. Furthermore, in these existing
applications the individuals of search space are represented as 2 or 3 model. In this
way, the existing visualization techniques are unable to determine and observe the

searching behaviour of GA during evolution process.

The work done in this thesis is to aid the scientists and researchers in
understanding the searching behaviour of GA by projecting the multidimensional GA
data on lower dimension. This visualization is based on displaying gene values of
each generation. Furthermore, for accelerating the searching process of GA, an idea of
proposing a new individual into current generation has been introduced. Beside the
existing applications, in proposed approach human interventions are not forced in
every generation. The user may interact in any generation during the searching
process to propose a new individual to be evolved in the next generation. In this way
the proposed approach in this thesis is to understand and analyse the convergence of
GA on 2-D graph and to do various interactions towards the best solution with the

visualization technique as shown in Figure 1.1.
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Figure 1.1: An Interactive Visualization for Modelling of Branching Structures



1.3 Problem Statement

Although Simple Genetic Algorithm (SGA) uses its operators and methods to search
for an optimized solution in a multidimensional (n-D) search space more efficiently as
compared to a human, however, humans have an excellent ability to examine and
analyse the entire distribution of individuals in the visualized form that cannot be
interpreted by the SGA [15]. That is why the IGA combines the algorithmic SGA
search of the multidimensional (n-d) search space with the human global search in a

mapped 2-D or 3-D space to represent the GA data [15, 21].

Initially, the techniques for visualisation of multidimensional data of GA were
based on the combined search space or visualization of individuals on 3 or 2-D space
[19]. Furthermore, these existing techniques for visualization of multidimensional
data were only for information purpose [18]. In the visualization window, user may
view the selected individuals [15] or combined search space on 3 or 2 or 1-Dimension
but cannot interact with the search space [19]. In this way, with these existing
applications, there is no user level exploration at the internal structure of
chromosomes (gene values) [18, 20]. In addition, there was no user level

understanding for the convergence and behaviour of GA used for searching.

On the other hand [GA is found to be a flexible and user friendly technique based
on modelling the individuals of search space. It is used for solving artistically and
atheistically relevant problems. Most of the Traditional Interactive Genetic Algorithm
(TIGA) applications require human evaluation and selection in each generation.
Based on the fitness assigned by the user, individuals are selected for the next
generation. The main problem of TIGA is the continuous interaction of the user which
causes fatigue to the user and gives unwanted solutions [15, 21, 22]. In addition, users
can only select or deselect the solution or assign fitness to them but cannot change the

parameters (gene values). Some main drawbacks of using TIGA are:

a) In existing applications with the TIGA, individuals of a generation are
modelled and presented as 2 or 3D model. Only a few parameters may be

changed by the user, i.e. colour, rotation or scaling [21].



b) In TIGA, fitness depends on the user i.e. the user evaluation and selection is
used to create individuals for the next generation [21, 22]. This feature is only
applicable to artistic and aesthetic problems, where the user’s interest is more
towards assigning fitness and evaluating solutions [22], but not on

understanding the convergence behaviour of the GA.

¢) These existing techniques with TIGA have fewer numbers of generations to
prevent the user‘s fatigue. Moreover, a small search space is used for evolving

individuals [22, 23].

The above limitations affect the performance of IGA, especially when it is
applied to a problem with a large search space or larger number of generations [24].
For instance, the evaluation and selection in each generation may create user fatigue.
Moreover, due to adopting a model view for the solutions, it is also unable to

visualize the internal structure of the chromosome (gene values).

Since the user fatigue was a major problem in the TIGA, several techniques has
been proposed to address this problem. The problem of assigning fitness was resolved
by introducing a discrete fitness value [25] or an approximation technique [17] with
the GA process. Although these proposed approaches successes to resolve the
problem of the assigning fitness by user in each generation, however several other
techniques were used to evaluate the fitness i.e. user has to spend a particular time on
each individual [26] for assigning fitness or the user need to select some best
individuals from each generation [15] or the fitness is restricted to some parameters.
Moreover the selection of parent was also depends on the user. Furthermore these
existing techniques work with the model based visualization that makes them unable

to represent the distribution of gene values of the search space.

In the present work, we invited the user to directly participate in searching.
Visualization of GA is carried out based on the gene values of the current generation
and user interaction is only required after several generations. Besides the selection
of the best individual or parents for the next generation, interference of the user is
required to propose a new individual in any generation as shown in Figure 1.2. In this

way, the proposed approach saves the user from the tiresome work of selection and



evaluation of solutions in every generation. A human-machine interaction is used in
which an objective function combines with IGA to assign fitness and GA selection
method is used to select the parents for next generation. Hence, the active user
interaction leads to a faster search, resulting in fitter solutions in fewer generations.

The next section discusses research objectives of this thesis.

User proposed new
individual, fitness calculated
using objective function.
Selection, crossover,
mutation perform in a
traditional way.

Proposed :,
Approach .|
4

Visualization as 2 or 3D
model. Evaluate and
fitness assign by user. £ EE SN NERUEESE R 3
Terminate on user
perception.

tidimensional search
pace projected on 2-D
space based on
visualization of Genes
Crhemmnna ey values.

Existing |
work

».,

Conventional GA, assign
fitness, performs
selection, mutation,
crossover until
termination condition.

Figure 1.2: An Overview from Problem to Solution with the Proposed Approach

1.4 Research Objectives

The aim of this research is to investigate an approach that improves upon existing
IGA techniques and to develop a technique for the user interaction during search
process. The visualization of multidimensional GA data should be based on lower
dimension to show the distribution of gene values onto the screen. This visualization
will give a clear picture of the hidden process of GA involved for searching. Based

on the aim of this research, the following research objectives are set:
7



. To investigate a technique for visualization of multidimensional GA data onto

the screen.

. To propose a technique for user intervention with GA search space to

accelerate its performance.

. To develop an efficient and usable tool to achieve the above two objectives.

. To investigate the application of the technique for modelling the growth

process of branching structures.

. To verify and validate the results of the proposed approach against the Simple

Genetic Algorithm (SGA).

1.5 Thesis Contributions

The main contribution of this research is to propose an approach to visualize the

multidimensional GA data and to improve the searching process of GA with a user’s

interventions in different generations. The advantage of the proposed technique is to

reduce the user fatigue and to accelerate the searching ability of GA with the user

interactions. This has been achieved by meeting all objectives set in the previous

section. Additionally, an efficient and a usable visualization tool, VIGA-2D, has been

developed for this research. This thesis has made the following contributions to the

existing corpus of knowledge:

1.

Representation of Multidimensional Data Based on Gene Values: To
address the problem of representing the multidimensional data based on gene
values, a 2-D graph visualization approach has been adopted. This
visualization is based on representing each generation on a 2-D graph. In this
2-D graph, the Y-axis shows the gene values and the X-axis shows the genes’

location for each generation.

Accelerate the GA Performance with User Interventions: To address the

problem of accelerating the performance of GA with user interventions and
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preventing the user fatigue as discussed in section 1.3, the interaction of the
user is not forced in every generation. The user may go to several generations
without interactions. For accelerating the performance of the proposed
approach, the user interaction is involved to propose a fitter individual in

current generation.

This individual becomes a part of the search space in the next generation. An
objective function is used to calculate fitness of each individual. A dynamic
population size is used to adjust the new individual into the search space, l.e.
whenever a user proposes a new individual the size of the population is

increased by one.

Developing an Efficient and Usable Tool: To accomplish the first two
objectives, a tool is developed named VIGA-2D. This tool 1s developed with
all important Graphical User Interface (GUI) components to show the
performance of the proposed approach with different inputs. In this tool, the
user may select different GA operators and rates for crossover and mutation.
Two selection methods are implemented and it’s the user choice to select any
method. The visualization of fitness / generation 2-D graph 1s also a part of
VIGA-2D. This graph helps to understand the convergence of GA towards an
optimized solution. In order to generate branching structures from the output
of VIGA-2D, a visualization window is implemented with all the important
components. These components include rotation of the generated structure in

3-D space, shade, and the light effects and setting for background colour.

Modelling the Growth Process of the Branching Structures: The
application of the proposed approach is the modelling of the growth process of
the branching structures using VIGA-2D. To accomplish this goal, the
Parametric L-System is used. For generating the branching structure L-
System symbols arc input by the user and the parameters of the L-System are
evolved using VIGA-2D. It works in three stages. The first stage works with
the input symbols, the second stage work with evolving parameters for
Parametric L-System using VIGA-2D and in the third stage, the L-System rule
generated with the output of VIGA-2D for modelling the further growth

9



process of the branching structures. The terminating condition for this

application depends on the user’s satisfaction.

1.6 Thesis Scope

The research effort made to understand the research presented in this thesis focuses on
exploring the technique to visualize the multidimensional data of the GA search
space. Based on the proposed method, a tool (VIGA-2D) is developed in which each
generation is displayed visually. This visualization gives a clear picture of the
evolving gene value at different locations. User intervention is the result of proposing
a new solution. This new individuals become a part of the search space in the next
generation. The proposed method does not depend on continual interaction of the
user. The interaction may be done in any generation and any number of times until a
satisfactory or optimized solution is obtained. The fitness is calculated using an
objective function and the GA selection method is responsible for selecting the fitter

solution for the next generation.

In the proposed work, the visualization technique for the proposed approach is a
2-D graph. The gene values of the search space are represented on this 2-D graph,
where the genes having same values are overlapping at the same location.
Furthermore, based on the system configuration (system screen resolution and
computational speed) used for developing VIGA-2D, maximum chromosome length
is 30 for all experimental results. The developed approach also proves the flexibility
of producing optimized solution for generating branching structures. For this purpose,
the parameters for the Parametric L-System rules are derived from VIGA-2D.
However, there should be a Iittle knowledge available for the L-System to run the

application for evolving symbols and parameters.
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1.7 Organization of Thesis

The remainder of this thesis is divided into four chapters. Chapter 2 contains a review
of the literature relevant to the present study and system. This review begins with the
discussion of some of the root problems concerning the IGA dependence on human
evaluation and selection. The next relevant topic included in this review is the
discussion on existing approaches for projecting multidimensional data on lower
projection. The following section deals with the various existing approaches for
human-machine interaction. Finally, a discussion on application of GA for L-System
concludes this review. Different classes of L-Systems are also discussed in this
chapter. Most importantly, this chapter discusses the limitations of the existing

approaches that motivate the proposed research.

Chapter 3 explains the proposed methodology and discusses its components.
The explanation covers the proposed visualization technique in detail. It also
discusses the technique used for interaction and the impact of that interaction on the
population. This chapter also discusses the feasibility for generating the branching

structures using the proposed approach.

Chapter 4 discusses the performance of the proposed approach by comparing its
results with the Simple Genetic Algorithm. Evaluation is carried out based on human
interaction, fitness and convergence rate. It also describes the results achieved by

applying the proposed approach for generating branching structures.

Chapter 5 concludes this thesis by providing a summary of the work. This
chapter also summarises the contributions made in the thesis and presents the future

directions that can be further taken based on this work.
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CHAPTER 2

REVIEW OF RELATED WORK

2.1 Chapter Overview

The Genetic Algorithm (GA) is an efficient search method that is widely used to
generate a variety of solutions or an optimized solution [9]. Interactive Genetic
Algorithm (IGA) uses the same methods and operators as GA does, except for the
fitness evaluation and selection. The purpose of this chapter is to survey the existing
techniques and discuss important contributions in the field of IGA. Furthermore, this
chapter also survey the existing techniques for visualization of multidimensional data
on lower projection. These existing techniques are discussed to establish a
background context for the visualization technique developed in this thesis. By
describing the current literature, this chapter intends to highlight limitations of the

existing approaches.

A detailed survey of the existing IGA techniques is discussed in Section 2.2.
Section 2.3 discusses existing techniques to project high dimensional GA data onto a
lower projection. Visualization of branching structures and the L-System with its
theoretical background and different classes is discussed in Section 2.4, This section
also provides reviews of different existing techniques to optimize the symbols or
parameters of the L-System with GA. Section 2.5 concludes this chapter by

summarizing existing and recent work in [GA.



2.2 Interactive Genetic Algorithm

The origin of IGA is from 1989, when Interactive Evolutionary Algorithms (IEA)
were first demonstrated by Dawkins [27] to create a visualization tool to model an
artwork called bimorphs. Takagi [28], in his survey, reported categories of Interactive
Evolutionary Computation with two definitions, i.e. narrow and broad definition.
According to the narrow definition, the human evaluation is used as the fitness value
for an optimized solution. Some of these applications, and their advantages and

disadvantages are discussed in detail in Section 2.2.1.

According to the broad definition, the human-machine interface is used to solve
different problems using GA. In human-machine interactions, the applications are
based on a user’s preference and selection or it may use some other Al techniques, 1.e.
a classifier or fuzzy logic to approximate fitness values. Takagi and his fellows have
reported many advantages and limitations of using interactive technique for GA in
several research works [15, 22, 25, 41, 42 ]. However, it was noted that most of these
existing works were subjects of continues involvement of user [15, 22, 41,42 ]. The
detail literature review for these applications is discussed in Section 2.2.2. This
section concludes with the application of IGA in various fields of science. Section
2.2.3 will do a review on existing techniques with dynamic population size. Different

existing application with IGA has been discussed in the Section 2.2.4.

2.2.1 Human Based Selection and Evaluation.

The traditional way of using IGA is to assign fitness and to select the parents for the
next generation with human interaction. In this way, this GA visualization gives a
suitable solution for the problem in which inference of the user is necessary to have
an opinion for the evaluation and selection of solutions for next generation [29]. In
another sense, human intuition and emotion accordingly, are needed to complete the
evolution process. Another advantage of these existing applications is to help the user
to draw or select the individuals according to a visual picture of that object in his
mind. These applications are mostly used for model representation of individuals.

These techniques are applicable to the problems in which computational time 1s not a
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critical issue [15]. A variety of solutions can be obtained by exploring the search
space. Using these techniques, human selection can bring an optimal solution, in
fewer numbers of generations with a smaller population size. This technique has
been  successfully applied to 3-D modelling of different artistic applications, for
example, fashion design [14], 3D geometric shapes [30] and modelling of 3-D
flowers [21]. These applications are based on thc phenotype or genotype

representation of a problem.

In the visualization of 3D geometric shapes [30] and fashion design [14], the
evaluation and user selection judge the aesthetic quality of the model to be selected as
parents for the next generation. The individuals of the current generation are
displayed in genotype form on the screen as a 3D model. In [21], a similar approach is
adopted for phenotype representation of 3D flowers with a Structured Directed Graph.
In their approach, each schema (gene) is represented as a graphical shape; in this case
they used a total of 10 schemas. The next generation is evolved according to user
perception, whereas in the last population they have selected a random solution to

draw a flower.

In [31], a 3-D graphic model has been created for manufacturing layout designs.
Two different phases are used to run GA. During the first phase all individuals are
evaluated by the user. Whereas for the second phase, fitness function is used to assign
fitness. During the search process, the user may switch to any phase at any time.
Another interesting application is developed by [32], for ubiquitous 3-D graphic
models using mobile devices. The evaluation and selection of models are done by the

user with a mobile device.

The drawback of these existing approaches lies in their complete dependence on
the user. On the other hand, assigning fitness to each individual in search space create

a tiresome environment for the user.
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Figure 2.1:A User Interface for Selecting Trees for Recombination and Mutation
[33]

The TIGA technique is also used to do the breeding and recombination for the
next generation [29, 33]. A user interface is created which allows the user to selects
the models, can manipulate its parameters, and selects the parents for the next
generation for breeding. The work done in [33] involved a model visualization of
trees (see Figure 2.1). These trees are generated using the L-System. The user
involvement is to do the selection of parents for recombination and mutation. In this

way, the generated trees are according to user perception.

render

Initial set of trees
specified by parameter strings
generated at random

User views trees one at a time an
A. May adjust parameters
B. May assign numeric ratings

render

GA creates new parameter strings by:
1. Selecting parents reproduce
2. Crossing over parents

3. Mutation

Figure 2.2: Working Mechanism of GENTree [29]

A procedural 3-D model of trees [29] (see Figure 2.2) is generated using IGA.

Evolution starts with the initial population, generated by random parameters. Later on
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the user may adjust parameters to draw a tree. The user can also give a rating to this
tree, considered the fitness value. During this evaluation, if the user misses some
parameters for the adjustment, then it can be done by GA. Moreover, the user rating
of trees is not necessary in every generation. The main focus of their work is not on
creating a virtual scene, but rather on giving an idea of how to adjust the parameters
interactively. The parameters of two different trees are crossover to produce two new
sets of parameters (offspring), which are again displayed onto the screen for user
evaluation. Adjustment of the parameters is well addressed in their work; the user
may select the trees for breeding, and the user may or may not give the fitness

evaluation for the generated trees.

The IGA technique is also used to model virtual scenes [34, 35]. For these
applications, the searching of GA also depends on the user perception. The interface
window in [34] (see Figure 2.3) represents four virtual scenes developed by 4
elements namely: terrain surface, clouds, trees and sky. The user interface helps to
selects the best scene for the next generation. In this application, it is not necessary to
assign a fitness ranking to each scene. Instead, the user selection is based on an
element (terrain surface, clouds, trees and sky}. The tree generated for this system was
created by using the parametric context-free L-System. In this way, they have

contributed to making random virtual scenes for a forest by using TIGA.

IGA is used for creating visual scenes for generating a software robot [35]. The
genetic representation is based on homologous chromosomes. User involvement is

required in each generation that produces fitter solutions for the next generation.
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Figure 2.3: User Interface for Selecting Virtual Scenes [34]

Numerous works have been done in previous years to present the evolution process
using a graphical user interface. All of these systems work with a model of
individuals. Up to now, IGA has been applied to solve problems in several fields.
These existing applications are based on addressing both optimization problems and
the selection of variety of solution for a problem. It has especially enabled production
of very attractive solutions for artistic problems such as 3-D CG lighting design
support [22] , animal and plant evaluation using IEC [36], interactive design for
websites [37], traditional or fashion designing [14],[38], [39], 3D modelling for
geometrical shapes [40], and optimizing image enhancement filters [41]. A further
survey of using IGA for evaluation and user interaction may be found in a survey

report by Takagi in [42].

Table 2.1 shows some selected existing application based on TIGA. Drawbacks of
all above discussed applications are that they need the user involvement in each
generation, which create a tiresome environment for user. Due to model
representation, the user cannot explore the internal structure and parameters of
chromosomes (gene values). Furthermore, the interaction in every generation

becomes infeasible for the optimization problems having large search space.
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Table 2.1: An Overview of Existing Applications with TIGA

Human User Optimized Small
Research Work Rating & . pm, Population
. Perception | solution .
Evaluation size
H. Nishinoet al.[30] v v N
S.B. Cho, et al. [14] v v N
H.J. Min,et al. [21] V v J
R. Curry[33] v v v
A M. Brintrup, et /
al[31] v A N
Bruce Merry, et al.
[34] ) \ v
K. Aoki,et al.[22] v v
H.S. Kim, et al.[39] v v J
N. Hiroaki, et al [16] v v v
H. Nishino, et af '
32] v v v |
G - Yi-nan at al [43] v v V

2.2.2 Human-Machine Interaction

In TIGA, the role of user and GA are separated, i.e. the user does the selection and
evaluation for individuals and GA performs the search [15]. However, it often creates
fatigue and a tedious environment for the user. Since user fatigue is a main problem in
IGA, therefore, researchers are taking keen interest in alleviating user fatigue. Several
approaches have been proposed to solve this problem and to improve the GA

searching ability towards fitter solution with IGA technique [17, 25, 44].

A human- machine interaction is introduced to create an interval level between
user and system to produce a fitter value. Using this technique, a discrete fitness value
is introduced [25] to evaluate the solutions for the next generation. They proposed to
assign same fitness value to all individuals having similar features. In this way, they
reduce the user fatigue for e¢valuating and assigning fitness to each individual in the

search space. Some approximation approaches have also been used to solve the
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problem for assigning fitness. A Neural Network has been adopted [44] for assigning
fitness values after learning the human selection behaviour for different individuals
during the evolutionary process. Feed forward Neural Network is tried [45] for
predicting human evaluation and displays the individuals in decreasing arrangement.
However, in their work they reported that predications given by the Neural Network

were less accurate than fitness function for assigning fitness.

A Model based visualization is proposed [26] in which the fitness of an individual is
not assigned by subjective or objective function. The fitness is calculated on the base
of time spent by a user to make a solution which is satisfied or not satisfied. In this
way, the difference of this time while evaluating the solution according to user
satisfaction is considered as the fitness value of the individual. The selection of

parents for the next generation is done by GA.

A multivariable problem [17] is addressed to solve the fitness evaluation problem
using the Neural Network termed as General Regression Neural Network (GRNN).
GRNN approximates the aesthetic intention of the desirable solution by the user with
its learning mechanism, whereas IGA is used to evolve the next generation. In this
way, they save the user from the tiresome work of selecting and assigning fitness to
the best individual. They applied their proposed approach to designing the cartoon
style faces on coffee mugs (see Figure 2.4). These designs are displayed on a grid

window for selection by the user. Figure 2.5 shows the general flow of their system.

Figure 2.4:Cartoon Faces Generated using GRNN [17]
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This GRNN application works in two phases. The first phase starts with a random
population. Then, it evolves generation to generation with the artificial selection of
designs using IGA. The next generation is derived using asexual crossover and with a
high rate of mutation. The user may select one or many designs in one generation.
The selection and deselection of the user history are saved, analysed and formulated
in the Neural Network memory. After several interactions and generations, the second
phase is started. The Neural Network is used to approximate implicit mapping
between the evolved process and the user responses. The user responses are analysed

and feedback is given to SGA for automatic convergence.

Figure 2.5: General Flow of System [17]

The literature survey shows that, most of the applications developed with the
human-machine interface are also based on the user selection or evaluation. Although
the fitness is not evaluated by the user, instead; fitness approximation misleads the
gradual and fuzzy evolutionary process and restricts it under some fixed parameters.
For example, the fitness values are discrete in nature and user select any best option
from them [15] or some probability values are taken to evaluate the individuals of
each generation. Furthermore, there has been no countable work done in these
applications to improve the searching performance of GA using visualization

techniques.

Another idea is to introduce an approach in which user interaction may be

involved after a few generations or in certain (pre-defined) generations. The
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advantage of this approach is that it saves the user from the tedious work of selection
and evaluation in each generation. The objective function is used to assign fitness to
the individuals; hence, a large search space can be used for finding the solutions. An
occasional user intervention is introduced to correct the fitness of individuals used for
multi-objective optimization [24]. They proposed this approach to solved problems
with the large search space. They employed this technique to optimize the parameters
for aircraft design. The user interaction was after certain number of generations.
Objective function is used to calculate fitness. Figure 2.6 shows their designed
system. In their work for representing multidimensional data having different
objectives and constraints, different graphs are used. In total, they have 35 design

variables separated into 5 groups. The size of the population is 100 - 150.

The drawback of their system is in using different graphs for each group. In this
way, the overall performance of the system becomes difficult to observe. On the other
hand, this technique is helpful to elaborate the usefulness of user interaction to pre-
determined generations. In this way, selection or changes in searching becomes easier

as it is concerned only with particular generations.

Figure 2.6: An Aircraft Design using IGA [24]
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2.2.3 Dynamic Population Size

Adjustment or variation in population size may be observed in natural environments
and ecosystems with the change in the number of species. This change depends on the
availability of natural resources and the capacity in the ecosystem. Hence, population
size 1s a flexible parameter in natural systems. Initially, in evolutionary computation,
this parameter remains a constant over the run; scientists pay more attention towards

dynamic values for crossover and mutation operators.

However, a theoretical analysis has been done by [46] and described methods for
an optimal size of a population. Several other researchers have also been conducted to
address the size of population in different perspectives {47, 48]. In these works, the
population size parameter 1s considered as a flexible parameter and different
experiments have been done to change the population size during the GA search
process. In most of the previous works, the focus was to control the size of the
population with various approaches. Increment or decrement of population size

depends on some other factors, i.e. fitness rating and threshold value.

Variation in population size is feasible to evolve engineering problems dealing
with a large search space. Some experiments have also been done with the variation in
population size with IGA. A successful work has done in [38] , in which they used
IGA for evaluating fashion design models with variations in population size. They
divided their system into two phases, i.e. the Fluctuant and the Stable phase. In the
fluctuant phase, they used a clustering method, in which all the similar individuals
work in the form of group or cluster. The population sizc is large in this phase. The
user evaluates the centre of the cluster, and the fitness of all other neighbouring
individuals is calculated on the basis of the centre’s fitness. The size of the population
and the similarity threshold are constant in this phase. In the stable phase, the
similarity threshold is varies with the evolution, thus improving the clustering of the
population. They adopted variant population sizes in this phase. The increases or
decreases in population size depend on the similarity threshold. Some elitism
individuals are reserved in this phase, which help to generate improved offspring for

the next generation.
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2.2.4 Applications of IGA

Applications on GA have extended from computer science to other fields, i.e.
engineering [24], physics, social science, economics, molecular biology , biomedical
engineering [49] and many other fields [9,50]. On the other hand, IGA is suitable for
problems which cannot be easily solved easily by conventional GA, especially where
the interference of the user may change the general behaviour of GA, i.e. in aesthetic
and artistic problems [14, 51], in image processing applications [41, 52, 53], the
travelling salesman’s problem [54], chemical optimization problem, engineering
design problems [24, 55], and modelling of artificial scenes or trees [56]. All of these
above mentioned applications are developed using different techniques of IGA to get
optimized solutions. IGA is suitable for applications where the objective function is
unable to the assign fitness value or if it is useless. This technique also serves as a
useful tool for understanding complex architectural designs and civil engineering
applications. One of the main advantages of this method is that it has the potential to
obtain solutions according to the user’s desire, and to produce many variations in

obtained solutions.

2.3 Multidimensional Data on Lower Dimension

Visualization of multidimensional data on lower dimension is used for comprehensive
representation for scientific results, and their interpretation or validation [65, 066].
Besides the modelling and visualization of scientific data, these techniques are also
used to visualize the hidden process of algorithms including the biological inspired
algorithms such as GA [15]. The visualization of GA searching data is based on
different techniques, wused to transform multidimensional data to one or two
dimensions, i.e. Principal Component Analysis, Biplots [57], Distance Maps [58],
Sammon Mapping [59, 60], Coverage Maps [61], Distance Maps [61], State Space
Matrices [62], SOM [15], and Correlation Tours and Grand Tours [63]. Beside these
techniques, Tom Routen [64] proposed a distance distribution histogram for

calculating distance between chromosomes for population. This technique is only
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helpful to determine the frequency of chromosomes. There is no information found

for the distribution of chromosome in the search space found using this technique.

Most of these existing techniques do not have common mapping for all
generations. As a result, there is a lack of consistent relationships between the plotted
points for subsequent generations. The mathematical complexity of these techniques

also makes them impractical to apply for real problems,

Based on the techniques invelved in the visualization, it is broadly divided into
two main categories: (a) Information visualization and (b) Scientific Visualization.
Information Visualization (InfoVis) includes visual representation of non-numerical
data [65, 66]. InfoVis represents any technique for displaying abstract data and
helping to view a large amount of data at once [67]. In other words, InfoVis helps to
analyze and understand data in a better way. Difterent data mining techniques are
represented using InfoVis [68, 69]. In this way, business applications are the main
category to which InfoVis is applied. Moreover, Web based information [70] is a new
trend used to share information through information visualization. Given this idea, the
Web becomes the largest source of information.  Moreover, financial data and report

are also visualized using the information visualization technique [71].

Scientific Visualization (SciVis) includes modelling, representation or simulation
of scientific data. This visualization helps to understand the data derived from
numerical calculations or from any scientific experiment. SciVis covers a large
number of scientific fields, for example simulations of physics based models or
chemical processes [72], mathematical modelling [73], and virtual reality applications
[74], and biomedical problem based modelling 1.c. 3-D modelling for the brain [75],
protein structure [76], and MRI [58]. However, visualization of complicated and
multidimensional data of GA may also explore using different techniques that covers

in SciVis.

For example, in [15], a 2-D map visualization technique is used for GA for
improving the searching ability with user interventions. For visualization of GA, they
used SOM to map the individuals from n-Dimensional space onto a 2-D space. On a

2-D space, the individuals are represented with different colour intensities. For
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example, an individual with a higher fitness having has a dark color as compared to an
individual with a lower fitness, or new selected individuals are represented in

different color.

In their work, the participation of humans is to select the parents for the next
generation. For the current search space, a user guesses for the possible fitter
individual and sends it to the GA as a parent for the next generation. GA replaces this
proposed fitter individual with the lowest fitness individual in the search space. By
using SOM during this mapping, all the individuals of n-D mapping become
neighbors on the 2-D space. In this way, the new selected individual in the 2-D space
takes closest place to the global optimum in n-D space due to a topological
relationship. The GA converged to the next generation with the newly added

individual.

During visualization in [15], the best solution of the current search space is
displayed in a different color, which makes it easy for a user to select the nearest fitter
individual. In their proposed approach, it is not clear how they are calculating the
fitness for individuals. Furthermore, 2-ID mapping is based on all previous
generations; for example, if there are 40 individuals, it means 20 individuals x 2
generations. For this reason, SOM is retained in every generation to keep the possible
points in 2-D space as 200 x 200. Users need to select the 3 individuals among which
the fitter individual will be the parent for the next generation. Another problem with
the SOM is that it cannot keep the absolute distance difference in 2-D space, so only
estimated distance is mapped to the n-D space again. Furthermore, due to interaction

in each generation, fewer numbers of generations are evolved.

Several computer graphic techniques are used to project the high-dimensional
data on one or two dimensions, i.e. scatter plots, parallel coordinates or different
colour schemes [19]. These visualization techmques give both phenotype and
genotype representations of GA data, which is carried out in the form of chromosome
or gene values. A pseudo colour strategy 1s adopted in [19] to display all the
individuals of the current generation onto one screen(see Figure 2.7). The brightness
of individuals change with the fitness value while with the objective value, the hue

changes. This approach is applied to solve the knap sack problem. The chromosome
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encoding is binary; hence, two colours, blue and red, are used to distinguish between
gene values 0 and 1 respectively. The user views the individuals of each generation
visually and decides the termination condition. Since the colour scheme is applicable
to individuals having binary coding, therefore, it is not practical to apply this scheme

on any other genetic encoding.
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Figure 2.7: Brightness and Hue in Current Generation [19]

A Target Line [18] is projected onto one space for high dimensional data, where
all chromosomes are a point on target line as shown in Figure 2.8. The size of the
point shows the number of chromosomes projected on it, hence, the larger the size the
more chromosomes on it. The colour of the target line indicates the number of points
on that part of the line which works as a bar; hence, the darker the line more points
projected on it. With the selection of any part of bar, a scale shows the percentage of
the population in that area. The user may also change the position of the target line in
the search space. However, this change will not inform that what position of the target

line could be optimal for visualization of a particular run.
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Figure 2.8: Projecting High Dimensional Data onto Lower Projection [18]

Computer graphic techniques are also involved with the visualization of the
smallest element of GA known as gene values or allele. Visualization of gene values
gives a comprehensive overview of the complicated structure of a chromosome [19].
This technique is used to observe what area of the search space is explored by GA. A
travelling sales person [54] is a well known problem in which optimized solution for
paths to the cities is obtained. By projecting this data in 3 dimensions, the IGA with

user interaction is a suitable idea to solve this problem as shown in Figure 2.9,

Transparoncy: - On & Off P Type: & ) Paratiol

Figure 2.9: Travels Sales Man Problem on 3-D cuboids [54]
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2.4 Visualization of Branching Structures

Computer graphic techniques are also used to interpret and visualize the branching
structures. These techniques are used to create realistic models for branching
structures. In this way, natural looking scenes are generated using these techniques. In
branching structures there are different functional modules. These modules work and
are arranged together as functional modules to make a branching structure. The
geometrical structure of each functional module is similar to the whole. Hence, each
module has sub modules and these sub modules have more sub modules. By

increasing the levels of the modules, the branching structure becomes complicated.

The natural patterns applied by nature for these branching structures can be
visualized using the [.-System. The L-System is a rule based system used to interpret
these repeated structures. This rule based system start from a simple form, i.e. axiom
and move towards a complex structure [77]. The turtle graphics are used to build a
geometrical interpretation of L-System strings. The following section discusses the
functionality of the L-System and its classes. In Section 2.4.2, there is a brief
overview on the Parametric L-System. Existing work for using GA for evolving
symbols or parameters of the L-System are discussed in Section 2.4.3. This section

concludes with the discussion on different applications of L-System.

2.4.1 Functionality of L-System

The L-System is a mathematical formalism used widely for modelling and
visualization plants and branching structures with computer graphic techniques.
Lindenmayer [78] was a biologist who proposed the L-System for the first time in
1968.He used a rewriting mechanism for gencrating cell division in multi-cellular
organisms. Later on he also used it for modelling plant growth. But Honda [79] was
the first scientist who introduced plant modelling. The L-System works in the same
way as the Chomsky grammar does but there is a difference in the method of applying
productions rules, thus making L-Systems different from all other rewriting
mechanisms. The rules of the L-system are applied in parallel {80], simultaneously

replacing all the letters in a string in one step. While in Chomsky grammar the rules
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are applied in sequence, one string is replaced in each step. The parallel replacement
also makes a difference between procedural modelling and rule based modelling [77].
This property reflects the biological inspiration of the L-system. These rules work
recursively to model complex plant and branching structures. The L-System is
categorized on the basis of the grammar they use, because diftferent grammars
generate different formal languages [81]. This categorization represents different

classes of the L-System. These are described below:

¢ Context free L-System: A system in which each production rule refers only
to an individual symbol or module and not to its neighbours. The sequence

generated by this L-System is self similar at all levels.

¢ Context Sensitive L-System: In the context sensitive L-systems [82, 83], the
production rule depends not only on a single symbol but also on its
neighbours. These L-Systems are used to add environmental parameters, i.e.

weather, clouds and gravity [34].

¢ Deterministic L-System: Deterministic L systems always produce the same
development sequence. In other words, when there is only one rule for all

levels of iteration.

e Non Deterministic L-System: [f more than one successor is used to create
production rules than it is known as a non-deterministic L-System. During
derivation, at least one symbol or module should have more than one

production rule for these L-Systems.

* Bracketed L-System: The Bracketed L-System is an extension to the L-
System for generating tree like structures. The concept of using branching
symbols with the L-System was introduced by [78]. To represent branching
structures in the turtle graphics [79] , two symbols are used:

[ = push the current state of turtle onto the stack.

] = pop a state from the stack and make it the current state of turtle.
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2nd Iteration

1st lteration

Axiom=F

F ->F[+F][+F][-F[-F][+F]][+F[-F][+F]]
An example for [push, pop] in/out from stack with a. = 45.95 for all angles.

These classes of the L-System depend on the way of determining the production
rules thus, they vary from each other. Different classes may be combined together to
produce more attractive results. The developed rules may be deterministic, i.e.
context free which are known as the simplest form of the L-System, and work with
symbols, or they may be context sensitive, i.e. different parameters or probability
values are used with the rules. The Parametric L-System is a new form of the L-
System, is used to model the growth process of a tree or plant by defining rules. In the
Parametric L-System random values assigned to the symbols, to create more natural

looking models.

2.4.2 Parametric L-System

The simple form of the L-System was unable to model the growth process of plants
due to its discrete nature. Therefore, the Parametric L-System was introduced; it is a
further extension of the L-System and is used to visualize the growth process of

plants. In Parametric L-System, numerical parameters are associated with the
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symbols. These parameters control the effect of production rules during iterations. In
other words, the idea behind the Parametric L-System is to use parallel rewriting with
parametric words instead of strings of symbols [82]. This mechanism brings more
variety of branching structures by assigning dynamic values of parameters during

expansion.

In recent years, the Parametric L-System has been widely used for modelling and
visualizing the growth steps for tree and plant structure. They may be called as
development models which generate beautiful, smooth, fast growing animations for

branching structures. Some main features of using the Parametric L-System are [82]:

1. Instead of multiple discrete units, the Parametric L-System expresses a wide

range of angles and their length.

2. It uses arithmetic expressions, especially for demonstrating the growth process

of plants.

3. The presence of numerical parameters makes it easier to change the structure

by only interacting with / changing the numerical values.

4. The Parametric L-System has the ability to control iteration from one step to

the next, resulting in a smooth visualization.

Parametric L-System Rule Generated Tree Structure with Rule

Constants: Ang01 =435.74,

Ang02 = 832.63, rot =20.95 ,
width =1.932

Axiom: !(1) F (200) / (15) A

Rule 01: A -> !(width) F(50) [-(rot)
F(150) A] /(Ang01) F (150) [& (rot) F
(50) A]/ (Ang02) [ &(rot) F(50) A]

Rule 02: !(w) -> |(w*width)

Example: Tree generated after 05 Iterations using a Deterministic Parametric

L-System.
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2.4.3 Genetic Algorithm for L-System

The L-System is widely used to generate natural looking scenes, fractals or branching
structures using computer graphic techniques. However, to construct the rules for the
L-System is time consuming, and usually these resulting rules are not dynamic in
nature. Therefore, the researchers use GA to derive L-System rules because of its
random search ability. This ability of GA helps to derive a number of variant rules. In
[84] trees structures are generated randomly by GA and compared with a database of
target tree structures. The symbolic encoding is used; therefore, to make every
individual meaningful, a repair mechanism is used to improve the symbolic structures
and to prevent synthetically incorrect results. This repair mechanism is applied on the
individuals of the population before calculating fitness. The limitation of their works
is in using a small search space. They have used 2 rules for generating tree like
structures and modelling them onto the 2-D space. Therefore, there system has failed

to cover the complexity of rules and trees.

L-System rules for different classes may be used together to be optimize using
GA. For the most part, these systems work with the same phenotype of branching
structures, and GA is used to optimize the rules for the [.-System. A system named
Iworld has been developed [85] consisting of modelling different classes of the L-
System, 1.¢. Parametric, Timed, Stochasti¢, Bracketed and Real Time. The main
contribution is to give a facility to the designer, who may manipulate the fitness
values, and can change sub-population and other settings for the L-System, i.e.

probability values for the stochastic L-System.

Besides the symbols, the parameters can also be randomly generated. A ‘sketch
and grow’ interface is developed to retrieve an [.-System string from user sketch [86].
The stroke input is translated into L-System symbols and parameters, which indicates
the height, main axis and a number of iterations required until which the tree should
be grown. The rules of L-System are developed with the help of user input that is used
to model the further growth of tree according to the number of iterations. For deriving
the parameters closest to the input of user, GA is used to optimize the parameters. The
rules derived according to optimized solution are used to generate branching

structures using turtle interpretation onto 3-D space.
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Most of the researchers used Evolutionary Strategies (ES) for evolving
parameters having encoding in the form of vectors of real values [49, 87]. System
GREADEA [49] has been developed in which combined evolutionary operators are
used, i.e. GA is used to derive symbols and an evolution strategy is used to evolve
parameters. This system describes the structure of the human retina using L-System
formalism. They have created a database of images for the Parametric DOL-System
by applying several image processing algorithm techniques on images. However, if
images which are developed by a scanner laser ophthalmoscope (SLO) are corrupted

or incomplete, then their defined technique is not able to overcome this problem.

A parallel evolution approach is adopted by [87].The symbols and numerical
parameters of the Parametric DOL-System are evolved by evolutionary algorithms, in
which symbols are optimized by GA and parameters by using evolution strategies.
The idea behind their research is to run more than one population in parallel having
the same size. There parameters are independent from each other in the search space.
These populations can exchange the best individuals with each other during the
evolution process. The user interaction only involves selecting the number of
populations to be evolved and the user could change the mutation, crossover rates and
desired generation numbers. A simulation of 2-D plant morphology is developed in
[88]. The variable length (genotype) is based on the given L-System rule. The system
is divided into two types of selections: (a) User based interactions to achieve desired
solutions. (b) Automatic evolution is carried out using GA. A bilateral fitness function

is used to evaluate the fitness of solutions.

Besides of using evolutionary strategies, a tag function concept is introduced by
[89] as a replacement of real value parameters. This approach is applied onto the
modelling of a Leaf. The L-System is used to construct the shape of the leaf by
rewriting rules, and tag functions are evolved using GA. The purpose of using the tag
function is to reduce the time for deriving rule in every step, because these functions
replace derivations which have been done before. The user only requires changing
these function values instead of deriving an axiom again. However, they have created

only the leaf shapes using their proposed approach.
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An interactive approach of GA has also been used successfully to generate tree
like structures. The Parametric L-System and GA are used to develop an environment
[33] for the modelling of plants with user involvement. This interaction is based on
the plants of 9 typical types. The crossover is done between two models chosen by
user, and mutation operators are applied on one the selected plant models; this process
continue until obtained the solution. The disadvantage of this application is that the
whole system works with the visual models, and the complexity of the rules in the

form of gene values remain hidden from the user’s eye.

Table 2.2: An Overview of Existing Work for Visualization of Branching

Structures with L-System and GA.

Symbols Parameters Interactive | Optimized
Authors Evolved by | Evolved by Visualization Spolu tion
GA GA
Bian Rungiang,
et al. [84] v v
Hansrudi Noser, J J
et al.[84]
R. Curry [33] v v v
Gabriella Koka, J J
et al. [49]
Kokai, G, N
et al.[87]
Gabriela Ochoa |
(3] v v \
Yodthong
Rodkaewl, et al. v v
[89]
L E. Da Costa,et
al.[0090 | v v v
A. Daniel et al f
[0091] v v
N. Zakaria [86] N \

Table 2.2 shows a list of some selected existing approaches for visualization of
plants or tress using L-System and GA. All these system give a good overview for all
the important classes of the L-System but the interaction does not directly play a part

in changing the evolution process. All of the above existing discussed systems are
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well address but only to their specific problem. Additionally, all of these existing
systems are restricted to the static evolution process of GA. One step forward is to use

the interactive approach of GA to derive the rules for the L-System.

2.4.4 Application of the L-System

The L-System works as a powerful tool to generate complicated structures in a 2 or
3D environment with a small number of rules. Besides modelling and the visualizing
of plants and trees, the L-System is also used in other applications. For example
design patterns [92], music rhythm [93], draw sculptures or artistic drawings [95, 96]
or generate virtual creatures [96]. The context-sensitive L-System is a powerful rule
based system for generating complex structures with environmental variables [97, 98].
The stochastic rules of the L-system are applied to generate random structures with

the same rules.

The Parametric L-System is the extension of the L-System used to generate and
simulate the growth process of plants and trees [84]. It also gives a facility to show
the complicated structure of human organs, for example, modelling blood vessels of
the retina [99] or a growth simulation of the stomach in an embryo [100]. L-System
applications are also widely used to give a virtual environment in games and movies.
It has been also used to give special effects in movies like, making visible or invisible
the vessels in Hollow Man 2and the neurons in Fight Club [101]. Recently, the L-
System was also used to create building infrastructure and road networks [102].
Besides this, an interactive L-System [103, 104] is also used to develop a relationship
between natural and artificial environments. Some advantages of using the Parametric
L-system are: (a) its ability to use arithmetic expressions in rules, (b} a large variety of
angles and expressions to control and demonstrate the growth process or to create

virtual scenes, and (c) its ability to control the derivations in each iteration.
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2.5 Summary of Chapter

This chapter has presented the review of current literature that has led to highlight the
existing techniques for solving problems with IGA. This chapter also provides a
survey on existing visualization techniques to improve the performance of GA with an
interactive environment and different visualization techniques used for understanding
the GA searching mechanism. This chapter has also discussed the limitations of
existing techniques in previous sections., In this way, this chapter identifies the
problems in existing approaches, thus making a base for the proposed work. From
discussing all this literature, it 1s concluded that the existing techniques for
visualization based on individuals and continue human interventions with GA search
space are solutions for artistic problems with a small number of generation. However,
there is still room for exploring new techniques for the solving problems need large
number of generations, to avoid continue user interventions and for the visualization

of GA search space based on gene values.

Different current approaches are also explored in this chapter for assigning fitness
using the objective function to show that IGA techniques may also use to visualize the
large search space. However, it was noticed that in most of the existing techniques
there is no any techniques to propose a new individual or new gene values at different
gene locations in the current generation to become a part of the next generation. It is
also noticed from the existing approaches that the techniques for mapping

multidimensional data in lower dimension based on gene values is lacking.

The existing approaches using GA for optimizing or deriving L-system rules are
also discussed in this chapter. The Parametric L-System is a class of L-system used to
generate branching structures and to model the plant growth. These kinds of
visualizations are also used to develop the background scenes for animated games,
and virtual reality scenes in movies or in animated cartoon movies. Atter a thorough
examination of relevant literature, it is also noticed that there are only a few existing
techniques available to evolve the parameters of the L-System with IGA. The next

chapter presents our proposed methodology in detail.
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CHAPTER 3

PROPOSED APPROACH

3.1 Chapter Overview

This chapter will describe in detail the procedure and functionality of the proposed
approach. This chapter will describe in detail the technique used to bring the
multidimensional data of GA search space on 2-Dimension, Secondly, this chapter
will address in detail the technique used for accelerating the performance of GA
towards optimal solution with user interventions. This user intervention in the
proposed approach is different from existing IGA techniques in which interference of
human is necessary in every generation for evaluating and assigning fitness to
individuals. In proposed approach, user may interact in any generation and this
interaction is used for proposing a new individual into search space. Hence, the users
are not involved in evaluating and selecting the parents for next generation, which
prevent them from fatigue. In proposed approach, a human-machine interaction is
used in which fitness is assigned by the objective function and selection of the parents
for the next generation is done with the GA. Hence, the proposed methodology works
with large numbers of generations as compared to the existing techniques of IGA in
which small number of generations have been used to prevent user fatigue. The
application of proposed methodology is to derive the Parametric L-System rule for
further growth of branching structures. This chapter will also discuss the technique
used to derive the rule from best solution of VIGA-2D used for modelling the further

growth steps of branching structures.

This chapter is organised as follows: Section 3.2 describes the problem
formulation. The proposed approach for interactive visualization of the search space 1s
discussed in Section 3.3. Different GA selection and reproduction methods used in

proposed work are discussed in Section 3.4. Section 3.5 discusses an application used



in this research which involves the optimization of parameters for a Parametric L-
System used to derive the L-System rules for modelling the growth process of
branching structures. The chromosome encoding and visual representation of gene
values for test functions is discussed in Section 3.6. Section 3.7 provides a summary

of the chapter.

3.2 Problem Formaulation

The objective of this research is to propose a technique for an interactive visualization
of multidimensional (n-D) data of GA on a 2-D space and to accelerate the
performance of GA with human intervention. For this reason, the user actively
participates in searching by proposing a new individual in any generation. The new
individual becomes a part of searching process into next generation. Thus interaction
of the user leads to a faster convergence of the search and faster convergence results
with less user fatigue. Prior to becoming a part of the search space, the fitness of the
new individual is compared with the average fitness of the current generation. Thus
the higher the fitness of the proposed individual, the more chance it has to be selected
in the next generation. This interaction also affects the population size; each
successful interaction will increase the population size. Thus proposing a fitter
individual using interaction enables the GA to converge more efficiently in fewer

generations.

Evaluation: Let a is the search space for GA. Then a = {f,, f2 f3 oo . Bt
where f represents gencration evolved in search space for k numbers. Each
generation S consists of ¢ chromosome, represented by f = {4, d, Js ...........0m}
where m 1s the size of population. Each chromosome ¢ of population consists of gene
values denoted as 4 makes a set of 6= {4, 42 A3 ........... 44}, where [ 1s the length of

chromosome. Hence the multidimensional data for each generation consists of:
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For visualization, each generation P should be represented on the 2-D graph in
such a manner that the x-axis represents each gene location and the y-axis displays

each gene value (A, Aa,.ovivnnnnnn. &) as shown in Figure 3.1.

In the proposed research, any generation may be interacted by the user. Let the
user interact in f§; generation, and propose new gene values, which are a set of p = {4,
A2, A3 .......Af. These gene values become a part of the next generation as a
complete set of d, where d,,-; = p, and p represents a new proposed individual. Hence,
it depends on the fitness of individual p, in order for it to become a part of the next
generation or be discarded by the GA process. In this way, the discarded individuals
will not be considered as a part of evolution process. The next section will describe

the functionality of the proposed approach in detail.

3.3 Background of the Proposed Approach

The visualization of the GA makes understanding of the search space easier. This
visualization is based on either displaying the individuals or gene values on lower
dimension in order to understand the convergence behaviour [18, 19] or to make this
algorithm an interactive technique with the involvement ot user [14, 30]. Hence, these
techniques are useful for observing the effect of the user interaction during the
searching process. A thorough literature survey, in chapter 2, shows that most of the

existing IGA application works with a small number of generations [14, 21, 29]. The
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problem introduced to GA was in the form of models, and the user interaction in each
generation used to bring the best solution for next generation. In these existing
applications, the fitness assigned with the some range 1.e. 1-5, and the user selects the
appropriate fitness for the solution. In this way, the selection and evaluation of each
generation is based on the user’s decision. This continues involvement of users often

create a tiresome environment for them.

Existing literature shows that a numerous work has been done to reduce the user
fatigue [15]. For example using Neural Network [44], discrete fitness values [25] or
by calculating the time spend by a user on a particular individual [26]. However, it
was noted that all of these existing techniques found on the base of involvement of
user in every generation. It was also observed that IGA existing techniques were
based on visualization of individuals as 2 or 3-D models. Thus the user remains
unaware during the searching process and with the convergence behaviour of GA.
Based on the limitation of existing applications for IGA, an interactive visualization
of multidimensional data based on the gene values and to accelerate the performance

of GA by proposing a new individual is the main focus of the proposed approach.

3.4 Overview of the Proposed Approach

In this present research, an interactive visualization technique for the
muitidimensional data of GA on 2-D space is proposed. The proposed technique is
used to increase the performance of GA towards fitter solutions with the help of
human interventions. Moreover, the proposed approach is also capable for observing
and analysing the convergence of GA towards an optimized solution using a graphical
interface. Different steps have been taken to accomplish this goal. According to the
problem formulation in Section 3.2, a tool named VIGA-2D (Visualization of Genetic
Algorithm on 2-D Graph) has been designed and developed (see Appendix A for
design and implementation). This visualization tool has been developed to show the

clear picture of the searching process of GA in every generation.
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Besides the visualization techniques used for representing the GA data, the
performance of GA depends on many factors including a good fitness function,
population size and choice of GA operators (crossover and mutation). There are four

main steps, which are necessary to be taken by GA to complete a cycle [12]:
a) Representation of the problem in the form of a genotype
b) Decide on the fitness function, which is based on the expected GA solution
¢) Define the method of reproduction, recombination and mutation
d) Decide on the termination criteria based on the nature of the problem

A complete GA process needs all the above mentioned steps to obtain an
optimized result. These GA steps work in the same sequence for IGA. Since the user
is involved in IGA to complete the search process, however it needs some

modifications in regards to the problem.

All of these steps have been taken in the proposed approach. However in the
proposed approach, the role of the user is for proposing a new individual in the search
space instead of assigning fitness to the cxisting individuals. Listed below are some

advantages of the proposed work.

e The proposed approach works with a human-machine interaction.

» Instead of the fitness value being assigned by the user, the objective function
is used to calculate fitness for each individual.

¢ The visualization is based on the gene values of each generation.

e Human interaction is not involved with the selection or rating of the solutions;
instead the user proposes a new individual in any generation.

e There is no need to keep the generation numbers smaller because the user
interaction is not necessary in every generation.

¢ Any generation may be interacted by the user.

e The working mechanism of GA operators (crossover and mutation) and
selection of individuals work as a hidden process.

e The GA search process continues until the user terminates it.
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Figure 3.1: An Overview of VIGA-2D from Input to Output

The complete procedure of the proposed approach has been outlined in Figure
3.1. The first step is the encoding of a chromosome, which is based on the nature of
problem (Test functions or the parametric values for the Parametric L-System). For
test functions, the chromosome depends upon the length of chromosome string and its
maximum and minimum value range. However, for evolving parameters for the
Parametric L-System, it is randomly generated based on the user input string and
initial parameters. After defining the problem to VIGA-2D, every generation is
displayed on 2-D Graph. The user may go to next generation without interaction and
he can do interaction in any generation. All operators i.e. selection, mutation and
crossover works same as for SGA in the proposed approach. The user may select
different selection method (Roulette Wheel Selection or Tournament Selection),

crossover (l-point crossover or 2-point crossover), mutation rate and initial
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population size. However, with every successful interaction, there will be an
increment in population size. With the multiple intervention of the user in search
space, VIGA-2D converges to an optimal solution or a solution according to the
human perception. For test functions the termination is based on generation number.
Whereas, for deriving a rule for modelling the branching structures the termination is
based on user perception. The next section describes in detail the visualization
technique used to design a 2-D graph for a multidimensional search space for the

proposed approach.

3.5 Multidimensional Data Projected on 2-D Graph

The distribution of multidimensional data on a 2-D graph makes it easy to grasp the
data at different locations easily. In past, the attention of most of the researchers was
based on the visualization of individuals of GA in 2 or 3-Dimensional [18, 19, 54].
Despite to these existing approaches, the proposed approach intends to distribute the
gene values of each generation on to a 2-D graph. This allows the user to observe the
searching behaviour of GA in lower dimension. On the hand, the interaction of user
will be based on new gene values, as compared to existing works , where user’s
intentions was based on interventions with individuals [15,21] . In VIGA-2D, the
horizontal view of the graph represents the gene locations and the vertical view
represents the gene values of a chromosome. Hence, the data display on the graph
depends on the range of gene values and chromosome length. This display of data
involves the calculation for vertical and horizontal view of 2-D Graph and the
visualization of retrieved gene values on 2-D graph. These calculations and

techniques have been discussed in following subsections:

3.5.1 Vertical and Horizontal Ratio for 2-D Graph

For the representation of GA data on 2-D Graph, the first step is to calculate the ratio
to set the data within the vertical and horizontal range of design graph. The vertical

and horizontal ratios were calculated with the following equations:
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Vertical Ratio: According to the division of the graph for vertical view, the data
depends on the maximum range of gene values. The ratio for the vertical range is

calculated according to the Equation (3.1).

v - GAP
Vo= (3.1)

Mmax

Where v, is the pixel value range along the vertical view, Vi, 15 the total
vertical length of the graph; GAP is a ratio to keep all the data on the graph and m,ay

is the maximum range of genes value.

Horizontal Ratio: For the horizontal view, the division of the graph depends on
the chromosome length. The graph is equally divided into fixed length intervals.

Hence, each interval represents each gene location.

3.5.2 Retrieving Gene Values from Each Individual

According to problem formulation each generation 3 consists of a set of individuals ¢
according to population size m and each chromosome is a set of gene values A where /
is the length of chromosome. Thus the first step involves retrieving the gene values 4

from every location of chromosome in each generation as illustrated in Equation (3.2).

Gyame = values,,, (32)

Where the G, 18 a particular gene value, values is the range of the gene values,

m= (0...population size) and /= (0....chromosome length).

Y-axis: After retrieving a particular gene value. the next step is to calculate the
location of the y-axis, which is based on the calculation of vy, as shown in Equation

(3.3).
Y’aXiS = Vlength - (Gvatue - mmin) * Vynit (33)

Where Ve is the total vertical length of the graph, the G, 1s the gene value for
display, mpi, is the minimum range of gene values, and v, 15 the pixel ratio along the

vertical view.
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X-axis: The final step is to calculate the location of the x-axis, which is based on

the calculation of the fixed interval as shown in Equation (3.4).
X-axis = x-axis +interval (3.4)

Where the interval is a fixed value used to keep all data displayed according to
the specific gene location. Hence, the calculated value is based on horizontal and

vertical view along with x and y-axis.
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Figure 3.2: A 2-D Graph for Visualization of Gene Values for Each Generation

3.6 Visualization on 2-D Graph

After setting the vertical and horizontal view of 2-D graph and retrieving gene values
from each individual of a generation, the next step is involved with the visualization
of data onto the graph. For visualization of a clear picture of the behaviour of
searching the solutions in 2-D space, the fitness of gene values is displayed in blue

level colours having a different colour depth with different sizes.

For example, the gene values with the best fitness are displayed with a dark
colour (blue) having a larger size as compared to the gene values with worse fitness
values which are displayed in a light colour (gray) with a small size. The user selects
points (new gene values) according to the distribution of gene values with higher

fitness for a better proposed individual. The geometrical shape “ellipse” is used to
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display gene values onto the graph. The significance of using different blue colour
depths and size for different gene values is to make VIGA-2D self-explanatory to
users. Hence, the user may observe the change in colour depth and size to take the
decision for doing an interaction with current generation. On the other hand, this
change in colour and size will also elaborate for understanding the gene distribution

from generation to generation.

For the making a difference between the proposed gene values and the existing
gene values, the proposed gene values are displayed in the red colour. In this way,
calculated y and x-axis is responsible to displaying a single value as shown in Figure
3.2. This visualization of gene values are based on different blue colour and size

based on their fitness in search space.

3.7 User’s Interventions in Proposed Approach

User intervention is the main part of the proposed approach. In most of the existing
IGA applications user’s intentions are required in each generation for the selection of
parents and evaluation of solution for assigning fitness, which creates a tiresome
environment for the user. To overcome this tiresome problem of user, several
techniques were introduced in the past i.e. the approximation of fitness values using a
neural network [44, 45] or to assign a discrete fitness value for the evaluation of
individuals [44]. However, these existing techniques worked with the fixed range of
parameters and fitness values. Furthermore, in these existing applications the user

selects the parents for the next generation.

In this proposed research work, the user may evolve many generations without
interactions. The user is not involved with the selection of existing individuals, On
the other hand, the designed interface for representing the gene values on 2-D graph
also helps the user to decide the generation for interaction. For example, two different
colours, blue and green, are used to demonstrate the current fitness. If the green
colour is highlighted it means that the current generation has less average fitness as
compared to the previous one, and the user may interact to improve the overall fitness.
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If the highlighted colour is blue, it means that the GA searching is towards an optimal

solution. Since an approach to interact with the GA searching process after several

generations is adopted, based on the architecture of our problem, the searching

process of GA is divided into two phases:

a)

b)

In the first phase, the user does not interact with the current generation.
The fitness is calculated by the objective tunction, crossover, and mutation
is performed and the next generation is created with a stable population
size. Hence, this phase works in a traditional way for evolving the next

generation with the visualization technique.

In the second phase, the user interacts with the current generation as
shown in Figure 3.3. The interaction of the user i1s saved as a new
individual (Nepag). The Nenig I1s passes to the objective function to calculate
its fitness. The fitness of the proposed individual is compared with the
average fitness (Femg) Of the current generation. If the fitness of the
proposed individual is higher than an average fitness of current generation
then it becomes the part of search space in next generation, otherwise it is
discarded by GA. Crossover and mutation is applied on the new
population in the traditional way and the next generation is created with

the plus-one strategy population size. This is illustrated in Algorithm 1.
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Let E,, be the existing population with (P,) size of population.

If the user interacts with current generation then

1. Save the new individual Ny

2. Calculate the fitness (Fepig) of Newiig using the objective function
I (Fenita™ Faverage)
Increase size of population: Py.," = Py +1.

r

Epop - Epop *—Nchiid

Else Discard the N4

3. Next generation.

Algorithm 1: Making the Proposed Individual as a Part of the Search Process

3.7.1 Retrieving Interacted Values as a Gene Values

Since the user interacts directly on the graph, this interaction is based on the pixel
values. This pixel values work as new proposed gene values and act in the search
space as a new individual. Each interaction is limited to the maximum and minimum
range for a particular genes value. These pixel values are converted into data values

(gene values) according to the calculation of x and y axis as given below:

Retrieving values from y-axis: The y-axis is involved in retrieving data according to
the upper and lower bounds of each genes value. Equation (3.5) is used to convert

pixel values into data values.

— Viength—Ypixel
Goatue = . e (3.5)
Vynitt Mmin

Where the G,q. 1s the gene value for display, Vg 1s the total vertical length of
the graph, vpixel is the y-axis position on the graph, v, is the pixel ratio along the

vertical view, and mp;, 1s the minimum range of gene values.
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Retrieving values from x-axis: The x-axis is involved to specify the gene
location for each gene value. The length of the chromosome may vary according to
the input of the user. However, the maximum chromosome length was 30 for all
experiments. As discussed above, the x-axis is divided into equal intervals according
to the maximum length of the chromosome. These intervals are used to convert pixel

values into data values for the x-axis.

[ Interaction by User
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Figure 3.3: User Interaction on the Current Generation.

3.7.2 Dynamic Population Size for VIGA-2D

In the proposed research, each human interaction proposes a new individual instead of
selecting any existing individuals for next generation; the problem was to make this
new individual as a part of the search space in the next generation. A dynamic
population size is proposed to overcome this problem. In this way the population size
increases by one with the interaction of the user. In contrast to this, in most of the
previous works, the issue was to control the size of the population with various
approaches [47, 48]. In these existing works, variation (increment or decrement) of
the population size depends on some other factors, i.e. fitness rating and threshold

value. Variation in population size was also noticed in a IGA technique to model the
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fashion design on the screen , in which the population size increase or decrease with

the interaction of the users [38]. .

In the proposed work, the main purpose of using the dynamic size of the
population is not to lose the existing individuals but to enhance the search space
interactively. Whenever user interacts with the current generation, the fitness of the
proposed individual is calculated using the objective function. If the proposed
individual is not optimal as compare to the existing individuals of the current
generation, then the proposed individual discard by GA. The interactive tool helps
the user to monitor the feasibility of GA to adopt the new individual in its searching
process. For example, the increment in population size depends on the number of
successful interactions that can be monitored by the user onto the interactive tool
window. In this way, the user can observe the successful interaction with the
increment in population size. In other words, if the user’s interaction produces a

worse individual, then the population size remains stable.

3.7.3 Visualization of Convergence Graph

Visualization of the fitness convergence graph works in a traditional way. A 2-D
graph is implemented for monitoring the convergence of fitness in each generation.
The graph is based on the visualization of the best, average and worst fitness value for
each generation as shown in Figure 3.4. Importantly, this graph also helps to invites
user for interaction, particularly, when the user observes no change in fitness from the
last few generations, the user may interact with the GA process and propose a new
individual to converge GA in a better way. This convergence graph also help to make
the decision for terminating the GA process after achieving the desired convergence
rate. In this graph the ‘horizontal view’ is used to display the generation number and
the ‘vertical view’ is used to show the fitness value. Visualization of this graph is
based on the number of generations being evolved and the difference in fitness value
for each generation. For visualization of convergence graph, the vertical and

horizontal ratios are calculated by the following equations:
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Vertical Ratio: The vertical view of the graph depends on the maximum range of
the fitness value. The ratio for the vertical range is calculated according to the
Equation (3.6).

v ~ GAP
Vani= — T (3.6)
Mmax

Where v, 1s the pixel value range along the vertical view, Vings 1s the total

vertical length of the graph, GAP is a value uscd to keep all data displayed inside the

graph, and m,,, is the maximum range of the fitness value.
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Figure 3.4: Fitness/Generation Graph: the Y-axis Shows the Fitness Values and X-

axis shows the Generations.

Horizontal Ratio: The honzontal view of the graph shows the generation
number. The ratio for the horizontal view is calculated according to the Equation

(3.7).

htength - GAP

hunit = (3 7)

hinterval

Where Ay is the pixel value along the horizontal view, Ajnm 1s the total
horizontal length of the graph, GAP is a ratio to keep all data displayed inside the
graph, and henq is the intervals for displaying data in the x-axis according to the

generation number.

X-axis: The maximum and minimum values of the x-axis are change according
to the changes in the generation numbers. The x-axis is calculated according to the

following Equation (3.8):
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x-'a)ﬂ-s - GAP +i *hunit (38)

Where GAP is a value used to keep all data displayed inside the graph, i = (0.. &)

is the generation number, and A, 1s the pixel ratio along the horizontal view.

Y-axis: For the y-axis, the higher and lower boundaries for fitness values are
given by default. The graph is updated with every generation. Equation (3.9) shows

the calculation for the y-axis.
y-axis = Viengen — (fitness; — Mmin) * Vunie (3.9)

Where Vg is the total vertical length of the graph, fitness is the fitness value to
display, i= (0.. k) is the generation number , m,,;, is the minimum fitness value and

Vunir 18 the pixel ratio along the vertical view.

The visualization of convergence graph shows the best, average and worse fitness
for the each generation. Three different colours i.e. red, blue and green are used to
display these fitness values respectively. The geometrical shape “ellipse” is used to
display different fitness values. The size of the ellipse is the same for all fitness

values.

3.8 GA Operators and Methods used in Proposed Approach

The VIGA-2D process starts in the traditional way as proposed by Goldberg [9].
Figure 3.5 shows that the initial population (#) is randomly generated. Then population
(1) is evaluated using some criteria (fitness function) and this population enters into a
loop and a new population is selected (t+/) from population (#), where crossover and
mutation is performed, and after evaluation, a new population replaces the older one
(). And this loop continues until it meets the stopping criteria. The total number of
individuals in a population shows the size of the population. However, during the
searching process, human interaction may occur in any generation. As a result of
interaction and proposing of a new individual, there will be an increase in population

size. This interaction process is already discussed in detail in section 3.7. The
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following subsections will discuss the GA selection methods and different crossover

and mutation operators applied for the GA process in this thesis.

| Start )

r
; Next Visualization
Encoding Chromosome Generation *  on2-D graph
Fithess Function r Y
Selection Method Evaluate
genes values
GA operators for each <
generation —1
Add proposed genes
values into search
space Satisfied
r'y E solution
]
Increase User
population size interaction +

Figure 3.5: Pipeline for the Proposed Approach.

3.8.1 Selection

Selection is a process for choosing the best individuals to work as parents for the next
generation. This selection is based on the fitness (selection pressure) of individuals.
The best individuals are favoured according to a degree of selection pressure [105].
The higher the selection pressure, higher the chance for selection of the best
individuals. The convergence rate is also determined by selection pressure. Thus the
convergence rate becomes higher with a high selection pressure and GA finds the
optimal solution faster [106]. As a result of selection, the chosen individuals are
added to a mating pool in which the reproduction is occurs. In GA, different selection
methods are used to provide selection pressure with different characteristics. Among
them, the most common selection methods are used in the proposed approach; they

are Roulette wheel selection and Tournament selection.
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in the Roulette wheel selection method, the first step is to calculate the fitness

(F(cm)) for each chromosome (cp).

The second step is to calculate the total fitness of the population as shown in Equation

(3.10).

Thness= 2ol 7 (F (Cm)) (3.10)

Where Tjimess 15 the total fitnessand m = 1, 2.0 .., pop size and(fitness (c,)) is
the fitness of the chromosome in the population. An empty mating pool is created and
filled with the selected individuals based on their fitness value. The fitter individuals
have a higher chance to be selected and added into the mating pool. A new population

is generated based on the fitness value with respect to probability of distribution.

The third step is to calculate the selection probability p,, for each chromosome c,,

using equation (3.11).

PELIG.AR (3.11)

Tf itness

The fourth step is to calculate the cumulative probability g, for each chromosome

¢ using Equation (3.12).
qn= 2j=1 D, (3.12)

Adding the fitter individuals to the mating pool are continued until the population

is full, for this process, a random number r 1s generated.
If r <g; , then the first chromosome c¢; will be selected
Else
Select &y, chromosome ¢,, such that g,,.;< 7 < g

After selection of individuals for the new population, the recombination and

mutation occur.
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Tournament selection is based on a tournament between members (i.e. an
individual of the population} to provide a selection pressure [105]. This selection
method is computationally more efficient. These individuals are selected from the
population randomly. The tournament selection pressure is increased by an increase
in tournament size (7}) or vice versa. The winner is the individual having the higher

fitness among T and it is added to the mating pool. It involves the following steps:

1. With the probability p, selects the best individual from the tournament / pool.

2. Select the second best individual
p*(1-p)
3. Select the third best individual

p*((1-p)*2)

The tournament selection remains continue until the mating pool is full. A new
population is created by selecting two random individuals as parents from the mating
pool. After performing crossover on these parents, a child is created. Mutation is

applied on the created child and a new population is created for the next generation.

3.8.2 Crossover

Recombination or crossover is an act of exchanging information or genetic material
between parents to produce new children. This exchange is based on selection of
better genes to produce good solutions referred to as “building blocks for the next
generation”. For reproducing well adapted individuals with new genetic material, two
types of crossover operators are performed in the proposed approach, i.e. one point

crossover and two point crossover [108].

3.8.3 Mutation

Mutation aiso plays an important role during the GA process to bring new features
into the next generation [109]. It occurs by giving some probability value during

evolution. Mutation is used to alter current alleles of genes with different alleles. The
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position for mutation is selected randomly. A mutation rate m;1s defined. For example
if m, is 0.01, then only 1% of the genes in the population will be mutated. The
mutation is performed on the genes which are less than the mutation rate m, . Every
gene has an equal chance to be mutated. After completion of the mutation, the new

child (individual} is added to the populatton.

In the proposed work, the uniform mutation [110] is used. Uniform mutation
works with the alteration of genes by the selection of a uniform random value within
the upper and lower bound of a particular gene. The next population is generated after
one completes process of selection, crossover and mutation. Thus the one generation
of GA depends on the selection, recombination, mutation and evaluation. After

mutation, a new child is added to the population f(t+/7).

3.8.4 Termination Criteria

The termination condition is an important part of GA, which helps the algorithm to
decide on going to the next generation or stopping the evolution process. This
termination criterion is checked after each generation. There are many ways to
terminate the GA search process depending on the nature of the problem, i.e. number
of generations, computational time, and threshold value or according to the user’s
perception [2]. In IGA, it is very difficult to determine termination criteria
theoretically. The applications of IGA are user dependent, so it depends on the user to
decide the termination of the current evolution. The decision of the user for
termination may depend on the convergence of fitness to optimized solution or it may
depend on the user’s requirement or the number of generations evolved. In the
proposed work, two termination criteria are used: (1) Termination of the process

depends on the user. (2) Number of generations.
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3.9 Application: Modelling the Growth Process of Branching Structures using

Parametric L-System

Parametric L-System has been proved to be a successful rewriting mechanism to
demonstrate the growth process of plants and trees [82]. The application of the
proposed approach is to optimize the parameters for deriving the rules for the
Parametric L-System while symbols for the structure are given by the user. The best
solution obtained from VIGA-2D works as associated parameters, used for deriving

rules for the Parametric L-System.

The deriving of rules for Parametric L-System using GA is a further extension to
the work done in [86], in which a sketch interface is developed to retrieve an L-
System string from user’s sketch for a tree. The stroke input is translated into L-
System symbols and parameters, which indicates the height, main axis and a number
of iterations from which the tree should be grown. The rules of the L-System are
developed with the help of user’s input that 1s used to model the further growth of the
tree according to the number of iterations. For deriving the parameters closest to the
input of the user; GA is used to optimize the parameters. The rules derived from the
optimized solution are then used to generate branching structures using the turtle

interpretation onto 3-D space.

In the proposed work, the process initiated with the L-System string given by the user.
Initial parameters for the branching structure, i.e. the branching angle, length and
width of trunk are given by the user. Whereas the parameters used for scaling and
deriving the rules are randomly generated by the system. Initial parameters given by
the user and randomly generated paramecters works as a target solution in VIGA-2D.
All these parameters work as real values for chromosome encoding in VIGA-2D.
User can do multiple interactions for proposing a new individual and user may see the
output (generated branching structure) in any generation. The overall process works in
the same manner as discussed in section 3.4. In order to visualize the growth process
of generated structure, the optimized solution from the last generation acts as deriving
rules for Parametric L-System. The steps involved in the process are shown in
Algorithm 2.
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1: Initialize the process with user input (L-string) and initial

parameters

2: Generate random chromosome from initial parameters (Oparam) to

initiate the VIGA-2D process.

3: Calculate the fitness of each GA generated solution (Gparam) as

compare to Oparam with fitness function:

fitness = \/Efﬂ((}pammi — Oparam;)?

Repeat
4: Until terminate according to user perception

5: Derive L-System rule from best solution obtained from current

generation.

6: Model the next growth step according to the L-System rule

Algorithm 2: Steps taken for Deriving Rules with L-string and VIGA-2D.

In order to generate branching structures using VIGA-2D, the graphical interface
is divided into 3 stages. The first stage is involved with the user input for generating
[-System string. The second stage is involved with the VIGA-2D search process for
optimizing the parameters and the third stage is responsible for deriving rule and the
visualization of the branching structure in 3-D space as shown in Figure 3.6. The
termination of the VIGA-2D searching process depends on the user. During
visualization, the fitness graph shows the overall performance of the process as
discussed in subsection 3.7.3. Besides displaying branching structures repeatedly, the
user may estimate the performance of finding a good solution through this graph. The

following subsection will discuss these stages architecture and the functionality of

each stage in further detail.
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Figure 3.6: An Overview of the Designed Interface for Deriving the Rule for

Parametric L-System.

3.9.1 User Input (L-String).

The L-System language consists of terminal and non terminal symbols. Non terminal
symbols known as repeated symbols are used to generate more strings of symbols.
Terminal symbols are used for scaling, rotation and movement, and they remain same
during all iteration levels. The bracketed L-System is applied to generate tree like
structures. In the proposed work, the Deterministic Parametric L-System is used to

create the rule according to the following form:
Predecessor -> Successor

Where the predecessor will be recursively expanded and replaced with the relevant
successor in each iteration. The graphical interpretation is based on the turtle

interpretation [80]. In the proposed work, the turtle interpretation is based on as
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discussed in [111, 112). The three dimension coordinating system is adopted with 3
vectors (H, L, and U) used for directions, in which, H represents the head or front
vector, L. represents the left vector and U represents the up vector. The default angle is

H at 90 degree (see Appendix B for detail).

In the proposed approach, the problem is to optimize the parameters of
Parametric L-System for deriving the rule. For this reason, it covers the translated
symbols from the user input and their initial parameters. These symbols are based on
the user input in all 3 directions. The following example illustrates the mechanism of

generating the random chromosome to initiate the VIGA-2D searching process.

Let the input string given by the user is =!F{+]F/-]. The total numbers of symbols
used in this example is 7. After modelling the initial structure with the user input, the
L-String gets the following form: /F{+!F[+]F[-]]F{-IF[+]F[-]]. For the initial
structure, width of the trunk, height of the main branch and angles of the sub branches
are also input by the user. The next step is to create the random parametric values
which work as a chromosome for VIGA-2D. The length of the chromosome is based
on the total number of symbols in the L-String including the width and length for each

sub branch, represented by the symbol A.
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Figure 3.7: Representation of the Parameters for Chromosome Encoding

3.9.2 Evolving Parameters using VIGA-2D

The deriving of parametric rules for Parametric L-System is based on the different
parameters. The genetic encoding of these parameters is real values, which works as a
chromosome for VIGA-2D. Figure 3.7 shows the construction of the chromosome
according to the parameters retrieved from the branching structures. Each of these
parameters represents different gene values and has a particular range. A random
generator is used to assign random values according to upper and lower bounds for

different gene values.

The chromosome length is a dynamic length and depends on the number of
symbols given in the input L-System string (L-String). The searching mechanism is
indirect with a non-linear equation. As real values are evolved, the GA process
evolves until it eventually converges to the nearest optimized solution or the best

solution. Based on the formal parameters; the fitness function is defined as follows:
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Evaluation Function: The optimal or nearest real values are measured by
summing the squares of the differences between the indexing of the original values at

each position and the values generated by GA. This is represented by Equation (3.13).

f= JZgzl(Gparami — Oparam;)? (3.13)

Thus f will be the fitness value of the current evolving individual, Gparam is the
GA generated solution and Oparam is the target solution and i=(0.. /) is the length of
the chromosome. This fitness function evaluates the fitness measured for each

individual indicating its suitability to be selected.

3.9.3 Visual Representation of Parametric Values

The visualization is involved to represent gene values for every generation on the
screen. Every gene value has a particular range in constructed chromosome. Equation
(3.2) is used to display the gene values on the screen. Figure 3.8 shows the 2-D graph
for the parameters. The gene locations of the genes value on the graph are displayed
in the same the sequence as in the chromosome. Each gene has a particular meaning
in phenotype form and a particular range of values. For example. the first index is
allocated to the line parameter which is the ‘F’ symbol having the range from 5.0 —
39.99, the second index is allocated to the width parameter which is the *!” symbol
having the range from 3.0 — 8.0 and all remaining gene values range are also in the
range between 0.3-0.8. To display all gene values in equal scale, all genes value

except the first one are scaled up to 3.0-8.0 for visual purposes.
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Figure 3.8: Visualisation of Gene Values on a 2-D Graph for Parameters

3.9.4 Deriving Rule for the Parametric L-System

Termination of VIGA-2D is based on the user perception. After termination, the best
solution obtained from the last generation of VIGA-2D works as parameters for L-
System string to derive the rule for the Parametric L-System. For deriving rule, the
parameters are combined with the symbols, based on the gene location and its
phenotype meanings, i.e. according to the symbols. The rules of the L-System are
based on two parts which are the axiom and the rules. The axiom is known as the
starting point of generative grammar. In the presented application, the axiom is
constant for rule. It is implemented with one symbol “A” with corresponding

parameters as follows:
w = axiom (r,g b)A(x,w)

Where,(r,g,b) are the colour values for Red, Green and Blue, “A” is used for a
recursive purpose, x shows parametric value for the line symbols “F”, and w shows

the parametric value for width symbols "w ",
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For the L-System, rules can vary in numbers, depending on the complexity of the
generated structure. We developed one rule from the output of VIGA-2D. This rule 1s
applied to the non-terminal symbol of the axiom. The construction of this rule is as

follows:
Afxow) -> 1tw) Fx) [+(@)A(r.wry) | Fixp) [ +(02) A(rawr)]
...... F(x,) [ &(6,) Afrn,wry)]

In the above rule, the parameters, 1.e. r), wr; rowr; r, wr, are randomly generated
for the chromosome; whereas, the value for the parameters, i.e. x and w are given by
the user. The value for @ is constant for all angles. Following are the assumptions and

limitations for deriving the rule for generating the branching structures.

1. For assigning the parameter to the symbol, ( ) are used, 1.e. “! (2.53)" shows

that the widih of the branches is 2.53.
2. To separate the predecessor from successor “-> “is used.

3. The predecessor may also receive a variable using ( ), i.e. A (x,w). This

variable is used in the successor as parameter.
4, The number of iteration shows the complexity of the generated structure.

5. In the production rule, the 4 behaves recursively for » number of iterations,

where the value of » is the number of iterations.

For example, if the L-String given by the user is [F/+/F/-], the angle for each branch
‘6 1s 22 and the 1initial parameters are 37, 4 and 28. Then, after the initial structure,
the L-String becomes: /F{+!F[+]F[-]]F[-IF[+]F[-]]. For VIGA-2D and the length
of the random chromosome will be 21, based on the total number of symbols in the L-
String. Hence, the randomly generated chromosome for the above L-String will be

37,4,28.20,5,31,25,930,11,20,19.8 24,33,29.16,12,24,7,9.
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After evolving the VIGA-2D for n-number of generations, the following is the
derived rule with integration of the L-String and the best solution obtained from
VIGA-2D:

Ww (0.24,0.6,004(19,8)
# Al w)-> Lw)F(x)[ +(22)8A(x*0.81,w*0.81)/(w*0.81)
F(x*0.81)[+(22)SA(x*0.81, w*0.51)]F(x*0.35)[-(22)

SA(*0.61,w*0.21)] JF(c*0.81)[-(22)8A(x*0.53,w*0.
65)1(w*0.31)F(x*0.69)[+(22)$4(x*0.72,w*0.88)]

F(x*0.76)[-(22)5A(x*0.51, w*0.45)]]

In this way, every generation in which the user wants to generate a tree is used to
derive a rule from its best solution. This searching process remains continue until user

terminates it.

3.10 Test Functions with VIGA-2D

In this thesis two test functions were examine in order to test the performance of the
proposed approach and to evaluate the efficiency as compare to SGA . These two test
functions are De Jong’s [113], and Rosenbrock function {114]. Table 3.1 shows the
names of the functions with its objective function and the limits of the upper and
lower bounds. Chromosome encoding for these test functions is real value encoding.

GA operators and selection methods work in the same way as discussed in Section

3.4.
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Table 3.1: List of Test Functions and their Limitations Evolved with the Proposed

Approach
Function . . ..
Name Fitness Function Limits
n
HOEDYE
i=1
De Jong's F1 [-5.12,5.12]
And the global minimum is:
f(x)=0, x(i)=0, i=1:n.
Fa= Z0711000x, — xP)2+ (1~x;)?
Rosenbrock | And the global minimum is: [-5.12,5.12]
x=1,f(x)=0,i=ln.

The visual representation of gene values for test functions works in the same way
as for parameters of Parametric L-System (see Section 3.5.2). The equation for
displaying these gene values is calculated according to Equation (3.2), where the

value is according to the minimum and maximum range given by the user.
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3.11 Summary of Chapter

This chapter has proposed a new approach to visualize the multidimensional data of
GA in a 2-D space. The implemented 2-D graph represents the visualization of gene
values and provides a way to interact the GA process by the user. In proposed
approach, the intervention of the user is not involved with the selection and assigning
of fitness to the existing individuals. The purpose of this interaction is to propose a
new individual, based on different gene values selected by the user during the
evolution process. This proposed individual is within the upper and lower bounds of

the gene values and works as a new born child in the next generations.

For making the user’s interventions effective, different visualization techniques,
i.e. the usage of different colours and size for displaying the gene values, displaying
the average fitness value of the current generation on the screen and the visualization
of convergence graph are used to help the user in understanding the searching process.
An objective function is used to calculate fitness for the solutions in each generation.

Therefore, user interventions are not forced in every generation.

This chapter also shows in detail the working mechanism of the proposed
approach to derive the rule for the Parametric L-System. This rule is used to model
the growth process of the branching structure according to the user input. For testing
purpose, two benchmark functions are selected. The success of an approach depends
on complete and accurate evaluation. The next chapter will discuss the experimental
results based on evolving the selected benchmark functions and evolving parameters

for deriving rule for the Parametric L-System.
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CHAPTER 4

EVALUATION OF RESULTS

4.1 Chapter Overview

This chapter evaluates the proposed approach as discussed in Chapter 3. For effective
and thorough evaluation of the proposed approach, a range of different experiments
have been carried out. These experiments were based on different inputs, number of
interactions, length of chromosomes, and a number of generations. In order to analyse
the convergence of VIGA-2D, it was studied through different experiment to observe
it convergence at an optimal or sub-optimal solution. The main purpose of proposed
approach is to accelerate the performance of GA as it has been addressed in several
existing techniques [15, 44, 26]. For this reason all the experimental results were
compared to SGA in order to evaluate the ability of the proposed approach to

converge to an optimized solution or to best solution according to the user perception.

In contrast to the previous approaches, the proposed research involves the
visualization of multidimensional data on a 2-D graph based on gene values. In the
proposed approach, user interaction is based on proposing a new individual to
accelerate the convergence of GA towards optimal solution. The main idea of
proposed approach is to find an optimal solution with several interactions in fewer
generations having small population size. The fitness is calculated by the fitness
function; hence, a human-machine combination allows this approach to be applied
successfully to different problems. As human interaction is the main part of the
proposed methodology, most of the discussion in this chapter will be on user

interactions and their effects on the GA searching process.



To demonstrate the performance and efficiency of the proposed approach for an
optimal solution, the evaluation results are presented in Section 4.4 with a discussion
of applying the proposed approach for benchmark functions. For this purpose, two
benchmark functions were chosen with different features. First function selected was
DelJong function [113]; converge at global optima. Second function was Rosenbrocck
function {114] having many local optima and difficult to converged. In this way the
proposed approach has been evaluated with two different kinds of functions.
However both of these functions are subjects of minimization. For analysing the
performance of VIGA-2D, for evolving parameters for deriving rule for the
Parametric L-System are presented in Section 4.5. Based on the nature of the

proposed approach, the results are mainly divided into the following two 2 categories:

a) Experiment 1 (Objective Analysis): The performance of VIGA-2D was
evaluated with benchmark functions. For comparative evaluation, the same
GA parameters and operators, i.e. length of chromosome, size of population,
number of generations, selection method, crossover and mutation rate were
used to evolve the SGA. Hence, difference of convergence rate of VIGA-2D
was compared with SGA. The comparison between SGA and VIGA2D has
been done with same number of generations.

b) Experiment 2 (Subjective Analysis): The performance of the proposed
approach was evaluated with the user. Five different users run VIGA-2D with
different chromosome lengths, selection methods, operators and number of
generations 1o evolve the parameters. These parameters were used to derive
the rule for the Parametric L-System. This rule was then used to model the
growth steps of branching structures according to the user input. The

termination of searching process was based on the user perception.

After this, some experiments were conducted to run VIGA-2D with different
selection methods and operators to evaluate the advantages of using the visualization
technique for the searching process of GA. Following are some observations which

will remain constant for all experiments.
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* Analysis of user interactions

* Evaluate the convergence rate based on the best and average fitness of each
generation.

¢ Explore the gene values according to given colour scheme.

¢ (A progress towards a better or optimized solution

4.2 Specification of the System and Dataset

The experiments were conducted on an Intel{(R)Core(TM)2 Quad CPU Q6600
running at the CPU speed of 2.40 GHz with a 3.0 GB RAM. The operating system
was a Microsoft Window XP Professional edition version 2002. For human
perception, the interfaces and frames were best viewed on an LCD with resolution of
1024 X 768 pixels. In all experiments, JDK 1.6 was used to run the proposed
program developed in JAVAJAVA 2 and 3-D graphics version 1.5.1 is used to

implement different graphical modules.

4.3 Benchmark Functions (Objective Analysis)

For evolving the benchmark functions, as described above, the selection method,
operators, crossover and mutation rate remained the same for all experiments. The
selected parameters for evolving VIGA-2D and SGA ie. selection method,
parameters, rate and operators for benchmark functions was based on several testing
of proposed approach and SGA with different parameters. After analyzing and
evaluating the performance of VIGA2-D and SGA with these different parameters,
following operators and selection method has been set for all experiments for both

algorithms.

¢ Roulette Wheel Selection method was used
» One point crossover was performed

« Mutation was performed with the mutation rate of 0.05.
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¢ Termination condition was the number of generations
o Each experiment was performed 10 times
¢ Chromosome length used for the experiments was n = 10 and 20
¢ Two graphs were drawn for comparison between SGA and VIGA-2D
1. Average Fitness (Total average of all averages of 10 runs each).
2. Best Fitness (Total average of the best fitness of 10

runs each)

Each experiment was performed 10 times with same chromosome length. The
population size was 10 for chromosome length n=10. Whereas for chromosome length
n=20, population size was 20. Each experimental result was performed with 10
interactions for keeping consistency in all experiments. In a total 100 generations was
evolved for every run for VIGA-2D, however, SGA was evolved to a number of
generations to get the closest optimized solution as compared to VIGA-2D. For
visualization aspects of VIGA-2D, the curve of convergence rate is directed to
upward direction due to implementation aspects. However, both functions are the
subjects of minimization. The discussion of all experiments will be based on average
result calculated after 10 runs for both benchmark functions. The Appendix C shows
the detail tables for interactions, accepted and discarded proposed individuals with

both functions.

4.3.1 DelJong’s Funetion

It is the first function of De Jong’s [113], known as sphere model. This function is smooth,
continues, convex, unimodal, symmetric and converge at global optima. For evaluating the
performance of the proposed approach with De Jong’s Function, experiments have
been done with SGA and VIGA-2D. Table 4.1 shows all important parameters taken

for DeJong’s Function.
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Table 4.1: De Jong’s Function Specification

De Jong’s Function n=10 | n=20
Runs 10 10
(Generations 100 | 100
Population size 10 20
Total Interactions 10 9
Average Accepted Interactions 8 9
Average Discarded Interactions 2 1
Average Population Size after Interactions | 18 29
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Figure 4.1: Fitness / Generation Graph for De Jong's Function for n=10 and 20.

Figure 4.1 shows the fitness / generation graph with VIGA-2D and SGA. In this
experimental result it was noticed that until the generation 20 the convergence of
SGA and VIGA-2D was at the same rate. The first average interaction was done at

generation 17 for all runs. The second interaction was done at generation 23 for all
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runs. After these two interactions there was a prominent difference noted between the
fitness value of VIGA-2D and SGA. The last interaction was done at the average
generation of 83 for all runs, with a total of 10 average interactions. The average
population size was 18 at termination time. On average, 2 proposed individual was

discarded by VIGA-2D.

For n = 20, the population size was 20 and the generations size was 100 for
VIGA-2D and 236 for SGA. The convergence of VIGA-2D was higher as compared
to SGA after the 1™ interaction. The average first interaction was done at the
generation 17 for all runs. In total, 10 interactions were done with the average
population size of 29. On average, 1 proposed individual was discarded by VIGA-2D.

The last interaction was done at the average generation of 90 for all runs.

Table 4.2: Comparison between VIGA-2D) and SGA after 10 runs for De Jong’s
Function upto 100 Generations

n=10 n=20
Best Average | Best Average
Fitness | Fitness | Fitness | Fitness
0.979798 | 0.92806 | 0.90073 | 0.872481

VIGA-2D

SGA 0.609368 | 0.58445 1 0.18287 | 0.169025

Difference | 0.37043 | 0.34361 | 0.71786 | 0.689611

A prominent difference was noticed while evolving this function with and without
VIGA-2D. For keeping consistency in Table 4.2, difference noted was based on
generations 100 for both algorithms. For n =10, the difference between SGA and
VIGA-2D was found to be 0.3436/ for the average fitness. Whereas the difference of
both algorithms at n=20 was 0.68961] for the average fitness. Table 4.2 shows that
the proposed approach was successful to converge with the best fitness of 0.979798
for n =10 and 0.90073 for n = 20 after 100 generations. However for SGA
approximately same difference was noted after 181 generations for n=10 and after 236
generations for n=20. Hence, these differences in the convergence rate and
generations show that the interaction at different generations with the proposed
approach helps the De Jong function to optimize much faster as compare to SGA with

a small population size.
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4.3.2 Rosenbrock’s Function

The Rosenbrock function [114] is a non-convex classic optimization function. It is
also known as banana function or the 2" function of De Jong. This function is
frequently used to analyse the performance of optimization problems. The global
minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is
trivial, however convergence to the global optimum is difficult. Table 4.3 shows all
important parameters taken for Rosenbrock’s function for the evaluation of the

proposed approach as compared to SGA.

Table 4.3: Rosenbrock’s Function Specifications

Rosenbrock’s Function n=10 ) n=20
Runs 10 10

Generations 100 | 100
Population size 10 20
Total Interactions 10 10
Average Accepted Interactions 7 7
Average Discarded Interactions 3 3
Average Population Size after Interactions | 17 27

Figure 4.2 shows the fitness/ generation graph for Rosenbrock function. For n=10,
the first average interaction was done at the average generation number 17 for all
runs. With the average of 7 successful interactions for VIGA-2D converging with a
higher fitness rate as compared to SGA. In total, 10 interactions had been done. The

population size was 10 and a total of 100 generations were cvolved.

For n=20, the first average interaction was done at the average generation number
16 for all runs. With the average of 7 successful interactions, VIGA-2D converges
with a higher fitness rate as compared to SGA. On average, 3 proposed individuals
were discarded by GA. The population size was 20 and the total generations evolved

were 100,
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Figure 4.2: Fitness/Generation Graph for Rosenbrock’s Function for n =10 and 20.

Table 4.4: Comparison between VIGA-2D and SGA after 10 runs for Rosenbrock’s

Function upto 100 Generations

n=10 n=20
Best Average Best Average
Fitness Fitness Fitness Fitness
VIGA-2D [ 08604 | 0.081295 | 0.04345 | 0.04038
SGA 0.008627 | 0.008568 | 0.00728 | 0.005968
Difference | 0.078313 | 0.072727 | 0.03617 [ 0.034412

The graphs in Figure 4.2 (a) and (b) show a difference between fitness
convergence of SGA and VIGA-2D. After 10 times of execution the difference for
average fitness between VIGA-2D and SGA for n = 10 was 0.072727 and forn =20 it
was 0.034412. Table 4.4 lists all the best and average fitness found with the two
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different variable tengths after 100 generations. It was noted that for SGA with n=10,
Rosenbrock function converged to nearest fitness value to VIGA-2D after 200
generations and for n=20 it was after 400 generations. Due to multimodal feature of
Rosenbrock function both of algorithm were not successor to a good fitter value.
Overall the performance of VIGA-2D was satisfied as compared to SGA with

different generations in presented experimental results.

4.4 Discussion with Benchmark Functions

In the presented experiments, the performance of VIGA-2D was compared with SGA
along with two benchmark functions. The observation was based on the convergence
rate of VIGA-2D towards an optimized solution with human interactions and without

interaction for the convergence rate of SGA.

The results show that the interaction of humans brings a prominent difference
between convergence rates from generation to generation. It was noticed that
proposing new individuals in several generations brings a prominent change in the
searching process. Additionally, in the proposed approach an increment in population
size after each successful interaction also gives a wider search space, which helps
VIGA-2D to converge actively as compare to SGA. However it was noted that for De
Jong’s Function due to its unimodal feature , there was not a large difference in
convergence with n = 10 and 20. Overall, the performance of VIGA-2D was better

than SGA for converging towards a fitter solution in different generations.

Test function Rosenbrock also showed a better performance with VIGA-2D for
both variable lengths as compare to SGA. Although the convergence with VIGA-2D
has not shown a good performance for this function, the overall performance was
satisfactory as compared to SGA. For VIGA-2D, the performance of the rosebrock
function was noted at the same convergence for n = 10 and 20. A difference was
noted after 45 generations, although there were 5 average interactions have been done

before 45 generations for both variable lengths.
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The difference of convergence rate between VIGA-2D and SGA shows that the
designed graphical interface gives a suitable understanding to the users for the
distribution of the gene values in different generations and to do several interactions.
It was noted that for a user, it was a difficult to take decision to make the interactions
in the initial 20 generations for the benchmark functions. However, it was observed
that after 20 generations, the gene distribution on 2-D graph became easy to
understand and to do the interactions. Figure 4.3 (a) shows the visual representation of
Rosenbrock’s function for generation 10, in which the gene values are distributed in
the overall search space. Figure 4.3 (b) shows the gene distribution with 3 interactions
and Figure 4.3 (c) shows the gene distribution without interactions after 40
generations. A prominent difference was noticed in the gene distribution with and

without interactions for the same generation numbers.

Vi

Figure 4.3 (a) : Gene Distribution  Figure 4.3 (b): Gene Distribution
at Generation 10 at Generation 40 with VIGA-2D

1 [ Y T S ' ] L R T T T oA b

Figure 4.3 (C): Gene Distribution at Generation 40 with SGA

Figure 4.3: Gene Distribution with VIGA-2D for Rosenbrock’s Function for n=10.
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It was also noticed that the proposed approach has some limitations especially
from the human interaction perspective, i.e. lengthy chromosome that may create user
fatigue. Therefore the maximum length of a chromosome suggested for benchmark
functions was 20. In VIGA-2D, every successful interaction of user will increase
population size. Thus, for VIGA-2D the initial population size that was 10 and 20
became 18 and 29 after 100 generation with 8 and 9 successful interactions for n=10
and 20 respectively for Rosenbrock function. Thus this dynamic increment in
population size gives a larger search space to the benchmark function interactively.
For SGA, the population size was 10 and 20 for all generations. Based on the
difference of convergence rate for VIGA-2D and SGA, it was noted that the proposed
approach has been proven to be efficient as compared to SGA with both benchmark

functions.

4.5 Modelling the Branching Structures (Subjective Analysis)

The application of the proposed approach is to evolve the parameters to derive the
rules for the Parametric L-System. The proposed technique for deriving the rules for
the Parametric L-System is the further extension of the sketch and grow interface
developed for trees [86]. In this existing work, the basic parameters of a drawn sketch
are sent to SGA as an optimization problem. After optimization, rules are derived
with the L-System symbols retrieved from the initial model sketch by the user and the
parameters obtained from best solution of GA. The user may see the next iterations of
the growth process in a 3-D space. In the proposed work, the searching ability of GA
is used to generate rules for the Parametric L-System with the intervention of the user.
Instead of ‘sketch and grow’ the initial structure, input to VIGA-2D is given by the L-
String and the parameters. Furthermore, in proposed approach interactions points or
generations for interactions were not initially described to users. Hence the purpose is
to evaluate the understanding of users with User Intcrface and to decide the
interactions according to tips given on VIGA-2D tool for understanding gene

convergence and to do interaction. On the hand, in proposcd approach the interactions
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are not fixed to some pre-defined parameters. Additionally, the termination of

proposed approach is based on user perception.

The best solution obtained from the VIGA-2D is used to model the further growth
steps of branching structures. In order to achieve this goal, the proposed approach
was evaluated with different GA operators and input L-String. These experiments
were based on different users evolved the parameters for deriving the rules for the
Parametric L-System. For these experimental results, five participants were invited to
run the VIGA-2D with different parameters. These participants were undergraduate
and postgraduate students of the ages 22 to 40 years old. All the participants do not
have background relevant to the proposed approach; so that the proposed approach
should be evaluated on the basis of different users’ abilities and perceptions according
to their knowledge (see Appendix D for user’s background). For example, a few of
these users have a good knowledge of the L-system rules and the Parametric L-
System but have no knowledge for GA. Moreover, some of the users have no
knowledge regarding the rules or the grammar of the L-System, but have a good
knowledge about GA. In this way, the resultant branching structures and convergence
rate were recorded with different observations, based on the users’ skills. Experiment
demo were given to these users for understanding the nature of the proposed
approach. The participants were also informed that they can interact at any generation
during the searching process. They were also informed about the different colours

used in visualization for understanding the searching process.

[nitially, every participant runs VIGA-2D with different operators to explore
different output based on different selection and mutation and crossover rate.
However, later on, all users were requested to use common GA operators, selection
method and population size to keep the consistency. From among these several
experiments with same parameters, one result from each participant was selected to be
presented and discussed here. The rest of the results can be found in Appendix D.
However, users were allowed to run VIGA-2D with different chromosome lengths
and numbers of generation. In regards to this, the following are some assumptions and

value which remained constant for all experiments.
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e The axiom is predefined. For every experiment the axiom is = (0.24,
0.6,0)A(x,w), where x and w are optimizes using VIGA-2D.

e The chromosome length for the parameters was dynamic, based on the user’
input for the symbols.

¢ The input string may have different lengths with the maximum of 15 symbols.

The approximated time for each process was from ten minutes to half an hour for
Experiment 1. For Experiment 2, it was 5 minutes due to the constant number of

generations.

The process was initiated with the user input string. This string was composed of
the different symbols used to generate the initial branching structures. The initial
parameters were also input by the user. This input string and the parameters help to
generate a target solution for VIGA-2D by generating random values. The length of
the random chromosome and the initial population of VIGA-2D were based on the
length of the user input string (see Section 3.5.2). For the input chromosome, different
gene locations have different ranges of values. During the searching process, the user
may interact several times, propose new gene values and model the structure at any
generation. For modelling the branching structures two modules ‘7’ and ‘4’ are used,
where I is responsible for producing the line and ‘A’ is used as the interpretation
point. The following are the different experiments which have been done with the

proposed approach.

¢ Experiment 1: Evaluate the performance of VIGA-2D according to human
perception and comparison with SGA.

e Experiment 2: Generate the structures with a constant generation number.

Each experiment has been done with 5 participants. Each subjective result is
named by “Result”, for example, Result 1 belongs to User 1. The overall performance
of the process was observed through 2-D graph for gene evolution in different
generations, fitness convergence and generated branching structures. Except for the
generation number, which depends on the termination done by the user and level of
iterations in Experiment 1, all other GA parameters werc the same for all

experimental results which are as follows:
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¢ Roulette Whee] Selection method was used.
¢ One point crossover was performed.
¢ Mutation was performed with a mutation rate 0.05.

¢ Initial population size was 10.

4.5.1 Experiment 1: Evaluate the Performance of VIGA-2D According to
Human Perception and Comparison with SGA.

The objective of this experiment is to terminate the searching process according to
human perception after generating the branching structures in different generations.
The purpose of this experiment is to evaluate and observe the human understanding
with gene distribution on 2-D Graph and human interventions for generating the
branching structures with VIGA-2D. VIGA-2D was evolved up to a number of
generations according to the user or until there was no further improvement in the
solutions. The user may model the branching structure at any generation. The results
presented here are the branching structures modelled by the user at ditferent

generation numbers.

In literature survey done in chapter 2, it was noted that in the traditional IGA, the
optimized results were based on user perception, in which users play an important role
and provide a means of subjective analysis [15, 17]. Most of the existing 1GA
techniques were based on the user interactions in each generation for assigning the
fitness and for selecting the parents for the next generation. This continues interaction
of user often creates a tiresome environment for the user [15]. In addition, it was also
noted that in existing techniques for IGA, a numerous work has been done to reduce
the user fatigue. However, in these existing research works, it was noticed that a
learning mechanism was introduced to assign the fitness to the individuals [44, 45].
For example, Takagi uses a discrete fitness value [25] to assign the fitness. In [44,
45] a Neural Network approximation approach has been used for assigning the fitness
to individuals. Main drawbacks of these existing methods were to assign fitness
values with some fixed parameters and user involvement was also compulsory to

select parents for the next generation. Hence, there was no any existing technique, in
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which, the searching process of GA can be accelerated by human interventions

without continues user involvement in each generation.

Several existing techniques had been noticed in literature reviews to model the
branching structures using SGA [33, 84, 85]. Besides using SGA, Roger Curry [33]
used an interactive approach of GA in which, assigning of fitness was in every
generation. In their work, the objective was on generating the next generation with
mutation or crossover between parents. The decision for selecting parents for the next

generation was on the basis of user perception.

The proposed approach is based on the human-machine interaction. The
contribution of the user is to propose a new individual into the current generation
instead of evaluating the existing solutions. The purpose of proposing new solutions
through interaction is to accelerate the performance of the GA searching ability.

Moreover, the interaction of the user was not necessary in each generation.

In order to evaluate the performance of the proposed approach with user
interaction, experiments were carried out to compare the results with and without user
interaction during the search space. These experiments were based on generating the
branching structures with SGA and VIGA-2D. All the operators, selection methods
and parameters used to evolve SGA were the same as in VIGA-2D.The level of

iteration number for generating structures was 2 for both algorithms.

Result 1

Input string by user: !F/+]F[-]

Input parameters : 20, 3,26

L-String : |F[+!F[+]F[-][F[-!F{+]F{-]]
Input to VIGA-2D

Random Generated Chromosome (n=21):

20,3,26,5,30,16,29,27,30,7,15,34,12,15,8,12,30,32,8.6,2
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Structure Drawn with Next iteration level with
L-String L-String

Generated With SGA  Generated With VIGA-2D

Generation 29

(Generation 59

Generation 75

Figure 4.4: Result 1: Branching Structures with VIGA-2D and SGA
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Figure 4.4 shows generated branching structures with and without user
interactions. In this experimental result the branching structures were generated at 29,
59 and 75 generations. Rule derived for this experimental result in generation 29, 59
and 75 shows a variation in parameters for SGA and VIGA-2D. It was observed that
the in generation 29, both algorithms had not obtained a satisfactory solution,
Although for VIGA-2D 4 interactions had been made before generation 29, A
difference was noted in generation 59 between both algorithms for generated
branching structures. In generation 75 VIGA-2D was successful in creating an
acceptable structure as compared to SGA. The graph of fitness / generation in Figure

4.5 shows the difference in the convergence of fitness between SGA and VIGA-2D.

In total, 14 interactions had been made by the user in 75 generations. From 14
interactions, 3 proposed individuals were discarded during the searching process as
shown in Table 4.5. However, there was not any significant difference noted for
generations 59 to 75 for derived rule and generated branching structures with VIGA-
2D. The discarded proposed solutions were also in the same phase. The user decided
to terminate the process at generation 75 by concluding that there was no any major

difference between generated structures after generation 60.

Table 4.5: Result 1: List of Accepted and Discarded Proposed Individuals at Different

Generations
Model Interactions at Best Best Discarded
Generated at . Fitness for | Fitness for at
Generation Generations | vy 4 oy SGA | Generation
29 11,16,21,27 0.459565 0.8459905 Null
59 33,38,42,46,50,58 0.456618 0.79642953 38
75 60,67,72,74 0.50019 0.5998333 67,72
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Figure 4.5: Fitness/Generation Graph for Result 1

Result 2

Input string by user: !F[-]F[+]F
Input parameters : 27,3,21,19

L-String ¢ IF[-IF[-]F[+]FJF[+IF[-]F[+]F]F

Input to VIGA-2D

Randomly Generated Chromosome (n=24):

27,3,21,19,18,6,12,22,13,25,17,21,26,32,11,31,32,33,22,20,16,15,9,20

88



Structure Drawn with L- Next iteration level with
String L-String

Generated With SGA Generated With VIGA-2D

Generation 30

Generation 51

Generation 78
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Generated With SGA Generated With VIGA-D

Generation 100

Generation 110

Figure 4.6: Result 2: Branching Structures with VIGA-2D and SGA

The structures drawn in Figure 4.6 show the results for the searching process until
110 generations, with 24 chromosome length for both algorithms. The branching
structures were generated at generation numbers 30, 51, and 78, 100 and 110. The
branching structures generated in generations 51, 78 and 100 shows a difference
between SGA and VIGA-2D. However, there was not a prominent difference between
the branching structure generated in generation 110 with SGA and VIGA-2D. The
interaction Table 4.6 shows that the users did a number of interactions and
continuously modelled the structure to bring an acceptable output according to his
perception. From the analysis of user interactions, it s found that 4 proposed solutions
were discarded by VIGA-2D for this experiment. The first structure was drawn at the
generation number 30, and the population size was 13 with 3 interactions. In total,
there were 15 interactions. At the time of termination the population size was 22. The
fitness / generation graph in Figure 4.7 shows the difference between the convergence

of SGA and VIGA-2D for this experimental result. The results show that the
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structures drawn in generation 30 and 110 have the closest parameter values for

derived rule. The user decided to terminate the searching processing at generation

110.

Table 4.6: Result 2: List of Accepted and Discarded Proposed Individuals at Different

Generations
¢ Best Best Discarded
ity | Maemetomt | B tor | B or |
VIGA-2D SGA Generation
30 13,19,25 0.668730 0.634901 Null
51 34,43,50 0.652150 0.664003 43
78 60,73,77 0.65 0.907469 Null
100 83,89,94,99 0.605640 0.908350 89,94
110 105,109 0.67453687 0.6385139 Null

Average Fitness/Generation

Figure 4.7: Fitness/Generation Graph for Result 2.
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Result 3

Input string by user: /F[[-F]]F[+F]

Input parameters : 10, 7, 34, 28, 30, 31

L-String : |F[[-IF[[-F]]F[+F]F]]F[+!F[[-F]]F[+F]F]
VIGA-2D

Randomly Generated Chromosome (n=27):

10,7,34,28,30,15,13,13,29,21,23,30,14,34,20,19,17,22,25,31,13,9,11,1
9.13,5,11

Generated with L-String ~ Next iteration level with
L-String

Generated With SGA  Generated With VIGA-2D

Generation 31
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Generated With SGA  Generated With VIGA-2D

Generation 42

Generation 62

Generation 77

Figure 4.8: Result 3: Branching Structures with VIGA-2D and SGA

In Figure 4.8, branching structures were generated after 31, 42, 62 and 77
generations. The branching structures and derived rule in 42 and 62 generations
shows a difference in parameters with VIGA-2D as compared to SGA. Table 4.7
shows the best fitness values in both generations while modelling the structure. In
total, 77 generations were evolved with the chromosome length of 27. For VIGA-2D,
13 interactions were done from which 4 proposed solutions were not accepted by

VIGA-2D. The convergence rate of VIGA-2D was noticed to be at optimal fitness
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values at all recorded generations as compared to SGA The graph of fitness /

generation in Figure 4.9 shows the difference of the best and the average fitness for

both algorithms.

Table 4.7: Result 3: List of Accepted and Discarded Proposed Individuals at Different

Generations
Modelled at Interactions at X Best s Hsis AR
Generation Generations Fitness for Fitness for at
VIGA-2D SGA Generation
31 11,15,19.23.27, 0.681395 0.7645259 19,23
42 32,37,40 0.709436 0.8661985 37
62 47,50,59 0.6972804 0.8498823 50
77 65,74 0.6977822 0.8677557 Null

VIGA-2D
oy SGA
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Figure 4.9: Fitness/ Generation Graph for Result 3
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Result 4

Input string by user: !F[-F[+F]F][-F]

Input parameters : 27, 3, 34, 11, 22, 33
L-String : !F[-F[+F]F][-F]

VIGA-2D

Randomly Generated Chromosome (n=12):

27,3,34,11,22,33,17,28,5,32,6,14

Generated with L-String Next iteration level with
L-String

Generated With SGA Generated With VIGA-2D

Generation 19
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Generated With SGA Generated With VIGA-2D

Generation 52

Generation 69

Generation 85

Figure 4.10: Result 4. Branching Structures with VIGA-2D and SGA

Figure 4.10 shows another result comparison between branching structures
generated with and without user interaction. The first structure was generated at
generation 19. Both SGA and VIGA-2D were evolved until 85 generations. The
derive rules and generated branching structures in generations 19, 52, 69 and 85 show
a difference between parametric values for both algorithms. In total, 14 interactions
had been done for VIGA-2D from which, 2 proposed individuals were discarded. It
was noted that the structures generated at generation 69 by both algorithms have a
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minor difference between fitness as shown in Table 4.8. The user continues with the
next generations and generated another structure at generation 85, and in generating
the structure with SGA at generation 85 again the difference in fitness was noted. For
VIGA-2D the population size at the termination point was 22. The fitness / generation
graph in Figure 4.11 shows the convergence difference for SGA and VIGA-2D for
this experiment. According to the fitness / generation graph, the convergence of SGA
and VIGA-2D was noted to have the same fitness values in the initial generations. It
was also noted that for VIGA-2D the average fitness was higher as compared to SGA
for a few generations. However, in the last 20 generations a difference was noted
between both algorithms’ fitness values. Hence, continues interactions make VIGA-
2D to converge at optimal fitness as compares to SGA. Hence, this convergence
difference successful to bring an optimized solution at the generation 85 with VIGA-
2D.

Table 4.8: Result 4: List of Accepted and Discarded Proposed Individuals at Different

Generations
> Best Best Discarded
Bé::::f::o‘: hg::itg:’iz:t Fitness for Fitness for at .
VIGA-2D SGA Generation
19 8,16 0.32311 0.419880936 16
52 28,32,42,49 0.474974 0.554346462 Null
69 57,61,66, 69 0.375366 0.366878727 61
85 72,77,82,85 0.386652 0.589236795 Null

Best Fitness/Generations
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Generation
Average Fitness/Generations

Figure 4.11: Fitness/Generation Graph for Result 4

Result 5

Input string by user: /F[F][&]F

Input parameters : 12, 5, 10, 15

L-String : |F[F][&!F[F][&!F[F][&]F]F]F
VIGA-2D

Randomly Generated Chromosome (n= 18):

12,5,10,15,19,29,12,25,19,22,10,19,24,6,19,8,28,33

Generated with L-String Next iteration level with
L-String
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Generated With SGA  Generated With VIGA-2D

Generation 23

Generation 37

Generation 75

Figure 4.12: Result 5. Branching Structures with VIGA-2D and SGA

The result generated in Figure 4.12 shows the branching structures until 75
generations. For all the generated structures VIGA-2D shows efficient results as
compared to SGA. The branching structures generated in generation 23, 37 and 75
show a difference between SGA and VIGA-2D. A total 19 interactions were done,
from which 3 proposed individuals were discarded by VIGA-2D. Hence, at the time

of termination the population size was 19. Table 4.9 shows the generations which
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were interrupted by the users’ for VIGA-2D. Figure 4.13 shows the fitness

convergence graph for this result.

Table 4.9: Result 5: List of Accepted and Discarded Proposed Individuals at Different

Generations
Modelled at Interactions at ; Beast % Hest Disearded
P PR Fitness for Fitness for at
VIGA-2D SGA Generation
23 12,18, 22 0.54147 0.610982 Null
37 25.31.35 0.53197 0.451425 35
75 41,50,57, 61,69,73 0.51980 0.531601 50.61
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Figure 4.13: Fitness / Generation Graph for Result 5

4.5.1.1 Discussion with Experiment 1.

In order to understand the efficiency of the proposed approach with intervention of

the user, branching structures were generated with SGA and VIGA-2D. Table 4.10

shows the entire parameter list and the difference of average and best fitness for both
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algorithms. The users may generate the branching structure in any generation to see
the output, so that they can decide to terminate or go to more generations. The
decision of termination of process depends on the modelled branching structure as
compare to initial model or the convergence rate. Although, the averages and best
fitness for both algorithms have a very small difference at the time of termination for
most of the results, the generated branching structures with both algorithms seem to
have a difference in the angles and different parametric values in different
generations. With the comparison of averages and best fitness difference for both
algorithms, it was found that the convergence rate for VIGA-2D shows a better
performance as compare to SGA. However, for Resuli I the average fitness of SGA
was found to be lower as compared to SGA with the difference of 0.0342. For Result
2, the user evolved 110 generations, did not successfully bring the VIGA-2D to a
better convergence rate and the difference for the average fitness of both algorithms
was found to be -0.043196. For Result 3, the average fitness difference for both
algorithms was -0.0633, for Result 4 it was -0.03507 and for Result 5 it was 0.0197.
Table 4.10 also shows all the details of the parameters taken for this experiment.
According to the Table 4.10, the total number of interactions noted for all the results
were close to each other; whereas, the number of generations evolved by all the vsers
was different. Overall, the performance of VIGA-2D shows a prominent difference

while generating the branching structures as compared to SGA.
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Table 4.10: List of Parameters used for Different Experimental Results in Experiment 1

Result 1 Result 2 Result 3 Result 4 Result 5
Parameters VIGA- VIGA- VIGA- VIGA- VIGA-
b SGA 5 SGA o SGA 5 SGA 5 SGA
Population Size 10 10 10 10 10 10 10 10 10 10
No of 75 75 110 110 77 77 85 85 75 75
Generations
Total
: 14 N/A 15 N/A 13 N/A 14 N/A 12 N/A
Interactions
Accepted 1 N/A 12 N/A 09 N/A 12 N/A 09 N/A
Interactions
Discard 03 N/A 03 N/A 04 N/A 02 N/A 03 N/A
Interactions
Population size 21 10 22 10 19 10 22 10 19 10
after Interactions
Average Fitness | 0.76179 0.79590 0.8455 | 0.88869 | 0.8319 |0.8943| 0.58303 | 0.61818 | 0.62538 | 0.60567
Best Fitness 0.50019 0.59983 0.67453 | 0.63851 | 06977 |0.8677| 0.38665 | 0.58923 | 05198 | 0.53160
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4.5.2 Experiment 2: Generating Structures with Constant Generation Number

For the traditional IGA applications, the applications were based on the constant
number of generations, in which the interaction of the user was necessary in each
generation for evaluating and assigning the fitness to the solutions [21, 33]. The
proposed approach is different from these applications and does not require user
interaction in each generation. The fitness of the solutions was calculated with the
objective function and there is no need to evaluate the solutions for the next

generation.

Experiment 2 is based on constant number of generations and interactions in order
to evaluate the performance of the proposed approach with different users. For this
experiment input string and initial parameters were same for all users. The purpose of
this experiment was to monitor the behaviour of VIGA-2D with fixed parameters.
This experiment also helped to prove the random searching ability of GA. The main
feature of this searching technique is to generate difterent solutions, even with the
same input. All 5 users participated in this experiment. The following are the rate

and operators that remain constant for all users for this experiment:

e Number of generations evolved =40

¢ Number of interactions =03

Input by User: 'F[[-F}]F[+F]

Input Parameters: 11, 7, 29, 28, 26, 7

L-String AF[[-TF{-FIF+FIFNF[+HEF[[-F]]F[+F]F]
VIGA-2D for all results

Randomly Generated Chromosome (n=27):

11,7,29,28,26,23,22,23,32,12,5,32,30,31,33,23,28,10,29,23,29,12,22,3
3,25,34,29
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Structure drawn with L-  Next Iteration Level with

String L-String
Result] Result2

Result 3 Result 4

Result 5

Figure 4.14: Branching Structures Generated with Constant Number of Generations.
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Table 4.11: List of Discarded and Accepted Proposed Individuals at Different

Generations for Experiment 2.

Results Ilgz;ii::izlft Best Fitness for Discarded
VIGA-2D Interactions
Numbers
12,18,23,
1 2733 0.6997 18
2 14,18,22,26,30 0.81865 2226
6,11,18,
3 2478 0.62872 6,11
10,17,25,
4 30,35 0.64350 30
5 9,14,19,23,27 0.68505 Null

Presented results were based on the fixed parameters, number of generations and
iterations. Structures drawn after 40 generations with all users are shown in Figure
4.14. The chromosome length for these experimental results was 27. Table 4.11 shows
the list of generations in which user interacts, and the generations at which the
proposed solutions were accepted or rejected. For Result 2 and 3, two individuals and
for Result 1 and 4, one proposed individual were rejected with VIGA-2D. Whereas,

for Result 5all 5 proposed individuals were accepted by the VIGA-2D.
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Figure 4.15: Fitness/Generation Graph with Constant Number of Generations

Table 4.12: List of Parameters used for VIGA-2D Process with Constant Number of

Generations

Parameters Result] | Result 2 | Result 3 | Result 4 | Result 5
Population Size 10 10 10 10 10
No. of Generations 40 40 40 40 40
Total Interactions 5 5 5 5 5
Accepted Interactions 4 3 3 4 5
Discard Interactions ! 2 2 1 0
Population size after 14 13 13 14 15

Interactions
Average Fitness 0.8213 | 0.91276 | 0.92646 | 0.7009 | 0.85520
Best Fitness 0.6997 | 0.81865 | 0.62872 | 0.64350 | 0.68505

4.5.2.1 Discussion with Experiment 2

The understanding of users with fixed parameters was observed in Expertment 2.

Table 4.12 shows all the parameters and effect on these parameters with user

interactions. Table 4.12 shows that after 40 generations all the experimental results

converged at closely same best fitness value except result 2. However, the average

fitness value for all experimental results shows a difference from each other.
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It was observed that fixed parameter for the interactions and generations create
confusion to most of the user to make a decision for interactions. While running the
VIGA-2D, most of the time the users were observed while they decided on the
generations for interactions. However, a few users were observed to be more
comfortable as the generations and interactions were already decided on. Figure 4.15
shows the fitness/generation graph for all experimental results. The generated
structures with Experiment 2 also show a clear difference in derived rule with

different users.

4.6 Advantages of using Visual Aspects of VIGA-2D

GA 1s often known as a blind search method [5, 6] because it does not require any
information about the first derivative or any other restrictive assumption before
solving a problem. Unlike other techniques of Al, GA is more robust (error free),
even in the presence of small noise or any small change in the input; it does not break
easily. The searching mechanism of this algorithm works differently with different
selection methods, operators and input. In past, the graphical representation of GA
was based on either the individuals of each generation [34] or a representation of a
complete population or generation in the form of graphs or plots [57-60]. Using these
existing techniques, the gene distribution of the GA process remains hidden from the
user. Moreover, these existing visualization techniques for GA do not facilitate
analysis of the change in the searching behaviour of GA according to the change in

operators, selection methods or in chromosome.

The main idea of the proposed research is the representation of multidimensional
data on a 2-D graph for each generation. Presentation of the GA process on a 2-D
graph makes it easy for a user to evaluate the gene distributions at different places.
The experiment was done to elaborate the advantage of using the proposed
visualization technique for monitoring the general behaviour of the GA searching
process. For this purpose, different selection methods and operators are used to

evaluate and discuss the performance and effectiveness of the proposed GUIL In this
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experiment, the GA process was evolved until different numbers of generations to
monitor the gene distributions. The length of input chromosome was 24 for all
experimental results and population size was 10. The discussion and analysis of the

following results are based on the genes distributions in different generations.

4.6.1 Roulette Wheel Selection Method, 1-Point Crossover and Mutation Rate
0.05.

The experimental results in Figure 4.16 show the gene distributions for parameters at
generation 1, 20, 40 and 60. This experiment had been done with roulette wheel
selection method, 1-point crossover and with mutation rate was 0.05. In these results,
the noted difference was in the first location of gene values. The figure 4.16 (a) shows
the gene distribution in the first generation. It was noticed that initially gene values
were exists at the first gene location in first generation. However, with the ¢volving of
more generations less gene values distribution were noted at first gene locations (see
Figure 4.16 (b)). After the 20™ generation, there were 2 interactions by the user and
the distribution of gene values improved in 40 and 60 generations. Overall, gene
distributions at different generations with roulette wheel selections were equally
distributed. It was noted that with roulette wheel selection method, the gene values

were fairly distributed in different generations.

l':.oloo.cuoc'r-oc’ . [ ]
.o

. YY) . [ |
o »

.
L]

Figure 4.16 (a) Generation 1 Figure 4.16 (b) Generation
20
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Figure 4.16 (c) Generation 40  Figure 4.16 (d) Generation
60

Figure 4.16: VIGA-2D with Roulette wheel selection.

4.6.2 Tournament Selection Method, 1-Point Crossover and Mutation Rate 0.05

For results in Figure 4.17, tournament selection was used. The mutation rate was 0.05
and 1-point crossover was used. It was observes that, the gene distribution at different
generations with tournament selection were not equally distributed as compared to the
roulette selection method. Although in the generation 40 (see Figure 4.17 (c)) there
was an improvement in the gene distribution, in the generation 60 the 2-D Graph
shows again a poor gene distribution. The interactions were done in generation 18, 22,
32 and 46. Different experiments show that for deriving rules for the Parametric L-
System, roulette wheel selection was more efficient as compared to tournament
selection. This difference is noted because of unknown direction of gene values,
which were randomly generated to initiate the process. Another reason is in the fact
that for tournament selection, fitter individuals are selected only one time for matting
pool [105], however for roulette wheel selection method a fitter individual may be

selected several times based on its cumulative probability.

Figure 4.17 (a) Generation 1 Figure 4.17 (b) Generation
20

110



Figure 4.17 (¢) Generation  Figure 4.17 (d) Generation
40 60

Figure 4.17: VIGA-2D with Tournament Selection

4.6.3 Mutation Rate 0.5, 1-Point Crossover and Roulette Wheel Selection
Method

Mutation rate is the most important and sensitive operator used to control the optimal
convergence [116,117]. For example a higher mutation rate may lead loss of the
potential solutions [115] or a smaller mutation rate may not able to give the desired
output. An optimal rate for mutation is an important part to get an optimal selution
[116, 118]. In other sense, the performance of GA highly depends on the mutation
rate. The decision of selecting optimal mutation rate depends on nature of problem.
However in proposed approach the difference of distribution of gene values with

assigning different mutation rate can be easily monitored using VIGA-2D.
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Figure 4.18 (a) Generation 1 Figure 4.18 (b) Generation
20
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Figure 4.18 (¢) Generation  Figure 4.18 (d) Generation
40 60

Figure 4.18: VIGA-2D with High Mutation Rate = 0.5

A few experiments have been done to see and analysis the gene distribution based
on different mutation rates. From these experiments it has been concluded that smaller
mutation rate helps to generate an optimal solution for evolving parameters and
benchmark functions presented in this thesis. Figure 4.18 shows the results with gene
distributions with high mutation rate. For this result, the roulette wheel selection
method with 1-point crossover was used. In the first generation (see Figure 4.18 (a)),
the entire gene values were found at the same gene location for each gene value. After
the generation 20, there was a distribution of gene values to some other places. It was
noted in Figure 4.18 (d) that in generation 40, most of the gene locations had not an
optimal gene distribution. Graphical presentation of gene values had given a very
clear picture of the poor performance of GA with a higher mutation rate. Hence using
VIGA-2D, it was noted that the high mutation rate can lead to less equal distribution
of gene values in the search space. In turn, it helps in preventing the searching ability

of GA to bring the optimized solution in less time or generations.

4.7 Discussion and User Analysis

GA is the search technique used in computing field to find exact or approximate
solutions for optimization and searching problems. Finding optimized solution of GA
depends on the nature of the problem. If the problem is based on an integer or a string,
then to find the optimized solution it is easier as compared to the problem in which

the problem is based on real values. In the proposed research, the problem that was
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given to GA was to optimize the parameters for L-System rules, which were real
values. Therefore, most of the chances were to get the nearest optimized solution as

compared to get the optimized solution.

The purpose of developing VIGA-2D was to monitor the distribution of gene
values with different frequencies and locations. The key objective of the proposed
approach was to accelerate the performance of GA searching by proposing a fitter
solution in the search space. For this reason, the understanding of gene distribution of
the search space on 2-D Graph play important role for optimal user interactions.
During evolving different problems, the performance of VIGA-2D was closely
observed. Different experiments with VIGA-2D shows that user interactions for
benchmark functions was easier as the searching process goes to higher generations as
compared to the parameters evolved for the Parametric L-System. For the benchmark
function, in the first 20 generations, the decision of interactions was based on the
colour intensity as compared to the higher generations in which all the gene values
were distributed at some specific location. It was observed that in the experiment with
DeJong’s function the human decision for interactions was casy as compared to the
Rosenbrock’s function because of the slow convergence towards an optimum solution

in Rosenbrock’s function.

Figure 4.19 shows the gene distribution for DeJong’s function. The 2-D graph for
SGA and VIGA-2D shows a difference between the gene distributions in different
generations. 1t was noted that the gene distributions for the initial generation was
almost the same for both algorithms as shown in Figure 4.19 (a). However, in
generation 21, the performance of VIGA-2D with 2 interactions has improved as
compared to SGA for the same generation number. For VIGA-2D, the searching
process was interacted by user at generation number 16, 21, 34, and 45. In total, 4
interactions were done with the initial population size 20. In generation 45, the
difference between genes distributions shows a prominent difference in the

distribution of gene values into the search space with the help of user interactions.
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Figure 4.19: Gene Distribution with DeJong’s Function for VIGA-2D and SGA.
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The fitness of parameters for Parametric L-System rule was based on the
difference calculated between the target solution (randomly generated) and the GA
solution (see Equation 3.14). Hence, a minimum fitness value of individuals leads to
bring the optimized solution. Besides the understanding this fitness convergence rate,
the gene distributions on the 2-D graph have no specific direction. The distribution of
gene values on the 2-D graph can only be monitored by the colour intensities and the
size of the gene values. Therefore, while doing the interactions with the search
process for optimizing parameters, the user needs to pay more attention to analysing
the behaviour of VIGA-2D from generation to generation as compared to the

benchmark functions.

While doing the experiment with users for generating the branching structures in
Experiment | and Experiment 2, the understanding of the user, i.e. observing
behaviour with the proposed approach was closely monitored. It should be noted here
that the participants of both experiments were the same. Different experiments and
observations show that the overall performance and understanding of the users with
experiment 1 was more efficient as compared to the experiment 2. One main reason
was the use of constant values for interaction and the number of generations for
Experiment 2. It was observed that the user taced confusion when balancing between
generations and interactions. As compared to Experiment 1, in which users were not
forced to run the VIGA-2D with a constant number of generations and interactions;
this gave a more flexible environment to the user in order to bring the desired
solution. For Experiment 1, it could be difficult to analyse the best results because for
every user length of L-String and number of generations was different. Therefore,
different convergence rates were noticed for different results as shown in Table 4.10.
However, for Experiment 2, the different results were based on the same L-String
length and number of generations, which brought about a clear picture of

understanding and evolving of VIGA-2D with different uscrs.

Although the overall performance and decision for human interaction also
depends on a fitness / generation graph, during the interactions, the users were more
interested in viewing the output as compared to monitoring the convergence rate. [t

was observed that in Fxperiment 1, the decision of terminating the searching process
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were more satisfying to the users as compared to a constant generation numbers, i.e.

in Experiment 2.

Moreover, it was noted that there was no consistency in doing the interactions.
Some users did more interactions in the initial generations as compared to higher
generations. [t was also noted that some users were more interested in modelling the

branching structures as compared to understanding the VIGA-2D environment.

The decision for doing interaction in any generation was a critical point in the
proposed algorithm. A continuous observation has been done on the users
understanding for the next interactions. These observations are briefly described

below:

a) The user interacted in the current generation when there were a lesser number
of gene values at a particular place.

b) The gene value’s colour intensity was low (towards the gray colour) at any
particular gene location.

c) User feels that a group of gene values were at the same gene location from
many generations.

d) In VIGA-2D, the propose colour was green which shows that the current
generation fitness was not optimal as compare to previous generation.

e) Fitness / generation graph was not converging towards an optimal fitness

value.

Experiment | was based on the decision of the user for modelling the branching
structures. It was observed that there were several assumptions and observations taken

by different users to terminate the procedure. For example:

a) According to the user, the distribution of gene values was equally distributed.

b) Most of the genes values’ colour intensity was high (Dark Blue Colour),
meaning that the majority of the search space had fitter solutions.

¢) There was no any difference found between the distributions of gene values

even with interactions.
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d) There was not any difference found between the generated structures in the

last few generations.

The colour intensity also played an important role for the decision of the
interactions. The user observed the variation of colour and size of the ellipse with

more interest as compared to the fitness convergence.

Analysis of the proposed approach for parameters depends on the frequency of
genes at each gene location. In VIGA-2D during the search process, proposing new
gene values at different locations helped to fill up the gap between the evolution
processes. It was also noticed that the worse gene values at some locations were
bringing the GA quite far from its target solutions. To overcome this problem, the
interaction may have been an immediate action to bring the gene values closer to the

better frequency in the next generations.

The impact of variation in population size was also analyzed. It was observed that
the increment in population size also impacts on the performance of the searching
process. It should be noted here that increment in population size depends on
successful interactions by users. With each interaction, the search space becomes
wider. In most of the experiments results it was noted that the resultant population
size was 50% larger than the initial size. Hence in VIGA-2D, dynamic population size

was based on using wider search space interactively.

On the other hand, the proposed methodology gives a chance for GA to make a
decision to absorb the proposed values as a part of the evolution or to discard it. In
this way, the user performance could easily be monitored with the effect on
population size. It was also observed that proposing less optimal gene values or
allocating null values, directly impacts on the performance of the algorithm, i.e. it
may produce unnecessary noise and distortion in search space. But due to the usage of
the fitness function for assigning fitness, the GA may solve this problem in few

generations or more quickly by inviting more user interactions.
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4.8 Summary of Chapter

The proposed approach has been evaluated with both objective and subjective
experiments. For benchmark functions, the proposed approach has been compared
with SGA with having two different variables lengths and with 10 runs for each
chromosome length. Hence, 10 runs for each experimental result with two different
variable lengths ensure that the proposed approach is thoroughly evaluated. The
presented results for benchmark functions were based on average result after 10 runs.
The results show that the proposed approach outperformed SGA especially in large
variable lengths. Through different experiments and observations, it was found that
the 2-D graph visualization technique based on gene distributions is a better technique
to monitor all changes going on in the search space. By using 2-D visualization
technique, interaction of user, which is, based on gene values can be controlled and
monitored easily and clearly. The user can monitored the gene values at different
locations using 2-D Graph. Further, a 2-D graph also helps to look into details the
process of the searching behaviour used by GA, specifically, which part of search

space has optimal or less optimal gene values.

For testing the performance of VIGA-2D with parameters, different variable
lengths of chromosomes were input to VIGA-2D. Different selection methods,
crossover and mutation rates were also used to do the experiments. Multiple runs of
VIGA-2D also show that there is a difference in the performance of GA by using

different operators or their values.

The evaluation of results with different problems and inputs shows that this
approach successfully converges to an optimum / fitter solution. It is also observed in
the analysis, that the proposed approach able to display the complete picture of the
multidimensional search space of GA. Hence, the visualization of gene values on 2-D
graph would be a good technique to show the frequency of genes at any particular
location. The next chapter concludes this thesis by summarizing the work and

describing the main contributions.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Chapter Overview

This chapter concludes this research by presenting a summary of the work presented
in this thesis. The strength of the proposed approach with different experimental
results is also briefly discussed. Some suggestions about possible areas of future

research directions are brietly outlined in this chapter.

5.2 Thesis Summary

This thesis has described a novel approach for the visualization of multidimensional
GA data to 2-D space. This visualization is based on the displaying of gene values of

each generation on a 2-D graph.

In the proposed research work, for accelerating the performance of the GA an
idea of proposing a new individual into the search space is introduced. This new
proposed individual then becomes a part of the next generation after an evaluation
test. This evaluation test is for analysing the fitness of the proposed individual so that
it will take an active part in the next generation. Since, for existing IGA techniques,
the main problem was to reduce the user’s fatigue [15]; so, in proposed approach, the
human interaction is not forced in every generation, and fitness is calculated using the
fitness function. A dynamic population size is used to make the proposed individual
part of the search space in the next generation. The termination criterion of the

proposed approach is on user perception or on generation number for an optimal



solution. The graphical interface is designed in such a way that it gives the complete
knowledge of converges from generation to generation. An interactive tool named

VIGA-2D has been developed for this purpose.

5.2.1 Visualization of Genetic Algorithm on 2-D Graph

VIGA-2D is an interactive tool developed for visualization of a multidimensional data
on a 2-D graph. The vertical view of this graph represents the gene values and the
horizontal view represents the gene locations. The user directly interacts on the graph

for proposing new values.

The graphical interface is designed in such a way that it gives the complete
knowledge of converges from generation to generation. For example the gene values
visualize with different size and different depth for blue colour according to their
fitter status in search space. In which, gene values having high fitness value are
displayed with large size and high depth colour for blue as compare to gene values
with worse fitness displayed with small size and having light depth colour for blue
(gray). Beside this, fitness versus generation graph is visualized for understanding and
analyzing convergence of GA. This graph shows the visualization of the worst,

average and best fitness in every generation.

5.2.2 Evaluation of Experimental Results

The performance of VIGA-2D had been analyzed with the help of subjective and
objective analysis. For objective analysis, the experimental results were based on 2
benchmarks functions. The performance evaluation of VIGA-2D was done with the
comparison of SGA using the same parameters. Secondly, the VIGA-2D was
evaluated by 5 users participating in the experiment in order to visualize the test for
subjective analysis. For this purpose, real values were evolved by the proposed
approach to derive the rules for the Parametric L.-System. The experiments performed
with VIGA-2D shows that it has the ability to perform efficiently as compared to
SGA. However it is also concluded that the performance of VIGA-2D depends on the
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optimal user’s interactions. In other words, user’s participation in several generations

in the form of proposing a new individual helps to accelerate the performance of GA.

5.3 Future Work

Working on the completion of this thesis has generated several interesting and
promising ideas which will be explored in the future to address the problem of
visualization of the Interactive Genetic Algorithm more efficiently. Moreover, the
future work described in this section will further be investigated for better

understanding of the visualization technique for GA.

A key area where VIGA-2D can be improved is the way it helps a user to do
interactions. At present, VIGA-2D concludes that the user does the interactions based
on understanding the difference of size and colour of gene values in current
generation. This approach may be improved by drawing a line between gene values
having same fitness value. This line may help to show the relationship between gene

values located in the same individual.

A way forward would be to use clustering technique to map gene values according
to their fitness on 2-D graph. The user then could interact on each cluster to propose a
new gene value. Hence proposed gene values will work as an individual in the next

generation.

A further enhancement would be implementing a sketch interface for generating
initial branching structure L-System. During subjective analysis of the proposed
approach it was observed that the users found difficulty to input L-string and initial
parameters. However, besides this manual input a user interface may be implemented
to sketch the initial structure to be further evolved by VIGA-2D. In this way, the user

should not need to learn the complex grammar of the L-system to run VIGA-2D.
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APPENDIX A

DESIGN AND IMPLEMENTATION

A friendly GUI makes the usage of GA more interesting. This appendix discusses all
the important aspects and features of the design tool named VIGA 2-D. This tool is

implemented using Java programming with 2 and 3D Graphics,
A.1 INTERACTIVE VISUALIZATION TOOL (VIGA-2D)

VIGA-2D is based on the GA methods and operators described in Chapter 3. When
VIGA-2D starts, a window for setting up all the parameters and methods is loaded
onto the screen. Figure A.l1 shows all the important components and data flow
between them. The details for all the important functions are described in the

following sections.

Stait-up ] N Input
Window J 7| paramerters

Operators,
» selection T ——-
Default method
values Start Ga
o Process
Z-D Graph
Nisualization
Fitness [ Interactive -
Panet L Window -
1 B -~ View all
Wiew Fittess ¢ - Salutions
Generation - ~Navigation
Graph Box

Figure A.1. GUI Design for Proposed Approach
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P8 visualization of Intercative Genetic Algorith. .. El[il

VIGA-2D For Parametric L-Systen
Input by User

New String Select from List

IF A ‘; " —-._m_ —
et oA ||

For Width ;5 " For Length ;‘5

Branch Length 'F* fl 2 Branch Angle 160 ‘

) Draw Initial Structure

i Evolve Parameters Using VIGA-2D ‘
S [V |

VIGA-2D For Test Functions

® De Jong's F1 Minimum Value 2.043)

‘> Rosenbrock Maximum Value 72048

Variable Length {n=10 ] v;

............... i

GA Operators

1' Parameters i_-fé_sl Fuggiong |

@ 1-poimt Crossover Mutation rate
i} 2.Point Crossover EDMIBS ]
@ Roullete-Selection Population size

7 Tournament Selection 16

A.2 Start-up Window

The start-up window is the tirst window of the VIGA-2D tool as shown in Figure A.2.
This window allows the user to give the input values or to select different GA
operators and selection methods. By default values are given to initialize all
parameters, GA operators and selection methods. If there is no input by the user than
the GA process starts with these default values. Different dialog boxes are used to

control the correct input and to check empty input fields.
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VIGA-2D works for the L-System and tests functions with the same GUIL If the
test functions tab is selected then the next selection is for choosing the function to be
evolved by VIGA-2D. There are two different variable lengths, 1.e. 10 and 20 for
benchmark functions. Text fields are used to take input for the minimum and
maximum values from the user. A GA parameters’ panel is implemented to take
inputs in all GA operators, to select the desired selection method and to assign the

population size to initialize the process.

VIGA-2D For Test Functions

' De Jong's F1 Minimum Value 2048

> Rosenbrock  Maximum Value [2048’

Variable Length n=10|w

If the Parametric L-System is selected then the initial parameters and string for
generating the branching structure is input by the user or default values are used to
initialize the GA process. A combo box is implemented proposing different strings

for symbols with different lengths. The maximum length of the string allowed is 15.

VIGA-2D For Parametric L-System
nmput by User

New String Select from List
FLaIF Y UFAFM<FIL. |~
For Whdth '5 For Length E1 =
Branch Length ‘F* 117 Branch: Angle |60

T Draw initial Structur e

ve Parameters VIGA-2D 5

For parameters, the overall value range is from 5.0 to 49.99. For GA parameters
default values are given and can be changed by the user. There is an option to select
the selection method which is the Roulette selection method and Tournament

selection method.
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GA Operators

1" Parameters | Test Functions |

®: 1-Point Crossover Mutation rate
> 2-Point Crossover loos |
@ Roullete-Selaction Population size

[ Tournament Selection 10 |

i

After input of all the parameters, the next process is to initialize the GA process. For
test functions, the interactive window becomes enabled for the selected function.
While for the Parametric L-System, the GA process is started with the randomly
generated chromosome. The radio button “Draw Initial Structure” is used to see the

branching structure generated by the user input.
A.3 Interactive Window

After selecting different options from the navigation window, an interactive window
is loaded onto the screen. This interactive window consists of a navigation box,
fitness panel, fitness / generation graph, text arca with all individuals of the current
generation and the interactive 2-D graph as shown in Figure A.3. The fitness panel,
fitness/ generation graph and text area with all individuals is implemented only to
view the progress and functionality of GA from gencration to generation. The
interactive 2-D graph can be interacted by the user. The navigation box has all the
functionality to control the user interactions. Four different colour labels are used to
show the intensity of the individuals in the search space. Lighter colours show the
worst solution whereas dark colours show the best solution. Two labels are used to
analyze the fitness of individuals in the current generations as compared to the
previous generation. Overall, the performance and convergence of solutions from

generation to generation depends on the user.
a, Navigation Box:

The navigation box shows the current generation number and population size.

The next generation button is used to bring a new generation onto the screen,
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whereas the “Update” button is used to update the current generation with the
proposed values. For the Parametric L-System, the navigation box has the
“draw tree” button used to generate the branching structure with the best

solution of the current generation.

B [volve Parameleic Gh
Interactive 2-D Graph for -
- Multidimensionat Data
[} N 1
. AN
' T v T % W oa oW 5 on o® MR EE]
[ ]
3], Propose I'l
Best «....... Worst
i
I R
sl oS ANCISETR
S IO ICVLETIR : )
- B Be
rel I
it
o)
PR YR AAAE s e L) ’
Figure A.3. Designed Interactive Window
Navigation Box
. .
Population R Next Generation |
Generation l Update

! Draw Tree E
L
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b. Fitness Panel;

The purpose of implementing the fitness panel is to show the fitness of the
best solution for the current generation and previous generation on the screen.
In this way, it becomes easier for a user to understand the flow and the
expected fitness values in the next generation. Ilence, it is also helpful to
show the convergence rate of GA towards an optimal solution. Three labels
for best, average and worst fitness are also placed in this panel to monitor the
fitness/generation graph accordingly.

Fitness Panel
n Worst Fitness
. Average Fitness

B sestriness

Current Fithess
0749

Previous Fitnes
0.786

¢. Fitness/Generation Graph:

The fitness versus generation graph was implemented based on the worst, best
and average fitness. This graph is also helpful to the user in understanding the
GA convergence graphically. The upper and lower boundaries of the x-axis
are computed according to the range of the value. For the y-axis the higher

and lower boundaries are given by default.
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d. All Individuals of the current search space:

A text area is used to display all individuals of the current search space. This
test area holds all the history of the previous generations in the form of

solutions and their fitness values.
e. 2-D Graph:

The interactive 2-D graph is based on the array values and total length of the
array. In the 2-D graph these array values are represented on the x and y-axis.
On the y-axis, the representation of this graph is based on the minimum and
maximum values of the array. While the x-axis shows the location of each

element in the array according to the array length.

[ o
7
€ //
/
3 A T T T N X oA A P ATA
— - N — - -
A R R A Y ! N o} 3 X E ]

Figure A 4. 2-D Graph with X and Y-axis
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Figure A.5. Complete Interactive Window
A.4 Graphical window for Parametric L-System.

An interactive visualization 3-D space 1s implemented to draw the branching
structures as shown in Figure A.6. For visualization of the output of GA, we have
selected the best individuals from each generation. This selection is based on the
higher fitness of individuals from a specific generation. One rule has been created
from this best solution. The axiom is constant for all rules. The Red, Green, Blue
(RGB) colour scheme is used in the axiom; each colour scheme is in the range of (0-

1). Furthermore, the user can go to more or less iterations in the visualization window.

Light and shade effects are also given to create more natural looking structures.
However, these parameters are constant and do not evolved using GA. The user can
also rotate the generated structures in a 3-D view. Check box toggles can be activated
by the user for rotation, to enable or disable the cylinder, for homomorphism and to
apply ant aliasing. By default, the cylinder and homomorphism properties are enabled.
3 control buttons are used to increase, decrease or to initiate the iteration. The button
having the ‘0’ label shows the zero level of iteration which will return the axiom or it
may call to reset all iterations. The setting button is used to change background

colour, and enable or disable shadow and background.
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Figure A.6. Graphical Window for the Parametric L-System
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APPENDIX B

PARAMETRIC L-SYSTEM

The Parametric L-System works with the set of symbols, relational operators and
asthmatic operations. However turtle geometry is used to interpret all these symbols’

operators and parameters to construct the rules.
B.1 Parametric L-System

In the Parametric L-System, the parameters ar¢ associated with symbols. Let the
alphabet be denoted by V, and the set of parameters is the set of real numbers R. A
module with letter A € V and parameters (pl, p2 ....... pn) € R 1s denoted by A (pl, p2
....pn). Every module belongs to set Vx R*, where R* is a finite sequence of all
parameters. The real-valued actual parameters appearing in words have a counterpart
with formal parameters which may be used in the specification of L-system

productions.

Let ) be the set of formal parameters. The combination of formal parameters and
numeric constant using arithmetic operators (+, -, *, /), the logical operators (&&, !,
) , the relational operators (>, <, »=, <=, =) and parenthesis ( ()) will make a
complete set of ) having all constructed logical and arithmetic expressions. These
are noted as C (3)) for logical expressions and E() for arithmetic expressions. A

Parametric OL-system is an ordered quadruplet G = (V,>, w, P), where,

» Vs the alphabet of the system.
* Y is the set of formal parameters.
* @ e(VxR* +isanonempty word called axioms.

PV x ¥ x C @) xVx EG)M* is a finite set of productions.
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In applying the production rules specified in the L-System, the predecessor will be
recursively expanded and replaced with the relevant successors and it fulfils the
condition if it is given by using arithmetic expressions. If there is no condition given,
then it is considered as empty statement, hence, the resulting structure is drawn by
using the deterministic Parametric L-System. The following example shows the

deterministic Parametric L-System:
Axiom: F (a)
Rule 01: F ->F (o) [-(8)) F(wa)] Fas) [+(62) F(ow)] ... F

(atn) [ +(6n) Flow)]

In the above example there is one module F in the axiom with the parameter o
respectively. It consists of one production rule that rewrite the occurrence of F with
the precise successor modules. Geometric Interpretations are used to manipulate

these symbols to draw the structure onto the computer screen.
B.2 Geometric Interpretation

When using the L-System, two factors are very important to consider when
generating any branching structure on the computer, i.e. (a) Development rules
(control the growth) and (b) Geometric aspects of different angles [81]. Initially, the
L-systems were conceived as a formal theory of development. Geometric aspects
were not considered. Later, geometrical interpretations were proposed. Hogeweg and
Hesper in 1974 [119] and Frijters and Lindenmayer in [120], for the first time
discussed graphical interpretation for the [-System in their papers. Their work
emphasised using the bracketed L-System as the branching topology for modelling

plants. Geometric aspects were added in the post processing phase.

A later extension was found in the work of Smith [121] to use the L-System for
modelling realistic images using computer graphic techniques. However,
Prusinkiewicz for the first time added geometric commands directly with the L-

System and extended these commands with the bracketed L-System [111] and in 2
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or 3D space [112] . His work is based on LOGO turtle geometry [122] . A turtle is an
object moved on a Graph (F). The current orientation of turtle in space is represented
by 3 vectors: H, L, U, indicating the turtle’s heading, the direction to the left, and the
direction to the right. The symbols used to control this orientation are described in
Table B.2. These turtle graphics are used to build a geometrical interpretation of L-

system strings.

Turtle Interpretation in 3D space.

The discussion of turtle interpretation is derived from the work of Prusinkiewicz
et a.1 [80] and Hanan [123]. These turtle interpretations work either in 2 or 3-D space.
All of these three orientations are perpendicular to each other, so by calculating any
two of them, the third can be calculated by using the equation: L =H x U. Using this
notation, the calculation for the rotation of the turtle is calculated using [H* L” U] =

[HL U]R.

Where, R is the 3 x 3 rotation matrix [124]. Standard rotation matrices are used to

calculate the rotation in any direction around « angle.

147



i 0 O
Ry(e O cosw. -sino
0 sina cosu
COSU 0 -sinc
Ri(u)y = 0 1 0
sinc 0 COsU
S~— _/

CoOsq sinc
Ri(a) = | -sina cosa o
O O 1
S~ A

Table B.1.Turtle Symbols used to draw in 3-D space.

Symbols Direction Orientation
F(s) Move forward a step of | Draw a line
length s
f(s) Move forward a step of | Draw no line
length s
+, - Turn left and right Matrix Ry(d)
&, " Pitch down and up Matrix Ry ()
\,/ Roll left and right Matrix Ry
| Turning around Matrix Ry(180°%
[,] Push and pop the Use for
current state from Branching
stack.

The input given by the user is restricted, controlled and formulated into the L-System
language according to the symbols. The following are the symbols with their direction

and orientation used to control the turtle position in the proposed application.
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Moving and Drawing Symbols:
Symbol ‘Fis used to demonstrate the line to the L-System in the following manner:

¢ F(a) : Move forward a step of length a > (. Draw a line from the previous

status to the new one and the turtle position changes to (x' y’ z"), where
v x'=x+al,
" y'=ytal,
» '=z+af.
Direction Commands:

The direction commands work when the user gives angles to either the left or right
direction along with 90 degrees. However, the user may also give the direction
commands for the z-axis. If the given branch angle is around the U vector and the
given rotation angle (J)is smaller or larger than 90 then it calculates the following

symbols and rotating angles:
% +(J) : If it rotates around U by an angle of § degrees in the right direction.
% -(d) : If it rotates around U by an angle of ¢ degrees in the left direction.

If the given branch is around the L vector and the given rotation angle (d)is smaller or

larger than 90 then it calculates the following symbols and rotating angles:
% &(J) : Pitch down by an angle of ¢ degrees , Rotate around L .

% 7 (0): Pitch up by an angle of ¢ degrecs, Rotate around /. .
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Commands for drawing attributes:

For drawing attribute, the thickness of the main trunk may also be given as a symbol

and each branch also has a ratio for width.

&

% ! Set the cylinder thickness value.

Branch Controlling Commands (Bracketed L-System):

% [ : Push the current state into the stack

\/

*» ] : Pop the current state from the stack.
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APPENDIX C

INTERACTIONS FOR TEST FUNCTIONS

The tables in this appendix show the complete list of all interactions and total number
of the interactions, and the average interaction for each run. Furthermore the proposed
individuals accepted by the VIGA-2D and total number ot the proposed individuals
discarded by VIGA-2D for each test function are also listed here. It also shows the
average number of discard and accepted proposed individuals in each run, where R1

to R10 represents each run.
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Table C.1: Accepted and Discarded Interactions in all Runs for DeJongs’ Function

n=10

Successful Interactions at Generation Number Average
Generation
Interactions ri |R2 |R3 R4 |R5 | R6 | R7| RS | R9 | RI0 Number for

Accepted
Interactions
1 16 |17 |21 |18 (21 |16 |16 115 [ 15 | 16 17.1
2 22 20 | 25 [ 28 | 25 | 18 | 21 | 21 [ 21 23.3
3 28 | 28 | 35 | 32 | 37| 32| 24 | 28 | 27 | 27 29.8
4 36 | 33 143 ;38 [ 45 | 41 | 30 | 35| 33 | 31 36.5
5 44 | 38 | 30 | 44 | 52 16 | 40 | 39 1 38 423
6 54 | 46 54 51|42 | 46 | 45 | 44 47.75
7 52 | 65 66 | 58 | 49 | 53 51 56.2
8 58 69 72| 57 | 59 | 58 62.1
9 73 | 79 | 86 71 66 75
10 88 82 | 92 | 91 88 | 71 {1 75 83.8

Average
Generation

Discarded Interactions at Generation Number Nufr:rber

Discarded
Interactions
1 0
2 25 25
3 0
4 0
5 0
6 61 60 60.5
7 60 62 52 58
8 67 68 73 59 66.7
9 76 | 71 86 | 66 64 72.6
10 76 89 | 71 78.6

Table C.2.Number of interactions, Successful Interactions, and Discarded Interactions

for DeJong’s Function n =10.

Average
Generatio
Parameters | Rl | R2 | R3 | R4 | RS | R6 | R7 | R8 | R9 | R10 “N;'O':b”
Interactio
n
Total o (10|10 10|10 10 |10]10]10] 10 10
Interactions
Accepted | 5 | 5 | g | 9 | g | 7 | g |10] 8| 9 8.1
Interactions '
Discard 332 v 2] 32021 1.9
Interactions
Population
Size after 17 17 18 19 18 17 18 20 18 19 18.1
Interactions
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Table C.3: Accepted and Discarded Interactions in all Runs for DeJong’s Function

n=20
Successful Interactions at Generation Number Average
Generation
Interactions | 1 | R2 | R3 | R4 (RS | R6 | R7 | RS | R9 | R1p | Number for
Accepted
Interactions
| 1711417015316 171719 18| 18 16.8
2 23 120|124 123 | 21 125 26| 26| 26| 22 23.6
3 28 1 28 | 31 132126 | 33 40| 32 ) 34 ) 29 313
4 32 | 37 138 |38 /3539|5040 | 42| 34 38.5
5 37146 145 [ 46 ( 43 | 47 1 61 | 48 | 534 | 42 46.9
6 43 | 38 (51 | 53 /5L | 51| 72|58 63| 54 55.4
7 50 | 68 | 5562 | 57 | 67 | 74 | 60 61.6
8 55 66 | 69 | 61 | 65 | 87 | 76 | 85 | 69 63.3
9 66 | 87 | 74 | 80 71 94 78.6
10 88 | 92 | 88 | 88 91 | 96 90.5
Average
Generation
Discarded Interactions at Generation Number Number for
Discarded
Interactions
1 T 0
2 0
3 L 0
4 0
5 0
6 0
7 58 | 86 72
8 76 76
9 71 92 | 83 76 805 |
10 80 | 79 | 95 | | 85 84.7 |

Table C.4. Number of Interactions, Successful Interactions, and Discarded

Interactions for DeJong’s Function n =20,

[ T Average
Parameters | RI | R2 | R3 [ R4 RS | R6 | R7 | R8 | R9 | 1o | Ceneration
Number for
Interaction
Total Interactions | 10 | 10 | {10 |10 (10 | 10010 [ 10| 10 ] 10 0.6
Accepted 1019 w|w0! 881779 108 8.9
Interactions
Discarded .
Interactions 01 01012123 : 0 2 | 1.1
Population Size
28.
after Interactions 30129 |30\ 30 | 28 | 28 27 29430 28 89
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Table C.5: Accepted and Discarded Interactions in all Runs for Rosenbrock’s
Function n=10

Successful Interactions at Generation Number Average
Generation
[nteractions | oy | Ry | R3 | R4 | RS | R6 | R7 | R8 | R9 | R1g | Number for
Accepted
Interactions
1 15|16 | 1717|1617 |16 16| 19| 20 16.9
2 22 122123 |23 |23 (22|24 25| 27 23.4
3 23 | 28 | 20 | 28 | 31 29 | 31| 31| 34 293
4 28 | 33 | 36 37 133 | 36| 40| 38 | 39 355
5 33 | 39 41143 | 40 | 44 | 48 | 45 | 48 42.3
6 38 | 45 45 | 49 | 47 448
7 46 | 51 | 58 | 51 59 65 55
8 57 | 66 | 58 69 | 70 64
9 75 | 72 76 74.3
10 72 31 74 75.6
Average
Generation
Discarded Interactions at Generation Number Number for
Discarded
Interactions
1
2 19 19
3 27 0
4 34 34
5 42 | 42 42
6 S0 | 50 52 56| 53| 56 52.8
7 54 60 62 | 64 60
8 54 62 | 69 | 69 | 72 65.2
9 64 74 | 68 | 79 82 | 80 | 75 74.5
10 88 84 84 | 89 | 89 | 82 | 84 85.7

Table C.6.Number of Interactions, Successful Interactions, and Discarded Interactions

for Rosenbrock’s Function n =10

Average
Parameters R1|R2 | R3 | R4 | RS|R6 | R7 | R8 | RO | R1g | Generation
Number for
Interaction
Total Interactions 1010100101010 1010} 10 10 10
Accepted Interactions 71918171716 |5 6 | 6 7 6.8
Discard Interactions 3 1 2 3 3 4 5 4 4 3 32
Population Size after 17019118 1717|1615 16|16 | 17 17
Interactions
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Table C.6: Accepted and Discarded Interactions in all Runs forRosenbrock’s Function

n=20

Successful Interactions at Generation Number Average

Generation

Interactions | oy | R2 | R3 | R4 | RS | R6 | R7 | R8 | RO | R10 N:f;:;::(‘i"

Interactions
1 19 17| 516 18] 171y | 16 |16 ] 18 16.5
2 25 | 23 |21 1 21| 22023 23| 22/ 22 | 20 2.2
3 300129126 | 28 |29 | 29| 30 [ 28| 28 | 26 28.3
B 36 | 35 | 31 .33 1 35 1 3437 | 35 [ 35 || 32 343
5 44 | 40 39 142141 | 44 | 42 38 41.2
6 42 | 46 52|49 | 50 | 43 47
7 60 | 56 | 47 54 60 | 57 | 57 | 50 Sl
8 61 | 52| 58 67 63 60.2
9 77 67 72
10 73 | 63 8 | 74 | 72 73.6
Average

Generation

Discarded Interactions at Generation Number Number for

Discarded

Interactions
| 0
2 0
3 0
4 0
5 37 41 39
6 53 | 48 49 | 48 49.5
7 52 54 53
8 70 60 | 61 63 58 62.4
9 80 | 67|60 | 64 75|66 68 65 68.1
10 87 69 | 82 | 71 79 77.6

Table C.8. Number of Interactions, Successful interactions, and Discarded Interactions

for Rosenbrock’s Function n =20.

Average
Generation
Parameters RI|{R2|R3|R4|R5 | R6|R7 [ R8| R9 | RI0 Netasbok Tos
Interactions
Total Interactions 0| 101010 10| 101 19| 10 ] 10| 10 10
Atouied 6|s|s8|7|6|s|8|s|9o] 7 72
Interactions
S ¢ l2ala]|s|a|s |2l s 3
Interactions
Population Size after | . | »¢ | 58 | 27 | 26 [ 25 | 28 [ 28 | 29 | 27 272
Interactions
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APPENDIX D

DATASET AND USERS SPECIFICATIONS

This appendix shows more results with different users. The dataset of different L-

String is also included in this appendix.

Table D.1 Dataset for L-String
1 F[+]F[-]

2 IF[[+F[-F][F

3 | IF[JF[+]F

4 [ 'T[+FJF

5 | 'F[-F[+F]F][-F]

6 | 'F[H][-[1F]]

7 | TF[+]FFF

§ | \[+]F[F

9 | 'F[*F][+F]

10 | IF[+[&F]F]

11 | IF[["F]-F][+F["F]]
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Table D.2 User’s specifications (First three users are undergrad students and last 2 are

post graduate students)

User 1 | Very new to the computer graphics and visualization, having no idea

about GA. New to L-System.

User 2 | Very new to the computer graphics and visualization, having no idea

about GA. New to L-System.

User 3 | Having idea about GA nature and optimization. Having no idea about
IGA and L-System.

User4 | Well known to modelling and simulation. Knows the area of

optimization.

User 5 | Well known to Grammar formalism of L-system. Complete

knowledge of Computer Graphics. Having no idea of IGA.

157



[nput by user

Input by user

Input by user

Input by user

. . . / .

19 Generation 52 Generation 69 Generation 85 Generation

20 Generation  21Generation 42 Generation 97 Generation

19 Generation  22Generation 29 Generation 35 Generation

W\

21 Generation 31Generation 53 Generation 86 Generation

Figure D.1: Generated Structure with user perception

Input

Result 1 Result 2 Result 3 Result4 Result 5

Result 6 Result7 Result8 Result9 Result 10

Figure D.2: Generating Structures with Constant Generation Numbers with Different

Users.
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Experiment I: Result ]

Input string by user: /F/+]F[-]

Input parameters : 20, 3,26

¢ LF[+UF(+]F[-JF[-LF[+]F[-]
Input to VIGA-2D

Random Generated Chromosome ( n=21);

L-String

20,3,26,5,30,16,29,27,30,7,15,34,12,15,8,12,30,32,8,6,2

SGA

VIGA-2D

Gengration 29
Axiom: (0.24,0.6,00A(4,6)
Rule: # A(x,w)->!{(W)F(X)[+(20)$A

(x*0.81,w*0.64)(W*0.8 1 )F(x*0.73)[+(20)$
AG0.81,w*0.6 D]F(x*0.57) [-(20)$A

(x*0.81.w*0.8 )]]F(x*0.81)[-(20)BA(x*0.6
4,w*0.81) 1(w*0.78)1(w*0.78)F(x*0.81)

[+(20)$A(x*0.83,w*0.81)]F(x*0.86)[-
(20)$A (x*0.55,w*0.82)]]

Generation 29
Axiom: (0.24,0.6,0)A(34,5)
Rule: # A(x,w)->!(w)F(x)

[H20)SA(X*0.81,w*0.81)1(W*0.55)F(
X*0.70) +(20)5A(x*0.81,w*0.81)]

F(x*0.44)[- 20)$A (x*0.81,

w*0.81][F(x*0.81)[-(20)$A(x*0.85,
W05 1)I(w*0.81) F(x*0.81)[+(20)$A

(x*0.81,W*0.66)] F(x*0.81)[- (20)$
A(X*0. 81,w*0.65)]]

Generation 59
(0.24,0.6,00A(7,3)
Rule : # A{x,w)->I(WIF(x)[+(20)$ A

(x*0.42,w*0.85)(W*0.83)F(x*0.8)[+(20)$
A(x*0.81,w*0.6)]F(x*0.76)[-(20)$A

(x*0.81,w*0.81)]] F(x*0.81)[-(20)
SA(X*0.64,w*0.81) | (w*0.73)F(x*0.81)

[+22)BA(x*0.81,w*0.56)]F(x*0.71)[-22)
$A(X*0.68,w*0.61)]]

Axiom:

Generation 59
(0.24,0.6.MA(30.4)
Rule: # A{x,w)-!I{(W)F(x)[+(20}

SA(X*0.69,w*0.67)!(W*0.68)F(x*0.8
S +H20ISA(x*0.86.w*0.36)]F(x*0.44
J[-(20)SA(x*0.81,w*0.49)]|F(x*0.88)
[<(20)SA(X*0.65,w*0.67)!(w*0.81)
F(x*0.8[)+(20)SA(x*0.3],w*0.88)F(x
*0.76)[- (20)SA(x*0.81,w*0.72)]]

Axiom:

Generation 75
Axiom; (0.24,0.6,00A(37.7)
Rule : # A(x,w)->1{(w)F(x)[+(20)$A

(x*0.42,w*0.72){(W*0.74)F(x*0.8 1) 1 [+(20)
SA(x*0.32,w*0.33)]F(x*0.53)1[-
(20)SA(x*0.81,w*0.81)]F(x*0.6
SI[-(20)SA(X*0.64,w*0.81) I(w*0.78

YE(x*0.4[+H20)SA(x*0.81,w*0.62)]F(x*0.4
- 20)SA(x*0.72,w*0.42)]]

Gengration 75
Axiom: (0.24,0.6,00A(37.7)
Rule: # A(x,w)->1(w)F(x)[+

(20)SA(X*0.63,Ww*0.63)1(w*0.62)F(x
¥0.47)[+(20)SA(x*0.62,w*0.56)]F(x*
0.79)[-(20)8A(x*0.65,w*0.55N]E(x*0

#0.33)]JF(x*0.8 D[-(20)SA(x*0.48,

WS DNWH0.7TIF(x*0.67)[+(20)8A
(x*0.63,w*0.6)]F(x*0.66)[-
(20)$A(x*0.65,w*0.63)]]
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Experiment 1: Result 2

Input string by user: 'F[-]F[+]F
Input parameters : 273,21, 19

L-String

Input to VIGA-2D

Randomly Generate Chromosome (n=24):

SIFIEIEA )R IELJEf+]FTF

27,3,21,19,18,6,12,22,13,25,17,21,26,32,11,31,32,33,22,20,16,15,9,20

SGA

YIGA-2D

Generation 30
Axiom: (0.24,0.6,0)4(24.8)
Rule: # A(x,w)->!1(W)F(x)]-(20)$A

(x*0.45,w*0.45)1(w*0.8 F(x*0.52)[-
(20)BA(x*0.81,w*0.86)]F(x*0.87)
[+(20)SA(x*0.81,w*0.53)]F(x*0.8 )]F(x*0.
3D+H20)SAX*0.38,w*0.43)(w*0.61)F(x*0.
8 1)[-(20)BA(x*0.81

WH0.45)F(x*0.8 [ H20)SA(X*0.45,w*0 4
5)F(x*0.8 E(x*0.81)

Generation 30
Axiom: (0.24,0.6,004(23,4)

Rule: # A(x, w)->1(w)F(x)[-
COFAEM0.45w*0. 451 {w*0.35)F(x
*0.73)[-(20)PA(x*0.45

W08 DF(x*0.8D)[+(20)SA(x*0.73,
w*0.81)]F(x*0.37)]F(x*0.33)[+(20)$
A(x*0.81,w*0.45)!(w*0,73)F(x*0.37)
[-(20)$A

(x*0.36,w*0.45)]F(x*0.8 N[ H20)SA(
X*0.45,w*0.45)[F(x*0.37)]F(x*0.81)

Generation 51
Axiom: (0.24,0.6,0)A(23,8)

Rule : # A(x,w)->H(wW)IF(x)[-
COSA(x*0.45,w*0.45)(w*0.6T)F(x*0.8])-
(20)$A(X*0.45.w*0.73)]

F(x*0.52)[+(22)SA(x*0.46,w*0.53)]F(x*0.8
91 JF(x*0.38)[+(20)SA(x*0.38,w*0.45)!(w
%0.79)F(x*0.81)[-
(20)SA(x*0.81,w*0.45)]F(x*0.3[)-(20)$A(
X*0.45,w*0.48)]F(x*0.81)]F(x*0.81)

Generation 51

Axtom: (0.24,0.6,0HA(24,4)

Rule: # A{x,w)->!(w)F(x)[-

(2003 A(x*0.45,w*0.45)(w*(0.8)F(x
*0.81)[-(20)8A(x*0.45

WHOLB D F(x*0.59)[+(20)$A(x*0.42,
w*0.8 D F(x*0.3TF(x*0.33)[+22)8
A(x*0.73,w*0.7){(w*0. T1F(x*0.8[)
-(20)5A

(x*0.45,w*0.45)]F(x*0.51)

[+(20)BA(x*0.45,w*0.45)]F(x*0.37)1
JF(x=0.81)
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5GA

VIGA-2D

Generation 78

Axiom: (0.24,0.6,0)A(5,6)

Rule : # A(x,w)->!{(w)F(x)[-(20)$A
(x*0.49,w*0. 31 )(Ww*0.62)F(x*0.8])-
(2O)SA(x*0.45,w*0.33) |F(x*0.52)[+(20)SA
x*0.3Lw*0.5DF(x*0.8]YF(x*0.54)1[+(22)
FA(Xx*0.54,w*0.85)(W*0 42)F(x*0.71)[-
(2O)$A(x*0.45

WH0.45) | F(x*0.36)[+H{20)PA(x*0.76,w*(.8
AYF(x*0.7)F(x*0.47)

Generation 78
Axiom: (0.24,0.6,0)A(18,8)

Rule: # A(x,w)->!{(w)F(x)[-
(2OSA(x*0.45,w*0.57)(w*0.47)F(x
*0.68)[-(20)SA(x*0.45,

W*0.45)]F(x*0.7)+(20)SA(x*0.63,w
*0.81)IF(x*0.8])F(x*0.65)[+(20)$A(x
*0.54,w*0.45)!(w*0.73)F(x*0.8[)-
(20)SA(x*0.45.w*0.45)]F(x*0.57)[+(
20)SA(x*0.58,w*0.39)|F(x*0.44)]F(x
*0.81)

Generation 100
Axiom: {(.24,0.6,0)A(5,6)
Rule : # A(x,w)->!(w)F(x)[-(20)$A

(x*0.85,w*0.45)I(w*0.7 1 )F(x*0.49)[-
(20)SA(x*0.45,w*0.76)]F(x*0.47)
[+H(20)$A(x*0.65,w*0.7 D]F(x*0.35) 1 JF(x*
0.88)[+(22)SA(X*0.54,w*0.71)(w*0.57)F(x
*0.52)[-(20)$A

(x*0.45,w*0.45)]F(x*0.36)[ +(20)8A(x*0.45
W45 1JF(x*0.79)F (x*(1.63)

Generation 100

Axiom: {0.24,0.6,0)A(26,7)

Ruie: # A{(,w)->1{(WIF(x)[-
(20)PA(x*0.5L, w*0.45)(w*0.82)F(x*
0.42)[-(20)SA(x*0.45,

WH0.5 ]P0 S[+(20)8A(x*0.54,
w*0.67)JF(x*0.46)]F(x*0.56)[+(20)$
A(x*0.64,w*0.45) (w*0.73)F(x*0.83)
[-(20)

SA(X*0.54,w*0.45)]F(x*0.55)[+(20)$
A(x*0.68,w*0.46)]F(x*0.3)F(x*0.53
)

Generation 110
Axiom: (0.24,0.6,00A(28,6)
Rule : # A(x,w)->!(w)F(x)[-(20)$A

(x*0.85,w*0.45)!(W*0.5 )F(x*0.47)[-
(20)$A(X*0.45,w*0.76)|F(x*0.46)
[H20)SA(X*0.65,w*0.7 ]F(x*0.67)]F(x*0.
88)[+(20ISA(X*0.31,w*0.45)(w*0.76)F(x*0.
52)[-20)BA(x*0.89

,WH0.45)JF(x*0.51)[+(20)BA(X*0.45,w*0.4
5YIF(x*0.79)]F(x*0.54)

Generation 110
Axiom: (0.24,0.6,0)A(31,5)

Rule : # A w)->I{WF(x)[-
(2OSA(x*).45,w*0.45)(w*0.68)F(x
*0.58)[-(20)8A(x*0.82,

w*0.51)F(x*0.51) 1 [+20)SA(x*0.54,
WH0.79)]F(x*0.73)]F(x*0.76)[+(20)$
A(X*0.81,W*0.45)1 11(wW*0.61)F(x*0.
87)[-(20)
SA(x*0.65,w*0.5)]F(x*0.6)[+(20)$
A(x*0.45,w*0.45)]F(x*0.63)]F(x*0.8
D
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Experiment 1: Result 3

Input string by user: [F/[-F]]F{+F]
Input parameters : 10,7, 34, 28, 30, 31
L-String

VIGA-2D

Random Generated Chromosome (n=27):

SIF[[F(-F]JE[FFJF[JF[HE][-FJJFHFF]

10,7,34,28,30,15,13,13,29,21,23,30,14,34,20,19,17,22,25,31,13,9,11,19,15,5,11

SGA

YIGA-2D

Generation 31
Axiom: (0.24,0.6,0)4(12.8)

Rule: # A{x,w)->!{wW)F(x)[[-
(ZOSA(x*0.45,w*0.45) 1 (w*0.43)F(x*0.57)[
[-(ZO)$A(x*0.81,w*0.45)

F(x*0.8 1)1 JF(x*0.42)[+(20)SA(x*0.54,w*
0.8 )E(x*0.63)]F(x*0.78) 1 ]JF(x*0.8 Y[ +(20
ISA(X*0.45,w*0.45) (w*0.71)F(x*0.65)[[-
(20)8A(x*0.45,

w*0.8 F(x*0.65)][F(x*0.64)[+(20)SA(x*0.
73,w*0.8 DF(x*0.81)1]E(x*0.82)]

Generation 31
Axiom: (0.24,0.6,0)4(33,4)

Rute: # A(x,w)->!1{w)F(x)[{-
(20)FA(X*0.45,w*0.45)1(w*(.83)F(x
*05N[[-20PA(X*0.73,w

w*0.5DE(*0.8 D]JF(x*0.81)[+(20)$
A(x*0.45,w*0.49)F(x*0.61)]F(x*0.44
YIF(x*0.39)[+20)SA(x*0.45,w*0.81
Y(W*0.59)F(x*0.8 D[[-
(20)$A(X*0.7F, w0,

ST)x*0.66)1]]F(x*0.32)[+(20)S A(x*
0.65,w*0.81)F(x*0.8 D]F(x*0.6])

42 Generation
Axiom: (0.24,0.6,0)A(38.4)
Rule : # A(x,w)->I{w)F()[[-(20)$A

(x*0.51,w*0.45)1(w*0.5 1) F(x0.56)|[-
(20)8A(x*0.81,w*0.45)F(x*0.57)

1IF(x*0.82)[+(20)SA(x*0.35,w*0.45)F(x*0.
82)]F(x*0.78)1]|F(x*0.8 1)[+(20)8 A(x*0.45,
w*0.85)1(w*0.38)F(x*0.5[)[-
(20)$A(x*0.45,w*0.81)

Fx*0. TNIF(x*0.64)[+(20)S A(X*0.88,w*O.
§1)F(x*0.81))F(x*0.82)]

42 Generation
(0.24,0.6,0)0A(35,3)

Rule: # A{x,w)->!(w)}F(x)[[-
(COSA(x*0.45,w*0.45)1(w*(L.49)F(x
*0ID[[-20)SA(x*0.81,w

*0.75)F(x*0.64)] ] F(x*0.59)[+H20)BA(
x*¥0.43,w*0.45)F(x*0.55)]F(x*0.5)]]
F(x*0.52)[+H20)5A(x*0.45,w*0.8 1)I(
w06 NF(*0.56)[[-
(2OBA(x*0.31,w*0 .4

SIF(x*0.6 D]JF(*0.75)[+(20)SA(x*0.
81,w*0.45)F(x*0.61)]F(x*0.86)]

Axiom:
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VIGA-2D

Generation 62
Axiom: (0.24,0.6,0)A(30,4)

Rule : # AW (WIF()[[-
(ZOSA(x*0.85,w*0. 45 (w*0.5IF(x*0.55)[
[-(Z0)SA(x*0.45,w*0.45)

F(x*0.8])JF(x*0.45){ +(20)$ A(x*0.35,w*0.4
SYF(x*0.31)]F(x*0.4 )]JF(x*0.8 [+(20)$A(
X*0.45,w*0.45)(W*0.36)F(x*0.65)[[-
(20)8A(x*0.45,

W*0.45)F(x*0.73)]JF(x*0.64)[+(20)$ A (x*0.
45, w*0.69)F(x*0.8 1)JF(x*0.82)]

Generation 62
Axiom; (0.24.0.6,00A(34,2)

Rule: # A(x,w)->1(w)F(x)[[-
(COBAMX*0.45,w*0.45)!1(w*0.63)F(x
*0.64)[[-2CO)SA(x*0.81,

W*0.45)F(x*0.62)][F(x*0.46)[+(20)$
A(x*0.69,w*0.82)F(x*0.71)]F(x*0.71
YJF*0.54)[+(20)SA(X*0.45,w*0.45
Y(W*0.64)F(x*0.8D)[[-
(20)SA(X*0.31 . w*0.

S7)F(x*0.73)]F(x*0.38)[+(20)BA(x*
0.45,w*0.45)F(x*0.81)]F(x*0.77)]

Generation 77
Axiom: (0.24,0.6,00A(37.3)
Rule : # A(x,w)->!1{(w)F(O[[-(20)

SA(Xx*0.31,w*0.45)1(w*0.54)F(x*0.32)[[-
(20)PA(x*0.45, w*0.45)F(x*0.

S8)]IF(x*0.51)[+(20)BA(x*0.45,w*0.72)F(x
*0.65)JF(x*0.78)][F(x*0.74)[+(20)SA(x*0.4
5,w*0.45)1(W*0.59)F(x*0.65)[[-
(20)SA(x*0.45,w*0.45)

F(x*0.73)]JF(x*0.64)[ +H{20)SA(X*0.45,w*0.
45)F(x*0.78)]F(x*0.59)]

Generation 77
Axiom: (0.24,0.6,00A(38,3)

Rule: # A(x,w)->!{(wW)F(x)][-
QOBA*0.55wH0.62)1(w*0.72)F(x
*0.58)[[-(20)$A(x*0.45

W*0.45)F(x*0.35) 1 [JF(x*0.37)[+(20)
SA(X*0.45,w*0.43)F(x*0.6 1) ]F(x*0.7
H)IF(x*0.32){+ (20)BA(x*0.79,w*0.4
$)(W*0.64)F(x*0.58)[[-
(20)BA(x*0.45,

w*0.45)F(x*0.68)]|F(x*0.3[)-+(20)$A
(x*0.72,w*0.45)F(x*0.8 D]F(x*0.75)]

Experiment I: Result 4

Input string by user: !F[-F[+F]F][-F]

Input parameters ; 27, 3,34, 11 22 33
L-String  : 'F[-F[+F]F][-F]
VIGA-2D

Random Generated Chromosome (n=12);

27,3,34,11,22,33,17,28,5,32,6,14
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VIGA-2D

Generation 19
Axiom: (0.24,0.6,0047157)

Rule: # A{x,w)->1(w)F(x)|-
(COEA(x*0.81,w*0.8DF(x*0.8 1)[+(20)5A(
x*0.5F,w*0.8 1) 1(x*0.8 F(x*0.8 )][-
(20)$A(x*0.81,w*0.45)

F(x*0.89)]

Generation 19
Axfom: (0.24,0.6,0)4(29,4)

Rule: # A(x,w)->{w)F(x)[-
(20)$A(x*0.44,w*0.73)F(x*0.81)
[+(20)$A (x*0.81,w*0.76)

F(x*0.8 )IF(x*0.81)][-
(20)SA(x*0.82,w*0.8)F(x*0.8

D

Generations 52

Axiom: (0.24,0.6,)A(8,4)

Rule : # A(x,w)->1{(W)F(X)[-20)$A
(x*0.35,w*0.79)F(x*0.3 D[ +H20)$A(

(x*0.37,w*0.81) IF(x*0.62)]F(x*0.8 )][-
(20)BA(x*0.83,w*0.88)

F(x*0.89))

Generation 52
Axiom: {0.24,0.6,0)A(17,3)

Rule: # A(x,w)->!1(w)F(x}[-
(208A(x*0.84, w*0.56)F(x*0.81)
[H2MTA(X*0.5F ,w*0.56)

(x*0.43)]F(x*0.65)][-
(20)BA(x*0.81,w*0. 79)F(x*0.31)]

Generation 69
Axiom: {0.24,0.6,0)A(33,6)

Rule : # Al W= I(wW)F(X)[-
COSAX*0.35,w*0.SF(x*0.3)+(20)FA(x
*0.37,w*0.8 F(x*0.76)[F(x*0.4])[-
(2MFA(x*0.45,w*0.47)

F{x*0.48)]

Generation 69
Axiom: (0.24,0.6,00A(23,3)

Rule: # A(x,w)->!(w)F(x)[-
20)FA(x*0.5F,w*0. 5)(x*0.61)
[+(20)$A (x*0.49 ,w*0.76)

F(x*0.8 D]F(x*0.75)][- (20)$A(x*
0.81,w*0.79) F(x*0.84)]

Generation 85

Axiom: (0.24,0.6,0)A(29.3)

Rule;# Alx,w)->1(wW)F(x)[-
COSAGH0.35,w*0.5 DF(x*0.3[)+(20)5Ax
*0.37,w*0.8 )F(x*0.76)|F(x*0.4))[-
(2MSA(x*0.45,w*0.47)

F(x*0.48)]

Generation 85

Axiom: (0.24,0.6,0)A(29,3)
Rule: # A(x,w)->!(w)F(x)[-

(20)SA(X*0.71,w*0.44)F(x*0.73)[+(2

0)SA(x*0.44, w*0.79)

Fx*0.8DIF(x*0.7D)][- (22)SA
{(x*0.81,w*0. 3F(x*0.67)]
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Experiment 1: Result 5

Input string by user; /[F/F][&]F
Input parameters : 12,5 10, 15
L-String  : IF[F)[&!F[F][&!F{F]{&]FIF]F
VIGA-2D

Random Generated Chromosome (n= 18):

12,5,10,15,19,29,12,25,19,22,10,19,24,6,19,8 28 33

SGA

VIGA-2D

Generation 23

Axiom: (0.24,0.6,0)4(4,8)

Rule: # A{x,w)->!1{w)F{x)[F(x*

0. 37N[&20HFAX*0.81,w*0.8 1) (w*0.81)F
{(x*0.8DI[F(x*0.3D[&(20)SA(x*0.81,w*0.68
Mw*0.81F(x*0.68)[F(x*0.79)][&(20)$A(x

*0.45,w*0.45)|F(x*0.81)|F(x*0.8 1) JF{x*0,
84)

Generation 23

Axiom: (0.24,0.6,0)4(35,4)

Rule; # A(x,w)->1{(w)F(x)[F(x*
0.58)][&(20)FA(x*0.59,w*0 58} (w*
0.55)F(x*}.56) 1 [F(x*0.52)][&(20)5 A
{(x*0.55,w*0.49)!(w*0.6 1 )F(x*0.55)]

[F(x*0.47))[&(20)SA(x*0.55,w*(.42)
JF(x*0.68)1JF(x*0.6 1)]F(x*0.51)

Generation 37

Axiom: (0.24,0.6,00A(21,7)

Rule : # A(x,w)->!1{w)F(x)[F(x*
0.5N)[&20)BA(x*0.81, w*0.81){(w*0.85)F
(x*0.8D[Fx*03DN&2NSA(x*0.81,w*0.45
MWW*05TIF(x*0.68)[F(x*0.55)[[&(ZMNSA(x

*0.45,w*0.45)]F(x*0.831)F(x*0.8 1) 1]F(x*0.
47)

Generation 37

(0.24,0.6,00A(32,6)

Rule: # A(x,w)->!(w)F(x)(F
(x*0.8D[&CNSA(x*0.59,w*0.57)(w
.6 DF(x*0.55)[F(x*0.53)][&(20)SA
(x*0.55,w*0.65)(w*0.68)F(x*0.81)[

F(x*0.79)][&(20)$A(x*0.45,w*0.54)]
F(x*0.39)]F(x*0.8 NJF(x*0.42)

Axiom:

Generation 75

Axiom: (0.24,0.6,0)A(12,4)

Rule : # A(x,w)->I{(w)F(x)[F(x*

0. 83N[&COSA(x*0.41,w*0.81)(w*0.72)F
(x*Q.3DF(x*0. 5T [&(20)FA(x*0.33,w*0.45
P 0.4 DF(x*0.72) 1 [F(x*0.88)][&(20)$A(

X*0.45, w*0.45)]F(x*0.84)]F (x*0.74)]F(x*0.
48)

Generation 75

Axiom: (0.24,0.6,0)A(30,5)

Rule: # A(x,w)->I(w)F(x)[F(x

*O ST &C2OFA(x*0.51,w*0.53)(w
*0.83)F(x*0.38)[F(x*0.64)][&(20)FA
(x*0.48 w*0.45)(w*0.8 DF(x*0.65)[

F(x*0.31)][&(20)SA(x*0.45,w*0.84)]
F(x*0.76)]F(x*0.88)JF(x*0.76)
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Experiment 2

Input by User . !F{[-F]]F[+F]

Input Parameters: 11,7, 29 28 26,7

L-String o IF[[-F[[-FIIF[+FIFIIE[+F[-FIIF [+ FIF]
VIGA-2D for all results.

Random Generated Chromosome (n=27):

J1,7.29.282623,22,23,32,12,5,32,30,31,33,23,28,10,29,23,29,12,22,33,25,34,29

Result 1:

Axiom: (0.24,0.6,0)4(31,4)

Rule: # Afx,w)->/(wW)FE)[[-(20)8A(x*0.43,w*0.45)!(w*0.49)F(x*0.8
DIf-20)$A(x*0.45,w*0.48) F(x*0.38) ] JF(x*0.47)[+(20)8A{x*0.63, w*

0.35)F(x*0.81)]F(x*0.44)]JF(x*0.5[)+ (20)SA(x*0. 45, w*0.45)! (w*0.41)F(x*0.46) /-
(20)8A(x*0.72,w*0. 45)F(x*0.82) I JTF(x*0.47)[+(20)SA

(x*0.47, w0 45) F(x*0.67) 1 [F(x*(.62)]

Result 2:

Axiom: (0.24,0.6,0)4(31,7)

Rule: # A(x,w)->1{(W)F)[[-CMSA(x*0.45,w*0.45)(w*0.83)F(x*0.8
DI-COPA(x*0.61,w*0.6F(x*0.52) 1 JF(x*0.63)[+(20)SA(x*0.81,

w*0.57)1 TF(x*0.83)]F(x*0.5])]F(x*0.6T)[ + (20)$A(x*0.45,w*0.45)(w*0.66)F(x*0.
6])[-(20)BA(x*0.45,W*0.45)F(x*0.58) 1 1]F(x*0.65)[+(2

0)FA(x*0.65,w*0.45)F(x*0.46)1|F(x*0.87)]

Result 3:

Axiom: (0.24,0.6,0)4(37.8)

Rule: # Agxw)->!tw)F ) {[-(20)8Ax*0.77 w*0.45) ! (w*0.56)F(x*0.7
B)[-(20)8A(x*0.45w*0.45)F(x*0.81)]JF(x*0.49)[+(20)SA(x*0. 80, w*

0.43)F(x*0.36)1JF(x*0.5)JJF(x*0.81)[+(20)8A(x*0.45,w*0.45)I(w*0.32)F(x*0.81)
[[-(20)8A(x*0.4F,w*0.81)(x*0.53)]] F(x*0.81)[+(20)$4

(X*0.45,w*0.45)F(x*0.69) 1JF(x*0.61)]

Result 4:
Axiom: (0.24.0.6,0)4(19.3)

Rule: # Afx,w)->w)F)f{-(20)8Ax*0.74,w*0.51) I(w*0.32)F(x*0. 79}f[-
(2018 A(x*0.45w*0.6 7)F(x*0.41)]IF(x*0.89)[+(20)§A(x*0.45,

WH0.45)F(c*0.84)] F(x*0.84) ]JF(x*0.3 [)[ +(20)8A(x*0.45,w*0.39)(w*0.81)F (x *0.
8D[[-(20)8A(x*0.55,w*0.6 [)F (x*0.86)]JF (x*0.81)[ +(2

0)$A(x*0.86,w*0.45)F(x*0.5 1)1 JF(x*0.55)]
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Result 5:
Axiom: (0.24,0.6,0)A4(28,8)

Rule: # A(x,w)->!(w)F()[[-(20)8A(x*0.8 1, w*0.45){w*0.77)F(x*0.72)[[-
(20)8A(x*0.66,w*0.45)F(x*0.58)J]F (x*0.7 ) +(20)SA(*0.45,w*0.45) F(x*0.68) ] F(
X*0.81IJTF(:*0.81)[+(20)SA(x*0.5,w*0.43)(w*0. 77)F(x*0.82)[[-{20)8A(x*0.45

WHCAS)F (0.8 JJF(x*0.76){ +(20)8A(x*0.835,w*0.45)F(x*0.36) | F(x*0.62)]
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