
STATUS OF THESIS 

Title of thesis: 
IDENTIFICATION AND QUANTIFICATION OF 
VARIABILITY MEASURES AFFECTING CODE 

REUSABILITY IN OPEN SOURCE ENVIRONMENT 

I, FAZAL-E-AMIN 
----------------------~==~~~~~---------------------

hereby allow my thesis to be placed at the Information Resource Center (IRC) of 

Universiti Teknologi PETRONAS (UTP) with the following conditions: 

1. The thesis becomes the property of UTP 

2. The IRC ofUTP may make copies of the thesis for academic purposes only. 

3. This thesis is classified as 

l_______jl Confidential 

I ~ I Non-confidential 

If this thesis is confidential, please state the reason: 

The contents of the thesis will remain confidential for _________ years. 

Remarks on disclosure: 

Signature of Author 

Permanent address: 

128-Khayaban Garden, Sargodha Road 

F aisalabad Pakistan 

Date: I :1. / '.3> ( Zr f 1--, 

~· 

Endorsed by . 

Assoc. Prof. Dr. Ahmad Kamil 

Bin Mahmood 

Date: Is/ 1 /.,_, 1 L-



UNIVERSITI TEKNOLOGI PETRONAS 

IDENTIFICATION AND QUANTIFICATION OF VARIABILITY MEASURES 

AFFECTING CODE REUSABILITY IN OPEN SOURCE ENVIRONMENT 

By 

FAZAL-E-AMIN 

The undersigned certify that they have read, and recommend to the Postgraduate 

Studies Programme for acceptance this thesis for the fulfilment of the requirements 

for the degree stated. 

Signature: 

Main Supervisor: 

j 
,.,~'". o<~<"" .... .w' 
d"~ .. ~ ... -

ASSOC. PROF. DR. AH B'11V\MIL BIN 
MAHMOOD 

Or Alan Oxley ,_., 
Signature: 

~~~~~~~.;";~~:~ De~·t··'«· 
PROF. DR. ALAN OXLEY q ~·. ' Co-Supervisor: 

Signature: 

Head of Department: 

Date: 

ASSOC. PROF. DR. MOHO FADZIL BIN 
HASSAN 

- ,, . 



IDENTIFICATION AND QUANTIFICATION OF VARIABILITY 

MEASURES AFFECTING CODE REUSABILITY IN OPEN SOURCE 

ENVIRONMENT 

by 

FAZAL-E-AMIN 

A Thesis 

Submitted to the Postgraduate Studies Programme 

As a Requirement for the Degree of 

DOCTOR OF PHILOSOPHY 

INFORMATION TECHNOLOGY 

UNTVERSITI TEKNOLOGI PETRONAS 

BANDAR SERI ISKANDAR, 

PERAK 

March 2012 



Title of thesis 

DECLARATION OF THESIS 

IDENTIFICATION AND QUANTIFICATION OF 

VARIABILITY MEASURES AFFECTING CODE 

REUSABILITY IN OPEN SOURCE ENVIRONMENT 

F AZAL-E-AMIN 

hereby declare that the thesis is based on my original work except for quotations and 

citations which have been duly acknowledged. I also declare that it has not been 

previously or concurrently submitted for any other degree at UTP or other institutions. 

~· 
Signature of Author 

Permanent address: 

128-Khayaban Garden, Sargodha Road 

Faisalabad Pakistan 

Date : _1_3-f-/_?....L/_'l..-_1 2-___ _ 

lV 

Witnessed by 

Name of Supervisor: 

Assoc. Prof. Dr. Ahmad Kamil 

Bin Mahmood 

Date: 



DEDICATION 

I dedicate this thesis to my beloved parents, fiancee, siblings, and friends who have 

supported me throughout the time of this degree and life. I also dedicate this thesis to 

my teachers who have made me able to reach this level. 

v 



ACKNOWLEDGEMENT 

I thank Almighty Allah for giving me the strength to complete this endeavor. I would 

like to thank all those who have directly or indirectly helped me to complete this 

thesis. I would like to thank my supervisor Assoc. Prof. Dr. Ahmad Kamil Mahmood 

for his support and advices which has enabled me to shape up this work. I express my 

gratitude to my co-supervisor Prof. Dr. Alan Oxley for his kind support and valuable 

time to review the research work. 

I would like to thank all my friends, fellow researchers and colleagues for making 

my time memorable. It would be a bit difficult without their support to settle here. 

Last, but not the least, I would like to thank my family, especially my father, Hamid 

Amin Soofi for guiding me and giving me a vision and mission for life. 

vi 



ABSTRACT 

Open source software (OSS) is one of the emerging areas in software engineering, and 

is gaining the interest of the software development community. OSS was started as a 

movement, and for many years software developers contributed to it as their hobby 

(non commercial purpose). Now, OSS components are being reused in CBSD 

(commercial purpose). However, recently, the use of OSS in SPL is envisioned 

recently by software engineering researchers, thus bringing it into a new arena. Being 

an emerging research area, it demands exploratory study to explore the dimensions of 

this phenomenon. Furthermore, there is a need to assess the reusability of OSS which 

is the focal point of these disciplines (CBSE, SPL, and OSS). In this research, a mixed 

method based approach is employed which is specifically 'partially mixed sequential 

dominant study'. It involves both qualitative (interviews) and quantitative phases 

(survey and experiment). During the qualitative phase seven respondents were 

involved, sample size of survey was 396, and three experiments were conducted. The 

main contribution of this study is results of exploration of the phenomenon 'reuse of 

OSS in reuse intensive software development'. The findings include 7 categories and 

39 dimensions. One of the dimension factors affecting reusability was carried to the 

quantitative phase (survey and experiment). On basis of the findings, proposal for 

reusability attribute model was presented at class and package level. Variability is one 

of the newly identified attribute of reusability. A comprehensive theoretical analysis 

of variability implementation mechanisms is conducted to propose metrics for its 

assessment. The reusability attribute model is validated by statistical analysis of I 03 

classes and 77 packages. An evolutionary reusability analysis of two open source 

software was conducted, where different versions of software are analyzed for their 

reusability. The results show a positive correlation between variability and reusability 

at package level and validate the other identified attributes. The results would be 

helpful to conduct further studies in this area. 

Vll 



ABSTRAK 

Perisian sumber terbuka (OSS) ialah salah satu bidang yang baru muncul dalam 

kejuruteraan perisian dan sedang mendapat perhatian di kalangan komuniti 

pembangunan perisian. OSS dimulakan sebagai satu gerakan dan untuk beberapa 

tahun para pembangun perisian menyumbang kepadanya sebagai satu hobi (tujuan 

bukan komersil). Kini, komponen-komponen OSS diguna semula dalam CBSD 

(tujuan komersil). Bagaimanapun, sejak akhir-akhir ini, penggunaan OSS di dalam 

SPL telah dibayangkan oleh para penyelidik kejuruteraan perisian, sekaligus 

membawanya ke satu arena baru. Sebagai satu bidang penyelidikan baru, 

memerlukan kajian eksploratori untuk mencari dimensi-dimensi fenomena ini. 

Tambahan pula, terdapat keperluan untuk menilai penggunaan semula OSS yang 

mana merupakan titik fokus disiplin-disiplin ini (CBSE, SPL dan OSS). Dalam kajian 

ini, pendekatan berasaskan kaedah campuran pekerjaan yang khusus 'sebahagian 

campuran kajian berurutan dominan'. Ia melibatkan kedua-dua kualitatif (temubual) 

dan fasa kuantitatif (kajian dan eksperimen). Semasa fasa kualitatif tujuh orang 

responden terlibat, saiz sampel kajian adalah 396, dan tiga eksperimen telah 

dijalankan. Sumbangan utama kajian ini adalah hasil penerokaan 'guna semula OSS 

dalam pembangunan perisian penggunaan semula intensif fenomena. Penemuan 

merangkumi 7 kategori dan 39 dimensi. Salah satu dari faktor-faktor yang 

mempengarui penggunaan semula dibawa ke fasa kuantitatif (kaji selidik dan 

eksperimen). Atas dasar penemuan, cadangan untuk model atribut boleh gunapakai 

telah dibentangkan di peringkat kelas dan pakej. Kebolehubahan adalah salah satu 

sifat yang baru yang dikenal pasti boleh gunapakai. Sebuah analisis teoretikal yang 

komprehensif ke atas mekanisma pelaksanaan kepelbagaian fungsi ini dijalankan bagi 

mencadangkan metrik untuk penilaiannya. Sebuah model ciri penggunaan semula 

telah dicadangkan dan disahkan dengan analisis statistik ke atas I 03 kelas dan 77 

pakej. Satu analisis penggunaan semula secara evolusi ke atas dua peri sian sumber 

terbuka telah dijalankan, di mana perisian pelbagai versi telah dianalisa untuk 

menentukan kebolehgunaan semulanya. 

V111 



Hasil kajian menunjukkan hubungan yang positif antara kebolehubahan dan 

gunapakai semula di peringkat pakej dan mengesahkan sifat -sifat lain yang dikenal 

pasti. Keputusan akan membantu anda untuk menjalankan kajian selanjutnya dalam 

bidang ini. 

IX 



In compliance with the terms of the Copyright Act 1987 and the lP Policy of the 

university, the copyright of this thesis has been reassigned by the author to the legal 

entity of the university, 

Institute of Technology PETRONAS Sdn Bhd. 

Due acknowledgement shall always be made of the use of any material contained 

in, or derived from, this thesis. 

© Fazal-e-Amin, 2011 

Institute of Technology PETRONAS Sdn. Bhd. 

All rights reserved. 

X 



TABLE OF CONTENTS 

ACKNOWLEDGEMENT ............................................................................................. vi 

ABSTRACT .................................................................................................................. vii 

ABSTRAK ................................................................................................................... viii 

TABLE OF CONTENTS ............................................................................................... xi 

CHAPTER I ................................................................................................................... ! 

I. INTRODUCTION ................................................................................................... I 

1.1 Overview .......................................................................................................... I 

1.2 Software and Engineering of Software ............................................................ I 

1.3 Software Reuse ................................................................................................. 2 

1.3 .I Objectives of Reuse .................................................................................. 4 

1.4 Background Research ....................................................................................... 4 

1.4.1 Open Source Software and Reuse-Intensive Software Development.. ..... 4 

1.4.2 Assessment of Reusability ........................................................................ 5 

1.4.3 Selection of Components .......................................................................... 7 

1.4.4 Software Variability and Implementation Mechanisms ........................... 7 

1.5 Problem Statement ........................................................................................... 8 

1.6 Research Questions .......................................................................................... 9 

I. 7 Research Objectives ......................................................................................... 9 

1.8 Research Activities ........................................................................................... 9 

1.9 Contribution ................................................................................................... II 

1.10 Thesis Structure .............................................................................................. II 

2. LITERATURE REVIEW ...................................................................................... 13 

2.1 Overview ........................................................................................................ 13 

2.2 Open Source Software .................................................................................... l3 

XI 



2.2.1 Use ofOSS in CBSE and SPL ................................................................ l4 

2.2.2 OSS Definition ........................................................................................ 14 

2.2.3 Advantages of OSS ................................................................................. 16 

2.2.4 Drawbacks of OSS .................................................................................. 17 

2.3 Related Works on Using OSS ........................................................................ 18 

2.4 Reusable Software Assets .............................................................................. 20 

2.5 Reuse-intensive Software Development ........................................................ 21 

2.5.1 Software Product Line ............................................................................ 22 

2.5.2 Component Based Software Development ............................................. 23 

2.5.3 CBSE Development Generic Activities .................................................. 23 

2.6 Open Source Components Based Product Lines ............................................ 23 

2.7 Literature Review Process .............................................................................. 24 

2.8 Classification of the Approaches .................................................................... 27 

2.8.1 Types ....................................................................................................... 27 

2.8.2 Applicability ........................................................................................... 30 

2.8.3 Validation Types ..................................................................................... 33 

2.8.4 Synthesis of Literature Review ............................................................... 3 7 

2.9 Literature Review on Variability .................................................................... 37 

2.9.1 Variability Types (with respect to effect) ............................................... 37 

2.9.2 Variability Types (with respect to functionality) .................................... 39 

2.9.3 Variability Scope .................................................................................... 39 

2.9.4 Binding Time ofVariability .................................................................... 40 

2.10 Software Engineering Measurements and Metrics ........................................ .41 

2.1 0.1 Reuse Metrics and Models ...................................................................... 42 

2.11 Identification of Need to Conduct This Study .............................................. .42 

2.12 Summary ........................................................................................................ 43 

CHAPTER 3 ................................................................................................................. 45 

3. RESEARCH METHODOLOGY .......................................................................... 45 

3.1 Overview ........................................................................................................ 45 

Xll 



3.2 Philosophical Basis of Research .................................................................... 45 

3 .3 Basis of Mixed Method Research .................................................................. 4 7 

3.3.1 Purpose of Mixed Methods ..................................................................... 48 

3.3 .2 Types of Mixed Method Studies ............................................................ .48 

3.3 .3 Type of Mixed Method Chosen for Study ............................................. .49 

3.4 Research in Software Engineering ................................................................. 50 

3.4.1 Mixed Methods in Software Engineering ............................................... 51 

3.5 Purpose Based Classification of Research Studies ........................................ 51 

3.5.1 Exploratory Research Studies ................................................................. 52 

3.5.2 Descriptive Research Studies .................................................................. 52 

3.5 .3 Explanatory Research Studies ................................................................. 52 

3.5.4 Emancipatory Research Studies .............................................................. 52 

3.5.5 Interpretive Research Studies ................................................................. 53 

3.6 Research Design ............................................................................................. 53 

3.7 Qualitative Methods ....................................................................................... 54 

3.7.1 Interview ................................................................................................. 55 

3.7.2 Types of Interview .................................................................................. 55 

3.7.3 Question Formulation Process for Interview .......................................... 57 

3.7.4 Respondents' Profiles ............................................................................. 58 

3.7.5 Interview Guide ...................................................................................... 59 

3.8 Qualitative Analysis (Content Analysis) ........................................................ 61 

3.8.1 Word Cloud ............................................................................................. 63 

3.8.2 atlas.ti ...................................................................................................... 63 

3.9 Quantitative Methods ..................................................................................... 65 

3.9.1 Survey ..................................................................................................... 65 

3.9.2 Quantitative Analysis .............................................................................. 69 

3.9.3 Statistical Techniques ............................................................................. 70 

3.9.4 Experiments ............................................................................................ 71 

3.9.5 Statistical Analysis Tool ......................................................................... 73 

3.10 OSS Selection ................................................................................................. 73 

Xlll 



3.10.1 Jasmin ..................................................................................................... 73 

3.10.2 pBeans ..................................................................................................... 74 

3.11 Metrics Calculation Tool... ............................................................................. 74 

3.12 Goal Question Metric Approach .................................................................... 74 

3.13 Validity of Research Results .......................................................................... 7 5 

3.13.1 Validity of Qualitative Results ................................................................ 76 

3.13.2 Validity of Quantitative Results .............................................................. 78 

3.13.3 Validity of Mixed Method Results ......................................................... 78 

3.14 Validation of Findings in Context of This Study ........................................... 81 

3.14.1 Validation of Qualitative Findings .......................................................... 81 

3.14.2 Validation of Quantitative Findings ........................................................ 82 

3.14.3 Validation of Mixed Method Findings ................................................... 83 

3.15 Summary ........................................................................................................ 85 

CHAPTER 4 ................................................................................................................. 87 

4. IDENTIFICATION OF CATEGORIES & DIMENSIONS IN REUSING OSS .. 87 

4.1 Overview ........................................................................................................ 87 

4.2 Categories & Dimensions of Reusing OSS in Reuse Intensive Environment87 

4.2.1 Challenges in OSS .................................................................................. 88 

4.2.2 Current Reuse Practices .......................................................................... 94 

4.2.3 Using OSS in SPL.. ................................................................................. 96 

4.2.4 Role of OSS in promoting reuse ............................................................. 98 

4.2.5 Factors Affecting Reusability ............................................................... I 00 

4.2.6 Desirable Characteristics of OSS .......................................................... I 04 

4.2.7 Suggestions ........................................................................................... 108 

4.2.8 Other Considerations ............................................................................ 110 

4.3 Attribute Ranking Survey ............................................................................. 111 

4.3.1 Theoretical Analysis of Variability Implementation Mechanism ......... 121 

4.4 Summary ...................................................................................................... 128 

CHAPTER 5 ............................................................................................................... 129 

5. CORRELATION STUDY OF FACTORS AFFECTING REUSABILITY ....... 129 

XIV 



5.1 Overview ...................................................................................................... 129 

5.2 Reusability Assessment Conceptual Model ................................................. 129 

5.3 Proposed Class Level Reusability Attribute Model ..................................... l30 

5.3.1 Reusability GQM Model... .................................................................... 131 

5.3.2 Attributes ............................................................................................... l32 

5.3.3 Sub Attributes ....................................................................................... 138 

5.3.4 Class Level Metrics ............................................................................... 139 

5.4 Metrics Threshold Values and Equations ..................................................... 141 

5.5 Proposed Package Level Reusability Attribute Model ................................ 143 

5. 5.1 Package Level Metrics .......................................................................... 146 

5.6 Reusability Assessment at Class Level ........................................................ 149 

5.6.1 Metrics and Attributes Analysis ............................................................ 149 

5.6.2 Attribute Analysis ................................................................................. 158 

5.7 Reusability Assessment at Package Level ................................................... 163 

5.7.1 Attribute Analysis ................................................................................. 164 

5.8 Evolutionary Reusability Analysis at Package Level .................................. 168 

5.8.1 Reusability Analysis of Jasmin ............................................................. 168 

5.8.2 Reusability Analysis of pBeans ............................................................ 181 

5.9 Summary ...................................................................................................... 196 

CHAPTER 6 ............................................................................................................... 199 

6. DISCUSSIONS ................................................................................................... 199 

6.1 Overview ...................................................................................................... 199 

6.2 Key Findings of Research ............................................................................ 199 

6.2.1 Review of Reusability Assessment Approaches ................................... 199 

6.2.2 Analysis of V ariabi1ity Implementation Mechanisms .......................... 200 

6.2.3 Identification of Challenges in OSS ..................................................... 201 

6.2.4 Identification of Current Reuse Practices ............................................. 202 

6.2.5 Using OSS in an SPL ............................................................................ 203 

6.2.6 Role ofOSS in Promoting Reuse .......................................................... 204 

XV 



6.2. 7 Identification of Factors Affecting Reusability .................................... 204 

6.2.8 Identification of Desirable Characteristics of OSS Components .......... 206 

6.2. 9 Proposed Reusability Assessment Model ............................................. 207 

6.2.1 0 Statistical Results .................................................................................. 208 

6.2.11 Evolutionary Analysis of Reusability ................................................... 209 

6.3 Synthesis of the Qualitative and Quantitative Results ................................. 209 

6.3 .I Flexibility .............................................................................................. 21 0 

6.3 .2 Maintainability ...................................................................................... 21 0 

6.3 .3 Portability .............................................................................................. 211 

6.3 .4 Scope Coverage .................................................................................... 211 

6.3.5 Stability ................................................................................................. 211 

6.3 .6 Understandability .................................................................................. 212 

6.3.7 Usage History ........................................................................................ 212 

6.3.8 Variability ............................................................................................. 212 

6.3.9 Documentation ...................................................................................... 213 

6.4 Key Findings and Implications .................................................................... 213 

6.4.1 Review of Literature ............................................................................. 213 

6.4.2 Methodological Contribution ................................................................ 215 

6.4.3 Practical Contribution ........................................................................... 216 

6.5 Summary ...................................................................................................... 221 

CHAPTER 7 ............................................................................................................... 223 

7. CONCLUSIONS ................................................................................................. 223 

7.1 Research Summary ....................................................................................... 223 

7.2 Achievement of Research Objectives .......................................................... 224 

7.3 Contributions ................................................................................................ 228 

7.4 Limitations ................................................................................................... 228 

7.5 Future Directions .......................................................................................... 229 

REFERENCES ........................................................................................................... 230 

List of Publications ..................................................................................................... 244 

APPENDICES ............................................................................................................ 246 

XVI 



A. Interview guide .................................................................................................. 246 

B. Code of Software used to calculate attribute values .......................................... 248 

C. Pseudo Code to calculate package level attribute values ................................... 252 

D. Detailed Component Specifications ................................................................... 254 

E. Detailed Package Specifications ......................................................................... 260 

F. Reusability Attribute Values ............................................................................... 264 

G. Questionnaire ..................................................................................................... 274 

H. List of Sources ................................................................................................... 2 78 

I. Package Analysis (jasmin and pBeans) ............................................................... 279 

J. Critical Values ofthe Pearson Correlation Coefficient r .................................... 304 

xvn 



List of Figures 

Figure 1.1 Dimensions of software reuse ...................................................................... 3 

Figure 1.2 Generic research activities .......................................................................... ! 0 

Figure 2.1 Literature review process- adapted from (Brereton eta!., 2007) ............... 26 

Figure 2.2 Year wise search results ............................................................................. 26 

Figure 2.3 Types of Approaches .................................................................................. 27 

Figure 2.4 Applicability of approaches - paradigms .................................................... 31 

Figure 2.5 Applicability of approaches- programming languages .............................. 32 

Figure 2.6 Applicability of approaches -level.. ........................................................... 32 

Figure 2.7 Types ofvalidation ..................................................................................... 35 

Figure 2.8 Relationship of Variability types and scope .............................................. .40 

Figure 3.1 Epistemology, paradigm, methodology and methods [91] ........................ .46 

Figure 3.2 Typologies of mixed method studies [92] .................................................. 49 

Figure 3.3 Research design .......................................................................................... 54 

Figure 3.4 Abstraction process .................................................................................... 62 

Figure 3.5 Content analysis process ............................................................................. 62 

Figure 3.6 Word cloud of interview transcription ....................................................... 64 

Figure 3. 7 Experience of population in years .............................................................. 67 

Figure 4.1 Frequency distribution of the scales assigned to flexibility ..................... 112 

Figure 4.2 Frequency distribution of the scales assigned to scope coverage ............. 113 

Figure 4.3 Frequency distribution of the scales assigned to portability .................... 114 

Figure 4.4 Frequency distribution of the scales assigned to maintainability ............. 115 

Figure 4.5 Frequency distribution of the scales assigned to variability ..................... 116 

Figure 4.6 Frequency distribution of the scales assigned to understandability ......... 117 

Figure 4. 7 Frequency distribution of the scales assigned to documentation ............. 118 

Figure 4.8 Frequency distribution of the scales assigned to usage history ................ 119 

Figure 4. 9 Frequency distribution of the scales assigned to stability ........................ 120 

Figure 5.1 Conceptual model of reusability assessment.. .......................................... 130 

Figure 5.2 Relationship of variability with metrics ................................................... 137 

Figure 5.3 Reusability attribute model (class level) .................................................. 141 

Figure 5.4 Reusability attribute model (package level) ............................................. 148 

XVlll 



Figure 5.5 Scatter plot of MI vs. Maintainability ...................................................... 150 

Figure 5.6 Scatter plot of CC vs. Maintainability ...................................................... 151 

Figure 5. 7 Scatter plot of CBO vs. Flexibility ........................................................... 152 

Figure 5.8 Scatter plot ofLCOM vs. Flexibility ........................................................ l53 

Figure 5.9 Scatter plot ofCBO vs. Understandability ............................................... 154 

Figure 5.10 Scatter plot of LCOM vs. Understandability .......................................... !55 

Figure 5.11 Scatter plot of Comments vs. Understandability .................................... 156 

Figure 5.12 Scatter plot of LOC vs. Understandability ............................................. !56 

Figure 5.13 Scatter plot of NOM vs. Understandability ............................................ 157 

Figure 5.14 Scatter plot of flexibility vs. reusability ................................................. 158 

Figure 5.15 Scatter plot of Understandability vs. Reusability ................................... !59 

Figure 5.16 Scatter plot of scope-coverage vs. reusability ........................................ 160 

Figure 5.17 Scatter plot of variability vs. reusability ................................................. 161 

Figure 5.18 Scatter plot of maintainability vs. reusability ......................................... 162 

Figure 5.19 Scatter plot of portability vs. reusability ................................................ 162 

Figure 5.20 Scatter plot of flexibility vs. reusability ................................................. 164 

Figure 5.21 Scatter plot of variability vs. reusability ................................................. 165 

Figure 5.22 Scatter plot of portability vs. reusability ................................................ 166 

Figure 5.23 Scatter plot of maintainability vs. reusability ......................................... 166 

Figure 5.24 Scatter plot of understandability vs. reusability ..................................... 167 

Figure 5.25 Reusability and its attribute values for packege-1 .................................. 170 

Figure 5.26 Graph plot of values of LOC and understandability package-! ............. 171 

Figure 5.27 Graph plot of values of NOM and understandability package-! ............ 171 

Figure 5.28 Graph plot of values of comments and understandability package-1.. ... 172 

Figure 5.29 Graph plot of values ofMI and maintainability package-1 .................... 173 

Figure 5.30 Graph plot of values ofCC and maintainability package-! ................... 173 

Figure 5.31 Reusability and its attribute values for packege-2 .................................. 175 

Figure 5.32 Graph plot of values of Ml and maintainability package-2 .................... 176 

Figure 5.33 Graph plot of values of CC and maintainability package-2 ................... 176 

Figure 5.34 Reusability and its attribute values for packcge-3 .................................. 177 

Figure 5.35 Graph plot of values ofLOC and understandability package-3 ............. 178 

Figure 5.36 Graph plot of values of NOM and understandability package-3 ............ 179 

XIX 



Figure 5.37 Graph plot of values of comments and understandability package-3 ..... 179 

Figure 5.38 Graph plot of values of comments and understandability package-3 ..... 180 

Figure 5.39 Graph plot of values ofCC and maintainability package-3 ................... 181 

Figure 5.40 Reusability and its attribute values for package-2 .................................. 182 

Figure 5.41 Graph plot of values of LOC and understandability package-2 ............. 184 

Figure 5.42 Graph plot of values of NOM and understandability package-2 ............ 184 

Figure 5.43 Graph plot of values of comments and understandability package-2 ..... 185 

Figure 5.44 Graph plot of values ofMI and maintainability package-2 .................... 186 

Figure 5.45 Graph plot of values ofCC and maintainability package-3 ................... 186 

Figure 5.46 Reusability and its attribute values for package-3 .................................. 187 

Figure 5.47 Graph plot of values ofLOC and understandability package-3 ............. 189 

Figure 5.48 Graph plot of values ofNOM and understandability package-3 ............ 189 

Figure 5.49 Graph plot of values of comments and understandability package-3 ..... 190 

Figure 5.50 Graph plot of values ofMI and maintainability package-3 .................... 191 

Figure 5.51 Graph plot of values of CC and maintainability package-4 ................... 191 

Figure 5.52 Reusability and its attribute values for packege-4 .................................. 192 

Figure 5.53 Graph plot of values of LOC and understandability package-4 ............. 193 

Figure 5.54 Graph plot of values of NOM and understandability package-4 ............ 194 

Figure 5.55 Graph plot of values of comments and understandability package-4 ..... 194 

Figure 5.56 Graph plot of values ofMI and maintainability package-4 .................... 195 

Figure 5.57 Graph plot of values of CC and maintainability package-S ................... 196 

Figure 7.1 Summary of the research work ................................................................. 225 

Figure 7.2 Summary of findings ................................................................................ 227 

XX 



List of Tables 

Table 2.1 Advantages of OSS ...................................................................................... 17 

Table 2.2 Drawbacks of OSS ....................................................................................... 18 

Table 2.3 Review Protoco1 ........................................................................................... 26 

Table 2.4 Applicability of approaches ......................................................................... 33 

Table 2.5 Types of validation ...................................................................................... 36 

Table 3.1 Information about the respondents .............................................................. 60 

Table 3.2 Means used to conduct interviews ............................................................... 60 

Table 3.3 Survey sample size and related figures ........................................................ 69 

Table 3.4 Details of packages Jasmin and pBeans ...................................................... 74 

Table 3.5 Experiment sample comparison-! ............................................................... 82 

Table 3.6 Experiment sample comparison-2 ............................................................... 82 

Table 3.7 Experiment sample comparison-3 ............................................................... 83 

Table 4.1 Categories and their description .................................................................. 88 

Table 4.2 Sub categories of challenges in OSS ........................................................... 92 

Table 4.3 Sub categories of current reuse practices ..................................................... 95 

Table 4.4 Sub categories of using OSS in an SPL ....................................................... 97 

Table 4.5 Sub categories of role of OSS in promoting reuse ....................................... 99 

Table 4.6 Identified factors and representative quotes .............................................. ! 02 

Table 4.7 Desirable characteristics ofOSS and representative quotes ...................... 106 

Table 4.8 Suggestions and representative quotes ...................................................... ! 09 

Table 4.9 Other considerations and representative quotes ......................................... II 0 

Table 4.10 Flexibility rankings .................................................................................. 112 

Table 4.11 Scope Coverage rankings ......................................................................... ll3 

Table 4.12 Portability rankings .................................................................................. 114 

Table 4.13 Maintainability rankings .......................................................................... 115 

Table 4.14 Variability rankings ................................................................................. 116 

Table 4.15 Understandability rankings ...................................................................... 117 

Table 4.16 Documentation rankings .......................................................................... 118 

Table 4.17 Usage History rankings ............................................................................ l19 

XXI 



Table 4.18 Stability rankings ..................................................................................... 120 

Table 4.19 Characteristics of aggregation ................................................................. 123 

Table 4.20 Characteristics of inheritance ................................................................... 124 

Table 4.21 Characteristics of parameterization! generalization ................................. 125 

Table 4.22 Characteristics of overloading ................................................................. 126 

Table 4.23 Characteristics of AOP ............................................................................ 128 

Table 5.1 GQ M Model Class Reusability .................................................................. 131 

Table 5.2 GQM for class variability .......................................................................... 137 

Table 5.3 Reusability attributes sub-attributes and metrics ....................................... 143 

Table 5.4 Package level attributes, sub attributes and metrics .................................. 144 

Table 5.5 GQM Model Package Reusability ............................................................. 145 

Table 5.6 Pearson's correlation values MI, CC and maintainability .......................... 151 

Table 5.7 Pearson's correlation values CBO, LCOM and Understandability ............ I 54 

Table 5.8 Pearson's correlation values Understandability and its attributes .............. 157 

Table 5.9 Pearson's correlation values of Reusability and its attributes (class level) 163 

Table 5.10 Pearson's correlation values of reusability & attributes (package level) .168 

Table 5 .II Version wise values of reusability and its attributes (package-!) ........... 169 

Table 5.12 Version wise values of understandability and its attributes (package-1).170 

Table 5.13 Version wise values of maintainability and its attributes (package-!) .... 172 

Table 5.14 Version wise values of reusability and its attributes (package-2) ........... 174 

Table 5.15 Version wise values of maintainability and its attributes (package-2) .... 175 

Table 5.16 Version wise values of reusability and its attributes (package-3) ........... 177 

Table 5.17 Version wise values of understandability and its attributes (package-3 ). 178 

Table 5.18 Version wise values of maintainability and its attributes (package-3) .... 180 

Table 5.19 Version wise values of reusability and its attributes (package-2) ........... 182 

Table 5.20 Version wise values of understandability and its attributes (package-2).183 

Table 5.21 Version wise values of maintainability and its attributes (package-2) .... 185 

Table 5.22 Version wise values of reusability and its attributes (package-3) ........... 187 

Table 5.23 Version wise values of understandability and its attributes (package-3).188 

Table 5.24 Version wise values of maintainability and its attributes (package-3) .... 190 

Table 5.25 Version wise values of reusability and its attributes (package-4) ........... 192 

Table 5.26 Version wise values of understandability and its attributes (package-4).193 

xxii 



Table 5.27 Version wise values of maintainability and its attributes (package-4) .... 195 

Table 6.1 Comparison of reviewed studies ................................................................ 200 

Table 6.2 Comparison offindinds-1 .......................................................................... 201 

Table 6.3 Comparison of findings-2 .......................................................................... 202 

Table 6.4 Comparison of findinds-3 .......................................................................... 202 

Table 6.5 Comparison of findings-4 .......................................................................... 203 

Table 6.6 Comparison offindings-5 .......................................................................... 204 

Table 6.7 Comparison offindings-6 .......................................................................... 205 

Table 6.8 Comparison of findings -7 ......................................................................... 205 

Table 6.9 Comparison offindings-8 .......................................................................... 206 

Table 6.10 Comparison offindings-9 ........................................................................ 206 

XXIII 



List of Abbreviations 

Serial Acronym Meaning 

No. 

I A Abstractness 

2 CBO Coupling Between Objects 

3 CBSD Component Based Software Development 

4 CBSE Component Based Software Engineering 

5 cc Cyclomatic Complexity 

6 DIT Depth of Inheritance Tree 

7 GQM Goal Question Metric 

8 I Instability 

9 LCOM Lack of Cohesion Metric 

10 LOC Lines of Code 

11 MI Maintainability Index 

12 NOC Number of Child Classes 

13 NOM Number of Methods 

14 OS! Open Source Initiative 

15 oss Open Source Software 

16 PL Product Line 

17 SE Software Engineering 

18 SPL Software Product Line 

19 SPLE Software Product Line Engineering 

XXIV 



CHAPTER I 

INTRODUCTION 

Every program has (at least) two purposes: the one for which it was written, and the 

other for which it wasn't. (Alan J. Perlis, 1922-1990) 

1.1 Overview 

In this chapter a brief account of software and software engineering is presented. The 

chapter contains a detailed overview of software reuse and its dimensions. Reuse 

intensive software development and the inclusion of open source software during this 

development are highlighted. The background of problem, research question, 

objectives, research approach, and contributions are presented in this chapter. 

1.2 Software and Engineering of Software 

In 91
h century a Muslim mathematician Muhammad Al-Khwarizmi presented the 

concept of algorithm [I]. An 'algorithm' is a sequence of steps to solve a problem. 

The concept of algorithm is implemented using computers in the form of computer 

program in 1950's. A computer program consists of a sequence of instructions given 

to hardware to perform a specific task. During this evolution, the term 'software' was 

used for the collection of computer programs and related documentation. 

The term 'software engineering' was coined in 1968 during the first NATO 

software engineering conference [2]. Afterwards in the following decades it became 

more popular and researchers have come to realize its complexity and the difficulties 

due to technical, social and hardware related issues. 



Software engineering is defined as "the systematic application of scientific and 

technological knowledge, methods, and experience to the design, implementation, 

testing, and documentation of software" [3]. 

The primary aim of software engineering knowledge is the development of quality 

software within the resource and budgetary limits. Software reuse, being the process 

of creating new software by using existing software artifacts [4], is one of the ways to 

achieve the above mentioned goals. 

1.3 Software Reuse 

Software reuse has different facets. These facets can be categorized according to the 

substance, scope, mode, technique, intention and product [5]. 

The substance refers to the core of the reuse; that what is being reused. These 

substances include ideas, artifacts, and procedures [5]. Artifacts are not limited to but 

may include a piece of code, an object oriented class or a module. The idea of reuse is 

the case of reusing generic entity such as an algorithm. Procedures are the process 

elements that are reused in different stages of software development, such as the 

procedure to carry out inspections. 

The scope or domain scope [ 6] of reuse is either vertical or horizontal. The reuse 

of generic components across different domains is horizontal reuse. The vertical reuse 

refers to the reuse of software artifacts within the same domain. 

The approach [7] or mode [5] or management [6] of reusing software may include 

planned or opportunistic reuse. In planned reuse a software artifact is developed while 

keeping in mind that this artifact would be reused in future. 

The reuse techniques [7] include compositional and generative based reuse. In 

compositional reuse new systems are composed using existing components. The 

generative reuse technique is more like knowledge reuse such as the application 

generators. Specifications of the new system are written in domain specific language, 

while generators translate the specifications into codes [8]. 

2 



Substance 

Scope 

Mode 

Technique 

Intention 

Product 

•Idea 
•Artifacts 
• Procedures 

•Vertical 
• Horizontal 

• Planned Reuse 
• Opertunistic Reuse 

•Compositional 
• Generative based 

•Black box 
•White box 

• Documentation 
• Source code 
• Software design 
• Architecture 

Figure 1.1 Dimensions of software reuse 

The intention of reuse [5] can be categorized as black box reuse and white box 

reuse. Black box reuse is the 'as is' form of reuse. The components cannot be 

modified because the implementation of black box components is not visible from 

outside. The reuse is made possible by interacting with the specified interfaces. In 

white box reuse the implementation is visible from outside and components can be 

modified prior to their reuse. 

The products [7] to be reused are the artifacts of software which include almost 

all products/outcomes that resulted from different phases of the software development 

such as documentation, source code, software design, and architecture. 

3 



1.3.1 Objectives of Reuse 

Software reuse is not an objective in itself. Software is reused to gain benefits in terms 

of cost, effort and time. On the other hand, software reuse results in better quality, 

productivity and resource efficiency. An empirical study was conducted by [9] to 

provide the evidence of improved quality by employing reuse. The relationship 

between amount of reuse, quality, and productivity was explored in their study. It was 

concluded, on the basis of four sets of industrial data gathered, that more reuse results 

in better quality. 

A review of industrial studies was conducted by [I 0] to explore the effects of 

reuse on productivity and quality. It states that reuse significantly reduces correction 

efforts and thus increases productivity. 

1.4 Background Research 

The background of this research is presented in the next sections. This research has 

been conducted by considering the literature on different issues. Each of the issue is 

discussed in the following sections. 

1.4.1 Open Source Software and Reuse-Intensive Software Development 

Open Source Software (OSS) is gaining the interest of the software engineering 

community due to its numerous benefits. These benefits fall into different dimensions. 

One dimension is financial benefits, e.g. the reduction in maintenance cost [ 11] and 

the escape from vendor lock-in [11-12]. Another dimension is technical benefits 

including; having a large number of developers and testers [13-14] and less 

maintenance risk [15]. Other dimensions include user support from the community 

[14], encouraging innovation [16-17] and increased collaboration [18]. As we can see, 

these are multifaceted advantages to the use of OSS. The benefits may relate to social 

aspects or to financial ones. The factors which contribute to the popularity of OSS 

may also include increased bandwidth, improved search facilities, and the existence of 

4 



code conjurers [ 19]. The growth of the Internet is also one of the factors which has a 

huge impact on the way that software is developed, marketed, and supported [20]. 

OSS was started as movement and for many years software developers 

contributed to it as their hobby (non commercial purpose). However, now the use of 

OSS in Component Based Software Engineering is already a norm in the industry 

[21]. Recently, researchers have envisioned the use ofOSS in SPL development [22-

23]. So, OSS has entered into a new arena. Being an emerging research area it 

demands an exploratory study to identify the issues. Currently available knowledge in 

this research area is limited. This lack of knowledge is also recognized in [24]: "there 

has been no systematic synthesis of the OSS challenges reported in the literature." 

Therefore, it is obvious that there is a need to explore the use of OSS in reuse

intensive software development, especially in Software Product Lines (SPLs). In this 

study, not only the challenges, but also other dimensions to using OSS are explored, 

such as the current reuse practices, the desirable characteristics of OSS and the use of 

OSS in SPLs. 

1.4.2 Assessment of Reusability 

The disciplines of OSS, CBSE, and SPL share a common theme i.e. 'reusability'. A 

broader definition of reusability states it as "reapplication of various kinds of 

knowledge about one system to another system in order to reduce the effort of 

developing and maintaining that system" [25]. OSS is developed to be reused and 

contributed by numerous software engineers. 

The reuse-intensive software development methodologies such as CBSD and SPL 

reuse software artifacts to develop new products. In CBSD, software components are 

composed to develop software systems. In SPL, software assets are 'developed to 

reuse' and 'reused for development' [26]. The concept of reusability is the central 

tenant in these areas. So, in the context of OSS based development of CBSE I SPL it 

is important to assess the reusability of an asset. The reusability assessment is 

recognized as a research area in software engineering [8]. 

5 



In [8], it is pointed out that reuse assessment is necessary to make software reuse 

scientific and engineering approach. Several attempts, such as [27], [28], [29], [30] 

and [31], have been made to assess the reusability of software assets. The collection 

and synthesis of these works is also the need of time. It will provide the insight into 

the current state of the art and helps to identify the short comings which will pave the 

way forward. Once the factors affecting reusability of software are identified, a 

reusability assessment model can be formed to assess the reusability of code asset. It 

is a model which associates the reusability with its attributes. The model will help to 

understand the software. The importance of understanding and analyzing code cannot 

be neglected. As the code base increases the importance of its analysis, manipulation 

is also increased [32]. 

As stated earlier, the nature of this study is exploratory. A review of current 

approaches reveals that none of the proposed approaches have considered the 

emerging situation which arises due to the combination of OSS and SPLs. Reusability 

can be viewed as usability from the perspective of developer [33]. Usability is a 

subjective phenomenon. Interview can be used to have an insight into the opinions of 

the informants. In this study, these concerns are addressed and the interview is used 

as a tool to explore the phenomenon of reusability of OSS in reuse intensive software 

development. The potential benefits of reusability assessment include the facilitation 

in decision making at different levels (such as, managerial level, or at individual 

software developers' level). 

In the context of OSS, reusability is more of a concern due to the contributions 

from numerous developers. The reusability assessment of OSS prior to its reuse will 

give an idea about the ease of using it. The work presented in this thesis i.e. 

reusability assessment extends the view of [8] to make software reuse scientific and 

engineering approach rather than basing it on the perception and experience of 

software developer [34]. 

6 



1.4.3 Selection of Components 

Software reuse based development has become a standard in business and commercial 

software development [21]. Software reuse is commonly employed in two ways i.e. 

by the use of component libraries, as in component based software development 

(CBSD), and in a systematic way as in software product line development. Software 

artifacts are developed, from existing artifacts, with the intention of being reused. The 

product line development concept revolves around the terms 'commonality' (the 

requirements which are common to family members) and 'variability' (the 

distinguishing requirements). All products of a product line share the commonalities 

and are distinguished on the basis of variability. 

The three generic activities for using a component in CBSD are identification, 

selection and adaptation of component (if necessary). In the past, identification 

process was involved in decision making, either developing a component or buying a 

component [35]. Now with the emergence of OSS, it is the third option. During the 

selection of components, different criteria are used. These may include the legal 

aspects such as license type or maintenance support for the component. In the context 

of this thesis, a particular aspect i.e. reusability of component is assessed to facilitate 

the decision process. Reusability is the central concept in OSS (are being developed to 

reuse), CBSE and SPLs (products are developed by reusing software artifacts). So, 

reusability or ease of reusing software is one of the key factors while selecting 

software. This research that has been conducted will help to assess the software 

reusability which will facilitate the decision making process to select OSS. 

1.4.4 Software Variability and Implementation Mechanisms 

Variability is one of the central concepts in reuse-intensive software development 

environments. 'Variability' is defined as "the degree to which something exists in 

multiple variants, each having the appropriate capabilities" [36]. Variability is one of 

the current areas of interest in software engineering research community, its 

dimensions and issues are explored in [37] and [38]. Variability of software has many 

facets due to the complex nature of this phenomenon. Several researchers have 

7 



identified the variability implementation mechanisms [39-40], types of variability [41-

42], scope of variability [43], level of applicability, and binding time. Although, a 

categorization of variability mechanisms with reference to their characteristics is 

provided in [39], however, to update the body of knowledge it is necessary to revisit 

the analysis of variability mechanisms to include recent works in this area. In this 

thesis the types of variability identified by [ 41] and the scope of variability presented 

in [ 43] are also included, which update the earlier works like [39]. This synthesis of 

the literature is a need of time. It will serve the knowledge to the software 

development community which may help to identify and select appropriate variability 

mechanism. 

1.5 Problem Statement 

The problem statement of this study is based on followings: 

>- The reuse of OSS in CBSD is an established phenomenon. However, the use of 

OSS in SPL is envisioned recently. A few studies are available in literature which 

discus different dimensions of using OSS but these studies lack the context of SPL. 

So, the emergence of using OSS in systematic reuse environment i.e. SPL demands 

an exploratory study to revisit the dimensions of this research area. 

>- Reuse is a common theme in CBSD, SPL and OSS. OSS is developed to reuse and 

the reuse intensive software development is based on the reuse of existing software 

artifacts (as in CBSD and SPL). Therefore, the importance of reusability 

assessment is more signified in reuse intensive software development. 

>- A large number of OSS is accessible today through internet. It has changed the 

traditional decision process of software selection by adding OSS to existing 

choices which were either to develop software or to buy. The selection of OSS 

depends on many criteria; reusability is one of them which needs to be addressed. 

8 



1.6 Research Questions 

Following research questions are raised on the basis of the background knowledge on 

this area and problem statements; described in previous sections. 

RQ 1 - How reuse of open source software has been practiced in reuse intensive 

software development (SPLE and CBSE)? 

RQ2 - What are the factors affecting reusability of open source software in a reuse 

intensive software development? 

RQ3 -How to measure the factors affecting the reusability? 

RQ4 - What is the significance and nature of relationship between reusability and its 

identified attributes? 

1. 7 Research Objectives 

The objectives of this research include: 

? To explore the use of OSS in reuse intensive software development. 

o To identify the challenges in OSS. 

o To identify the current reuse practices. 

o To identify the practices of using OSS in SPL. 

o To explore the role of OSS in promoting reuse. 

o To identify the desirable characteristics of components. 

? To identify factors affecting the reusability of software component. 

? To identify metrics to measure the attributes of reusability. 

? To analyze and validate the identified factors. 

1.8 Research Activities 

In this study, the research activities (Figure 1.1) have been undertaken in three phases. 

Phase one is comprised of three activities which are literature review, problem 

identification and research planning. The review of the literature led to problem 

9 



definition and research planning. The research plan includes the selection of research 

methodology i.e. a framework of overall research activities, and research methods i.e. 

specific data collection techniques. The methodology is based on mix methods. The 

research activities include interviews, survey, experiment and statistical analysis. 

The second and third phase can be viewed as the execution phases. In phase two, 

interviews were conducted followed by the survey. The data collected using 

interviews were qualitatively analyzed. On the basis of the interviews, a questionnaire 

was designed, and a survey was conducted about the reusability attributes. The code 

level software metrics were searched to assess the identified reusability attributes. 

These metrics fall in two categories i.e. class level and package level. The outcome of 

phase two is a reusability attribute model. 

During phase three the proposed model was applied by computing the metrics 

values of open source software, at class level and package level. Statistical analysis 

was conducted to have a deep understanding of the relationship among the attributes. 

The second activity in this phase is the evolutionary reusability analysis. In this 

activity, the reusability of two open source software was assessed. The selected 

software has different versions. Comparisons of reusability and attribute values were 

made for each version. 

Phase-1 
Literature Review 
Problem definition 
ResearCb'planning 

~' '> '/"" f). 

Phase- II 
Qualitative data collection (Interviews) 

Quantitative data collection (Survey) 
Analysis of data 

Proposalfor reusaoillfY attributemollel 

Phase- III 
Quantitative data collection (application of software metrics) 

Evolutionary reusability analysis 
. Data analysis 

Prese'fttation.of~~~J\8. , ;;,'i~"' . 
,, ,,,,J' ,f<+~'f,,,,, , ,, 

Figure 1.2 Generic research activities 

10 

' 
\I : 



1.9 Contribution 

The main contribution of this study is the exploration of the phenomenon of reusing 

OSS in reuse intensive software development and proposal for reusability attribute 

model. The model is outcome of two empirical methods (interview and survey). The 

findings of the qualitative study based on the interviews (chapter 4) include the 

challenges in OSS, current reuse practices, issues related to OSS when using in SPL, 

the role of OSS in promoting reuse in software industry, desirable characteristics of 

OSS and factors affecting the reusability of OSS in SPL scenario. 

The proposed reusability attribute model is presented in chapter 5 at class level 

and package level. The factors of reusability are quantified using well established 

software metrics. However, metrics for two attributes namely variability and scope 

coverage are newly defined in this study due to their non existence in literature. The 

phenomenon of variability is extensively analyzed from the view point of 

implementation mechanisms. 

The proposed reusability attribute model is applied at the level of class and 

package in chapter 5. The results obtained by applying metrics are statistically 

analyzed to have a deep understanding about the relationship of attributes and 

reusability. Multiple versions of two open source software are analyzed to assess and 

observe their reusability during evolution. The results of these analyses are discussed 

under the light of earlier qualitative study and the studies available in literature. Other 

contributions of this thesis also include review of literature and methodological 

contributions discussed in chapter 2 and 3. 

1.10 Thesis Structure 

The thesis consists of seven chapters. In the second chapter a review of the literature 

is presented. The chapter is organized into two main sections; the first section 

contains the categorization of the available reusability assessment approaches, and in 

the second section the development of open source based SPL is discussed. 

11 



The research methodology of this study 1s presented in chapter three. The 

qualitative and quantitative methods used in this research are elaborated in this 

chapter. 

Chapters four and five are based on the results of this research. The results 

obtained using the qualitative and quantitative methods are presented in chapter four. 

In the second section of chapter four, the theoretical analysis of variability 

implementation mechanisms is presented. The proposed reusability attribute model, 

description of attributes and metrics are presented in chapter five along with the 

results acquired using the quantitative methods. 

The discussions about the results and implications of this study are presented in 

chapter six. The results are compared with the contemporary studies in this field. The 

thesis is concluded with limitations and future directions in chapter seven. 

12 



CHAPTER2 

LITERATURE REVIEW 

Research is to see what everybody else has seen, and to think what nobody else has 

thought. (Albert Szent-Gyiirgyi, 1893-1986) 

2.1 Overview 

This chapter presents the review of the relevant literatures. The chapter is organized 

into two main sections; and in the first section open source software is discussed 

along with its merits and demerits. The literatures regarding the proposals of OSS 

inclusion in SPL are reviewed. The second section contains the categorization of the 

available reusability assessment approaches and literature on software metrics. 

2.2 Open Source Software 

Open source software (OSS) development can be viewed as an alternate way of 

developing software. In traditional software development, including the proprietary or 

in-house development, the activities and the human resources are limited within a 

geographical location or conceptual jurisdictions of the company. In contrast to it, 

OSS is a community driven software development process. 



2.2.1 Use of OSS in CBSE and SPL 

Open source components can be used either as a black box (using binary files) or a 

white box (source code of component can be modified). OSS provides flexibility in 

deciding the type of reuse to be employed i.e. white box or black box.OSS can be 

modified to serve the purpose of an organization at any stage due to the availability of 

the source code. 

2.2.2 OSS Definition 

The definition of OSS [44] provided by the open source initiative (OS!) is based on 

the following I 0 points. 

I. Free Redistribution 

The OSS license does not restrict any party from selling or giving away the 

software as component of an aggregate software distribution comprising of programs 

from different sources. There is no royalty or any other fee associated with the 

license. 

2. Source Code 

The distinguishing characteristic of OSS is that the inclusion of source code is 

mandatory with the compiled forms. In case, if the source code is not circulated with 

the software, it must be available from a well known public resource such as 

downloading through internet. The available source code must be in a form which is 

modifiable. The code must not be made unclear intentionally. Any intermediate form 

including the pre-processor or translators output is not allowed. 

3. Derived Works 

The license does not restrict the modifications and production of derived works. 

The derived work, when distributed must follow the conditions mentioned in the 

license of the original software. 

4. Integrity of the Authors' Source Code 

14 



The user of OSS should uphold the integrity of author's code. 

5. No Discrimination Against Persons or Groups 

There is no discrimination in the license, against any person or group. The OSS 

can be used under the specified licenses. The producer of the OSS cannot impose 

restriction to discriminate the users. 

6. No Discrimination against Fields of Endeavors 

The license does place any restriction on the usage of software in a specific field 

or Endeavour. The producer of the OSS cannot impose restriction to discriminate the 

users from specific field or project. 

7. Distribution of License 

The rights of the program apply to all the parties having the redistributions of 

software. There is no need to execute any additional license by the parties. 

8. License Must Not Be Specific to a Product 

The rights of the program do not depend on the condition that the program is part 

of a particular distribution. In a situation, when the program is extracted from its 

original distribution, and used or distributed separately, it remains those rights 

assigned to it as a combination in the original distribution. 

9. License Must Not Restrict Other Software 

The license does not restrict other software which is distributed with the licensed 

software to be open source software. 

I 0. License Must Be Technology-Neutral 

The license of software contains no provisions regarding any specific technology 

or interface style. 

15 



The above mentioned points lay the foundation of the OSS. Furthermore, these 

criteria are more relevant to the rights and restrictions associated with the OSS. In the 

context of this thesis, the technical and social factors are more of the interest. 

The advantages and drawbacks associated with the OSS are discussed in the next 

sections. After reviewing the literature, the advantages and drawbacks are categorized 

according to three aspects: financial, technical, quality. Some of the advantages and 

drawbacks fall in multiple categories such as the 'encouraging innovation'. It may 

account for the financial aspect as well as the technical aspect. 

The financial aspect looks at the advantages and drawbacks from the view point 

of business. The category of quality contains the issues related to the quality attributes 

of the OSS. The issues such as risks and collaborations are placed under the technical 

aspect. 

2.2.3 Advantages of OSS 

The financial advantage of OSS includes escape from vendor lock-in [ll-12]. The 

OSS provides more freedom to the user as compared to proprietary software, where 

user always seeks to the vendor for maintenance support and other issues. Unlike the 

proprietary software, there is no increase in maintenance cost due to forced upgrades 

[ 11]. 

The technical aspects include culmination of software; the user or the 

organizations using OSS may customize it according to their own needs [ 45]. This can 

be done without any external support. The user/ developer's contribution to the OSS 

results in lesser long-term maintenance risk [15]. The OSS has a large developer and 

tester base [13-14]. The users (software engineers) also act as testers. 

The user support from the community [14], encouraging innovation [16-17] and 

increased collaboration [18] are multifaceted advantages of the OSS. These may be 

seen from the social aspect or from the financial aspect. However, for the purpose of 

this thesis these benefits are put under the technical factor. The reason is simply 

because they cannot be fit under the financial or quality aspect. A more 

16 



comprehensive classification is a subject of future research. These advantages are 

summarized in Table 2.1 along with the corresponding references. 

Table 2.1 Advantages of OSS 

Advantages Reference 

,f~nanciaJ, ~~~Ri~g .vend9rlo~J<;.,i!J,.:;j,;i,:il!l~ •• ,~ .•. ·..• · .[Uit~l ·.:,,~~~·· 
;:~p.ect No increase in maintenance cost due [II] 

to forced upgrades 

':~t;:t;:~~;::.\user support from the community 

· · ~~~~~~!~;!nnovati9!l; 
Increase collaboration 

#·;:1~5] ... ~;ii~~~-~; 
[ 15] 

[14] 

[16{117] 
,, );;4S', 

[18] 

.. ·~e&J: ···:· . .;:; ~i;~.·· 
[47-48] 

'~"~[47] •ocl1?!'~'·' 
~A ' 

[47] 

[14$1~7·Jt 
Yto<'.•iol•"i ::G>};L 

[14, 48] 

2.2.4 Drawbacks of OSS 

The financial drawbacks of OSS include insufficient marketing of OSS [14]. The 

issue of insufficient marketing is associated with another drawback which is lack of 

ownership [13]. The OSS has a shared ownership, which explains why it is not the 

responsibility of any particular organization to market it. The second main reason is 

there is no budget allocated for the marketing of the OSS. The OSS needs a higher 

training investments [ 49], as compared to its counterpart. 

17 



The drawbacks from the technical aspect include Jack of expertise [14] of OSS 

and version proliferation [14]: different builds of the same software are available to 

users. So, it is difficult for the potential user to decide which one is suitable for her. 

The OSS has a low level of compatibility [50] in some situations. Also, there is a 

security risk [ 49] associated with OSS, which may be the results of enormous 

contributions to OSS. 

The OSS is considered Jess user friendly [13]. These drawbacks of OSS are 

summarized in Table 2.2. 

Technical Aspect 

. Quality J\.spect~. 

Table 2.2 Drawbacks ofOSS 

Drawbacks Reference 

Lack of ownership [13] 

. . Higher traiqijlvestm~nt~;.: f~?l 
:_._,,,)\Lr;,,><,, ;,' , ,,'>:Jrk~$;., _ _, 

''~fiWSS . .. .. 
<; ------ ''('~~;, -----

Lack of expertise 

Version proli£eration 

Compatibility 

Installation,problems 
',/v\}0~:~f'", 

Security risks 

Less used'riei}dliness · 

[14] 

. [14] 

[50] 

[50] 

[49] 

[13] 
,A/):'' 

2.3 Related Works on Using OSS 

There are as many as hundreds of thousands open source software components are 

available today. The component repositories are just one click away from the software 

developers. Spinellis mentioned in an experience report [51], that the key to get great 

benefits from these software components is effective decision of choosing and using 

the component. The criteria presented in [51] is based on three aspects; (i) legal status 

18 



(ii) fitness and (iii) quality of software. The decision about the legal status of software 

matters in case when there is an intention to distribute the software. The other 

important decision is regarding the black or white box reuse of component. White box 

reuse of component also requires the acquisition of tools and infrastructure support for 

software development. Apart from these technical criteria to finalize the selection one 

may seek the opinion of colleagues. The popularity of software can be estimated by 

looking at the number of downloads and Google's search results. The availability of 

projects documentation also plays an important role during the selection. The interest 

of the community of developers of a specific open source is indicated by its release 

history, frequent releases represent an active community. Presence of a strong 

developer's community assures the line of support of software. The final check is the 

code inspection of software. During the code inspection one should look for the 

appropriate comments in the code, consistency of style and ease of understanding the 

code. 

Code reuse is one of the forms of reuse in OSS based development. In [52] the 

motivating factors and hurdles in code reuse at the individual software developer level 

are assessed using a quantitative method (web based survey). One of the finding of 

this study is that code reuse plays an important role in OSS development. It reports 

that up to 30 percent of the functionality in software is added by reusing the code. The 

other results include that reuse of existing code is based on their developer's 

perception of effectiveness, efficiency and quality benefits of reuse. 

A study based on review of literature is conducted in [24] to report the challenges 

in using OSS in software product development. The challenges are categorized in six 

main categories. These categories include; product selection, documentation, 

community support and maintenance, integration and architecture, migration and 

usage, and legal and business challenges. 

A focus group study is conducted in [35] to answer the questions (i)'how should 

open source components for inclusion in products be selected?' and (ii) 'To what 

extent is code given back to the open source community, and what are the reasons 

behind doing so?'. A total of I 0 persons including the author of the study participated 

19 



in the study. The findings of the study are presented in four categories which include; 

identification, selection, modification and giving back. 

The studies referred in this section show the interest of software engmeenng 

research community in the topic discussed in this thesis. In these studies different 

research methods such survey, focus group and literature review are used. In this 

study mixed methods are used to explore the phenomenon of using OSS in reuse 

intensive software development. A comparison of results with the above mentioned 

studies is made in the discussion chapter. 

2.4 Reusable Software Assets 

The term 'software assets' include the artifacts developed during software 

development process. The reusable artifacts range from the highest level artifact i.e. 

software architecture to the lowest level 'objects'. At the source code level, these 

artifacts include objects, methods, classes, interfaces and packages. 

It is stated in [53] that, a higher rate of productivity can be achieved with reusable 

code. Some leading companies like Toshiba, Microsoft, IBM and Symantec are 

capable of developing new applications by reusing 85 percent of the code [53]. In this 

thesis, the focus is primarily on the artifacts of code assets. The OSS provides 

flexibility in ways of reusing code assets by providing multiple choices. The choices 

include using classes, files, pre built libraries, copying a few lines, or running a 

complete system as separate entity [51]. 

2.4.1.1 Class 

A class can be viewed as a collection of similar objects and related operations. The 

mechanism of class in java is used to implement the encapsulation principle of object 

oriented design [54]. Java classes uphold the encapsulation principle by hiding the 

implementation and providing access to data using public methods. In open source 

java projects, class is a reusable unit [55]. 

20 



2.4.1.2 Interface 

In java programming there are two types of classes which are concrete classes and 

abstract classes [56]. A concrete class can be said a complete class i.e. having the 

bodies of methods, while an abstract class contains one or more undefined body (ies) 

of methods. The concept of abstract method is extended in java by using interfaces 

[57]. An interface is an abstract class; all of its methods are abstract. However, 

interfaces differ from the abstract class in a way that they cannot have implementation 

of methods unlike abstract classes. Interfaces provide a solution to multiple 

inheritance problems in java. A class can implement multiple interfaces. 

2.4.1.3 Method 

Methods are basic building blocks of java programming [54]. Method provides the 

mechanism to interact with objects of a class. The data can be accessed and 

manipulated through methods of a class. In other words, method performs the 

required operation of a class [58]. 

2.4.1.4 Package 

In java programming language the notion of package is similar to a folder in operating 

systems. A java package is a collection of related classes and interfaces [59]. A java 

package provides a structuring mechanism for large size programs [54]. 

2.5 Reuse-intensive Software Development 

The reuse-intensive software development refers to the methodology, in which 

commonality and variability is exploited to develop software products. In the context 

of this thesis, reuse-intensive software development points towards Software Product 

Line (SPL) and Component Based Software Development (CBSD). 

21 



2.5.1 Software Product Line 

Software product lines (SPL) are defined as "a set of software-intensive systems 

sharing a common, managed set of features that satisfy the specific needs of a 

particular market segment or mission, and that are developed from a common set of 

core assets in a prescribed way" [60]. SPL is a systematic way of reusing core assets. 

In SPL development, each software artifact is considered as core asset. 

Another definition of SPL is "development for the reuse and development with 

reuse" [26]. This definition views SPL development as a two process development. 

The development for reuse is domain engineering and development with reuse 1s 

application engineering [ 61]. 

The domain engineering is defined as the "process of software product line 

engineering in which the commonality and the variability of the product line are 

defined and realized" [61]. 

The application engineering is defined as the "process of software product line 

engineering in which the applications of the product line are built by reusing domain 

artifacts and exploiting the product line variability" [61]. 

2.5.1.1 Adding Components in a Product Line 

The software product line framework version 5.0 [62], states that a software 

component enters in an organization in the following three ways. 

~ A component can be developed in-house (built in-house). 

~ A component can be purchased; this purchase of component includes 

the COTS component, OSS or web services. 

~ A component can be commissioned from third party. 

22 



2.5.2 Component Based Software Development 

Component based software development (CBSD) is one of the major paradigms in 

software engineering which reuses the software components. The motivation 

underlying component based development of software is rapid development of 

software by making use of existing components ( 63]. 

The activities of CBSD are governed by software process model. Software 

process refers to the activities performed to develop software [21]; whereas a software 

process model is an abstract representation of the software process [21]. 

2.5.3 CBSE Development Generic Activities 

There are different software process models available. The common activities of 

almost all software processes include software specification, software design and 

implementation, software validation and software evolution [21]. 

2.5.3.1 Selection ofComponents 

As the development of software usmg components is the primary concern of the 

CBSD, the CBSD process guides the development of component based system as well 

as the process to develop software components. In this context, developer of the 

component based system is the consumer of component, and developer of component 

is the producer of component. This distinction of roles between the consumer and 

producer of software component results in a third process i.e. finding and evaluating 

the software components. 

2.6 Open Source Components Based Product Lines 

The underlying philosophy of SPL is the intra organizational reuse of components. 

The successful implementation of this philosophy results in benefits like improved 

productivity, better quality and reduced cost [60]. The use of OSS as core asset in 

23 



SPL is envisioned by Agerfalk et a!. in [22]. They have raised some 1ssue and 

challenges, and paved the way for OSS based SPLs. 

A conceptual model for OSS based SPL development is presented in [23]. It 

highlights the activities necessary to develop an OSS based SPL. This model is a 

higher level abstraction of the process based on the commonly reported pratices in 

literature. 

In [64], 'Y-model', an approach to develop SPL usmg COTS is presented. The 

necessary phases and activities to develop COTS based SPL are elaborated. 

2. 7 Literature Review Process 

A review of the literature is conducted following the guidelines presented in [ 65]. The 

process of systematic literature review is adapted in this work as depicted in Figure 

2.1. 

The review process has three phases and ten sub activities. In the first phase of the 

review, the following questions were posed: 

Question-!: What approaches have been introduced to assess software component 

reusability? 

Question-2: What is the applicability of these approaches? 

Question-3: What is the procedure adopted for validating the approach? 

A review protocol was developed after specifying the questions. The contents of 

the review protocol are: the 'source' used in the review, 'time period', and 'search 

criteria'. The term source refers to the scientific data bases; time period is the bracket 

of time to limit the publications within specific time period. The search criteria was a 

paper is to be included if it contains either a model, or a framework, or metrics for 

reusability assessment, and there is also a demonstration of the applicability of the 

proposed solution with results. 

24 



The protocol was reviewed by the researchers and a few changes were made to it 

before its execution. 

The accepted review protocol is presented in Table 2.3 Review Protocol. The 

literature search has been focused on the research papers published during the years 2000 

to 2010. The sources included are: Scopus, Google scholar, IEEE Xplore, ScienceDirect 

and the ACM portal digital library. 

In the second phase, the search was performed using different queries. The key 

words used in the queries are presented in Table 2.3. The initial collection of the 

research papers was refined by looking at the 'keywords' in the papers and studying 

the abstracts. The criteria lay down for this review is based on the following 

condition: The selected paper should include either a model, or a framework, or 

metrics for reusability assessment. The selected paper should also demonstrate the 

applicability of the proposed solution with results. 

A paper was included only if it fulfilled the criteria. The required data which is 

necessary to answer the questions is extracted from the papers. A table was formed to 

extract data from the selected papers. The table contains the following columns: Year, 

Complete Reference, Proposal, Applicability, Application/Demonstration, and 

Validation. The construction of this table has helped to organize the extracted 

information/data with the aim of providing a clear picture of the works in this area. 

Furthermore, the table serves to give 'the bare bones' of the review of each paper. The 

information about the problem being highlighted and solved in the paper was not 

included in the table because the papers were initially screened, leaving only those that 

are concerned with the reusability assessment of components. 

Additionally, to make this review more thorough another step was performed by 

searching the related work section of the collected papers. This step helps to enhance 

the strength of the review by ensuring that no valuable reference is missed during the 

search process. 

25 



Phase-1: Plan review 

1- Specify Research Questions 

2- Develop a Review Protocol 

· 3c N~4,ate ReVi~w PrQ,tP,S:2t:"' 

1 
Phase-2: Conduct Review 

4- Identify Relevant Research 

5- Select Primary Studies 

6- Assess Study Quality 

7~ .Extract Required Data 
'\}',___,~'-,_ (' ' '"<' _', 

!Psy· nthesizeDat!f"37~~v,,~ 
''"/' - - - ,,u&:"w" v 

Phase-3: Document Review 

~ 9- Write a Review Report 

10- ValidateRep<>rt 

Figure 2.1 Literature review process- adapted from (Brereton et al., 2007) 

Year 

2000-2010 

2001 

2000 2002 

2003 

Table 2.3 Review Protocol 

2005 

2004 2006 

2007 

Keywords 

software reusability evaluation/ 

assessment/ measurement, 

software component reusability 

metrics/ model/ framework 

2009 

2008 2010 Total 

Figure 2.2 Year wise search results 

A similar kind of study was performed by [66]. However, the focus of the study was 

to systematically review the software engineering measurements. It also mentioned that a 

few studies had attempted to measure the software reusability. In our work, we have 

managed to locate more studies that had attempted to measure reusability. This may be 

due to the fact that we used two resources that Gomez et a/. did not, namely the Scopus 

repository and the Google Scholar search engine. 

26 



2.8 Classification of the Approaches 

The results of the questions which are stated earlier in this chapter provides the results 

in terms of type, applicability and validation of the proposed solution. 

2.8.1 Types 

The review of the literature revealed the following types (Figure 2.3) of the proposed 

reusability assessment approaches. The breakdown is presented in Figure 2.3. 

~ Hierarchical model and metrics 

~ Quality Model Including Reusability As a Quality Factor 

~ Metrics 

~ Process 

~ Guidelines 

~ Framework 

~ Neural network-based approach 

5% 

Metrics 
40% 

Figure 2.3 Types of Approaches 

27 

Metrics 
20% 

Quality 
Model 

including 
reusability 

Process15% 
10% 



2.8.1.1 Hierarchical Model and Metrics 

The hierarchical models and metrics represent 21% of the selected studies. These models 

associate the factors and sub factors of reusability, and metrics are defined to measure the 

lower level factors to assess reusability. 

In [67], three views of reusability are defined which are: reusability in class, 

reusability in a hierarchy/ subsystem, and reusability in the original system. Factors, sub 

factors and metrics were proposed to measure reusability. The proposed solution was 

applied to graphical user interface packages to generate the results. 

In [68], adaptability, completeness, maintainability, and understand-ability are 

considered as factors affecting reusability. These factors were measured by the metrics, 

which were applied to the components of a scientific application in order to evaluate the 

approach. 

A metric suite to measure reusability is presented in [69]. Metrics were applied 

on components available on the Web. 

In [70], a framework is presented that contains a reusability and maintainability 

model, and metrics for aspect oriented software. The proposed approach was applied 

on the aspect oriented implementation of GoF design patterns. 

2. 8.1. 2 Quality Mode/Including Reusability as a Quality Factor 

Some of the results (15%) of the review contain software quality models including 

reusability as a quality factor. These include [71], in which the quality characteristics of 

COTS components are identified in order to build a quality model. Commonality, 

customizability, modularity, and comprehensiveness are defined as measures of 

reusability. In [30], a component quality model is presented which includes reusability as 

quality factor. The model was applied to applications in the digital TV domain. A quality 

model is presented in [72], with reusability as a quality factor. The model was 

accompanied by metrics; it was applied on two software projects to generate the results. 

28 



2.8.1.3 Metrics 

The results show that the most common proposed approach is to define metrics ( 40%) to 

assess reusability. In [73], metrics to measure complexity, customizability and reusability 

are proposed. The degree of features reused in developing an application was used to 

measure reusability. Two types of metrics were proposed, one is the metrics to be used at 

the design phase and the second is the metrics used after coding - the number of lines of 

code; the proportion of overall functionality that each component has. The application of 

the proposed approach was demonstrated by applying it to components in the banking 

domain. 

A set of metrics to measure understand-ability and reusability of software 

components is presented in [27] and was applied to the measurement of twelve 

components. [74] discussed the adaptability and complexity of software components. 

Compos- ability and adaptability were considered as the main factors influencing 

reusability, and metrics were presented to measure these factors. 

Two metrics are proposed in [75] to measure the amount of generic code. The 

proposed metrics were applied to ten projects. 

In [76], measures for cohesion are defined to assess the reusability of a 

component; the specific purpose is the prediction of effort required to reuse a 

component in a larger system. The proposed metrics were applied to a HTML parser, 

a lexical tokenizer, and a bar code application, all of which are in the form of 

components. In [28] coupling metrics are proposed to rank the reusability of 

components. Metrics were applied to three types of component to generate the results. 

The metrics to measure coupling [28] and cohesion [76] are combined in [77] to 

measure the reusability of software components. In [29], coupling and cohesion 

metrics are also proposed to evaluate the reusability of components. 

2.8.1.4 Process 

Results of the literature rev1ew show that I 0% of the studies used measurement 

'processes'. [78] proposed a collaborative scoping approach for an organization to 

29 



migrate existing products to a product line. This approach makes use of metrics to 

assess reusability in one of its tasks. These metrics were applied at class, method and 

'lines of code' levels. A reusability measurement process is proposed in [79]; it uses 

McCabe and Halstead methods to measure reusability. 

2.8.1.5 Guidelines, Framework, Neural Network-Based Approach 

Guidelines, neural network-based, and framework approaches each represent 5% of 

the results. In [80], guidelines are provided for reusability of software components, 

which can also be used to measure reusability. An artificial neural network-based 

approach to assess reusability is presented in [31]. The network was trained with forty 

examples of Java and tested afterwards with twelve examples. A framework to 

measure and evaluate program source code is proposed in [81]; it contains a quality 

model and metrics. The model includes reusability as a quality factor. The 

implementation of the framework was demonstrated for use with software written in 

the C language and is restricted to this language. 

2.8.2 Applicability 

The applicability of the proposed approaches is categorized in three ways. First, the 

approaches are differentiated according to whether they are object oriented, aspect 

oriented, etc. (Figure 2.4 ). Second, the approaches are categorized according to the 

language used to apply the approach - either C/C++ or Java (Figure 2.5). Third, the 

approaches are categorized according to whether the metrics used to assess reusability 

did so without reference to the source code of components, or by optionally referring 

to the source code, or by compulsorily referring to the source code (Figure 2.6). The 

results are presented in Table 2.4. 

2.8.2.1 Programming Paradigm Based Categorization 

70% of the proposed approaches are object oriented; they make use of the constructs 

of object orientation to measure reusability. In 5% of the studies, aspect-oriented 

30 



implementations are targeted while component based software development 1s 

considered in 20 % of the selected studies. 

Aspect oriented 
5% 

Applicability -Paradigms 

Object Oriented 
70% 

• Object Oriented Aspect oriented • CBSD • C Language 

Figure 2.4 Applicability of approaches- paradigms 

2.8.2.2 Programming Language Based Categorization 

The results show that reusability assessment approaches applicable to Java are 71% 

while 29% of the approaches are applicable to C/C++. 

31 



Java 
71% 

Applicability - Programming Language 

• C/C++ • Java 

Figure 2.5 Applicability of approaches - programming languages 

2.8.2.3 Level of Application 

The results reveal that 60% of the proposed approaches are white box; i.e. the 

availability of source code is mandatory with these approaches, while 33% are black 

box, i.e. where source code is not referred to. The approach proposed in [67] can be 

used for both white and black box components .. 

Applicability -Level 

33% 

• White box Black box • White and black box 

Figure 2 .6 Applicability of approaches - level 

32 

White box 
60% 



Table 2.4 Applicability of approaches 

Applicability of Approaches 

Object Oriented 14 

4 

Total 20 

Java 10 

Total 15* 

, White·Bo~f!i!i;,,+: · ·. 

BlackBox 5 

;)''bite ~jj~~l,llc~.JJ,Q~.~f!ill!~~:c!Fh:'!~<::o;:' 
Total 15* 

* Some of the publications cannot be categorized according to this breakdown. 

2.8.3 Validation Types 

The type of validation of the approach (Figure 2. 7) refers to the procedure adopted for 

validation. The break down in numbers is presented in Table 2.5.The proposed 

reusability assessment approaches available in the literature are categorized according 

to the following types: 

? Humans Based Evaluation, 

? Statistical Analysis, 

? Using Weyuker's Properties, 

? Experiment, 

? Case Studies, 

? Survey I Questionnaire, 

? Using Test Data, and 

? No Validation. 

33 



2.8.3.1 Humans Based Evaluation 

These are the evaluations where the results are obtained by applying the proposed 

assessment approach, and the results are compared against the results gathered by the 

user/expert assessment of the software. 

Human evaluation as the form of validation is employed in I 0% of the selected 

studies. Here the qualitative validation refers to a comparison between the results 

collected by applying the proposed approach and human evaluation of the 

components; these evaluators may include experts and users/software engineers. In 

[67], expert opinion about the reusability of the components were collected and then 

compared with results generated through the application of the proposed approach; 

regression analysis was used to interpret the results. [69] used the ratings of an 

evaluation committee of a website, from where the components were selected, to 

assess their reusability. 

2.8.3.2 Statistical Analysis 

In some of the papers results were analyzed by using some statistical technique to 

validate the approach. Statistical analyses of the results are provided in 25% of the 

studies, which include [27]. They used linear regression and the mean to perform the 

statistical analysis. In [76], linear regression was used to evaluate the performance of 

the proposed measures of reusability. Rank correlation and linear regression were 

used to assess the performance of the proposed metrics in [28], [29] and [77]. 

34 



Type of Validation 
Test data 

5% """" Questionnaire ~ 
10% 

Human evaluation 
---------- 10% 

Case Study 
10% 

Experiment 
5% 

Weyuker's 
Properties 

5% 

• Human evaluation 

• Weyuker's Properties 

• Questionnaire 

• No Validation 

• Experiment 

Test data 

Statistical Analysis 
25% 

No Validation 
30% 

• Statistical Analysis 

Case Study 

Figure 2.7 Types of validation 

2.8.3.3 Using Weyuker 's Properties 

In [75], Weyuker's properties were used to evaluate the metrics. Weyuker's 

properties are a set of nine properties for the evaluation of complexity metrics. 

2.8.3.4 Experiment 

In one of the study available in literature, experiment was carried out to validate the 

results of proposed approach, such as [82], who performed a semi-controlled 

experiment with human subjects and implemented two versions of a web portal 

development system. 

2.8.3.5 Case Studies 

Case studies are used to validate proposed approach in 10% of the selected papers, 

which include [30] where the case study of a digital TV application and related 

35 



platform application was used. In [78] the initial validation of the proposed approach 

is demonstrated through two open source projects. 

2. 8. 3. 6 Survey I Questionnaire 

Questionnaire is used to assess the component, and then the results of the approach 

are compared against the results collected from the questionnaire. Questionnaires are 

used in 10% of the studies. In [ 68] the correlation coefficient between results of direct 

measure, using the proposed approach results, and measures collected via the survey 

instrument, are presented to validate the results. A questionnaire was used to validate 

the framework using quantitative evaluation in [81]. 

2.8.3. 7 Using Test Data 

In [31] a neural network-based approach is proposed to assess the reusability and it 

was validated by using test data. 

Table 2.5 Types of validation 

Types of Validation 

Category No. of papers 

Human Evaluation 2 

No Validation 6 

Statistical Analysis 5 

Weyuker's Properties 1 

Experiment 1 

Case Study 2 

Questionnaire 2 

Test Data 1 

Total 20 

36 



2.8.3.8 No Validation 

In some of the selected papers (30%) approaches to assess reusability were proposed, 

but no validation of the proposed approaches is provided. 

2.8.4 Synthesis of Literature Review 

The results of the review show that the majority of the approaches are based on 

metrics (70%). The applicability of majority of the approaches is object-oriented 

paradigm (70% ). The implementation language which is targeted in most of the 

approaches is java (71 %). The intention of (60%) of the approaches is white box 

measurement. These figures show that the software development community is more 

interested in object-oriented paradigm and java based implementations. 

One of the issue rose after the literature review, which pointed the lack of 

validation of the proposed approaches in most of the previous works. The results 

show that (30%) of the proposed approaches lacks the validation of results. The 

software research community needs to give attention to validation as it is necessary to 

validate results in order to gain the confidence of software practitioners. 

2.9 Literature Review on Variability 

In this section a literature review on variability is presented. The review includes the 

synthesis of literature containing the variability types, scope and binding time. A 

variability map is generated on the basis of the review which helps to present a 

complete picture of the variability at implementation level. Variability map also 

relates the type of variability to its scope and binding time. The types, scope and 

binding time of variability is discussed in detail in next sections. 

2.9.1 Variability Types (with respect to effect) 

A software product line provides an infrastructure for developing different products. 

These products are distinguished from each other on the basis of their variant features. 

37 



In this regard, a product line provides support to the variant features of products 

within its scope. 

This section contains types of variability; the types which follow are defined in 

the context of product lines, and members products are distinguished on the basis of 

the variability exhibited by them. 

~ Attribute Variability 

~ Logic variability 

~ Persistency variability 

~ Work flow variability 

2.9.1.1 Attribute Variability 

In [41], attribute variability types are defined, where an attribute is supposed to be a 

placeholder for values to be stored - such as constants, variables or data structures. 

Furthermore, three cases of attribute variability are presented. First is when the 

number of attributes varies between products of a product line. Second is the variation 

in the data type of the values assigned to the attributes, and the third case represents 

the variation of the value assigned to the attribute that is persistent. 

2.9.1.2 Logic Variability 

Logic variability is the variation of the algorithm or logical procedure. There are 

several cases of logic variability, each case dependent upon the entity that varies, be it 

the procedural flow, the post condition, the exception handling, or the side effects 

between products of a product line. 

2.9.1.3 WorkFlow Variability 

Work flow variability is variation in the order, type and number of methods invoked 

by family members when carrying out a common task. 

38 



2.9.1.4 Persistency, Interface Variability 

Persistency variability refers to the variation on the values of attributes that are stored 

in secondary storage. Interface variability is the variation in the signature of the 

interface method, i.e. to implement the same requirement, different members of a 

family implement their methods in different ways. These are distinguished by the 

name, return type, and order and type of parameters. 

2.9.2 Variability Types (with respect to functionality) 

Another classification of variability types are presented in [42]. It is based on the 

functionality. 

);- Positive 

);- Negative 

);- Optional 

);- Alternative 

);- Function 

);- Platform/Environment 

The variability is said to be positive -when some functionality is added; negative 

- when there is a withdrawal of functionality; optional - when code is added; 

alternative - when code is removed; function - when functionality is changed; 

platform/environment -when the platform or environment is changed. 

2.9.3 Variability Scope 

A variation point can be open or closed [43]. A variation point is said to be open if 

new variants can be added and older ones removed. Conversely, a variation point is 

closed when new variants cannot be added. The open variation point can be described 

further using the term 'scope of variability' [41]. Scope is classified into binary, 

selection, and open. It is binary when there can only be two variants at a variation 

39 



point. The scope is termed 'selection' when three or more already known variants are 

available at a variation point. The scope is termed 'open' when there can be any 

number of known and unknown variants at a variation point. In Figure 2.8, the 

relationship between variability types and scope is depicted. 

• vanabdity · 

\ 
\ 
\ 

I 
I 

Attrnoute vanaooll~ { 
I 
I 
i 

PerststanC)'· vanatlllit)' 

Logic vanatltllf)' 

work!'low vana~lltty 

Open Scope 
Posrttve Varia!:Hiiti . 

Closed Scope 

Neortr.e vanaMi1)' 
Open Scope 

Closed Scope 

Opbooal Vanat:ulrty~ 
Ope-n Scope 

Closed Scope 

Open Scope 
Alternative V.cmatlility 

Closed Scop~ 

Func:tJon vanatltlrty· 
Open Scope 

~~o~ ~d Scope. 

Platform I Enwonment VariatliltfJ' . 

8mary 

Selection 

Open 

Binan 

Selection 

Open 

~In~~( 

Selection 

Open 

Binary 

Selecton 

Op.;,n 

B•nary 

Sele-ction 

Open 

Closed Scope 

Bmary 

Selectlon 

op.en 

Figure 2.8 Relationship of Variability types and scope 

2.9.4 Binding Time of Variability 

The binding time refers to either the time at which a variant was assigned to a 

variation point [43], or the latest time during the development when a variation can be 

bound to a variation point [83]. Different_ variability realization mechanisms are used 

to implement variability. The binding time of variability depends on the mechanism 

used to implement variability [83]. In [39], the following binding times are defined 

with respect to the 'implementation level': Compile time (variability is resolved 

40 



before the compilation); Link time (variability is resolved during module or library 

linking); Runtime; (variability is resolved during execution of the program); 

Update/Post Run time (variability is resolved after execution or when a program is 

being updated). 

2.10 Software Engineering Measurements and Metrics 

The importance of measurement cannot be ignored in any engmeenng discipline. 

Similar is the case with software engineering. Software engineering metrics are of 

different types. The metric types can be categorized on the basis of the entity and 

attribute (property of software) need to be measured. Further classification can be on 

the basis of nature of metric and type of data used by the metric. These dimensions of 

software metrics are elaborated further in this section. 

In software measurement, three kinds of entities arc measurable - processes, 

products, and resources [84]. A product can be defined as any artifact developed as a 

result of process activity. These entities may have attributes which are of two kinds -

internal and external. An external attribute is one that cannot be measured directly. 

In contrast, internal attributes can be measured directly. If we can measure something 

directly then this means that we can measure it independently. Relevant metrics are 

termed 'direct metrics' [85]. For example, the size of a program can be measured 

directly in several ways: by counting the number of lines of code; by counting the 

number of 'methods'; etc. In software engineering measurement terminology, a metric 

is a quantitative indicator of a software attribute; a metrics model specifies 

relationships between metrics and the attributes being measured by these metrics. 

Another dimension in this field is the definition of metric as being elementary, in that 

it requires only one attribute, or composite, in that it needs more than one attribute 

[86]. 

In context of this thesis, the metrics proposed and used can be categorized as 

product metrics. The metrics are applied on software artifact i.e. code. The internal 

attributes of software of code are considered during the measurement. So, direct 

metrics are used to measure the entities. Both the composite and elementary metrics 

41 



are used such as maintainability index (MI) which is a composite metric and lines of 

code LOC, which is an elementary metric. 

2.10.1 Reuse Metrics and Models 

The reuse metrics and models fall into six categories [ 6], these include the followings: 

y Reuse cost benefit analysis 

y Reuse maturity model 

y Amount of reuse metrics 

y Failure mode analysis 

y Reusability Assessment 

y Reuse library metrics 

Reuse cost and benefit analysis involves the estimation of investment of time and 

cost to develop a systematic reuse environment, and the benefits of it. The reuse 

maturity model helps the organizations to understand their reuse programs. An 

organization can review their past, current and future goals ofreuse. Amount of reuse 

metrics are concerned with the percentage of reuse achieved in the organization. 

Software reuse failure mode model deals with the evaluation of systematic reuse 

program. These models help to improve the reuse strategy of an organization. 

2.11 Identification of Need to Conduct This Study 

In this chapter, the literature on related recent works on using OSS is discussed. The 

review of literature reveals that there is a lack in the available studies that the 

dimensions regarding inclusion of OSS in SPL is not discussed. The proposals to 

include OSS in SPL are proposed in literature which is also discussed. On the basis of 

the review, it is evident that there is a need to conduct an exploratory study to explore 

the phenomenon of using OSS in reuse intensive software development. 

The literature review on the reusability assessment approaches revealed that none 

of the approach has considered one of the key factors i.e. variability in relation to 

42 



reusability. Furthermore, the lack of validation is also evident in literature. In this 

study a reusability attribute model is proposed and variability is also brought into 

picture. 

Variability is one of the key concepts in reuse intensive software development. 

The literature on variability is reviewed from the perspective of implementation 

mechanisms. The literature review on variability exposed that different dimension are 

highlighted in different studies. This scattered knowledge demands the synthesis of 

literature to create a broader picture of variability at implementation level. 

Furthermore, the analysis of available variability implementation mechanisms is also 

required to facilitate the software engineers in choosing appropriate mechanism. 

2.12 Summary 

Different approaches to assess reusability are available in the literature. These 

approaches can be categorized according to their types such as metrics, hierarchical 

models, and processes. The second classification of approaches is based on their 

programming paradigm such as the approaches for object oriented or aspect-oriented. 

Another classification is based on the target programming language such as java or 

CIC++. 

The benefits I drawbacks of OSS and recent works related to the use of OSS are 

present in this chapter. The use of OSS in systematic reuse environment is also 

envisioned by the software engineering researchers. This reuse will help to improve 

the reuse of components at larger level. Software metrics and specifically metrics and 

models related to software reuse are also elaborated in this chapter. 

43 





CHAPTER3 

RESEARCH METHODOLOGY 

Every discourse, even a poetic or oracular sentence, carries with it a system of rules 

for producing analogous things and thus an outline of methodology. 

(Jacques Derrida, 1930-2004) 

3.1 Overview 

This chapter presents an overview of the research philosophies and their underlying 

assumptions. A brief account on qualitative and quantitative research methods is 

presented. The qualitative and quantitative methods used in this research are 

elaborated in this chapter. 

3.2 Philosophical Basis of Research 

The ultimate goal of research is the quest of knowledge. In Greek, the word 

'episteme' is used for knowledge, and the word 'epistemology' originated from it. 

Epistemology is the philosophy of knowledge. It is related to: 'what is knowledge?' 

and 'how to obtain it?' [87]. During the process of obtaining knowledge the 

researcher has a specific belief system or world view which guides the researcher. This 

world view or belief system is termed as 'paradigm' [88]. Paradigms can be seen as 

the theoretical perspectives of research [89]. These theoretical perspectives may 

include the positivism, constructivism, feminism etc. Different paradigms are based 

on different assumptions. 



Positivism is the dominant epistemological paradigm of twentieth century [87]. It 

is based on the assumptions that reality is constituted by the evidences available to the 

senses (sense of seeing, smell and touch etc.). Scientific observations should be the 

basis of inquiries. The logical and methodological principles of natural and human 

sciences are same i.e. both deal with facts not with values. 

Constructivism is the paradigm which is associated with qualitative approaches. 

The worldview of the constructivists is based on the understandings and meanings of 

the subjective views of subjects and participants [90]. It is a bottom up approach, 

where the investigation starts at the level of individuals, and patterns are identified to 

understand the phenomenon. 

The theoretical perspectives are related to the different ' research methodologies' 

i.e. a framework of overall research activities. The research methodologies are in turn 

associated to ' research methods ' i.e. specific data collection techniques. A pictorial 

depiction of this relationship is presented in Figure 3 .1. 

Objectivism 
Constructivism 
Subjectivism 

Paradigm --/ Methodology --/ 

I 

Positivism 
lnterpretivism 

Feminism 
Pragmatism 

Experimental 
research 

Survey research 
Grounded theory 
Mixed Methods 

Methods 

Statistical analysis 
Questionnaire 

Interview 
Sampling 

Figure 3.1 Epistemology, paradigm, methodology and methods [91] 

\ 

Qualitative and quantitative research methods are distinguished on the bases of 

the nature of the data and the processes followed to collect the data during the 

research. Qualitative data are in the form of text and pictures and are collected 

through ethnographies, case studies and interviews. Quantitative data are in the form 

of numbers and are collected using surveys, experiments and quasi experiments. 

In [90] , mixed methods are classified as methodology. The authors explained, 

although mixed methods come under the methods, however, there is an involvement 

46 



of strategy for conducting the research. Therefore, mixed methods can be fit at the 

methodology level. 

3.3 Basis of Mixed Method Research 

Mixed method research is emerging as a third choice to the researcher other than 

qualitative and quantitative research [92]. Mixed method studies combine the 

qualitative and quantitative approaches. In [93] mixed method studies are defined as 

"These are studies that are the products of pragmatist paradigm and that combine the 

qualitative and quantitative approaches within different phases of the research 

process". 

The paradigm or theoretical perspective of mixed methods study is 'pragmatism', 

suggested by [94]. The pragmatism and mixed methods are linked by [94] on the 

basis of the following arguments: 

~ Both qualitative and quantitative methods may be employed in a single 

study. 

~ The research question IS more important than the method or the 

philosophical worldview of method. 

~ There should be no forced choice of being either positivist or 

constructivist. 

~ The use of metaphysical concept like 'truth' and 'reality' should be left 

behind. 

~ The choice of methods should be based on the practical and applied 

research philosophy. 

In light of the above points, and as the endorsement given by [95], it can be 

stated that pragmatism involves in using multiple methods, different worldviews, 

collection of different forms of data and employing multiple analysis tools in mixed 

method study. 

47 



3.3.1 Purpose of Mixed Methods 

[96] have highlighted five purposes of mixed method studies, the first being 

triangulation i.e. convergence of results, rationale for triangulation is to increase the 

validity of research by using different methods [97]. Three possible outcomes are 

expected as a result of triangulation which are (I) converging results, (2) 

contradictory results, and (3) partially consistent results [97]. 

The second purpose is complementarity i.e. "seeks elaboration, enhancement, 

illustration, clarification of the results from one method with the results from the other 

method" [96]. Third is development, which uses the results of one method to develop 

or inform other method. Next is initiation which involves recasting of questions or 

results from one method with the questions or results from the other, and the fifth is 

expansion where different inquiry components are inquired by different methods [97]. 

3.3.2 Types of Mixed Method Studies 

The types of mixed method studies are classified in [98] and [92]. In the earlier 

classification by Mingers, five types of mixed methods studies were identified, while 

in a later study Leech and Onwuegbuzie identified eigth types of mixed method 

studies. 

Mingers classification includes; sequential studies i.e. usmg the methods in a 

sequence such that the results of one method are used by the other. Parallel studies i.e. 

methods are applied in parallel with results provided to each other. Dominant [98] that 

states one method is used as a main method with a share of others. Multimethodology 

[98]; it combines methods from different paradigms specifically to serve the purpose 

of the study. Multilevel [98] in which different methods are applied simultaneously at 

different levels of an organization. 

In [92] the types are based on three dimensions. These dimensions are identified 

based on the content analysis of the available mixed method studies. These 

dimensions include time orientation, emphasis of the approach, and level of mixing. 

The time orientation dimension refers to the time continuum of the study. Studies 

48 



where the qualitative and quantitative phases occur at the same time are concurrent 

mixed method studies. A study in which one phase is preceded by others is sequential 

type of mixed method study. The dimension of emphasis is associated with weight 

assigned to the qualitative or quantitative phase. On the basis of these dimensions, 

eight types of mixed method studies are represented in Figure 3.2 which is redrawn 

from [92]. In this research study, partially mixed sequential dominant type is used. 

Equal Status Partially mixed concurrent equal status design 
Concurrent 

Dominant Status Partially mixed concurrent dominant status design 

Equal Status Partially mixed sequential equal status design 
Sequential 

Oommant Status Partially mixed sequential dominant status design 

Partially Mixed Method ,, 

Mixed Method Research 

Fully Mixed Method 

Equal Status Fully mixed concurrent equal status design 
Concurrent 

Dominant Status Fully mixed concurrent dominant status design 

Equal Status Fully mixed sequential equal status design 
Sequential 

Dominant Status Fully mixed sequential dominant status design 

Figure 3.2 Typologies of mixed method studies [92] 

3.3.3 Type of Mixed Method Chosen for Study 

In this study, partially mixed sequential dominant approach is employed. Qualitative 

phase of study is followed by the quantitative phase. Interview is used as qualitative 

method. Survey and experiments are used as quantitative methods. The methods are 

employed sequentially. The results of qualitative method i.e. interview is used to 

develop survey instrument (questionnaire). On the basis of the results from interview 

and survey a reusability attribute model is forrned. Experiments are conducted by 

using the proposed reusability attribute model to validate the relationship indicated in 

49 



the model. The qualitative phase is dominant during the study. The study is based on 

the findings of the qualitative phase. The mixing of methods is partial as there is no 

quantinization or qualitization of data is performed. 

3.4 Research in Software Engineering 

Software can be viewed as making machines accessible to humans. Research in 

software engineering is directly related to the social and behavioral sciences as 

software is an entity which interacts with humans. The end users, who are the ultimate 

beneficiaries of software, are humans. If we take as an example the software for a 

mobile phone system or the software for a hotel reservation system, then the human 

involvement is quite clear. 

An alternative view of software engmeenng IS that, like other engmeenng 

disciplines, it helps humans to solve their problems [99]. This view of software 

engineering pushes it into the realm of a traditional engineering discipline and their 

associated research methodologies become relevant. 

The importance of software and research in software engineering is highlighted by 

many. This emphasis is not only given by the research community, but is also 

reflected at the highest levels of government. A 1998 report by the US President's 

Information Technology Advisory Committee (PIT AC) states: "Increases in research 

on software should be given the highest priority". 

There is a lack of guidance regarding the research approaches; what research 

approach is appropriate to answer a particular research question in software 

engineering [I 00]. 

Software engineering IS a multidisciplinary field. It deals with social and 

technological issues. A software engineering activity is not only based on the 

processes and tools, but it also depends on the social and cognitive process around it 

[101]. Therefore, study of human activities is necessary to understand a problem and 

its solution in software engineering domain. The aforementioned importance of 

human activities in software engineering field compels to use the research methods of 

50 



fields related to the study of human behaviour. For instance, in a situation when the 

investigation is desired at individual level research methods from psychology are 

appropriate. In a situation when the problem under consideration is concerned with 

teams and organizations, research methods of sociology become more relevant [101]. 

3.4.1 Mixed Methods in Software Engineering 

In the software engineering field, opinions exist that suggest there should be a 

combination of both qualitative and quantitative research methods in software 

engineering research [102]. The authors also state that using a combination of 

qualitative and quantitative methods may be beneficial in that it provides information 

from a number of perspectives. The combination of qualitative and quantitative 

approaches in a single study is referred as mixed method studies. 

An example of mixed method studies in software engineering can be found in 

[103], where an investigation of object oriented is made using survey questionnaire, 

structured interview and controlled laboratory experiments. 

Mixed method software engineering research studies provides possibly more 

generalized and reliable results. Mixed method approach may help to limit the 

experimental validity threats in software engineering [I 03]. 

According to (104], the empirical evidences have a psychological effect on the 

researchers and practitioners which helps to convince them that the results are useful 

and correct. Mixed method research in software engineering helps to improve the 

impact of results by increasing the confidence in the findings. Mixed method studies 

increase the level of rigor. 

3.5 Purpose Based Classification of Research Studies 

In the previous sections of this chapter different types of research have been 

discussed. These types are distinguished on the basis of the methodology. There is 

another classification of research studies provided in [I 05], which is based on the 

51 



purpose of inquiry. The research studies can be classified as Exploratory, Descriptive, 

Explanatory, Emancipatory [105] and interpretive [106]. 

3.5.1 Exploratory Research Studies 

Exploratory research studies are conducted m a situation when there is little 

understanding of the situation with in the research community [105]. These studies 

are motivated to seek new insight into the situation. The studies are intended to assess 

the phenomenon from a new perspective. Exploratory research generates ideas and 

hypothesis for further research [105]. Exploratory studies can be conducted by 

searching the literature, talking to experts or by conducting a focus group interview 

[I 07]. 

3.5.2 Descriptive Research Studies 

Descriptive research is focused to depict an accurate profile of persons, events, or 

situations [I 05]. The pre-requisite of descriptive studies includes an extensive 

prevwus knowledge of the situation. The background knowledge provides 

information about the aspects on which the information is to be collected. 

3.5.3 Explanatory Research Studies 

Explanatory studies are intended to explain a situation or problem. It is not necessary 

in explanatory studies that the causal relationships are identified [ 1 05]. These studies 

may involve in identifying patterns related to the phenomenon under consideration. 

3.5.4 Emancipatory Research Studies 

These are the studies conducted to create opportunities and a will to engage in a social 

action [I 05]. It seeks to challenge and change the inequalities. The objective of 

emancipatory research is social change. It changes research into a political activity. 

52 



3.5.5 Interpretive Research Studies 

Interpretive research studies are conducted when there is a need to seek the 

experience of people and their views or perspective of experience [91]. Interpretive 

researchers attempt to understand phenomena through accessing the meanings, 

participants assigned to them [ l 08]. In these studies qualitative data collection and 

analysis process are used. 

In this section, purpose based classifications or research is presented. In context of 

this thesis the purpose of enquiry is the exploration of the emerging phenomenon of 

using OSS in reuse-intensive software development, especially in software product 

lines. Therefore, this research can be categorized as exploratory research. An 

exploratory research design is followed to conduct this research which is presented in 

the next section. 

3.6 Research Design 

The research design of this study is depicted in Figure 3.3. The activities of research 

design are divided into three phases. Phase-! was started with a survey and review of 

the literature. The topic of research was selected after the initial survey of literature. 

The topic was further searched and a problem statement was formulated. After the 

formulation of problem statement, a thorough literature review was conducted to 

know and report the current state of the art in this area. The research methodology 

was selected by considering the relevant literature and nature of the problem. 

In the next phase, interviews were conducted and a qualitative data analysis was 

performed. The results of qualitative analysis include attributes of reusability along 

with the other findings (chapter 4). A survey was conducted to rank the attributes of 

reusability in order to know their importance. The results obtained from the analysis 

of interviews and surveys were used to propose a reusability attribute model. After 

proposing the reusability attribute model, code level software metrics were selected 

for the application of model. The selected metrics fall in two categories i.e. class level 

metrics and package level metrics. The metrics were applied to the open source 

software at class level and package level. 

53 



The third phase is concerned with the validation and analysis of the obtained 

results. This validation and analysis was performed using statistical analysis. The 

results obtained from the application of metrics were statistically analyzed. An 

evolutionary reusability analysis was conducted on two open source software. It 

demonstrated the potential applicability of the proposed model and provided a deeper 

understanding. All of the results obtained during this study have been written in the 

form of research papers and presented in different journals, conferences and in 

relevant software engineering publications. The list of publications is provided at the 

end of thesis. 

Topic Selection j 

J 
Problem 

Statement 

3. 7 Qualitative Methods 

Data Collection 
(Interview) 

"' ·b·%yrw t '1 

Results 

Proposal of 
Reusability 

Attribute Model , 
J 

Selection of 
Metrics 

Results of 
Metrics 

Application J 

'I 

Statistical 
Experiment 

Data Analysis 
(Quantitative) 

Evolutionary 
Analysis of 
Reusability 

I 
Results 

Writing and 
Results ? Dissemination of 

Results 
f 

Figure 3.3 Research design 

The qualitative methods are used to collect and analyze qualitative data; data in form 

of words, text and pictures. These methods include document analysis, content 

analysis, focus groups and interviews etc. In this research, interview is used as a 

qualitative data collection mean. The analysis of qualitative data is performed on the 

54 



basis of content analysis principles. A brief account on interview and coding process 

is provided in the next section. 

3. 7.1 Interview 

Qualitative evaluation and validation approaches seek to collect data in the form of 

text and pictures. The interview is one of the forms of qualitative data collection. In 

[109], a detailed discussion about the use of participant observation and interviewing 

is provided. 

The interview is a means of collecting primary data; it is a conversation between 

two persons, one of which is a researcher. Interviews can be used for data collection 

where the nature of the study is exploratory. Interviews are helpful when the data to 

be gathered is about a person's knowledge, preferences, attitude or values [91]. 

Interviews are useful in situations when the logical order of the questions is not clear 

or predetermined [91]. Interviews may help to gather impressions and opinions about 

something [I 09]. Interviews enable one to get personalized data, provide an 

opportunity to probe, establish technical terms that can be understood by the 

interviewee, and facilitate mutual understanding. The interview provides an in-depth 

view for exploring the perspective of informants [91]. Interviews enable the 

researcher to understand experiences of others. Several types of interviews are 

reported in the literature [II 0]. In this study semi-structured type of interview is used. 

3.7.2 Types oflnterview 

The interview is a costly and time consuming activity as compared to other data 

collection techniques. Therefore, it requires a deep understanding of the phenomenon 

under consideration. This understanding helps to select appropriate type of interview. 

The following types of interview are available in the literature [91]. 

55 



3. 7.2.1 Structured Interviews 

The data collected through structured interviews can be analyzed quantitatively. A set 

of same pre planned question are prepared. The same questions are asked to all the 

respondents. The response is recorded by the researcher in a standardized manner. In 

some cases, structured interviews provide a basis for further open ended interviews. 

The role of researcher is confined to the questions and the respondent give responses 

to the questions. The tone, sequence and wording of the questions are kept same for 

all the respondents. A highly structured interview may have fixed scales for each 

question such as agree/ disagree. 

3. 7. 2. 2 Semi-structured Interviews 

The semi structured type of interview differs from the structured interview in the way 

that instead of pre planned set of questions it makes use of a list of issues. These 

issues are discussed during the semi structured interview. There is no restriction on 

the sequence of questions to be asked. It may be possible that during the interview 

new questions are asked, viewing the flow of conversation. The data collected through 

semi structured interviews can be analyzed qualitatively. 

3. 7.2.3 Non-directive/ Un-structured Interviews 

The questions asked in non-directive form of interviews are not pre-planned. The 

respondents freely talk about the subject. The researcher questions subject, keeping in 

view the research objectives. Non directive interviews are used to collect qualitative 

data. Unlike, the structured type of interviews, in un-structured interviews both 

questions and answers rest on the part of respondent. Usually, the researcher begins 

by asking the respondent's views of the topic being studied. 

56 



3. 7.2.4 Focused Interviews 

Focused interviews are useful m a scenano when the response of respondent is 

required on a specific situation. The researcher knows the situation prior to 

conducting the interview. During the interview, if the conversation diverts from the 

required course the researcher intervenes and takes the conversation back on track. 

3. 7. 2. 5 Informal conversational Interviews 

The most open ended fonn of interviews is informal conversational interviews. It is 

flexible in a way that the course of discussion cannot be pre decided. The data 

collected through conversational interviews is hard to analyze. This is because of the 

variation of questions asked to different people. During the conversation, interviewee 

may influence the course of discussion. Emerging patterns are identified by the 

researcher to interpret the meanings. 

3. 7.2.6 Reason for Choosing Semi-structured Interviews 

Unstructured interviews are costly in terms of time and resources as they require a lot 

of time to conduct the interviews and to analyze the data. On the other hand, 

structured interviews are efficient, requiring less time and resources. However, 

structured interviews follow a set pattern that does not allow for a detailed exploration 

of the issues. Semi-structured interviews offer a compromise, making use of both 

open-ended and specific questions. This combination allows the researcher to explore 

the issues by collecting expected information using specific questions, and unforeseen 

infonnation from open-ended questions. The semi-structured type of interview is used 

in this study. 

3.7.3 Question Formulation Process for Interview 

The following process was used to fonnulate questions to be included in interview 

guide. 

57 



}- General research area 

}- Specific research questions 

}- Interview topic 

}- Formulate Interview questions 

y Review revised interview questions 

}- Pilot guide 

}- Identify novel issues 

}- Revise interview questions 

}- Finalize guide 

3.7.4 Respondents' Profiles 

The research issues investigated m this study are of a specialized nature. Not 

everybody working in industry or academia is able to answer these questions. The 

respondents chosen for this study is based on their expertise. It should be noted that 

the respondents have up to date information regarding the research in this area and 

industrial practices. 

The interviews were audio recorded and transcribed pnor to performing the 

analysis. The first respondent is a software engineering researcher and developer. He 

has an experience related to human computer interaction application development. 

The second respondent is a researcher having a doctorate degree in software 

engineering in the area of software product lines. He is an author of many 

publications, some of which are book chapters. His publications include those 

specifically targeting software product lines and related issues. 

The third respondent is an expert in software reuse research, and has been 

authoring research papers on software reuse since the 1980's. He actively participates 

in research activities and currently is the editor of a publication in software 

engineering published by a prestigious body. He is currently serving as the principle 

software architect in a well known organization. 

58 



The fourth respondent started his career as a software engineer and had been 

promoted to software project manager during his career. He has managed several 

projects in the domains of accounts, student information service, examination systems 

and a few others to automate the small industries and NGOs. 

The tifth respondent has worked in the domains of micro finance system, accounts 

systems, medical laboratory systems, visa system, and billing systems. 

The sixth respondent is working in a multinational software development 

company. He has an experience of working in the education and health sector 

domains. Currently, he is serving as software quality assurance engineer. 

The seventh respondent is also associated with software industry, working in a 

well reputed and nationally certified software company. He has been involved in 

developing software related to project management domain. 

The profiles of the respondents are diverse, which influenced the design of the 

interview guide and meant that not all of the questions were posed to all of the 

respondents. Table 3.1 summarizes the profiles of the respondents. Different means 

(Table 3.2) are used for conducting the interviews due to the location of the 

respondents. The interviews are conducted between November 2010 and December 

2010. 

3.7.5 Interview Guide 

An interview guide helps the researcher in organizing the interview. The contents of 

an interview guide include the list of open-ended questions to be asked during the 

interview and notes to direct the interviewer to the desired direction. Like field notes, 

an interview guide is again confidential, i.e. it is not shown to the respondent. For 

novice interviewers it is usually difficult to conduct the interview and write notes at 

the same time. An audio recording of the interview provides a solution to this 

problem. The permission to audio tape the interview is essential; it is ethical binding 

on the researcher to inform the respondent that the conversation is being taped. 

59 



The interview guide contains open ended questions, or in other words the issues to 

be discussed. The conversation starts with a brief introduction by the interviewer. In 

our case, the introduction of the topics is not desirable because these were already 

known to the researchers. In fact some of the respondents are experts who are well 

known in the research community. The respondents answered the questions 

differently due to their varying knowledge and level of experience. They used 

examples (citing names of software) and referred to their talks with other researchers. 

The transcribed interviews are not presented here, neither are the names, the places or 

the events. The crux of the conversation and results are presented in the results 

section. 

Respondent 

ID 

Rsp-A 

Rsp-B 

Rsp-C 

Rsp-D 

·Rsp-E"• 
)'380,[<">;'d*''+>>, 

: ··"-;;k1ta:::,· 

Rsp-F 

Rsp-G 

Means used 

Number of 

Interviews 

Table 3.1 Information about the respondents 

Experience 

Stears 

I 0 years 

22 years 

8 years 

!Oyears. 
>:~~~y 

3 years 

4 years 

Experience 

Type 

Academic, .. 
· S;)ftWaie Ind~ti'y 

Academic, 

Software Industry 

Academic, 
<: _,_-_f' 
yt+ 'y ,'' " :- ,' 

SoftWare Industry · 

Academic, 

Software Industry 

Academic, 

SoftWare In4ti8try 

Software Industry 

Software Industry 

Current 

Affiliation 

Academia 

Industry 

Industry 
/f/ 

Academia 

Academia 

Industry 

Industry 

Table 3.2 Means used to conduct interviews 

Skype Face to face Telephone 

3 3 

60 

oss 
Experience 

4 years 

7 years 

15 years 

5 years 

(:iyears 

2 years 

2 years 

Total 

7 



3.8 Qualitative Analysis (Content Analysis) 

The content analysis approach is used in this study for the analysis of qualitative data. 

Content analysis is a scientific tool which helps to understand the phenomenon. The 

content analysis is a "research technique for making replicable and valid inferences 

from the text (or other meaningful matter) to the contexts of their use" [Ill]. 

In [112] three approaches to content analysis are presented. These include 

conventional, direct and summative approaches. In this study, conventional approach 

to the content analysis is employed. Conventional approach is used when the available 

knowledge about the phenomenon is limited (112]. It helps to gain direct knowledge 

from participants because preconceived categories are avoided during analysis. 

Conventional content analysis results in model building or concept development. 

Content analysis can be employed to serve either inductive or deductive research 

(113]. In this study the inductive content analysis is conducted due to limited 

knowledge availability about the phenomenon. 

The analysis is conducted following the approach presented in (113] and [112]. 

The analysis process (Figure 3.5) is started by generating the transcriptions from the 

audio recorded interviews. These transcripts are read carefully to extract the open 

codes [ 113]. The open coding process results in a list of codes. The open coding 

process is performed by using atlas.ti software (explained in section 3.8.2). In addition 

to it, a word cloud is generated. This step is taken to make sure that none of the 

recurring words are missed. After the analysis of all the transcriptions, we have all of 

the key words related to the concepts. Similar ones are grouped into generic 

categories. The sub-categories are created through the abstraction process. The 

abstraction process (Figure 3.4) is continued to reach a reasonable and possible level 

[113]. The categories are named such that they provide meaningful insight into them. 

These names also emerged from the transcripts. Definitions for each category and 

sub-category are developed which are presented in chapter 4 along with their 

representative quote from the transcript. 

61 



Main Category 

OSS in re_use intensive 
'!oftware, d,;vetopment 

Respondent 
A 

Respondent F . 

Generic Categories 

Factors affecting reusability 

Desirable Characteristics of 
oss 

Figure 3.4 Abstraction process 

List of Codes 
1-." ... . 
2- ...... . 
3-...... . 

Abstraction 

Sub-Categories 

Documentation 

Variability 

Usage History 

Security 

FindingOSS 

Word Cloud 

Sub-

Conceptual Map of Categories &Sub-Categories 

Figure 3.5 Content analysis process 

62 



3.8.1 Word Cloud 

A world cloud is a technique used to represent the frequencies of words in textual 

data. On the World Wide Web, word clouds are also referred to as tag clouds. Word 

clouds are used to depict the relative importance, frequency, and popularity of a word 

[114]. The examples of using word cloud can be seen on web I search engines, news 

sites. However, to our knowledge word cloud is used for the first time in academic I 

qualitative analysis process in this thesis. 

In this research, a word cloud is used in addition to 'open coding' to make sure 

that none of the recurring words are missed. The interview transcripts contain 6,483 

words. A word cloud of these words is generated by an online word cloud service 

(www.tagxedo.com), and is shown in Figure 3.6. The cloud includes the 300 most 

frequently recurring words in the transcripts. The word cloud helped to ensure that the 

concepts related to these words are included in the code list. 

3.8.2 atlas.ti 

'atlas.ti' [115], is a specially designed software to assist in qualitative analysis. It has 

features such as linking, searching and sorting of data. It manages the primary 

documents (audio, video, text files, pictures etc.). It helps to create the 'open codes', 

and link them to corresponding quotation in the primary document. It helps to link the 

codes to the memos. The categories can also be defined and codes can be linked to the 

categories. In this study the audio recorded interviews are transcribed using this 

software. The 'open codes' are identified and multiple quotations in the audios are 

linked. The memos related to the codes are created and linked to the codes and 

quotations. 

63 



Figure 3.6 Word cloud of interview transcription 

64 



3.9 Quantitative Methods 

The quantitative methods are used to collect and analyze quantitative data; data in the 

form of numbers. These methods include surveys and experiments. Statistical analysis 

may be used to interpret the results. In this research, survey is used as a qualitative 

data collection mean. The analysis of the data is performed using the pie charts, 

scatter diagrams and pearsons' correlation analysis. A brief account on the survey and 

experiment is provided in the next section. 

3.9.1 Survey 

As with other engmeenng disciplines, software engineering 1s intended to help 

humans m solving their problems (99]. Software engmeenng, being a 

multidisciplinary field of research, involves issues raised by technology and society 

(humans). Software engineering activities depend on tools and processes. However, 

due to the involvement of humans, social and cognitive processes should also be 

considered [101]. Validation of new tools and processes is a necessary part of the 

advancement of software engineering [83]. 

The involvement of humans in software engmeenng demands the usage of 

research methodologies from the social sciences. Therefore, to rank the relative 

importance of attributes a survey is conducted. Survey can be defined as a 

comprehensive system for collecting data using a standardized questionnaire [ 116-

117]. 

The information collected from a survey is used to "describe, compare or explain 

knowledge, attitudes and behavior" [ 116]. 

Survey research is common in the software engineering discipline. Due to the 

effectiveness of surveys in software engineering, researchers have laid down a process 

to conduct surveys. 

65 



3. 9.1.1 Survey Process 

In [117], a comprehensive seven step process for conducting a survey is explained. In 

this study this process is used to design and conduct the survey. The specific steps 

taken to conduct this variability assessment survey were: 

~ Identification of aim 

~ Identification of target audience 

~ Design of sampling plan 

~ Questionnaire formulation 

~ Pilot test of questionnaire 

~ Questionnaire distribution 

~ Analysis of the results 

A sampling plan was designed to decide the kind of statistical test used to 

interpret the results. The questionnaire was formulated and reviewed by the authors. 

The questionnaire was pilot tested and revised. The survey was conducted using web 

based survey system. The results of the survey were analyzed using statistical 

software. 

3.9.1.2 Questionnaire Formulation 

The survey instrument I questionnaire are formulated on the basis of the findings of 

the interview. As explained in previous section (Types of mixed method), that this 

study is sequential mixed method study. So, the methods are applied sequentially and 

findings of one method i.e. interview is used to develop the following method i.e. 

survey. One of the subcategory of qualitative findings i.e. factors affection software 

reusability is used to develop the questionnaire. The standard definitions of identified 

factors are studied to understand them and to formulate them into the questionnaire 

statements. 

66 



3.9.1.3 Survey Population 

The objective of software engineering research is to provide results which are useful 

for the software industry. The selection of a population for a survey is one of the 

critical decisions. In this study the target population consists of the individuals related 

to the software development in Malaysia. 

3.9.1.4 Sampling Technique 

In this research, sample is collected using convenience sampling. The driving force to 

make this decision is time and resource constraints. It's a non probability sampling 

method. On contrary, the probability sampling method also requires the identification 

of every individual in the population which is quite difficult in this case. 

There are two common strategies to minimize the sample biasness in convenience 

sampling. These include a clear description of sample collection process and 

participants, and to ensure that sample is reasonably representative without any bias 

[ 118]. Both of these remedies are applied in this research. The description of sample 

collection process is described in the next sections. It is tried as much as possible 

during the data collection that data should be collected from the representative 

population. The experience of population is depicted in Figure 3. 7. 

9 years! 0 years 
8 years 0% 3% 

0% 
?years __ 

8% 

8% 

10+ years 
II% 

3% 

Figure 3. 7 Experience of population in years 

67 

2 years 
14% 



3.9.1.5 Means UsedforSurvey 

In this research a large number of software engineers are approached through internet, 

Email, and personal contact. Recently the use of internet to conduct surveys is 

increased. The internet surveys help to access large population in less time and cost 

[119]. The internet surveys can be categorized as e-mail based surveys and web-based 

I online I internet surveys these terms are used interchangeably. In this study web 

based survey is used. An online survey service (SurveyMonkey) is used for this 

purpose. The link of survey was posted to the target population using emails, different 

Facebook groups and pages related to software engineering, java programming, 

software reuse and open source software. 

3. 9.1. 6 Confidence Interval 

The confidence interval or margin of error provides the information that "to what 

extent is the response from the sample likely to reflect the population of the interest?" 

[120]. The confidence interval is written with '±' with the quantity. It shows that the 

range is plus or minus up to the confidence interval. 

3.9.1. 7 Confidence Level 

The confidence level is associated to the confidence interval. It is the estimation of 

success rate of the method used to create the interval [ 121]. In this survey a 95 % 

confidence level is used, which is a recommended level [ 122]. 

The following sample size and related figures are calculated using the website; 

(www.surveysystem.comlscalc.htm). The population size is 91410 according to MSC 

Malaysia supply - demand study of the ICT industry [123]. The confidence interval 

95% is used. The required sample size is 383; however, 396 samples are collected 

using different means I sources, the list is provided in appendix H. A total of more 

than 2707 individuals are contacted. The details are presented in Table 3.3. 

68 



Table 3.3 Survey sample size and related figures 

Survey Details 

C::onfidence level 

Population 

Si\!BP!e s.~e needed • 

Population Accessed 

sjllnple siz~ collect~d. 
j -! d' • ' ' 

Confidence interval 

Percentage 
'"'' ~ 

95.o/o 

91410* 

. ·0'·383·· 

2707+ 

396 

4.91 

SQ~ 

Calculated using calculator 

(www.surveysystem.com/scalc.htm) 

*Population Estimation Source : (MSC Malaysia Supply

Demand Study of ICT Industry 2009) 

3.9.1.8 Scale used in Survey 

Ordinal scale is used in this study to collect the response of the population. The 

ordinal scale is capable of describing the order. In ordinal measurement numbers are 

assigned to the objects. These numbers represents the order of ranking. Likert scale is 

one of the example of ordinal scale [ 117]. 

The response of users collected using Likert scale is in from numbers such as I 

to 5 - strongly disagree (!); disagree (2), neither agree nor disagree (3); agree (4); 

strongly agree (5). 

3.9.2 Quantitative Analysis 

In this research work quantitative analyses are conducted usmg statistical data. 

Statistics are used to describe the results of an experiment or investigations [124]. 

This section contains the descriptions of statistical techniques used in this research. 

69 



3. 9. 2.1 Measurement Scales 

Quantitative values are associated with numbers in a way that all quantities are 

represented using numbers. Different scales such as Nominal, Ordinal, Interval, and 

Ratio are used to measure and express the quantities. In this research ordinal scale is 

used. 

3.9.2.2 Ordinal Scale 

In ordinal scale, entities are categorized to form a rank order [125]. Numbers are 

assigned to the categories; these numbers are representative of the rank or order of the 

category. The order of the numbers is of the interest in ordinal scale instead of the 

number itself [126]. Likert scale is one of the examples of ordinal scale, where 

numbers are assigned to represent the order of variable. Ordinal variables have 

discrete values. Discrete values have a gap between consecutive values. 

3.9.3 Statistical Techniques 

In this section those statistical techniques are elaborated which are used m this 

research study. 

3.9.3.1 Hypothesis and Hypothesis Testing 

One of the key activities performed using statistics is to draw inference between the 

populations. This inference is drawn on the basis of the sample taken from the 

population [127]. The term 'hypothesis' refers to a claim or statement about the 

property of a population [128]. In contrast to research questions, hypothesis can be 

tested and predictive [91]. The hypothesis states a relationship between two or more 

variables. 

A hypothesis test usually derives from a pnor research hypothesis [129]. 

Hypothesis test is a procedure to test the claim about a property of population 

[128].Two statistical hypothesis are formed to test a hypothesis statistically. These 

70 



two hypotheses include 'Null' hypothesis and 'Alternative' hypothesis. Null 

hypothesis is represented by HO and alternate hypothesis is represented by H l. The 

hypotheses are generated on the basis of the findings of the interviews and survey. 

These hypotheses are presented and tested during the experiments (chapter 5). 

3. 9.3.2 Pearson Correlation Analysis 

The Pearson correlation coefficient r is a numerical measure that assesses the strength 

of the linear relationship between two variables. The following assumptions of 

Pearson correlation coefficient r are presented in [ 127]: 

l. r ranges from + l to -1 i.e. -1 <= r <= + l. The value l shows a perfect positive 

linear correlation, while the value -1 shows a perfect negative linear 

correlation. The value 0 represents an absence of any linear correlation. 

2. A positive value of r is an indication that y will increase with the increase in x. 

On the other hand, a negative value of r implies that the value of y will 

decrease when the value of x increases. 

3. r is not affected by the order of x andy, i.e. r is the same for the pairs (x, y) 

and (y, x). 

4. r is not affected by a change in the units of the variables. 

The correlation coefficient r is a measure of the strength of the association 

between two variables. However, it does not implicate about the cause and effect. In 

other words the two variables x, y having a strong correlation, and increasing or 

decreasing together does not mean that x is the cause of increase I decrease in y. 

3.9.4 Experiments 

In this research work three experiments are conducted. The details are presented in the 

next sections. 

71 



3. 9. 4.1 Experiment- 1 (Reusability Assessment at Class Level) 

The experiment-! is intended to test the hypotheses related to the class level 

reusability attribute model. The results are analyzed using SPSS by calculating 

pearsons' correlation coefficients. The results are presented in the form of scatter 

plots along with the correlation values between (i) attributes and metrics and (ii) 

reusability and its attributes. In this experiment I 03 classes are analyzed. A 

comparison of sample size used in this research and some of the related studies is 

drawn in section 3.14.2. The details regarding the specification of classes are 

presented in appendix D. The selection process of these classes is described in section 

3.10. 

3. 9. 4. 2 Experiment- 2 (Reusability Assessment at Paclwge Level) 

The second experiment is intended to test the hypotheses related to the package level 

reusability attribute model. The results are analyzed using SPSS by calculating 

pearsons' correlation coefficients. The results are presented in the form of scatter 

plots along with the correlation values between (i) attributes and metrics and (ii) 

reusability and its attributes. In this experiment 77 packages are analyzed. A 

comparison of sample size used in this research and some of the related studies is 

drawn in section 3 .14.2. The details regarding the specification of classes are 

presented in appendix E. The selection process of these classes is described in section 

3.10. 

3.9.4.3 Experiment- 3 (Evolutionary Reusability Analysis) 

The term evolution refers to the "process by which different kinds of living organism 

are believed to have developed from earlier forms, especially by natural selection" 

[ 130]. In the context of software engineering, evolution is the "process of progressive 

(e.g. beneficial) change in the attributes of the evolving entity or that of one or more 

of its constituent elements" [131]. Two software (Jasmin and pBeans) are analyzed to 

assess the reusability of their packages in different versions. The details on OSS 

selection are presented in section 3.10. 

72 



3.9.5 Statistical Analysis Tool 

The statistical analyses in this research work are performed using Statistical Package 

for the Social Sciences (SPSS). It is helpful in descriptive, hi variate statistical analysis 

and prediction for numerical outcomes, and identification of groups. 

3.10 OSS Selection 

In this research three experiments are conducted first at class level, second at package 

level and third is evolutionary analysis of different vers10ns of two open source 

software. The classes, packages and software were selected on the basis of the 

following criteria (i) the source code should be available, (ii) to ensure the 

consistency of comparisons and results; all of the selected classes/packages and 

software should be implemented in java. (iii) For the evolutionary analysis at package 

level, enough versions of software should be available. 

A total of I 03 classes were analyzed as part of the first experiment. These classes 

were drawn from 15 open source software. In the second experiment, 77 packages 

were assessed for their reusability. The software was downloaded from multiple 

sources which include Source forge (www.sourceforge.net), Merobase 

(www.merobase.com), and FreashMeat (www.freshmeat.net). More details of the 

components are provided in appendix D and E. 

The following OSS were used in the evolutionary reusability analysis. The 

selection was made on the basis of criterion that the selected software exhibits a 

significant evolution. Secondly, the source codes of all versions should be available. 

The selected software have research value; they have already been used in 

evolutionary research studies of software such as [ 132]. 

3.10.1 Jasmin 

Jasmin is an open source java assembler; it converts the ASCII descriptions of java 

classes to their respective binary java class files. The binary class files can be loaded 

into java virtual machine. Six versions of Jasmin software were analyzed which are 

73 



available at (www.sourceforge.net). Detailed specifications are provided m the 

appendix E. 

3.1 0.2 pBeans 

pBeans is open source software which facilitates automatic object/relational mapping 

of java objects to data base tables. Ten versions of pBeans were analyzed which are 

available at (www.sourceforge.net). Detailed specifications are provided in the 

appendix E. 

Table 3.4 Details of packages Jasmin and pBeans 

Software Versions Classes Methods LOC 

Jasmin 

pBeans 

6 

10 

3.11 Metrics Calculation Tool 

99 to 118 618 to 792 8256 to 11467 

28 to 49 161 to 341 1497 to 1057 

The calculation of metrics is a time consuming and extremely laborious work. Several 

tools are available which can be used for this purpose. In this research work, JHawk 5 

[133] was used to calculate the metrics at different levels. 

3.12 Goal Question Metric Approach 

The software measurements were performed under the guidelines of measurement 

frameworks. These frameworks ensure the suitable definition of measures for a 

particular entity such as process, product or resource. The Goal Question Metric 

(GQM) Approach [134] is one of the measurement frameworks which is widely used 

in software engineering. In this thesis, GQM approach is employed to define the 

measures. 

74 



GQM approach helps to interpret the data by providing guidance to define goals 

and measures to achieve those goals. The basic premise of GQM is all measurements 

should be goal oriented. GQM does not impose specific measurement goals to be 

achieved by the measurement program. It provides a structure to define goals, 

refinement of goals to produce quantifiable questions, and suitable measures to 

answer the questions. The measurement goal is achieved by collecting appropriate 

data. GQM consist of the following three steps: 

I. Specification of goals 

The specification of goal is associated with an object. There could be many 

reasons for specifying a goal. These reasons include the points of view, environment 

and quality model. There are three objects of measurement in software engineering, 

which are product, process and resources. 

2. Generating a set of quantifiable questions 

The goals of measurement are translated into operational level 

statement/question. The questions are related to the object of measurement. The focus 

of these questions remains on the selected quality issue and view point. 

3. Defining a set of measures to answer the questions 

The definition of measures to answer the question is the quantitative level I 

metric level of GQM. A data set is collected to answer the question. The nature of 

data may vary (objective or subjective). In a case when data depend only on the object 

being measured, it is objective. On the other hand, when the data depend on the object 

being measured and the view point from where they are taken, then it is subjective. 

3.13 Validity of Research Results 

The validity or trustworthiness [135] of research refers to the soundness of the 

research study. The term validity also implies that "the research actually measures or 

describes the phenomenon it sets out to measure or describe" [136]. It is one of the 

component of good research that it uses procedures to validate the data, results and 

their interpretations [90]. 

75 



The notion of validity in research studies is a complex phenomenon. Validity of 

research falls under several kinds. [ 136] states, it cannot be said for a research study 

that it has no threat to validity. One has to accept that there are standard errors in 

quantitative research and participants' subjectivity in qualitative research. 

3.13.1 Validity of Qualitative Results 

In qualitative research community the term validity or trustworthiness is used to 

express the quality difference of research studies [ 13 7]. The claims of qualitative 

studies cannot be generalized. On the other hand, results of the qualitative study 

cannot be considered invalid on the basis of this ground [ 136]. 

Qualitative studies are more inclined towards the exploratory purposes. 

Qualitative studies are more open-ended as compared to quantitative studies. The 

results are based on the interpretations of researcher. Hence, one of the potential 

threats to qualitative study is researchers' bias [137]. 

The other factor which influence the validity of qualitative research is the use of 

techniques, methods and the strategies used during the research process [135]. 

Six types of validity are considered important in context of qualitative research. 

These types include descriptive, interpretive, concurrency, internal, external and 

theoretical validity [137]. 

3. 13.1.1 Descriptive Validity 

The descriptive validity of a qualitative research study refers to the factual accuracy 

of the reported findings of the study [137]. The accuracy of descriptive information 

collected by the researcher during the qualitative data collection is more of concern to 

this validity. The crux of this validity is the correct reporting of events, behaviors, 

settings, people, places and times [138]. 

76 



3. 13.1.2 Interpretive Validity 

In qualitative research studies interpretive validity has a key role. Its importance 

increases due to the fact that qualitative data is available in the forms of text, audio, 

video, and pictures. Qualitative data need interpretations. Interpretive validity 1s 

concerned with portraying the correct meanings given by the participant [138]. 

Interpretive validity of qualitative research findings is the level of correct 

understanding related to experiences, thoughts, view points, feelings and intentions 

[13 7]. 

3. 13.1.3 Theoretical Validity 

Theoretical validity of results answers the questions of 'how' and 'why' the 

phenomenon being study operates [138]. Theoretical validity of qualitative findings 

can be demonstrated by building such theatrical explanations which fits the data 

[138]. 

3.13.1.4 Internal, External and Concurrency Validity 

Internal validity is related to the correct mapping of findings to the phenomenon in 

question [136]. In context of qualitative research internal validity exhibits the 

plausibility and credibility of results. Internal validity of qualitative research is 

ensured by providing evidence in favor of claims. The other factor that ensures the 

internal validity of qualitative results is the clearness of nature of claims i.e. 

description, definition, explanation or generation of theory [ 136]. 

External validity of results comes into the picture when there is a question of 

generalization of the results. The generalization of results is not the purpose of 

qualitative studies that's why the external validity of such studies tend to be weak 

[ 137]. 

77 



Concurrent validity of data is shown by the correlation of data collected using 

multiple sources [136]. Concurrent validity increases the confidence in the findings of 

the research study. 

3.13.2 Validity of Quantitative Results 

Quantitative results are based on statistics. The validity of statistical results refers to 

the validity of relationship of two variables and the strength of the relationship [13 7]. 

Two statistical inferences are made about the variables. First inference is about the 

existence of a relationship, and the second is about the magnitude of the relationship. 

The validity of quantitative results or validity of conclusions based on such results 

is the extent that the conclusions about null hypothesis are reasonable or correct [139]. 

The conclusions made on the basis of statistical results are the outcome of hypothesis 

testing. Two types of errors are associated with hypothesis testing; which are Type I 

and Type II errors [140]. Type I error is the case when Ho is rejected wrongly and H1 

is accepted. Type II error is the case when Ho is accepted wrongly and H1 is rejected. 

Both of the errors (Type I and II) reduce the validity of quantitative results. The 

probability of error or statistical significance (p value) is set by the researcher. 

3.13.3 Validity of Mixed Method Results 

Mixed method research studies make use of both qualitative and quantitative methods 

in a single study. So, by keeping this in mind all types of qualitative and quantitative 

validity are relevant to the mixed method studies I results [137]. In [141], nine types 

of validity are identified which are associated with the mixed method research studies. 

The types include the followings: 

3. 13.3.1 Sample Integration Validity 

Sample Integration validity is concerned with the integration of multiple samples. The 

sample integration validity threat arises in a situation when a focus group is conducted 

78 



as qualitative part, and a survey is conducted as quantitative part. In this situation, a 

careful treatment is needed to generalize the results. The underlying reason is that 

different groups have different beliefs. 

3.13.3.2 Inside-outside Validity 

Inside-outside validity concerns with appropriately employing and presenting the 

insiders' and observers' view to describe and explain the phenomenon. The threat of 

inside-outside validity can be minimized by peer reviewing. The researcher may get 

help of another researcher to review the interpretations and conclusions made from 

the data. 

3.13. 3. 3 Weakness Minimization Validity 

Mixing the research methods in a single study is the basic premise of the mixed 

method research. Weakness minimization validity refers to the extent to which 

shortcomings of one approach are overcome by using the other approach. The results 

of different methods complement each other and increase the quality of mixed method 

study. 

3.13. 3. 4 Sequential Validity 

Sequential validity addresses the issues related to the sequence of qualitative I 

quantitative methods employed in a mixed method study. The threats to the sequential 

validity of research study are minimized by analyzing the effect of changing the order 

of methods i.e. using qualitative method prior to quantitative or vice versa. 

3.13.3.5 Conversion Validity 

Conversion validity is associated with the transformation of data during the mixed 

method study e.g. quantitizing the qualitative data or qualitizing the quantitative data. 

79 



The quantitizing of qualitative data may include counting the words and qualitizing 

may include converting numbers into themes. The conversion validity threats can be 

removed by accurate conversion of data. 

3.13.3.6 Pragmatic Mixing Validity 

Pragmatic mixing validity refers to the extent to which the philosophical beliefs that 

underlie qualitative and quantitative are combined. The pragmatic mixing validity 

can be achieved by using pure assumptions of both qualitative and quantitative parts. 

The conclusions are drawn on the basis ofthe two components of the research study. 

3.13. 3. 7 Commensurability Validity 

This type of validity is concerned with the worldview of mixed method researcher. 

Commensurability Validity can be achieved by the mixed method researcher by 

switching from qualitative to quantitative viewpoint. This switching of viewpoint 

provides the researcher with a more fully mixed worldview. 

3.13.3.8 Multiple Validates 

Multiple validates refers to the degree of successful resolving of components of a 

mixed method research i.e. qualitative and quantitative components. It concerns with 

the extent to which the relevant validity types of qualitative and quantitative methods 

employed in the study are handled. 

3.13. 3. 9 Political Validity 

Political validity of mixed method research refers to the level of representation of 

interests, values and standpoints of multiple stakeholders. The other causes of 

political validity threats include use of different researchers for qualitative and 

80 



quantitative phases. The threats to political validity can be minimized by 

understanding the key stakeholder groups, their issues and concerns. 

3.14 Validation of Findings in Context of This Study 

The validity of research findings refers to the trustworthiness of results. A brief 

account on the types of validity of qualitative, quantitative and mixed methods has 

been provided in previous sections. Here, in the next sections arguments are provided 

that, how the validity of results are upheld during the study. 

3.14.1 Validation of Qualitative Findings 

The validity of qualitative research is related to following types; descriptive, 

interpretive, concurrent and theoretical validity. The descriptive validity is related to 

the reporting of events, behaviours, settings, people, places and time is not more of 

the concern in this study. The interpretive validity is more of the concern regarding 

this research. Whenever, there is ambiguity the transcriptions are reviewed by the 

researcher to ensure the interpretive validity of results. Furthermore, the findings of 

the qualitative studies are provided to the respondents. This measure was taken to 

cater for possible apprehensions of respondents about the results. The respondents 

verified the interpretations. 

The theoretical validity of results is maintained by comparing the findings of this 

research study with the contemporary studies. It can be safely said that the findings 

presented in this thesis are in line with the available theory. 

Concurrent validity of results is exhibited by the fact that the qualitative data were 

collected using seven interviews. Similar patterns and trends are identified from the 

collected data. The only findings are reported which are concurrent and extracted 

from multiple respondents. The findings of two categories, namely other 

considerations and suggestions are not in subject to the concurrent validity. 

81 



3.14.2 Validation of Quantitative Findings 

The validity of quantitative results is suffered by type I and type II errors. Both of 

these errors are related to either rejection or acceptance of the null hypothesis. In this 

research study, the lower value of probability is used i.e. 0.01. This lower level of p

value ensures minimum possibility of type I or type II error in the results. 

Furthermore, the validation of findings can be seen from the number of samples 

used in the experiments. In [69], 125 java bean components are used to validate the 

approach. These components were selected from single source. In another study i.e. 

[27]12 interfaces are used for validation. In this thesis 77 packages and two software; 

comprising of 6 and 10 versions (68 packages) are analyzed for validation. The 

number packages in them are 4 and 8 respectively. However, the results cannot be 

compared with these studies due to the fact that these approaches are black-box 

approaches and the approach used in the thesis is white-box approach. The 

comparison is presented in Table 3.7. 

Table 3.5 Experiment sample comparison-! 

Study Reference Classes used 

·(Etzkorn. et'af;;;:Zoo l) '18 wiri. one, ~xperimenttand ,' 25 in second 

This Thesis 

Study Reference 

(Guf~d Scott, 
2007) . 

This Thesis 

expeHinent ,., · · 

103 

Table 3.6 Experiment sample comparison-2 

Components used LOC 

994 

Lexical tokenizer I 288 

Barcode geri~rat<)f 23 23 

Jasmin ( 6 versions) 

82 

8256 in (V 1.0) to 11467 in (V 
2.4) 



In chapter five the results of experiment-! are presented, which are obtained using 

a sample of 103 classes. In a similar study i.e. [67], 18 and 25 classes are used in two 

experiments carried out to validate the reusability assessment approach. However, the 

context of their study was different; their approach is meant for software developed in 

C language. 

In [28], coupling metrics are used to assess the reusability. The approach is 

validated using 3 components. These components have 994, 1288 and 2323 lines of 

code. In this thesis, multiple versions of two software are used to analyze the 

proposed approach. The sizes of software (Table 3.6) are fairly large than the earlier 

study. 

Table 3.7 Experiment sample comparison-3 

Study Reference Component used 
•' ~~i /'; - --: '::.-' - !''.• \•. " .. '\ ·-t -- - -.>( t,:/'~ 

(Washlzakietal., 2003) c l~S'fi.omone source Oar) 

(Boxall and Araban, 2004) 12 interfaces 
,:~-- -- - ,' ·:·· --->,, ' ----'-'/:: -_-(:!' t -;,',: ' ', -_-i: 
·.:, .;'<_<, ' -_ '·· ·>t/< •• ·. f',W>k.-~"-'."';01:-:--; -- -.,:_ · ,__ :-
(Eun Sook eta!~, 20Ql) /zs; 1 Cll§e study (application) 

This Thesis 77 packages from multiple sources 

Jasmin (3 packages X 6 versions = 18 packages) 

(I package X 4 versions= 4 packages) 

pBeans (3packages X I 0 versions = 30 packages) 

( 4 packages X 3 versions= 12 packages) 

(I package X 4 versions= 4 packages) 

Total= 77 + (18+4+30+12+4) = 145 packages 

3.14.3 Validation of Mixed Method Findings 

Mixed method studies use both qualitative and quantitative methods. So, all the 

validity types of qualitative and quantitative methods are applicable to the mixed 

83 



method studies. Apart from these validations, researchers have identified some 

validity types for mixed method studies. 

The results are not affected by the sample integration validity threat. Sample 

integration threat arises in situation when opinions of different groups, collected using 

different methods are mixed. In the case of this thesis, the methods are applied in a 

sequential manner. Interviews were conducted with the experts and then a 

questionnaire was formed on the basis of the results of the prior interviews. Secondly, 

all respondents represented the same role (software engineer who uses OSS). This 

ensures that the perception or viewpoint of all respondents is the same. 

The inside-outside validity is maintained during the study using a peer review 

method. The conclusions and interpretations were reviewed by fellow researchers (co

supervisor I supervisor). 

The weakness of the results is minimized by employing different methods. The 

findings of the qualitative study cannot be generalized. So, a survey was conducted to 

have more confidence in the results. Furthermore, statistical techniques were used to 

test the hypothesis based on the findings of the interview and survey. 

The sequential validity of the results was kept in mind during the study. The 

sequence of application of methods was decided prior to the commencement of 

research. The nature of study is exploratory, as the phenomenon under investigation 

has not been much worked on by the previous researchers. So, qualitative method was 

used to lay down the basis for the quantitative methods. 

The results of the study are not affected by the conversion validity threat. The 

reason is during the analysis qualitizing or quantitizing of data is not performed. 

The pragmatic validity of the results is ensured by using the pure assumptions of 

qualitative and quantitative methods. The conclusions are drawn on the basis of the 

results acquired by different components of the study. 

The multiple validates validity is exhibited by the results as the validity threat of 

qualitative and quantitative methods are kept in view. As argued in the previous 

sections, the political and commensurability validity threats are not the issue in this 

84 



research. The research is conducted by only one researcher, which minimizes the 

political validity threats. However, the opinions and some reviews were conducted by 

the fellow researchers; the methods were applied sequentially. So, there is a switching 

of viewpoints starting with the qualitative and ending at quantitative. This switching 

provided a mixed worldview, which is necessary to achieve the commensurability 

validity. 

3.15 Summary 

Research is a process to acquue knowledge. Epistemology is the philosophy of 

knowledge. It deals with the underlying assumptions of knowledge that 'what is 

knowledge?' and 'how to acquire it?' Epistemology is related to different theoretical 

perspectives or paradigms. Pragmatism is an emerging research paradigm which is 

based on the mixing of qualitative and quantitative methods. Studies conducted within 

the pragmatism paradigm are referred as mixed method studies. 

This chapter includes a brief overview of the qualitative and quantitative methods 

employed in this study. The qualitative method used in this study is interview; a face 

to face conversation between the researcher and the subject. The quantitative 

methods used in this study include survey and statistical experiment. Survey, which is 

a comprehensive data collection mechanism based on questionnaires filled by the 

survey population. Statistical experiment is the use of appropriate statistical 

techniques to interpret the quantitative data. In this study scatter diagrams, pie charts, 

and pearsons' correlation analysis were used to understand the data. 

The last section of this chapter provides a brief account on the validity of research 

results. The validity of research shows soundness and credibility of results. Validity in 

the context of qualitative research is related to descriptive, theoretical and interpretive 

validity. The validity of quantitative results is based on the acceptance or rejection of 

null hypothesis. 

85 





CHAPTER4 

IDENTIFICATION OF CATEGORIES & DIMENSIONS IN REUSING OSS 

All the great truths are simple in final analysis, and easily understood; if they are not, 

they are not great truths. (Napoleon Hill, 1883-1970) 

4.1 Overview 

In this chapter the categories and dimensions of reusing OSS in reuse intensive 

software are presented. One of the identified dimension i.e. factor affecting reusability 

is carried to the quantitative phase and a questionnaire is developed for survey. The 

results of survey are presented in this chapter. The second section contains the 

comprehensive analysis of variability implementation mechanisms. The variability 

implementation mechanisms are mapped to the variability types, scope, and binding 

time. 

4.2 Categories & Dimensions of Reusing OSS in Reuse Intensive Environment 

The findings of the interviews are presented in this section. These findings emerged in 

seven categories. The names and descriptions of these categories are provided in 

Table 4.1. 



CHAPTER4 

IDENTIFICATION OF CATEGORIES & DIMENSIONS IN REUSING OSS 

All the great truths are simple in final analysis, and easily understood; if they are not, 

they are not great truths. (Napoleon Hill, 1883-1970) 

4.1 Overview 

In this chapter the categories and dimensions of reusing OSS in reuse intensive 

software are presented. One of the identified dimension i.e. factor affecting reusability 

is carried to the quantitative phase and a questionnaire is developed for survey. The 

results of survey are presented in this chapter. The second section contains the 

comprehensive analysis of variability implementation mechanisms. The variability 

implementation mechanisms are mapped to the variability types, scope, and binding 

time. 

4.2 Categories & Dimensions of Reusing OSS in Reuse Intensive Environment 

The findings of the interviews are presented in this section. These findings emerged in 

seven categories. The names and descriptions of these categories are provided in 

Table 4.1. 



Table 4.1 Categories and their description 

These challenges are wide-ranging: 

viewpoint; the end user's viewpoint; commercial and secure 

application development issues. 

reuse Knowledge about current reuse practices as employed in 

industry are combined in this category. This knowledge is 

based on the experience of the respondents. 

OSS in The views of the respondents on the use of open source 

affecting 

reusability 

software in product lines are put together in this category. 

This category is based on the role of OSS in the promotion 

of reuse, i.e. why OSS is influencing reuse intense software 

development? 

The factors of reusability are assembled under this category. 

The desirable characteristics of OSS, identified during the 

characteristics study, are presented in this category. 

Suggestions The suggestions provided by the respondents are presented 

in this category. 

4.2.1 Challenges in OSS 

In this section the challenges in OSS are presented, and categorized on the basis of the 

opinion of the respondents. These challenges fall in different dimensions. The list of 

challenges (sub categories) and their corresponding representative quotes are 

presented in Table 4.2. 

88 



4.2.1.1 SC-1-1 Finding ass 

The very first challenge in OSS is searching for it. Searching facilities are improving 

with the emergence of new search engines. Furthermore, enormous contributions are 

being made by numerous software engineers. The availability/accessibility of OSS 

has improved but it is still a challenge to find specific OSS. One of the reasons is that 

different cataloguing standards are employed by search engines. This lack of a 

standard makes it difficult for a new user (i.e. a software engineer) to search for a 

component using different search engines. 

4.2.1.2 SC-1-2 Evaluating ass 

The evaluation of the OSS is another challenge. For example in case, in the first step 

(finding an OSS) when a required component is found, then the decision whether to 

use it or not is related to the evaluation of the OSS. The practices to evaluate OSS 

differ in different organizations. The evaluation of OSS prior to using it is the 

discretion of software engineer in small organizations. In such environments this 

evaluation depends on the knowledge and expertise of the software engineer. 

4.2.1.3 SC-1-3 Lack of Documentation 

Lack of documentation is related to the understandability of software. Lack of 

documentation affects the understandability/analysis of the software. So, without 

having appropriate documentation it is difficult for software engineers to use it. One 

of the reasons for this issue is; a large number of developers contribute to many OSS 

components, and this complicates the provision of documentation. 

The respondents consider documentation as the most important quality of OSS. 

The quality of documentation reflects the quality of the software. Another aspect of 

documentation is that it provides a record of the changes made to the OSS, i.e. it gives 

its history. 

89 



amounts of time understanding others code, software engineers would prefer to write 

their own. 

4. 2.1. 7 SC-1-7 Security 

There is a security concern when using OSS in critical and highly secure application 

domains, such as defense, government and financial sectors. In such situations there 

should be mechanisms for code scanning to ensure that the code is clean, meaning 

that there is nothing malicious in the code. 

4.2.1.8 SC-1-8 Improper Reviewing/Comments 

Reviewers' /users' comments about OSS play an important role for the potential user 

of OSS. One can learn about the software prior to downloading and using it. There is 

a huge amount of code (software) available over the Internet. Several users have 

written comments about some of it. However, the issue is that there is no standard for 

reviewing code and writing comments about it. The person who writes a comment 

shares a personal experience with a particular piece of software. Sometimes, the 

context of its use is not clear, which raises questions in the reader's mind. It is 

suggested by the respondents that there should be standards for writing comments 

about software so that OSS users can easily extract the required information. 

4.2. 1.9 SC-1-9 Fear of Losing Market Share 

This issue is more relevant to product line and domain based software development, 

where companies target a specific domain and group of potential customers. In such 

situations the software organizations may use OSS but do not want to contribute 

software to an OSS repository because they want to keep their innovations to 

themselves. In this way they sustain themselves in a particular domain. There is a fear 

associated with sharing - if they share code they will risk losing their position in the 

market. 

91 



Table 4.2 Sub categories of challenges in OSS 

Finding OSS "Finding an OSS component is one of the 

challenges". 

Evaluating OSS "If I find a required OSS component then its 

evaluation is a challenge". 

of " .... without proper information it IS difficult to 

documentation understand it". 

"If there is no proper documentation then others 

cannot understand the software neither can change 

nor modify it". 

"The challenge in the context of the open source is 

analyzing, usually OS comes along with source 

code without many documentation. So, it is very 

difficult to analyze without documentation." 

for "They don't want to contribute to the open source 

to because they want to run their software house ... " 

their "they are willing to use the OS but not to contribute 

software OSS to the OS because of their limitation and because of 

the market competition" 

92 



Table 4.2 Sub categories of challenges in OSS (cont.) 

information 

about intellectual 

property rights 

/copyright 

adherence to 

convention 

/standard 

rev1ewmg 

/comments 

Fear of losing 

"The developers have lack of information about 

the intellectual property rights in OSS, so they are 

afraid to share code". "Lineage of the software 

ensuring that no intellectual property so that is the 

biggest hesitation". 

"There should be some specific rules, common 

rules for each for the whole developer community 

or those contributing to the OSS". 

"If some immature developer is developing the 

software defiantly the code would be different 

from the professional developer". 

"Any secure system which included OS but still 

there could be certain measures if the OSS. They 

did a scan on the source code rather than they 

incorporated as binary and they could do the 

necessary analysis to know that the OSS does not 

have any malicious code, entered in the software". 

"I have seen some customers/users of OSS review 

but the main problem is there are no rules for 

writing a review, every reviewer is writing the 

review in their own context in their own way". 

"If they develop a tool or software and they 

contribute of float it as OSS there are chances that 

they can't further work/earn". 

93 



4.2.2 Current Reuse Practices 

The findings which fall under this category are related to the knowledge about current 

reuse practices as employed in industry are combined in this category. This 

knowledge is based on the experience of the respondents. The list of sub categories is 

presented in Table 4.3 with their corresponding representative quotes. 

4.2.2.1 SC-2-1 Knowledge Reuse 

There is a form of reuse in which knowledge is reused. Imagine a situation where a 

software engineer is searching for a component written in one language but can only 

find it written in another language. The software engineer can reuse the knowledge 

inherent in the logic but rewrite the code. This form of reuse is helpful where the bulk 

of the logic remains the same and objectives of reuse are achieved with some changes 

I adaptation. Demo version of software is also related to the knowledge reuse, as 

explained in next section. 

4.2.2.2 SC-2-2 Demo 

Much of OSS comes with a demo version; this is very helpful for understanding the 

software. The potential user of OSS can base his/her decision of whether or not to use 

the component on the success of using the demo version. In other cases, the software 

engineer wishes to use a component following some modifications. A demo aids the 

software engineer in thinking how best to make the modifications. Software 

engineers can sometimes gain a better idea of the functionality through using a demo 

rather than studying a large amount of code. In this way target areas of the program 

requiring modification can sometimes be more easily identified. 

94 



Table 4.3 Sub categories of current reuse practices 

"We can just take an idea and we can reuse the 

idea". 

''Demo could be helpful for programmers they 

can understand the software by a demo of the 

software, demo g1ves an idea to the 

programmer ... ". 

started from "Now I think this concept that you start 

developing a product from scratch is impractical 

because right now the time is scarce in the 

world". 

"Software product lines are started with having 

some component in hand means the company is 

already working in this domain and that is why 

OSS may help them to start product line or to 

add new product into the line". 

4.2.2.3 SC-2-3 Not Started From Scratch 

There is an opinion that starting a product 'from scratch' is impractical. Software 

engineers start developing with having some components at hand. It saves time and 

other resources. At a higher level the same goes for software product lines. Product 

lines are started after having prior knowledge and an awareness of their applications 

95 



m the domain. Reuse as an aid to getting started can facilitate a competitive 

advantage, allowing a new software product to be developed in a short period oftime. 

The association of an organization with a specific domain helps to develop trust in 

its new products. The customer prefers software products from companies that are 

already established in a specific domain. 

4.2.3 Using OSS in SPL 

This category is based on the views of the respondents on the use of open source 

software in product lines. The sub categories are presented in Table 4.4 with their 

corresponding representative quotes. 

4.2.3.1 SC-3-1 Fast Transition 

The use of OSS to develop a product line provides an opportunity to develop a new 

product in less time. On the other hand, it hastens the transition of manual to 

automated systems. Many of the systems which we interact with in our daily life are 

similar in nature. SPLs deal with such similarities (commonalties). The infrastructure 

of OSS core assets can be used to initialize many specialized products. 

4.2.3.2 SC-3-2 OSS is Attracting SPL Community 

OSS is attracting the product line community in the sense of starting a new product. 

An organization can develop a new product in less time using OSS. On the other 

hand, product lines are seldom started from scratch. So, OSS provides a good start to 

the SPL community. Obviously the standards and quality of OSS is an issue in the 

case ofOSS based SPLs. 

96 



Table 4.4 Sub categories of using OSS in an SPL 

Fast transition "If such setup is developed (using open 

source to build family of systems) then 

the transition from manual to 

computerize will be much faster." 

is attracting SPL "OSS is very attractive to product line 

community 

Improvement in quality 

Provides opportunities 

4.2.3.3 SC-3-3Jmprovement in Quality 

community". 

"The number of times a component is 

reused its quality is improved". 

"Reuse also refines the product". 

"It's a good opportunity that you have 

idea or free code and then you develop 

product lines". 

The reuse of software improves its quality. However, in the case of SPLs it is even 

more beneficial. The core assets are reused in multiple applications; this reuse refines 

the components. The more times a component is reused the greater is its quality. 

Another aspect of this is that the end user/customer is in a better position to state his 

requirements and comment on a system after using a similar one. 

97 



4.2.3.4 SC-3-4 Provides Opportunities 

The respondents considered OSS based SPLs as a window of opportunity. This reuse 

may lead to the inter-organizational reuse of the components. Reuse will be moved to 

a higher level, one that finds commonalties among domains. Such types of core assets 

will be developed which are used by multiple domains. 

4.2.4 Role of OSS in promoting reuse 

This category is based on the role of OSS in the promotion of reuse, i.e. why OSS is 

influencing reuse intense software development? The sub categories and their 

corresponding representative quotes are presented in Table 4.6. 

4.2.4.1 SC-4-1 Saves Time 

The top most benefit of reuse is that it saves time. Software engineers prefer to reuse 

the component if it is already available. On the organizational level and in product 

line practices reuse results in a short delivery time. New products can be launched in a 

shorter time. It provides a competitive edge and there is time available for 

experimentation and innovation to enhance the features of the product. 

4.2.4.2 SC-4-2 Less Effort Required 

Reuse also results in saving effort. Less effort is required to develop software using 

OSS as compared to starting from scratch. In the context of SPL, product lines are 

seldom started from scratch. The organizations which move towards the development 

of SPL already have experience of that particular domain. 

98 



4.2.4.3 SC-4-3 Ease of Development 

OSS allows for easier development; that is why its use is encouraged in the software 

industry. Developing a new product is comparatively easy using OSS. A developer, 

who is new to the domain, can get domain knowledge by reusing the components. 

4. 2. 4. 4 SC-4-4 Market Trust 

The reuse of OSS enables a company to launch a product more rapidly. A potential 

customer prefers products of a company that is already developing software in that 

particular domain. So, indirectly, OSS usage develops the trust of the customer. 

Table 4.5 Sub categories of role of OSS in promoting reuse 

Less effort required 

Ease of development 

" ... .it saved time otherwise it will take 

weeks to develop it". 

"It saves around 80% of the time and 

less effort is required". 

"Nowadays open source development is 

encouraged within the software 

development community, and people are 

going towards open source, they feel 

very easy to develop". 

"The company which reuse can develop 

a system in months and other may take a 

year ... the company which is running a 

product line in some domain it also 

develop a trust". 

99 



4.2.5 Factors Affecting Reusability 

The factors identified as the attributes of reusability are assembled under this 

category. The subcategories and corresponding quotes are presented in Table 4.7. 

4. 2. 5.1 SC-5-1 Flexibility 

Flexibility is related to reusability in two ways. First, it is the ability of a component 

to be used in multiple configurations. Second, it is a necessary attribute concerning 

future requirements and enhancements. 

4. 2. 5. 2 SC-5-2 Maintainability 

Maintainability is related to reuse in terms of error tracking and debugging. If the 

component is maintainable it is more likely to be reused. In cases where OSS 

components are running on systems connected to another system then a bug is 

particularly problematic. Sometimes debugging a component on one configuration 

may not work on other configurations. On the other hand, in black box reuse, 

maintainability is not considered a factor of reusability. 

4. 2. 5. 3 SC-5-3 Portability 

Portability is considered a factor in the sense that a cohesive component is more 

portable. A component having all the necessary information within it or having less 

interaction with another module during its execution is more reusable. Again in the 

case of black box reuse it is not a factor. 

4.2.5.4 SC-5-4 Scope Coverage 

Another characteristic of the open source components explored is the extent of its 

scope. A developer would prefer a component to cover as much of the application's 

functionality as possible. Size is a concern in large components as it often means a 

100 



high level of complexity and poor understandability. Furthermore, scope coverage is 

important in situations where future enhancements have already been envisioned, or 

where there is the likelihood that more features will be added in the future. 

4. 2. 5. 5 SC-5-5 Stability 

The respondents regard stability as an important factor to be considered while making 

decisions. Stability of a component refers to its quality of being error free. Here, the 

term 'stability' can be linked to 'safety in numbers', that is, a reasonable number of 

developers has contributed to the component and, furthermore, a reasonable number 

has used it. Stability is also related to the usage history of the component. 

4.2.5.6 SC-5-6 Usage History 

Usage history provides a hint about the usefulness of the component. Another side of 

usage history is the maturity of the component. The component can be considered 

mature, if it is used in many applications. The use of component in many applications 

also reflects its quality of interoperability. It provides a confidence to the potential 

user that component can be easily adapted. Another aspect of usage history is that the 

use of a particular OSS in different applications provides an example of usage of the 

component. This example can be effective for learning purpose. 

4. 2. 5. 7 SC-5-7 Understandability 

The respondents also have a consensus of opinion on the understandability attribute. It 

is also related to the maintainability of the component; a component that is easy to 

understand is easy to maintain. Understandability also affects the reliability of a 

component. 

101 



Table 4.6 Identified factors and representative quotes 

"Flexibility refers to the ability to use it in multiple 

configurations". 

"In order to reuse some component source code it 

should be flexible enough to be used in several 

contexts". 

"Flexibility is necessary because there are changes 

required with the passage of time, so it saves you 

not to be bound". 

"Maintainability is a large problem in such 

situations when you use OSS and we are running 

the system with connectivity with other systems; 

so every time there are some bugs and removing 

the bugs in other code that is developed by some 

else is very difficult for the developer''. 

"Portability is also related to the install ability, it 

should be taken care and portability should be 

economical we don't have to install other software 

to run a component in other systems". 

Scope Coverage "That depends on the situation but normally we 

choose the more coverage component as compared 

to the less covered one". 

"... it depends on the application if we want to 

extend further our application then we will go for 

more features''. 

102 



Table 4.6 Identified factors and representative quotes (cont.) 

Usage History 

"Stable meaning reasonably error free and it could 

be used with confidence that there is no bug". 

"If I don't understand it then I can't show that it is 

reliable and prove it to myself then I am not going 

to use it". 

"Size can be managed but if it IS not 

understandable then it is difficult to reuse" 

"Usage history also shows the maturity of the 

component and how many people have used and 

made changes to it". 

" In many cases open source software is used by 

many people many engineers, already proven its 

usefulness". 

''Variability is a two edge sword in other words 

there are advantages and disadvantages". 

"If there is lack of documentation then I mean it 

creates hurdles to understand the code for any other 

developer or the software engineer". 

"If there is no proper documentation then others 

cannot understand the software neither can change 

nor modify it". 

103 



4.2.5.8 SC-5-8 Variability 

Variability is one of the factors identified. Variability is also seen as the 

configurability of a component, that it can be configured in multiple configurations. 

Variability is also related to the scalability property of component that it can be scaled 

up whenever required. 

4.2.5.9 SC-5-9 Documentation 

The respondents consider documentation as one of the important factors that affect the 

flexibility, understandability and reusability. The issue of documentation is 

multifaceted. Usually, OSS comes without much documentation. OSS is developed 

and contributed by many developers. The number of developers may reach up to 

thousands, like in the case of Linux. The code size increases rapidly. So, it is very 

difficult to analyze code without documentation. 

Documentation is associated with understandability. The lack of documentation or 

poorly maintained documentation hinders understandability. Documentation also 

provides a record of the component, component history can be known by seeing the 

documentation. 

4.2.6 Desirable Characteristics of OSS 

The desirable characteristics of OSS, identified during the study are presented in this 

category. 

4. 2. 6.1 SC-6-1 Academic Perspective 

The desirable characteristics of OSS, from an academic perspective include the 

availability of test cases with the open source software. The primary focus of an OSS 

developed in academia is innovation and functionality. OSS in academic settings is 

intended to extend the body of knowledge. There is a room for experimentation in 

academia. 

104 



4.2.6.2 SC-6-2 Industrial Perspective 

The desired characteristics of software from business point of view differ from that of 

academic perspective. Firstly, there is no room for experimentation in business 

environments or commercial software development. The critical factor in business 

environment is risk aversion. Several methods are used for assessment and mitigation 

of potential risks. 

4.2.6.3 SC-6-3 Maintenance Support 

Maintenance is one of the issues in OSS. This is because of the shared/lack of 

ownership of software. The potential user of OSS looks for its maintenance support. 

This factor is important such that it influences the decision to use a particular OSS. 

The OSS with maintenance support is preferred over the other which doesn't have this 

support. 

4.2.6.4 SC-6-4 Maintenance Agreement 

In some situations companies may opt for a maintenance agreement with the 

developing organization. This kind of agreements covers extensions or changes in 

software. On one hand, the customer prefers maintenance agreements for their future 

needs or enhancements in the systems. On the other hand, software developing 

companies earn additional revenues from these agreements. 

4. 2. 6. 5 SC-6-5 Infrastructure Support 

Infrastructure support by the OSS is one of it's a desirable characteristic. Here, the 

term infrastructure refers to operating system, web application server or the graphical 

user interface. So, the OSS with better infrastructure support is preferable. Better 

infrastructure support makes the OSS an affordable choice under most circumstances. 

105 



Table 4. 7 Desirable characteristics of OSS and representative quotes 

Academic Perspective 

Industrial Perspective 

Maintenance Support 

"In academics because you are not 

delivering the PL for business purposes 

and the value is or the basis is extending 

the body of knowledge and helping other 

researchers to develop or break through in 

new area of software capabilities or 

demonstrating new algorithms or 

infrastructures whatever its purely 

functionality and functionality could be 

the number of test cases delivered with the 

open source product and the ease of use." 

" ... the critical business importance is not 

to take risks this is known as the risk 

assessment, how risky it is and for risk 

there are several ways of determining 

risks''. 

" ... support for the open source software is 

the number one characteristic we look for" 

106 



Table 4.7 Desirable characteristics of OSS and representative quotes (cont.) 

Maintenance Agreement 

Infrastructure Support 

"companies may opt for maintenance 

agreement with the developer company, at 

any time during the agreement if there is a 

need of extensions or change company can 

provide support" 

"I would be looking for the software that 

has the capabilities that I want to include 

in my product line but also the capabilities 

that I need to support the services or the 

infrastructure" 

" ... we look for is how mature it is and if 

we have to change anything to make it 

work, how many examples of it are being 

used in software community" 

Handling "When an error happens, what type of 

interrupt /what type of message is passed 

back? What type of parameters is required 

to handle the error?" 

"The biggest variability parameter, I am 

concerned with is the scale of the work ... 

in other words, will this component 

scale?" 

107 



4.2.6.6 SC-6-6 Maturity ofOSS 

Maturity of OSS also plays an important role while making the selection decision. 

One way to know the maturity of an OSS is to look for the usage of a particular OSS 

in different scenarios. These examples of use provide an idea to potential user. The 

potential user may find similarities or differences in examples and his situations. The 

comparison helps him to build a confidence in a particular OSS. The potential user 

may identify related threats and risks. 

4.2.6. 7 SC-6-7 Error Handling Mechanism 

The availability of error handling mechanism is a desired characteristic of OSS. Error 

handling mechanism includes the knowledge about the error types, related messages 

and their remedies. The remedy may include the types of parameters required to 

remove the error. 

4.2.6.8 SC-6-8 Scalability 

The capability of OSS to be scaled is considered a desirable characteristic. The 

scalability of OSS is its ability to handle the growing needs of the organization. It is 

also considered a variability parameter, that new functionality can be added or 

extension of current functionality. 

4.2. 7 Suggestions 

The suggestions provided by the respondents are presented in this category. 

4. 2. 7.1 SC-7-1 Inter Language Reuse 

Inter language reuse of OSS is one of the suggestions. It can be viewed as a challenge 

to software engineering. The generic artifact like design documents, requirement 

specification can be implemented in different languages. It is due to their abstract 

nature. However, the code assets lack this level of abstractness. One of the possible 

108 



solutions is the conversion of code of one language to another with the help of some 

intermediating software. 

4.2. 7.2 SC-7-2 Software Agents 

The development of software agents is suggested by the respondents. These agents 

should be capable of guiding the software developer as to which kind of changes is 

required when adapting a particular component. These agents may help users by 

creating a meta-data fi le, containing the details of structures, classes, their types and 

relationships. So that the developer can see what changes are required, and it may 

help him to make a decision whether to use or not to use a particular component. 

Table 4.8 Suggestions and representative quotes 

Inter Language Reuse 

Software Agents 

" ... for example if I want to extract 

python code, if I use python code for 

example I am a C# programmer that use 

dot net technology so how can I use it ... 

for example I use python for text 

processing, how can I use python code? 

How can it be portable or how can it be 

easily used in java or C?" 

" ... for software development there is 

such type of agent, that they can easily 

see other things also, if they are using 

some other code, agent can suggest which 

kind of change is required and which 

variable constant you should change or 

which type of features/ classes". 

109 



4.2.8 Other Considerations 

A few of the 'open codes' cannot be associated with the categories due to the 

contextual differences. Therefore, these thoughts of the respondents are presented 

separately in this section. 

Table 4.9 Other considerations and representative quotes 

Future ofOSS and PL " . .. coming time is ofOSS because, open 

source will be more common, yes both of 

these fields are promising . . . " 

Importance of " ... measuring these factors is very useful 

to understand ... " 

Box Taking " ... it depends on the situation but in the 

4.2.8.1 SC-8-1 Future ofOSS and PL 

setup of using open source, white box is 

taking advantage". 

The respondents see a promising future of OSS, SPL and the development of SPL 

using OSS. Now a day's time is the most important resource. OSS is enabling 

organizations to reuse software and save time. Secondly, OSS is providing great 

support in development, provided that a right choice is made. This support is in terms 

of finance, time and resources. 

4.2.8.2 SC-8-2 Importance of Measurement 

Measurement m software engineering is as important as m other fields. The 

measurement of factors affecting reusability is also important. The impact of 

measurements can be seen at different levels like a developer can assess the quality of 

110 



his work. The higher management can assess reusability and may use the assessment 

results to compare software for making decisions or to prepare project plans. 

4. 2. 8. 3 SC-8-3 White Box Taking Advantage 

The decision regarding either black box or white box usage of OSS component 

depends on many factors. The organizations may think about their human resource 

capabilities before making a white box reuse decision. The reuse policies of 

organizations are also important while making such decisions. However, in any 

situation white box reuse is taking advantage of customizability and provides more 

freedom. 

In previous section the findings of the qualitative study are presented. These 

interview data was analyzed using the content analysis approach. Findings are 

presented in seven categories and 39 sub categories. In next section the results 

obtained by the quantitative study making use of survey are presented. 

4.3 Attribute Ranking Survey 

This section contains the findings of the quantitative study (survey). The details of the 

survey including sampling technique, sample size, confidence level and confidence 

interval were presented in chapter 3. After executing the survey research method these 

results are gathered. The results of the survey are presented in the form of pie charts. 

The percentages of population selected a specific scales are presented in figures 

Figure 4.1 to Figure 4.9. 

The pie chart of attribute flexibility shows a concentrated data at scale four 

(agree) and five (strongly agree). It shows a consensus that flexibility is one of the 

attribute of reusability. 

111 



Strongly Agree 
35% 

Strongly Disagree 
3% 

Flexibility 

Neither Agree or 
Disagree 

4% 

Figure 4.1 Frequency distribution of the scales assigned to flexibility 

Table 4.10 Flexibility rankings 

Scale 

Strongly Disagree 

Disagree 

Neither 

Disagree 

Agree 

Agree 

Strongly Agree 

Flexibility 

or 

Confidence Interval 

*0%- 7.69% 

3.42%- 13.24% 

*0%- 8.95% 

45.09%- 54.91% 

29.94%- 39.76% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in [142]. 

The pie chart of scope coverage shows a less consensus of population that it is an 

attribute of reusability. It is visible by the percentage of population opted for the scale 

(disagree). 

112 



Strongly Disagree 
3% 

Scope Coverage 

Strongly Agree-----

Agree 
45% 

11 % 

-----

Disagree 
28% 

Neither Agree or 
Disagree 

13% 

Figure 4.2 Frequency distribution of the scales assigned to scope coverage 

Table 4.11 Scope Coverage rankings 

Scope Coverage 

Scale 

Strongly Disagree 

Disagree 

Neither 

Disagree 

Agree 

Agree 

Strongly Agree 

or 

Confidence Interval 

*0% -7.44% 

23.37%-33.19% 

8.22% - 18.04% 

40.04%- 49.86% 

6.20%- 16.02% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in (142]. 

The pie chart of attribute portability shows a concentrated data at scale four 

(agree) and five (strongly agree). It shows a consensus that portability is one of the 

attribute of reusability. 

113 



Strongly Disagree 
3% 

Strongly Agree ---:ow 
29% 

Portability 

Agree 
45% 

Neither Agree or 
Disagree 

7% 

Figure 4.3 Frequency distribution of the scales assigned to portability 

Table 4.12 Portability rankings 

Scale 

Strongly Disagree 

Disagree 

Neither Agree 

Disagree 

Agree 

Strongly Agree 

Portability 

or 

Confidence Interval 

*0% -7.69% 

10.75%-20.57% 

2.67% - 12.49% 

40.29% - 50.11% 

23.88%- 33.70% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in [142]. 

The pie chart of attribute maintainability shows a concentrated data at scale four 

(agree) and five (strongly agree). It shows a consensus that maintainability is one of 

the attribute of reusability. 

114 



Strongly Disagree 
1% 

Maintainability 
~Disagree 
~ 8% 

Neither Agree or 
Disagree 

19% 

Figure 4.4 Frequency distribution of the scales assigned to maintainability 

Table 4.13 Maintainability rankings 

Maintainability 

Scale 

Strongly Disagree 

Disagree 

Neither 

Disagree 

Agree 

Agree 

Strongly Agree 

or 

Confidence Interval 

*0%- 5.67% 

2.92%- 12.74% 

13.78%- 23.60% 

50.39%- 60.21% 

12.51%- 22.33% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in [142]. 

The pie chart of attribute variability shows that 30% of the population opted for 

neither agree nor disagree. One of the possible reasons for this indecisiveness of 

population is Jack of knowledge about the variability. 

115 



Strongly Disagree 
0% 

Strongly Agree ---:::::-'iii 

Agree 
48% 

II% 

Variability 

Figure 4.5 Frequency distribution of the scales assigned to variability 

Table 4.14 Variability rankings 

Scale 

Strongly Disagree 

Disagree 

Neither 

Disagree 

Agree 

Agree 

Strongly Agree 

Variability 

or 

Confidence Interval 

*0%- 5.16% 

6.20% - 16.02% 

24.64% - 34.46% 

43.57%- 53.39% 

5.70%- 15.52% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in [142). 

The pie chart of attribute understandability shows a concentrated data at scale four 

(agree) and five (strongly agree). It shows a consensus that understandability is one of 

the attribute of reusability. 

116 



Understandability Strongly Disagree 
6% Strongly Agree 

20% J 

Agree 
53% 

------

Disagree 
9% 

Neither Agree or 
Disagree 

12% 

Figure 4.6 Frequency distribution of the scales assigned to understandability 

Table 4.15 Understandability rankings 

Understandability 

Scale 

Strongly Disagree 

Disagree 

Neither 

Disagree 

Agree 

Agree 

Strongly Agree 

or 

Confidence Interval 

*0% -10.72% 

4.43%-%14.25 

6.71%- %16.53 

48.37%-%58.19 

15.04%- 24.86% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in [142]. 

The pie chart of documentation shows that a large number of populations opted 

for scales; agree (31 %) and strongly agree (31 %) population that documentation is an 

attribute of reusability. On the other hand 24% of population opted for neither agree 

nor disagree and 14% of population is having a disagreement that documentation 

affects the reusability of software. 

117 



Documentation Strongly Disagree 
0% 

Strongly Agree 
31% 

Agree 
31% 

either Agree or 
Disagree 

24% 

Figure 4.7 Frequency distribution of the scales assigned to documentation 

Table 4.16 Documentation rankings 

Documentation 

Scale 

Strongly Disagree 

Disagree 

Neither 

Disagree 

Agree 

Agree 

Strongly Agree 

or 

Confidence Interval 

*0%- 5.16% 

9.23%- 19.05% 

18.57% - 28.39% 

25.90%- 35.72% 

26.40%- 36.22% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in [142]. 

The pie chart of attribute usage history shows a concentrated data at scale four 

(agree) and five (strongly agree). It shows a consensus that usage history is one of the 

attribute of reusability. 

118 



Usage History Strongly Disagree 
3% 

Strongly Agree 
29% 

_______ Disagree 

10% 

~-----Agree 
46% 

Neither Agree or 
Disagree 

12% 

Figure 4.8 Frequency distribution of the scales assigned to usage history 

Table 4.17 Usage History rankings 

Usage History 

Scale 

Strongly Disagree 

Disagree 

Neither Agree 

Disagree 

Agree 

Strongly Agree 

or 

Confidence Interval 

*0% -7.44% 

5.44% - 15.26% 

7.21%-17.03% 

41.05%-50.87% 

24.13% - 33.95% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in (142]. 

The pie chart of reusability attribute stability shows concentrated data at scale four 

(agree) and five (strongly agree). It shows a consensus that stability is one of the 

attribute of reusability. 

119 



Strongly Agree 
19% 

Agree ____ _ 

48% 

Stability Strongly Disagree 
0% 

Figure 4.9 Frequency distribution of the scales assigned to stability 

Table 4.18 Stability rankings 

Scale 

Strongly Disagree 

Disagree 

Neither 

Disagree 

Agree 

Agree 

Strongly Agree 

Stability 

or 

Confidence Interval 

*0% - 5.1 6% 

10.24% - 20.06% 

13.02%- 22.84% 

43.07%- 52.89% 

13.78%- 23.60% 

* The lower limit being below zero is rounded to zero, following the guidelines 

presented in [ 142). 

In the second section of this chapter variability and its implementation mechanisms 

are discussed. 

120 



4.3.1 Theoretical Analysis of Variability Implementation Mechanism 

In this section, a classification of available variability mechanisms is presented. This 

classification is in terms of type, scope, and the artifact to be targeted. Examples to 

illustrate the points under discussion are given in the form of Java code. 

It was stated earlier that variability management is one of the success factors in 

software product line development. It is a non-trivial activity due to multiple factors 

[43]. Variability management has many facets not only at architecture and coding 

level, but also in the development process, as different tools can be used at different 

phases. 

In this study only those mechanisms for managing variability are discussed which 

are related to the implementation phase. In software engineering terminology, 

'implementation' refers to the production of source code or translation of design into 

software components [3]. 

Our focus during this discussion is on the mainstream product line 

implementation technology, such as object oriented development, and specifically the 

implementations based on the Java language. Another point to consider at this stage is 

that variability management of requirements, design artifacts, and test cases is out of 

the scope of this study. 

The term 'variability realization technique' refers to the mechanism which is used 

for implement at the variation point [43]. 

A variation point specifically identifies the part of a variable requirement that is 

subject to change. A variant is an instance of a variable requirement. A variant can be 

implemented in different ways as software entities and these entities may include 

components, classes, a set of classes or lines of code [43]. 

Variability can be introduced at different stages of software development such as 

during architectural design, during detailed design, during implementation, and when 

compiling or linking [43]. 

121 



Different software entities are relevant at each of these levels. Since our work is 

concerned with implementation level variability, the software entities which we will 

focus on are individual classes and lines of code. 

The following variability realization techniques are discussed based on [39] and 

[40]. 

4.3.1.1 Aggregation I Delegation 

In object oriented programming, aggregation defines a "has-a" relationship or whole

part relationship between the objects. For example, A and B are two classes, an object 

of class A has an object of class B if B is part of A. This phenomenon is also referred 

to as containment- an object of class A contains an object of class B. 

Variability can be handled by aggregation [39, 143]. The technique of aggregation 

enables an object to support a functionality which it cannot support normally. The 

object that sends a request to perform the function is delegating it to another object. 

The object which performs the function, at the request of a delegating object, is the 

delegated object. 

Mandatory functionality can be handled without delegation; variant functionality 

is handled by delegation. Aggregation is also relevant to optional features. Typically, 

aggregation causes the variability to be resolved at compile time [39]. Table 4.11 lists 

the characteristics of this mechanism. 

A class can facilitate the functionality which is not originally supported by it. An 

example is a bank account, with an option of providing a free locker with the account. 

The optional functionality can be added to this class by aggregation. An object of 

Locker class is added to the Bank_ ace class. In this way aggregation makes it possible 

for class Bank_ ace to provide the optional functionality of a locker. 

For example, 

public class Bank_acc { 

private Locker lc; 

122 



Table 4.19 Characteristics of aggregation 

Aggregation 

<~,~~~~~~iY) ,, Positive~~~~~~;"bpti~~~~(' •. 

Works with Attribute 

'/type 
Scope Open 

Binding Time Run-time 

4.3.1.2 Inheritance 

Inheritance is a relationship between two classes, where one class is a parent class 

(super class) of the other class (sub class). In this scenario, the common functionality 

is handled by the super class and variable functionality is handled by the sub class. In 

class based inheritance, a sub class can introduce new attributes and operations. These 

newly defined attributes and operations can be overwrite or added to the existing 

ones. Table 4.12 summarizes the characteristics of this mechanism. 

Following is an example. Both classes Saving_ ace and Fixdeposit_acc have the 

same base class - Bank ace. 

public class Fixdeposit_acc extends Bank_acc{ 

II class definition 

} 

public class Saving_acc extends Bank_acc{ 

II class definition} 

123 



Table 4.20 Characteristics of inheritance 

Inheritance 

Type (fuhctionality) ·. Positive, negative, optional,. alternative 
)\}'S:.l . ·1),~///r-;,, A 

Works with Class, method, attribute 

Type (ef!~ct) :Attribute, workflow variabilitY 

Scope 

Feature'' 

Binding Time 

4. 3.1. 3 Parameterization 

Open 

Mutually inclusive 

Compile-time 

Parameterization is a mechanism that is used to handle variability at both the design 

level [143] and the implementation level [39-40]. This mechanism can be used with 

any of the object, method, class or package levels. The behavior of the parameterized 

entity, such as a class or method, can be manipulated by setting the values of 

parameters. Parameterization is a preplanned variation mechanism and sets constraints 

on the code that is implemented. 

4.3.1.4 Generics 

'Generics' refers to a mechanism to parameterize classes and functions. A collection 

class is one area where generics could be used. As an example, we could use it to 

implement a stack for containing elements of different data types. Table 4.13 

summarizes the characteristics of this mechanism. 

124 



Table 4.21 Characteristics of parameterization/ generalization 

Parameterization/Generalization 

Type (functiorllliitY)i::'''~ Positive, neg~tivel'bptional; al~rnatiye~ ~~~ 
- ;;ro\''/;·/;;k_;· · 

Works with 

Type (effect) 
•'¢{ 

Scope 

Feature''.<'''~ · · 
·. -- -- _,j;,_.J_1{)0};,. 

Binding Time 

Class, method, attribute 

Attribute variabilitY, 

Selection 

Optional , alternative 
-, ., .'>1,_ 'p):( 'i<.V>~;:.•·L•._, ' 

Compile-time 

Following is an example: 

public class Member <T>{ 

private T id; 

public T getid() { 

return id; 

} 

public void setMyList (List <String> list) { 

this.MyList = list ; 

} 

4.3.1.5 Overloading 

Overloading refers to using a symbol or name to refer to multiple entities. In general, 

these entities can be data types, procedures, operators, and functions. Overloading can 

be used as a variability mechanism [39], as a 'method' of the base class can be 

overloaded and variability in the implementation can be introduced. Table 4.14 

summarizes the characteristics of this mechanism. 

125 



Table 4.22 Characteristics of overloading 

Overloading 

Type (funct{oriality) · · '\Pqsitiye, negative,altematiye 
ryw, :' "''t ' 

Works with 

Type (effect) 

Scope 

Feature 

Binding Time 

Method 

. Logic, workflow variability 

Open 

Optional 

Compile-time 

Following is an example. In both classes Saving_ ace and Fixdeposit _ace have the 

same base class- Bank_acc. Both classes are overloading the cal_interest method of 

the base class. 

public class Fixdeposit_acc extends Bank_acc{ 

public double cal_interest(ll parametric change ) { 

II Logical change 

} 

public class Saving ace extends Bank ace{ 

public double cal interest(llparametric change ) { 

II Logical change 

} 

4.3.1.6 Aspect-oriented Programming 

Aspect-oriented techniques provide a solution to the crosscutting 'concerns' problem. 

A system can have different 'concerns'; a 'concern' is an area of interest or property 

of a system that must be implemented in order for there to be a successful solution to 

126 



a problem [144]. Traditional software engineering is involved in the identification of 

concerns and these concerns are used to modularize a system. 

The concept of encapsulation in software engineering leads us to attempt to 

implement each concern as a separate module. This phenomenon is also known as 

'the separation of concern'. It is not always possible to map each concern to a separate 

module. 

[145] describes some of the points relating to concerns. The implementation of a 

single concern over more than one module is termed 'crosscutting'; it creates the 

problem of concern/code tangling and scattering. Concern tangling is the situation 

when more than one concern is implemented in a single module and concern 

scattering is when one concern is implemented in multiple modules. Crosscutting 

concerns could be, for example, the system wide quality requirements. Kiczales 

divides concerns into two categories: Aspects and Components. If a concern can be 

cleanly encapsulated in a module it will be a component, and it will be an aspect if the 

concern crosscuts and cannot be cleanly implemented in a single module; these 

separate specifications of aspects and components are then combined to provide the 

solution by the process of weaving. Aspect-Oriented Software Engineering introduces 

a new mechanism to modularize a system and separate the crosscutting concerns. 

Table 4.15 summarizes the characteristics of this mechanism. 

Following is an example. In it, point cut is set to the Open_ ace method whenever 

this method is called. Before this method executes, an advice of verification will run 

to verify the details. 

pointcut PCAccount( ) :call (void Open_acc( Name, Id); 

before ( ) : PCAccount( ) { 

II Verification of name and id } 

127 



Table 4.23 Characteristics of AOP 

Aspect -oriented programming 

Works with Method 

Wori?tlow, logicy~abilitfY~·· 

Open Scope 

Featur'. ··:>J< '' "',.,,~Optional··· 
"<"<')ttf\~~"> -':, , 'ro,,:,tft}#,tliL'( 

Binding Time* Compile-time, Run-time or Load-time 

* Aspects and their corresponding 'advices' are integrated into the system through 

the process of weaving. Weaving can be performed at compile time, run time or load 

time. 

4.4 Summary 

The findings of qualitative results of this study are categorized in seven categories. 

These categories include challenges in OSS, current reuse practices, using OSS in 

SPL, role of OSS in promoting reuse, factors affecting reusability, desirable 

characteristics of OSS and suggestions. Several dimensions of these categories are 

identified and listed in this chapter. The results of a survey are also presented to rank 

the reusability attributes. 

A theoretical analysis of variability implementation mechanisms has been 

conducted. The variability types, scope, effect, related artifact and binding times are 

associated. This work complements the previous works in this area. 

128 



CHAPTERS 

CORRELATION STUDY OF FACTORS AFFECTING REUSABILITY 

Realists do not fear the results of their study. (Fyodor Dostoyevsky, 1821-1881) 

5.1 Overview 

This chapter presents the proposed conceptual model for the inclusion of OSS in SPL. 

The proposed reusability attribute model is also presented in this chapter along with 

the description of attributes and metrics. The second section of this chapter includes 

the results of application of the proposed model at class level and package level. An 

evolutionary analysis of reusability is conducted for two open source software. The 

results are presented in his chapter. 

5.2 Reusability Assessment Conceptual Model 

A software organization developing software using OSS follows a process of 

following steps [35]. 

J-- Identification of potential OSS components 

J-- Selection of OSS component 

> Adaptation of OSS component (if necessary) 

There could be several ways of identification of components, which include the 

use of search engines or OSS provider's web sites. After identifying the potential 

components, organizations decide which of the identified component to be used. At 

the selection stage the different criteria are used. These may include the legal aspects 

such as licence type or maintenance support for the component. In the context of this 



thesis, a particular aspect i.e. reusability of component is assessed to facilitate the 

decision process. 

Internet 

10=::) 
Reusability 
Assessment .. 

Customized 
components 

D 
IDe:::) 1'----.-----1 

Component 
Repository 

. ' 

Figure 5.1 Conceptual model of reusability assessment 

A conceptual model of our proposed approach is presented in Figure 5.1. It 

complements the approaches proposed for inclusion of components [64] and 

specifically OSS based software product lines [23]. The components are searched 

from the open source search engines. The candidate components are selected on the 

basis of requirements. These selected components are assessed to know their 

reusability using the model and metrics presented in section 5.3 and 5.5. The selected 

components are a part of component repository. These components are used 'as it is' 

or may be customized to serve the specific needs. These customized components are 

again assessed to know the reusability and if selected then again saved in the 

component repository. In some cases, customized components are contributed to the 

open source collection of components. 

5.3 Proposed Class Level Reusability Attribute Model 

The attributes of reusability are identified in chapter four. These identified attributes 

are used in the GQM model. The formation of this model helps to identify the suitable 

measures for these attributes. Although in the interview we have identified 9 factors, 

however, in the attribute model only six of the attributes are considered. Three of the 

130 



attributes, namely stability, documentation and usage history, are not included in the 

model due to their subjective nature, which does not match the objective measurement 

of source code. 

5.3.1 Reusability GQM Model 

The GQM model is presented in this section. 

Table 5.1 GQM Model Class Reusability 

Object of study: Class 

Purpose: Assessment 

Quality focus: Effort required reusing 

Viewpoint: Developer 

Environment: Development of software in a reuse intensive environment 

Goal: Assessment of object oriented systems to predict reusability from the viewpoint of a 

developer. 

Question I. How easy is it to reuse the class? 

Question 1.1. How much variability is there in the component? 

Question 1.1.1. What is the average number of methods per class? 

Metric 1.1.1.1. Number of methods-;- Total number of classes 

Question 1.1.2. What is the average number of children per class? 

Metric 1.1.2.1. Number of children-;- Total number of classes 

Question 1.2. How easy is it to understand the class? 

Question 1.2.1. What is the size of the class? 

Metric 1.2.1.1. Number of methods (NOM) 

Metric 1.2.1.2. Lines of code (LOC) 

Question 1.2.2.How much coupling is there in the class? 

Metric 1.2.2.1. Coupling between objects (CBO) 

Question 1.2.3.How much cohesion is there in the class? 

Metric 1.2.3.1. Lack of cohesion in methods (LCOM) 

Question 1.2.4.How many comment lines are there in the class? 

Metric 1.2.4.1. No. of comments 

Question 1.3. How easy is it to maintain the system? 

Metric 1.3 .!.Maintainability Index (Ml) 

Metric 1.3.2.Cyclomatic Complexity (CC) 

131 



Question 1.4. How much flexibility is there in the class? 

Question 1.4.1.How much coupling is there in the class? 

Metric 1.4.1.1. CBO 

Question 1.4.2.How much cohesion is there in the class? 

Metric 1.4.2.1. LCOM 

Question 1.5. How portable is the class? 

Question 1.5.l.How independent is the class? 

Metric 1.5.1.1. Depth of inheritance tree (0 IT) 

Question 1.6. How much of the scope is covered by the class? 

Question 1.6.l.How many features are covered by the class? 

Metric 1.6.1.1 NOM/Total number of methods in all classes 

5.3.2 Attributes 

The definitions of attributes from the literature are presented in this section. 

5. 3.2.1 Understand-ability 

It is defined as "the ease with which a system can be comprehended at both the 

system-organizational and detailed statement levels" [3]. In [69, 82] understand

ability is considered as an attribute of reusability. 

5.3.2.2 Flexibility 

It is defined as "the ease with which a system or component can be modified for use 

in applications or environments other than those for which it was specifically 

designed" [3]. In [31, 61, 82] flexibility is considered as an attribute affecting the 

reusability of a component. In the context of an SPL, the flexibility characteristic is 

necessary for a core asset as it is intended to be reused in the development of other 

products. 

132 



5. 3. 2. 3 Portability 

It is defined as "the ease with which a system or component can be transferred from 

one hardware or software environment to another" [3]. The portability of a component 

depends on its independence, i.e. the ability of the component to perform its 

functionality without external support. In a scenario where an open source component 

is used in SPL development, the component should have the characteristic of 

portability. The component, being a core asset, may be used in the development of 

another product/family member within the product line/family. 

5. 3. 2. 4 Maintainability 

In [3], maintainability is defined as "the ease with which a software system or 

component can be modified to change or add capabilities, correct faults or defects, 

improve performance or other attributes, or adapt to a changed environment". Two 

metrics, CC and MI, are used to measure maintainability. 

5.3.2.5 Scope Coverage 

It is the attribute that measures the number of features provided by the component 

against the total number of features in the SPL scope. 

5.3.2.6 Variability 

Variability management (VM) is an important activity in a reuse intense software 

development environment. It is a non trivial activity and has many facets as not only 

both architecture and coding are variable, but so is the development process, as 

different tools can be used. 

VM in a product line context refers to the identification, modeling, resolution, 

storage and instantiation of variability [ 146]. VM is the distinguishing feature of 

software product line development [147]. Efficient VM is one of the key success 

factors in a reuse intense software development environment. In product line 

133 



development, all the artifacts developed are considered core assets. Variability IS 

considered as a characteristic of a reusable core asset [ 148]. 

In [ 41] variability types are defined. The types include attribute, logic, workflow, 

persistency, interface, and combined. Regarding attribute variability, an attribute is 

supposed to be a placeholder for values to be stored - such as constants, variables or 

data structures. Three cases are presented. First is when the number of attributes 

varies between members of a product family. Second is the variation in the data type 

of the values assigned to the attributes, and the third case represents the variation of 

the value assigned to the attribute that is persistent. 

Logic variability is the variation of the algorithm or logical procedure. There are 

several cases of logic variability, each case dependent upon the entity that varies, be it 

the procedural flow, the post condition, the exception handling, or the side effects 

between family members. Workflow variability is variation in the order, type and 

number of methods invoked by family members when carrying out a common task. 

Persistency variability refers to the variation in the values of attributes that are 

stored in secondary storage. Interface variability is the variation in the signature of the 

interface method, i.e. to implement the same requirement; different members of a 

family implement their methods in different ways. These are distinguished by the 

name, return type, and order and type of parameters. Combined variability is where a 

variation point has more than one variability type. 

In [42] variability is categorized as follows: positive- when some functionality is 

added; negative - when there is a withdrawal of functionality; optional - when code is 

added; alternative - when code is removed; function - when functionality is changed; 

platform/environment - when the platform or environment is changed. 

Our focus during this discussion is on mainstream product line implementation 

technology, such as object oriented development, and specifically implementations 

based on the Java language. Another point to consider at this stage is that VM of 

requirements; design artifacts, and test cases are out of the scope of this study. 

134 



The term 'variability realization technique' refers to the mechanism which is used 

to implement at the variation point [ 43]. A variation point specifically identifies the 

part of a variable requirement that is subject to change. A variant is an instance of a 

variable requirement. A variant can be implemented in different ways, affecting 

different software entities and these entities may include components, classes, a set of 

classes or lines of code [43]. Variability can be introduced at different stages of 

software development such as during architectural design, during detailed design, 

during implementation, and when compiling or linking [43]. 

5.3.2. 7 State of the Art (Variability Metrics) 

A systematic review [ 66] presents the state of the art in the area of software 

measurement. The results of the review show that there is no measure available for 

variation. This shortage of metrics to measure variability, specifically at the 

implementation level, is also recognized in another study [149]. In our work, we 

acknowledge this gap and propose metrics to assess the variability of software 

components. 

5.3.2.8 Proposed Variability Metrics 

In [ 41] types of variability are defined on the basis of component reference models, 

namely CORBA and EJB. The building blocks of a component are defined as classes, 

work flow among classes, and interfaces. 

We can consider the entities involved in object oriented programming. In Java 

these comprise the classes, interfaces, packages and Java beans. From the viewpoint 

of reuse, using Java beans is considered to be a black box approach. However, our 

work is concerned with a white box approach to the reuse of components. 

An object oriented class consists of attributes, which hold data, and methods that 

exhibit behavior. An abstract class is used as super-class for a class hierarchy; it 

cannot be instantiated. 

135 



In [ 41] the following variability types are listed: attribute, logic and workflow. 

Another view of variability types is presented in [43], where variability is categorized 

as positive, negative, optional, function and platfonn/environment. All of the 

variability types given in [41] can be mapped to the variability types given in [43], for 

instance, the 'attribute' variability type is a 'positive' variable type when a new 

attribute is added. 

Attribute variability can be implemented using any of the following techniques: 

inheritance; aggregation; parameterization /generics; overloading. Further cases of 

attribute variability are defined in [ 41]. One of these is the variation in the number of 

attributes. This type of variability is supported by inherence and aggregation. Another 

type of attribute variability is variation in the data types of the attributes; this 

variability is supported by parameterization/generics. 

As described earlier, inheritance is one of the mechanisms to handle attribute 

variability. In our work we propose variability metrics on the basis of the theory and 

mechanism of inherence. 

With inherence the subclass inherits all the methods and attributes of the super

class. The subclass can define its own attributes in addition to those it inherits from 

the super-class, which causes the attribute variability. The other mechanism 

associated with inheritance is overloading which causes logic and work flow 

variability. So, a class that is higher in the hierarchy, and therefore having more 

accessible attributes and methods, has more variability. 

The Number Of Children (NOC) metric is defined in [150] and the Number Of 

local Method metric is defined in [ 151]. The proposed metrics make use of these 

established metrics and associate the concept of variability with them. The 

relationship of variability and metrics is presented in Figure 5.2. 

Following is the definition of metrics based on GQM approach. 

136 



Table 5.2 GQM for class variability 

Object of study: Class 

Purpose: Assessment 

Quality focus: Effort required reusing 

Viewpoint: Developer 

Environment: Development of software in a reuse intensive environment 

Goal: Assessment of object oriented systems to predict variability from the view point of the 

developer. 

Question 

Question 

Metric 

Question 

Metric 

I. How much variability is there in the component? 

1.1. What is the ratio of method per class? 

l.l.l.Number of methods"' Total number of methods in component 

1.2. What is the ratio of number of child per class? 

1.2.1Number of child"' Total number of classes 

/ NOC /Total number of classes 

Class Variability --...__ 
--...__ NOM/Total number of method 

Figure 5.2 Relationship of variability with metrics 

At package level the use of Abstractness metric (A) is proposed to assess the 

variability of a package. Abstractness of a package is the ratio of abstract classes and 

interfaces to the total number of classes [152]. Its domain is a set of integers, value 

ranges from 0 to 1 i.e. [0, I), where zero refers to a concrete package i.e. absence of 

abstract class or interface and 1 refers to an abstract package i.e. all of its classes are 

abstract. 

Abstractness (A)= Number of abstract classes+ interfaces I Total number of classes 

These two constructs of object oriented paradigm, i.e. abstract classes and 

interfaces, support two variability mechanisms which are 'inheritance' and 

'overloading'. These mechanisms facilitate the implementation of positive, negative, 

137 



optional and alternative type of variability. The variability can be introduced at class, 

method and attribute level by using these mechanisms. These mechanisms can support 

open scope variability at compile time. 

Abstractness metric computes the ratio of abstract classes and interfaces to the 

total number of classes. It can be seen as an indirect measure of variability. So, the 

variability capability of a package or openness of a package towards variability can be 

assessed using the abstractness metric. 

5.3.3 Sub Attributes 

The definitions of sub attributes are presented in this section. 

5. 3. 3.1 independence 

The term 'independence' ts introduced to reflect the property of the system 

concerning the ability of a class to perform its responsibilities on its own. 

Independence is measured by DIT. The classes lower in the hierarchy are inherited by 

other classes; these classes depend on their ancestors to perform their functionalities. 

5.3.3.2 Size Metrics 

In [84] the aspect of the software dealing with its physical size is named the 'length' 

of the software. The metric used for size is lines of code (LOC). It counts the lines of 

source code. The second metric used to measure size is number of methods (NOM). 

5.3.3.3 Coupling and Cohesion Metrics 

Coupling and cohesion are two key concepts in object oriented software engineering. 

Both of these are related to interaction between the entities. The higher the level of 

interaction, the higher is the level of dependency. The lower the level of interaction, 

the higher is the level of cohesion. Cohesion refers to the extent to which an entity can 

138 



perform its responsibilities on its own. The metric used for coupling is CBO and the 

one used for cohesion is LCOM. 

5.3.4 Class Level Metrics 

The metrics used to assess the attributes of reusability are defined in this section. 

5.3.4.1 Coupling between Objects (CEO) 

These metrics count the number of classes to which a class is coupled [ 150]. Coupling 

prevents a class from performing its responsibility on its own, i.e. the class having a 

higher CBO value is more dependent on other classes. This dependence of a class on 

other classes decreases its understand-ability and flexibility. It is measured on an 

absolute scale; its domain is the set of integers [0, oo ). 

5.3.4.2 Lack of" Cohesion Metric (LCOM) 

Cohesiveness is the property that enhances encapsulation. LCOM metrics indicate the 

lack of cohesion; lack of cohesion decreases understandability and flexibility [ 150]. It 

is measured on an absolute scale; its domain is the set of integers [0, oo ). 

5. 3. 4. 3 Depth of Inheritance Tree (DIT) 

This is a measure that indicates the depth of a class within a hierarchy [150]. The 

class lower in the hierarchy depends on all the ancestor classes; it hinders its ability to 

be independent. A higher value of DIT reduces the independence which results in 

decreased portability. It is measured on an absolute scale; its domain is the set of 

integers [0, oo ). 

139 



5. 3. 4. 4 Lines of Code (LOC) 

This is a measure of the lines of source code [84]. It is a size indicator of the entity. 

The size of the software affects its understandability. It is measured on an absolute 

scale; its domain is the set of integers [0, oo ). 

5.3.4.5 Number of Methods (NOM) 

This metric is introduced in [151]. It measures the number of methods declared within 

the class. It is an indicator of the size of a class. It is measured on an absolute scale; 

its domain is the set of integers [0, oo ). 

5.3.4.6 Number of Child (NOC) 

NOC is the measure that counts the children of a class [150]. NOC itself shows the 

reuse of a class. A large number of children mean that the functionality of the class is 

reused through inheritance. It is measured on an absolute scale; its domain is the set of 

integers [0, oo ). 

5. 3. 4. 7 Maintainability Index (MI) 

Maintainability index (MI) [153] value is the representative of the relative 

maintainability of the code [154]. Maintainability index is calculated by making use 

of lines of code, Me Cabe complexity metric and Halstead measures. The 

maintainability index is calculated by the following formula: 

MI = 171-5.2 In (aV)- 0.23 aV(g')- 16.2ln (aLOC) +50 sin[(2.4 *perCM) 112
] 

Where 

aV =average Halstead volume per module 

aV(g') =average extended cyclomatic complexity per module 

aLOC = average count of lines of code per module 

perCM = average percent of lines of comments per module 

140 



5.3.4.8 Cyc/omatic Complexity 

Cyclomatic complexity metric is the measure of control structure complexity [155]. It 

counts the linear independent paths i.e. minimum number of paths during the 

execution. It is measured on an absolute scale and its domain is integers [1, oo). 

~ 
Coupling -G Flexibility 

----EJ Cohesion 

%of 

Understand· ~ 
comments 

:< LOC 

Size 

v 
ability NOM 

Cohesion ----EJ 
Reusability 1--i Portability 1-- Independence t-- D!T 

~~ Scope 
NOMo Total 

1-- number of 

~ 
coverage methods 

K 
MI 

Maintain· 
ability -G Complexity 

NOM' Total 

~ 
number of 
methods I 

Variability 
NOC' Total 

number of 
classes 

Figure 5.3 Reusability attribute model (class level) 

5.4 Metrics Threshold Values and Equations 

The threshold or reference values for metrics are required to understand a metric's 

value. The identification of threshold values for software metrics is an ongoing 

research area. Several efforts have been made to identify threshold values for metrics 

such as [156] and [157-158]. 

141 



In [!57] reference values for LCOM, DIT and NOM are identified. The threshold 

values for CBO, RFC and WMC are identified in [159]. In [160] statistical based 

thresholds for three metrics (LOC, NOM, CYCLO) are presented. The threshold value 

for MI is identified in a Hewlett-Packard study [161]. The value of cyclomatic 

complexity is categorized by the Software Engineering Institute (SEI). The values of 

metrics are adjusted using the threshold values. 

Following are the equations used to calculate reusability and its attribute values. 

Reusability of Class ~ 0.16 X Flexibility + 0.16 X Understandability + 0.16 X Portability + 

0.16 X Scope coverage + 0.16 X Maintainability+ 0.16 X Variability 

Flexibility~ 1- [(0.5 X Coupling)+ (0.5 X Cohesion)] 

Coupling~ adjusted CBO, Cohesion ~adjusted LCOM 

Understandability ~ 1 - [(0.25 X Coupling) + (0.25 X Cohesion) + 

Comments)+ (0.25 X Size)} 

Size~ (0.5 X adjusted LOC) + (0.5 X adjusted NOM) 

Portability ~ Independence ~ 1 - adjusted DIT 

Scope coverage ~NOM+ Total number of methods in all classes 

Maintainability~ (0.5 X adjusted MCC) + (0.5 X adjusted M1) 

(I) 

(2) 

(0.25 X 

(3) 

(4) 

(5) 

(6) 

Variability ~ 0.5 X (NOC +Total number of classes) + 0.5 X (NOM+ Total number 

of methods in all classes) (7) 

As a starting point, equal weights/coefficients are assigned to each of the 

attributes and sub attribute. Equal weights are also used in [ 67] and it is stated that the 

linear combination of equal weights works well in most cases. 

In equation I, the LCOM and CBO metrics are used to assess the flexibility. Both 

the CBO and LCOM have a negative impact on flexibility. So, the adjusted values of 

142 



these metrics are subtracted by I. Same is the case in equation 2, where all the metrics 

have a negative relationship with understandability. In equation 4, DIT is subtracted 

by I to cater for its negative impact on the independence of class. In equation 6, value 

of complexity has a negative impact on maintainability. The value of complexity is 

adjusted in the code (provided in appendix B). 

Table 5.3 Reusability attributes sub-attributes and metrics 

Attribute Sub-attribute Metrics 

.. C~<1.'\iG9M. 
Understandability Coupling, Cohesion, Size CBO, LCOM, 

%comments, LOC, NOM 

Portability ::~~::::·~~:i~i!n4ep~ndellc~. ····"•T'A ·•C. . OJ~ 
Scope Coverage 

Maintainability · 

Variability 

. · Complexity 

•• 
NOM + Total number of 

methods 

CC,MI 

NOC .,. Total number of 

classes, NOM .,. Total 

number of methods 

5,5 Proposed Package Level Reusability Attribute Model 

The attributes of reusability are identified in chapter four. These identified attributes 

are used in the GQM model. The formation of this model helps to identify the suitable 

measures for these attributes. Although in the interview we have identified 9 factors, 

but in the attribute model only five of the attributes are considered. 

Three of the attributes, namely stability, documentation and usage history, are not 

included in the model due to their subjective nature, which does not match the 

objective measurement of source code. The attribute scope coverage is also not 

considered at package level because the scope coverage of a package can be measured 

against the application in which this package is going to be used. The assessment in 

143 



this thesis is limited to the information which can be collected from the code of the 

package. 

Reusability of Package = 0. 2 X Understandability + 0. 2 X Portability + 0. 2 X 

Maintainability + 0. 2 X Variability + 0. 2 X Flexibility 

Understandability = 1-[ (0. 5 X Lack of Comments)+(). 5X Size)} 

(8) 

(9) 

Size = (0.33 X adjusted LOC) + (0.33 X adjusted NOM) + (0.33 X adjusted Number 

of classes) (I 0) 

Portability =Independence = 1- adjusted Fan out (II) 

Maintainability= (0.5 X adjusted CC) + (0.5 adjusted Ml) (12) 

Variability =adjusted Abstractness 

Flexibility = I -adjusted Instability 

(13) 

(14) 

As a starting point, equal weights/coefficients are assigned to each of the 

attributes and sub attribute. Equal weights are also used in [67] and it is stated that the 

linear combination of equal weights works well in most cases. 

In equation 9, the lack of comments and size are subtracted from understandability 

due to their negative impact on it. In equation II, fan-out metrics shows a negative 

impact on the independence of package. In equation 12, value of complexity has a 

negative impact on maintainability and MI has a positive impact on maintainability. 

So, the negative impact of complexity is catered for in the code. In equation 14, lack 

of instability represents the flexibility of package. 

Table 5.4 Package level attributes, sub attributes and metrics 

Attribute 

Flexibility 

Understand ability 

Portability 

Maintainability 

Variability., 
'"' - -

< <M<\ < "" 

Sub-attribute 

Instability 

Comments, Size 

Independen~ 

Complexity 

AbstraCtness 
' 

Metrics 

I 

Number of classes, 

%comments, LOC, 

NOM 

Fan-out 

CC,MI 

A 

An attribute model of reusability is defined by making use of GQM approach. 

144 



Table 5.5 GQM Model Package Reusability 

Object of study: Package 

Purpose: Assessment 

Quality focus: Effort required reusing 

Viewpoint: Developer 

Environment: Development of software in a reuse intensive environment 

Goal: Assessment of Object oriented systems to assess reusability from the view point of 

developer. 

Question I. How easy is it to reuse the package? 

Question 1.1. How much variability is there in the package? 

Question 1.1.1. What is the value of abstractness? 

Metric 1.1.1.1. Abstraction 

Question 1.2. How easy is it to understand the package? 

Question 1.2.1. What is the size of the package? 

Metric 1.2.1.1. Total number of classes 

Metric 1.2.1.2. Lines of code (LOC) 

Metric 1.2.1.3. No. of methods 

Question 1.2.2.How many comment lines are there in the package? 

Metric 1.2.2.1. No. of comments 

Question 1.3. How easy is it to maintain the package'! 

Metric 1.3.1. What is the value of Maintainability Index (MI)? 

Metric 1.3.1.1. Value ofMl 

Question 1.3.2.What is the value ofCyclomatic Complexity (CC)? 

Metric 1.3.2.1. Value ofCC 

Question 1.4. How much flexibility is there in the package? 

Question 1.4.1.How much resilience is there to change? 

Metric 1.4.1.1. Instability of package 

Question 1.5. How portable is the package? 

Question 1.5.1.How independent is the package? 

Metric 1.5.1.1. Fan-out 

145 



5.5.1 Package Level Metrics 

The following package level metrics are employed in this study. The package level 

metrics differs from the class level metrics due to the difference in the nature of these 

artifacts. Although in the interview we have identified 9 factors, however, in the 

attribute model only tive of the attributes are considered. Three of the attributes, 

namely stability, documentation and usage history, are not included in the model due 

to their subjective nature, which does not match the objective measurement of source 

code. The attribute scope-coverage is not included due to the limited information. In 

case, where the total number of features provided by the component is known, scope

coverage of a specific package can be calculated following the class level as example. 

5.5.1.1 Number of Classes I interfaces 

It is the measure of total number of classes in a package. The size of package effects 

the understand ability. Number of classes is measured on an absolute scale; its domain 

is the set of integers [0, oo ). 

5.5.1.2 Abstractness (A) 

Abstractness of a package is the ratio of abstract classes and interfaces to the total 

number of classes [152]. Its domain is a set of integers, value ranges from 0 to I i.e. [0, 

I), where zero refers to a concrete package i.e. absence of abstract class or interface 

and I refers to an abstract package i.e. all of its classes are abstract. 

Abstractness (A)= Number of abstract classes+ interfaces I Total number of classes 

5.5.1.3 Fan-out I Efferent Coupling 

The metric fan-out measures the total number of external classes coupled to classes of 

a package. It counts the number of classes outside the package referenced by the class 

of a given package [155]. Fan-out is equivalent to efferent coupling. Each class is 

counted for one time only. The value of metric is zero, if package is not using any 

146 



class of an external package. It is measured on an absolute scale; its domain is the set 

of integers [0, oo ). Increased value of fan-out represents a high dependability of the 

package on other packages. 

5.5.1.4 Fan-in/ Afferent Coupling 

The metric fan-in measures the total number of external classes coupled to classes of a 

package. It counts the number of references made towards the class of a given 

package [155]. Each class is counted for one time only. The value of metric is zero, if 

there is no external package which uses the classes of this package. This metric is 

equivalent to afferent coupling. It is measured on an absolute scale; its domain is the 

set of integers [0, oo ). Increased value of fan-in represents a high dependability of 

other packages on the given package. 

5.5.1.5 Instability (I) 

Instability of a package is counted by counting the number of dependencies which 

enter or leave a package [ 152, 162]. Instability of a package is the ratio of efferent 

coupling (Fan-out) to the total coupling (Fan-out+ Fan-in). It is represented by '!' and 

its domain is the set of integers [0, I). 

Instability (I) = Ce I Ca + Ce 

Instability metric is also an indicator of resilience to change. The value of I = 0, 

represents a stable package i.e. a package that is less affected by change. The value of 

I = I, represents an unstable package i.e. a package that is more affected by change. 

5.5.1.6 NumberofMethod(NOM) 

This metric is introduced in [!51]. It measures the number of methods declared within 

the class. It is an indicator of the size of a class. It is measured on an absolute scale; 

its domain is the set of integers [0, oo ). 

147 



5. 5.1. 7 Lines of Code (LOC) 

This is a measure of the lines of source code [84]. It is a size indicator of the entity. 

The size of the software affects its understandability. It is measured on an absolute 

scale; its domain is the set of integers [0, oo). 

5.5.1.8 Lines of Comments 

It is the measure of total number of comment lines in the package, measured on an 

absolute scale and its domain is set of integers [0, oo ). The comments have a positive 

effect on the understandability of a code asset. 

5.5.1.9 Cyc/omatic Complexity 

Cyclomatic complexity metric is the measure of control structure complexity [155]. It 

counts the linear independent paths i.e. minimum number of paths during the 

execution. It is measured on an absolute scale and its domain is set of integers [I, oo ). 

Flexibility I-- Instability 

0"oo~..-v1 
%of LOC comments 

ability N 
Size (-- NOM 

Number of 
classes 

Reusability 

~ 
--

Portability 1----i Independence t--- Fan-out 
. .. .. I ... 

i 

K 
MI 

Maintain- < 
abii\IY .. 

Complexity t--- MCC 

Variability 1----i Abstractness 

Figure 5.4 Reusability attribute model (package level) 

148 



5.5.1.10 Maintainability Index (M1) 

Maintainability index (MI) [ 153] value is the representative of the relative 

maintainability of the code [154]. Maintainability index is calculated by making use 

of lines of code, Me Cabe complexity metric and Halstead measures. The 

maintainability index is calculated by the following formula: 

MI = 171- 5.2ln (aV)- 0.23 aV(g') -16.2ln (aLOC) +50 sin[(2.4 *perCM) 112
] 

Where 

aV = average Halstead volume per module 

aV(g ')=average extended cyclomatic complexity per module 

aLOC = average count of lines of code per module 

perCM = average percent of lines of comments per module 

5.6 Reusability Assessment at Class Level 

In this section the results of experiment I are presented. This experiment is intended 

to test the hypotheses formulated as a result of the interview and survey. In this 

experiment the hypotheses related to the class level reusability attribute model are 

tested. The values of reusability are calculated using the equations stated earlier in this 

chapter. Pearson's correlation analysis is conducted using the statistical software. The 

results are presented in the form of scatter plots along with the correlation values 

between (i) attributes and metrics and (ii) reusability and its attributes. 

5.6.1 Metrics and Attributes Analysis 

The relationships of sub-attribute to the attributes are tested in the form of hypotheses 

in this section. 

5. 6.1.1 Ml, CC, Maintainability 

The following hypotheses about MI and maintainability are tested: 

149 



H01 = MI of software has no effect on its maintainability 

HI 1 = MI of software has an effect on its maintainability 

MI vs. Maintainability 

I ----------- ------+• ............ -. ---------
0.9 

;., 0.8 
::5 0.7 
~ 0.6 . 
= ·;; 0.5 

= 0.4 
·;; 0 3 ::; . 

0.2 
0.1 

0 

0 

------ -- ---- ......... --.-..----
---~-----~----------..---·-... -----.. -.--. ---- -----------

------------------------- --- ---- ~----- --------
- _________ __.. __ - . ...... .. .. .. - - ---- -.. . . ----- -· ----------· --·--·----

. ---.----.---------- --·- ------------ .. ----

• • ------· 

------*-*-*---

50 100 150 200 250 

Ml 

Figure 5.5 Scatter plot of MI vs. Maintainability 

The correlation between MI and maintainability is r (I 03) = 0. 716, p = 0. It shows 

a strong positive correlation between MI and maintainability. So, the null hypothesis 

is rejected and it can be concluded that MI is positively correlated to maintainability. 

An increase in the value of MI increases maintainability. 

The following hypotheses about complexity and maintainability are tested: 

HOz = CC of software has no effect on its maintainability 

H 1z = CC of software has an effect on its maintainability 

150 



CC vs. Maintainability 

-+-----+----------. . --------------
--- ---~--,---- ------ -r---

0 10 20 30 40 50 60 70 

MCC 

Figure 5.6 Scatter plot ofCC vs. Maintainability 

The correlation between CC and maintainability is r (1 03) = -0.664, p = 0. It 

shows a strong negative correlation between CC and maintainability. So, the null 

hypothesis is rejected and it can be concluded that CC is negatively correlated to 

maintainability. An increase in the value of CC decreases maintainability. 

Table 5.6 Pearson's correlation values MI, CC and maintainability 

Pearson's Correlations 

MI 

Maintainability Pearson 
.716" 

Correlation 

Sig. (2-tailed) .000 

N 103 

**.Correlation is significant at the 0.01 level (2-tailed). 

5.6.1.2 LCOM, CBO, Flexibility 

The following hypotheses about CBO and flexibility are tested: 

H03= CBO of software has no effect on its flexibility 

151 

cc 

-.664" 

.000 

103 



Hl3= CBO of software has an effect on its flexibility 

The correlation between CBO and flexibility is r (103) = -0.751,p = O.lt shows a 

strong negative correlation between CBO and flexibility. So, the null hypothesis is 

rejected and it can be concluded that CBO is negatively correlated to flexibility. An 

increase in the value of CBO decreases flexibility. 

CBO vs. Flexibility 

0.9 --- ·- ·=~~ -=----~=~=====-=-~~===--0.8 

~:~ . =-~~ . • • !:.=.-. :..==~=====~=~- =-==== 
0.5 .... 
0.4 -~-~-----------~~-----.---------- . ·---

0.3 
0.2 
0.1 

--- --~-----·---------· --·-·-··--" --·- ~-------

0 

0 2 4 6 

CBO 

8 

Figure 5.7 Scatter plot ofCBO vs. Flexibility 

10 

The following hypotheses about LCOM and flexibility are tested: 

H04 = LCOM of software has no effect on its flexibility 

Hl 4 = LCOM of software has an effect on its flexibility 

152 

12 



LCOM vs. Flexibility 

I +------- ---~~------· 

0.9 t----- ---~~-----------~---. 

~ ~:~ ~=--~---_t------~-~~:-~~--=i---~ . 
:c 0 5 .. ...-.~---·;; . 
~ 0.4 +---
r.. 0.3 t-~.---·--·-------

0.2 
0.1 

• 
·------

0 +~~~-·-·----.-----~-- --~-, ·--~--- --~ ,-~-~---- --,--~---. 

0 2 4 6 8 10 

LCOM 

Figure 5.8 Scatter plot of LCOM vs. Flexibility 

The correlation between LCOM and flexibility is r (103) = -0.357,p = 0. It shows 

a negative correlation between LCOM and flexibility. So, the null hypothesis is 

rejected and it can be concluded that LCOM is negatively correlated to flexibility. An 

increase in the value of LCOM decreases flexibility. 

5.6.1.3 CEO, LCOM, Understandability 

The following hypotheses about CBO and understandability are tested: 

H05 = CBO of software has no effect on its understandability 

HI 5 = CBO of software has an effect on its understandability 

153 



CBO vs. Understandability 
I •~----~------------~------- --------------~--

0.9 : --.-
0.8 >----~-- -- -----------~------------- -----------

Hl ~. : 1---------~-~--=-~:------------~~:~~·-=~-~==--~~=~--
., 0.3 ------------- -·---------------------------~·------------
:5 0.2 --------- --------- ~-L ___ ----------------------------

0. I ---------------~--- ---~-----------------~-----------------

0 -1---------~----------~---- --~~----------~--- --~--------

0 2 4 6 

CBO 

8 10 

Figure 5.9 Scatter plot of CBO vs. Understandability 

12 

The correlation between CBO and understandability is r (1 03) = -0.529, p = 0. It 

shows a negative correlation between CBO and understandability. So, the null 

hypothesis is rejected and it can be concluded that CBO is negatively correlated to 

understandability. An increase in the value of CBO decreases understandability. 

The following hypotheses about LCOM and understandability are tested: 

H06 = LCOM of software has no effect on its understandability 

H16 = LCOM of software has an effect on its understandability 

Table 5.7 Pearson's correlation values CBO, LCOM and Understandability 

Pearson's Correlations 

CBO LCOM 

Understandab Pearson Correlation -.751" -.357 
.. 

ility Sig. (2-tailed) .000 .000 

N 103 103 

**. Correlation is significant at the 0.0 I level (2-tailed). 

154 



I 
0.9 

;., 0.8 :: 
:c 0.7 

" 0.6 
""' = 0.5 " -~ 0.4 ... 
" 0.3 ""' = 0.2 ~ 

0.1 
0 

LCOM vs. Understandability 

+--~~~-~--------- . ·----- ------ ·----------
~~--~~----------------- --- ------· 

0 2 4 6 

----------- - ~-----~---. ----· ·--------

--------~---- ---,~----,--------, 

8 

LCOM 

10 12 14 16 

Figure 5. I 0 Scatter plot of LCOM vs. Understandability 

The correlation between LCOM and understandability is r (I 03) = -0.108, p = 

0.278. The r value shows a weak negative correlation between LCOM and 

understandability. However, the inequality p > 0.05 shows how insignificant this 

relationship is. Therefore, the alternate hypothesis is rejected and it can be concluded 

that LCOM is not related to understandability in this context. 

5. 6. 1.4 Comments, Understandability 

The following hypotheses about comments and understandability are tested: 

H07 = Comments of software has no effect on its understandability 

Hl 7 =Comments of software has an effect on its understandability 

The correlation between comments and understandability is r (I 03) = -0.144, p = 

0. 146. The r value shows a weak negative correlation between comments and 

understandability. However, the inequality p > 0.05 shows how insignificant this 

relationship is. Therefore, the alternate hypothesis is rejected and it can be concluded 

that comments are not related to understandability in this context. 

155 



Comments vs. Understandability 

I +------------- --------------------
0.9 -lllol'--------·-------------------

:E 0.8 ~--c.c---·-----------------

:c 0.7 -.-+-- -··---
j ~:~ ~~ • .I:~~.--~~·---·-====~=-·=--=-~-== 
r; 0.4 ------.--·-----------·-- --- ... ---- - ------------------
~ 0.3 --·-------------- ---· 
:5 0.2 t _____ ------ -------------- -------- ---- ---

0.1 
0 

0 50 100 150 200 250 300 

Comments 

Figure 5.11 Scatter plot of Comments vs. Understandability 

5.6.1.5 LOC, NOM, Understandability 

The following hypotheses about LOC and understandability are tested: 

HOs = LOC of software has no effect on its understandability 

Hl 8 = LOC of software has an effect on its understandability 

I 
0.9 

:E 0.8 
:c 0.7 
~ 0.6 
; 0.5 

LOC vs. Understandability 

350 

'E 0.4 +-----''-"!:---.,--"~----·-~+---.-----·---. -----------
~ 0.3 
= ;;> 0.2 

0.1 
0 

0 100 200 300 

LOC 

400 500 

Figure 5.12 Scatter plot ofLOC vs. Understandability 

600 

The correlation between LOC and understandability is r (1 03) = -0.668, p = 0. It 

shows a strong negative correlation between LOC and understandability. So, the null 

156 



hypothesis is rejected and it can be concluded that LOC is negatively correlated to 

understandability. An increase in the value of LOC decreases understandability. 

The following hypotheses about NOM and understandability are tested: 

H09 =NOM of software has no effect on its understandability 

Hl9 =NOM of software has an etrect on its understandability 

NOM vs. Understandability 
I ,+~-~~--- --~ ~- -~ ~~ - - - ~- ~ ~-~ ~ ~-~~ 

0.9 I_ • + ----~--~-~~~---~--~ 
g 0. 8 .J--j.___,_ 
:.c 0. 7 +--ti~-6--'J~ •• ~- • ~~ - - --

• 1 ~·~ ---~-·J~itf~;·:~~ ~-~· "~"~---------~--

~ 0.3 ~--· - ~ - --= ;J 0.2 
~- ~ . ·---

0.1 
0 --------,------ --. 

0 5 10 15 20 25 

NOM 

Figure 5.13 Scatter plot of NOM vs. Understandability 

The correlation between NOM and understandability is r (103) = -0.701,p = 0. It 

shows a strong negative correlation between NOM and understandability. So, the null 

hypothesis is rejected and it can be concluded that NOM is negatively correlated to 

understandability. An increase in the value of NOM decreases understandability. 

Table 5.8 Pearson's correlation values Understandability and its attributes 

Pearson's Correlations 

CBO LCOM Comments LOC NOM 

U nderstanda Pearson Correlation -.529 .. -.108 -.144 -.668 .. -.701 .. 

bility Sig. (2-tailed) .000 .278 .146 .000 .000 

N 103 103 103 103 103 

**Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

157 



5.6.2 Attribute Analysis 

The analysis of attributes of reusability is presented in this section. 

5. 6. 2.1 Flexibility, Reusability 

The following hypotheses about flexibility and reusability are tested: 

H01: Flexibility of software has no effect on its reusability 

Hl 1: Flexibility of software has an effect on its reusability 

The correlation between flexibility and reusability is r (103) = 0.762, p = 0. It 

shows a strong positive correlation between flexibility and reusability. So, the null 

hypothesis is rejected and it can be concluded that flexibility is positively correlated 

to reusability. An increase in the value of flexibility increases reusability. 

I 
0.9 
0.8 

~ 0.7 
:E 0.6 
'" 0.5 ~ 

~ 0.4 
cz:: 0.3 

0.2 
0.1 

0 

0 

Flexibility vs. Reusability 

~~--~----------------~ 

~------~------~-- -- -- -- ---- ---

-~-~ -~------- ------,--- -,------~-- ---y-----

0.2 0.4 0.6 0.8 

Flexibility 

Figure 5.14 Scatter plot of flexibility vs. reusability 

5. 6. 2. 2 Understandability, Reusability 

The following hypotheses about understandability and reusability are tested: 

H02: Understandability of software has no effect on its reusability 

158 



Hb: Understandability of software has an effect on its reusability 

Understandability vs. Reusability 

~--------------------

0.8 
;., 

~ 0.6 :0 
" "' 0.4 = .. 
" 0.2 

0 ----~--- -- -,--------

0 0.2 0.4 0.6 0.8 

Understandability 

Figure 5.15 Scatter plot of Understandability vs. Reusability 

The correlation between understandability and reusability is r (103) = 0.669, p = 

0. The value of r shows a strong positive correlation between understandability and 

reusability. We reject the null hypothesis and it can be concluded that an increase in 

the value of understandability increases reusability. 

5. 6. 2. 3 Scope-coverage, Reusability 

The following hypotheses about scope-coverage and reusability are tested: 

H03: Scope-coverage of software has no effect on its reusability 

H1 3 : Scope-coverage of software has an effect on its reusability 

159 



Scope-Coverage vs. Reusability 

I 
0.9 +---··-···-- ------- ----~~-- -- --~ ---
0.8 +--~----------------- ---~-------- ~-·-

~ 0.7 -h---~--------------------·······---------·-------··-· -----
:.0 0.6 ~~·-·-----·--··--------

" 0.5 
~ = 0.4 
~ 0.3 

0.2 
0.1 +------·· ------·-· ~--·-------------- -

0 +-----------,----· --· · ,--- ----- -.. -----,--------------- ·r· - ----··-~ -~ 

0 0.2 0.4 0.6 0.8 

Scope-Coverage 

Figure 5.16 Scatter plot of scope-coverage vs. reusability 

The correlation between scope coverage and reusability is r (I 03) = -0.051, p = 

0.609. The r value shows a weak negative correlation between scope coverage and 

reusability. However, the inequality p <0.05 shows how insignificant this relationship 

is. Therefore, the alternate hypothesis is rejected and it can be concluded that scope 

coverage is not related to reusability in this context. These results demand further 

investigation. 

5.6.2.4 Variability, Reusability 

The following hypotheses about variability and reusability are tested: 

H04: Variability of software has no effect on its reusability 

Hl 4: Variability of software has an effect on its reusability 

160 



Variability vs. Reusability 

I ,-------~------ --- ------

0.9 t-~~~--------~----------- ----- -~-------------

0.8 
>. 0.7 ~-o---------- -- -~------~---------
:: :c 0.6 
~ 0.5 
~ 0.4 
~ 0.3 +--------

0.2 
0.1 

0 

0 

--;-- . - ------~--

0.2 0.4 0.6 

Variability 

0.8 

Figure 5.17 Scatter plot of variability vs. reusability 

The correlation between variability and reusability is r (103) = -0.042,p = 0.671. 

There is a weak negative correlation between variability and reusability; further, p > 

0.05 shows how insignificant the link is between variability and reusability. The 

correlation analysis leads to the rejection of the alternate hypothesis. It is concluded 

that variability is not related to reusability in this context. This conclusion demands 

further validation which may mean going back and rethinking about the variability 

metrics. 

5. 6. 2. 5 Maintainability, Reusability 

The following hypotheses about maintainability and reusability are tested: 

H05: Maintainability of software has no effect on its reusability 

H 15: Maintainability of software has an effect on its reusability 

The correlation between maintainability and reusability is r (103) = 0.797, p = 0. 

The r value shows a strong positive correlation between maintainability and 

reusability. The null hypothesis is rejected and it can be concluded that an increase in 

maintainability increases reusability. 

161 



Maintainability vs. Reusability 

I 
0.9 --------~------~-----

0.8 
;., 0.7 
:5 0.6 :c .. 0.5 
~ = 0.4 " 1:1: 0.3 

0.2 
0.1 

0 - ----,-----------·~-,------------ --- ----,---------· 

0 0.2 0.4 0.6 0.8 

Maintainability 

Figure 5.18 Scatter plot of maintainability vs. reusability 

5. 6. 2. 6 Portability, Reusability 

The following hypotheses about portability and reusability are tested: 

H06: Portability of software has no effect on its reusability 

Hl 6: Portability of software has an effect on its reusability 

Portability vs. Reusability 

----~----

- -·--- --·- -·-

------------

----------

~! L-~=---~~---:=-=--~~:-:~~-=--~: -=~-~~--~=--~ ~~- -
0.95 0.96 0.97 0.98 0.99 

Portability 

Figure 5.19 Scatter plot of portability vs. reusability 

162 



The correlation between portability and reusability is r (103) = 0.404,p = 0. The r 

value shows a weak positive correlation between portability and reusability. The value 

of pis 0, which leads to the rejection of null hypothesis. It can be concluded that there 

is a positive effect of portability on reusability. Increase in the value of portability 

increases reusability. 

Table 5.9 Pearson's correlation values of Reusability and its attributes (class level) 

Pearson's Correlations 

Understand Scope Maintain Port 

Flexibility ability Coverage Variability ability ability 

Reusability Pearson 
.762" .669" .797" .404" -.051 -.042 

Correlation 

Sig. (2-
.000 .000 .609 .671 .000 .000 

tailed) 

N I 03 103 I 03 103 103 103 

**.Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

5. 7 Reusability Assessment at Package Level 

In this section the results of experiment 2 are presented. This experiment is intended 

to test the hypotheses formulated as a result of the interview and survey. In this 

experiment the hypotheses related to the package level reusability attribute model are 

tested. The values of reusability are calculated using the equations stated earlier in this 

chapter. Pearson's correlation analysis is conducted using the statistical software. The 

results are presented in the form of scatter plots along with the correlation values 

between reusability and its attributes. 

163 



5. 7.1 Attribute Analysis 

In this section the relationship between reusability and its attributes is tested and 

presented in form of scatter plots. 

5. 7.1.1 Flexibility, Reusability 

The following hypotheses about flexibility and reusability are tested: 

H0 1: Flexibility of package has no effect on its reusability 

H 11: Flexibility of package has an effect on its reusability 

Flexibility vs. Reusability 

0.8 

:E 0.6 :c 
" ~ 0.4 = " 1:1: 

0.2 

0 -----------, 

0 0.2 0.4 0.6 0.8 

Flexibility 

Figure 5.20 Scatter plot of flexibility vs. reusability 

The correlation between flexibility and reusability is r (77) = 0.789, p = 0. It 

shows a strong positive correlation between flexibility and reusability. So, the null 

hypothesis is rejected and it can be concluded that flexibility is positively correlated 

to reusability. An increase in the value of flexibility increases reusability. 

5. 7.1.2 Variability, Reusability 

The following hypotheses about variability and reusability are tested: 

164 



HOz: Variability of package has no effect on its reusability 

Hlz: Variability of software has an effect on its reusability 

Variability vs. Reusability 

0.8 • 

0 0.2 0.4 0.6 0.8 

Variability 

Figure 5.21 Scatter plot of variability vs. reusability 

The correlation between variability and reusability is r (77) = 0.674, p = 0. The r 

value shows a weak positive correlation between variability and reusability. The value 

ofp is 0, which leads to rejection of the null hypothesis. It can be concluded that there 

is a positive effect of variability on reusability. Increase in the value of variability 

increases reusability. 

5. 7.1.3 Portability, Reusability 

The following hypotheses about portability and reusability are tested: 

H03: Portability of package has no effect on its reusability 

Hi]: Portability of package has an effect on its reusability 

The correlation between portability and reusability is r (77) = 0.693, p = 0. The 

value of r shows a strong positive correlation between portability and reusability. We 

reject the null hypothesis and it can be concluded that an increase in the value of 

portability increases reusability. 

165 



Portability vs. Reusability 

• 0.8 - ---- ... -----~-~~-~- -------------~------ -
.... 
;!: 0.6 :c 
'" "' = 0.4 
" ~ 

0.2 

--------------- ----·-r--- ..J 

---~-l-~·=---= 
0 

0 0.2 0.4 0.6 0.8 

Portability 

Figure 5.22 Scatter plot of portability vs. reusability 

5. 7.1.4 Maintainability, Reusability 

The following hypotheses about maintainability and reusability are tested: 

H04: Maintainability of package has no effect on its reusability 

H1 4 : Maintainability of package has an effect on its reusability 

Maintainability vs. Reusability 

I T"""---~-
0.9 ----- --~-- ------- - -----.--------
0.8 

.... 0.7 
:: 0.6 :c 
'" 0.5 
"' = 0.4 " ~ 0.3 

0.2 

-----~~-----------+ 

t--~---------.-- • • ----- * ---~------~--

-.-----_ I =t=-t=-L----= 
----~·~--·------~---------------- ------ . - ----

0.1 
0 

0 0.2 0.4 0.6 0.8 

Maintainability 

Figure 5.23 Scatter plot of maintainability vs. reusability 

166 



The correlation between maintainability and reusability is r (77) = 0.667, p = 0. 

The r value shows a strong positive correlation between maintainability and 

reusability. The null hypothesis is rejected and it can be concluded that an increase in 

maintainability increases reusability. 

5. 7.1.5 Understandability, Reusability 

The following hypotheses about understandability and reusability are tested: 

HOs: Understandability of package has no effect on its reusability 

His: Understandability of package has an effect on its reusability 

Understandability vs. Reusability 

,-~·---- - - - ... --··· ··-- - -----

0.8 ••• 
;., 

:E 0.6 :c 
"' "' 0.4 = " ~ 

0.2 

------- • • n;-~ 
. ---~~- .. pt;'1.!_! ---~--- -----

• 

0 +-~~~,,-----~~-~ -----,- ---------,-----~, 

0 0.2 0.4 0.6 0.8 

Understandability 

Figure 5.24 Scatter plot of understandability vs. reusability 

The correlation between understandability and reusability is r (77) = 0.417, p = 0. 

The r value shows a weak positive correlation between understandability and 

reusability. The value of p is 0, which leads to rejection of the null hypothesis. It can 

be concluded that there is a positive effect of understandability on reusability. 

Increase in the value of portability increases reusability. 

167 



Table 5.10 Pearson's correlation values of reusability & attributes (package level) 

Pearson's Correlations 

Understand- Maintain 

ability Flexibility Portability Variability ability 

Reusability Pearson .. 
.417'' .789" .693" .674" . 667 

Correlation 

Sig. (2-tailed) .000 .000 .000 .000 .000 

N 77 77 77 77 77 

**. Correlation is significant at the O.ol level (2-tailed). 

5.8 Evolutionary Reusability Analysis at Package Level 

In this experiment, two open source software Jasmin and pBans are analyzed using 

the proposed reusability attribute model. During the analysis, six versions of jasmin 

and ten versions of pBeans are analyzed. The results are presented and discussed in 

the next sections. 

5.8.1 Reusability Analysis of Jasmin 

Jasmin software has evolved from version 1.0 to version 2.4 (6 versions). The number 

of packages remains the same that is four in all six versions. The number of classes 

evolved from 99 (in version 1.0) to 118 (in version 2.4). The number of methods 

increased from 618 (in version 1.0) to 792 (in version 2.3). 

The detailed of the assessment of reusability and its attributes are presented in the 

following section. 

168 



5.8.1.1 Analysis of Package-] (Jasmin) 

The value of reusability of Jasmin package is 0.17 in version 1.0, which is the lowest. 

It keeps on increasing up to 0.26 in version 2.1. Version 2.1 shows the highest 

reusability value of Jasmin package i.e. 0.26. It can be observed that the contributing 

factor in this increase of value is maintainability. However, slight changes in the 

values of understandability and variability can also be seen. 

Starting from version 2.2, the value of reusability is decreasing. Here, the factors 

that contribute to this decrease of values are understandability and maintainability. 

The values of reusability and respective attribute are presented in Table 5.11 and a 

graph plot for these values is presented in Figure 5.25. 

Table 5.11 Version wise values of reusability and its attributes (package-!) 

Jasmin 

'1,,, versions ' '4f>Y~_ :;-: .. :~{v>;'tt,; 
',),)'\ 

1.0 2.0 2.1 2.2 2.3 2.4 

Un~erstandability ·~ . 0.42 0.37 . 0.39. Q.31 . o:3t"· 0.31 
"'->'-; v, 

Variability 0.18 0.17 0.15 0.17 0.17 0.17 

. MaintainabilitY 0 !).2.5 0.50 0.50 0,25 0 

Flexibility 0 0 0 0 0 0 

Portability 0.25 0.25 .0.25 Q.25 0:25, 
• 0:25 

Reusability 0.17 0.21 0.26 0.25 0.20 0.15 

169 



Reusability and Attributes Values Package -1 (jasmin) 

I 
0. 9 +--~-------------------·----·--------------------·· ----------· --·---~ 

0.8 
0.7 +----·--------------

0.6 +-------
0.5 +--··-·--;:- ··-----------*-~--~ --- - ---
0.4 +-------'~----·-- ·---c·-----~·c-~-------=---------~-·- -----·-cc-··--

~.~ =--=~·-- -~-=-
0.1 - ~-~~ --- -·~-~---

0 t--¥----~--~C·----·*·-~--?*---·~--· *---,·-·- *-· ·--, 
Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 Version-2.4 

+Understand-ability lojReusability 

X Maintainability K Flexibility 

A Variability 

w Portability 

Figure 5.25 Reusability and its attribute values for packege-1 

In versions 1.0, 2.0 and 2.1 there is a significant increase in LOC, NOM and 

comments. This increase has an inverse effect on the understandability. The 

understandability value keeps on decreasing till version 2.2. In subsequent versions 

i.e. 2.3 and 2.4 there is no change in the understandability value. It is due to the minor 

difference in the values of LOC, NOM and comments. The version wise values of 

understandability, LOC, NOM and comments are presented in Table 5.12. 

Table 5.12 Version wise values of understandability and its attributes (package-!) 

Jasmin 

Versions ... 

1.0 2.0 2.1 2.2 2.3 2.4 

LOC 2145 2759 3860 3890 3902 3911 

NOM 82 105 125 130 130 131 

Comments 1004 1363 2022 . 1964 1961 1963 

Understandability 0.42 0.37 0.39 0.31 0.31 0.31 

170 



4500 
4000 
3500 

U 
3000 

0 2500 
...l 2000 

1500 
1000 
500 

0 

LOC vs. Understand-ability Package -I (jasmin) 

+------------ --
-,----- ----- --.---· -~ ~ ----

lojLQC +Understand-ability 

Figure 5.26 Graph plot of values of LOC and understandability package-! 

In Figure 5.26 the increase in LOC and its inverse effect on understandability is 

quite visible. The value of understandability is highest in version 1.0 and lowest in 

version 2.4. On the other hand the value of LOC is lowest in version 1.0 and highest 

in version 2.4. 

140 
120 
100 
80 
60 
40 
20 

NOM vs. Understand-ability Package -I (jasmin) 

IWNOM +Understand-ability 

0.45 ;., 
0.4 = 
0.35 :c 
0.3 " 
0.25 .0 
0.2 ~ 
0.15 ~ 
0.1 ~ 
0.05 'g 
0 ;;, 

Figure 5.27 Graph plot of values of NOM and understandability package-! 

The increase in NOM causes increase in size which decreases understandability. 

The value of NOM is lowest in version 1.0, and the value of understandability is the 

highest in this version. The trend can be viewed in Figure 5.27, where all the versions 

are showing the same response of increase in NOM. The number of methods keeps on 

increasing as a result of it understandability keeps on decreasing. 

171 



Comments vs. Understand-ability Package -1 Uasmin) 

2500 

~ 2000 -= 1500 " e 
e 1000 
0 
u 500 

0 

._.Comments +Understand-ability 

0.45 
0.4 ~ 
0.35 :z 
0.3 " 
025 .0 
0.2 ~ 
0.15 ~ 
0.1 " 
0.05 "g 
0 ;;, 

Figure 5.28 Graph plot of values of comments and understandability package-! 

The value of comments and its effect on reusability is not consistent to the theory 

which states that increase in comments increases understandability. In Figure 5 .28, it 

can be seen that the number of comments is increasing in version 1.0 to version 2.0. 

However, the value of understandability is continuously decreasing. The underlying 

reason can be understood by having a look at Figure 5.26 and Figure 5.27. The 

number of lines of code and number of methods increase significantly m every 

version, which overshadows the effect of increase in comments. 

Table 5.13 Version wise values of maintainability and its attributes (package-!) 

Jasmin 

.:.V:ersions 

1.0 2.0 2.1 2.2 2.3 2.4 

'MI! " ' 59.~1l,> 68.63. 95.2.1, ..• 85.99 76.1 .• 62.99 

cc 73 77 85 87 87 88 

Maintainability 0 0.25 r}t2.·50 0.50 
. 

0.25 0 .• • •ltf"'!c• 

The value of maintainability of Jasmin package increased from 0 to 0.5 in version 

2.2, which is the maximum value. The contribution of rise in the value of MI can be 

seen from version 1.0 to 2.2. The value of CC keeps on increasing which has a 

negative effect on maintainability. After version 2.1, the value of MI is decreasing 

172 



which is causing a decrease in the value of maintainability. The values of Ml, CC and 

maintainability are presented in Table 5.13, Figure 5.29 and Figure 5.30. 

MI vs. Maintainability Package -1 (jasmin) 

0.6 

0.5 
» 
:5 

0.4 :c 
" 0.3 " ·; 

0.2 
~ = 

0.1 
·; 
:; 

0 

WMI +Maintainability 

Figure 5.29 Graph plot of values ofMI and maintainability package-! 

100 

80 

60 

MCC vs. Maintainability Package -1 (jasmin) 

,-------~·---~----·· --~···-----. 

+--->.r---~-~------- - J..i____ -~ 

40 ··~--- • --·--------

2~ 4-=~-~~-~=--- ---,- - -- ~~+-1 

... MCC +Maintainability 

0.6 

0.5 » 
:E 

0.4 :c 
" 0.3 = ·; 

0.2 
~ 

= ·; 
0.1 :; 
0 

Figure 5.30 Graph plot of values ofCC and maintainability package-! 

5.8.1.2 Analysis ofPackage-2 (java_cup.runtime) 

The package java_cup.runtime has evolved from vers10n 1.0 to vers10n 2.4. The 

highest value of reusability can be observed in version 1.0. It is due to the 

contribution of flexibility value. The reusability decreased in version 2.0 and 2.1. In 

version 2.1 the reusability value reached the lowest point that is 0.37. This decrease is 

due to the value of maintainability. Afterwards in versions 2.2, 2.3 and 2.4, the value 

173 



remains the same i.e. 0.37, because of no change in the values of the attributes. It 

shows that there is no significant change in the package in these versions. The 

valuesare presented in 

Table 5.14 and Figure 5.31. 

The value of understandability remams constant in the versiOns of package 

java_ cup.runtime. There is no change in the lines of code, number of methods or 

number of comments. 

Table 5.14 Version wise values of reusability and its attributes (package-2) 

java_cup.runtime 

'_,~•,')4,, 

/;~~~:- '<iYi'\' 
; ~- +,"·l,,; ' 

Versions 

1.0 2.0 2.1 2.2 2.3 2.4 

U'Jiderstandability O:b4 0.64 0.64 0.64 0.64 0.64 
''Ph ' ) ' 

Flexibility 1.00 0.00 0.00 0.00 0.00 0.00 

Portability 0.75 
' ;.<, 

'0.75 .(f75 0.75 0.75 0.75 

Variability 0.10 0.10 0.10 0.10 0.10 0.10 

• Maintaina~,Wty ;,0,~3 !f' ·.05 ''· .. 
< '+',''' 

> 
0.38 0.38 0.38 0.38. 

Reusability 0.57 0.40 0.37 0.37 0.37 0.37 

174 



I 

0.9 

Reusability and Attributes Values Package -2 
(java_ cup.runtime) 

~:~ --i----=------¥---=1= - ~----=~ 

~:! 1------'~v-=;~- -~- ~--- ~-.._-~~~-~~ .,~--~ ..=---w=-= 
0.3 

0.2 

0.1 

0 

Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 Version-2.4 

+Understand-ability WReusability A Variability X Maintainability X Flexibility sl Portability 

Figure 5.31 Reusability and its attribute values for packege-2 

The maintainability value of java_cup.runtime package increased in version 2.0 

i.e. 0.50, which is the highest one. This increase is due to the decrease in complexity. 

In the subsequent versions 2.2 to 2.4 the value of maintainability remains the same 

due to no change in the values of the attributes. The values of MI, CC and 

maintainability are presented in Table 5.15, Figure 5.32 and Figure 5.33. 

Table 5.15 Version wise values of maintainability and its attributes (package-2) 

java_cup.runtime 

1.0 2.0 2.1 2.2 2.3 2.4 

·,..n.;...;"-''\•zc ,. ··• "73.48 ;: :.:~~~'7.3;48::'!~-173.48 · ._13,48 
. •. '' ' "';' e:;''• ~',';",;cz'\1'• · ·, .. :.·_,,.,;y"'' 1~~~~,:-•2 

cc 24 13 24 24 24 24 

175 



80 
70 
60 
50 

~ 40 
30 
20 
10 
0 

MI vs. Maintainability Package -2 Uava_cup.runtime) 

0.6 

WMI +Maintainability 

Figure 5.32 Graph plot of values ofMI and maintainability package-2 

MCC vs. Maintainability Package -2 
Uava_cup.runtime) 

- ~~ ,-=-=· ---·---~----=~-.· ~~=~--=-: 
~ 15 

I 0 · · ··-- ·-·· -----·---

~ --~--~----~---,~===~-===t 

WMCC +Maintainability 

0.6 
0.5 ~ 
0.4 :c 

" 0.3 = ·; 
0.2 -= 0.1 ·; 
0 ~ 

Figure 5.33 Graph plot of values ofCC and maintainability package-2 

5.8.1.3 Analysis ofPackage-3 (Jas) 

The package Jas is part of Jasmin throughout in all versions. However, the change in 

the reusability value can be seen in version 2.0. The highest value of reusability is 

observed in version 1.0 i.e. 0.56. The value of reusability decreased to 0.38 in version 

2.0 and remains the same in all subsequent versions. The values of reusability and 

attributes are presented in Table 5.16 and Figure 5.34. This constant value of 

176 



reusability is due to the fact that the values of attributes remain unchanged after 

version 2.0. 

Table 5.16 Version wise values of reusability and its attributes (package-3) 

Jas 

1.0 2.0 2.1 2.2 2.3 2.4 

4"' UnderstjWability -~0!48,*¥l~l:f0:42•' • 
, ''"ii'•'f •. ·,-•. ~?4'¥':",'' ' ~--'-~.-.:;ib~"4V\)Vt:h)FI-·Y~'f·, 

Flexibility 1.00 0.00 

Variability 0.06 0.05 0.05 0.05 0.05 0.05 
!+W:l ,' 0 ' O"''•"" ,,, C'' -

"'~:.Mamtamability _ .-. · 
"' . ··\:1/fl~rl'·i~.' . 

Reusability 0.56 0.34 0.34 0.34 0.34 0.34 

Reusability and Attributes Values Package -3 (jas) 

0.9 +---------------------- ------------- -----~--·----------

0.8 +--- ··c-------:- --;-------------;----------;--

0.7 +------------""'------------- ,..._ _____ _ 

0.6 +--, 
0.5 

0.4 ~-------

0.3 +-------J--------
0.2 +------ -------- ----------
0.1 

0 +------'=-~--AI!li'L-~----' 

Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 Version-2.4 

+Understand-ability lid Reusability ... Variability X Maintainability :t Flexibility"" Portability 

Figure 5.34 Reusability and its attribute values for packege-3 

The values of LOC, NOM, comments and understandability are represented in 

Table 5.17, Figure 5.35, Figure 5.36 and Figure 5.37. The value of understandability 

decreased from 0.48 to 0.42. It remains the same in subsequent versions due to a 

slight increase in the other factors. The increase in NOM is significant in version 2.0, 

which is the cause of decrease in the value of understandability. The increase in LOC, 

177 



NOM and comments can be seen in the later versions. However, the increase in LOC, 

NOM and comments is not significant. So, this increase has no effect on the value of 

understandability. 

Table 5.17 Version wise values of understandability and its attributes (package-3) 

jas 

1.0 2.0 2.1 2.2 2.3 2.4 

LO~''' '''Mll1'08·• 2~;}'Z~~';:S 101 :3102 •>'J.I05 " _{('\' 
,",{••'/h<\<""1<, ',, <L>'>**"\}c*' '' 

NOM 191 244 308 318 318 319 

Com'ifients 157 ·~198 ~49 273 273 273 
'' :''\110' '' ,,;q, &' ' ,'\& 

Understandability 0.48 0.42 0.42 0.42 0.42 0.42 

~LOC +Understand-ability 

Figure 5.35 Graph plot ofva1ues ofLOC and understandability package-3 

178 



i.iNOM +Understand-ability 

Figure 5.36 Graph plot of values of NOM and understandability package-3 

Comments vs. Understand-ability Package -3 Uas) 

0.5 ;.., 

0.48 
== 0.46 :c 
"' ' 0.44 "' = "' 0.42 -~ .. 

0.4 "' "' = 0.38 :::> 

,<::> "'~ "'' ""' "'"? 
I>< 

'),· 
. c<$ ·o<f ~ ·C<;> . 0<$ ~ ·C ·C 
~" ~" ~" ~" ~" ~" 

.::.~' .::.~' .::. ~<; .::.~' .::.~' ...:::.. ov'-

loiComments +Understand-ability 

Figure 5.37 Graph plot of values of comments and understandability package-3 

The values of CC, MI and maintainability are presented in 

Table 5.18, Figure 5.38 and Figure 5.39. The value ofCC increased from 99 to 145 in 

version 2.0. The value of CC further increased to 231 in version 2.1. There is a slight 

increase in the values of MI. However, the increase in the values of CC and MI is 

neglect able. Therefore, no effect of change in CC and Ml values is observed on 

maintainability value. 

179 



Table 5.18 Version wise values of maintainability and its attributes (package-3) 

jas 

V~Jrsions 

1.0 2.0 2.1 2.2 2.3 2.4 

MI 135.62 B5.67 132.32 131.87 131.58 151.15 

cc 99 145 231 252 252 252 

Maintainability 0.50 0.50 0.50 0.50 0.50 0.50 

MI vs. Maintainability Package -3 Uas) :;: t·---=·-=· • -~-- -.., f: g 145 ----- ---~~- :c 
0.4 

- 140 --··- -----------~----------- -- - ::l 
~ 135t--JJij lit ~~-- _____ j 03 -~ 

130 ---· ------~-----.--- t 0.2 ·; 
125 --- --- ---------- - 0 I ~ 

120 +- -- - - --- ---- . ' 0 

WMI +Maintainability 

Figure 5.38 Graph plot of values of comments and understandability package-3 

180 



MCC vs. Maintainability Package -3 (jas) 

3oo r-· . . -- - - ... ----
250 1_... _ _._ __ -.--·--· 

; :~t~~~ .. ~~-=~= 
I 0 ; ,_, _____ --...---.....,- -------~-,-

··~ I 0.6 
0.5 .... 

:E 
--·---· .. 0.4 :Ei 

" .. --·----- 0.3 " ·;; 
0.2 ------- - " 

~--=t 0.1 
·;; 
~ 

0 

o.IMCC +Maintainability 

Figure 5.39 Graph plot of values ofCC and maintainability package-3 

5.8.2 Reusability Analysis of pBeans 

pBeans package has evolved from version 1.0 to version 2.0.2 (10 versions). The 

number of packages increased from three to eight. The number of classes evolved 

from 28 (in version 1.0) to 49 (in version 2.0.2). The number of methods increased 

from 161 (in version 1.0) to 341 (in version 2.0.2). 

The details of the assessment of reusability and its attributes are presented in the 

following section. 

5.8.2.1 Analysis ofPackage-2 (pbean) 

The pbean package is part of the software in all of its versions. The reusability and 

attribute values are presented in Table 5.19 and Figure 5.40. It can be observed that 

there is a significant difference in the reusability value of pbean package 1.3.0. 

181 



Table 5.19 Version wise values of reusability and its attributes (package-2) 

pbean 

Versions 

1.0 1.1 1.2 1.2.1 1.2.2 1.3.0 1.3.1 2.0 2.0.1 2.0.2 

Understand 0.94 ·0.94 0.88. 0.88 0.87 0.86 :0;89 0.38 0.87 0.87 
• 

ability 

Flexibility 

Portability 

0.00 0.00 0.00 0.00 0.00 1.00 

0.50 0.50, 0.50 0.50 0.50 Q.5Q 

0.00 0.00 

0.50 0.50 

0.00 0.00 

0.50 0.50 

Variability 0.45 0.45 0.38 0.38 0.38 0.38 0.41 0.67 0.67 0.67 

Maintain 0.38 0.38 0.38 · 0.38 0.38 0.38 0.38 0.63 0.63 · 0.63 
''' ;,>~ ··'*": ',, 

ability, · 

Reusability 0.45 0.45 0.43 0.43 0.43 0.62 0.43 0.43 0.53 0.53 

The reusability value increased to 0.62 in version 1.3.0, which is the highest one. 

This increase is due to the increase in the value of flexibility. Another increase in the 

value can be observed m vers10n 2.0.1, which rs due to the mcrease m 

understandability value. The attribute values show that the package has not been 

changed much up to version 1.2.2. The major changes can be observed in version 

1.3.0 and version 2.0.1. 

"' ;-,'- "'Y o,'- o,'Y o,"' o,' ':>"' 
"''" 

"''} '>' 
·o~ a<:' 1$ ',· ,. ,. '>' 1$ ':',· 

""' c,··..O 04$ ·O~ . 0-\$ 1$ ·0 ·O~ ·O~ c,~ c,~ ·0 ~~ 

.::..~' .::..~' ~c-' "'"~ ~~ ~~ ~~ .::..~' ~~ ~~ 
.::..~ .::..~' .::..~' .::..~' .::..~' .::..~' 

+Understand-ability t.iFiexibility .A Portability 

X Variability Maintainability ''Reusability 

Figure 5.40 Reusability and its attribute values for package-2 

182 



The values ofLOC, NOM and comments are presented in Table 5.20, Figure 5.41, 

Figure 5.42 and Figure 5.43. The values show a decrease in understandability value in 

version 1.2, which is because of the increase in the number of LOC and NOM. The 

increase in size has an inverse effect on understandability. 

A significant decrease in understandability value can be seen in version 2.0, which 

is due to the increase in LOC, NOM and lack of comments. In the version 2.0.1, the 

value of understandability increased to 0.87. This increase is contributed by the 

increase in comments and decrease in LOC. 

Table 5.20 Version wise values of understandability and its attributes (package-2) 

pbean 

1.0 

~2~~f:;")>; '" 
NOM 43 

· Cominentt",-::,:~·:364 
,. ·····d~}44';t't'i~'· . " 

Understand 0.94 

ability 

1.1 1.2 1.2.1 1.2.2 1.3.0 1.3.1 2.0 2.0.1 2.0.2 

437 437 ''"~3,7 
43 53 53 53 

375 . 437~,;,'137 ··433 
1 :~:'::<-S;pp.H)\:<; ·''" ~ 

0.94 0.88 0.88 0.87 

183 

53 

.425;;; 

68 106 107 107 

···""'""·¥/\ 

0.86 0.89 0.38 

604 

0.87 

604 
;>~ 

"'"'·'·'"'-

0.87 



700 
600 
500 

u 400 
3 300 

LOC vs. Understand-abilityPackage -2 (pbean) 

200 +-~~~----------~--~-----~~----~--4 
I 00 +------------------~~------ ----------4 

0 

!J LOC +Understand-ability 

.... 
0.8 := 

:c 
0.6 "' ' "" 0.4 = "' -~ 0.2 ... 

" "" 0 = ~ 

Figure 5.41 Graph plot of values ofLOC and understandability package-2 

:; 
0 z 

NOM vs. Understand-ability Package -2 (pbean) 

ilillNOM +Understand-ability 

Figure 5.42 Graph plot of values of NOM and understandability package-2 

184 



700 
600 

~ = 500 

Comments vs. Understand-abilityPackage -2 (pbean) 

5 4oo '"'--·---
s 3oo - ~- ------------1 
0 200 

100 
0 
+----------- -----~~---

i.jComments +Understand-ability 

» 
o_s :E :c 
0_6 "' ' '0 

OA = 
"' -02 
~ ... 
" '0 

0 = ;;l 

Figure 5.43 Graph plot of values of comments and understandability package-2 

The value of maintainability remains the same in version 1.0 to version 1.3.1. A 

decrease in the value of complexity can be observed in version 2_0_ This decrease in 

complexity and a significant increase in the value of MI increased the value of 

maintainability to 0.63. The value of maintainability remains the same for the 

subsequent versions. It shows major changes in the package in versions 1.3 .I and 2.0. 

Table 5.21 Version wise values of maintainability and its attributes (package-2) 

pbean 

1.0 1.1 1.2 

36 36 39 

1.2.1 1.2.2 1.3.0 1.3.1 2.0 

39 39 39 46 

185 

34 

2.0.1 2.0.2 

34 34 

0.63 



140 
120 
100 

- 80 
~ 60 

40 
20 

0 

MI vs. Maintainability Package -2 (pbean) ------ =~-~-=w-----.-.-~ 

*-*=•=*=• a • 

liiiM1 +Maintainability 

0.7 
;., 

0.6 :E 
0.5 :E 
0.4 .5 
0.3 !! 
0.2 .5 

" 0.1 ~ 
0 

Figure 5.44 Graph plot of values ofMI and maintainability package-2 

50 

40 

u 30 
u 20 

10 

0 

CC vs. Maintainability Package -2 (pbean) 

ldCC +Maintainability 

0.7 
0.6 ~ 
0.5 :E 
0.4 ~ 
o.3 ·s 
0.2 .; 
0.1 ~ 
0 

Figure 5.45 Graph plot of values ofCC and maintainability package-3 

5.8.2.2 Analysis of Package-3 (pbean.data) 

The reusability and attributes values for pbean.data package are presented in 

186 



Table 5.22 and Figure 5.46. The highest reusability value is observed in version 1.3.1. 

This highest value is due to the high values of understandability and maintainability. 

The value of reusability is lowest in versions 1.2 and 1.3.0. It can be said that version 

1.3.0 has undergone major changes which improved its reusability value. 

I 
0.8 
0.6 

Reusability and Attributes Values Package -3 
(pbean.data) 

0.4 b,,,,;;t- i;,,. .•.. !----i..iil-·-l...t-~-~~--"""~-l------...... ~ :;}--ll':lllllr---------t..t--
0.2 

0 

,~ ,--:. 'V ' 'V ~ ,, 
"'"' ~":> ~'Y ,. '1_,· 'V ,. 

;:;: ;:;: ;:;: ,. ,. ,. ,. ;:;: -:v· ');· 
s··..O 

·0 s··..O . a<$ . 0<$ . 0.;:: ;:;: ;;:.,.0 0~ ·0<$ ~~ :':!..0 .:.~' .:.~' .-::/..~' ~e,~ s" e," -.4 e.,'-~ ~;.., ..... ~~ 
.:.~ .:. ~' .:. ~' ~c.'-~ .:.~ .:.~' 

+Understand-ability loijflexibility &Portability 

X Variability :1< Maintainability • Reusability 

Figure 5.46 Reusability and its attribute values for package-3 

Table 5.22 Version wise values of reusability and its attributes (package-3) 

pbean.data 

1.0 1.1 1.2 1.2.1 1.2.2 1.3.0 1.3.1 2.0 2.0.1 2.0.2 

Flexibility 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Poriatiili. · y; 0:75 0. 75_·::~'-9!75 -o:?s! -- --- -,,. "'"ty - ··>r;.""· ., 
';t!'£;JL-:; 

Variability 0.44 0.44 0.39 0.39 0.39 0.35 0.38 0.53 0.53 0.53 

'Maintain .• , .. o:cf();:'Q.OO. o.oo2:~:0.Q9 ''o.oo 
. ::_ -,:~~~01'-2j;?~in __ ~~\"7t~"~ ~:-·.: ·-.··- / ---- :~~~;;;~~:£1:< 
b'l'~'A a_ 1,1 . """ 
<x'i>YP~~::::;. -~- ' 

Reusability 0.40 0.38 0.37 0.38 0.38 0.37 0.48 0.33 0.40 0.40 

187 



The values of LOC, NOM, comments and understandability are presented in 

Table 5.23, Figure 5.47, Figure 5.48 and Figure 5.49. Version 1.0 of pbeans.data has 

the highest value of understandability i.e. 0.81. The value is decreased to 0. 73 in 

version 1.1, where there is an increase in NOM and LOC. There are slight changes in 

the values in versions 1.2, 1.2.1, 1.2.2 and 1.2.3. However, the changes are 

insignificant and their effect cannot be seen on the values of understandability. 

Table 5.23 Version wise values of understandability and its attributes (package-3) 

Pbean.data 

•ft::~s;~ t<>c < · /·7-<'<f ,(/+«'' ¥¢f'Sitifis:, . 'P 

''"'"vs 
, ,,;s< ''7:i,::~;;:~t::~ 

/• j}"'>J 

1.0 1.1 1.2 1.2. 1.2. 1.3. 1.3. 2.0 2.0. 2.0 

2 0 I I .2 

•C£834, 
':'*~~~'tt ' 

176. 17~ •. 17 

8'1+ -gv,r~ 17 

NOM 116 120 138 142 142 !54 105 145 148 14 

9 

830'' . 127~ 
'-<""--' 

110 17 

2 0 . 50 

Understan 0.81 0.73 0.73 0.74 0.74 0.73 0.87 0.61 0.73 0.7 

d ability 4 

In version 1.3.1 there is a significant decrease in NOM and LOC which resulted in 

an increase in the understandability value. Afterwards, in version 2.0 the value of 

understandability decreased to 0.61, due to an increase in LOC and NOM. It can be 

observed that the numbers of comments are also increasing with LOC and vice-versa. 

188 



u 
0 
...l 

LOC vs. Understand-abilityPackage -3 (pbean.data) 

1>4LOC +Understand-ability 

g 
0.8 -:c 
0.6 

0.4 

0.2 

0 

., 
• 

"" = ., -::; 
" "" = :;;, 

Figure 5.47 Graph plot of values ofLOC and understandability package-3 

NOM vs. Understand-ability Package -3 (pbean.data) 

180 .... 160 
0.8 ;: 

140 :c 
~ 

120 0.6 ., 
100 • 

0 "" 80 0.4 = ;z: 60 
., -40 0.2 
~ ... 

20 " "" 0 0 = :;;, 

WNOM +Understand-ability 

Figure 5.48 Graph plot of values of NOM and understandability package-3 

189 



Comments vs. Understand-ability Package -3 
(pbean.data) 

2000 -,------------------ -- ·-:;o;c----:--.-.-:;rT 

~ I 500 ~,.___~ 
" § I 000 +-1111--
0 500 ---------------------~~-----u 

0 +---,--,---~-~--~-.--~----~--~---+ 

lojComments +Understand-ability 

;., 
0.8 :: 
0.6 :c 

" OA ' '0 
c 

0_2 " -~ 0 .. 
" '0 
c 

;;> 

Figure 5.49 Graph plot of values of comments and understandability package-3 

The values of Ml, complexity and maintainability are presented in Table 5.24, 

Figure 5.50 and Figure 5.51. A significant decrease in the value of complexity can be 

seen in the version 1.3.1. Therefore, in version 1.3.1, pbean.data package has the 

highest value for maintainability. In subsequent versions, the complexity value 

increased up to !53. However, its effect is normalized by the MI value which has 

increased in versions 2.0.1 and 2.0.2. 

Table 5.24 Version wise values of maintainability and its attributes (package-3) 

Pbean.data 

1.0 1.1 1.2 

MI 63..63. 6'3'.7 62.9' 
,-;,:£0~'/';',: '> 

cc 77 77 98 

.. ~r·;::;.~.V ersiOJ:,tsc;~;, 
1.2.1 

63.0 
<"I}t¢ 

98 

1.2.2 

63~0 

98 

190 

1.3.0 1.3.1 

63.1 70.4, 
/"""·~::"")>' 

2.0 2.0.1 2.0.2 

.55.7 66.3; 66.3 
'"J;: 

149 !53 !53 

o:oo 0:25' 0.25' 
0'':'<1 ,> 

1',/ 



MI vs. Maintainability Package -3 (pbean.data) 

WMI +Maintainability 

0.4 
0.35 g 
0.3 :c 
0.25 " 
0.2 .; 
0.15 = 
0.1 ·; 
0.05 ::; 
0 

Figure 5.50 Graph plot of values ofMI and maintainability package-3 

180 
160 
140 
120 

u 100 
u 80 

60 
40 
20 

0 

CC vs. Maintainability Package -3 (pbean.data) 

IIIMCC +Maintainability 

Figure 5.51 Graph plot of values ofCC and maintainability package-4 

5.8.2.3 Analysis of Package-4 (data.mysql) 

The package data.mysql is added to the pBeans in version 2.0. Its reusability value is 

0.36, which increased to 0.40 in the subsequent versions. The increase in the 

reusability value is due to the increase in the value of understandability. The values of 

reusability and attributes are presented in Table 5.25 and Figure 5.52. 

191 



Table 5.25 Version wise values of reusability and its attributes (package-4) 

data.mysql 

Flexibility 

'i) b'l' ··'" '""·wta • Ity· 
' 'fos:; 

Variability 

2.0 

0.00 

0.00 

-~-~§ ... 
0.36 

2.0.1 

0.00 

q.~,. 

0.00 

; ••. 9.63 

0.40 

Reusability and Attributes Values Package -4 
( data.mysql) 

2.0.2 

-·~o.65 
A)<', 

0.00 

0.]:5 

0.00 

"0.63 

0.40 

~:: +----4~ ·---~---=~=---~=~-~~- ----~==--= 
0.4 

0.2 

0 

--~-------w---------v-~---

------11----~ .. -------r---·--·----, 
Version-2.0 Version-2.0.1 Version-2.0.2 

+Understand-ability W Flexibility _j. Portability 

X Variability %Maintainability .#Reusability 

Figure 5.52 Reusability and its attribute values for packege-4 

The values of LOC, NOM, comments and understandability are presented in 

Table 5.26, Figure 5.53, Figure 5.54 and Figure 5.55. The value of understandability 

increased from 0.19 in version 2.0, to 0.65 in subsequent versions. The increase in the 

value of understandability is due to the increase in the number of comments. 

192 



Table 5.26 Version wise values of understandability and its attributes (package-4) 

data.mysql 

2.0 2.0.1 2.0.2 

NOM 15 15 15 

·. Hl01>; 
' ', <- '.':: 

Understandability 0.19 0.65 0.65 

LOC vs. Understand-abilityPackage -4 (data.mysql) 

11o 1 ---

108 

106 

-----.-- -........ 
111
-- ----r 0.1 

-"""'--- --f 0.6 g --------

0.5 :c --------······-- --------- ':' u 0.4 ~ q 104 --~ ·--··--- ; 
... 0.3 ~ 

102 ---..-------------jlllltllli!ill-- ----·--. -~--- 0.2 ~ 

100 ... -------· -----~t 0.1 :5 
98 +------------,-~-~·--------,-·- ·-···---r 0 

Version-2.0 Version-2.0.1 Version-2.0.2 

ioiLOC +Understand-ability 

Figure 5.53 Graph plot of values ofLOC and understandability package-4 

193 



NOM vs. Understand-ability Package -4 (data.mysql) 

:~ t=~-=--- m --=- o •••• -----------

~ 10 
0 8 
z 

6 

4 -· 2 +---~-------~------ ------~---------------------------

0 -----~ --------,--------

Version-2.0 Version-2.0.1 Version-2.0.2 

laiN OM +Understand-ability 

0.7 

0.6 ;., 
;<:::: 

0.5 :c 
" 0.4 ' "0 
c 

0.3 " -~ ... 
0.2 " "0 

c 
0.1 ;:, 

0 

Figure 5.54 Graph plot of values of NOM and understandability package-4 

~ -= 
" E 
E 
0 
u 

Comments vs. Understand-ability Package -4 
( data.mysql) 

120 ------ - -------,.--~----------...----------, 

1 00 ------ --------

80 

60 1--~---------~-------

40 +---~---.~~~~----------~~--------~ 

20 +-----~---~~----~~-----------~---

0 +-~----liid----~~------ ·-----,------------

Version-2.0 Version-2.0.1 Version-2.0.2 

OoiComments +Understand-ability 

0.7 

0.6 
;., 
:: 

0.5 :c 
" 0.4 ' "0 
c 

0.3 " -~ 
0.2 

... 
" "0 

0.1 = ;:, 

0 

Figure 5.55 Graph plot of values of comments and understandability package-4 

The values of Ml, complexity and maintainability are presented in 

Table 5.27, Figure 5.56 and Figure 5.57. The value of maintainability decreased in 

version 2.0.1. The decrease in maintainability value is due to the decrease in the value 

of MI. The maintainability index is directly related to maintainability. 

194 



Table 5.27 Version wise values of maintainability and its attributes (package-4) 

data.mysql 
',-;:,',c 

'%_ 

cc 

160 

140 

120 

100 

'',<f:'L > '~it"_':i;i}_. !:·~'i!> 'f':'"- '1 
,,',2,,)y,]f);:}:,~"'' ' ;: 

2.0 

134.79 ·. 

7 

2.0.1 

80.04~ 

7 

2.0.2 

80.~1; . 
7 

. ;~~;7~~~,~~ 

MI vs. Maintainability Package -4 ( data.mysql) 

C __ t'-------- ... --- -~---= ·=-==i ---------- ---__ --_-_ +~--=={ :: I 
80 +-·-- ····-···-- -~ --·· . ... ·--~ .5 ------ ·------- ----- -- -r 0.4 -~ 60 

40 

20 

0 -----~----- ----,--
. ~=- 1 :2 ~ 

Version-2.0 Version-2.0.1 Version-2.0.2 

OojMJ +Maintainability 

Figure 5.56 Graph plot of values ofMI and maintainability package-4 

195 



CC vs. Maintainability Package -4 ( data.mysql) 

~ ---~--.- ~~=-~-~~~:_ill-~ ~~-~-= -~=~l 0.8 ~ 
5 

u 4 u 
3 ------------ ---- -------- --------- - 0.4 .5 

"' 2 -----~---- -- --- - :; 
0.2 

··------ -- ----------~--·-·---~- --- -- -- -

0 ------------- - ~-- -- - - ----- 0 

Version-2.0 Version-2.0.1 Version-2.0.2 

lojMCC +Maintainability 

Figure 5.57 Graph plot of values ofCC and maintainability package-S 

5.9 Summary 

The emergence of OSS has influenced the decision process of components selection. 

Now, while identifying components, OSS is also considered as a third choice other 

than developing or buying a component. The inclusion of OSS in systematic reuse 

based development such as SPLs is proposed by software engineering researchers. 

The proposals include frameworks and model of OSS based product line 

development. In this chapter a conceptual model of reusability assessment has been 

presented. The reusability attribute models are proposed by making use of GQM 

modeL 

At class level six attributes are included which are understandability, flexibility, 

maintainability, scope coverage, portability and variability. With the exception of 

variability and scope coverage, the metrics to assess these attributes are selected from 

the literature. While the metrics for variability and scope coverage are proposed, due 

their non existence in the literature. The following five attributes are considered at 

package level viz. flexibility, understandability, portability, maintainability and 

variability. 

These model and metrics have been applied on I 03 classes and 77 packages. The 

results were statistically analyzed. The analysis revealed that four out of six attributes 

196 



at class level have significant correlation with reusability. In packages all the five 

attributes have significant correlation with reusability. An evolutionary reusability 

analysis of packages of two open source software was conducted to demonstrate the 

potential application of the proposed approach. 

197 





CHAPTER6 

DISCUSSIONS 

6.1 Overview 

In this chapter the contributions are highlighted in the context of current research in 

this field. A discussion is presented and comparisons of the results are conducted 

where possible. Implications of the key findings of this study are also part of this 

chapter. 

6.2 Key Findings of Research 

In this section the key findings of this research study are presented I summarized. 

During the discussion relevant contemporary literature is referred to signify the 

importance of the findings of this study. 

6.2.1 Review of Reusability Assessment Approaches 

A review of reusability assessment approaches has been conducted during the study. 

The results are presented in chapter two. The review has been conducted to answer 

the following questions about the proposed approaches. 

Y What approaches have been introduced to assess software component 

reusability? 

Y What is the applicability of these approaches? 

Y What is the procedure adopted for validating the approach? 



A search was made prior to starting the review process, it revealed that a similar 

study i.e. [163] is available in this area. However, this study was conducted in 2004. 

Therefore, it is not representative of the current state of the art in this area and it 

doesn't contain the latest approaches. The difference can be observed from the 

number of studies reviewed. The authors of [163], have reviewed and presented nine 

approaches. The number of publications reviewed and presented in this thesis is 

twenty. The number is fairly greater than the previous study which shows a 

continuous interest of the software community in this research area. 

Table 6.1 Comparison of reviewed studies 

[164] This Thesis 

The results of the review show that the majority of the approaches are based on 

metrics (70%). The applicability of majority of the approaches is object-oriented 

paradigm (70%). The implementation language which is targeted in most of the 

approaches is java (71 %). The intention of (60%) of the approaches is white box 

measurement. These figures show that the software development community is more 

interested in object-oriented paradigm and java based implementations. 

One of the issue rose after the literature review, which pointed the lack of 

validation of the proposed approaches in most of the previous works. The results 

show that (30%) of the proposed approaches lacks the validation of results. The 

software research community needs to give attention to validation as it is necessary to 

validate results in order to gain the confidence of software practitioners. 

6.2.2 Analysis of Variability Implementation Mechanisms 

A theoretical analysis of variability mechanisms has been conducted and the results 

are presented in chapter four. In this analysis, the variability implementation 

mechanisms are mapped to their corresponding type, scope, artifact, and feature. A 

similar kind of mapping is provided in [39] in 200 I. However, in this thesis the latter 

work of Svahnberg et al. ; [43], Kim et al. ; [41] and Pohl et al. ; [40] are also 

200 



considered. On the basis of the latest works a comperhensive mapping of variability 

mechanisms is provided in this thesis. 

6.2.3 Identification of Challenges in OSS 

In this thesis, challenges in OSS are identified through qualitative method. These 

challenges include finding and evaluating OSS, lack of documentation, developers' 

reluctance to make their software OSS. The developers do nott have appropriate 

information about the intellectual property rights I copyrights. Another issue is the 

lack of adherence to the coding standards. The security of OSS is also one of the 

major challenges. In relation to the challenge of finding OSS, improper reviewing and 

comments is one of the issues that needs attention. At the organizational level there is 

a fear of losing market share, which poses a challenge for the OSS community. 

A study, [24] has also discussed the challenges to the OSS. The authors made an 

argument that "there has been no systematic synthesis of the OSS challenges reported 

in the literature" [24]. However, their study was based on the literature survey. In the 

case of this thesis, the findings are based on the interviews with the experts, 

researchers and practitioners. 

The common findings of this thesis and [24] are the challenges of finding and 

evaluating components, poor documentation, legal aspects such as copyrights and 

intellectual property rights. The findings presented in this thesis are based on the view 

point of user of the OSS i.e. software engineer. In this regard, the prominent findings 

are issues of security, fear of losing market share at the organizational level and fear 

of losing job at the individual software engineer's level. 

Table 6.2 Comparison of findinds-1 

Reference Method Common Findings 

Sec~.t)' 

The issue of security has more importance among the others. In a recent focus 

group study [35], security of component has been identified as an important technical 

factor that influences the selection of component. Currently, software engineering 

201 



researchers are working on empirical studies on open source and closed source 

software such as, [165]. This study [165] concludes that there is no significant 

difference in both open and closed source software development in terms of security. 

Reference 

Table 6.3 Comparison of findings-2 

Method 

Literature Review ,,,,,,,, ' 

Common Findings 

Finding and evaluating 
0 

components · 

Poor do~~ep:tation 
').:> £ega! aspectS'. ~uch as copyrlghts 

·.:z,, . "'' . ·• 

. and illtellectual'propetty rights .. ·. 

Prominent Findings 

1Y }> Issues of security 

· > );'ear of loosing market share at the 
organizationaL level 

'' ti!"' 

software engineer's 
":/<'' 

The challenge of improper rev1ewmg and comments can be related to the 

challenge of several description of the same documents, which is identified in [ 166]. 

Both of these factors complicate the searching process. 

[24] 

Table 6.4 Comparison of findinds-3 

This Thesis 

Orle of the finding is that Improper 
reViewing and &imments is a challenge 

6.2.4 Identification of Current Reuse Practices 

The current reuse practices are identified in this thesis which include knowledge 

reuse, looking at the demonstration of software and regarding the initialization of 

SPL. 

202 



In [167] and [168] it is stated that the OSS developers reuse the existing code in 

three forms. These three forms include reuse inform of component, single line of 

code, algorithm I method. In this thesis, it is identified that another form of reuse is 

the translation of logic from one programming language to another. It is the situation 

when a developer searches for a specific code in a specific language but she finds the 

same functionality in some other language. Then she tries to translate it in the desired 

language. In other words creates a replica of the program in other language. 

Demo versions of OSS are used to assess the effort required to modify or the 

number of modifications in the code. Furthermore, the modules where the changes are 

required can be easily identified by using the demo version. 

Table 6.5 Comparison of findings-4 

Reuse Practices 

Inform of component, single line of Y 

code, algorithm I method 

Rewriting the code in other language 

with adaptation (replica in other 

language) 

Y Identification of module which 

require modifications 

6.2.5 Using OSS in an SPL 

The use of OSS in SPL facilitates fast transition towards automation and entering into 

new markets. OSS is such a platform which provides components, it attracts the SPL 

community. The attraction is due to the benefits of the OSS. The use of OSS in SPL 

improves the quality of the software. OSS is opening opportunity for the SPL 

community to add more innovations to their product lines. 

The findings are in line with the other available studies. The improvement in 

quality can be credited to the fewer defects per line of code [46], and reliability [47-

48] ofOSS. 

203 



6.2.6 Role of OSS in Promoting Reuse 

The role of OSS in promoting reuse has four dimensions. These dimensions include 

time and efforts saving aspect, ease of development and market trust. The market trust 

or in other words the trust of the customers is gained by the organization which is 

useful while entering into new domains by using OSS. 

The results of a survey based study [52] also reports a similar finding that by 

reusing OSS, developer can save time for other important tasks of the project. 

Reference 

[SZF 
"+"Y~b.;0:_ 

,,,,-;:;;;'::,"Sj$_0< '' 
>0f-}£.,, 

Table 6.6 Comparison of findings-5 

Method Common Findings 

""""""·', 
';;00'J<<"' ' 

6.2. 7 Identification of Factors Affecting Reusability 

The factors affecting reusability of software are identified using qualitative method. 

These factors include flexibility, maintainability, portability, scope coverage, stability, 

understandability, usage history, variability and documentation. The details of the 

factors are presented in chapter four. 

The findings reported in this thesis have extended the body of knowledge by 

adding new attributes of reusability. A review of the proposed reusability assessment 

approaches is provided in chapter two. The salient feature of this study is the 

identification of the reusability attributes from the perspective of software developer. 

This identification is based on the interviews. The use of this method of inquiry is 

motivated by another view of reusability. This view is presented in [102], it states that 

reusability is a form of usability from the perspective of the software developer. 

Interview is one of the suitable methods in such situation. 

The results acquired using the qualitative method were passed to the quantitative 

phase which includes a survey on the identified reusability attributes. In this survey, 

relative importance of attributes is identified. The results of the survey show high 

values for understandability, flexibility, maintainability, portability and usage history. 

204 



The following attributes received relatively less ranking; these include scope 

coverage, documentation, variability and stability. 

In a recent focus group study [35] has also reported that security, documentation 

and maintainability are among the important technical factors. These factors should be 

taken into account while selecting OSS component. 

In [51], it is recommended to consider documentation of OSS as a criterion to 

select a candidate OSS. The finding presented in this thesis that documentation is one 

of the factors which affect reusability is in line with [51]. 

Table 6. 7 Comparison of findings-6 

Reference Method Common Findings 

[51] Experience report ~ Documentation 

Stability is one of the identified factors of reusability in this thesis. In [35], the 

concept of stability is linked to the "ad hoc standard". The explanation of the term 'ad 

hoc standard' is stated as "that they are used in many products of that kind" [35]. Our 

notion to explain this phenomenon is 'safety in numbers'. An OSS contributed by 

many developers and used in many applications is more stable. 

In this thesis 'usage history' is identified as one of the factor that influences 

reusability. A similar concept i.e. 'release history' is mentioned in [51]. The release 

history refers to "how often the new releases come out" [51]. 

[35] 

Maturity of community 

Table 6.8 Comparison of findings -7 

This Thesis 

How many examples of it are being used in 

software community? 

205 



Some of these factors are considered as the attributes of reusability while 

proposing the reusability attribute model. 

Table 6.9 Comparison of findings-8 

(51] This Thesis 

~hist~:. ··'"''i' ·.·· i;Jiii1.5usage'J1i~tQ.zy:, 
:j·lE>~J~,~,l¥-- --'~;;~r/ 'k~,<Gt~~~;*~~t~- :~·~- -- / 

Maturity of community is considered How many examples of it are being used in 

to gauge the maturity of OSS software community? 

6.2.8 Identification of Desirable Characteristics of OSS Components 

In this thesis, the desirable characteristics of OSS are seen from the perspective of 

academics and industry. The desirable characteristics include the availability of test 

cases. This finding is in line with [35], where availability of test cases is considered as 

one of the plus points. 

The maturity of OSS is identified as a desirable characteristic in this thesis. It is 

also identified by [35] and [51], where the maturity of a community is considered to 

gauge the maturity of OSS. 

Table 6.10 Comparison of findings-9 

Reference Method Common Findings 

Availability)l!f:rest c~~s 
m{' 

Infrastructure support 

Infrastructure support is identified as one of the desirable characteristic of OSS in 

this thesis. This dimension of desirable characteristics is also mentioned in [51], as 

206 



one of the criteria to choose OSS. It is suggested to ask a question that "Are they 

(OSS) compatible with the rest of your infrastructure?"[51]. 

6.2.9 Proposed Reusability Assessment Model 

The proposed reusability model in this study cannot be compared to the earlier studies 

such as [82], which is for the aspect oriented systems. Another study is [69], which is 

proposed for black box reuse. The studies [68] and [67] are relevant, they also 

assessed reusability. However, the implementation language targeted in those studies 

is C++. In this thesis, java based implementation is considered and 'variability' is 

identified as an attribute of reusability. Variability is not considered as an attribute of 

reusability at implementation level in any of the above studies. 

Our work involves identifying reusability assessment metrics. Some of these are 

known, whereas others have been introduced by us. In some other research works, 

metrics are presented but not validated e.g. [73]. In our work, however, we both 

present the metrics and validate them empirically. In [28] and [77] reusability was 

assessed based on the degrees of coupling and cohesion. In comparison, our work 

considers these as well as other factors. Our work focuses on components written in 

java. The metrics that we have selected are to a certain extent dependent on java. 

The list of factors affecting reusability was arrived at following the interviews 

with experts and survey. Next, the metrics applicable to these was decided upon. Most 

of these came from literature review, however, a small number were devised in this 

thesis. Finally, we took a number of classes I packages and assessed their reusability, 

the results are statistically analyzed. The proposed reusability attribute model differs 

from the earlier works such as [82], [69], [68] and [67], due to the inclusion of a two 

new attributes of reusability. These attributes are analyzed statistically and one of 

them i.e. 'variability' is correlated to reusability. A comparison of sample size used in 

this thesis with the earlier works is presented in section 3 .14.2. 

207 



6.2.10 Statistical Results 

The statistical results are presented in chapter five. The results include the correlation 

analysis between reusability and attribute values. The analysis was conducted at two 

levels. These levels include the class level and package level. At class level, the 

analysis was conducted to know the correlation between the metrics and the attribute 

which was measured using more than one metric. 

At class level, I 03 classes were assessed for their reusability. This assessment was 

based on the metrics related to the identified reusability attributes. Flexibility was 

assessed by CBO and LCOM. The results show that both of these metric values have 

a statistically significant relationship with flexibility value. CBO has a strong negative 

correlation i.e. -.751. LCOM is also negatively correlated to flexibility. However, the 

magnitude of the relationship is a bit weak i.e. -.357. 

Maintainability was assessed by using MI and complexity metric. The results 

show statistically significant relationship between maintainability, MI and CC. The 

results show that MI has a strong positive correlation with maintainability. The 

magnitude of correlation between MI and maintainability is .716, while cyclomatic 

complexity has a negative correlation of magnitude -.664. 

The reusability attribute understandability is based on the metrics of CBO, 

LCOM, comments, LOC and NOM. The metrics CBO, LCOM and NOM have 

statistically significant relationship with understandability. The results show that there 

is a negative correlation between NOM, LOC, CBO and understandability i.e. -.701,

.668, -.529 respectively. 

The relationship between reusability and flexibility, maintainability, portability 

and understandability is statistically significant. The results show a strong correlation 

between understandability, maintainability, flexibility, and reusability values i.e .. 669, 

.797, and .762. The relationship between reusability and portability is statistically 

significant. However, the magnitude of this relation is weak as compared to the other 

attributes i.e. .404. The two attributes variability and scope coverage has no 

statistically significant relationship with reusability at class level. 

208 



At package level, 77 packages were assessed for their reusability. This assessment 

was based on the metrics related to the identified reusability attributes. The results 

show statistically significant relationship between reusability and the other attributes. 

These attributes include understandability, flexibility, portability, maintainability and 

variability. 

The attributes flexibility, portability, variability and maintainability have strong 

positive correlation with reusability. The strength of the relationship is .789, .693, 

.674, .667 respectively. Understandability is also positively correlated to reusability; 

the magnitude of the relationship is .417, which is weak as compared to the other 

attributes. 

6.2.11 Evolutionary Analysis of Reusability 

A evolutionary analysis of reusability has been conducted and results are presented in 

chapter five. The software on which the analysis was conducted includes Jasmin and 

pBeans. Six versions of Jasmin and ten versions of pBeans were analyzed. The 

analysis was conducted at package level. 

The results of packages of Jasmin and pBeans software show an inverse 

relationship between LOC and understandability, and NOM and understandability. 

The relationship between comments and understandability is not significant, and in 

some cases it is overshadowed by the lines of code and number of methods. 

The results regarding Ml, complexity and maintainability show an inverse 

relationship between complexity and maintainability, however, there is a direct 

relationship observed between MI and maintainability. 

6.3 Synthesis of the Qualitative and Quantitative Results 

The results acquired during this research study are presented in chapters four and five. 

These results include the findings of the qualitative method i.e. interview with seven 

respondents. The findings of the interview include seven categories. The findings 

209 



regarding the category, factors affecting the reusability of software are carried 

forward into the survey. These methods are followed by statistical analysis and 

evolutionary reusability analysis of two software. In this section a synthesis of the 

results is presented. 

6.3.1 Flexibility 

The first factor identified as the attribute of reusability is flexibility of software. The 

results include the following opinions, 50% of population 'agree', 35% of population 

'strongly agree', 15% of population opted for 'neither agree nor disagree', 'disagree' 

and 'strongly disagree'. The strength of correlation between flexibility and reusability 

is .762 at class level and .789 at package level. 

The impact of flexibility can be seen in packages 2 and 3 of Jasmin software, 

where a decline in the flexibility value negatively influenced the reusability of 

package. The above mentioned empirical evidences point towards the importance of 

flexibility as an attribute of reusability in the scenario studied in this research. 

6.3.2 Maintainability 

The second factor identified as the attribute of reusability is maintainability of 

software. The survey results include the following opinions, 55% of population 

'agree', 17% of population 'strongly agree', 28% of population opted for 'neither 

agree nor disagree', 'disagree' and 'strongly disagree'. The strength of correlation 

between maintainability and reusability is . 797 at class level and .667 at package 

level. 

The impact of maintainability can be seen in package I of Jasmin and package 3 

of pBeans software, where a decline in the maintainability value negatively influenced 

the reusability of package. The above mentioned empirical evidences point towards 

the importance of maintainability as an attribute of reusability in the scenario studied 

in this research. 

210 



6.3.3 Portability 

The third factor identified as the attribute of reusability is portability of software. The 

results include the following opinions, 45% of population 'agree', 29% of population 

'strongly agree', 26% of population opted for 'neither agree nor disagree', 'disagree' 

and 'strongly disagree'. The strength of correlation between portability and reusability 

is .404 at class level and .693 at package level. 

The impact of portability can be seen in package 3 of pBeans software, where a 

rise in the portability value positively influenced the reusability of package. The 

aforementioned empirical evidences point towards the importance of portability as an 

attribute of reusability in the scenario studied in this research. 

6.3.4 Scope Coverage 

The fourth factor identified as the attribute of reusability is scope coverage of 

software. The results include the following opinions, 45% of population 'agree', II% 

of population 'strongly agree', 44% of population opted for 'neither agree nor 

disagree', 'disagree' and 'strongly disagree'. The strength of correlation between 

scope coverage and reusability is not significant at class level and it is not included at 

package level. 

6.3.5 Stability 

The fifth factor identified as the attribute of reusability is stability of software. The 

results include the following opinions, 48% of population 'agree', 19% of population 

'strongly agree', 33% of population opted for 'neither agree nor disagree', 'disagree' 

and 'strongly disagree'. The above mentioned empirical evidences point towards the 

importance of stability as an attribute of reusability in the scenario studied in this 

research. 

211 



6.3.6 Understandability 

The sixth factor identified as the attribute of reusability is understandability of 

software. The results include the following opinions, 53% of population 'agree', 20% 

of population 'strongly agree', 27% of population opted for 'neither agree nor 

disagree', 'disagree' and 'strongly disagree'. The strength of correlation between 

understandability and reusability is .669 at class level and .417 at package level. 

The impact of understandability can be seen in packages 2, 3 and 4 of pBeans and 

package I of Jasmin software, where a decline in the understandability value 

negatively influenced the reusability of package and vice versa. The above mentioned 

empirical evidences point towards the importance of understandability as an attribute 

of reusability in the scenario studied in this research. 

6.3.7 Usage History 

The seventh factor identified as the attribute of reusability is usage history of 

software. The results include the following opinions, 46% of population 'agree', 29% 

of population 'strongly agree', 25% of population opted for 'neither agree nor 

disagree', 'disagree' and 'strongly disagree'. The above mentioned empirical 

evidences points towards the importance of usage history as an attribute of reusability 

in the scenario studied in this research. 

6.3.8 Variability 

The eighth factor identified as the attribute of reusability is variability of software. 

The results include the following opinions, 48% of population 'agree', II% of 

population 'strongly agree', 41% of population opted for 'neither agree nor disagree', 

'disagree' and 'strongly disagree'. The strength of correlation between variability and 

reusability is not significant at class level. However, its value is .674 at package level, 

which is significant. 

212 



The impact of variability cao be seen in packages 2 and 3 of pBeaos software, 

where a decline in the variability value negatively influenced the reusability of 

package. The aforementioned empirical evidences point towards the importance of 

variability as ao attribute of reusability in the scenario studied in this research. 

6.3.9 Documentation 

The ninth factor identified as the attribute of reusability is documentation of software. 

The results include the following opinions, 31% of population 'agree', 31% of 

population 'strongly agree', 38% of population opted for 'neither agree nor disagree', 

'disagree' and 'strongly disagree'. The above mentioned empirical evidences point 

towards the importance of documentation as an attribute of reusability in the scenario 

studied in this research. 

6.4 Key Findings and Implications 

The contributions of this research can be divided into three types. These include 

review of literature, contributions related to the methodology aod practical 

contribution. 

6.4.1 Review of Literature 

Two reviews of the literature have been conducted in this research study. These 

reviews include the followings: 

J;> A review of reusability assessment approaches 

);> An analysis of object-oriented variability mechanisms 

6. 4.1.1 Review of Reusability Assessment Approaches 

In this section, the key findings of the review aod their implications/recommendations 

are presented. 

213 



>- A majority of the approaches available in the literature are applicable 

to object oriented paradigm. 

This majority shows a research trend in object-oriented software development. On 

the other hand, it is a call for researchers to explore other programming paradigms 

such as aspect-oriented and feature-oriented. 

>- A large number of reusability assessment approaches are meant for 

java based implementation. 

The object-oriented researchers working in other object-oriented languages such 

as C#, python and .net, may replicate the available approaches for other object

oriented languages. 

>- There is a lack of validation of approaches available in the literature. 

The results of some of the studies have not been validated. 

Researchers should not neglect the validation of newly proposed approaches. This 

validation acts as proof of the usefulness of the approach. It is a way to get the 

confidence of the potential user. Therefore, the newly proposed approaches should be 

validated. 

>- A majority of approaches are white box. 

Open source is prevailing within the software development community. This 

shows the trend of component-based software development is towards using open 

source software components with an intention to manipulate source code. 

6.4.1.2 Variability implementation Mechanism Analysis 

An analysis of object-oriented variability mechanisms has been conducted to update 

the body of knowledge regarding the variability mechanisms. The key findings and 

their implications are presented as follows. 

>- The variability implementation mechanisms; aspect-oriented and 

overloading are capable of handling most of the variability types. 

214 



The two variability implementation mechanisms i.e. aspect-oriented and 

overloading can handle most of the variability types of different scopes. 

In our opinion, this work will be helpful for the software development community 

in identifying/selecting an appropriate variability handling mechanism. 

6.4.2 Methodological Contribution 

The methodological contributions and their implications are as follows. 

);- Mixed Method (Qualitative and Quantitative) 

The qualitative method has been helpful in exploring the phenomenon. The results 

were used to develop the quantitative method and triangulation of results. 

This study can be considered as an example in software engineering studies. In 

future, new phenomenon can be explored to generate hypotheses and to test them by 

employing the methodology used in this research. 

);- Adaptation in qualitative analysis 

The adaptation (use of word cloud) of coding process may be used in other studies 

where textual data is analysed. In this research, the word cloud is used after the open 

coding to aid it by ensuring that none of the recurring word related to a concept is 

missed. However, this technique can be used to pilot the open coding process 

especially when large number of textual data is processed. 

Word cloud can be more useful in analysis of transcripts of unstructured 

interviews. The adaptation of coding process may be used in the content analysis 

studies. 

The examples of using word cloud can be seen on web I search engines, news 

sites. However, to our knowledge word cloud is used for the first time in academics I 

qualitative analysis process in this thesis as extension of [ 112]. 

215 



6.4.3 Practical Contribution 

The practical contributions of this study are presented in this section along with their 

implications and recommendations. 

6.4.3.1 Challenges to OSS 

The following challenges are identified in this study. 

~ Finding and evaluating OSS 

This finding implies that there is a need of search engines to search (find) open 

source software. 

The evaluation of OSS has different facets such as risk, legal aspects, functional 

compliance etc. One of the evaluation aspects (reusability) has been explored in this 

research. However, the others are still to be explored. 

The searching (finding) of OSS can be improved by implanting a standard 

cataloguing system, like the one implemented for the books/libraries. 

~ Lack of documentation 

Documentation of OSS has a key role in understanding the OSS for its appropriate 

usage. The lack of documentation can be handled by providing documentation with 

the OSS and encouraging developers to contribute to documentation as well. 

~ Developers are reluctant to make their software OSS 

This finding implies one way interaction of developers to the OSS community i.e. 

only using the OSS. The contribution by the community to the OSS is more 

important. So, developers using OSS to develop application should be encouraged to 

contribute to the OSS. 

~ Lack of information and awareness about intellectual property rights 

216 



There should be awareness among software developers about the intellectual 

property rights. This information could be disseminated by arranging seminars m 

organizations and universities. It will improve the situation and may result m 

increased contribution to the OSS. 

~ Lack of adherence to coding standards 

Software developers should adhere to the coding standards. It will ease the job of 

others to reuse the software. 

~ Security of OSS 

This finding points towards the need to invest more research efforts to investigate 

the security issues in OSS. A comprehensive knowledge on security of OSS may help 

to categorize the security threats and improve the security measures in OSS. 

~ Improper comments of reviewers about the OSS 

This finding is a call to improve the standard of comments and reviews. This can 

be improved by providing structured reviews and comments rather than just providing 

a text box. A rating scheme may also be adopted. There is need to put research efforts 

in this area by including the social scientists to improve the comments and user 

feedback, which will be useful for the potential users. 

6.4.3.2 Current Reuse Practices 

The key findings and implications/recommendations about the reuse practices are as 

follows: 

~ There is form of reuse i.e. 'knowledge reuse'; where the component 

itself is not used. However, it is translated into desired programming 

language. 

Effort should be made to improve the 'knowledge reuse'. It will lead to inter 

language I inter domain reuse. 

217 



>- Demonstration (Demo) of OSS plays an important role in selection of 

software. 

This finding implies that availability of demo version of the OSS provides help to 

potential user in making a decision. Therefore, the OSS developers should provide 

demo version to the customers. 

>- SPLs are not started from scratch. Therefore, OSS is helpful in starting 

a product line. 

It implies that OSS has a potential to be a platform for providing support to start 

new product lines I products. 

6.4.3.3 Desirable Characteristics ofOSS 

The key findings and implications/recommendations about the desirable characterizes 

of OSS are as follows: 

>- There are two perspectives in which the desirable characteristics of 

OSS can be seen (i) academic (ii) industry. In academic settings, 

novelty of ideas and functionality is more important. On the other 

hand, in commercial settings risk assessment is considered more 

important. 

The OSS should be viewed either in the context of academics or industry. The 

reason is the criteria of evaluation differ in different settings. 

~ Maintenance support is a desirable characteristic of OSS 

The concerns regarding the maintenance of the OSS should be addressed by the 

OSS community. 

>- Maintenance agreement is also desirable by the customer 

218 



There is need to improve the infrastructure support of OSS. This calls for the OSS 

research community to invest more efforts in identifying and resolving the 

infrastructure issues related to OSS. 

~ Maturity of OSS is also seen as a desirable characteristic of OSS 

The maturity of OSS is represented by its usage history. So, a proper usage history 

of OSS should be maintained. 

~ The error handling mechanism provided by the OSS component is also 

considered while making a decision. 

Efficient error handling mechanism should be incorporated in the OSS. 

~ Scalability of OSS is also an important characteristic. 

This finding implies that scalability of software should be kept in view while 

developing the software. Scalable software is more likely to be used. 

6.4.3.4 Suggestions 

The followings are the key findings and implications/recommendations drawn on the 

basis of suggestions made by the respondents. 

~ There is need to develop techniques and tools for inter language reuse. 

This suggestion is call for more research in developing tools for inter language 

reuse, which will result in enormous increase in reuse. 

~ Development of software agents to help the developers in reusing the 

oss. 

It is a call to invest research effort in the development of software agents to 

facilitate the software developers. Such agents will ease the software development 

especially in the context of OSS. 

219 



6. 4. 3. 5 Factors Affecting Reusability 

The recommendations/implications regarding the factors affecting reusability are 

as follows. 

'>- The factors affecting reusability are flexibility, understand ability, 

maintainability, portability, scope-coverage, stability, usage history, 

variability and documentation. 

The identified factors are useful for the software developers to develop reusable 

software. On the other hand, these could be used while evaluating an OSS. 

'>- The surveys results show a high ranking for understand ability, 

flexibility, maintainability and usage history. 

These factors have more importance amongst the others. So, while prioritizing the 

factors these should be considered first. 

The following conclusions are made on the basis of statistical analysis at class 

level. 

'>- The metrics LOC and NOM are positively correlated to understand 

ability. However, comments don't have a significant relationship with 

understand ability. 

'>- During the evolutionary reusability analysis (experiment 3), it is 

observed that there is a disproportionate increase in number of 

comments and size of the software which resulted into an insignificant 

correlation. 

There is a need to improve programming practices by including comments in 

codes. It will increase the understand ability of codes. 

'>- It is concluded on the basis of the statistical analysis at class level that 

flexibility, understand ability, and maintainability have a strong 

positive correlation with reusability. 

While assessing the reusability of a class these factors should be considered. 

220 



The following conclusions are made on the basis of statistical analysis at package 

level. 

~ At package level understand ability, flexibility, portability, variability 

and maintainability has strong positive correlation with reusability. 

The finding related to the correlation of these attribute is helpful to assess the 

reusability of OSS and the newly added attribute i.e. variability since it has a key role 

in reuse intensive software environments. Its inclusion makes this approach useful in 

such software development environment. 

~ The effect of attributes on reusability can be seen in different versions 

of different packages. 

The application of the proposed approach on two OSS and the results imply that 

the approach is helpful to assess the reusability of OSS. 

6.5 Summary 

This chapter highlights the key findings of this study which comes under the three 

main contributions; literature review, methodological contribution and practical 

contributions. The findings of comprehensive literature reviews conducted on the 

reusability assessment approaches, variability implementation mechanism and aspect

oriented implementation of software product lines are discussed. 

The practical contributions include seven categories and their 39 dimensions. A 

compression of these findings with the available contemporary studies is conducted in 

this chapter. The comparative results gave confidence in the findings. A synthesis of 

qualitative and quantitative results is presented to exhibit the triangulation. The key 

findings and their implications are also discussed in this chapter. 

221 





CHAPTER 7 

CONCLUSIONS 

Nature's music is never over; her silences are pauses, not conclusions. 

(Mary Webb, 1881-1927) 

7.1 Research Summary 

The following research questions have been raised in this research: 

RQ I - How reuse of open source software has been practiced in reuse intensive 

software development (SPLE and CBSE)? 

RQ2 - What are the factors affecting reusability of open source software in a reuse 

intensive software development? 

RQ3- How to measure the factors affecting the reusability? 

RQ4 - What is the significance and correlation among the identified reusability 

attributes? 

The first question which is about the practice of reusing OSS in reuse intensive 

software development is associated with the objective 'to explore the use of OSS in 

reuse intensive software development'. As the nature of the question and objective is 

exploratory, it needs to be addressed by employing an exploratory research method in 

answering the research question in order to achieve this objective. In this study, 

interview is used as method of research for this purpose. The study, being an 

exploratory one, resulted in ideas, hypotheses, issues, challenges and future 

directions. These findings include challenges in using OSS from the perspective of 

consumer of the software (software engineer), the current practice of reusing the OSS 

in reuse intensive software development, and the prospects of using OSS in reuse 

intensive software development with a focus on SPL. The role of OSS in promotion 

of software reuse is explored and the desirable characteristics of OSS are elaborated. 



The second question is related to the factors which affect the reusability of OSS. 

Some of the previous studies have identified these factors for CBSE. However, in this 

study SPL has been brought into the picture along with CBSE. It is again an 

exploratory question due to the fact that discussion on the factors affecting the 

reusability of OSS, specifically code assets in the context of SPL, is not available in 

the literature. The interviews have helped to lay down the basis to answer this 

question. After identifying the factors, a survey was conducted to know the relative 

importance of the factors. 

The third research question is about the measurement of factors. These measures 

are identified by a literature search. A set of well established metrics are identified. 

The metrics for two of the factors are proposed in this study due to their non existence 

in the literature. The newly added factor 'variability' in context of the implementation 

mechanisms has been analyzed and discussed in detail. This analysis has helped in 

reaching to the appropriate measures of variability. 

The fourth question is related to the analysis and validation of the identified 

factors and measures. This part of the study was completed using statistical analysis 

and evolutionary reusability analysis. The results of this study have been presented in 

chapter 4 and 5. These results provide answers to the research questions raised in this 

study and show the achievement of the research objectives of this study. 

7.2 Achievement of Research Objectives 

In this section the achievement of objectives of this research is discussed. The first 

objective is: 

To explore the use of ass in reuse intensive software development. 

This objective include some sub-objectives such as identification of challenges in 

ass, identification of current reuse practices, identification of practices related to the 

use of ass in SP L, exploration of role of ass in promotion of reuse, identification of 

desirable characteristics of ass 

224 



\ ( 

Research Question Research Objective Research Methods 

RQl- How reuse of open 
To explore the use of source software has been Interview practiced in reuse intensive ass in reuse intensive 

software development software development ~ 
(SPLE and CBSE)? 

'R92-: What are the factors 

1 
_. To identity factors - Survey affecting reusability of affecting the reusability 

open source software in a r- of software component. 
~:use intensive software 

To identify metrics to 

1 ~ ~~~~S~OWIO '1he 
:me measure the attributes Literature Search 

I- of reusability. 

~? . • ;·, . ""'., '"' . :> 
·., 

·~~ correlationamongthe To analyse and validate Statistical Analysis 
,,, 

identified reusability I ; the identified factors 
:;~ : 

~z~.::·,? :~~·~ 0,:;;~ u•~·, . . lLM\" 
. >.·.·~~;.) 

T f ! 
Results 

· .. ·.·: · .. 
.. • . 

. ~ .. 
~: .. . ' . . .. C..>ffi+.f , .• , 

Figure 7.1 Summary of the research work 

The nature of the objective and its relevant question is exploratory; keeping the 

exploratory research methods in view, literature search and interviews [I 07] are used. 

The literature contains information regarding the use of OSS in CBSD. However, the 

use of OSS in SPLs is recently proposed by the researchers. So, the opinions of the 

informants I respondents were collected through interviews. These respondents were 

selected carefully on the basis of their knowledge and expertise in this area. The 

analysis of the qualitative data gathered through interviews was performed using 

content analysis approach [112]. The details on the analysis and results are presented 

in chapter 4. The results are in the form of categories and sub-categories, which 

provide an insight into the different dimensions of the categories. The findings are 

contribution towards the body of knowledge and results in meeting the objective. 

The second objective in this context is: 

225 



To identify factors affecting the reusability of software component. 

A sum of nine factors has been identified using the qualitative method (interview). 

Prior to the interviews, a review of the literature was conducted to report the state of 

the art in reusability assessment. The results are presented in chapter 2. After 

identifying the factors, a survey was conducted to know their importance. This use of 

mixed research methods can be seen as 'partially mixed sequential dominant status' 

[92], where the methods are mixed in a sequence and the qualitative phase is 

dominant. The mixing serves the purpose of 'triangulation' [96], while the survey 

results help to increase the validity of findings regarding the factors of reusability. 

The second purpose served by the mixing is 'development' [96]; the results of 

qualitative method are used to develop the basis of the quantitative method. 

The third objective is: 

To identify metrics to measure the attributes of reusability. 

The reusability attribute model (at class level and package level) has been 

proposed and presented in chapter 5. The factors identified in chapter 4 are considered 

as reusability attributes to form the model. The next step is the measurement of these 

attributes. So, to measure the attributes metrics were used, since our concern is the 

measurement of these attributes at code level. Suitable code metrics were identified 

from the literature. These metrics are well established and have been used in other 

studies as well. 

The fourth objective is: 

To analyse and validate the identified factors. 

Once the metrics have been identified and associated to the attributes, an analysis 

was carried out to analyze and validate the attributes. The metrics were calculated 

(application of reusability attribute model) at class level on 103 classes, and at 

package level on 77 open source packages. The results are presented in chapter 5. The 

correlations were determined using Pearson's correlation analysis. These analyses 

were performed at attribute level and at sub-attribute level. Following that, in order to 

demonstrate the application of the proposed assessment approach, it was applied on 

226 



two open source software which have multiple versions. So, an evolutionary analysis 

of reusability has been conducted to see the effects of attributes on reusability during 

the evolution of software. 

A synthesis of the qualitative and quantitative results is presented in chapter 6. On 

the basis of the results, it can be safely said that the objectives of this study have been 

met in the context of this thesis. A summary of findings is presented in Figure 7.2. 

OSS is attracting SPL community 

Improvement in quality 

Not started from scratch 

Kno\vledge reuse 

Demo 

Inter Language Reuse 

Software Agents 

Provides opportunities 

Fast transition 

UsingOSS in 
PL 

Current reus 
practices 

Characterist 
ics ofOSS 

Scalability 
Maturity of OSS 

Maintenance Support 
Academic Perspective 

Maintenance Agreement 
Infrastructure Support 

Industrial Perspective 
Error Handling Mechanism 

Documentation 
Usage History 

Variability 
U nderstand·ability 

Stability 
Scope Coverage 

Portability 
Maintainability 

Flexibilit 

reusability 

Role ofOSS i 
promoting 
reuse 

Saves time 

Market trust 

Ease of development 

Less cff011 required 

Figure 7.2 Summary of findings 

r 

~ 
~ 
"" 0 

"" ..., 
0 s· ..., 

0' !t. 
"" 3 
~ 

"' @ 
~ a· 
n ~ n 

~ 

0 0" 
0 

n 5 0 
0. 5 s· [ "" n " 0 ::; 
~ 0 < 
~ !C 
"- ., 
a· a 
~ ., 
~ n l'l "' § '< 
0. ~ 

3. ,;;· 
"" 10. 
n 
0 ., 
'< 
~. 

"" " 

The categories and dimensions presented in chapter four, as part of the qualitative 

findings, are compared with contemporary literature in the discussions chapter. These 

studies include [166], [35], [24], [51], and [52]; and the findings are extended by 

including the results of [165]. It is observed that none of the finding is contradicting 

the available literature. This fact validates the findings of this research. Furthermore, 

new categories and dimensions have been identified which will be helpful to expand 

the body of knowledge in this area. The implications of key findings of this study are 

presented in chapter six. 

227 



7.3 Contributions 

The main contribution of this study is the results of exploration of the phenomenon of 

reusing OSS in reuse intensive software development and proposal for reusability 

attribute model. The model is outcome of two empirical methods (interview and 

survey). The proposed reusability attribute model is presented in chapter 5 at class 

level and package level. The factors of reusability are quantified using well 

established software metrics. However, metrics for two attributes namely variability 

and scope coverage are newly defined in this study due to their non existence in 

literature. The phenomenon of variability is extensively analyzed from the view point 

of implementation mechanisms. The proposed reusability attribute model is applied at 

the level of class and package in chapter 5. The results obtained by applying metrics 

are statistically analyzed to have a deep understanding about the relationship of 

attributes and reusability. Multiple versions of two open source software are analyzed 

to assess and observe their reusability during evolution. The results of these analyses 

are discussed under the light of earlier qualitative study and the studies available in 

literature. 

Other contributions include; review of literature, methodological contribution and 

practical contributions. The reviews of literature consist of two major reviews; (i) 

review of reusability assessment approaches and (ii) analysis of variability 

implementation mechanism. On part of methodology the study has demonstrated the 

use of mixed methodology. The content analysis approach is adapted by using word 

cloud in open coding process. The practical contributions include seven categories 

and 39 dimensions. 

7.4 Limitations 

The approach presented in this thesis is meant to be used by the users i.e. (software 

engineers). The approach is applied on open source software to obtain the results. The 

findings are specific to the open source projects. The results are acquired by analyzing 

the source code. Therefore, results may not comply with the black-box reuse i.e. when 

the user has no access to the source code of the project. 

228 



The metrics used to assess the attributes are genenc object oriented metrics. 

However, the data set used in the statistical experiment consists of projects 

implemented in java. Therefore, results using some other programming language may 

differ from the results of this study. 

7.5 Future Directions 

In this study, it is explored that how the reuse of OSS is practiced in reuse intensive 

software development. In future, studies may be carried out by including the 

development of software ecosystems and OSS. There is room to further research on 

the issues of variability, its implementation mechanisms, and variability of software 

artifacts other than source code. 

The findings of the qualitative method which include seven categories and 39 

dimensions are open for exploration and confirmation. All the categories and 

dimensions identified in this study can be seen as the future directions. The 

methodology followed in this thesis; to work on one of the identified dimension 

(factors affecting reusability and variability) can be used as basis in future work on 

the other dimensions. 

229 



REFERENCES 

[1] Fernandez, M., Models of Computation: An Introduction to Computability 

Theory: Springer, 2009. 

[2] Simons, C. L., et al., "35 years on: To what extent has software engineering 

design achieved its goals?," lEE Proceedings: Software, vol. 150, pp. 337-

350, 2003. 

[3] IEEE, "Systems and Software Engineering Vocabulary ISO/IEC/IEEE 

24765:2010," ed, 2010, pp. 1-418. 

[4] Krueger, C. W., "Software reuse," ACM Computing Surveys, vol. 24, pp. 131-

183, 1992. 

[5] Prieto-Diaz, R., "Status report: software reusability," IEEE Software, vol. I 0, 

pp. 61-66, 1993. 

[6] Frakes, W. and Terry, C., "Software reuse: metrics and models," ACM 

Computing Surveys, vol. 28, pp. 415-435, 1996. 

[7] Sametinger, J., Software engineering with reusable components: Springer

Verlag New York, Inc., 1997. 

[8] Frakes, W. B. and Kyo, K., "Software reuse research: status and future," IEEE 

Transactions on Software Engineering, vol. 31, pp. 529-536, 2005. 

[9] Frakes, W. B. and Succi, G., "An industrial study of reuse, quality, and 

productivity," Journal of Systems and Software, vol. 57, pp. 99-106,2001. 

[10] Mohagheghi, P. and Conradi, R., "Quality, productivity and economic benefits 

of software reuse: a review of industrial studies," Empirical Software 

Engineering, vol. 12, pp. 471-516,2007. 

[II] Niemi, T., et al., "Server-Based Computing Solution Based on Open Source 

Software," Information Systems Management, vol. 26, pp. 77-86, 2009. 

[12] Stafford, J. (2006, 01 June ). Time to plan your company's escape from 

Microsoft. Available: 

http:/ /searchenterpriselinux. techtarget.com/news/ 1163 57 6/2006-Time-to-plan

your-companys-escapc-from-Microsoft 

230 



[13] Kenwood, C. A., "A Business Case Study of Open Source Software," The 

MITRE Corporation200 I. 

[14] Krishnamurthy, S., "A Managerial Overview of Open Source Software," 

Business Horizons, vol. September-October 2003, 2003. 

[15] Linden, F. v. d., eta/., "Commodification of Industrial Software: A Case for 

Open Source," IEEE Software, vol. 26, pp. 77-83, 2009. 

[16] Wheeler, D. A. (2005, 01 June). Why Open Source Software I Free Software 

(OSS!FS, FLOSS, or FOSS)? Look at the Numbers! Available: 

http://www.dwheeler.com/oss fs why.html 

[17] Howe, C., "Open Source Cracks The Code," Forrester Research2000. 

[18] Agerfalk, P. J., eta/., "Assessing the Role of Open Source Software in the 

European Secondary Software Sector: A Voice from Industry," presented at 

the First International Conference on Open Source Systems, Genova, 2005. 

[19] Hummel, 0., et a/., "Code Conjurer: Pulling Reusable Software out of Thin 

Air," IEEE Software, vol. 25, pp. 45-52, 2008. 

[20] Wasserman, A., "How the Internet transformed the software industry," 

Journal of Internet Services and Applications, vol. 2, pp. 11-22, 2011. 

[21] Sommerville, 1., Software Engineering, 8th ed.: Addison-Wesley, 2007. 

[22] Agerfalk, P., et a/., "Open Source in Software Product Line: An Inevitable 

Trajectory," in lOth International Software Product Line Conference (SPLC 

'06), 2006. 

[23] Ahmed, F., et a/., "A Model of Open Source Software-Based Product Line 

Development," in Computer Software and Applications, 2008. COMPSA C '08. 

32nd Annual IEEE International, 2008, pp. 1215 -1220. 

[24] Stol, K. J. and Babar, M. A., "Challenges in using open source software in 

product development: a review of the literature," presented at the Proceedings 

of the 3rd International Workshop on Emerging Trends in Free/Libre/Open 

Source Software Research and Development, Cape Town, South Africa, 2010. 

[25] Samadi, S., et a/., "Strategies for enabling software reuse within the Earth 

Science Community," in Proceedings of IEEE International Geoscience and 

Remote Sensing Symposium, 2004. IGARSS '04., 2004, pp. 2196-2199 vol.3. 

231 



[26] Linden, F., et a/., Software Product Lines in Action: The Best Industrial 

Practice in Product Line Engineering: Springer-Verlag Berlin Heidelberg, 

2007. 

[27] Boxall, M. A. S. and Araban, S., "Interface Metrics for Reusability Analysis of 

Components," presented at the Proceedings of the 2004 Australian Software 

Engineering Conference, 2004. 

[28] Gui, G. and Scott, P. D., "Ranking reusability of software components using 

coupling metrics," Journal of Systems and Software, vol. 80, pp. 1450-1459, 

2007. 

[29] Gui, G. and Scott, P. D., "New Coupling and Cohesion Metrics for Evaluation 

of Software Component Reusability," in The 9th International Conference for 

Young Computer Scientists, 2008. ICYCS 2008. , 2008, pp. 1181-1186. 

[30] Yoonjung, C., et al., "Practical S/W Component Quality Evaluation Model," 

in lOth International Conference on Advanced Communication Technology, 

2008. ICACT 2008. , 2008, pp. 259-264. 

[31] Sharma, A., et al., "Reusability assessment for software components," 

SIGSOFT Softw. Eng. Notes, vol. 34, pp. 1-6,2009. 

[32] Harman, M., "Why Source Code Analysis and Manipulation Will Always be 

Important," in Source Code Analysis and Manipulation (SCAM), 20IO lOth 

IEEE Working Conference on, 2010, pp. 7-19. 

[33] Burgin, M., eta/., "Software technological roles, usability, and reusability," in 

Proceedings of the 2004 IEEE International Conference on Information Reuse 

and Integration, IRJ2004, 2004, pp. 210-214. 

[34] Mellarkod, V., et al., "A multi-level analysis of factors affecting software 

developers' intention to reuse software assets: An empirical investigation," 

Information & Management, vol. 44, pp. 613-625,2007. 

[35] Host, M., et al., "Usage of Open Source in Commercial Software Product 

Development- Findings from a Focus Group Meeting," in Product-Focused 

Software Process Improvement. vol. 6759, D. Caivano, et a/., Eds., ed: 

Springer Berlin I Heidelberg, 2011, pp. 143-155. 

232 



[36] Firesmith, D., "Common Concepts Underlying Safety, Security, and 

Survivability Engineering," Software Engineering Institute, Carnegie Mellon 

University, Pittsburgh, PA, USA CMU/SEI-2003-TN-033, 2003. 

[3 7] Brummermann, H., et a!., "Variability issues in the evolution of information 

system ecosystems," presented at the Proceedings of the 5th Workshop on 

Variability Modeling of Software-Intensive Systems, Namur, Belgium, 2011. 

[38] Chen, L. and Ali Babar, M., "A systematic review of evaluation of variability 

management approaches in software product lines," Information and Software 

Technology, vol. 53, pp. 344-362, 2011. 

[39] Gacek, C. and Anastasopoules, M., "Implementing product line variabilities," 

SIGSOFT Softw. Eng. Notes, vol. 26, pp. I 09-117, 200 I. 

[ 40] Pohl, C., eta!., "Survey of existing implementation techniques with respect to 

their support for the practices currently in use at industrial partners," AMPLE 

Project deliverableD3.1, 2007. 

[41] Kim, S.D., eta!., "A theoretical foundation of variability in component-based 

development," Information and Software Technology, vol. 47, pp. 663-673, 

2005. 

[42] Sharp, D. C., "Containing and facilitating change via object oriented tailoring 

techniques," in First Software Product Line Conference, Denver, Colorado, 

2000. 

[43] Svahnberg, M., et a!., "A taxonomy of variability realization techniques: 

Research Articles," Software: Practice and Experience, vol. 35, pp. 705-754, 

2005. 

[44] OS!. (2011, 31st May). Open Source Definition Available: 

http ://www.opensource.org/docs/osd 

[45] Sohn, S. Y. and Mok, M. S., "A strategic analysis for successful open source 

software utilization based on a structural equation model," Journal of Systems 

and Software, vol. 81, pp. I 014-1024, 2008. 

[46] Joode, R. v. W. d., eta!., "Rethinking free, libre and open source software.," 

Knowledge, Technology & Policy, vol. 18, pp. 5-16, 2006. 

[47] Forge, S., "The rain forest and the rock garden: the economic impacts of open 

source software," info, vol. 8, pp. 12-31,2006. 

233 



[48] Varian, H. R. and Shapiro, C., "Linux adoption in the public sector: An 

economic analysis (Technical Report)," UC Berkeley2003. 

[49] Giera, J., "The Costs And Risks Of Open Source: Debunking The Myths," 

Forrester Research2004. 

[50] Webb, M. (2001, 01 June). Going With Open Source Software: Is it the right 

choice for your organization? Available: 

http://www. techso up. org/leamingcenter/ software/ archives/ page990 5. cfm 

[51] Spinellis, D., "Choosing and Using Open Source Components," IEEE 

Software, vol. 28, pp. 96-96, 20 II. 

[52] Sojer, M. and Henkel, J., "Code Reuse in Open Source Software 

Development: Quantitative Evidence, Drivers, and Impediments," Journal of 

the Association for Information Systems, vol. II, pp. 868-901,2010. 

[53] Jones, C., Applied Software Measurement, 3rd ed.: McGraw-Hill, 2008. 

[54] Horstmann, C., Big Java, 4th ed.: John Wiley & Sons, Inc., 2010. 

[55] Heinemann, L., eta/., "On the Extent and Nature of Software Reuse in Open 

Source Java Projects," in Top Productivity through Software Reuse. vol. 6727, 

K. Schmid, Ed., ed: Springer Berlin I Heidelberg, 2011, pp. 207-222. 

[56] Greanier, T., Java Foundations: SYBEX Inc., 2004. 

[57] Niemeyer, P. and Knudsen, J., Learning Java 3rd ed.: 0' Reilly Media, Inc., 

2005. 

[58] Buyya, R., et a/., Object Oriented Programming with Java McGraw Hill, 

2009. 

[59] Jain, P.M., The Class of Java: Pearson Education, 2011. 

[60] Clements, P. and Northrop, L., Software product lines: practices and 

patterns.: Addison-Wesley Longman Publishing Co., Inc., 2001. 

[ 61] Pohl, K., et a/., Software Product Line Engineering Foundations, Principles, 

and Techniques: Springer-Verlag Berlin Heidelberg, 2005. 

[62] SEI. (2011, 31st July). A Framework for Software Product Line Practice, 

Version 5. 0. 

[63] Bachman, F., et a/., "Volume II: Technical Concepts of Component-Based 

Software Engineering," Software Engineering Institute2000. 

234 



[64] Capretz, L. F., et al., "COTS-based software product line development," 

International Journal of Web Information Systems, val. 4, pp. 165 - 180, 2008. 

[65] Brereton, P., et al., "Lessons from applying the systematic literature review 

process within the software engineering domain," Journal of Systems and 

Software, val. 80, pp. 571-583, 2007. 

[66] Gomez, 0., et al., "A Systematic Review Measurement in Software 

Engineering: State-of-the-Art in Measures," in Software and Data 

Technologies. val. I 0, ed: Springer Berlin Heidelberg, 2008, pp. 165-176. 

[67] Etzkorn, L. H., eta!., "Automated reusability quality analysis of 00 legacy 

software," Information and Software Technology, val. 43, pp. 295-308, 2001. 

[68] Dandashi, F., "A method for assessing the reusability of object-oriented code 

using a validated set of automated measurements," presented at the 

Proceedings of the 2002 ACM symposium on Applied computing, Madrid, 

Spain, 2002. 

[69] Washizaki, H., eta!., "A Metrics Suite for Measuring Reusability of Software 

Components," presented at the Proceedings of the 9th International 

Symposium on Software Metrics, 2003. 

[70] C. Sant'anna, A. G., C. Chavez, C. Lucena, and A. v. von Staa, "On the reuse 

and maintenance of aspect-oriented software: An assessment framework," 

presented at the Proceedings XVII Brazilian Symposium on Software 

Engineering, 2003. 

[71] Kim, S.D. and Park, J. H., "C-QM: A Practical Quality Model for Evaluating 

COTS Components," in lASTED International Conference on Software 

Engineering, Innsbruck, Austria, 2003, pp. 991-996. 

[72] Kalaimagal, S. and Srinivasan, R., "Q' FACTO I 0-A commercial off-the-shelf 

component quality model proposal," Journal of Software Engineering, val. 4, 

pp. 1-15,2010. 

[73] Cho, E. S., et a!., "Component Metrics to Measure Component Quality," 

presented at the Proceedings of the Eighth Asia-Pacific Conference on 

Software Engineering 200 I. 

235 



[74] Rotaru, 0. P. and Dobre, M., "Reusability metrics for software components," 

in The 3rd ACSIIEEE International Conference on Computer Systems and 

Applications, 2005, 2005, pp. 24-1. 

[75] Aggarwal, K. K., et al., "Software reuse metrics for object-oriented systems," 

in Third ACIS International Conference on Software Engineering Research, 

Management and Applications, 2005, 2005, pp. 48-54. 

[76] Gui, G., "Component Reusability and Cohesion Measures in Object-Oriented 

Systems," in Information and Communication Technologies, 2006. ICTTA '06. 

2nd,2006,pp.2878-2882. 

[77] Gui, G. and Scott, P. D., "Measuring Software Component Reusability by 

Coupling and Cohesion Metrics," Journal of Computers, vol. 4, pp. 797-805, 

2009. 

[78] Noor, M., eta/., "A Collaborative Method for Reuse Potential Assessment in 

Reengineering-Based Product Line Adoption," in Balancing Agility and 

Formalism in Software Engineering, ed: Springer, 2008, pp. 69-83. 

[79] Bi, S., et al., "A Measurement Model of Reusability for Evaluating 

Component," in I st International Conference on Information Science and 

Engineering (ICISE), 2009 2009, pp. 20-22. 

[80] Gill, N. S., "Reusability issues in component-based development," SIGSOFT 

Softw. Eng. Notes, vol. 28, pp. 1-5, 2003. 

[81] Munch, J., et al., "A Framework for Measuring and Evaluating Program 

Source Code Quality," in Product-Focused Software Process Improvement. 

vol. 4589, ed: Springer Berlin I Heidelberg, 2007, pp. 284-299. 

[82] Sant'anna, C., et al., "On the Reuse and Maintenance of Aspect-Oriented 

Software: An Assessment Framework," in Proceedings XVII Brazilian 

Symposium on Software Engineering, 2003, pp. 19-34. 

[83] Deelstra, S., et al., "Variability assessment in software product families," 

Information and Software Technology, vol. 51, pp. 195-218,2009. 

[84] Fenton, N. and Ptleeger, S., Software Metrics: A Rigorous and Practical 

Approach, 2nd ed.: PWS Publishing Co., 1997. 

[85] IEEE, "IEEE Standard for a Software Quality Metrics Methodology I 061-

1998," ed, 1998. 

236 



[86] Abreu, B. F., eta/., "Toward the design quality evaluation of object-oriented 

software systems.," in Proceedings of the Fifih International Conference on 

Software Quality, 1995, pp. 44-57. 

[87] Ritchie, J. and Lewis, J., Qualitative Research Practice: A Guide for Social 

Science Students and Researchers.: Sage Publications Ltd., 2005. 

[88] Guba, E. G. and Lincoln, Y. S., Handbook of Qualitative Research: Sage 

Publications Ltd., 1994. 

[89] Ceotty, M., The Foundations of Social Research: Meaning and Perspective in 

the Research Sage Publications Ltd., 1994. 

[90] Creswell, J. W. and Clark, V. L. P., Designing and Conducting Mixed 

Methods Resaerch 2nd ed.: Sage Publications, Inc., 2011. 

[91] Gray, D. E., Doing Research in the Real World, 2nd ed.: SAGE Publication 

Ltd., 2009. 

[92] Leech, N. and Onwuegbuzie, A., "A typology of mixed methods research 

designs," Quality & Quantity, vol. 43, pp. 265-275, 2009. 

[93] Tashakkori, A. and Teddlie, C., Mixed Methodology Combining Qualitative 

and Quantitative Approaches: SAGE Publications, Inc, 1998. 

[94] Tashakkori, A. and Teddlie, C., Handbook of mixed methods in social and 

behavioral research: Sage Thousand Oaks, 2003. 

[95] Creswell, J. W. and Clark, V. L. P., Designing and Conducting Mixed 

Methods Research., 1st ed.: SAGE Publications, Inc, 2007. 

[96] Greene, J. C., eta!., "Toward a Conceptual Framework for Mixed-Method 

Evaluation Designs," Educational Evaluation and Policy Analysis, vol. II, pp. 

255-274, 1989. 

[97] Greene, J. C., Mixed Methods in Social Inquiry John Wiley and Sons, 2007. 

[98] Mingers, J., "Combining IS Research Methods: Towards a Pluralist 

Methodology," Information Systems Research, vol. 12, pp. 240-259, 2001. 

[99] Jackson, M., "The Name and Nature of Software Engineering," in Advances in 

Software Engineering: Lipari Summer School 2007, Lipari Island, Italy, July 

8-2I, 2007, Revised Tutorial Lectures, ed: Springer-Verlag, 2008, pp. 1-38. 

237 



[100] Shaw, M., "What makes good research in software engineering?," 

International Journal on Software Too/sfor Technology Transfer, vol. 4, pp. 

1-7,2002. 

[101] Easterbrook, S., et a/., "Selecting Empirical Methods for Software 

Engineering Research," in Guide to Advanced Empirical Software 

Engineering, ed, 2008, pp. 285-311. 

[102] Lazaro, M. and Marcos, E., "An Approach to the Integration of Qualitative 

and Quantitative Research Methods in Software Engineering Research," in 

2nd International Workshop on Philosophical Foundations of Information 

Systems Engineering (PHISE'06), 2006. 

[103] Wood, M., et a/., "Multi-method research: An empirical investigation of 

object-oriented technology," Journal of Systems and Software, vol. 48, pp. 13-

26, 1999. 

[104] Mandie, V., eta/., "Towards Multi-Method Research Approach in Empirical 

Software Engineering," in Product-Focused Software Process Improvement, 

ed: Springer, 2009, pp. 96-110. 

[105] Robson, C., Real World Research 3rd ed.: Wiley-Blackwell, 2002. 

[I 06] Maxwell, J. A., Qualitative Research Design: An interactive Approach 2nd 

ed.: Sage Publications, Inc., 2005. 

[I 07] Saunders, M., eta/., Research Methods for Business Studies 5th ed.: Prentice 

Hall, 2009. 

[108] Orlikowski, W. J. and Robey, D., "Information Technology and the 

Structuring of Organizations," Information Systems Research, vol. 2, pp. 143-

169, 1991. 

[109] Seaman, C. B., "Qualitative Methods in Empirical Studies of Software 

Engineering," IEEE Transactions on Software Engineering, vol. 25, pp. 557-

572, 1999. 

[II OJ Punch, K. F., Introduction to Research Methods in Education Sage 

Publications Ltd., 2009. 

[Ill] Krippendorff, K., Content analysis: an introduction to its methodology, 2nd 

ed.: Sage, 2004. 

238 



[112] Hsieh, H.-F. and Shannon, S. E., 'Three Approaches to Qualitative Content 

Analysis," Qualitative Health Research, vol. 15, pp. 1277-1288,2005. 

[113] Elo, S. and Kyngas, H., "The qualitative content analysis process," Journal of 

Advanced Nursing, vol. 62, pp. I 07-115, 2008. 

[114] Bongshin, L., eta/., "SparkC1ouds: Visualizing Trends in Tag Clouds," IEEE 

Transactions on Visualization and Computer Graphics, vol. 16, pp. 1182-

1189,2010. 

[115] atlas.ti. (2011, 06, June). at/as.ti. Available: www.atlasti.com 

[116] Pfleeger, S. L. and Kitchenham, B. A., "Principles of survey research: part I: 

turning lemons into lemonade," SIGSOFT Softw. Eng. Notes, vol. 26, pp. 16-

18,2001. 

[117] Kasunic, M., "Designing an Effective Survey," SEI, CMU2005. 

[118] Gravetter, F. J. and Forzano, L.A. B., Research Methods for the Behavioral 

Sciences, 4th ed.: Cengage Learning, 2011. 

[119] Marsden, P. V. and Wright, J. D., Handbook of survey research, 2nd ed.: 

Emerald, 2010. 

[120] McCormack, B. and Hill, E., Conducting a survey: the SPSS workbook: 

International Thomson Business Press, 1997. 

[121] Peck, R., eta/., Introduction to Statistics and Data Analysis, 3rd ed.: Cengage 

Learning, 20 II. 

[122] Ewy, R., Stakeholder-Driven Strategic Planning in Education: A Practical 

Guide for Developing and Deploying Successful Long-Range Plans: ASQ 

Quality Press, 2009. 

[123] Frost, eta/., "MSC Malaysia Supply - Demand Study for the ICT Industry," 

MSC Malaysia, Salangor Darul Ehsan, Malaysia2009. 

[124] Dowdy, S., eta/., Statistics for Research, 3rd ed.: John Wiley & Sons, Inc., 

2004. 

[125] Jackson, S. L., Research Methods and Statistics: A Critical Thinking 

Approach 4th ed.: Wadsworth, Cengage Learning 2011. 

[126] Osborn, C. E., Statistical Applications for Health Information Management, 

2nd ed.: Jones and Bartlett Publishers, Inc., 2006. 

239 



[127] Brase, C. H. and Brase, C. P., Understandable Statistics, 8th ed.: Houghton 

Mifflin Company, 2006. 

[128] Triola, M. F., Elementary Statistics, II th ed.: Addison Wesley 

2010. 

[129] Newton, R. R. and Rudestam, K. E., Your Statistical Consultant Answers to 

your data analysis questions: Sage Inc., 1999. 

[130] Dictionary, 0., "Concise Oxford Dictionary," 10 ed: Oxford University Press 

2001. 

[131] Madhavji, N. H., eta!., Software evolution and feedback: theory and practice: 

John Wiley & Sons, Ltd., 2006. 

[132] Mubarak, A., eta!., "An evolutionary study of fan-in and fan-out metrics in 

OSS," in Fourth International Conference on Research Challenges in 

Information Science (RCIS), 2010 20 I 0, pp. 4 73-482. 

[133] Machinery, V. (2010, July, II). JHawk 5. Available: 

www. virtualmachinery.com/jhawkprod.htm 

[134] Basili, V. R., eta!., "The Goal Question Metric Approach," in Encyclopedia of 

Software Engineering, ed: Wiley, 1994. 

[135] Marshall, C. and Rossman, G. B., Designing Qualitative Research 5th ed.: 

Sage Publication Inc., 20 II. 

[136] Basit, T. N., Conducting Resaerch in Educational Contexts Continuum 

International Publishing Group, 2010. 

[137] Johnson, B. and Christensen, L., Educational Resaerch : Quantitative, 

Qualitative, and Mixed Approaches 4th ed.: Sage Publication, Inc., 20 II. 

[138] Sullivan, L. E., The SAGE Glossary of the Social and Behavioral Sciences: 

Sage Publications, Inc., 2009. 

[139] Salkind, N.J., Encyclopedia of Research Design Sage Publication, Inc., 2010. 

[140] McCune, S., Practice Makes Perfect Statistics: McGraw-Hill, 2010. 

[141] Onwuegbuzie, A. J. and Johnson, R. B., "The Validity Issues in Mixed 

Research" RESEARCH IN THE SCHOOLS, vol. 13, pp. 48-63, 2006. 

[142] Beck, K. (2011, Confidence Intervals. Available: 

http://www. doh. wa. gov /health yyo uth/techni call conti dinterval. htm 

240 



[143] Kettemann, S., eta!., "Product line implementation technologies. Component 

technology view," Fraunhofer lESE 2003. 

[144] Elrad, T., eta/., "Discussing aspects of AOP," Communications of the ACM, 

vol. 44, pp. 33-38, 2001. 

[145] Kiczales, G., "Aspect-oriented programming," ACM Computing Surveys, vol. 

28, p. 154, 1996. 

[146] Schmid, K. and John, I., "A customizable approach to fulllifecycle variability 

management," Science of Computer Programming, vol. 53, pp. 259-284, 2004. 

[147] van der Linden, F., eta!., "Variability Issues in Software Product Lines," in 

Software Product-Family Engineering. vol. 2290, ed: Springer Berlin I 

Heidelberg, 2002, pp. 303-338. 

[148] Her, J. S., eta/., "A framework for evaluating reusability of core asset in 

product line engineering," Information and Software Technology, vol. 49, pp. 

740-760, 2007. 

[149] Mujtaba, S., eta/., "Software Product Line Variability: A Systematic Mapping 

Study," in 15th Asia-Pacific Software Engineering Conference APSEC 08, 

2008. 

[150] Chidamber, S. R. and Kemerer, C. F., "A metrics suite for object oriented 

design," IEEE Transactions on Software Engineering, vol. 20, pp. 476-493, 

1994. 

[151] Li, W. and Henry, S., "Maintenance metrics for the object oriented paradigm," 

in Proceedings of First International Software Metrics Symposium, 1993, 

1993, pp. 52-60. 

[152] Martin, R. C. and Martin, M., Agile Principles, Patterns, and Practices inC#: 

Prentice Hall, 2006. 

[153] Coleman, D., et a!., "Using Metrics to Evaluate Software System 

Maintainability" Computer, vol. 27, pp. 44-49, 1994. 

[154] Laired, L. M. and Brennan, M. C., Software Measurement and Estimation: A 

Practical Approach: John Wiley & Sons, Inc., 2006. 

[155] Lincke, R. and Lowe, W., "Compendium of Software Quality Standards and 

Metrics- Version 1.0," 2007. 

241 



(156] Alves, T. L., et al., "Deriving metric thresholds from benchmark data," in 

IEEE International Conference on Software Maintenance (ICSM), 2010 2010, 

pp. 1-10. 

(157] Ferreira, K. A. M., et al., "Reference Values for Object-Oriented Software 

Metrics," in XXIII Brazilian Symposium on Software Engineering, 2009. SBES 

'09, 2009, pp. 62-72. 

(!58] Ferreira, K. A.M., et al., "Identifying thresholds for object-oriented software 

metrics," Journal of Systems and Software, vol. In Press, Corrected Proof, 

2011. 

[159] Shatnawi, R., "A Quantitative Investigation of the Acceptable Risk Levels of 

Object-Oriented Metrics in Open-Source Systems," IEEE Transactions on 

Software Engineering, vol. 36, pp. 216-225,2010. 

[ 160] Lanza, M. and Marinescu, R., Object-Oriented Metrics in Practice Using 

Software Metrics to Characterize, Evaluate, and Improve the Design of 

Object-Oriented Systems: Springer-Verlag Berlin Heidelberg 2006. 

[161] Coleman, D., et al., "The application of software maintainability models in 

industrial software systems," Journal of System and Software vol. 29, pp. 3-

16, 1995. 

[162] Martin, R. C., Clean Code: Pearson Education, Inc., 2009. 

(163] Gouliio, M. and Brito, "Software Components Evaluation: an Overview," in In 

Proceedings of the 5A" ConferA"ncia da APSI, 2004. 

[164] Gouliio, M. and Abreu, F. B., "Software Components Evaluation: an 

Overview," in 5th Conferencia da APSI, Lisbon, 2004. 

(165] Schryen, G., "Is open source security a myth?," Communications of the ACM, 

vol. 54, pp. 130-140, 2011. 

[166] Stol, K. J., et al., "A comparative study of challenges in integrating Open 

Source Software and Inner Source Software," Information and Software 

Technology, vol. In Press, Corrected Proof, 20 II. 

[167] Haefliger, S., et al., "Code Reuse in Open Source Software," MANAGEMENT 

SCIENCE, vol. 54, pp. 180-193, January 1, 2008 2008. 

[168] Georg von, K., et al., "Knowledge Reuse in Open Source Software: An 

Exploratory Study of 15 Open Source Projects," in System Sciences, 2005. 

242 



HICSS '05. Proceedings of the 38th Annual Hawaii International Conference 

on, 2005, pp. 1-10. 

243 



List of Publications 

• Fazal-e-Amin, A. K. Maluuood, and A. Oxley. (2011) A Mixed Method Study 

to Identify Factors Affecting Software Reusability in Reuse Intensive 

Development, IEEE National Postgraduate Conference (NPC) , 2011, 

Universiti Teknologi PETRONAS, Malaysia. 

• Fazal-e-Arnin, Mahmood A.K., Oxley A. (2011) Reusability Assessment of 

Open Source Components for Software Product Lines International Journal of 

New Computer Architectures and their Applications, vol. 1(3): 127-140. 

• Fazal-e-Amin, Maluuood A.K., Oxley A. (2011) Using Open Source 

Components in Software Product Lines ~ an exploratory study, IEEE 

Conference on Open Systems 20 II. 

• Fazal-e-Amin, Maluuood A.K., Oxley A. (20 11) Metrics Based Variability 

Assessment of Code Assets, in: J. M. Zain, eta!. (Eds.), Software Engineering 

and Computer Systems, Springer Berlin Heidelberg. pp. 66-75. 

• Fazal-e-Amin, Maluuood A.K., Oxley A. (2011) An analysis of object 

oriented variability implementation mechanisms. SIGSOFT Softw. Eng. Notes 

36:1-4. DOl: 10.1145/1921532.1921538. 

• Fazal-e-Amin, Maluuood A.K., Oxley A. (20 II) Mechanisms for managing 

variability when implementing object oriented components, National 

Information Technology Symposium (NITS), King Saud University, KSA. 

• Fazal-e-Amin, Maluuood A.K., Oxley A. (2011) A Review of Software 

Component Reusability Assessment Approaches. Research Journal of 

Information Technology 3:1-10. 

• Fazal-e-Amin, Maluuood A.K., Oxley A. (20 I 0) Proposal for evaluation of 

software reusability assessment approach employing a mixed method. 

SIGSOFT Softw. Eng. Notes 35:1-4. DOl: 

http://doi.acm.org/1 0.1145/1838687.1838703 

244 



• Fazal-e-Amin, Mahmood A.K., Oxley A. (201 0) A Review on Aspect 

Oriented Implementation of Software Product Lines Components. Information 

Technology Journal9:1262-1269. 

• Fazal-e-Amin, Mahmood A.K., Oxley A. (2010) A proposed reusability 

attribute model for aspect oriented software product line components, 

Information Technology (ITSim), 2010 International Symposium in. pp. I 138-

1141. 

• Fazal-e-Amin, Mahmood A.K. (2009) A Survey and Proposed Reusability 

Assessment Framework for Aspect Oriented Product Line Core Assets 2009 

Student Conference on Research and Development (SCOReD 2009), UPM 

Serdang, Malaysia. 

245 



APPENDICES 

A. Interview guide 

The interview guide used for conducting the interviews is presented in this appendix. 

It contained the pre-planned questions responded by each interviewee and a set of 

terms and their definitions used in questions. There were a few sub questions which 

emerged during the interview those are not included in the following list. However, 

the crux is presented in the results and other parts of thesis. 

Activity Details Estimated 

Time 

Required 

Meeting and Researcher will introduce himself and greet the 02 minutes 

greeting respondent. 

Ice breaking A few casual sentences to break the ice and to 05 minutes 

sentences smooth the conversation. 

A brief Researcher will give a brief introduction of the 05 minutes 

introduction about research project. 

the research project 

Background of Researcher will present the background of study 05 minutes 

study and motivations. 

Question 40-50 
l. How do you see the role of ass m 

minutes 
promotion of reuse? 

2. What are your views on ass used and 

SPL? 

3. How do you see these two fields? 

246 



4. How do you see current practices in SE 

regarding reuse? (Specifically component 

reuse/code reuse and OSS). 

5. What are the characteristics of an OSS 

affects its reusability? 

6. What are the current challenges m SPL 

development? 

7. What are the challenges to OSS? 

8. What are your views on the key principles 

of SPLs and OSS? 

Closing remarks 02 minutes 

and asking for 

future contact 

01 minute 
Saying thanks 

• Note: Interview guide contains only the questions pre-planned to ask. Several 

other questions were asked during the interview (which were not pre-planned) 

to probe and to get understanding of the respondent's view point. 

247 



B. Code of Software used to calculate attribute values 

The code which used to calculate the metrics is presented here m C++ based 

implementation. 

#include <iostream.h> 

#include <conio.h> 

main() 

{ 

float cbo, learn, comm, noc, nom,nom I, Joe, CC, mi; 

cout <<"Enter Lac:"; 

cin>> Joe; 

float Joe I =Joe; 

if (Joe <= 28) 

loc=O; 

else if (Joe > 28 && loe<=70) 

loe=25; 

else 

loe=IOO; 

loc=loc/1 00; 

cout<<"Enter Nom:"; 

cin>> nom; 

noml=nom; 

if(nom <= 4) 

nom=O; 

else if (Joe > 70 && Joe<= 130) 

Joe= 50; 

else if (Joe > 130 && Joe<= 195) 

loe=75; 

else if (nom > 4 && nom<=7) 

nom=25; 

else if (nom> 7 && nom<=! 0) 

nom= 50; 

248 



else if(nom > 10 && nom<=15) 

nom=75; 

else 

nom=IOO; 

nom=nom/1 00; 

float size= (0.5 *Joe) + (0.5 *nom); 

cout <<"Size is:" <<size; 

cout <<endl<<"Enter CBO:"; 

cin>>cbo; 

if( cbo>9) 

else 

cbo=l; 

cbo= (cbo/100 * 9); 

cout<< cbo<< end!; 

cout<<"Enter LCOM:"; 

cin>>lcom; 

if (lcom <= 0) 

lcom=O; 

else if (!com > 0 && !com<= 19) 

lcom=50; 

else 

lcom=IOO; 

float coupling= cbo; 

cout<< "coupling is" <<coupling <<end!; 

float cohesion= ]com/ I 00; 

cout <<"cohesion is" << cohesion<<endl; 

float flex= (0.5 * coupling)+ (0.5 * cohesion); 

flex=l-flex; II because both coupling and cohesion(LCOM) are -ve for flex 

cout <<"Flexibility=" <<flex; 

cout<<"Enter no. of Comments"; 

cin>>comm; 

float comm I= ( commlloc I); 

comm=l-comml; II lack of comments 

249 



float under= (0.25 *coupling) +(0.25* cohesion)+ (0.25 *comm)+ (0.25* size); 

under= !-under; II l- under because all hav -ve impact on under 

cout<<endl<<"Understandability="<< under; 

float dit; 

cout<<"Enter DIT:"; 

cin>>dit; 

if (dit> 2) 

dit=l; 

else 

dit = (dit/100*2); 

float port= 1-dit, tclass, tnom; II DIT has -ve impact on port 

cout<<"Enter No. of Child"; 

cin>> noc; 

cout<<endl<<"Enter Total No. of Classes:"; 

cin>> tclass; 

cout<<endl<<"Enter total No. of Method"; 

cin>>tnom; 

float sc =nom lltnom; 

float vari= (0.5 * nocltclass) + (0.5 * nomlltnom); 

cout <<"Variability=" <<vari; 

cout<<endl<<"Scope Coverage"<<sc; 

cout<<endl<< "Enter MI:"; 

cin>> mi; 

if (mi <= 65) 

mi=O; 

else if (mi > 65 && mi<=85) 

mi=50; 

cout<<"Enter CC:"; 

cin>> CC; 

else 

mi=lOO; 

mi=millOO; 

250 



if(CC <=I) 

CC=IOO; 

else if(CC >I && CC<=IO) 

CC=75; 

else if (CC > I 0 && CC<=20) 

CC=50; 

else 

CC=O; 

else if (CC > 20 && CC<=50) 

CC=25; 

CC=CC/1 00; II to keep the maintainability value higher ("higher is 

good") when CC is low its effect is+ VE 

float maintain= (0.5 * mi) + (0.5 * CC); 

float r= (0.166* vari) + (0.!66*sc) + (0.166*port) +(0.166*under) + 

(0.166*maintain) + (0.166*flex); 

cout <<endl<<"Flex: "<< flex<<endl << "under:"<<under; 

cout<<endl<<"Scope:"<<sc<<endl<< "Vari"<<vari; 

cout<<endl<<"Maintain:"<<maintain<<endl<<"port:"<<port; 

cout<< endl<<"Reusability=" << r; 

cout<< "coupling is" <<coupling <<end!; 

cout <<"cohesion is " << cohesion<<endl<< "size:"<< size; 

} 

251 



C. Pseudo Code to calculate package level attribute values 

Understand-ability= (Size* 0.50) + (0.5*Ratio of comments) 

Ratio of comments = Comments I LOC 

Size= (adjusted NOM *0.5) +(adjusted LOC * 0.5) 

If (NOM<=NUMBER OF CLASSES/INTERFACES*4) 

NOM val =0 

Else If(NOM>NUMBER OF CLASSES/INTERFACES*4 && NOM<=NUMBER 

OF CLASSES/INTERFACES*?) 

NOM val=0.25 

Else If (NOM>NUMBER OF CLASSES/INTERFACES*? && NOM<=NUMBER 

OF CLASSES/INTERFACES*IO) 

NOM val=0.5 

Else If(NOM>NUMBER OF CLASSES/INTERFACES*!O && NOM<=NUMBER 

OF CLASSES/INTERFACES *15) 

NOM val=0.75 

Else lf(NOM>NUMBER OF CLASSES/INTERFACES*l5) 

NOM val=! 

If (LOC<=NUMBER OF CLASSES/ INTERFACES*28) 

LOC val=O 

Else if (LOC>NUMBER OF CLASSES/ INTERFACES*28 && LOC<=NUMBER 

OF CLASSES/ INTERFACES*70) 

LOC val=0.25 

Else if (LOC>NUMBER OF CLASSES/ INTERFACES*70 && LOC<=NUMBER 

OF CLASSES/ INTERFACES*l30) 

LOC val=0.5 

Else if (LOC>NUMBER OF CLASSES/ INTERFACES* 130 && LOC<=NUMBER 

OF CLASSES/ INTERFACES* 195) 

252 



LOC val=0.75 

Else if (LOC>NUMBER OF CLASSES/ INTERFACES* 195) 

LOC val=! 

Adjusted MI 

IF(MI <=65,0,IF( AND(MI>65 ,MI <=85),0 .5 ,IF(MI>85, I))) 

If (MI<=65) 

MI val=O 

Else if(MI>65 && MI<=85) 

MI val=0.5 

Else if (MI>85) 

MI val=! 

Adjusted Complexity 

If(CYLOMATIC COMPLEXITY>O && CYLOMATIC COMPLEXITY<=IO) 

COMP val=0.75 

Else If (CYLOMA TIC COMPLEXITY> I 0 && CYLOMATIC COMPLEXITY <=20) 

COMP val=0.5 

Else If(CYLOMATIC COMPLEXITY>20 && CYLOMATIC COMPLEXITY<=50) 

COMP val=0.25 

Else if(CYLOMATIC COMPLEXITY>50) 

COMP val=O 

253 



D. Detailed Component Specifications 

Address Book 20 I 0 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I !58 8 I 0.2 3 2 0 96.7 22 

Class 2 17 I 0 0 0 I 0 99.03 8 

Class 3 5 I 0 0 0 I 0 125.21 I 

Class 4 188 12 I 0.5 0 2 0 97.83 40 

Class 5 112 6 l 0.3 3 2 0 95.12 II 

Class 6 163 10 l 0.18 4 2 0 99.72 17 

Class 7 32 6 0 0.4 0 I 0 130.53 7 

Class 8 357 16 6 0.09 7 2 0 93.8 52 

Class 9 301 10 2 0.14 9 2 0 84.31 46 

Airline Reservation System 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 7 I I 0 0 2 0 136.12 I 

Class 2 104 2 4 0.88 0 2 0 73.13 2 

Class 3 104 2 4 0.88 0 2 0 73.06 2 

Class 4 133 2 4 0 2 I 0 119.33 16 

Class 5 122 2 4 0 2 I 0 119.33 16 

Class 6 42 3 I 0.25 0 I 0 107.47 7 

Class 7 112 2 10 0.51 0 2 0 69.69 2 

Class 8 71 l 2 0 2 2 0 I 06.02 l 

Class 9 21 2 I 0.78 2 I 0 163.16 2 

Class 10 21 2 I 0.78 2 I 0 163.16 2 

Class II 22 3 3 0 0 2 0 132.16 4 

Class 12 68 3 I 0 0 2 0 93.67 6 

Class 13 34 3 I 0 0 2 0 115.27 5 

254 



Menu Builder 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 480 21 I 0.03 10 I 0 115.84 93 

Class 2 63 4 2 0.22 8 2 0 142.58 5 

Car Sales System 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 134 6 3 0.17 21 2 0 47.89 22 

Class 2 37 4 I 0 6 2 0 68.06 5 

Class 3 274 20 4 0.04 43 2 0 60.02 50 

Class 4 7 1 0 0 1 2 0 120.31 I 

Class 5 173 14 2 0.14 9 2 0 124.29 16 

Class 6 7 1 0 0 I 2 0 120.31 I 

Class 7 69 15 3 0.01 3 I 0 181.71 15 

Class Browser 

LOC NOM CBO LCOM Comments D1T NOC MI cc 
Class I 89 3 I 0.57 41 2 0 63.36 13 

Class 2 4 1 0 0 0 I 0 136.59 I 

Class 3 6 I I 0 0 I 1 148.9 I 

Class 4 98 13 0 5 20 I 0 163.76 18 

Class 5 6 I 0 0 0 I 0 148.9 I 

Class 6 3 0 0 0 0 I 0 171 0 

Class 7 27 5 I 3 0 2 0 140.29 5 

Class 8 4 I 0 0 0 I 0 138.42 I 

Class 9 58 10 0 4 8 I 0 173.2 11 

255 



Library System 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 110 2 0 1.36 25 2 0 37.3 10 

Class 2 17 7 0 0.03 0 2 0 131.09 7 

Class 3 148 5 0 0.41 38 2 0 45.69 17 

Class 4 II 4 0 0.11 0 2 0 132.64 4 

Class 5 8 I 0 0 0 I 0 117.06 2 

Class 6 8 I 0 0 0 I 0 117.06 2 

Class 7 8 I 0 0 0 I 0 117.06 2 

Class 8 149 5 0 0.42 36 2 0 44.12 18 

Flight Reservation System 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 227 14 3 0.12 126 I 0 50.69 32 

Class 2 228 10 3 0.03 132 I 0 I 02.09 32 

Class 3 49 9 3 6 I I I 133.13 9 

Class 4 51 9 3 0.12 I I 0 131.82 9 

Class 5 44 4 2 0.17 7 I 0 170.24 8 

Java Chat Application 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 40 2 I I 2 2 0 100.53 6 

Class 2 78 2 3 I 3 I 0 132.35 10 

Class 3 45 5 2 0.19 6 2 0 89.26 8 

Class 4 II I 3 3 0 I 0 118.83 I 

Class 5 119 I I 2 3 I 0 77.69 12 

Class 6 28 2 2 IJ3 3 2 0 111.99 5 

256 



Banking Application Component 

LOC NOM CBO LCOM Comments D!T NOC MI cc 
Class l 51 8 1 0.11 1 1 0 129.16 10 

Class 2 52 9 0 0.08 1 1 0 131.07 !0 

Class 3 5 1 0 0 1 1 0 184 1 

Class 4 24 4 0 0.5 5 1 0 180.81 6 

Class 5 65 20 4 0.07 !9 1 0 130.83 32 

Banking Application Component B 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 29 5 2 0.75 3 2 0 133.13 6 

Class 2 28 4 1 0.11 1 1 0 124.82 5 

Class 3 21 2 3 0.33 3 1 0 168.48 3 

Class 4 5 I 0 0 2 I 0 134.63 1 

Banking Application Component C 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class 1 4 l 0 0 2 1 0 144.8 1 

Class 2 4 2 2 0 3 1 0 178.8 2 

Class 3 50 13 2 0.07 7 l 0 !91.2 13 

Class 4 50 10 2 O.ll 16 1 0 172.4 ll 

Banking Application Component A 

LOC NOM CBO LCOM Comments DIT NOC Ml cc 
Class l 51 8 1 0.11 1 1 0 129.16 10 

Class 2 52 9 0 0.08 I 1 0 131.07 10 

Class 3 24 4 0 0.5 5 1 0 180.81 6 

257 



XML Genie 

LOC NOM CBO LCOM Comments DIT NOC Ml cc 
Class I 40 3 3 2 37 2 0 83.28 6 

Class 2 128 12 5 0.45 0 2 0 I 02.86 37 

Class 3 75 2 3 3 65 I 0 118.92 7 

Class 4 351 6 5 0.04 288 I 0 33.89 37 

Class 5 130 6 3 5 115 2 0 133.95 12 

Class 6 1 I 3 I 2 0 I 0 134.28 3 

Class 7 17 5 3 I 0 2 0 131.99 6 

Word Processor 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class 1 33 1 I 0 0 1 0 77.96 20 

Class 2 15 1 1 4 0 2 0 98.8 1 

Class 3 27 6 0 1 0 1 0 125.41 9 

Class 4 365 12 3 0.1 69 2 0 63.34 50 

Class 5 14 1 0 0 0 1 0 97.44 6 

Class 6 4 I 0 0 0 1 0 132.5 1 

Class 7 9 1 0 0 1 1 0 160.66 1 

Class 8 3 1 0 0 0 1 0 135 1 

Class 9 3 1 0 0 0 1 0 138.42 1 

Class 10 8 1 0 0 I 1 0 162.97 1 

Class 11 33 1 1 0 0 1 0 77.96 20 

258 



JAIM 

LOC NOM CBO LCOM Comments DIT NOC MI cc 
Class I 23 I 17 I 15 190 I 0 96.43 33 

Class 2 74 12 4 6 65 I 0 81.42 16 

Class 3 36 8 2 3 30 I 0 123.2 8 

Class 4 177 9 8 I I 150 2 0 136.01 25 

Class 5 53 5 4 7 40 2 0 I 05.42 8 

Class 6 14 2 2 I 10 I 0 83. I 7 2 

Class 7 56 5 4 6 41 2 0 77.52 6 

Class 8 16 2 I 0 9 2 0 75. I 5 4 

Class 9 12 3 I 0 10 2 0 78.42 3 

Class 10 6 3 2 0 0 I 0 156.26 3 

259 



E. Detailed Package Specifications 

Address Book 

Abstractness Classes NOM LOC Comments Fanout cc Ml Instability 

Package! 0.11 21 70 1362 26 I 102 95.48 0.25 

XML Genie 

Abstractness Classes NOM LOC Comments Fanout cc Ml Instability 

Package! 0 7 37 454 136 I 43 76.9 I 

Word Processor 

Abstractness Classes NOM LOC Comments Fanout cc Ml Instability 

Package! 0.13 15 33 568 !50 I 51 133.13 0.2 

JAIM 

Abstractness Classes NOM LOC Comments Fanout cc MI Instability 

Package! 0.08 26 85 907 409 I 44 74.25 I 

JFreeChart 

Abstractness Classes NOM LOC Comments Fanout cc MI Instability 

Package! 0 351 1596 25118 570 I 581 90.49 I 

Micro Trade 

Abstractness Classes NOM LOC Comments Fanout cc MI Instability 

Package! 0.08 12 81 9Il 400 I 49 77.16 I 

Package2 0.16 12 24 SIO !59 I 44 138.97 0.25 

Package3 0 4 39 467 179 I 22 8!.86 I 

Package4 0 4 18 230 189 0 17 86.II 0 

260 



lnforama Document Automation System 

Abstractness Classes NOM LOC Comments Fanout cc Ml Instability 

Package! 0 4 40 352 54 3 26 133.21 0.6 

Package2 0.12 8 38 332 57 3 20 134.36 0.75 

Package3 0.5 2 10 133 28 2 5 143.82 0.66 

Package4 0 3 25 225 50 I 14 115.33 I 

PackageS 0 4 25 252 55 2 7 81.8 0.66 

Package6 0 2 41 444 133 2 10 60.59 0.66 

Package? I I 2 10 I 0 I 114.44 0 

Pckage8 0 3 29 261 47 2 9 116.74 I 

Package9 0.33 3 13 83 17 2 12 81.94 0.33 

Package!O 0 I 4 37 5 I 2 69.56 I 

Package!! 0 4 24 252 63 3 15 61.87 0.75 

Packagel2 0.5 2 13 66 18 2 3 133.82 0.66 

Packagel3 007 13 56 1187 305 4 96 47.8 0.57 

Packagel4 0 I II 310 63 I 16 87.19 I 

Packagel5 I I 5 47 13 0 I 126.28 0 

Packagel6 0.12 17 98 920 389 4 55 110.71 0.66 

Package!? I I 4 8 2 () I 107.99 0 

Packagcl8 0 4 21 !57 25 2 5 78.47 0.66 

Packagcl9 I I 2 9 I 0 I 116.58 0 

Package20 0.22 9 62 580 140 6 22 113.68 0.54 

Packagc21 0.5 12 123 677 167 5 21 143.54 0.62 

Package22 0 3 31 272 44 3 II 154.6 0.75 

Package23 0 2 10 125 35 0 2 74.77 0 

Package24 0.27 II 179 1659 433 3 65 153.53 0.6 

Package25 0 4 8 189 47 4 13 32.86 0.66 

Packagc26 0 I 9 83 8 I 8 112.96 I 

Packagc27 0 2 4 66 II 2 3 137.41 0.66 

Package28 0 4 21 !58 35 2 5 78.47 0.66 

Package29 0.14 7 44 324 54 3 21 119.25 0.6 

Package30 I I 2 10 I 0 I 114.44 0 

Package31 0.33 3 13 118 59 I 6 158.59 I 

Package32 0.14 14 45 533 68 2 35 127.97 0.66 

Package33 0 3 40 354 61 3 20 134.4 0.6 

Package34 I I 2 9 I I) I 116.58 0 

Package35 0 3 10 269 5 I) 9 124.37 0 

Package36 0.14 14 48 536 69 2 31 128.62 0.66 

Package37 0 4 22 182 38 2 6 74.9 0.66 

Package38 0.14 7 30 949 182 7 42 36.32 0.58 

Package39 0 2 4 92 8 0 4 84.62 0 

Package40 0 2 16 124 24 2 10 138.79 0.66 

261 



Package41 0 2 37 598 60 2 15 118.36 0.66 

Packagc42 0 I 6 34 9 0 I 79.44 0 

Package43 0.16 6 64 643 82 4 27 77.8 0.57 

Package44 0.2 5 21 109 22 I 6 90.14 I 

Package45 0 4 22 182 38 2 6 74.9 0.66 

Package46 0.14 7 30 949 182 7 42 36.32 0.58 

Jasmin Version-1.0 

Abstractness Classes NOM LOC Comments Fanout cc MI Instability 

Jasmin 0.18 II 82 2145 1004 3 73 59.91 I 

java_cup. 

runtime 0.1 10 56 573 300 I 24 73.48 0 

Jas 0.06 48 191 1708 157 I 99 135.62 0 

Java_cup 0.07 30 288 3830 1972 2 156 56.82 I 

Jasmin Version-2.0 

Abstractness NOC NOM LOC Comments Fanout cc Ml Instability 

Jasmin 0.17 12 105 2759 1363 3 77 68.63 I 

Java_ cup. 

runtime 0.1 10 56 573 300 I 13 73.48 I 

Jas 0.05 57 244 2177 198 I 145 135.67 I 

java_cup 0.07 30 288 3830 1972 2 156 56.82 I 

Jasmin Version-2. I 

Abstractness Classes NOM LOC Comments Fanout cc Ml Instability 

Jasmin 0.15 13 125 3860 2022 3 85 95.21 I 

java_cup. 

runtime 0. I 10 56 573 300 I 24 0 I 

Jas 0.05 66 308 2937 249 I 231 132.32 I 

java_cup 0.07 30 288 3861 1994 2 156 56.66 I 

262 



Jasmin Version-2.2 

Abstractness Classes NOM LOC Comments Fanout cc MI Instability 

Jasmin 0.17 12 130 3890 1964 3 87 85.99 I 

Java_cup. 

runtime 0.1 10 56 573 300 I 24 73.48 I 

Jas 0.05 66 318 3101 273 I 252 131.87 I 

java_cup 0.07 30 288 3878 1997 2 161 56.61 I 

Jasmin Version-2.3 

Abstractness Classes NOM LOC Comments Fanout cc MI Instability 

Jasmin 0.17 12 130 3902 1961 3 87 76.1 I 

java_cup. 

runtime 0.1 10 56 573 300 I 24 73.48 I 

Jas 0.05 66 318 3102 273 I 252 131.58 I 

java_cup 0.07 30 288 3878 1997 2 161 56.61 I 

Jasmin Version-2.4 

Abstractness Classes NOM LOC Comments Fanout cc MI Instability 

Jasmin 0.17 12 131 3911 1963 3 88 62.99 I 

Java_cup. 

runtime 0.1 10 56 573 300 I 24 73.48 I 

Jas 0.05 66 319 3105 273 I 252 151.15 I 

263 



F. Reusability Attribute Values 

Address Book 20 1 0 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.705 0.45 0.11 0.057 0.625 0.96 0.48 

2 1 0.75 0.01 0.007 0.875 0.98 0.601 

3 1 1 0.01 0.007 1 0.98 0.66 

4 0.7 0.415 0.17 0.08 0.625 0.96 0.491 

5 0.7 0.51 0.08 0.04 0.75 0.96 0.5 

6 0.7 0.45 0.14 0.07 0.75 0.96 0.51 

7 0.75 0.56 0.08 0.04 0.875 0.98 0.54 

8 0.48 0.244 0.22 0.11 0.5 0.96 0.41 

9 0.66 0.399 0.14 0.07 0.37 0.96 0.433 

Airline Reservation System 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.95 0.72 0.03 0.017 1 0.96 0.61 

2 0.57 0.47 0.071 0.035 0.625 0.96 0.45 

3 0.57 0.47 0.07 0.03 0.625 0.96 0.45 

4 0.82 0.57 0.07 0.03 0.75 0.98 0.53 

5 0.82 0.6 0.07 0.03 0.75 0.98 0.54 

6 0.705 0.57 0.1 0.053 0.875 0.98 0.54 

7 0.25 0.31 0.07 0.03 0.625 0.96 0.37 

8 0.91 0.64 0.03 0.017 1 0.96 0.59 

9 0.7 0.62 0.07 0.035 0.87 0.98 0.54 

10 0.7 0.62 0.07 0.035 0.87 0.98 0.54 

11 0.86 0.68 0.107 0.05 0.87 0.96 0.58 

12 0.95 0.69 0.107 0.05 0.875 0.96 0.6 

13 0.95 0.69 0.107 0.053 0.875 0.96 0.6 

264 



Menu Builder 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

I 0.705 0.35 0.84 0.42 0.5 0.98 0.63 

2 0.66 0.58 0.16 0.08 0.875 0.96 0.55 

Car Sales System 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

I 0.61 0.47 0.09 0.049 0.125 0.96 0.38 

2 0.955 0.73 0.06 0.032 0.625 0.96 0.56 

3 0.57 0.32 0.32 0.16 0.125 0.96 0.41 

4 I 0.78 0.01 0.008 I 0.96 0.62 

5 0.66 0.4 0.22 0.11 0.75 0.96 0.51 

6 I 0.78 0.01 0.008 I 0.96 0.62 

7 0.615 0.44 0.24 0.12 0.75 0.98 0.52 

Class Browser 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

I 0.705 0.65 0.08 0.042 0.25 0.96 0.44 

2 I 0.75 0.02 0.014 I 0.98 0.58 

3 0.955 0.72 0.02 0.069 I 0.98 0.61 

4 0.75 0.51 0.37 0.18 0.75 0.98 0.59 

5 I 0.75 0.02 0.014 I 0.98 0.62 

6 I 0.75 0 0 I 0.98 0.61 

7 0.7 0.57 0.14 0.07 0.875 0.96 0.55 

8 I 0.75 0.025 0.01 I 0.98 0.62 

9 0.75 0.56 0.28 0.14 0.75 0.98 0.57 

265 



Library System 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.75 0.61 0.076 0.038 0.375 0.96 0.46 

2 0.75 0.59 0.26 0.13 0.875 0.96 0.59 

3 0.75 0.56 0.19 0.09 0.25 0.96 0.46 

4 0.75 0.625 0.15 0.076 0.875 0.96 0.57 

5 1 0.75 0.03 0.019 0.875 0.98 0.6 

6 1 0.75 0.03 0.019 0.875 0.98 0.6 

7 1 0.75 0.03 0.019 0.875 0.98 0.6 

8 0.75 0.56 0.19 0.096 0.25 0.96 0.46 

Flight Reservation System 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.615 0.47 0.3 0.15 0.12 0.98 0.44 

2 0.61 0.51 0.21 0.108 0.625 0.98 0.5 

3 0.615 0.46 0.19 0.19 0.875 0.98 0.53 

4 0.615 0.46 0.19 0.097 0.875 0.98 0.53 

5 0.66 0.58 0.08 0.043 0.875 0.98 0.53 

Java Chat Application 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.705 0.58 0.15 0.076 0.875 0.96 0.55 

2 0.615 0.5 0.15 0.07 0.875 0.98 0.53 

3 0.66 0.55 0.38 0.19 0.875 0.96 0.6 

4 0.615 0.55 0.07 0.038 1 0.98 0.54 

5 0.705 0.54 0.07 0.038 0.5 0.98 0.47 

6 0.66 0.58 0.15 0.076 0.875 0.96 0.54 

266 



Banking Application Component 

Class Understand Scope Yari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.7 0.51 0.19 0.09 0.875 0.98 0.55 

2 0.75 0.53 0.21 0.1 0.875 0.98 0.57 

3 I 0.8 0.02 0.01 1 0.98 0.63 

4 0.75 0.67 0.09 0.047 0.875 0.98 0.56 

5 0.57 0.45 0.47 0.23 0.625 0.98 0.55 

Banking Application Component B 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.66 0.54 0.41 0.2 0.875 0.96 0.6 

2 0.7 0.61 0.33 0.16 0.875 0.98 0.6 

3 0.615 0.59 0.16 0.08 0.875 0.98 0.54 

4 1 0.85 0.08 0.041 I 0.98 0.65 

Banking Application Component C 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 1 0.875 0.03 0.019 1 0.98 0.64 

2 0.91 0.89 0.07 0.03 0.875 0.98 0.62 

3 0.66 0.49 0.5 0.25 0.75 0.98 0.6 

4 0.66 0.56 0.38 0.19 0.75 0.98 0.58 

Banking Application Component A 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

1 0.705 0.513 0.347 0.173 0.875 0.98 0.596 

2 0.75 0.536 0.391 0.195 0.875 0.98 0.618 

3 0.75 0.677 0.173 0.086 0.875 0.98 0.588 

267 



XMLGenie 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

I 0.615 0.75 0.047 0.023 0.625 0.96 0.502 

2 0.525 0.35 0.19 0.09 0.625 0.96 0.456 

3 0.615 0.711 0.03 0.015 0.875 0.98 0.536 

4 0.525 0.561 0.09 0.047 0.125 0.98 0.387 

5 0.615 0.684 0.09 0.047 0.75 0.96 0.523 

6 0.705 0.602 0.047 0.023 0.875 0.98 0.536 

7 0.615 0.526 0.079 0.039 0.875 0.96 0.513 

Word Processor 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

I 0.955 0.696 0.034 0.017 0.5 0.98 0.528 

2 0.705 0.602 0.034 0.017 I 0.96 0.55 

3 0.75 0.593 0.206 0.103 0.875 0.98 0.582 

4 0.615 0.386 0.413 0.206 0.125 0.96 0.449 

5 I 0.75 0.03 0.017 0.875 0.98 0.607 

6 1 0.75 0.034 0.017 1 0.98 0.627 

7 1 0.777 0.034 0.017 1 0.98 0.623 

8 I 0.75 0.034 0.017 I 0.98 0.627 

9 1 0.75 0.034 0.017 1 0.98 0.627 

10 I 0.781 0.034 0.017 1 0.98 0.632 

11 0.75 0.597 0.103 0.051 0.875 0.96 0.554 

268 



JAIM 

Class Understand Scope Vari Maintain 

Flexibility ability Coverage ability ability Portability Reusability 

l 0.705 0.558 0.24 0.12 I 0.625 0.98 0.536 

2 0.57 0.59 0.17 0.085 0.5 0.98 0.482 

3 0.66 0.69 0.11 0.05 0.875 0.98 0.56 I 

4 0.39 0.5 0.12 0.06 0.625 0.96 0.44 

5 0.57 0.66 0.07 0.035 0.875 0.96 0.526 

6 0.66 0.75 0.02 0.014 0.625 0.98 0.509 

7 0.57 0.655 0.071 0.035 0.625 0.96 0.484 

8 0.955 0.86 0.02 0.014 0.625 0.96 0.572 

9 0.955 0.935 0.04 0.021 0.625 0.96 0.587 

10 0.91 0.705 0.042 0.021 0.875 0.98 0.586 

Address Book 

Package Understand Flexibility Portability Variability Maintainability Reusability 

ability 

1 0.44 0.75 0.75 0.11 0.5 0.51 

XML Genie 

Package Understand Flexibility Portability Variability Maintainability Reusability 

ability 

1 0.52 0 0.75 0 0.375 0.32 

Word Processor 

Package Understand Flexibility Portability Variability Maintainability Reusability 

ability 

1 0.57 0.80 0.75 0.13 0.50 0.55 

JAIM 

Package Understand Flexibility Portability Variability Maintainability Reusability 

ability 

1 0.66 0.00 0.75 0.08 0.38 0.37 

269 



JFreeChart 

Package Understand Flexibility Portability Variability Maintainability Reusability 

ability 

I 0.32 0.00 0.75 0.00 0.50 0.31 

Micro Trade 

Package Understand Flexibility Portability Variability Maintainability Reusability 

ability 

I 0.53 0.00 0.75 0.08 0.38 0.35 

2 0.59 0.75 0.75 0.16 0.63 0.58 

3 0.44 0.00 0.75 0.00 0.38 0.31 

4 0.79 1.00 1.00 0.00 0.75 0.71 

lnforama Document Automation System 

Understand Flexibility Portability Variability Maintainability Reusability 

ability 

Package! 0.33 0.40 0.25 0.00 0.63 0.32 

Package2 0.46 0.25 0.25 0.12 0.75 0.37 

Package3 0.48 0.34 0.50 0.50 0.88 0.54 

Package4 0.36 0.00 0.75 0.00 0.75 0.37 

PackageS 0.48 0.34 0.50 0.00 0.63 0.39 

Package6 0.15 0.34 0.50 0.00 0.38 0.27 

Package? 0.55 1.00 1.00 1.00 0.88 0.89 

PckageS 0.34 0.00 0.50 0.00 0.88 0.34 

Package9 0.54 0.67 0.50 0.33 0.50 0.51 

Package!O 0.51 0.00 0.75 0.00 0.63 0.38 

Package!! 0.50 0.25 0.25 0.00 0.25 0.25 

Package12 0.51 0.34 0.50 0.50 0.88 0.55 

Packagc13 0.44 0.43 0.00 0.07 0.00 0.19 

Package14 0.16 0.00 0.75 0.00 0.75 0.33 

Package15 0.51 1.00 1.00 1.00 0.88 0.88 

Package16 0.59 0.34 0.00 0.12 0.50 0.31 

Package!? 0.63 1.00 1.00 1.00 0.88 0.90 

270 



Package IS 0.45 0.34 0.50 0.00 0.63 0.38 

Package19 0.39 0.25 0.25 0.00 0.63 0.30 

Package20 0.42 0.34 0.50 0.00 0.63 0.38 

Package21 0.50 0.46 0.00 0.22 0.63 0.36 

Package22 0.37 0.38 0.00 0.50 0.63 0.38 

Package23 0.27 0.25 0.25 0.00 0.75 0.30 

Package24 0.52 1.00 1.00 0.00 0.63 0.63 

Package25 0.19 0.40 0.25 0.27 0.50 0.32 

Package26 0.56 0.34 0.00 0.00 0.25 0.23 

Package27 0.30 0.00 0.75 0.00 0.88 0.38 

Packagc28 0.52 0.34 0.50 0.00 0.88 0.45 

Packagc29 0.49 0.34 0.50 0.00 0.63 0.39 

Package30 0.46 0.40 0.25 0.14 0.63 0.37 

Package31 0.55 1.00 1.00 1.00 0.88 0.89 

Package32 0.63 0.00 0.75 0.33 0.88 0.52 

Package33 0.50 0.34 0.50 0.14 0.63 0.42 

Package34 0.27 0.40 0.25 0.00 0.75 0.33 

Package35 0.38 1.00 1.00 0.00 0.88 0.65 

Package36 0.50 0.34 0.50 0.14 0.63 0.42 

Package37 0.48 0.34 0.50 0.00 0.63 0.39 

Package38 0.35 0.42 0.00 0.14 0.13 0.21 

Package39 0.48 1.00 1.00 0.00 0.63 0.62 

Package40 0.41 0.34 0.50 0.00 0.88 0.42 

Package41 0.05 0.34 0.50 0.00 0.75 0.33 

Packagc42 0.51 1.00 1.00 0.00 0.63 0.63 

Package43 0.25 0.43 0.00 0.16 0.38 0.24 

Package44 0.54 0.00 0.75 0.20 0.88 0.47 

Package45 0.42 0.00 0.25 0.18 0.00 0.17 

Package46 0.64 1.00 0.75 0.10 0.38 0.57 

271 



Jasmin Version-1.0 

Understand Flexibility Portability Variability Maintainability Reusability 

ability 

Jasmin 0.42 0.00 0.25 0.18 0.00 0.17 

Java~cup. 

runtime 0.64 1.00 0.75 0.10 0.38 0.57 

Jas 0.48 1.00 0.75 0.06 0.50 0.56 

java~cup 0.51 0.00 0.50 0.07 0.00 0.22 

Jasmin Version-2.0 

Understand Flexibility Portability Variability Maintainability Reusability 

ability 

Jasmin 0.37 0.00 0.25 0.17 0.25 0.21 

java~cup. 

runtime 0.64 0.00 0.75 0.10 0.50 0.40 

Jas 0.42 0.00 0.75 0.05 0.50 0.34 

java~cup 0.51 0.00 0.50 0.07 0.00 0.22 

Jasmin Version-2.1 

Understand Flexibility Portability Variability Maintainability Reusability 

ability 

Jasmin 0.39 0.00 0.25 0.15 0.50 0.26 

java~cup. 

runtime 0.64 0.00 0.75 0.10 0.38 0.37 

Jas 0.42 0.00 0.75 0.05 0.50 0.34 

java~cup 0.51 0.00 0.50 0.07 0.00 0.22 

272 



Jasmin Version-2.2 

Understand Flexibility Portability Variability Maintainability Reusability 

ability 

Jasmin 0.31 0.00 0.25 0.17 0.50 0.25 

java~ cup. 

runtime 0.64 0.00 0.75 0.10 0.38 0.37 

Jas 0.42 0.00 0.75 0.05 0.50 0.34 

java~cup 0.51 0.00 0.50 0.07 0.00 0.22 

Jasmin Version-2.3 

Understand Flexibility Portability Variability Maintainability Reusability 

ability 

Jasmin 0.31 0.00 0.25 0.17 0.25 0.20 

java~cup. 

runtime 0.64 0.00 0.75 0.10 0.38 0.37 

Jas 0.42 0.00 0.75 0.05 0.50 0.34 

java~cup 0.51 0.00 0.50 0.07 0.00 0.22 

Jasmin Version-2.4 

Understand Flexibility Portability Variability Maintainability Reusability 

ability 

Jasmin 0.31 0.00 0.25 0.17 0.00 0.15 

java~cup. 

runtime 0.64 0.00 0.75 0.10 0.38 0.37 

Jas 0.42 0.00 0.75 0.05 0.50 0.34 
-

273 



N 
-..j 
~ 

Sr 
I 
2 
3 

4 

5 
6 

7 
8 
9 

F::~ffOit;AffNtiiZ So(tv.:u e F~rllt1hllr; 
Please md1cateyour software en2meen~ e>:P<nen~ (ao::a.JemK + mQttst:y) 

The softwarewh1d11s eawto un~d 1smore hkffi to be reused 
The software wh1d1 can be eas1lv mo<itf1ed 1S more hkelv to be reused 
The software wh1d1 can be eas1ly transfomd to otha- envll'OOment IS more hkely to 
be reused 
The c~onent cova-tngmore features (prov1dmgmore funct1oos)ts more hkelyto 
be reused 
The CO!llllonent wh1d11s eaw to mamtam 1s more hkelvto be reused 
Stable softwarec00¥f!enls are more hkelyto be reused (Stabli1ty refe"S to 
errorlbtll( free) 
The usageh1si«V of compon<ntmfluencesthedeet~cn to reuse 1t 
A corwonent With suff1etenl doo.rnentat1on IS more hkelyto be reused 
The c~onent whtdl pr<111desmore vanab1hty IS more hkelyto be reused 

[/] 
~ ..., 
0 
;:l 

(JQ 

~ 
;t> 

(JQ ..., 
(!) 
(!) 

~ 

v. 
~ 

years 
I 1 3 ~ ~ 

[/]'1::1 ~ ~ 

" ..., 
0 '" .0 ;:l "' (JQ (!) = ~a '" "' '" .... 
0.'""' =· -· ~ = "' ~ = '" =-(JQ (!) 

., ..., :;· 
(]) '" ""=' '" ., 
~..., 

~o 

::-'>o 
;J. 

oa u;·n 
'" "' (JQ 0 ..., 

>< (]) 
(]) 

~ 

N 
:;--' 

z 
(!. 
~ =-(!) ..., 

'" (JQ ..., 
(]) 
(]) 

;:l 
0 ..., 
0. c;;· 

'" (JQ ..., 
(]) 
(]) 

~ 

w 
:;--' 

;t> 
(JQ ..., 
(]) 
(]) 

~ 

~ 
:;--' 



D1spla1mg 30 ol 348 respondents 

~_Pre\'! LNext ... Jump To: "1m"'-- Go~, 

Response Type: 
Normal Re-sponse 

Custom Value: 
empty 

Collector: 
We blink 
tweb Unk) 

IPAddress: 
202 141240 117 

1. Please indic.ate your software engineering experience (aeademlc +Industry} 

Ploa-ase ch<lose numoer ol t€-3rs 

2. The software which is easy to understand Is more likely to be reused. 

3. The software which can be easily modified is more likely to be reused. 

A.Qree 

Years 

4. The software which can be easily transferred to other environment Is more likely to be reused. 

Stroncrr A.<;;ree 

5. 111e component covertng more features (providing more runcttons)ls more likely to be reused. 

Nertner t-.gree nm drsa-;;ree 

6. The component which is easy to maintain Is more likely to be reused. 

7. Stable software components are more likely to be reused. (stability refers to erTOr/bug free). 

/Jerttler Acree nor drsacree 

8. The uuge history of component Influences the decision to reuse it. 

9. A component with sufficient documentation as more likely to be reused. 

Ner\tler :.gree nor drsagree 

10. The component which provides more variability Is more likely to be reused. 

275 



Olsplajing 19 ol 348 respondents 

cPrev Next•! JumpTo: 1r.1~9---,Go. 

Response Type: 
Normal Response 

Custom Value: 
empty 

Collector: 
Web link 
(VVetl Link) 

IP Address: 
18218512 99 

1. Please Indicate your software engineering experience (academic+ industry) 

Please choose number ol Years 

2. The softWare which is easy to understand is more likely to be reused. 

Strongly A.gree 

3. The software which can be easily modified is more likely to be reused. 

A.gree 

Ed1t Response Delete ' 

Years 

4. The software which can be easily transferred to other environment is more likely to be reused. 

A.gree 

5. The component covering more features (providing mora functlons)ls more likely to be reused. 

Disagree 

6. The component which is easy to malnUin Is more likely to be reused. 

Agree 

7. Stable software components are more likely to be reused. (stability refers to error/bug free). 

Agree 

8. The usage history of component influences the decision to reuse lt. 

A.gree 

9. A component with sufficient documentation is more likely to be reused. 

Strongly A.r;~ree 

10. The component which provides more variability Is more likely to be reused. 

~Je1ther A.gree nor disagree 

276 



D1splaymg 345 of 348 respondents 

:«PrevfrNext• JumpTo: ~:Go •. 

Response Type: 
Normal Response 

Custom Value: 
empty 

Collector: 
Web Link 
(V\Ieb Link) 

IP Address: 
60.52.36 :26 

1. Please indicate your software engineering experience (academic+ industry) 

Please choose nu'"'lber ol l·ears 

2. The software which Is easy to understand is more likely to be reused. 

3. The sottw~re which c:an be easily modified is more likely to be reused. 

StronQii Agree 

l ~ci~ ~~~~~nse ( Delete 

Years 

10 

4. The software which can be easily transferred to other environment is more likely to be reused. 

Agree 

5. The component covering more features (providing more functions)is more likely to be reused. 

fo.gree 

6. The component which is easy to maintain is more likely to be reused . 

. Agree 

7. Stable software components :are more likely to be reused. (st:ablllty refers to error/bug free). 

Strongli Agree 

B. The usage history of component influences the decision to reuse it. 

Strong!)" Agree 

9. A component with sufficient documentation Is more likely to be reused. 

Ne1ther Agree nor disagree 

10. The component which provides more variability is more likely to be reused. 

Agree 

277 



H. List of Sources 

Source Accessed Population 

Emails 73 

On paper 46 

Facebook Groups 

MSC Malaysia Open Source Conference 2009 631 

Malaysia Open Source Developers' Club 359 

Open Source Competency Centre Malaysia (OSCC) 317 

Open Source Alliance Cyberjaya 65 

Kuching Open Source Community 50 

MSC Malaysia Open Source Conference 2009 382 

Malaysia Open Source Conference 20 II 547 

Malaysian Software Developers Network 30 

Malaysian Open Source Community 207 

Total 2707 

Malaysian ICT SMEs contacted 58 

278 



I. Package Analysis Uasmin and pBeans) 

Analysis of Package-4 (java _cup) 

The reusability and attributes values of package java_ cup are presented in this section. 

This package is not part of the Jasmin software in the latest version. 

Version wise values of reusability and its attributes (package-4) 

java_cup 

UnlfefstandabilitY~.:,_., tli!SI•c·· 
~' ""' '! 

Flexibility 

'.,Portability. 

Variability 

Maintainability 

Reusability 

1.0 2.0 2.1 

0.51 0.51:~~~ 0.5 L, 

0.00 0.00 0.00 

o.sQ: . :·•:Q:50 . 
'',:;< 

0.50. 

0.07 0.07 0.07 

o.oq 0.00. 0.00 

0.22 0.22 0.22 

2.2 

.. ,0'.51. 

0.00 

0.07 

o:oo 
/,;;,' 

0.22 

2.3 

0.00 

0.07 

,':', 0.00 

0.22 

Reusability and Attributes Values Package -4 Uava_cup) 

. . . . . 

2.4 

-. 

I 

0.9 

0.8 

0.7 

0.6 

0.5 ---v---------v--·----v --~- ··----w---
0.4 

0.3 

0.2 

Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 

+Understand-ability WReusability "-Variability X Maintainability :1' Flexibility;,; Portability 

Reusability and its attribute values for packege-4 

279 



The values of NOM, LOC, comments and understandability are presented in 

previous section. There is no change in the value of NOM; the change in LOC and 

comments is insignificant. So, the value of understandability remains the same in all 

versions. It shows that during evolution this package has not been changed much. 

Version wise values of understandability and its attributes (package-4) 

java_cup 

Versions 

1.0 2.0 2.1 2.2 2.3 

LOC .. 3830 3830 3861 3878 3878 

NOM 288 288 288 288 288 

Comments 1972 1972 . 1994 1997 1997 

Understandability 0.51 0.51 0.51 0.51 0.51 

LOC vs. Understand-abilityPackage -4 (java_ cup) 

;::~ f---·-----£=--~---=-----. -i 
;:~~ E ----==--=w~==----=--=--=-~ u 3850 --~~----- --- ----- ____ , 

g 3840 ----- -~-- ~ 
3830 w~----w------ --------~ --i 
~:~~ 1------ -- --~--- -~-===-=== := .j 
3800 --- - ---~----~--- -~- - __)_ 

Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 

imJLOC +Understand-ability 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Graph plot of values of LOC and understandability package-4 

280 

2.4 

..., 
== :c 
"' ' "" = "' -~ ... 
" "" = 
~ 



NOM vs. Understand-ability Package -4 (java_cup) 

350 

300 --.- • -·- -· 
250 +-------'==--------

:;: 200 
0 z 150 

100 

50 

0 -~-----~---r-- -- --- : --~-------

Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 

.. NOM +Understand-ability 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Graph plot of values of NOM and understandability package-4 

Comments vs. Understand-ability Package -4 (java_ cup) 

-,,-,--,. 0.6 

:::~ E· -·--=-~-=--~.-~ 
~ 1985 - ------------- ----
= ~ 1980 ~ ------ ----- -----
e ' e : ~~~ + -ir- ·:::_:w:- - __ -

:::: L=- ~ -• =- _::_·-~-----

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Version-1.0 Version-2.0 Vcrsion-2.1 Version-2.2 Version-2.3 

lwiComments +Understand-ability 

Graph plot of values of comments and understandability package-4 

... 
;5 
:0 
"' ' "" = "' -~ ... 
" "" = ;;l 

... :: 
:0 
"' ' "" = .:s 
~ ... 
" "" = ;;l 

The values of CC and MI for the package java_ cup remain the same in all the 

versions. Therefore, no change is observed in the values of maintainability. The 

values of CC, MI and maintainability are presented in this section. 

281 



Version wise values of maintainability and its attributes (package-4) 

java_ cup 

MI 

cc 
~ mMaintainability 

o' ' 'c' ' 

1.0 

56.82 

156 

0 

2.0 

56.82 

156 

0 

Versions 

2.1 2.2 

56.66 56.61 

156 161 

0 0 

MI vs. Maintainability Package -4 (java_cup) 

2.3 

56.61 

161 

0 

:~6:: F~~~~~~~-~=-~-. -~ _- -==- -J 0.8 ~ 
l :c 

- 56.7 !---- ---~--- --- -~-----~ ------- -{ 0.6 i;! 

56.6 ------- - --- ------ ~ j A ·; 

:; 56.65 E-_______ ---W- _ _ __ --~-~ 0 ~ 

5::.~ +--~-+---~-+-=,-- --.---·:::-_._-J :2 :; 
Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 

liojMl +Maintainability 

Graph plot of values of Ml and maintainability package-4 

MCC vs. Maintainability Package -4 (java_ cup) 

:~! =-~~- -~-- -- --=-~--~~=-=--~] 0.8 » --l ;!: 
159 -- - ----~-- --- -- ------ --j :.0 

• :ll :-~_-:~-hid -=-:- -==:~ ~-l :: j 
m t.=-,=•=·--:--~~=-.== -.=~1 :·2 

:; 
Version-1.0 Version-2.0 Version-2.1 Version-2.2 Version-2.3 

.. MCC +Maintainability 

Graph plot of values of CC and maintainability package-4 

282 

2.4 



Analysis of Package-] (pbean. uti!) 

The package pbean.utilil shows no change in the value of reusability and its attributes 

in this section. The only exception is version 2.0 where the value of understandability 

decreased from 0. 94 to 0.44 which caused a decrease in the value of reusability. It 

shows that during the evolution of this software, pbean.utilil package has not been 

changed significantly. 

Version wise values of reusability and its attributes (package-!) 

pbean.util 

1.0 1.1 1.2 1.2.1 1.2.2 1.3.0 1.3.1 2.0 2.0.1 2.0.2 

understand ~ 01?,4 ·'· ~:~1 o.24,,:Q·H" 0.9.0 .0.9.0 
~/ffi':;~1;;,:k:i~'-f-. _:; -. 

1 ~ :_:_:_~~-~ ~~ ~-~- ,-.> ;-~-~ ':_~-~::i -9 ---~,~;:-- i 
,ability,;··· r·:v.,-"" 'f'' 

··u~<t .. 
" 

Flexibility 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Port~~!lity ±;: ~1.00 Loo ,1.oo ~l,bQ,,!l! t.oo 1.00 1.00 1.00' 1.00 1.00 
,_ '" ' 

::.·1(;;""- \*;>ftx:;t:r «w.,,·-.< :"''' . --:1: :~,;·t::t 

Variability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ma~ain 0.88 >0,88 0.88". 0.88 0.88 0.88 
.. •','f.'\, \,· 'I/•'' _•.,, . •J. ''"'':1"' 

·.v· 
~t~J - '!.~-~;"-

ab~litY,1 ··,'+.\<}· 

Reusability 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.66 0.76 0.76 

283 



Reusability and Attributes Values Package -1 (pbean.util) 

8:~ -~ ·~·· ~~--~ -~· ~~=~ =!_~ .~ =~ 
o.1 ~w -- >iiJili--""~-'liii'- w--"*.1/il~-~•--: . ,--- ·>iiJi~i···-···;,."'-·· 
0.6 · ----- ···---·····-·--·-···W··-·---·-····----

·o +-)(-·)(, -X~,--X-~-)(. )(-.-X., X·· )(~ -)(, 

"" <' ""' "'' "' " ' "'" "' ""' '!,· o,· o,· 
·0-\$ ·0-\f ·o<~ 

,. ,. ,. ,. 
·O<;' 

C\;· C\;· 

~' ~' ~' . o<f · o<f · o<f ·0<$ ~' . o<f ·0<$ 
.:.~" .:.~" .:."-" ~' ..,.... .., .... ~' .:.~"· ~' ~' .:.~" .:.~" .:.'"" .:.'"" .:.~" .:.~" 

+Understand-ability 0!11 Flexibility .& Portability 

X Variability .<Maintainability "'Reusability 

Reusability and its attribute values for packege-1 

The values of LOC, NOM and comments remain the same for the versions 1.0 to 

1.3 .I. In version 2.0, the understandability value is decreased to 0.44; it is because of 

the lack of comments. The value of understandability is increased in version 2.0.1 up 

to 0.90 and remains the same for version 2.0.2. The values are presented in this 

section. The values show that the package has undergone major changes in version 

2.0. 

Version wise values of understandability and its attributes (package-!) 

pbean.util 

Versions 

1.0 1.1 1.2 1.2.1 1.2.2 1.3.0 1.3.1 2.0 2.0.1 2.0.2 

LOC 34 34 34 34 34 34 34 115 107 107 

NOM 2 2 2 2 2 2 2 7 7 7 

Comments 3'1 34 34 32 34 34 34 0 100 100 

Understand 0.94 0.94 0.94 0.94 0.91 0.94 0.94 0.44 0.90 0.90 

ability 

284 



LOC vs. Understand-abilityPackage -1 (pbean.util) 

140 o-7lllo..~-.41o,.--, 

120 
I 00 t-------~ 

u 80 g 60 
40 
20 

0 

loijLQC +Understand-ability 

0.8 

0.6 

0.4 

0.2 

0 

Graph plot of values ofLOC and understandability package-! 

NOM vs. Understand-ability Package -1 (pbean.util) 

8 I 
7 0.8 6 

::>1 5 0.6 
0 4 

0.4 z 3 
2 0.2 
I 
0 --! --------,--- - --' --.--- -- ·- 0 

loiN OM +Understand-ability 

Graph plot of values of NOM and understandability package-! 

285 

~ :c 
" ' "0 

= " ~ ~ ,_ 
" "0 

= => 

.... 
;: 
:c 
" ' "0 

= " ~ ~ ,_ 
" "0 

= => 



Comments vs. Understand-ability Package -1 
(pbean.util) 

~ :~~ ~~==!=-· __! __ !_ ·--~-~-=·~ 
~ ~~ - . w~~ r~=w~~~~~=:-;~--j 

iJ;JComments +Understand-ability 

Graph plot of values of comments and understandability package-! 

Analysis of Package-5 (data.hsqldb) 

.... 
0.8 :: 
0.6 :c 

" 0.4 ' 'C 

= 0.2 " -~ 0 .. .. 
'C 

= :> 

The data.hsqldb package is included m the pBeans software in verswn 2.0. Its 

reusability and attribute values are presented in this section. The reusability remains 

the same in all the three versions. The value of understandability has increased from 

0.38 to 0.86 in version 2.0.1. 

Version wise values of reusability and its attributes (package-S) 

data.hsqldb 

,Versions 

2.0 2.0.1 2.0.2 

Unders~arJ1dability 0.38 0.86 0.86 

Flexibility 0.00 0.00 0.00 

Portability 0.75 0.75 0.75 
~ '<< 4, ,· > 

Variability 0.00 0.00 0.00 

M~intidnabilitY 0.88 0.38 0.38 

Reusability 0.40 0.40 0.40 

286 



The value of maintainability has decreased from 0.88 to 0.38 in version 2.0.1. 

This increase in understandability has compensated the decrease in maintainability. 

Therefore, no effect on reusability is observed. 

Reusability and Attributes Values Package -5 
( data.hsqldb) 

0.8 ~~ -- -i---- -- ---t--= 
0.6 -~--

' 
0 4 1 ---;tttJI----
02 1 

--w---- ---w------
-- --- ----·---- - -----------·---· 

0 .j IIIII -al-----.--.. 1111--- ------~ -------, 
Version-2.0 Version-2.0.1 Version-2.0.2 

+Understand-ability loiFiexibility .i. Portability 

X Variability 1: Maintainability .; Reusability 

Reusability and its attribute values for packege-5 

The values of LOC, NOM, comments and understandability are presented in this 

section. An increase in the value of understandability can be seen in version 2.0.1. 

The increase is due to the increase in the number of comments in version 2.0.1. The 

value of understandability remains the same for the latest version. 

Version wise values of understandability and its attributes (package-S) 

data.hsqldb 

2.0 

.. 135 . 

NOM 14 

Corimients 0 
,_;:,,i·-

Understandability 0.38 

-·c._,~versiohs 

2.0.1 

-.1~4.' 
14 

130 

0.86 

287 

i''/<'' 
·1'" "" 

2.0.2 

134 
·; -\. 

14 

·l3Q 

0.86 



LOC vs. Understand-ability Package -5 (data.hsqldb) 

135 
134.8 
134.6 

u 134.4 
0 

134.2 ..l 

134 ~-=-==·-· -~-- --w~··- -···--~~~~-~-
133.8 
133.6 
133.4 0 

Version-2.0 Version-2.0.1 Version-2.0.2 

loiiLOC +Understand-ability 

Graph plot of values of LOC and understandability package-S 

16 

14 

12 

~ 10 
0 8 
z 

6 

4 
2 

0 

NOM vs. Understand-abilityPackage -5 (data.hsqldb) 

---w-----w-~~~~~- ~ -1 
---···-·-·--- --~-

-------~-----·----~- -·----··------- --~-- - j 
~--+--- -· -~----------~~----~[ 
~- -------·-· -···-~--~-----·-·--·--·---~-----l 

~=--~----=-~=~~:,_ =- --~~ -~==-:=:-- __ =-J 
Version-2.0 Version-2.0.1 Version-2.0.2 

lwiNOM +Understand-ability 

0.8 

0.6 

0.4 

0.2 

0 

Graph plot of values of NOM and understandability package-S 

288 

;., 

:: :c 
" ' '0 
c: 
" -~ ... 
" '0 
c: 
;;; 



Comments vs. Understand-ability Package -5 
( data.hsqldb) 

140 ___________ lio.ll ____ -- ---- -...----
120 +--------- --------.-- ... --- g 

0.8 -
!) 100 +-------- ------- ------

= .. 80 s 
s 60 
0 
u 40 

20 

0 

-----.------ ---

---------~-- ----------------
----r~ .. ----

Version-2.0 Version-2.0.1 Version-2.0.2 

loj(omments +Understand-ability 

:c 
" 0.6 ..0 
= !! 0.4 ~ .. 

0.2 ] 
;;, 

0 

Graph plot of values of comments and understandability package-S 

The values of Ml, complexity and maintainability are presented in this section. 

The value of maintainability decreased significantly in version 2.0.1. This decrease in 

the value of maintainability is due to the decrease in the value of MI in version 2.0.1 

from 114.SS to 63.33. 

Version wise values of maintainability and its attributes (package-S) 

data.hsqldb 

cc 
.Maintaig'~~ility .· 

2.0 2.0.1 

'i'i'""''·1v±f•:s:· ~~-;,;63.5) 

7 7 

0.88 

289 

2.0.2 

·.· ;;':.1'63 53 ' 
~/#~~~; ~:;~·~ ; r, ' 



MI vs. Maintainability Package -5 ( data.hsqldb) 

140 T 

120 -- -·--------~~-------------
T 

1 00 . ~----------~---·· 

- 80 --------------------------- --
::0 

60 -w---------------
40 . ~-----------~----~---· 

20 j ________ ------------- --· 
ot-

Version-2.0 Version-2.0.1 Version-2.0.2 

WMI +Maintainability 

Graph plot of values of Ml and maintainability package-S 

CC vs. Maintainability Package -5 ( data.hsqldb) 

8 . -----~------------------------·----

7 +-~--
6 +-~~~~~--~------~~~-----------~ 

0.8 ~ 

:c 0.6 .. 

·= .s 04 c 
·;; 
::0 0.2 

0 

0.8 ~ 

5 +-~~---------------~------·--------------------!. 0.6 ~ 

u 4 +--------- - ~~------ --- - - -- --- -- ---- c u ~ 

3 +---~------------- -4 • .__ -------· -----{ 04 ·~ 
2 I ------~ -------· -. ::o 

I 0.2 

0 
.r..:.=--==------= . - ---·-- --------

-r--------- ---- 0 

Version-2.0 Version-2.0.1 Version-2.0.2 

Wee +Maintainability 

Graph plot of values of CC and maintainability package-6 

290 



Reusability and Attributes Values Package -6 
( data.sqlserver) 

-v~ 

~-..= w==-~~~ 
Version-2.0 Version-2.0.1 Version-2.0.2 

+Understand-ability lojF\exibility .6. Portability 

X Variability :1: Maintainability w Reusability 

Reusability and its attribute values for packege-6 

Analysis of Package-6 (data.sq/server) 

The package data.sqlserver is part of the pBeans software in the version 2.0. The 

values of reusability and attributes are presented in this section. 

Version wise values of reusability and its attributes (package-6) 

data.sqlserver 

· >"2-,.Jrs0::\ 
; .. ·<,~ 

2.0 

Understan.d~biljtY~,,· 0.25 

Flexibility 

f~~~iJity• 
Variability 

Mailltainability0: .• 1:11'.~¥ 

Reusability 

0.00 

,:.>;'0.75 .••• , ..•. 

0.00 

0.88 

0.38 

\1 

Versions 
F'r>,·t •· 

2.0.1 

0,7Q 

0.00 

... o:1s >' 

0.00 

o:63 
'!ii,o/ 

0.41 

2.0.2 

0.00 

'Q.75 . 

0.00 

0.63 
<;~:·:,;;·· 

0.42 

An increase in the value of reusability is observed in the versions 2.0.1 and 2.0.2. 

This increase in the value of reusability is due to the increase in the value of 

understandability from 0.25 to 0.70, and subsequently to 0. 73 in versions 2.0.1 and 

291 



2.0.2 respectively. There is a decrease in the value of maintainability from 0.88 to 

0.63. Although, the maintainability value is decreased, however this decrease is 

compensated by the value of understandability. 

Version wise values of understandability and its attributes (package-6) 

data.sqlserver 

Versions 

2.0 2.0.1 2.0.2 

LOC 101 89 89 
~~ . 

NOM 10 10 10 

· CQinments Q 80 85 

Understandability 0.25 0.70 0.73 

The values of LOC, NOM, comments and understandability are presented in this 

section. The value of understandability is increased in the versions 2.0.1 and 2.0.2. 

This increase in the value of understandability is due to the decrease in the LOC and 

number of comments. 

u 
0 
..l 

LOC vs. Understand-ability Package -6 (data.sqlserver) 

105 ·- ------------------------------• 100 • 0.8 

0.7 

0.6 

95 0.5 

0.4 

0.3 

0.2 

0.1 

0 

90 ----.--- ------w--- --········ ~-I 
-------------------------- -------------1 
-----·---~-------···- -----,--------- . --------1 

85 

80 

Version-2.0 Version-2.0.1 Version-2.0.2 

loiiLOC +Understand-ability 

Graph plot of values of LOC and understandability package-6 

292 

~ 
:;; 

" ' "" c 
" -~ ... .. 
"" c 
~ 



NOM vs. Understand-abilityPackage -6 (data.sqlserver) 

:: +=--lillf-·--=~~~=~~-~~~-~ --------- f ~:~ f 
~ r-- ---- r 0.5 .6 
~ 6 I --- - -- -- --r oA ~ 

~ -= " E 
E 
0 
u 

4 ~--·---·----- ------ -----~ 0.3 s 
: t=~=---=-==~:~-~~-~~-~---~-,== j ~:~ ~ 

Version-2.0 Version-2.0.1 Version-2.0.2 

WNOM +Understand-ability 

Graph plot of values of NOM and understandability package-6 

Comments vs. Understand-ability Package -6 
( data.sqlserver) 

100 ~--------·------

80 i -- -- -- -·-- ·=~--
I 60 r-- --------

40 I 

20 f=--~------ - ----=---
0 1-----w--------~-----o -·--

Version-2.0 Version-2.0.1 Version-2.0.2 

hojComments +Understand-ability 

-r 0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

Graph plot of values of comments and understandability package-6 

~ :z ., 
' '0 

= !l 
~ .. 
" '0 

= ::l 

The values of MI, complexity and maintainability are presented in this section. A 

decrease in the value of maintainability can be observed in version 2.0.1. The MI 

value in version 2.0 is 118.36 which decreased to 69.86 in version 2.0.1. This 

decrease in the value of maintainability is due to the decrease in the value of MI. The 

value of maintainability is directly related to MI. 

293 



Version wise values of maintainability and its attributes (package-6) 

data.sqlserver 

Ve.~sions 

2.0 2.0.1 2.0.2 

MI. 118.36 .69.86 69.86 

cc 5 5 5 

Maintainability 0.88 0.63 0.63 

-~ 

MI vs. Maintainability Package -6 ( data.sqlserver) 

:;~ ~·------------------------· ------~-~:=[ 

100 ___ . ___ j o. 8 ~ 
80 _____ _._ -~ 0.6 :g 
60 ----- _ll~L ____ l 0.4 -~ 
40 1--------------------- ---------· ·;; 

~ 
20 f-----·-----------· ---------- -------------1 0.2 

0 +------------~-·-----·--·-~- 0 

Version-2.0 Version-2.0.1 Version-2.0.2 

lojMI +Maintainability 

Graph plot of values of MI and maintainability package-6 

CC vs. Maintainability Package -6 ( data.sqlserver) 

6 -,----------- -----·-·- -- --- ------- -· ··-------- ----·-·-,· 

5 

4 

u 3 u 

--·-··-----
- ----.------ --- ---.----- .. 

0.8 ~ 

:c 
0.6 " = ·;; 

2 

------------------- -- ---·--------·-----1 

0 -- -~~--~------------,----- ------------- -·-- --,-------

Version-2.0 Version-2.0.1 Version-2.0.2 

lojCC +Maintainability 

Graph plot of values of CC and maintainability package-7 

294 

0.4 = ·;; 
~ 0.2 

0 



Analysis of Package-7 (pbeans.servlet) 

The package pbeans.servlet is part of the pBeans software for the versions 1.3.1 and 

onwards. The reusability and attribute values are presented in this section. A slight 

decrease in the value of reusability can be observed in the version 2.0. This is due to 

the increase in maintainability and decrease in the value of understandability. The 

value of reusability is increased to 0.33 in version 2.0.1 and 2.0.2. This increase is due 

to the increase in the values of maintainability and understandability. 

Version wise values of reusability and its attributes (package-7) 

pbeans.servlet 

1.3.1 
, ''''\'''' '}'-~'Y"•+'"''>' ,, 
UJidtirstandability,;~;;'· ~'•• 0:86 

Flexibility 0.00 

Portability 

Variability 

Reusability 

0-,25;. 

0.00 

0.30 

2.0 

.·o.M 

versions 
;, ,, d 

'.,,: ,, 

0.00 

0.25 

0.00 

0.75 3! 
' ' 
0.29 

2.0.1 

0.92 

0.00 

0.,2~0'' 

0.00 

+0;50 

0.33 

Reusability and Attributes Values Package -7 
(pbeans.servlet) 

2.0.2 

0.92·· 
'"''"' 

0.00 

0.25 

0.00 

0.50-" 

0.33 

Version-1.3.1 Version-2.0 Version-2.0.1 Version-2.0.2 

+Understand-ability "'Flexibility &Portability 

X Variability 'Maintainability "'Reusability 

Reusability and its attribute values for packege-7 

The values of LOC, NOM, comments and understandability are presented in this 

section. The value of understandability is decreased from 0.86 to 0.44 in version 2.0. 

295 



An increase is observed in the version 2.0.1. This increase is due to the decrease in 

LOC and increase in the number of comments. 

Version wise values of understandability and its attributes (package-7) 

pbeans.servlet 

·versions 

1.3 .I 2.0 2.0.1 

". -~LOC · 305 225 198 
,;;. '*' 
NOM 25 18 18 

·····comments 
J>:i\ci)'"i- - --,-- 1£ 

298 3 190 

Understandability 0.86 0.44 0.92 

LOC vs. Understand-ability Package -7 (pbeans.servlet) 

100 

50 

0 

------·--· --------··-·-·-·· -···--

·-----··--··-------·----·-----

---------,--------------- 0 

Version-1.3 .I Version-2.0 Version-2.0.1 Version-2.0.2 

IWILOC +Understand-ability 

Graph plot of values of LOC and understandability package-7 

296 

2.0.2 

198 

18 

190 

0.92 



NOM vs. Understand-abilityPackage -7 (pbeans.servlet) 

~ 

30 

25 

20 

0 15 
z 

1 0 t,------------·- ·---- ----- ·--

~ j ----~---~~=~=~-,~=~ 

--w--

Version- 1.3.1 Version-2.0 Version-2.0.1 Version-2.0.2 

loiN OM +Understand-ability 

» 
0.8 ;5 

:0 ., 
0.6 .0 

= .:3 
0.4 ~ 

" '0 

0.2 :5 
0 

Graph plot of values of NOM and understandability package-7 

The values of Ml, complexity and maintainability are presented in this section. An 

increase in the maintainability value can be observed in version 2.0. This increase is 

due to the increase in the value of Ml and decrease in the value of complexity. In 

version 2.0.1, the value of maintainability is decreased to 0.50. This decrease m 

maintainability value is due to the decrease in the value of ML 

350 

300 

!l 250 
= " 200 E 
E 150 
Q 

u 100 

50 

0 

Comments vs. Understand-abilityPackage -7 
(pbeans.servlet) 

\- ---------- -- ~~~===-- £ ___ ; 
-· --------

w-- --

-------

!= -==--=-~- __ t.(-=-
------·-

-- r ~--- ·-- -- -,- ---~ 
Version-1.3.1 Version-2.0 Version-2.0.1 Version-2.0.2 

lw4Comments +Understand-ability 

0.8 

0.6 

0.4 

0.2 

0 

Graph plot of values of comments and understandability package-7 

297 

» := 
:0 ., 
' '0 

= ., -~ ... 
" '0 

= ;;, 



Version wise values of maintainability and its attributes (package-7) 

pbeans.servlet 

Versions 

1.3.1 2.0 2.0.1 2.0.2 

MI 78.91. 114.72 74.62 74.62 

cc 27 14 14 14 

Maintainability 0.38 ·0.75 0.50 0.50 
' ,>>'4>· ·.~ t" '; 

-:;: 

MI vs. Maintainability Package -7 (pbeans.servlet) 

:~~ ·=---~--- ----~~~~~- -~~~- - =-==-~~:-l ~·~ ~ 
80 ----~-======-..-==-=-~"*=--{ ~! 1 
60 ' 0.3 = 
40 +-~· ··--·-·--·---·--------------------~-[ 0.2 ~ 
20 -------·-------------·--- ---i 0.1 

0 +--~ ------,-- ·--~-----~~---+ 0 

Version-1.3.1 Version-2.0 Version-2.0.1 Version-2.0.2 

WMI •Maintainability 

Graph plot of values of MI and maintainability package-7 

CC vs. Maintainability Package -7 (pbeans.servlet) 

25 .... . ---~---· 0.7 
0.6 ~ 

30 -~----------.--···-- .. - --·--~-·-- 0.8 

20 ---------------~---· - ~ ~ 15 --·-------w~---w---- ····-w---1 ~! :§ 

·------· .......... ____ =1 ~·~ ~ 10 

5 

0 --------,--------~~-,-- ·- __ ) 0 

Version-1.3.1 Version-2.0 Version-2.0.1 Version-2.0.2 

.,.MCC •Maintainability 

Graph plot of values of CC and maintainability package-7 

298 



Analysis of Package-8 (data.postgresql) 

The package data.postgresql is included m the version 2.0 and onwards. The 

reusability value is increased from 0.36 to 0.41. This increase in the value of 

reusability is due to the increase in the value of understandability. On the other hand 

maintainability value is decreased in version 2.0.1. The decrease in the value of 

maintainability is overshadowed by the increase in the value of understandability. 

Therefore, an increase in value of reusability is observed. 

Version wise values of reusability and its attributes (package-S) 

data.postgresql 

Understandability 

Flexibility 

. Portability 

Variability 

Maintainability 
;# 0Ff-:;Jr 

Reusability 

2.0 

0.19 

0.00 

0.75 

0.00 

.. 0:88 
'(' ,> ;;I 

0.36 

2.0.1 

0.68 

0.00 

p.}5 

0.00 

0.63 
< ,;, 

0.41 

Reusability and Attributes Values Package -8 
( data.postgresql) 

Version-2.0 Version-2.0.1 

+Understand-ability 1lo!l Flexibility &Portability 

X Variability ;r Maintainability "'Reusability 

Reusability and its attribute values for package-S 

299 

2.0.2 

· O.(i8: 

0.00 

0.75 

0.00 

0.63 

0.41 

\; 



The values of understandability, LOC, NOM and comments are presented in this 

section. A significant increase in understandability value can be observed in version 

2.0.1. This increase in the value of understandability is due to the decrease in LOC 

and significant increase in the number of comments. 

Version wise values of understandability and its attributes (package-S) 

data.postgresql 

' <:+c/.<"0 :~ Versions 
- <: 

2.0 2.0.1 2.0.2 

LOC 2op 194 194 
---+,_,< 

NOM 21 21 21 

Comnulnts. 0 190 190 

Understandability 0.19 0.6S 0.6S 

LOC vs. Understand-ability Package -8 (data.postgresql) 

202 T ----- -1 
200 r--w----- • ________ ._ ___ ~ 

g ::: ---= ~ ---===~ .. ---i 
::: F ~ -~=-= ~-- :::: ~~---:-1 

0.8 

0.7 ;., 

0.6 ~ 
:0 

0.5 " ' '0 
0.4 c 

" -0.3 ~ ... 
" 0.2 '0 
c 

0.1 
;J 

0 

Version-2.0 Version-2.0.1 Version-2.0.2 

~LOC +Understand-ability 

Graph plot of values of LOC and understandability package-S 

300 



::>; 
0 
z: 

25 

20 

15 

10 

5 

0 

I 

NOM vs. Understand-ability Package -8 
( data.postgresql) 

------- -------r 

r II ·-~--< 

' 
--·~-----1t • 

• 
----,.-------

Version-2.0 Yersion-2-0. I Yersion-2.0.2 

lojNQM +Understand-ability 

0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0. I 
0 

Graph plot of values of NOM and understandability package-8 

200 

Comments vs. Understand-ability Package -8 
( data.postgresql) 

0.8 
0.7 

~ 150 

- -.-~- --·-·· ---
+-------~------- ~---- 0.6 -= " 5 

5 
0 
u 

0.5 
100 0.4 

0.3 

-----~~~--, - -------------- ----r----
• 50 

___ J 0 

0.2 
0.1 
0 

Version-2.0 Version-2.0. 1 Version-2.0.2 

lool Comments +Understand-ability 

Graph plot of values of comments and understandability package-8 

>. 
:: :c ., 
' ., 
= ., -~ .. 
" ., 
= ::l 

>. :: :c ., 
' ., 
= ., -~ .. 
" ., 
= ::l 

The values of MI, complexity and maintainability are presented in this section. A 

decrease in the value of maintainability can be observed in the version 2.0.1. This 

decrease is due to the decrease in the value ofMI in version 2.0.1. 

301 



Version wise values of maintainability and its attributes (package-8) 

data.postgresql 

M(,,,. 

cc 

2.0 

111.92. 
'<'"'''?' 

8 

Versionsc+ 
"' 5.;"<<'<' 

2.0.1 

.65.53 

8 

. 0!63 
,-~:,:z1!:<{:;··, 

· ·· · ~inability ~- ·'-···"?· 
• ·~0i(!Y> 9.88 

-~ 

MI vs. Maintainability Package - 8 ( data.postgresql) 

140 ,---------------------·······. --------·· ---·-·-·· 

120 +---
1 00 +----------------.c-------·----.------1 
80 +------------------',_ ________ _ 
60 ~-------------~----------= 

40 
20 

0 

+-·---------··------------------------j 

Version-2.0 Version-2.0.1 Version-2 .0 .2 

1o1M! +Maintainability 

Graph plot of values of Ml and maintainability package-8 

302 

2.0.2 

65.53 

8 

j£!;63 

0.8 ;., 

~ 

0.6 
:c 
" = 

0.4 
·;; -= ·;; 

0.2 :; 

0 



u 
u 

CC vs. Maintainability Package -8 (data.postgresql) 

___ , _________ r ___ ---- -- ---- ---------

Version-2.0 Version-2.0.1 Version-2.0.2 

UCC +Maintainability 

Graph plot of values of CC and maintainability package-8 

303 

0.8 » 
:5 

0.6 :c 
'" = ·; 

0.4 -= ·; 

0.2 ~ 

0 



J. Critical Values of the Pearson Correlation Coefficient r 

n a=.05 a= .01 

4 0.950 0.990 

5 0.878 0.959 

6 0.811 0.917 

7 0.754 0.875 

8 0.707 0.834 

9 0.666 0.798 

10 0.632 0.765 

15 0.514 0.641 

20 0.444 0.561 

25 0.396 0.505 

30 0.361 0.463 

35 0.334 0.430 

40 0.312 0.403 

45 0.294 0.380 

50 0.279 0.361 

60 0.254 0.330 

70 0.235 0.306 

80 0.220 0.286 

90 0.207 0.269 

100 0.196 0.256 

304 


