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ABSTRACT 

An artificial neural network (ANN), or shortly "neural network" (NN), is a powerful 

mathematical or computational model that is inspired by the structure and/or 

functional characteristics of biological neural networks. Despite the fact that ANN has 

been developing rapidly for many years, there are still some challenges concerning 

the development of an ANN model that performs effectively for the problem at hand. 

ANN can be categorized into three main types: single layer, recurrent network and 

multilayer feed-forward network. In multilayer feed-forward ANN, the actual 

performance is highly dependent on the selection of architecture and training 

parameters. However, a systematic method for optimizing these parameters is still an 

active research area. This work focuses on multilayer feed-forward ANNs due to their 

generalization capability, simplicity from the viewpoint of structure, and ease of 

mathematical analysis. Even though, several rules for the optimization of multilayer 

feed-forward ANN parameters are available in the literature, most networks are still 

calibrated via a trial-and-error procedure, which depends mainly on the type of 

problem, and past experience and intuition of the expert. To overcome these 

limitations, there have been attempts to use genetic algorithm (GA) to optimize some 

of these parameters. However most, if not all, of the existing approaches are focused 

partially on the part of architecture and training parameters. On the contrary, the GA­

ANN approach presented here has covered most aspects of multilayer feed-forward 

ANN in a more comprehensive way. This research focuses on the use of binary­

encoded genetic algorithm (GA) to implement efficient search strategies for the 

optimal architecture and training parameters of a multilayer feed-forward ANN. 

Particularly, GA is utilized to determine the optimal number of hidden layers, number 

of neurons in each hidden layer, type of training algorithm, type of activation function 

of hidden and output neurons, initial weight, learning rate, momentum term, and 

epoch size of a multilayer feed-forward ANN. In this thesis, the approach has been 

analyzed and algorithms that simulate the new approach have been mapped out. The 
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approach has been tested in three actual operations, in addition to standard XOR 

problem; where the results have shown the applicability of the proposed approach in 

those applications. The proposed method is considered novel as it has proven that 

GA-based method can be comprehensively utilized to determine multilayer feed­

forward ANN architecture and training parameters. This method is more effective and 

gives a more precise performance than existing approaches, in addition to being less 

human dependent. It also has a better generalization capability and training stability. 

In summary, the main contributions of this research are: demonstrates the strength of 

genetic algorithm (GA), auto designing of multilayer feed-forward ANN, and 

demonstrates the hybridization capability ofGA with multilayer feed-forward ANN. 
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ABSTRAK 

Rangkaian neural buatan (ANN) atau secara ringkasnya 'rangkaian neural' (NN) ialah 

sebuah model matematikal atau komputasi berkeupayaan tinggi yang diilhamkan dari 

ciri-ciri struktur dan/atau fungsi rangkaian neural biologi. Walau pun ANN telah 

membangun dengan pesat sejak beberapa tahun, namun masih terdapat beberapa 

masalah berkaitan pembinaan model ANN yang dan tepat dalam menangani sesuatu 

masalah. ANN boleh dikategorikan kepada tiga jenis utama: satu lapisan, berulang 

dan rangkaian suap ke depan berbilang lapisan. Dalam ANN suap ke depan berbilang 

lapisan, prestasi sebenar amat bergantung kepada pemilihan seni bina dan parameter 

latihan. Walau bagaimanapun, kaedah sistematik untuk menentukan prarameter ini 

masih merupakan satu bidang penyelidikan yang aktif. Kajian ini memberi fokus 

kepada ANN suap ke depan berbilang lapisan berdasarkan kepada keupayaan 

pengitlakan ANN, ringkas dari segi struktur, dan senang untuk dianalisa secara 

matematik. Walau pun, terdapat beberapa peraturan untuk menentukan parameter 

ANN suap ke depan berbilang lapisan di dalam penerbitan, kebanyakan rangkaian 

masih ditentukur menggunakan kaedah cuba-cuba, yang bergantung kepada jenis 

masalah dan pengalaman serta gerak hati pakar. Bagi mengatasi kekurangan­

kekurangan ini, terdapat beberapa percubaan untuk menggunakan algoritma genetik 

bagi menentukan sebahagian dari parameter-parameter tersebut. Namun, kebanyakan 

dari kaedah-kaedah yang dicadangkan tersebut, jika tidak semuanya, lebih tertumpu 

kepada seni bina dan parameter latihan. Sebaliknya, kaedah GA-ANN yang 

diperkenalkan di sini merangkumi kebanyakan aspek-aspek ANN suap ke depan 

berbilang lapisan dalam satu cara yang lebih komprehensif. Penyelidikan ini memberi 

fokus kepada penggunaan algoritma genetik terkod perduaan (GA) bagi 

melaksanakan strategi pencarian yang efisien untuk mendapatkan seni bina optima 

dan parameter latihan bagi rangkaian ANN suap ke depan berbilang lapisan. 

Khususnya, GA digunakan untuk menentukan bilangan lapisan tersembunyi optima, 
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bilangan neuron di dalam setiap lapisan tersembunyi, jenis algoritma latihan, jenis 

fungsi pengaktifan neuron tersembunyi dan neuron output, beban awal, kadar 

pembelajaran, faktor momentum, dan saiz epok rangkaian ANN suap ke depan 

berbilang lapisan. Di dalam tesis ini, kaedah ini telah dianalisa dan algoritma­

algoritma bagi mensimulasi kaedah baru ini telah dikenal pasti. Kaedah ini telah diuji 

dalam tiga keadaan operasi sebenar, termasuk juga masalah XOR standard, di mana 

keputusan-keputusannya telah menunjukkan kebolehgunaan kaedah yang 

dicadangkan ini di dalam aplikasi-aplikasi tersebut. Kaedah yang dicadangkan 

dianggap baru kerana ia telah membuktikan bahawa kaedah berasaskan GA boleh 

digunakan secara komprehensif untuk menentukan seni bina ANN suap ke depan 

berbilang lapisan dan parameter untuk latihan. Kaedah ini lebih berkesan dan 

memberi prestasi yang lebih tepat berbanding kaedah-kaedah sedia ada, selain dari 

kurang bergantung kepada manusia. Ia juga mempunyai keupayaan pengitlakan dan 

kestabilan latihan yang lebih baik. Secara ringkasnya, surnbangan-sumbangan utama 

hasil penyelidikan ini ialah: membukitkan kekuatan algoritma genetik (GA), rekaan 

otomatik ANN suap ke depan berbilang lapisan, dan membuktikan keupayaan 

penghibridan GA dan ANN suap ke depan berbilang lapisan. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

The aim of this work is to propose a methodology for optimizing the architecture and 

training parameters of a multilayer feed-forward artificial neural network (ANN). It 

based on a genetic algorithm (GA). The current chapter describes the overall research 

background and provides brief information on ANN and GA. It outlines the problem 

statements together with the relevant research questions. The scope of work and 

contributions of the thesis are discussed as well. 

1.2 Background 

The ANN has been used to emulate the human decision and prediction abilities. ANN 

is found to be more flexible and suitable than other modeling methods (Zhang et a!. 

1998). ANN is based on the neural architectures and function of the human brain 

(Haykin 1994), and is described as a group of simple processing units, known as 

neurons (nodes), which are arranged in parallel layers that are connected to each other 

by weighted connections. By virtue of hidden layers of neurons that lie between the 

input and output layers of the network, and the nonlinear activation functions that are 

used to translate nodal input to output, ANN provides linear and nonlinear modeling 

without the requirement of preliminary information and assumption as to the 

relationship between input and output variables. This provides ANN an advantage 

over other statistical and conventional prediction methods such as logistic regression 

and numerical methods, in which nonlinear interactions between variables must be 

modeled in explicit functional form (Tu 1996). 



Based on their architectures, ANN can be categorized into three main types: 

single layer, recurrent and multilayer feed-forward network. This work focuses on 

multilayer feed-forward (ANN) due to their generalization capability, simplicity from 

a structure viewpoint, and ease of mathematical analysis. 

ANN trained with feed-forward back-propagation BP algorithm has been 

extensively applied with great success in various disciplines, such as automotives 

(Majors et a!. 2002), banking (Arzum and Yalcin 2007), electronics (Bor-Ren and 

Hoft 2003), finance (Xiaotian et a!. 2008), industry (Cheginia et a!. 2008), 

telecommunication (Perambur and Preechayasomboon 2002), oil and gas (Fred et a!. 

2000), and robotics (Huang et a!. 2008) as well as others. 

In designing a multilayer feed-forward ANN, the most common parameters that 

should be selected by researchers are as follows (Kaastra and Boyd 1996): 

• Data preprocessing parameters including frequency of data (i.e., daily, weekly, 

monthly, quarterly type of technical data, fundamental), method of data 

sampling, and method of data scaling (i.e., minimum/maximum, 

mean/standard deviation). 

• Training parameters including learning rate, momentum term, epoch size, 

weight initialization, size of training, validation, testing sets, and type of 

training algorithm. 

• Design parameters including number of input neurons, number of hidden 

layer, number of neurons in each hidden layer, number of output neurons, and 

type of activation function for the hidden and output layers. 

v, 

v, 

Figure 1.1 Structure of neural network of n input, n hidden, and n output layers 
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Despite their popularity, a multilayer feed-forward ANN, in particular, has a 

drawback that is its performance efficiency, convergence and its accuracy may vary 

depending on the parameters used to design and to train them (Sungzoon and James 

1993). The networks can be configured with different number of hidden layers, 

different number of neurons in each layer, and can be trained with different values of 

learning rate and momentum term that govern the changing of connection weights, as 

new cases are learned. Different network structures, different type of activation 

function for hidden and output neurons, and different type of training algorithms may 

have some effect on network performance. Therefore, it is an extremely difficult task 

to choose an appropriate method for determining the optimal network design and 

training parameters. 

A promising method, however, GA based on the Darwin Theory of Evolution is a 

combinatorial optimization and powerful technique that searches for an optimal/near 

value of a complex objective function by simulation of the natural evolutionary 

process. GA can be used to search for optimal ANN configurations. In fact, GA has 

been successfully used in a wide range of problem areas (Goldberg 1989). 

In brief, GA consists of three main operators: selection, crossover, and mutation. 

GA algorithm begins with a set of potential solutions to the problem being examined; 

this solution which is represented by chromosomes in GA is called the population. 

Crossover operation is used to obtain a new solution by combining two different 

chromosomes (Parents) to generate new better offspring (Childs); while a new 

solution that results by altering existing members of the population is called mutation. 

Although there are many existing GA-based attempts to optimize multilayer feed­

forward ANN parameters, these attempts are still partially focused on some 

parameters; for example (Taeksoo and Ingoo 2000; Blanco et a!. 200 I; Jasmina and 

Ramazan 2001; Makoto et a!. 2006; Sedki et a!. 2009) applied GA method to evolve 

the connection weights of multilayer feed-forward ANN. Another GA method was 

used by (Hyun-jung and Kyung-shik 2007) to optimize both connection weights and 

the number of hidden neurons, while (Ferentinos 2005) considered a binary-encoded 

GA to determine the optimum multilayer feed-forward ANN structure, training 

algorithm, and activation function. In this research, GA is applied in a manner more 

comprehensive compared to the existing ones. The proposed GA-ANN approach has 
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been adopted to search for optimal structure, training algorithm, activation function, 

initial weight, learning rate, momentum term and epoch size. 

Further, a comprehensive benchmarking has been carried out to assure the 

significance of the present work in accordance to the following performance metrics: 

• Optimality 

• Generalization capability and training stability of multilayer feed-forward 

ANN 

• Prediction effectiveness 

• Simulation time 

1.3 Research problem 

Multilayer feed-forward ANN, in particular, has been utilized for modeling and 

prediction purpose due to nonlinearity, time variability, and difficulty in inferring 

input-output mapping (Fred, James et a!. 2000; Kaynak et a!. 2003; Patrick 2007). 

Current literatures on multilayer feed-forward ANN show that the determination of 

optimal architecture and training parameters are the major obstacles for their 

accuracy, and effectiveness. The success of multilayer feed-forward ANN 

performance for the purpose of prediction and modeling in science and engineering is 

tremendously affected by these factors: network architecture such as, the number of 

hidden layers and number of neurons in each layer, training algorithms (i.e. steepest 

descent, quasi-Newton, conjugate gradient, Levenberg-Marquardt, resilient back 

propagation algorithm, etc), activation functions, initial weight (i.e. Log-sigmoid, 

Softmax, Linear, etc), learning rate, momentum term, and epoch size. In ANN design 

and training processes, determination of the best parameters is an extremely important 

task. 

The hidden layer(s) provide the network its capability to generalize. In theory, a 

neural network with single hidden layer with a sufficient number of hidden neurons is 

capable of approximating any continuous function. In practice, neural networks with 

single and infrequently two hidden layers are extensively used and have performed 

very well. The determination of appropriate number of hidden layers and neurons in 

each hidden layer is one of the extremely critical tasks in designing multilayer feed-
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forward ANN. As shown in Figure 1.2, the use of huge number of hidden layers and 

neurons in each hidden layer may cause over-fitting, which means loss of 

generalization capability of the network. Over-fitting happens when a prediction 

model has too few degrees of freedom. In other words, it has relatively few 

observations in relation to its parameters, and therefore it is able to memorize 

individual points rather than learn the general patterns (Kaastra and Boyd 1996). In 

contrast, a network with too few hidden neurons may cause under-fitting which would 

cause the network as incapable to differentiate complex patterns leading to only a 

linear estimate of the actual trend (Figure 1.2). 
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Figure 1.2 Effect of hidden layer size on network generalization 

The application of multilayer feed-forward ANN in modeling nonlinear processes 

has a central drawback which is the lack of an accurate method to choose the most 

appropriate type of activation function and training algorithm. These tasks are usually 

based on a "trial and error" procedure performed by the developer of the model. 

The activation (transfer) function is required to transform the weighted sum of all 

signals impinging onto a neuron so as to define its firing intensity. Most applications 

utilizing back-propagation ANN employ a sigmoid function, which possesses the 

distinctive properties of continuity and differentiability on (-oo, oo).The advantage of 

choosing a particular transfer function over another is still not well theoretically 

understood (Hassoun 1995). In addition, the use of different types of activation 

functions will result in different performances of the network. 
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The basic training methodology that has been widely used is back-propagation 

training algorithm (Rumelhart et a!. 1986). This algorithm has several modifications 

according to the multidimensional minimization algorithm that it uses to minimize the 

error during training process. In the literature, four different types of minimization 

algorithms were considered: steepest descent, quasi-Newton, conjugate gradient and 

Levenberg-Marquardt algorithm. Their main difference is the way of approximating 

the inverse of the Hessian matrix. The steepest descent and the conjugate gradient 

algorithms replace the inverse of the Hessian with the identity matrix, while the other 

two algorithms try to approximate it with different methods. Especially in the case of 

engineering applications, even different minimization algorithms of some specific 

training algorithm, like the back-propagation training algorithm (Rumelhart et al. 

1986) that is most widely used, can result in perceptibly different performances. 

Learning rate and momentum term are commonly used in connection weight 

changing during the training process, and to reduce the likelihood of search instability 

(Zupan and Gasteiger 1993; Hay kin 1994 ). The connection weight change is 

determined by the use of the modified delta rule (Zupan and Gasteiger 1993), which 

can be written as: 

aE 
~Wji(t + 1) =a. ~Wji (t) + 7J. a. aw· 

Jl 

(1.1) 

Where the learning rate 11 is limited to the range 0 :::; 11 < 1, a is momentum term, t 

IS the iteration of learning, W;j is an adjustable parameter known as synaptic 

connection weight, and E is equal to: 

c 
1 "\' 2 
2Lek 

j=l 

In which ek is the error between calculated output, Ok, and desired output, tk, and 

ek is determined as follows: 

(1.2) 
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As implied in Eq. 1.1, a accelerates the weight updates when there is a need to 

reduce 11 to avoid oscillation. A high a value will decrease the danger of the network 

being stuck in local minima, however it increases the danger of overshooting the 

solution as does a high 11 value. In contrast, a small a value leads to slow training 

speed. 

Moreover, a high learning rate, 11, will accelerate training speed (because of the 

large step) by updating the connection weight vector, w, significantly from one 

iteration to another. But, this may cause the search to oscillate on the error surface and 

never converge, consequently increasing the danger of overshooting a near-optimal w. 

While a small 11 value drives the search steadily in the direction of the global 

minimum, even though slowly. 

Weight initialization has effect on network convergence (Li et al. 1993; Schmidt 

et al. 1993). Normally, network weights are initialized uniformly in a relatively small 

range with zero-mean random numbers (Rumelhart, Hinton et al. 1986). Nevertheless, 

a small range can guide to very small error gradients which may slow down the initial 

training process. The small number is very essential to decrease the likelihood of 

premature neurons saturation (Lee et al. 1991 ). 

The selection of the training epoch size can affect the design and performance of 

the final network. For a given ANN architecture, the error in training, validation and 

test dataset are monitored for each training epoch. Extended training period can result 

in a network that can only serve as a look-up table, a phenomenon called overtraining 

or memorization (Zupan and Gasteiger 1993; Wythoff 1993). In theory, a high epoch 

size can result in near-zero error on predicting the training data (called recall), but 

small epoch size may produce ANN that is incapable of representing the data. 

The successful application of multilayer feed-forward ANN in predicting and 

modeling problems is extremely influenced by the selection of these parameters. 

However, the selection of these parameters depends mainly on the type of problem, 

and the past experience and intuition of the expert. In other words, there are no 

perfectly clear methods or theoretical background as how to determine these 

parameters. This research looks into determining multilayer feed-forward ANN 
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architecture and training parameters, and improving the efficiency and accuracy of the 

network performance by adopting GA. 

1.4 Research questions 

The research problem specified m Section 1.3 has led to a formulation of the 

following research questions for this thesis: 

Question 1: What data preprocessing technique can enhance the designing of 

multilayer feed-forward ANN and increases the generalization ability prior to the use 

ofGA? 

This question leads to the data preprocessing techniques presented in Chapter 3 

and Chapter 4. The chapters describe the importance of data representation to the 

network performance and their effect on the network designing success. 

Question 2: Which multilayer feed-forward ANN architecture and training 

parameters that need to be optimized by using GA and why? 

This question is addressed in Chapter 3. In this research, GA is adopted in a novel 

way to determine optimal multilayer feed-forward ANN architecture and training 

parameters due to their significant effect on network performance efficiency and 

accuracy. 

Question 3: What is the GA structure or encoding scheme that maximizes its use 

as an effective tool for the optimization of multilayer feed-forward ANN architecture 

and training parameters and why? 

This question is addressed in Chapter 3. In this research, binary-encoded GA is 

adopted in a novel way to determine optimum multilayer feed-forward ANN 

architecture and training parameters. 

Question 4: How can GA be used to determine the best multilayer feed-forward 

ANN architecture and training parameters that fall into existing works? 
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This question is addressed and presented conceptually in Chapter 3 and in further 

details in Chapter 4. The main idea is to develop an approach that focuses on every 

aspect of multilayer feed-forward ANN, such as, training algorithm, activation 

function, initial weight, learning rate, momentum term and epoch size. 

Question 5: What application domains can take advantage of the new approach 

presented in this thesis and for what standard and real world uses can they be applied 

to? 

This question is addressed in Chapter 4. 

1.5 Research objectives 

The main objective of this work is to present a methodology for optimizing the 

architecture and training parameters of a multilayer feed-forward artificial neural 

network (ANN) and to contribute to existing work on multilayer feed-forward ANN 

designing and training performance. It is based on the employment of a binary­

encoded genetic algorithm (GA). 

The specific research objectives of this thesis are as follows: 

• To propose an algorithm for auto designing of multilayer feed-forward 

ANN. 

• To design a GA-based method that has the ability to cover most multilayer 

feed-forward ANN aspects for both architecture and training parameters. 

• To investigate the effect of using GA on multilayer feed-forward artificial 

neural networks performance. 

1.6 Scope of the thesis 

This thesis focuses on the following issues: 
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1.6.1 GA for multilayer feed-forward ANN architecture and training 

optimization 

Based on network architecture there are a number of different ANN types. In this 

work, multilayer feed-forward with back-propagation ANN is utilized due to their 

simplicity from the viewpoint of structure, ease of mathematical analysis and 

generalization capabilities. Further, there are several optimization methods that can be 

applied for multilayer feed-forward ANN optimization, but in this work GA is 

adopted to determine the best architecture and training parameters. The GA is selected 

due to their significant advantages such as: 

• It operates on a coded form of the problem's parameters, not the parameters 

themselves. 

• GA is capable of searching in very large solution spaces efficiently by 

providing a lower computational cost, because they use probabilistic transition 

methods instead of deterministic ones. 

There are two main GA encoding schemes, which are direct and indirect. Among 

these types, this work provides a binary GA encoded sometimes called indirect 

encoding, which looks more biologically reasonable than the direct encoding one 

because genetic information in real chromosomes cannot specify the whole nervous 

system directly and independently (Yao 1993). 

1.6.2 GA-ANN approach evaluation 

To evaluate the proposed GA-ANN approach, datasets from four different domains 

were obtained for experimentation. The datasets used include: a dataset from 

Universiti Teknologi PETRONAS GDC plant (TAURUS 60 gas turbine single-shaft 

generator set) collected for the period Jan. to Feb. 2008. Another dataset was collected 

from PETRONAS Penapisan (Melaka) Sdn Bhd from Jan. to Feb. 2007. The third 

dataset is a published experimental dataset of flank wear for drilling process (Panda et 

a!. 2008). Lastly, a dataset of standard XOR problem has been selected to benchmark 

the proposed approach. 
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1.6.3 GA-ANN approach validation 

To validate the proposed approach, this work provides a comprehensive comparative 

study against relevant outstanding approaches in terms of optimality, generalization 

capability and training stability of multilayer feed-forward ANN, prediction 

effectiveness, and simulation time. 

1.7 Research significance 

Most, if not all, of the existing approaches to optimize the multilayer feed-forward ANN 

based on GA have been partially focused on architecture and training parameters. In 

contrary, the GA-ANN approach presented in this thesis has covered most aspects of 

multilayer feed-forward ANN in a more comprehensive way and it has been applied 

practically to a real world and standard applications. The research significantly 

contributes to demonstrate the strength of genetic algorithm (GA). The proposed 

research method is considered novel in the sense that it proves that GA-based method 

can be comprehensively utilized to determine multilayer feed-forward ANN 

architecture and training parameters such as number of hidden layers, number of 

neurons in hidden layer, training algorithm, activation function, initial weight, 

learning rate, momentum term and epoch size. 

1.8 Thesis outline 

This thesis is written in a manner that follows the steps that were taken during the 

design and development of the ANN using GA-ANN approach. The thesis outlines 

are as the followings: 

Chapter I outlines the basic concept of the ANN and GA design and operators, 

explains the research problem and objectives, identifies the relevant research 

questions and defines the scope of the thesis. The chapter, thereafter, provides a 

discussion on the outline and contributions of the thesis. 

Chapter 2 introduces the general survey that covers the concept of ANN, GA, and 

GA-ANN. For this, a more comprehensive definition and description of ANN and 

back propagation algorithm is presented, followed by a discussion of the basic 

II 



elements, architecture and operations of ANN. The chapter then goes on to discuss 

various ANN applications that have been developed, as well as a summary of their 

advantages. A history of GA method for optimization purpose is then covered, 

followed by a discussion of basic operators, applications and their advantages. The 

related works of optimization of ANN using GA is described, including how they can 

be used to design neural networks using genetic algorithm. Then the chapter provides 

an extensive detailed survey related to every aspect of multilayer feed-forward ANN 

model development such as, data-preprocessing techniques, type of training 

algorithm, type of activation function, initial weight, learning rate, momentum term, 

and epoch size. For this, the recommended rules that have been used to determine the 

best parameters are presented. 

Chapter 3 presents the methodology that has been used in this research. The first 

section of this chapter discusses the procedure involved in this research and focuses 

on the design methodology of an GA-ANN approach. The second section explains in 

detail every stage involved in designing the GA-ANN approach using the four 

different datasets, followed by a description of the parameters, functions, and 

techniques that are required in back-propagation training algorithm. The last section 

of this chapter explains how the experiment and analysis are accomplished in order to 

investigate the efficiency and accuracy of BP learning algorithm, and the prediction 

performance of the GA-ANN approach by using binary-encoded GA technique. 

Chapter 4 describes the implementation of the new approach (GA-ANN) to 

determine optimum multilayer feed-forward ANN architecture and training 

parameters. The GA-ANN approach proposed in this chapter has been designed to be 

usable in any kind of science and engineering modeling domains, and is not limited to 

petroleum and energy domains only. To implement the GA-ANN approach, a large 

hierarchy of MA TLAB codes was created, executed and they are presented in a 

format similar to algorithms. 

Chapter 5 analyzes and discusses the results of the simulation and modeling of the 

GA-ANN obtained using MATLAB software. Further, this chapter proposes a 

benchmark of new GA-ANN approach and provides a comprehensive comparative 

study between GA-ANN approach and four relevant outstanding approaches in terms 

of generalization capability and training stability, prediction effectiveness, accuracy, 

optimality and simulation time. The findings indicated that the training algorithm, 
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activation function, number of hidden layer, number of neuron per hidden layer, 

learning rate, momentum term, and epoch size have a significant effect on the 

multilayer feed-forward ANN performance. 

Chapter 6 presents the conclusions for this work, contributions, as well as some 

recommendations for potential future research directions that can be extended based 

on this research work. 

1.9 Summary 

This chapter introduces the problem of optimizing the architecture and training 

parameters of a multilayer feed-forward ANN using GA. The chapter presents a brief 

introduction to ANN and GA. Known methods and algorithms in this domain are 

briefly introduced and presented. The problem of this research is clearly stated in this 

chapter; the objectives and scope of this thesis are thoroughly explained. The chapter 

ends with a description of the thesis contributions and outline. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter a general survey of the state of the art in ANN and GA research that 

are relevant to this thesis is presented. The intention is to provide a basic 

understanding of the subject matter. The chapter begins with a comprehensive 

definition and description of ANN, followed by a discussion of basic element, 

architecture and operations of ANN. The chapter then goes on to discuss various 

ANN applications that have been developed. A history of GA method for 

optimization purpose is then covered. This is followed by a discussion of basic 

operators, applications and the advantages of GA. Related works in the optimization 

of ANN using GA are described, including how they can be used to determine ANN 

architecture and training parameters. It is claimed in this chapter that there is a need to 

have a new approach that covers every aspect of ANN to improve prediction 

performance efficiency and accuracy of the network. 

2.2 Artificial neural networks (ANN) 

ANN is one of the major branches of artificial intelligence. Essentially ANN is a 

powerful and general technique that has been used to emulate the structure and 

biological functionality of the natural human brain. 

The basic processing element of ANN is the neuron. A biological neuron receives 

inputs from other sources, unites them, then generally performs a nonlinear process on 

the outcome, and finally outputs the result. In particular, the natural biological 



neurons have the same four fundamental elements (Figure 2.1). These are 

dendrites, soma, axon, and synapses. 

Dendrites are hair-like extensions of the soma that proceed like input channels. 

Dendrites receive their input during the synapses of other neurons. The soma (or cell 

body) processes these inputs and then turns that processed value into an output that is 

sent out to other neurons through the axon and the synapses. 

;;.>•,' A,'...,.,_, •• ~...., ..., • ..-•. _-.-._, ...,,., ..... •· .,_ .... ·:--~~-" • ~~r• ......,,...... •• ..,. . ·•. ···~• 

soma synapse 
. dendrite axo 

Figure 2.1 Structure of biological neuron (Caetano 2006) 

The artificial neurons mimic the four fundamental functions of the biological 

neurons in human brain. In Figure 2.2, the input signals are represented by the symbol 

x(n). Each of these inputs is multiplied by their corresponding connection weights, 

and these connection weights are represented by w(n). Then the outcome products are 

simply summed up, fed throughout an activation function to produce a result and the 

output is represented by the symbol y(n). 

In recent years, ANN has gained more and more popularity for prediction and 

optimization purpose because of their wide range of applicability, their strong 

capability to map complicated and nonlinear problems, their high accuracy for 

learning, and for their high robustness. 
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Figure 2.2 Model of Computing Neuron (Haykin 1994) 
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The basic principle of ANN modeling technique is represented schematically in 

Figure 2.3. ANN tries to map the relationship between input pattern and the 

corresponding output pattern during training process .The connection weights of 

network are adjusted, based on a comparison of the actual output and the target 

output, until the network output matches the target (Demuth and Beale 2005). 
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Figure 2.3 Principles of ANN algorithms (Demuth and Beale 2005) 

2.2.1 Network architectures 

ANNs can be categorized into three mam types based on network architectures, 

namely, single-layer, multilayer and recurrent neural networks. The single layered 

networks have very limited application. Recurrent networks are most popular 

particularly with control systems. Multi-layered networks have been successfully used 

in several applications and have achieved satisfactory performances. 
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2.2.1.1 Single-layer neural networks 

A single-layer neural network which was first proposed by Hay kin (Hay kin 1994) 

consists of input layer neurons that are interconnected to corresponding output layer 

neurons. In this case, the input layer is not counted as a layer since no computation is 

performed in this layer. 

For single layer networks, we can define the following matrices: 

X:= [x(l), ... , x(m)]' E R (2.1) 

Where X is defined as the input matrix with m elements, while: 

Y := [y(l), ... ,y(n)]' E R (2.2) 

Where Y is the matrix of corresponding outputs with n elements, and W;j 

represents the connection weights. A typical single layer neural network is shown in 

Figure 2.4 
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Figure 2.4 Atypical Single layer neural network (Demuth and Beale 2005) 

2.2.1.2 Multilayer feed-forward ANN 

Multilayer feed-forward ANN was first established by (Hinton, Rumelhart, 

Williams 1986). Among all suitable network architectures, feed-forward networks are 
17 



the most commonly used algorithms, primarily due to their simplicity from the 

viewpoint of structure and ease of mathematical analysis; FFNN has been applied 

successfully to various application domains. These are namely prediction, controlling, 

system modeling and identification, signal processing and pattern classification 

(Bilski 2005). 

Generally, multilayer feed-forward ANN architecture as shown in Figure 2.5 

demonstrates an arrangement of interconnected nodes called neurons by sets of 

connection weights organized into three groups called layers, i.e., input, hidden, and 

output layers containing M, K, and N numbers of processing neurons (hidden 

neurons), respectively. The input layer neurons accept external information into the 

Multilayer feed-forward ANN model. Each hidden layer is a group of neurons that 

receive their input from the previous layer (input or other hidden layer), then perform 

some mathematical processing (combination and transfer) and feed an outcome to the 

nearest neurons in the next layer (output or other hidden layer). The third layer 

represents the output neurons that process the transferred values from the last hidden 

layer. 
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Figure 2.5 A schematic diagram of multi-layered feed-forward neural network with 
back-propagation training algorithm (Demuth and Beale 2005) 

From Figure 2.5, the connection weights between input and hidden neurons, and 

between hidden and output neurons are represented by wH and W, respectively. 

Whereas, yH and y0 indicate the outputs vector from hidden and output layers, 
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respectively. The weighted input (W) is the argument of the activation function f, 

which performs the scalar process of output y. Then the activation function net input 

is a Summing function (nH Or n°) which is the summation of the weighted input (wH 
or fVJ). 

In practice, most ANN researchers rely on the application of multilayer feed­

forward ANN because of their many characteristics, among them, they do not need a 

user-defined problem solving algorithm (as is the case with conventional 

programming language), but as a substitute they "learn" from example or pattern, a 

great deal like human brain. Therefore, the FFNN has an inherent generalization 

capability. This means that they can recognize and respond to patterns that are similar 

but not identical to the ones with which they have been trained (G.-C. Vosniakos P.G. 

Benardos 2007). 

2.2.1.3 Recurrent neural networks (RNNs) 

Recurrent neural networks (RNNs) such as Hopfield network (Hopfield 1982) and 

(Hopfield 1984) are usually used to model a variety of nonlinear dynamical behaviors 

(Siegelman and Sontag 1995), and can be a powerful solution for nonlinear problems 

(Seidl and Lorenz 1991 ). In recent years, a large number of research activities have 

studied the capabilities and limitations of RNNs applied to subjects associated with 

pattern recognition and control. On the other hand, the use of RNNs is not as 

extensive as multilayer feed-forward ANN because of their complexity through 

developing learning algorithms. 

In practical, multilayer feed-forward ANN can be used to model static nonlinear 

systems, and can have either single or multilayer network architecture. However, 

recurrent networks (RNNs) are dynamic networks, and their architectures are 

fundamentally different from the static ones, because they include feedback (Mandie 

and Chambers 2001 ). 

Moreover, RNNs are a neural network in which the output of some neurons is fed 

back as an input to some other neurons. The internal feedback allows the network to 
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temporally memorize the behaviors of some neurons as states. Not only by the inputs, 

but also by the previous states, the network can output in a context-dependent manner. 

Two major types of recurrent neural networks are presented here as examples, 

Elman Recurrent Neural Network (ERNN) (Elman 1990) and Jordan Recurrent 

Neural Network (Jordan 1986). Elman RNN is a network, which in principle is set up 

as a normal feed-forward network. This means that all neurons in one layer are 

connected with all neurons in the next layer. An exception is the context layer, which 

is a special case of hidden layer. The architecture of an Elman RNN is shown in 

Figure 2.6. The neurons in the context layer (context neurons) hold a copy of the 

output of the hidden neurons. The output of each hidden neuron is copied into a 

specific neuron in the context layer. The value of the context neuron is used as an 

extra input signal for all the neurons in the hidden layer, one time step later. 

Therefore, the Elman network has an explicit memory of one time lag (Elman 1990). 

In Jordan recurrent networks the output feeds back into the hidden layer with a 

time delay. The output of the previous periods becomes input in the current period as 

illustrated in Figure 2.7. Consequently, the output of the existing period takes the 

history of past outputs, which contains past values of inputs. 

RNN, however, necessitates complex computational processes that can only be 

achieved by more powerful software. Similar to regular feed-forward neural networks, 

RNN can be trained with gradient descent back-propagation and optimization 

methods such as conjugate gradient, quasi-Newton, and Levenberg-Marquardt. 

Input layer Hidden layer Output layer 

Figure 2.6 Elman recurrent networks (Elman 1990) 
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lnput layer Hidden layer Outpullayer 

Figure 2.7 Jordan recurrent networks (Jordan 1986) 

2.2.2 Back-propagation algorithm (BP) 

The major performance characteristics of ANN are capability to learn, corresponding 

operation and distributed memory, finally leading to error tolerance. According to 

these advantages, Back-propagation (BP) is a recognized representative of all gradient 

descent algorithms, which is a commonly used technique for neural network learning 

in various areas of application. 

A BP is the best-known ANN that uses a supervised learning technique and feed­

forward architecture that maps the complex and nonlinear relationship between inputs 

(independent variables) and outputs (dependent variables) through the training 

process with the given training datasets (Jung and Hong 2007). 

The input pattern is presented at the network and the feed forward phase is first 

executed. Hence, an error between the actual output from the BP network and the 

desired output, which is given from the training data set, are computed. These errors 

are sent back in reverse direction and used to determine connection weight changes in 

the BNN according to the back-propagation of errors rule. The training of the BP 

network consists of three main processes, which are, feed forward of the input data, 

back-propagation of error, and updating of the connection weights. These three main 

processes are detailed in the next section. 
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2.2.2.1 Feed forward process 

In the multilayer feed forward back-propagation ANN, each neuron in the layer 

receives an input value from the training dataset, and then each of these input 

variables are multiplied by corresponding connection weight values. The sums of 

weighted inputs are computed and its activation function is applied, that scales the 

output to a fixed range of values, i.e., (0,1) or (-1,1). Then the output value is sent to 

all neurons in the next layer (hidden or output layer) (Laurene 1994 ). Steps for the 

feed-foreword process can be expressed as follows (Laurene 1994): 

Step 1: Each input neuron x; (i= 1, 2, .. n), receives its input value from training 

pattern. 

Step 2: Each hidden neuron hj (j=1, 2, .. p), receives its input value from input 

neurons: 

(i) Sum the weighted input neth. as follows: 
I 

n 

net_hj = (voj +I xi Vij) 
i=l 

(2.3) 

Where is Voj is bias on hidden layer j(j = 1, ... , p), X is the input training vector: 

X = { x;, i = 1, ... , n}, and V; is the input-to-hidden weights vector: Vi = { vij, j = 1, .. 

. , p}. 

(ii) Passe it to the activation function to calculate output values as follows: 

(2.4) 

Where f is the binary sigmoid activation function: f(x) = 1/(1 + e-'). 

Step 3: Each output neuron Yk, has been received its input from hidden neuron: 

(i) Sum the weighted input as follows: 

p 

net_yk =(wok+ I hj Wjk 
j=l 

(2.5) 
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Where Wok is the bias on output layer k(k = 1, ... , m), hj is the hidden neuron 

output, and Wi is the hidden-to-output weights vector: Wj = { Wjk, k = 1, ... , m}. 

(ii) Pass it through activation function to calculate output values Yk as follows: 

(2.6) 

Where f(x) is the derivative of the sigmoid activation function: f(x)) = f(x)[l-f(x)]. 

2.2.2.2 Back-propagation of error process 

The back-propagation error is the difference between the actual network output and 

the corresponding desired output. During the back-propagation of the errors 

calculation process, the learning rate ( o) determines· the amount of the connection 

weight changes. Steps for the back-propagation of errors can be expressed as follows 

(Laurene 1994): 

Step 1: For each output neuron Yk(k = 1, ... ,m): 

(i) Compute the error term 8k as follows: 

ok = (targetk- Yk) f'(netyk) (2.7) 

Where Target is the output target vector: Target = { targetk, k = 1, ... , m} and Yk is 

actual output and f(x) is the derivative of the sigmoid activation function: f(x)) = 

f(x)[l-f(x)]. 

(ii) Compute the weight correction term t.wjk (j = 1, ... , p) and t.wok as follows: 

(2.8) 

Where ok is the error term at output layer Yk and used to change weight Wjk, and a 
is the learning rate that defines the amount weights are changed during training cycle. 

Step 2: For each hidden neuron hj (j = 1, ... , p): 

(i) Compute the error term Oj as follows: 
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(2.11) 

Where 8i is the error term at hidden layer hj and used to change weight Vij, and f(x) 

is the derivative of the sigmoid activation function: f(x)) = f(x)[1-f(x)]. 

(ii) Compute the weight correction term 8.Vij and 8.voj as follows: 

8.Vjj = aojxi1 8.Voj = ao (2.12) 

Where vi is the input-to-hidden weights vector: vi= { Vij, j =1, 0 0 ., p }, Oj is the 

error term at hidden layer hi, and Voj is the bias on hidden layer j U = 1, ... , p). 

2.2.2.3 Update of connection weights process 

Learning occurs when the network weights are updated by the generalized delta rule. 

All connection weights are changed in each layer. Steps for the weights updating can 

be described as follows (Laurene 1994): 

Step 1: Each output neuron Yk (k = 1 , ... , m): 

(i) Changes its bias and weights as follows: 

(2.13) 

Where Wj u= 1, 2, 0 0 0 p) is the hidden-to-output weights vector: Wj = { Wjk, k = 1, 0 0 

.,m}. 

Step 2: Each hidden neuron hj U = 1, ... , p): 

(i) Changes its bias and weights as follows: 

(2.14) 

Where Vi (i=1, 2, ... n) is the input-to-hidden weights vector: Vi= {vij,j =1, ... , 

p}. 
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The learning or training of ANN is a process of adjusting the connection weights. 

Figure 2.8 shows the schematic diagram of error back propagation. The error for each 

neuron is the squared difference between the desired output and the actual output. 

Layer k-1 layer k layer k+l 

Figure 2.8 Schematic diagram of error back propagation (Imdat and Yasar 2009) 

2.2.2.4 The BP training algorithm 

The BP training algorithm processes have been employed in this study is presented 

below: 

Step I : The weights have been initialized. 

Step 2: Steps 2-3 have been repeated until termination condition is false. 

Step 3: For each training dataset pair (input and desired output vector): 

(i) Feed-forward has been processed. 

(ii) Back-propagation of error has been processed. 

(iii) The weights have been updated. 

Step 4: The termination condition has been tested. 

The flowchart of the back-propagation training algorithm process IS shown in 

Figure 2.9. 
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+ 
Error Evaluation r /Sk = Ok(1- Ok)(Yk- Ok) 

+ 

I Output I 
F1gure 2.9 Flowchart of the back-propagatiOn trammg algorithm process (Imdat and 

Yasar 2009) 

2.2.3 Network training, validation and testing 

The success of the ANN model development is basically dependent on three 

important steps: the learning or training process, testing and validation process. 

During the training process several activities are performed, a set of input-output 

patterns is repeated to the ANN, propagating the input patterns through the 

architecture, connection weights of all interconnected neurons are adjusted until the 

differences between actual outputs and the desired outputs are minimized to be in 

permissible limit. After an acceptable training, the values of the connection weights 

represent the state of knowledge of the ANN. 
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Training or learning paradigm concerns about what information is fed to ANN. 

Learning paradigm in ANN is often classified into three basic types based on whether 

outputs are provided or not, namely supervised, unsupervised or self-organization, 

and reinforcement learning or graded. 

In type of supervised learning, a supervisor or sometimes called teacher provides 

the network with a pair of input and target pattern called training pair or set. A 

network computes the outputs for a given set of inputs and compares these computed 

outputs with target outputs (Adiel 200l).The difference between the calculated output 

of the network and the target output serves as an error evaluation, and is used in 

correcting synaptic connection weights. This connection weights are adjusted 

regularly, through updating them at each step during the learning process, therefore 

the error between the network output and corresponding desired output is minimized. 

A good example of supervised training type is back-propagation network, and is the 

most popular training method in ANN, according to the literature. 

In an unsupervised learning, sometimes called self-organization, the training set is 

composed of only inputs through learning process, therefore no target output or 

desired response is provided. In this case, the error information cannot be used to 

improve performance of the network because the desired response is unknown. Thus, 

the network adjusts the connection weights in a way that similar inputs yield similar 

outputs. The purpose of unsupervised learning is to learn to set together patterns that 

are similar for a given training set. Some good examples of the unsupervised learning 

are Kohonen's self-organizing feature maps and Hebbian learning (Kohonen 1988b). 

Reinforcement learning and error correction learning are alike, in which 

connection weights are reinforced for appropriately achieved actions and punished for 

poorly achieved actions. 

The difference among the two types of learning is that error correction learning 

uses more specific error information by utilizing the error values at each output unit, 

whereas, reinforcement learning type uses non-specific error information to determine 

the performance of the network. In error correction learning, an entire vector of values 

is used for error correction, whereas only one value is used to describe the 
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performance of the output layer's through reinforcement learning type. This type of 

learning is ideal in some areas such as prediction and control where specific error 

information is not available (Barto 1992; Adiel 2001 ). 

In validation phase, the ANN is subjected to input data unseen during the training 

process, and adjustments are made to make the ANN model more reliable and robust. 

Besides, it is used to examine network generalization and to halt training when 

generalization stops improving. Generalization refers to the neural network building 

reasonable outputs for inputs not encountered through training (Haykin 1994). 

In general, mean square error (MSE), mean absolute error (MAE), and sum square 

error (SSE) which are computed between the target output and the actual network 

output are typical used as the fitting criteria to measure the model validity 

Testing phase has no effect on training, and it provides an independent evaluation 

of network performance during and after the training phase. 

2.2.4 Applications of ANN 

ANNs are being widely used to model complex real-world problems. This could be 

accredited to the fact that these networks attempt to emulate the abilities of human 

brains (Mukta and Usha 2009). 

The ANN applications are not limited to a specific application area as it extends 

across a broad variety of domains. These applications have been organized into 

various categories, for example, engineering, science, manufacturing, marketing, 

finance and accounting, health and medicine, pattern recognition and other general 

applications. 

2.2.4.1 Engineering 

ANNs are powerful computational techniques that have resulted from the work in the 

area of engineering. (Rafiq et al. 2001) presented a practical example of a reinforced 

concrete slab design using three types of ANNs mainly, multi-layer perceptron 
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(MLP), radial basis network (RBF) and normalized RBF (NRBF). The results show 

that the MLP and the NRBF networks performed equally well. The RBF 

demonstrated a poorer performance. The NRBF has the benefit of a faster training. 

(Serkan et a!. 2002) developed a new approach of ANN to select optimum bit using 

real rock bit data for several wells in a carbonate field. Their new approach of the 

neural networks provided satisfactory results. (Molga 2003) investigated new aspects 

of neural modeling of chemical reactors, the performance of two neural models: 

global neural model (GNMs) and a hybrid neural model (HNM) were compared. He 

found that GNMs have superior interpolation capabilities, but quite weak capability to 

knowledge generalization, but HNM models have better capabilities to generalize 

knowledge. 

2.2.4.2 Science 

Much of the research on neural networks have focused on science problems, with 

special attention to animal, environmental, agricultural, etc. (Fernandez et a!. 2006) 

focused on applications to intelligent data analysis in the field of animal science using 

two traditional neural networks: time series prediction and clustering. The results 

showed that the quality and accuracy of the ANN models was essential to increase 

farm returns. (Faria P. M. Ferreira, Ruano 2002) addressed neural network models in 

greenhouse air temperature prediction for environmental control. Several on-line 

training and on-line learning feed-forward methods for prediction were used and had 

achieved satisfactory performance and acceptable prediction errors, but the results of 

a new algorithm based on a Levenberg-Marquardt method achieved the best results in 

terms of parameter convergence, error performance, and with smaller computational 

costs. (Morimoto et a!. 1997) presented a new control technique, as well as neural 

networks and genetic algorithms, for realizing the optimal control of the fruit-storage 

process. The results recommended that the storage process should be treated as a 

dynamic process, and the proposed approach had been useful for the optimization of 

such a control process. 
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2.2.4.3 Manufacturing 

ANNs have been applied successfully to several manufacturing areas. (Maguire, 

McGinnity 2009) reported the application of neural networks techniques to improve 

the downstream performance prediction within the manufacturing environment. The 

authors used the manufacture of hard disc drives as a case study. Neural networks 

techniques were used to control most of the hard drive processes, i.e., read and write 

head to the recording media and the general manufacture of the hard disc drive. The 

results showed that satisfactory downstream prediction accuracy can be achieved 

using neural networks approach. (Magdy and Houshang 2009) presented an 

application of neural network to fault-tolerant control (FTC) of automated sequential 

manufacturing systems (ASMS) theme to sensor faults. The result highlighted that the 

proposed application was effective for a real simple plant, in identifying the sensor 

faults, and reducing the complexity of the hardware redundancy. 

2.2.4.4 Marketing, finance and accounting 

ANNs have been used by various researchers and by the author for modeling and 

predictions in the field of marketing, finance and accounting. (Shuliang 2000) 

developed a hybrid intelligent system for developing marketing strategy, artificial 

neural networks (ANNs), expert system, and fuzzy logic is coupled to support the 

procedure of marketing strategy development. The empirical experiments show that 

the hybrid intelligent system is helpful and useful for developing marketing strategy. 

Neural networks have been focused on finance problems, with special attention to 

bankruptcy prediction and credit scoring. (Chih-Fong and Jhen-Wei 2008) 

investigated the performance of two types of neural network classifier: a single 

classifier and multiple classifiers using three different datasets for the bankruptcy 

prediction and credit scoring problems. The results implied that the neural network 

single classifier was more suitable than the multiple for the bankruptcy prediction and 

credit scoring domains. 
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(Chrysovalantis et a!. 2007) proposed an application of artificial neural network 

for the identification of qualified audit opinions. The results expressed the highly 

descriptive power of the ANN model in highlighting qualifications in audit reports. 

2.2.4.5 Health and medicine 

ANNs have been applied successfully to model vanous aspects of health and 

medicine. (Sheppard et a!. 1999) described the use of neural networks approach to 

predict patients who risk developing cytomegalovirus disease after renal 

transplantation. The results showed significant improvement on current methods and 

supported the principle that the neural networks with back propagation training 

algorithm may respond well to analysis of renal transplantation data. (Yu-Chuan eta!. 

2000) developed and compared three different mathematical models, mainly logistic 

regression model, a multi-layer perceptron (MLP) neural network and a radial-basis­

function (RBF) neural network for surgical decisions on traumatic brain injury 

patients. The results showed the possibility of neural networks as the mechanism for 

traumatic brain injury (TBI) decision support system based on clinical databases. The 

results also suggested that neural networks may be a better solution for difficult, 

nonlinear medical decision support systems than traditional statistical techniques such 

as logistic regression. 

(Reeti et a!. 2006) presented neural networks prediction model for Alzheimer's 

disease using longitudinal data collected through multiple clinic visits. The results 

showed that the new model can incorporate this type of longitudinal information. 

2.2.4.6 General applications 

In recent years, ANN technique has been applied successfully for general 

applications, such as prediction (Hee-Yea! and Sung-Yang 1997), controlling 

(Takayuki et a!. 2007), recognition (Steven et a!. 1995), last but not least in 

classification (Ganesh and Abdesselam 2003). 
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2.2.5 ANN advantage 

ANN is the main branch of artificial intelligence which is mostly useful in situations 

for which rules are either not known, or they are extremely difficult to determine. 

Some of the significant advantages of ANN can be listed as (Chen et al. 2003; Stefan 

2003; Zhang and Qi 2005): 

• ANNs can predicate a huge class of functions with a high degree of precision, 

because ANN provides a parallel processing of the information from the data. 

• ANN can learn and generalize by examples, thus ANN can construct significant 

solutions to problems before they are tested for their "inference" capability on 

unknown situation of the problem. They can, consequently, identify new object 

previously untrained. 

• ANN can give results for problems that do not have an algorithmic solution; 

moreover, ANN provides solutions for which an algorithmic solution is too difficult 

to be found. 

• ANN offers generalization capability; therefore, they can correctly process 

information that mostly looks like the original training data. 

• ANN demonstrates mapping capabilities, that is, it can map input pattern to the 

corresponding output pattern. 

• ANN can produce information in parallel form with high speed, and in a distributed 

manner. 

2.3 Genetic algorithm (GA) 

The GA, which was first presented by Professor John Holland in the early 1970s 

(Holland 1975), is becoming a powerful tool for optimizing functions. GA is a global 

search method based on Darwinian biological evolution principle. The GA differs 

from more conventional optimization methods since it involves a search from a 

population of solutions, and not from a single point; and it can avoid the convergence 

to suboptimal solutions. 

GA is a structured probabilistic algorithm, the initial population is randomly 

generated and gradually evolves towards a population that is expected to contain the 
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better solutions by applying so-called 'genetic operators', which are selection, 

crossover and mutation. GA is modeled based on genetic processes that are 

biologically natural. In particular, genetic operators are used to produce offspring in 

the next generation that differ from their parents, however, still maintaining 

characteristics of the parents. 

In general, the mechanics of GA consists of the following basic stages: solutions 

encoding, determination of fitness function, population initialization, and finally 

perform GA operators including selection, crossover and mutation. (Figure 2.5) 

Encoding denotes representing the potential solutions, which contain a set of 

decision variables, as strings of codes. Various formats can be used to encode the 

decision variables, i.e., binary, real number, letter, etc. However the binary is the most 

popular encoding form. By definition, the coded variables are called genes, and the 

actual values (i.e., either 0 or 1) of genes are called alleles. For example, if a gene 

represents colors, then its alleles are blue, yellow, and green and so on. A 

chromosome is a solution that is created by connecting the pieces of genes into a 

string of fixed length. Figure 2.10 shows the basic step of GA procedure. 

Initialize the population 

Calculate fitness 

Perform selection 

Perform crossover 

Perform mutation 

Check convergence 

Figure 2.10 GA procedure 

Following from the solutions that have been encoded, the objective function is 

required to determine the best solution. The objective function is the value of an 

individual solution that can be accomplished through computer simulation or lockup 

table. This stage launches a relationship between the variables and the function. The 

goal can be either to maximize or minimize the objective function. 
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After the solutions are encoded and the objective function is defined, we now can 

proceed to the evolution process. First, an initial population of coded solutions or 

chromosome is created randomly or through pre-learnt knowledge. Then, the 

population undergoes an iterative process of evaluation and reproduction. Evaluation 

assigns each chromosome with a fitness value according to the objective function. 

After evaluation, chromosomes of the new generation are created by applying 

reproduction operators on the old generation. 

2.3.1 GA operators 

Selection, crossover and mutation are the most commonly used GA operators (Ali et 

a!. 2010; Jiangfeng et a!. 2010). Generally, the chromosomes in the population are 

encoded as strings of real or binary form. This implementation of chromosomes is 

called encoding scheme. 

2.3.1.1 Selection 

Selected chromosomes are subjected to mutation and crossover. With a given 

probability, the chromosomes are to be selected from the current population, and 

cloned chromosomes are created. The selection process of chromosomes is based on 

their fitness relative to the current population i.e., the stronger chromosomes will have 

a higher probability of being copied (Taho et a!. 2006). In this study, the fitness 

sometimes called objective is a function of the ANN model's response. Then the 

selected chromosomes are subjected to mutation and crossover. 

2.3.1.2 Crossover 

Crossover is the major genetic operator for producing new chromosomes, which 

combines the two characteristics of parent information to form offspring. The purpose 

of crossover operator is to generate new chromosomes that are definitely different 

from their parents, but contain some of their parents' characteristics (Mousavi et a!. 

2006). In other words, two good quality strings (parents) share their good qualities to 
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generate better strings (Childs) than before. The new strings (offspring) may be bad, 

which will die off in the next generation. In the crossover operator, the selection of 

two strings is performed randomly but proportional to their fitness values in the 

mating pool, and then an arbitrary position along the two strings is selected, further 

than which the crossover takes place. The part of the chromosome string between the 

selected position and end position is then exchanged, therefore creating two offspring. 

The crossover methods, which are one-point or two-point crossover, are commonly 

used (Nan et al. 2003; Nicolas et al. 2006). The crossover operator is show in Figure 

2.11. 

parents 

offspring 

Figure 2.11 Crossover operation 

2.3 .1.3 Mutation 

During genetic generation process, sometimes a desired bit misses at a particular 

position in the string. This bit may be critical to produce good quality offspring. The 

selection and crossover operators may not create the critical bit at the particular 

position; however, the mutation operator will take care of this trouble. The most 

common way of mutation is to take a bit from a chromosome and alter it with some 

predetermined probability (Figure 2.12). As mutation rate is too small in natural 

evolution, the probability at which the mutation operator is applied is set to a very low 

value (Xueqiang et a!. 2007). 
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I 11010101 I parent 

I 11011101 I offspring 

Figure 2.12 Mutation operator 

2.3.2 GA applications 

Since its introduction, GA has been adopted in several areas. In the area of 

engineering design, (Afshin et al. 2009) used GA to optimize core configuration 

design of research reactors; (Onwubolu and Mutingi 2001) applied GA to cellular 

manufacturing systems, and (Ali and Ali 2008) introduced GA to steam turbine 

model. In the area of science, (Srinivasaa et al. 2007) optimized data mining 

applications using GA; (Pezzellaa et al. 2008) presented flexible GA for job-shop 

scheduling problem. In the area of finance and accounting, (Kyung-Shik and Yong­

Joo 2002) applied GA in bankruptcy prediction modeling. In the area of health and 

medicine, (Shital and K. Andrew 2007) applied GA with data mining to further 

enhance the classification accuracy of cancer detection; (linn-Yi and Wen-Shan 2007) 

used GA to improve the quality care of a hospital emergency department. In general 

applications, (Peter and Mirzaei 2003) presented GA to improve the accuracy of 

image reconstruction; (Wei eta!. 2005) proposed two methods based on a GA and a 

nonlinear algorithm for standardization of image characteristics in digital 

mammography; (Romero and Carter 2001) used GA to search for reservoir 

characterization. 

2.3.3 GA advantage 

The important advantages of adopting GA instead of traditional optimization methods 

are listed below (Ferentinos 2005; Benardos and Vosniakos 2007): 

• The GA operates on a coded form of the problem's parameters, not the parameters 

themselves. 
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• GA is capable of searching in very large solution spaces efficiently by providing a 

lower computational cost, because they use probabilistic transition methods instead of 

deterministic ones. 

• GA is easily hybridized (or work cooperatively) with other optimization methods. 

• GA does not require a deep mathematical knowledge about the problem at hand, 

since GA is automated, therefore it necessitates much less human attempt than trial­

and-error. 

• GA can optimize numerous objective functions (multi-objective optimization), thus 

it provides a list of solutions, not a simple solution. 

• GA can effectively find a global minimum, yet on a very complex and complicated 

objective function. 

• GA is a powerful tool in applications offeed-forward neural networks. 

2.4 GA in ANN design 

Due to the great potential of hybridizing GA and ANN, this area of research has 

attracted the interests of many researchers. There are several studies on how GA can 

be used to determine the best parameters of ANNs, optimize its structure and to select 

optimal process parameters from science to business and engineering domains, 

although there is still no general method to design ANN. In this research, we will 

mainly concern with the optimization of ANN designing and training parameters in 

order to determine optimum ANN parameters through Genetic Algorithm. 

As a fact, experiments have demonstrated that the combination of ANN-GA 

outperforms GA and ANN from the point of view of satisfactory solution. Although 

the very long run of back-propagation of ANN gives higher precision 

solutions(Kitano 1990). Figure 2.13 shows the search speed of back-propagation of 

ANN, GA, and combination of ANN-GA in term of the error and computation costs 

(cycle). 
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Back-propagation 

Genetic algorithm 

ANN-GA 

Computation Costs (Cycle) 

Figure 2.13 Search speed according to (Kitano 1990) 

2.4.1 GA to optimize input variable of ANN 

Several studies have made to optimize input variables of ANN. (Mok et a!. 2001) 

developed NN-GA approach consists of two parts: an ANN prediction and a GA part, 

the author found that the time to generate initial process parameters can be 

significantly reduced. (Somnath et a!. 2004) integrated ANN with support vector 

regression and genetic algorithms (ANN-GA, SVR-GA) to obtain the optimal values 

of process input variables that minimize a specified objective function, the author 

reported that the author found that a significant improvement had been achieved while 

comparing the results of ANN-GA with SVR-GA. Feed-forward ANN approach have 

been used to investigate the effects of the input variables on the performance of the 

reactor (Istadi and Nor Aishah 2007). The GA method was applied to optimize the 

input space of the ANN model, to achieve the best results, the input and output 

variables were selected carefully, multi input and multi output (MIMO) ANN model 

that contains 4 inputs and 5 output variables was chosen to conduct the experiments. 

The results of the ANN model showed that the correlation coefficient (R) had been 

increased, while the mean square error had been reduced with increased number of 

neurons in the hidden layer. A combination of ANN and GA approach has been 
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developed to optimize the release of emission from the palm oil mill (Ahmad et a!. 

2004), the results showed that data of any operation condition can be analyzed, 

optimized and predicted by the developed GA-ANN approach. (Cook et a!. 2000) 

developed a hybrid NN-GA system to determine the process parameter values that are 

needed for different conditions. NN model was constructed to predict the value of a 

critical strength parameter (internal bond) in a particleboard manufacturing process, 

based on process operating parameters and conditions. While a GA method was 

applied to the trained neural network model in order to determine the optimum 

process parameter values that would produce the desired strength for the parameter 

for known operating conditions. The results showed that the ANN-GA system 

allowed the manufacturer to rapidly determine the values of critical process 

parameters required to attain acceptable levels of board strength, based on current 

operating conditions and the stage of manufacturing. (Hasan et a!. 2005) created a 

feed forward ANN predictive model for warpage value. The ANN model was 

validated for capability of predictive task and then coupled with an effective GA in 

order to determine the optimum process parameter values. The results indicated that 

the initial model of the bus ceiling lamp base of the warpage was minimized 

significantly by 46.5% through using genetic algorithm. (Nasseri et a!. 2008) 

integrated a feed-forward ANN with GA to overcome the complexity in modeling of 

rainfall forecasting. GA was applied to detect effective inputs and the best input 

combination(s) for intelligence prediction. Results of the study demonstrated the 

ANN network with the input parameter selection, when integrated with GA, 

performed better than a similar study of using ANN only. (Adineh et a!. 2008) 

presented a suitable method for attaining the optimum operational parameters in a 

F AF C02 laser, leading to maximum laser output power by coupling ANN and GA. 

First, a number of experimental data were used as the input variables for the ANN 

model. Then the best-trained network was linked to the GA as a fitness function to 

determine the optimum operational parameters. The result demonstrated that the 

computed laser power was maximized by 33%, and the measured value was 

maximized by 21% in an experiment as compared with a non-optimized case. 
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2.4.2 GA to optimize the structure and training process of ANN 

This part discusses the state of the art of research carried out in the optimization of 

ANN structure and training process using GA. (Ferentinos 2005) developed two 

feed-forward neural networks, first for a fault detection system model and second for 

a predictive modeling system, while GA was adopted to determine optimum NN 

parameters. A back-propagation algorithm for the training of the NN was used as 

minimization algorithm. Mainly, GA was used to optimize the selection of the 

minimization algorithm used by the back propagation algorithm, the number of 

neurons per hidden layer, and the types of activation functions of the hidden layer and 

of the output layer. The results showed that a satisfactory ANN performance had been 

achieved by using the fault detection and predictive models. In addition, the GA 

system had successfully replaced the problematic trial-and-error method that was used 

usually in this task. To solve the time consuming problem of training process, while 

most networks are calibrated using the trial-and-error procedure, (Goloka 2006) 

presented GA method to search for the optimal geometry and values of internal 

parameter of a multilayer feed-forward ANN with back-propagation algorithm 

(BPNN), and a radial basis function network (RBFN). Furthermore, to examine the 

efficiency of the combined GA-ANN method, a published experimental dataset of 

cross-flow membrane filtration was used. The results showed that the GA-ANN 

method predicted the permeate flux decline more accurately than the ANN combined 

with a trial-and-error procedure. It was also noted that the efficiency of the ANN 

model prediction was significantly affected by the sample size included in the training 

dataset; either the largest or smallest sample in the training and validation data set 

affected the performance of the ANN model. Thus, the prediction of the ANN model 

using small dataset will deviate significantly if the ANN model had not been 

optimized and well trained. Therefore, the data division strategy for training, 

validation and testing phases is a very important issue. A new radial basis function 

(RBF) network training based on a specially designed GA as a new method for 

extracting valuable process information from input and output data has been proposed 

(Haralambos et al. 2004). GA was used mainly to optimize ANN parameters, i.e., 

structure of the network, the weights and the centers of hidden neurons. To verify the 

effectiveness of the method, the developed model was illustrated through two 
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different datasets. Firstly, a simulated data from a Continuous Stirred Tank Reactor 

(CSTR). The results of the new method in this case study had shown that for the 

prediction of the first output, the best network structure was found to have 28 hidden 

neurons, while the best network structure for the prediction of second output consisted 

of 36 hidden neurons. Results from the second dataset from an industrial Kamyr 

digester showed that the new RBF achieved the best network structure with 18 

neurons and the training time was 18 minutes. (Zhiye et a!. 2003) proposed a 

structural modular neural network, by integrating the BP neurons and the RBF 

neurons at the hidden layer to build a better input-output mapping. GA method was 

applied to search for the best number of hidden neurons that makes the structural 

modular neural network less likely to be trapped in local minima than the 

conventional gradient-based search algorithms. The preliminary results showed that 

the proposed structural modular NN approach was more accurate than using the BP 

and RBF network, or alone. (Delgado and Pegalaja 2005) presented GA which was 

able to determine the optimal size of RNN. The developed solutions demonstrated 

that the near/optimal size of RNN with the lowest number of neurons and higher 

error, or solutions with a higher number of neurons and lowest error were obtained. 

Thus, depending on the problem, a solution with certain characteristics can be chosen. 

A new method for the auto-design of NN based on GA has been developed 

(Boozarjomehry and Svrcek 200 I). Mainly GA was applied to optimize structure of 

NN: connection weights and number of neurons in hidden layer. For performance 

evaluation, the auto-design of NN was tested against three standard benchmarks that 

are commonly used by researchers in the field of artificial neural networks. The 

results obtained by the method were much simpler, yet more accurate than those 

designed by conventional method. A methodology for determining the best neural 

networks architecture (i.e. number of hidden layer and number of neurons per layer) 

based on GA in order to improve ANN's performance for training process and 

generalization ability, as well as to improve its complexity (Benardos and Vosniakos 

2007). The results illustrated that the approach performed better than ANN based on 

human expert, besides offering several advantages in comparison to similar 

approaches found in the literature. 
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2.4.3 GA to optimize the connection weights of ANN 

Actually, there are numerous researches focused on optimization the connections 

weight of ANN using GA for example, (Blanco, Delgado et al. 2001) presented a real 

coded genetic algorithm to train RNN. In particular, GA is utilized to optimize the 

weights of the network. The results showed that the RNN trained with real coded GA 

method has a low complexity time and are able to search not only in depth, like the 

real-time recurrent learning algorithm, but also in width. (Taeksoo and lngoo 2000) 

developed a hybrid back-propagation ANN and genetic algorithm to find optimal 

signal multi-resolution method of the decomposed univariate time series for the daily 

Korean won/US dollar exchange-rate forecasting, real coded GA was provided to 

optimize every connection weight in the NNs. The experimental results showed that 

the forecasting performance of the ANN was enhanced through using GA. 

Furthermore, a significantly better generalization ability ofNNs had been achieved. A 

hybrid approach of ANN for time series properties, i.e. the time delay neural networks 

(TDNNs) and the adaptive time delay neural networks (ATNNs), amongst the GA for 

stock market prediction tasks (Hyun-jung and Kyung-shik 2007). For an efficient 

search, GA was applied to search for the optimal number of time delays and network 

architectural factors in A TNN and TDNN, which are the connection of hidden and 

output neurons, and the number of hidden neurons. The results demonstrated that a 

higher accuracy had been provided by the proposed integrated approach than standard 

A TNN, TDNN and the RNN. (Sedki, Ouazar et al. 2009) investigated the 

effectiveness of real coded GA that evolved from back-propagation NN for rainfall­

runoff forecasting in Morocco. GA was employed to search for optimal or 

approximate optimal connection weights and thresholds for the back-propagation 

network. The results indicated that the predictive performance of the developed 

hybrid model was better than that of the conventional BP network. (Kyoung-jae and 

lngoo 2000) proposed a GA approach to determine ANN connection weights and their 

thresholds for input feature discretization to predict the stock price index. 

Experimental results showed that the GA approach in the feature discretization model 

performed better than the other conventional models. (Krishna 2009) used a genetic 

algorithm procedure to determine the connection weights that contributed to the 

minimization of error between desired output and actual output of the neural network 
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for surface roughness in electric discharge machining. The results observed that the 

error, when the network was optimized via genetic algorithm, had been reduced to 

less than 2% from more than 5%. A hybrid ANN and GA to initialize and optimize 

the connection weights of back-propagation ANN in order to improve the network 

performance (Shanthi et al. 2009). The presented model has been applied in the 

medical field for predicting stroke disease. The results showed improvement in the 

prediction accuracy of ANN performance. (Zhengjun et al. 2004) discussed the key 

advantage of the GA optimized NN. In this case, real coded GA method and back 

propagation NN are applied. The GA operators were carefully intended to optimize 

the connection weights of the NN, aiming to avoid premature convergence and 

permutation problems. The experiment results showed that the coupled genetic 

algorithm and neural network outperformed gradient descent-based NN. (Yang et al. 

2009) incorporated a GA based on back propagation neural network (IGABP) to 

determine connection weights of BPNN automatically, and to provide an efficient GA 

with reduced computation time in order to enhance the BPNN training capacity. The 

result indicated that the IGABP model could effectively overcome the inadequacies of 

the traditional model, besides the efficiency and forecasting performance were 

significantly improved. 

2.4.4 Comparison between state of the art approaches and the proposed 

approach 

The literature review has demonstrated the lack and limitation of an integrated method 

that takes into account, the type of minimization functions of the training algorithm, 

the type of activation functions for hidden and output neurons, initial weight, learning 

rate, momentum term and epoch numbers, which, particularly have impact on ANN 

prediction performance in terms of efficiency and accuracy. Therefore, there is a need 

for a novel approach that covers most ANN aspect in order to improve multilayer 

feed-forward performance. A comparison between the state of the art approaches and 

proposed approach are listed as follows: 
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• Similar to state of art approaches the proposed GA-ANN approach is 

developed to optimize the architecture and training parameters of multilayer 

feed-forward ANN. It based on binary-encoded GA method. 

• Unlike state of art approaches which used to optimize parte of multilayer feed­

forward ANN, the proposed GA-ANN comprehensively covered most aspect 

of multilayer feed-forward ANN. 

• The state of art approaches examined with real or standard datasets (not both). 

However the proposed approach is applied to three real operation datasets and 

XOR standard problem. 

• The proposed approach presents fully automatic designing of multilayer feed­

forward ANN. The state of art approaches proposed semi or partial automatic 

designing of multilayer feed-forward ANN. 

• In literature the statistical analysis is used to verify the efficiency of ANN 

prediction model. Some researchers found the mean square and root mean 

square errors the best parameters to distinct between observed and predicted 

output. In this research the statistical parameters: mean square error, root mean 

square error, correlation coefficient and determination coefficient are used to 

distinguish between observed and predicted output. 

Moreover, the following Tables show the comparison between the state of the art 

approaches. 

Table 2.1 The stae of art of ANN deisng using GA (1/2) 
Multilayer feed-forward ANN architecture and training par~ meters 

. 

Hidden Number of Training Actintio!l Learning ·Momentum Epoch 
·Approach Input weight ·number· 

Layer neurons algorithm function rate term 

Mokl et al. 
(2001) ~ X X X X X X X X 

Somnath et 
a!. (2003) ~ X X X X X X X X 

!stadia and 
Nor ~ X X X X X X X X 
Aishah{2007) 

Fertinous 
(2005) X ~ ~ X ~ ~ X X X 

Goloka and 
Chittaranjan X ~ ~ X X X X X X 
(2006) 
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Table 2.2 The stae of art of ANN deisng using GA (2/2) 

Hidden Number of Training Activation Learning Momentum 
Epoch 

approach Input weight number 
Layer neurons algorithm function 111te term 

Haralambos et 
X ..J X ..J X X X X X 

al. (2004) 
Blanco et al. X X ..J X X X X X X (2001) 
Aeksoo and 

X X ..J X X X X X X 
lngoo (2000)_ 
Hyun-jung and 
Kyung-shik X ..J ..J X X X X X X 
(2007\ 
Ahmad et al. 

..J X X X X X X X X 
_(2004) 
Cook et al. 

..J X X X X X X X X (2000) 
Hasan et al. 

..J X X X X X .. X X X 
(2005) 
Nan et al. 

X ..J X X X X X X 
(2003) 
Delgado and 
Pegalajar X ..J ..J X X X X X X 
ooosi 
Boozarjomehry 
and Svrcek X X ..J ..J X X X X X 
(2001) 
Sedki et al. 

X X X ..J X X X X X 
(2009) 
Kyoung-jae 
and lngoo X X X ..J X X X X X 
(2000) 
Rao (2009) 

X X X ..J X X X X X 

Shanthi et al. X 
X X ..J X X X X X 

_(2009) 
Koc et al. 

..J X X X X X X X X 
(2007) 
Nasseri et al. 

..J X X X X X X X X 
(2008) 
Adineh (2008) 

..J X X X X X X X X 

Benardosa and 
Vosniakos X ..J ..J X X X X X X 
(2007) 
Zhengjun et al. 
(2004). 

X X X ..J X X X X X 

Sedki et al. 
X X X ..J X X X X X 

(2009) 
Yang (2009) 

X X X ..J X X X X X 

2.5 Multilayer feed-forward ANN data preprocessing, architecture and training 

parameters 

Currently to the best of our knowledge, there is no clear method or theoretical 

background to determining the best multilayer feed-forward ANN architecture and 

training parameters. The implementation of multilayer feed-forward ANN models 

requires the solutions of two complex optimization tasks, which are the architecture 

and the training process parameters. The two tasks are closely correlated. Since the 

significance of a candidate multilayer feed-forward ANN architecture can only be 

assessed on the trained parameters, the accuracy and reliability of the training process 
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affect the outcome of the multilayer feed-forward ANN design process. Alternatively, 

the selection of architecture has a considerable impact on the multilayer feed-forward 

ANN performance efficiency and learning capabilities. 

The determination of the best multilayer feed-forward ANN architecture and 

training is performed by using a trial and error procedure, which can be relatively 

inefficient, human-dependent and less precise. The determination algorithm usually 

involves two methods: destructive and constructive (Nabhan and Zomaya 1994; 

Rychetsky et al. 1998; Parekh et al. 2000). In the former, one starts with a large 

network size and removes unnecessary neurons and connection weights until 

'optimum' architecture is obtained based on prediction performance and processing 

time. Meanwhile, the latter is initialized with a quite simple network, and neurons and 

connection weights are added to minimize the error, which is the difference between 

actual output and desired output. 

Neural training process is considered successful only if the model can perform 

well on test data for which the model has not been trained. This ability of network is 

called generalizability. Given a large network structure, training iterations has the 

potential to successively improve performance of the network on training data e.g. by 

"memorizing" training set; however, the resulting network may perform poorly on test 

data (unseen data). This phenomenon is called "overtraining". 

This section provides a detailed survey of the data preprocessing, multilayer feed­

forward ANN architecture and training parameters, which are removal of missing 

value, data outlier detection, data normalization, data portioning, number of hidden 

layers, number of neurons in hidden layer, training algorithm, activation function, 

learning rate, momentum term, and epoch numbers (Table 2.3). This is followed by 

related methods that are recommended by previous researchers to detem1ine the best 

parameters relevant to this thesis. 
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Table 2.3 The list of most common parameters in designing a multilayer feed-forward 
ANN (Kaastra and Boyd 1996) 

Parameter Elements 

Data Preprocessing Frequency of Data- Daily, Weekly, Monthly, 
Quarterly. 
Type of Data-Technical, Fundamental. 
Method of Data Sampling. 
Method of Data Scaling-
Minimum/Maximum, Mean/Standard 
Deviation. 

Architecture Number of Input Neurons 
Number of Hidden Layer 
Number of Neurons in Each Hidden Layer 
Number of Output Neurons 
Activation Function for Hidden and Output 
neurons. 

Training Training Algorithm 
Weight Initialization 
Learning Rate 
Momentum Term 
Epoch Size 
Size of Training, Validation, Testing Sets 

2.5.1 Data preprocessing 

One of the most important Issues m the success of any ANN design is data 

preprocessing. The quality, reliability, repeatability, availability, and relevance of the 

data used to construct and run the ANN model are critical to its success. Even a 

primitive model can perform well if the training data has been processed in such a 

way that it clearly discloses the important information. Alternatively, even the best 

model cannot perform well if the necessary training data are presented in a complex 

and confusing way. 

ANN has been shown to be able to process data from a broad range of resources. 

They are, though, only able to process the data in a specified form. Moreover, the 

techniques of data presentation to the network influence the training process of the 
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network. Consequently, a certain amount of data processmg is required before 

presenting the training dataset to the network. 

It may sometimes be essential to remove some of the data outliers for better and 

smoother network generalization capabilities. Statistical analysis shows that 95% of a 

normally distributed data lie within 2 standard deviations and 99% within three 

standard deviations (Swingler 1996). The process of removing data outside these 

ranges will greatly improve network training, provided that these data are great and 

uncharacteristic of the problem area (Rafiq, Bugmann et al. 200 I). 

2.5.1.1 Missing values 

Missing data may be one sample or sets of samples; there is/are one or more 

variable(s) (i.e. measurements) that contain a value which does not reflect the real 

situation of the measured physical quantity. The influenced variables typically have 

values like ±co, 0 or any other constant value. 

Since most learning and statistical method can be significantly affected by 

missing values, the data with missing values should be treated before modeling. 

The simplest method to deal with missing values is to remove them in the original 

data set; however, removing missing values can affect in loss of a great deal of 

valuable information (Jiu-sun and Chuan-hou 2009). In addition, when ANN model is 

run, missing of some input variables may lead to malfunction and bad results. In the 

majority of cases, variables in the datasets are dependent upon each other. Therefore, 

the missing values can be determined through a mapping of relationship among the 

variables. 

There are different approaches to replace missing values. Table 2.3 lists some 

examples of approaches to replace missing values. 
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Table 2.4 Common approaches to replace missing data 

No. Reference(s) Approach involved 

I Commonly applied In Replacing the missing values with the mean 
practical scenarios values of the affected variable. 

2 (Scheffer 2002) Skipping the data samples consisting of 
variable or variables with the missing values. 

3 (Walczak and Massart Maximum-likelihood multivariate approach 
200la) to missing values replacement. 

2.5.1.2 Data outlier 

Outlier detection belongs to the extremely important task in data preprocessing. The 

outliers are typical, infrequent observations which deviate significantly from the 

majority of observations, or do not appear to follow the statistical characteristics of 

the rest of the data. ANN is noise tolerant. Though, there is a limit to this tolerance. If 

there are infrequent outliers far outside the range of typical values for a variable, they 

may cause a bias in the training process. The best approach to such outliers is to 

remove or convert them. 

Outlier detection as a branch of the data pre-processing remams extremely 

significant for the ANN development because undetected outliers have negative 

impact on the performance of the network. 

Various approaches have been proposed for outlier detection. The estimation of 

location (e.g., the mean) and scatter (e.g., variance/covariance) are the two most 

important statistical elements for data analysis in the presence of outliers (Rousseeuw 

and Leroy 1987). However, most approaches suppose that the data are from a normal 

distribution, and recognize observations which are considered 'unlikely' based on the 

mean and standard deviation. Table 2.4 shows the common approaches to detect 

outlier data. 
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Table 2.5 Common methods to detect outlier data 

No. Refere~ce(s) Method involved 

I (Pearson 2002; Lin et al. 3cr outlier detection algorithm 
2007) 

2 (Egan and Morgan 1998) Resampling by half-means (RHM) 

3 (Davies and Gather 1993) Hampel identifier 

4 (Egan and Morgan 1998) Smallest half volume (SHY) 

5 (Jolliffe 2002; Warne et al. Jolliffe parameter based on PCA 
2004) 

In a three SIGMA method (3cr), all data that fall out of the range of Jl(x) ± 3cr(x) 

are labeled as outlier, where Jl(x) is the mean value and cr(x) is the standard deviation 

of the variable x. The Hampel identifier method, which is in contrast to the 3cr 

method, substitutes the outlier-sensitive mean and standard deviation estimates with 

the outlier resistant median and median absolute deviation from the median (MAD) 

(Pearson 2002) to compute the limits. The principal component analysis (PCA) is a 

popular multivariate analysis method that is used to detect outlier data. 

2.5.1.3 Data normalization 

The normalization of dataset is a greatly significant task. This typically makes the 

training algorithm faster and numerically stable. This step is needed to transform the 

data into a suitable form for the network inputs. The approach that is usually used for 

scaling network inputs and outputs is to normalize the mean and standard deviation of 

the training dataset. Normalizing the inputs and outputs mean that they will have a 

zero mean and unity standard deviation if sorted and plotted against their frequencies. 

This step too, involves the selection of the most relevant data that the network can 

obtain. If the input and output data are not of the same order of magnitude, some 

variables may appear more considerably large than they actually do. Since the 

activation functions are bounded between 0 and 1, or -1 and 1 etc, the input and 

output data are normalized to the same range as that of the activation function. 

Furthermore, normalization of inputs leads to avoidance of numerical overflows due 

to very large or very small weights (Richard et a!. 1998). 
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In ANN configuration, the restrictions on the design variables are pre-defined, 

such that the optimum point and all other intermediate iterates are sure to fall inside 

the restrictions. These pre-defined restrictions are used to normalize the input and 

output variables as follows: 

Xi- Xmin· 
xi= ' 

Xmax1 - Xmin1 

(2.15) 

(2.16) 

Where, Xmini and Xmaxi are the lower and upper bounds for the ith input variables, 

respectively. Similarly, Ymink and Ymaxk are the lower and upper bounds for the kth 

output variables. 

2.5 .1.4 Dataset partitioning 

Partitioning process is used to classify the dataset into three different sets: training or 

learning set, validation set, and test or over-fitting test set. The number of training set 

used in a network has a significant influence on the learning process. By definition, 

usually the training set, which is the biggest is used to develop and adjust the 

connection weights and biases in a network; the validation set is used to ensure the 

generalization capability of the developed network through the training process, and 

the test set is used to examine the final network performance and for calibration, 

which prevents overtraining the networks. The critical concerns should be to ensure 

that: the training set contains enough data to represent the whole data (i.e. all possible 

minimum and maximum values in the training set), appropriate data distribution to 

sufficiently cover the entire range of data, and there is no unnecessary similarity 

between data in different datasets. Different partitioning ratios have been used by 

previous researcher for example (2:1:1, 3:1:1, and 4:1:1). However, the ratio of4:1:1 

(suggested by (Haykin 1994)) yielded better training and testing results. 

There is no accurate rule on the optimum size of the three sets of data, although 

several authors have suggested that the training set must be the largest (Kaastra and 

Boyd 1996; Zhang, Patuwo et al. 1998), however the risk of memorization becomes 
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possible. Table 2.6 provides a number of different suggestions for the required 

number of training, validation and testing set. 

Table 2.6 Common approaches for data partitioning 

No. Reference(s) Approach involved 

I (Looney 1996; Swingler 1996) 
20% ~testing set~ 25% and 
75% <training set< 80 

2 (Nelson and Illingworth 1990) 
20% ~testing set~ 30% and 
70% <training set< 80 
70%, 15% and 15% for 

.. 
set, 

3 (Zhang et a!. 200 I) 
trammg 

validation set and testing set of data 

2.5.2 Architecture 

Multilayer feed-forward ANN architectures are defined as a structure that includes the 

number of input neurons, number of output neurons, number of hidden layers, number 

of neuron per layer(s) and number of output neurons. The hidden layer(s) provide the 

network generalization capabilities. This research has applied three layers feed­

forward BP network: one or two hidden layer(s), input and output layer. Based on the 

literature review, ANN with one or two hidden layer(s) has been found as sufficient 

and has performed very well (Kaastra and Boyd 1996; Zhang, Patuwo et al. 1998). 

2.5.2.1 Number of hidden ~ayers and number of neurons in hidden layers 

A "hidden layer" exists as a process between the input neurons and the corresponding 

output neurons within a network. Hidden and numbers of neuron per hidden layer(s) 

are the ones that bring out the defining properties within the data, and assist to 

establish the nonlinear relationship between the input and output. The number of 

hidden layer(s) and neuron(s) in the hidden layer(s) is determined mostly by trial and 

error procedure. Determining the optimal number of hidden and neurons in hidden 

layer(s) is a considerable task. The size of hidden layers of ANN has direct impact on 

its complexity. Generally one hidden layer may be sufficient for the majority of 

problems, but in some problems, the application of ANN with two hidden layers can 

be satisfactory. 

52 



In practical, networks with too many hidden layers will be more inclined to have: 

memorization ability rather than generalization, increased training time and the 

danger of over-fitting, which tend to lead to poor out-of-sample prediction 

performance. Over-fitting happens when a prediction model has too few degrees of 

freedom. In other words, it has comparatively few observations in relation to its 

parameters, and therefore it is able to memorize individual points rather than learn the 

general patterns (Kaastra and Boyd 1996). Nevertheless, the networks with too few 

hidden layers are preferred, because generalization is more achievable this way even 

though they may not have enough power to represent and learn the data, and have 

much less-fitting problem. 

The increment in the number of hidden layer and neurons per layer are depending 

on the computational resources available. There is no general method to determine an 

optimum number of hidden neurons per layer(s), but several researchers have 

provided some guidance in order to arrive at some kind of optimal structure of an 

ANN model, as showing in Table 2.7 and 2.8. 

Table 2.7 Some common methods to select the number of hidden neurons (112) 

No. Reference( s) Method Involved 

' 
Number of hidden neurons 

I (Masters 1993) =v'number of the input • number of the output 

2 (Masters 1993) For network with two hidden layers, n neurons for first hidden layer 
and 2n + I neurons for second hidden layer, sufficient for n inputs 

3 (Kusiak 2000) Number of the input < number of hidden neurons <Number of the 
output 

4 (Baum and Haussler Number of hidden neurons = number of data point in the training 
1988) set*error I (number of the input+ number of the output layer) 
(Baily and 

5 Thompson 1990) Number of hidden neurons =75% of the number of the input. 

6 (Katz 1992) 1.5 • the number of the input< number of hidden neurons<3 • the 
number of the input. 
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Table 2.8 Some common methods to select the number of hidden neurons (2/2) 

No. Reference( s) Method Involved ' 

Number of hidden neurons 
7 (Zhang I 993) =)number of the input • number of the output +a 

and 
number of hidden neurons = total number of data points/ total 
number of weights 
Where a is varying from I to I 0 

8 (Chen and Yang Number of hidden neurons= (number of the input+ number of the 
2002) output)/2 +Jnumber of training sample 

9 (Lawrence I 994) Number of hidden neurons= 1/2* number of the input+ number 
of the output 

The methods 1-9 as showing in Table 2.6 and 2.8, which are dependent on the size 

of input neurons and output neurons are not logical, since the factors that influence 

the networks structure are the number of samples in a training set, the noise size of 

samples, and the complex degree of function or classification to learn, and so on. 

2.5.3 Activation functions 

Activation functions are mathematical formulas that determine the output of 

processing neurons. It is an important element of the network structure, and has a 

significant impact on the network performance. They are also called threshold, 

transformation, squashing, or transfer functions. The activation function of the 

fundamental element of ANN has two sub-functions: the combination function and 

the activation function. The combination function generally uses the "standard 

weighted sum" (the summation of the input variables multiplied by their 

corresponding weights that have been assigned to those variables) to calculate a value 

to be passed on to the activation function. The activation function applies either a 

linear or a nonlinear transformation to the value passed to it by the combination 

function. The "hidden layer" then employs this activation function to pass data to the 

output neurons (John et a!. 2006). Based on the problem types, the activation 

functions can take any form and may be linear or nonlinear, and can take on any value 

between 0 and 1, or between -1 and 1, depending on the particular function selected. 
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Most of the current ANN models use the sigmoid (S-shaped) function because of 

their nonlinearity network abilities, which plays a significant function in the 

performance of the ANN (Kong and Martin 1995 ), but other functions such as the 

tangent hyperbolic, logistic, step, ramping, arc tan, and linear have also been 

proposed. The purpose of the activation function is to prevent outputs from reaching 

very large values, which can 'paralyze' ANN and thereby inhibiting training, and to 

reduce the network storage capacities. 

The selection of best activation functions may strongly influence performance and 

complexity of ANN (Duch and Jankowski 2001). The common activation function 

types and their mathematical formulas are shown in Table 2.9. 

Table 2.9 Common activation functions of hidden and output layers 

No. Activation function Formula 

I Hard limit f(x) = r ifx < 0 
1, ifx ;o: 0 

2 Symmetrical hard limit f(x) = r-1, 
ifx < 0 

1, ifx ;o: 0 

r ifx < 0 
3 Saturating linear f(x) = x, ifO :5 X :5 1 

1, ifx > 1 

r1 

ifx < 0 
4 Symmetrical Saturating linear f(x) = x,' ifO :5 X :5 1 

1, ifx > 1 

5 Positive linear f(x) = r ifx < 0 
X, ifx ;o: 0 

6 
Linear f(x) = x 

7 Sigmoid 
1 

f(x) = 1 + e x 

8 Hyperbolic tangent 
ex- e-x 

f(x) = ex+ e x 

r 
if X< -1 

1 +x, if -1 :5 X< 0 
9 Triangular basis f(x) = 1, if X= 0 

1- X, if 0 <X :5 1 
0, if X> 1 

10 
Gaussian f(x) = e-x> /2 
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Some examples of typical activation functions are illustrated in Figures 2.14 to 

2.17. 

out out 

or 

0 net net 

Figure 2.14 A hard-limit activation function 

out out - 1 

or 

0 
0 net net 
-1 

Figure 2.15 A threshold-logic activation function 

out out 
______ l ____ l__ 

or 

0 net net --r------

Figure 2.16 Continuous activation functions (a) the sigmoid (b) the hyperbolic 
tangent 
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--~-;~--
0 net 

Figure 2.17 The Gaussian activation functions 

2.5.4 BP multilayer feed-forward ANN 

Recently, ANN is used as a powerful tool m variant type of nonlinear problem 

solution. The training algorithm is the basic element needed to design ANN for a 

problem solution. It is required to prepare a set of data, which represents the problem 

in the forms of inputs and outputs variables. Throughout the training process, the 

connection weights and biases of the network are adjusted to reduce the error in order 

to attain a high network performance in the solution. In addition, during the training 

error, i.e., mean squared error is calculated between actual outputs and target outputs. 

There are several training algorithms that have been used in ANN applications. It is 

very hard to identify which training algorithm will be the fastest for a given problem. 

Because it depends on numerous issues, including the number of data points in the 

training dataset, the complexity of the problem, the error goal, the number of weights 

and biases in the network, and whether the network is being used for example pattern 

recognition or function approximation. 

In this research, four different BP training algorithms of multilayer feed-forward 

ANN are considered: Steepest-Descent, Conjugate-Gradient, Quasi-Newton, and 

Levenberg-Marquardt algorithms (Lahiri and Ghanta 2008). Their main difference is 

the method of approximating the inverse of the Hessian matrix. The conjugate 

gradient and the steepest descent algorithms replace the inverse of the Hessian with 

the identity matrix, whereas the other two algorithms try to approximate it with 

different methods. 
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The simplest implementation of back-propagation learning changes the network 

connection weights and biases in the direction in which the performance function 

decreases most rapidly, i.e., the negative ofthe gradient (-gk). The (k+l)th iteration of 

this algorithm, as described in(Demuth and Beale 2004), can be written as: 

(2.17) 

Where Wk is a vector of current connection weights and biases, gk is the current 

gradient, and a is the learning rate. 

2.5.4.1 Steepest Descent (SD) 

Steepest descent (SD) is a generalization version of the Least Mean Square (LMS) 

algorithm. In fact, steepest descent corresponds to the LMS algorithm when applied 

on a single-layer network. However, the characteristics of SD are quite different when 

applied to multi-layer network type. 

In the SD algorithm Mk = I, where I is the identity matrix. In the process of error 

parameter minimization, SD algorithm takes the negative direction of the gradient (­

gk), i.e. the direction of the SD of the error function. The SD algorithm can be written 

conveniently in matrix notation as: 

(2.18) 

(2.19) 

(2.20) 

Where m = 0, 1, .. , M- 1, and M is the number of layers in the network, a is the 

learning rate, sm is the sensitivity of layer m, and a is the output. 
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In the process of error parameter minimization, according to SD method, the 

variation of connection weights and bias is decided from the product of learning rate 

and the negative gradient, but it can easily fall into a local minimum instead of a 

global minimum. If the learning rate increases the speed of convergence, the network 

becomes unstable; and if the value of learning rate is too small, it will converge 

slowly. Therefore, if a momentum term is added to connection weights that should 

improve the convergence performance. 

2.5.4.2 Conjugate Gradient (CG) 

Conjugate gradient (CG) method (Yu and Chen 1997; Kamarthi and Pittner 1999) is a 

class of extremely significant methods for the process of error parameter 

minimization, in particular when the dimension is large (Hertz et a!. 1991 ). They are 

considered as conjugate direction or gradient deflection methods, which lie between 

the method of SD and Newton's method. Their primary benefit is that they do not 

need the storage of any matrices like in quasi-Newton methods, or as in Newton's 

method. 

CG method is introduced to converge faster than the SD method. CG initializes by 

searching in the steepest descent direction (negative of the gradient) on the first 

iteration. 

Po= -go (2.21) 

A line search is. then performed to determine the optimal distance to move along 

the current search direction: 

(2.22) 

Now, the next search direction is determined, therefore it is conjugated to 

previous search directions. The general process for determining the new search 

direction is to join the new steepest descent direction of the previous search direction: 
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(2.23) 

Where Pk = Wk+I - wk and gk= gk+I - gk. The variants of CG are well-known by 

the method, in which the constant ~k is calculated. For the Fletcher-Reeves update as 

illustrated in (Chong and Stanislaw 2004; Demuth and Beale 2004), the process for 

computation is: 

(2.24) 

This is the ratio of the squared norm of the current gradient to the squared norm of 
the previous gradient. 

2.5.4.3 Quasi-Newton (QN) 

The Newton's method is an alternative to the CG method, particularly for fast 

optimization. The basic step of this algorithm is: 

(2.25) 

Where Ak-I is the second derivatives (Hessian matrix) of the performance index at 

the current values of the connection weights and bias on the network. The Newton's 

algorithm convergence speed is generally faster than CG descent methods. 

Unfortunately, it is difficult and costly to calculate the Hessian matrix for feed­

forward ANN. There is a part of algorithms that is based on Newton's method, but 

which doesn't need calculation of second derivatives. These are named quasi-Newton 

(QN) methods, which updates an approximate Hessian matrix at each epoch of the 

algorithm (Dennis and Schnabel 1983; Battiti 1992). 

The update is calculated as a function of the gradient by using the following Eq. 

(2.26), as given in (Chong and Stanislaw 2004). 
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(2.26) 

2.5.4.4 Levenberg Marquardt (LM) 

The LM algorithm (Hagan and Menhaj 1994; Demuth and Beale 2003) is established 

to be fastest training algorithm; however, it needs further memory than the BP rule. 

LM is similar to QN method, both are based on approaching second-order training 

speeds without having to compute the Hessian matrix (Hagan and Menhaj 1994; 

Hagan et a!. 1996). The great advantage of this training method is its convergence 

about minimum and it gives more accurate results, whereas the disadvantage is the 

requirement of more memory than the traditional back propagation method (Karkoub 

and Elkamel). 

In the LM algorithm, the inverse of the Hessian is approximated by the quantity: 

(2.27) 

and the gradient can be calculated as: 

(2.28) 

Where J is the Jacobian's matrix that contains first derivatives of the network 

errors with respect to the connection weights and biases, and e is a vector of network 

errors. The Jacobian's matrix can be calculated through a standard back-propagation 

algorithm that is too less complex than computing the Hessian matrix. The LM 

employs this approximation to the Hessian matrix in the following Newton-like 

update: 

(2.29) 

This leads to a conclusion that activation function is a major element of the 

network structure, and has a significant impact on the ANN performance and their 
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training capabilities. Often, the activation function is assigned by the network 

designer based on either past experiences, or trial and error approach. 

2.5.5 Initial weights 

The BP algorithm is quite sensitive to connection weights initialization (Kolen and 

Pollack 1991 ). It should be initialized to some small, non-zero random values. The 

appropriate initialization of the connection weights has significant impact on the 

speed of convergence. Starting with inappropriate connection weights, may lead to 

getting stuck in local minima or a slow training progress. Changing the number of 

hidden neurons or training parameters will often avoid the problem, or alternatively, 

start with a different set of initial connection weights. Different ranges to set the 

initial weights have been suggested by several researchers. Table 2.10 provides an 

example of suggested ranges. 

Table 2.10 Common methods to select the range of initial weights 

No. Reference(s) Method involved 

I 
(Jocelyn and Robert 1991; 

-0.05 S connection weights S 0.5 
Looney 1997) 

(Gallahger and Downs 1997; 
2 Kavzoglu 200 I) -0.25 S connection weights S 0.25 

(Paola 1994; Staufer and Fischer 
3 1997) -I S connection weights S I 

2.5.6 Learning rate 

Learning rate is defined as the amount of changes in the network connection weights 

(step size) throughout the training process. The effectiveness and convergence of the 

error back-propagation learning algorithm depends on the value of learning rate, and 

it works by adding a proportion of the previous weight changes to the current weight 

changes (Rumelhart, Hinton et a!. 1986; Getiner et a!. 1998; Necat and Rasit 2004), 

where weight changes are calculated as: 

fJE 
Ciwji (t + 1) = a. Ciwji (t) + TJ • a. fJw·· 

Jl 

(2.30) 
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Where the learning rate 11 is limited to the range 0 :S 11 < 1, a is momentum term, t 

is the iteration of learning, wu is an adjustable parameter known as synaptic 

connection weight, and E is equal to: 

1 "' 2 2L.j=lek 

In which ek is the error between calculated output, ok, and desired output, tk, and 

ek is determined as follows: 

(2.31) 

Based on the results by other researcher that have been extracted from the 

literature, the optimum value of learning rate depends significantly on the class of the 

problem being solved, and on the network architecture; and there is no single learning 

rate value suitable for different training problems. 

Basically, a smaller value of learning rate ensures a true gradient descent, but this 

may lead to an increase in the total number of learning steps that need to be made to 

reach the optimum solution. On the contrary, a high value increases the speed of 

convergence; the network becomes unstable and may converge to local minima 

instead of global minima in the error space. Several researchers have given guidance 

as how to arrive at some kind of optimal value of learning rate as shown in Table 

2.11. 

Table 2.11 The common methods to select learning rate 

No. Reference(s) Method involved 

I 
(Uros, 2003) O.QJ :S learning rate:S0.2 

2 (Attoh-Okine 1999) 0.00 I :S learning rate :S 0.005 

3 (Refenes et at. 1994) learning rate =0.2 

4 
(Rumelhart, Hinton et 0.05:5 learning rate :S 0.5 
at. 1986) 
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2.5.7 Momentum term 

In order to overcome the local minima and slow convergence problems during 

training process, the momentum term is introduced and it works by adding a 

proportion of the previous weight changes to the current weight changes (Rumelhart, 

Hinton et al. 1986; Getiner, Has_ilog'lu et al. 1998; Necat and Rasit 2004). Where 

weight changes are calculated as: 

aE 
tlwji(t + 1) = a. tlwji (t) + T}. a. aw·· 

)l 

(2.32) 

Where the momentum term, a, is limited to the range 0 S a < 1. Since, generally 

every BP algorithm used for training ANN initializes the starting connection weights 

randomly, there is a high chance that the starting point is situated in a local valley ( 

Nii 1999). 

To develop an ANN model, the selection of appropriate momentum term is a very 

important task as this parameter is concerned with the speed of convergence and 

stability of the network (Biswajit et al. 2009). In order to have a better convergence 

speed and to escape local minima to some extent, a momentum term is recognized in 

ANN; however, a large momentum value leads to oscillation, whereas a small value 

leads to slow convergence. Some rules to select the momentum term have been given 

by previous researchers as listed on Table 2.11. 

Table 2.12 The common methods of selecting momentum term 

No. Reference( s) Method involved 

I (Uros and Franci 2003) ;::: momentum term:50.005 

2 (Randall and Jatinder 2000) 0.1 ;::Momentum Term;50.9 

3 (Clarence and Gerhard 1993) 0.5 ;::Momentum Term:50.7 

4 (Freisleben 1992) Momentum Term=0.7 

5 (Nii 1999) 0.5;5Momentum Term:50.9 

6 (Refenes, Zapranis et al. 1994) 0.3< Momentum Term :50.5 

7 (Wyhthoff 1993) 0.4::: Momentum Term;::: 0.9 

8 (Fu 1995; Hassoun 1995) ;::: Momentum Term :5 1.0 

9 (Hertz, Krogh et al. 1991; Henseler Momentum Term :5 1.0 
1995) 
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2.5.8 Epoch size 

During the training process, calculated outputs are compared with the desired output 

values, and as a backward pass, the difference between desired outputs and calculated 

outputs is used to adjust the connection weights of the network in order to reduce the 

level of error. This is an iterative process, which is repeated until an acceptable error 

level is achieved (indicating that the network has successfully learned the data) or a 

maximum number of epochs have passed (indicating that the network has been 

unsuccessful to learn the data in the number of epochs it has selected). The time the 

network processes each adjustment between the connection weights and biases (both a 

forward and a backward pass), is called an epoch or iteration. The network is trained 

in this way and the error is reduced by each epoch until an acceptable error level is 

obtained. 

The selection of epoch number is extremely important for the network 

development. This parameter has a strong effect on the ANN model prediction. The 

number of training epochs is one of the major drawbacks of using feed-foreword 

ANN; there is no ideal technique to find a suitable epoch number. Increasing the size 

of training epoch may increase the over-fitting problem (Lae et a!. 1999), and 

decreasing the epoch number will increase the number of neurons in the hidden layer. 

Moreover, a suitable size of training epoch has to be assigned to overcome the 

problems of data over-fitting and under-fitting. Several previous researchers have 

provided some method to determine the epoch size, for example the user defined error 

level, early stopping and using test dataset. 

The problem with user defined error method is the difficulty to choose the 

appropriate error level. Usually the error drops after a certain number of epochs, 

where it levels off and does not get much smaller; though at this point the network 

may be over-trained. In the second method, which is early stopping, the training data 

are held out from the training process but instead, are used to test the network 

performance; in this method the error goes down on the training data as the training 

proceeds. The error also initially goes down on the holdout data, but then the error 

level rises again as the model becomes over-trained. One of the disadvantages of this 

method is that it requires more data, which often is not available; and it does not give 
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an assurance that the minimum error found is a global minimum rather than a local 

minimum. The last method is using test dataset to determine when to stop the training 

process, in other words, it is not an independent test of the model. 

2.6 Summary 

In this chapter the current state of the art in ANN and GA domains has been 

discussed. Then the chapter covers the most common data preprocessing techniques to 

designing multilayer feed- forward for example missing values removal, data outlier 

detection and removal, data normalization, data partitioning. Further, the chapter 

provides a comprehensive detailed survey about the multilayer feed-forward ANN 

architecture and training parameters, and their effects on it performance efficiency, 

convergence and accuracy, these parameters including the number of hidden layers, 

number of neurons in hidden layers, training algorithm, activation function, learning 

rate, momentum term, epoch size. Some methods to determine appropriate network 

architecture and training parameters recommended by previous researchers have also 

been explored and compared. Based on the recommended methods, a new approach is 

required to overcome the drawback of trial-and-error procedure and to fill up existing 

attempts gap. 
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Chapter 3 

RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter describes the methodology that has been used in this research. The first 

part of this chapter discusses the procedures involved in this research and focuses on 

the design of proposed GA-ANN approach. The second part explains in detail every 

step involved in designing the GA-ANN approach using different four datasets. This 

is followed by a description of the parameters, functions, and techniques that are 

required in multilayer feed-forward ANN learning algorithm. The last part of this 

chapter explains how the experiment and analysis have been accomplished in order to 

investigate the efficiency of proposed GA-ANN, and to predict the performance of the 

GA-ANN approach by using GA binary encoding technique. 

3.2 Research tools 

This research has been carried out usmg MATLAB2009a with Neural Network 

Too1Box6.0 for process optimization and modeling to provide data for regional 

analyses. 

3.2.1 MATLAB2009a with neural networks Too1Box6.0 

MA TLAB stands for "MATrix LABoratory" is computation software developed by 

Math Works Inc. with excellent computation and visualization capabilities (H.B. 

Demuth and M. T. Beale 2004). MATLAB is becoming a powerful programming 

language due to its interactive computational environment. 



MA TLAB neural network toolbox has been utilized to develop various ANN 

applications because of its simplicity, and flexibility that allows the user to 

quantitatively and graphically monitor the network training process, and analyze the 

results. 

The ANN toolbox allows modeling of the problem using feed forward back­

propagation, radial basis and recurrent ANN with a wide range of activation 

functions, learning techniques, network architectures, performance optimization and 

performance functions. 

In MATLAB software, a feed-forward back propagation network is produced by 

the following syntax and takes several arguments: 

net= newff(P,T, [Sl S2 ... S(N-1)], {TFl TF2 ... TFNl},BTF,BLF,PF) 

The description of this syntax as follows: 

newff Create feed-forward back-propagation network 

P R x Q I matrix of Q 1 sample with R element input vectors 

T SN x Q2 matrix of Q2 sample with SN element output vectors 

Si Size of ith layer, for N-1 layers, default = [ ], (Output layer size SN 1s 

determined from T) 

TFi Transfer function of ith layer (Default = tangent sigmoid 'tansig' for hidden 

layers and pure linear 'purelin' for output layer.) 

BPF Back-propagation network training function (default = Levenberg-Marquardt 

'trainlm') 

BLF Back-propagation weight/bias learning function (default = Gradient descent 

'learngdm') 

PF Performance function (Default= mean square error • mse ') 
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In back-propagation training process stops when any of the following situations 

occurs: 

(1) The maximum size of epoch is met. 

(2) The maximum amount of time is exceeded. 

(3) Performance is minimized to the goal. 

( 4) The performance gradient falls below min _grad. 

(5) Validation performance has increased more than max_fail times since the last 

time it decreased (when using validation). 

All these termination criteria are determined by user. 

3.3 Research activities 

The research activity started with a review of earlier researches that are related to 

parameterization and design of artificial neural network using genetic algorithm. 

The purpose of this study is to adopt GA to determine the number of hidden 

layers, the number of neurons in the hidden layers, training algorithm, activation 

function, initial weight, learning rate, the momentum term and epoch size of 

multilayer feed-forward ANN. The steps in the research methodology include 

collection of experimental data, data preprocessing, optimizing multilayer feed­

forward ANN architecture and training parameters using GA, training, validation, and 

testing phases of the multilayer feed-forward ANN , and finally comparison and 

analysis step. All of the abovementioned steps are shown in Figure 3 .1. 
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Collection of experimental data 
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Figure 3.1 The research methodology steps 

3.3.1 Collection of experimental data 

Four different datasets were collected and used to obtain GA-ANN approach. One of 

them is from Universiti Teknologi PETRONAS GDC plant (TAURUS 60 gas turbine 

single-shaft generator set) collected during Jan. to Feb. 2008 period. Another dataset 

was collected from PETRONAS Penapisan (Melaka) Sdn Bhd from Jan. to Feb. 2007. 

The third dataset is a published experimental dataset of flank wear for drilling process 

(Panda, Chakraborty et a!. 2008). Lastly, standard XOR problem dataset was used to 

ensure the applicability of propose GA-ANN approach. 
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3.3.1.1 Data preprocessing 

Multilayer feed-forward ANN has shown the capability to process data from a wide 

range of sources. They are, however, only capable to process the data in a certain 

format. In addition, the ways of data representation to the networks have an effect on 

the designing of successful network. Consequently, a certain quantity of data 

processing is necessary before presenting the training data to the network. Data pre­

processing refers to: missing values removal, outlier detection, normalization of data 

to zero-mean and unit variance, and data partitioning. 

3.3.1.2 Missing data removal 

In this step, all data were crosschecked visually and statistically to ensure accuracy 

and validity of the input data. A simple MATLAB algorithm was created and used to 

remove the missing and non-number values. The following steps were used to identify 

and remove the missing data values: 

Stepl: Load the data set. 

Step2: Identify Not-a-Number in the data using isnan function. 

Step3: Returns an array of the same size as dataset containing 

logical 1 (true), where the members of dataset are Not-a­

Number and logical 0 (false), where they are not 

Step4: Remove any rows containing Not-a-Number from the data. 

3.3 .1.3 Outlier detection and removal 

The detection and removal of data outside the range of a typical value for variable 

processing remains extremely significant for the neural network development because 

undetected outliers have negative impact on the performance of the ANN models. In 

this study, principal component analysis (PCA) is used to detect the outlier data. 
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• Principal component analysis (PCA) 

Principal component analysis (PCA) (Eriksson et a!. 200 I; Bao et a!. 2007) is a 

general multivariate statistical technique that has been adapted to various practical 

problems, including engineering, science, and econometrics. 

An outlier can be detected simply by using a score plot of a PCA of the data 

(Eriksson, E. Johansson eta!. 2001). Figure 3.2 demonstrates the score plot of the first 

two principal components (t[l ], t[2]) for all 402 observations that have been collected 

from the debutanizer unit. In this figure, 9 observations can be recognized as clear 

outlier values, and hence they have been removed from the bulk of data. 

·• .. ·3 ·2 ·' - --t (I) 
Figure 3.2 Score plot of the first two principal wmponents of a PCA study for 402 

observations from debutanizer 

Figure 3.3 demonstrates the score plot of the first two principal components (t[l], 

t[2]) for all 40 observations that have been collected from the gas turbine single shaft. 

In this figure, no observations can be recognized as clear outlier values, and hence all 

the data have been used to develop the ANN model. 
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Figure 3.3 Score plot of the first two principal components of a PCA study for 40 gas 
turbine observations 

Figure 3.4 demonstrates the score plot of the first two principal components (t[l], 

t[2]) for all 64 observations that have been collected from the drilling process unit. In 

this figure, only one observation can be recognized as a clear outlier value, and hence 

it has been removed from the bulk of data . 
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Figure 3.4 Score plot ofthe first two principal components of a PCA study for 64 
flank wear observations 
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3.3.1.4 Data normalization 

The training, validation and testing dataset were scaled to the range of (0-1) using the 

modified MATLAB functions 'premnmx' and 'tramnmx'. The following equation 

was used for the purpose: 

Xni = 
Xmax- Xmin 

(3.1) 

Where Xi is the real-world input value, Xni is the normalized input value of the 

real-world input value Xi, Xmin and Xmax are the corresponding minimum and maximum 

values of the un-normalized dataset. 

The network predicted values, which were in the range of (0-1 ), were transformed 

to real-world values using the modified MATLAB function 'postmnmx'. The 

equation below was used for the purpose: 

(3.2) 

3.3.1.5 Data partitioning 

In order to achieve the best performance of multilayer feed-forward ANN model, the 

experimental dataset were further randomly partitioned into three different sets: 

training, validation, and testing. The training set is used to train the multilayer feed­

forward ANN by adjusting the connection weights and biases in a network. The 

validation set dictates that when the error remains constant for a predefined epoch 

numbers or begins to increase quickly, the training process should stop since the 

multilayer feed-forward ANN has started to over-fit the data; which means that the 

error of the network is driven to a small value for the training set but will become 

large when a new input data is presented. The testing set is used after finishing the 

training to examine the generalization capability of the multilayer feed- forward ANN 

model. In this study, the most popular ratio which is 4-1-1 has been used to partition 

the data. 
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3.3.2 Multilayer feed-forward back-propagation ANN 

Four multilayer feed-forward back-propagation ANN models in the fields of 

petroleum, energy and standard XOR problem have been developed. The first 

multilayer feed-forward ANN model is used to predict iso-pentane (iCs) and normal 

pentane (nC5) of debutanizer CRU. The input layer contains three input neurons and 

represents the input variables, which are temperature, reflux flow, and flow rate. The 

output layer contains two neurons (iC5 and nC5). The second multilayer feed-forward 

ANN model is used to predict net power and turbine outlet temperature (T4) of gas 

turbine single shaft. The inputs of the model are ambient conditions (T1 and P1) and 

turbine inlet temperature (T3), while the outputs are net power and T4. 

The third multilayer feed-forward ANN model is used to predict flank wear of 

drilling process. Seven neurons are used to represent input variables, i.e. diameter, 

speed, feed, thrust, torque, feed vibration, and radial vibration, whereas flank wear is 

the output variable. 

Lastly multilayer feed-forward ANN model is applied to predict the output of 

XOR problem. This model has two input neurons and one output neurons. 

3.3.3 GA method 

The combination of multilayer feed-forward ANN and GA technique is a powerful 

method for modeling and optimization purposes. In this work, the GA is applied to 

obtain the optimal multilayer feed-forward back-propagation ANN architecture and 

training parameters. 

There are three maJor reasons for the implementation of a GA instead of a 

conventional optimization technique in this approach as listed below (Karr 1995): 

• The GA works and focuses directly on a coded form of the problem's 

parameter set not on the parameters themselves. 

• The GA process is started from a group of points of the solution space (initial 

population) not from a single point, therefore, reducing the chance of 

converging to local optima. 
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• The sampling process is conducted using the genetic operators (i.e., selection, 

crossover, and mutation) which are stochastic rules and not deterministic rules. 

3.3.3.1 GA encoding scheme 

The genetic algorithm has two major schemes for encoding the candidate solutions, 

namely direct encoding or 'strong-specification' (Miller et a!. 1989) and indirect 

encoding or 'weak representation' (Yao 1999). Direct encoding scheme represents 

and encodes every ANN connection weights and neurons; by just looking at a bit 

string, it can encode the corresponding network structure. A bit of 1 corresponds to a 

connection, while a bit of 0 corresponds to lack of connection. Following this 

encoding scheme, chromosomes are easy to decode, but it is requires very big binary 

strings. The scheme does not scale well to represent large ANN structures because it 

also needs very big string. These limitations involving feed-forward ANN and in 

addition the strings are of variable length. 

The indirect encoding scheme is used to represent specific correspondence of 

specific binary strings to specific network architectures, (Ferentinos 2005; Marco and 

Hefin 2009) which have been pre-defined by the user. The property of the indirect 

encoding scheme looks more biologically reasonable than the direct encoding, one 

because genetic information in real chromosomes cannot specify the whole nervous 

system directly and independently (Yao 1993). 

Furthermore, there is evidence that the direct encoding scheme is more 

appropriate for precise and deterministic handling of only small ANN (Ferentinos 

2005; Marco and Hefin 2009). 

Based on the results extracted from some applications of GA encoding in the 

works of previous researchers, the author recommends that indirect encoding scheme 

should be explored further. 
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3.3.3.2 Mapping multilayer feed-forward back-propagation ANN training and 

design parameters into GA binary encoding 

In this work, multilayer feed-forward back-propagation ANN architecture and training 

parameters are represented by weak specification encoding scheme, which is the way 

of encoding several possible chromosomes of multilayer feed-forward ANN into 

specific genotypes, in the form of a simple binary string comprising a series of Oth 

and 1 th in order to decode the decision variables of a specific problem. A 

chromosome, in this research, consists of the, training algorithm, number of hidden 

layers and neurons in each hidden layer, activation functions of the hidden and output 

neurons, initial weight, the learning rate, momentum term, and epoch size. A 

genotype is a sequence of bits (0 or 1) with a specific constant length. Each genotype 

corresponds to a unique chromosome. 

Based upon the specified ranges for each multilayer feed-forward ANN 

architecture and training parameters in Table 3.1, in this study, string with a total of 

42 bits of binary code is used. Appropriate gene (sub-string) is then allocated to each 

multilayer feed-forward ANN architecture and training parameters. For example, 2 bit 

sub-string (sub-string I in Figure 3.5) is used to represent the minimization algorithm 

of back propagation. The topology setting, i.e., the number of hidden layers, the 

number of neurons in the first layer, and the number of neurons in the second layer 

are represented by 6 bits of sub-string (sub-string 2 in Figure 3.5). Activation 

functions are represented by 2 bits of sub-string (sub-string 3 in Figure 3.5). The 

range of initial connection weight values, which are a real number, ranges from 0 to 

1.0. In binary code, these values are represented using a 10 bit sub-string (sub-string 4 

in Figure 3.5). Likewise, an 8 bit sub-string is used to represent learning rate value, 

which is also a real number (sub-string 5 in Figure 3.5). Whereas, the momentum 

term ranges from 0 to 1.0 and is represented by 10 bit sub-string (sub-string 6 in 

Figure 3.5). Finally the epoch numbers is represented by 4 bit sub-string (sub-string 7 

in Figure 3.5). 
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Table 3.1 Range of multilayer feed-forward ANN architecture and training parameters 

Name of multilayer feed-forward· ANN 
Range 

parameters 

Training algorithm I ::;integer number::S4 

Number of hidden layers I ::;integer numberS2 

Number of neurons in the first layer 3::Sinteger number::S30 

Number of neurons in the second layer 3::Sinteger number:::;8 

Activation function I ::;integer number:::;4 

Initial weight O::Sreal number <I 

Learning rate O<real number <I 

Momentum term O::Sreal number <I 

Epoch size 200::Sinteger ::S1600 

Learning rate 

Initial weight 

Activation function 

Hidden layer and number of neurons per layer 

Training function 

Figure 3.5 Binary representations of multilayer feed-forward ANN architecture and 
training parameters 

3.3.3.3 Representation of the minimization algorithm of the training function 

Training or learning a network consists of adjusting its connection weights using a 

training algorithm. Once the connection weights and biases are initialized, the 
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network is ready for training process. The network can be trained for predictive 

purpose as it is the case in the present study or can be trained for other tasks. 

Most of all the training algorithms use the gradient of the performance function 

(i.e., MSE) to determine how to adjust the connection weights to minimize 

performance. A technique called back-propagation is used to determine the gradient. 

This scheme involves performing calculations backward through the network, and the 

connection weights are shifted in the direction of the negative gradient. 

The back propagation ANN has been extremely successful in solving several 

problems for the purpose of adjusting the connection weights of the networks during 

the training process (Holger and Graeme 1998). There are several training algorithms 

used in neural network applications. It is extremely difficult to forecast which of these 

training algorithms will be the appropriate one for any problem (Koker et a!. 2007). 

Generally, it depends on various issues: the architecture of the networks, i.e., the 

number of hidden layers, connection weights and biases in the network, aimed error at 

the training process, and application area, for example, classification or function 

approximation, or pattern recognition problem. Besides, the data structure and 

consistency of the training set are also important issues that have an effect on the 

network accuracy and performance. In this study, four different training algorithms 

have been considered in the proposed GA encoding: quasi-Newton, steepest descent, 

conjugate gradient, and Levenberg-Marquardt algorithms. The location of training 

algorithm sub-string is shown in Figure 3.6. 

ill. .l.llilill.lil. 0 I I 00 I 0 I I I 0 I 0 I 00 I 000 I I I 0 10 I lil.ill. 

Llraining algorithm sub string 

Figure 3.6 Training algorithm sub-string 
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Table 3.2 Binary encoding of training algorithm of the multilayer feed-forward 
ANN 

The 
The Decoded 

Gene Size Bit order m 
Encoded (bits) . Chromosome 

00 Steepest Descent 

01 Quasi-Newton 
2 1-2 

10 Levenberg-Marquardt 

11 Conjugate Gradient 

3.3 .3 .4 Representation of the network structure 

Since determining the best multilayer feed-forward ANN structure (i.e., number of 

hidden layers and number of neurons per layer) is the goal of this methodology, in 

reality, setting the number of hidden layers is problem dependent. The amount of 

hidden layers corresponds to the complexity of the problem to be solved, and the 

probable solution could be either a single or two hidden layer. Whereas, the selection 

of hidden neuron size to be contained in a given hidden layer is often a compromise 

between training time and accuracy of training. A larger number of hidden neurons 

results in a longer training time, while fewer hidden neurons provide faster training 

process at the cost of generalization performance. This calls for a method which 

would be able to quantify the differences that result from each examined ANN 

architecture. Thus, the GA method has been adopted to determine the best ANN 

architecture. 

This GA method favours smaller multilayer feed-forward ANN structure by 

applying a binary encoding scheme. Advantages of smaller architectures include: 

• A void over fitting of training data. 

• Increase the generalization capability of multilayer feed-forward ANN 

because the network is just as complex as it needs to be. 

• Increase the speed of training process because there are smaller numbers of 

hidden layers, neurons and connection weight factors to be calculated. 

In this study, the 64 potential network structures of one-hidden-layer (1-HL) and 

two-hidden-layer (2-HL) networks are represented by the next 6 bit entries of the 
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string (Table 3.3). The location of network architecture sub-string is shown in Figure 
3.7. 

Table 3.3 Binary encoding of multilayer feed-forward ANN structure 

The The The The The The 
Gene 

Bit order in 
Size Encoded Decoded Encoded Decoded Encoded Decoded (bits) 

Chromosome .. 

000000 1-HL-3 010101 1-HL-24 101011 2-HL-5/6 
6 8 

000001 1-HL-4 010110 1-HL-25 101100 2-HL-5/7 

000010 1-HL-5 010111 1-HL-26 101101 2-HL-5/8 

000011 1-HL-6 011000 1-HL-27 101110 2-HL-6/3 

000100 1-HL-7 011001 1-HL-28 lOIII I 2-HL-6/4 

000101 1-HL-8 011010 1-HL-30 110000 2-HL-6/5 

000110 1-HL-9 011011 2-HL-3/3 110001 2-HL-6/6 

000111 1-HL-10 011100 2-HL-3/4 110010 2-HL-6/7 

001000 1-HL-11 011101 2-HL-3/5 110011 2-HL-6/8 

001001 1-HL-12 011110 2-HL-3/6 110100 2-HL-7/3 

001010 1-HL-13 011111 2-HL-3/7 110101 2-HL-7/4 

001011 1-HL-14 100000 2-HL-3/8 110110 2-HL-7/5 

001100 1-HL-15 100001 2-HL-4/3 110111 2-HL-7/6 

001101 1-HL-16 100010 2-HL-4/4 111000 2-HL-7/7 

001110 1-HL-17 100011 2-HL-4/5 111001 2-HL-7/8 

001111 1-HL-18 100100 2-HL-4/6 11010 2-HL-8/3 

010000 1-HL-19 100101 2-HL-4/7 111011 2-HL-8/4 

010001 1-HL-20 100110 2-HL-4/8 111100 2-HL-8/5 

010010 1-HL-21 100111 2-HL-5/3 111101 2-HL-8/6 

010011 1-HL-22 101000 2-HL-5/4 111110 2-HL-8/7 

010100 1-HL-23 101001 2-HL-5/5 111111 2-HL-8/8 

1-HL-x: one-hidden-layer with x hidden neurons; 2-HL-x/y: two-hidden­
layer with x hidden neurons in the first hidden layer andy hidden neurons in 
the second hidden layer. 
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Qllll.Q.Oll.Q 011001011 I 0101001 OOOIJIOIOI.l.QQ.l 

L Network architecture s~b string 

Figure 3.7 Network structure sub-string 

3.3.3.5 Representation of the activation function 

In the present study, three available activation functions i.e. logistic function (logsig), 

hyperbolic tangent-sigmoid (tansig) and linear functions (pure/in) have been 

considered. The function logistic sigmoid generates outputs between 0 and 1 as the 

neuron's net input goes from negative to positive infinity, whereas, the activation 

function tangent-sigmoid generates outputs between -1 and 1 for the same range of 

input data. Figure 3.8 shows the three types of activation functions that are used in 

this study, whereas the location of the activation functions sub-string is shown in 

Figure 3.9. 

Figure 3.8 Sigmoid, tanh and linear activation function 
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OJ I I 1001 LOIIIOI I 10101001 0001110101 l..QQ1 

Activation function sub string 

Figure 3.9 Activation function sub-string 

The 91
h to 1 01

h genes have been used to represent the type of activation function of 

hidden and output neurons (Table 3.4). 

Table 3.4 Binary encoding of activation functions of hidden and output neurons of the 
multilayer feed-forward ANN 

The 
The Decoded Gene 

Bit order 
Size 

In 

Encoded· Hidden neuron's Output neuron's Chromosome 
Activation function Activation function (bits) 

00 Logistic Logistic 

01 Logistic Pure Linear 
2 9-10 

10 Tangent sigmoid Pure Linear 

II Tangent sigmoid Logistic 

3.3.3.6 Representation of the initial weight 

The 11th to 20th genes represent the discrete value of initial weight with which the 

network was trained (Table 3.5 and 3.6). The location of the initial weight sub-string 

is shown in Figure 3.1 0. 

Q.l illililll.O. o 101L 1010Joo1 ooo111 0101 QQ.l 

Initial weights sub-string 

Figure 3.10 Initial weights sub-string 
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Table 3.5 Binary encoding of initial weights value of the multilayer feed-forward 
ANN (112) 

The The The The The The Gene 
Bit order in 

Encoded Decoded Encoded Decoded Encoded Decoded 
Size 

Chromosome (bits) 

0000000000 0.000341 0000010101 0.023632 0000101011 0.049632 

0000000001 0.001198 0000010110 0.024855 0000101100 0.05034 

0000000010 0.001301 0000010111 0.025151 0000101101 0.050646 

0000000011 0.001419 0000011000 0.026107 0000101110 0.051314 
II 11-20 

0000000100 0.003394 0000011001 0.029332 0000101111 0.051436 

0000000101 0.004580 0000011010 0.030270 0000110000 0.051448 

0000000110 0.005834 0000011011 0.030385 0000110001 0.052192 

0000000111 0.007349 0000011100 0.032073 0000110010 0.053863 

Table 3.6 Binary encoding of initial weights value ofthe multilayer feed-forward 
ANN (2/2) 

The The The The The 
Gene 

Bit order in 
Encoded Decoded Encoded Decoded 

The Encoded 
Decoded 

Size 
Chromosome (biis) 

0000001000 0.008648 0000011101 0.032940 0000110011 0.053978 

0000001001 0.009333 0000011110 0.033179 0000110100 0.055953 

0000001010 0.009759 0000011111 0.034866 0000110101 0.055976 

0000001011 0.010979 0000100000 0.035423 0000110110 0.056343 

0000001100 0.011681 0000100001 0.036114 0000110111 0.056933 

0000001101 0.014362 0000100010 0.036382 0000111000 0.057340 

0000001110 0.015645 0000100011 0.036426 0000111001 0.057654 II 11-20 

0000001111 0.016675 0000100100 0.039184 0000011010 0.059031 

0000010000 0.017173 0000100101 0.043390 0000111011 0.059095 

0000010001 0.018613 0000100110 0.04 7078 

0000010010 0.019621 0000100111 0.047787 

0000010011 0.019765 0000101000 0.048739 1111111110 0.999329 

0000010100 0.020618 0000101001 0.049213 1111111111 0.9994 78 
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3.3.3.7 Representation of the learning rate 

The 21th to 28th genes represent the discrete value of learning rate with which the 

network was trained (Table 3. 7). The location of the learning rate sub-string is shown 

in Figure 3 .11. 

lli ll.l.QJlll.Q 01100101~1001 0001110\0il.Qlli 

Learning rate sub string 

Figure 3.11 Learning rate sub-string 

Table 3.7 Binary encoding oflearning rate value of the multilayer feed-forward ANN 
.. Gene 

The The The 
The Decoded 

The The Decoded . Size 
Bit order in 

Encoded Qecoded Encoded. Encoded (bits) Chromosome 

00000000 0.009802252 00010101 0.09427839 00101011 0.189206843 

00000001 0.018177534 00010110 0.09908965 00101100 0.19324533 

00000010 0.0192574 77 00010111 0.099095282 00101101 0.195476764 

00000011 0.021555887 00011000 0.101533889 00101110 0.210145637 

00000100 0.0258574 71 00011001 0.106941659 00101111 0.217732068 

00000101 0.029991950 00011010 0.107888905 00110000 0.217801594 

00000110 0.031922630 00011011 0.121658454 00110001 0.224277071 

00000111 0.041819864 00011100 0.122020518 00110010 0.227712826 

00001000 0.042297798 00011101 0.124774041 00110011 0.230383067 

00001001 0.042659856 00011110 0.125654587 00110100 0.231237816 8 21-28 

00001010 0.044165572 00011111 0.133503860 00110101 0.236444933 

00001011 0.046191556 00100000 0.137546595 00110110 0.240904997 

00001100 0.047401462 00100001 0.137762893 00110111 0.244165287 

00001101 0.047554673 00100010 0.137868992 00111000 0.248628960 

00001110 0.054616615 00100011 0.138601716 00111001 0.257846170 

00001111 0.054791790 00100100 0.138724636 0011010 0.268438821 

00010000 0.066946258 00100101 0.152234013 00111011 0.269054732 

00010001 0.070684335 00100110 0.177123754 ..... 

00010010 0.082592727 001001 I I 0.178982479 . . . . . . . . . . ··········· 
00010011 0.083873508 00101000 0.182141076 I I 111110 0.996156111 

00010100 0.087077220 00101001 0.182227506 llllllll 0.99756035 
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3.3.3.8 Representation of the momentum term 

The 29th to 38th genes represent the discrete value of momentum term with which the 

network was trained (Table 3.8). The location of the momentum term sub-string is 

shown in Figure 3.12. 

Q.l.ll.l.QQl.ill 0 Ill 0 II I 0 I 0 I 00 ~~~.y I 0 10 I .illQ.l 

Momentum tenn sub-string 

Figure 3.12 Momentum term sub-string 

Table 3.8 Binary encoding of momentum term value of the multilayer feed-forward 
ANN 

The The The The Gene 
Bit order in The Encoded The Encoded Size Encoded Decoded Decoded Decoded (bits) Chromosome 

0000000000 0.000341 0000010101 0.023632 0000101011 0.049632 

0000000001 0.001198 0000010110 0.024855 0000101100 0.05034 

0000000010 0.001301 0000010111 0.025151 0000101101 0.050646 

0000000011 0.001419 0000011000 0.026107 0000101110 0.051314 

0000000100 0.003394 0000011001 0.029332 0000101111 0.051436 

0000000101 0.004580 0000011010 0.030270 0000110000 0.051448 

0000000110 0.005834 0000011011 0.030385 0000110001 0.052192 

0000000111 0.007349 0000011100 0.032073 0000110010 0.053863 

0000001000 0.008648 0000011101 0.032940 0000110011 0.053978 

0000001001 0.009333 0000011110 0.033179 0000110100 0.055953 

0000001010 0.009759 0000011111 0.034866 0000110101 0.055976 
10 29-38 

0000001011 0.010979 0000100000 0.035423 0000110110 0.056343 

0000001100 0.011681 0000100001 0.036114 0000110111 0.056933 

0000001101 0.014362 0000100010 0.036382 0000111000 0.057340 

0000001110 0.015645 0000100011 0.036426 0000111001 0.057654 

0000001111 0.016675 0000100100 0.039184 0000011010 0.059031 

0000010000 0.017173 0000100101 0.043390 0000111011 0.059095 

0000010001 0.018613 0000100110 0.047078 ............ 

0000010010 0.019621 0000100111 0.047787 ......... 

0000010011 0.019765 0000101000 0.048739 1111111110 0.999329 

0000010100 0.020618 0000101001 0.049213 1111111111 0.9994 78 
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3.3.3.9 Representation of the number of epochs 

The 39th to 42nd genes represent the discrete value of epochs with which the network 

was trained (Table 3.9). The location of the momentum term sub-string is shown in 

Figure 3.13. 

ll.l.llJ..Q.Ql.ill 0111011 10101001 0001110~ 

Epoch numbers sub-string 

Figure 3.13 Epoch numbers sub-string 

Table 3.9 Binary encoding numbers epoch of the multilayer feed-forward ANN 

The The The 
The Decoded 

Gene Size Bit order in 
Encoded Decoded Encoded (bits) Chromosome 
0000 100 1000 900 

0001 200 1001 1000 
0010 300 1010 1100 

0011 400 I 0 II 1200 
4 39-42 

0100 500 1100 1300 

0101 600 II 0 I 1400 

0 II 0 700 Ill 0 1500 

0 Ill 800 II II 1600 

3.3 .3.1 0 Generation of initial population 

Proposed GA-ANN approach was started with an initial population of elements which 

contains a predefined number of chromosomes (strings). To obtain the GA-ANN 

approach, the GA optimization parameters such as population size, generation 

numbers, mutation rate, and crossover rate were taken different values. 

3.3.3.11 Multilayer feed-forward ANN prediction 

After the initial population has been generated, the population was fed into a trained 

multilayer feed-forward ANN for prediction purpose. The input of the network was a 
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set of architecture and training process parameters generated by the GA optimization 

part. 

3.3 .3 .12 Fitness evaluation 

A fitness function was recognized to evaluate the fitness of individual population. In 

our case, the fitness of each individual string is the negative of mean square error 

(MSE). To keep the values as positive Eq. 3.3 (Ferentinos 2005) was used: 

k 

. 6 1 "\' 02 [ltness = 10 - ~ . f..}Yobs- Yi) (3.3) 
i=l 

Where li is the desired output and Yohs is the observed output. 

3.3 .3 .13 Termination criteria 

The evaluation processes will continue until some termination criteria are applied. In 

this case, the maximum number of generation is defined as the termination criteria in 

GA optimization. 

3.3 .3 .14 Creation of a new population 

In this approach, new population is generated by applying reproduction operator 

(selection) and recombination operators (crossover and mutation). 

3.4 Performance evaluation 

An important issue in multilayer feed-forward ANN application is the selection of the 

performance evaluation function. Most applications use the mean square error (MSE) 

to evaluate the efficiency of ANN performance as given by: 
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k 

MSE = ~ ·L(Yobs- yf) 2 

i=l 

(3.4) 

Where n denotes the size of data patterns, Yobs is observed output of kth pattern, 

and y0
i is desired output of kth pattern. 

Also, in order to examine how close the efficiency is to the actual output, the root 

mean squared error (RMSE), correlation coefficient (R), and coefficient of 

determination (R2
) were employed: 

k 

RMSE = ~ · L (Yobs- yf) 2 

i=l (3.5) 

R = r==L=~===l==(Y=o=b=s=-=Y=o==b=s)=(=y=r=-=Y=-r=)== 
~n ( - )2 ~n ( o -o) 2 
L..k=l Yobs- Yobs L..k=l Yi -yi (3.6) 

(3.7) 

Where n is equal to total number of training dataset. 

3.5 Summary 

All of the research methodology steps that have been discussed in the previous 

sections are significant in the determination of multilayer feed-forward ANN 

architecture and training parameters using GA method. At the beginning, MA TLAB 

2009a software with neural networks toolbox has been chosen for developing the new 

approach. Then, four different data sets were collected to examine the efficiency and 

accuracy of the new approach. A comprehensive data preprocessing techniques have 

been provided, this include removal of missing value, detection and removal of data 

outlier, data partitioning, and data normalization. Afterward, the multilayer feed-
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forward ANN architecture and training parameters are represented using binary GA 

encoding. At the end, an evaluation criterion of the new approach performance has 

been discussed. 
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Chapter 4 

GA-ANN DEVELOPMENT APPROACH 

4.1 Introduction 

This chapter presents the algorithm that has been designed and developed to improve 

multilayer feed-forward ANN architecture and training parameters. Initially, the 

general approach has been explored. Then the chapter describes the four different 

applications that have been used to examine the new approach. The new GA-ANN 

approach described in this chapter is designed to be usable for any kinds of science 

and engineering modeling domains. To implement the GA-ANN approach, a large 

hierarchy of MATLAB code has been created, executed and these are presented in a 

format similar to algorithm. 

4.2 General approach 

The application of multilayer feed-forward ANN in modeling nonlinear processes has 

a central drawback: the lack of proper method to select the most appropriate network 

architecture, activation functions of hidden and output neurons and the parameters of 

the training algorithm. These tasks are usually based on a "trial and error" method 

performed by the developer of the model. Thus, optimality, generalization capability, 

training stability, prediction effectiveness and accuracy are not guaranteed, as the 

explored space is just a small piece of the whole search space and the type of search is 

random. To overcome the problems associated with human network design and 

training parameterization, an automatic method, based on the evolutionary features of 

the GA, is developed. GA evolves several network designs with different activation 

functions and several parameters of the training algorithm so that the best possible 

combination is finally chosen. 



In the vast majority of approaches in the literature, the parameters of training 

algorithm such as learning rate, momentum term and epoch size are not considered in 

the encoding of the genetic algorithm method. In addition, some possible a priori 

knowledge of the system characteristics and possible general intuitions about the 

expected architecture of the multilayer feed-forward, were not taken into account. 

Such an a priori knowledge can drastically limit the huge search space of the problem 

of multilayer feed-forward ANN design, and more dimensions of the problem, like the 

parameters of training algorithm or the types of activation functions of hidden and 

output neurons, can also be encoded into the GA without making the encoding very 

complex and difficult to be optimized. 

4.3 Applications 

Four different datasets were collected and used to obtain new GA-ANN approach. 

One ofthem is from Universiti Teknologi PETRONAS GDC plant (TAURUS 60 gas 

turbine single-shaft generator set) collected during Jan. to Feb. 2008 period. Another 

dataset was collected from PETRONAS Penapisan (Melaka) Sdn Bhd from Jan. to 

Feb. 2007. The third dataset is a published experimental dataset of flank wear for 

drilling process (S.S. Panda, D. Chakraborty et a!. 2008). Lastly, standard XOR 

problem dataset was used to ensure the applicability of propose GA-ANN approach. 

Moreover, these datasets were partitioned into three different sets: training, validation 

and testing in the ratio of 4:1: I (suggested by Hay kin (1999)) 

4.3.1 Debutanizer of CRU 

Debutanizer process (E. Almeida et a!. 2000) in CRU is an important step in oil 

refining process; it is usually utilized to fractionate the straight-run naphtha from the 

Crude Distillation Unit, thus essentially removing propane (C3) and butanes (C4). The 

debutanizer column has two parts, the first part is overhead that is used to feed the 

LPG, which is a light saturated paraffinic hydrocarbon derived from the refining 

process of crude petroleum oil (Howard 2000; James and Glenn 2001; William 2004). 

LPG consists mainly of either C3 or C4, or a combination of them, and some other 

hydrocarbons. They are mainly liquid under pressure, for transportation and storage 
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purposes. The second (bottom) part is used to feed hydrocarbon components for 

refining process. 

The debutanizer column at PETRONAS Penapisan (Melaka) Sdn Bhd, shown in 

Figure 4.1, processes the light straight-run naphtha that comes from the product 

separator bottom through P-130 1, and the liquid from outlet of the debutanizer 

overhead is sent to the LPG unit; while the bottom of C-130 1 is sent to reformate tank 

as a reformatted product. 

P-1301 --+ -
---+ Naphtha 0 

E-1305 !"') 

-; 
u 

.... 
Temperature 

ll.> 
N 

Flow rate 
§ -;:::l 
.0 

Reflux Flow ll.> 
0 

Figure 4.1 Debutanizer CRU Units at Melaka Refinery 

4.3.1.1 Input and output variables 

One of the most important steps in developing a satisfactory multilayer feed-forward 

ANN prediction model is the selection of appropriate input variables; since these 

variables determine the structure of the multilayer feed-forward ANN model, and 

have an impact on the weighted coefficient and performance of the model. The model, 

called debutanizer, consisting of three input variables is constructed to predict iso­

pentane (iC5) and normal-pentane (nCs). 

The experimental data were collected from PETRONAS Penapisan (Melaka) Sdn 

Bhd from Jan. to Feb. 2007. The statistics of the data are presented in Table 4.1. The 

inputs for training are temperature, flow rate, reflux flow and the amount of iso­

pentane (iC5) and normal pentane (nC5). The experimental data values reported are 

obtained from the mean of 400 observations collected from the CRU unit. The value 
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of temperature varies in the range of 183.57-195.67 °C, flow rate varies from 59.48 to 

93.83 m3/hr, and reflux flow varies from 25.11 to 36.00 m3/hr. The value of iso­

pentane (iC5) varies in the range from 2.27 to 3.28%, and normal pentane (nC5) varies 

from 1.34 to 2.06%. 

Table 4.1 Statistical analysis of CRU debutanizer dataset 

Training data (320 set) Validation data (40 set) 
testing data ( 40 set ) 

Variables 
Min Max Mean Min Max 

Mean 
Min Max· Mean 

Temperature 
183.57 195.67 191.38 184.01 195.55 190.53 183.84 194.94 190.99 •c 

Flow rate 
59.48 93.83 88.37 81.60 93.69 88.15 72.41 93.20 87.66 m'lhr 

Reflux Flow 
25.11 36.00 31.36 27.00 35.96 31.11 25.90 35.10 31.06 m'/hr 

iC5% 2.27 3.28 2.70 2.31 3.20 2.68 2.29 3.11 2.66 

nC5% 
1.34 2.06 1.61 1.36 2.00 1.60 1.35 1.91 1.59 

4.3 .1.2 Network architecture 

The type of ANN that has been used to predict iso-pentane (iC5) and normal pentane 

(nC5) is the feed-forward with back-propagation training algorithm. This network type 

can solve the complicated function of desired approximation task. The back­

propagation algorithm (BP) is one of the major types of multilayer feed-forward ANN 

that has gained widespread use. It contains three kinds of layers: input, hidden and 

output layer. All of the data information in BP flows in one way, "feed-forward". The 

neurons of one layer are linked with the neurons of the next layer, there is no 

feedback. In this work, a fully linked BP was used where all neurons of two 

successive layers are linked with each other. Accordingly, the network consists of 

three neurons in the input layer representing the temperature, reflux flow and flow 

rate. The output layer consists of two neurons to represent iC5 and nC5. 

Figure 4.2 shows a schematic diagram of the architecture of the feed-forward with 

back-propagation training algorithm for the debutanizer. 
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Temperature iC5 

Reflux flow 

Flow rate 
nc, 

Input Layer 
Hidden Layer 

Output Layer 

Figure 4.2 A schematic of the multilayer feed-forward ANN architecture for 
debutanizer 

4.3.2 Gas turbine 

A TAURUS 60 gas turbine is shown in Figure 4.3. The air is compressed in the 

engine compressor from state 1 to state 2. The heat added in the combustor brings the 

cycle from 2 to 3, and the hot gas is then expanded from 3 to 4. 

Output 
Sb.nft Po"~'er 

3 

Figure 4.3 TAURUS 60 gas turbine 

4.3.2.1 Input and output variables 

4 

The dataset from actual operation at different load of gas turbine from Universiti 

Teknologi PETRONAS GDC plant (TAURUS 60 gas turbine single-shaft generator 

set) were collected during the period from Jan. to Feb. 2008. The statistics of the data 

are presented in Table 4.2. The inputs for training are ambient conditions (T1 and P1) 

and turbine inlet temperature (T3), while the outputs are net power and turbine outlet 
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temperature (T4). The experimental data values reported are obtained from the mean 

of 60 observations collected from the GDC plant. The value ofT 1 varies in the range 

from 299.5-308 °C, pressure from 647.7 to 922.2 KPag, and T3 varies from 572.5 to 

581 °C. The value of power varies in the range from 2110 to 3236KW, and T4 varies 

from 500.74 to 2.06 °C. 

The dataset was randomly divided into three separate datasets; training dataset 

consisting of a total of 48 dataset, validation dataset consisting of a total of 6 set and 

testing dataset consisting of 6 set. 

Table 4.2 Statistical analysis of gas turbine dataset 

Training data (48 set) Validation data( 6 set ) Testing data (6 set) 

Variables 
Min Max Mean Min Max Mean Min Max Mean 

Inlet 
299.5 308 303.21 299.7 304.2 301.26 301 306.7 304.4 

temperature(Til_ 
Outlet 

572.5 581 575.98 572.7 577.2 574.26 301 306.7 304.4 
temperature(T3) 

Pressure (P 1) 
647.7 922.2 767.57 656.4 796.9 718.16 722.7 852.6 804.46 

Net power 
2110 3236 2763.57 2210 2864 2540.4 2637 3119 2914.8 

T• 500.74 909.43 664.77 505.09 676.38 603.29 646.35 683.30 672.89 

4.3.2.2 Network architecture 

Similar to the debutanizer model, a fully linked BP was used where all neurons of two 

successive layers are linked with each other. Accordingly, the network consists of 

three neurons in the input layer representing the inlet temperature (T1), outlet 

temperature (T3), and pressure. The output layer consists of two neurons to represent 

net power and T4 . Figure 4.4 shows a schematic diagram of feed-forward back­

propagation network for gas turbine. 
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T1 Power 

T3 

Pressure T4 

Input Layer 
Hidden Layer 

Output Layer 

Figure 4.4 A schematic of the multilayer feed-forward ANN architecture for gas 
turbine 

4.3.3 Drilling process 

Drill wear is a significant factor that directly affects the whole surface quality and tool 

life of the drill (Toshiyuki and Jun 2004; Panda, Chakraborty et a!. 2008). It is 

particularly important for decision making in tool condition monitoring. The 

prediction of tool wear before the tool causes any damage on the machined surface is 

extremely valuable in order to avoid loss of product, damage to the machine tool and 

associated loss in productivity (Tugrul and Abhijit 2002). Different types of 

intelligent systems have been successfully applied such as neural networks. Artificial 

neural networks have such a high learning ability that they have been applied to the 

classifications of more complicated conditions. Figure 4.5 shows a radial drilling 

machine. 

Vibrution analyzer 

Charge amplifier 

Figure 4.5 A radial drilling machine (Batliboi Limited, BR618 model) 
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4.3 .3 .1 Input and output variables 

A published experimental dataset of flank wear for drilling process (Panda, 

Chakraborty et al. 2008) collected from a radial drilling machine (Batliboi Limited, 

BR618 model) is used. The statistics of the data are presented in Table 4.3. The inputs 

for training are drill diameter, spindle speed, feed rate, thrust force, torque, feed 

vibration, and radial vibration while the output is flank wear. The experimental data 

values reported are obtained from the mean of 64 observations. The value of drill 

diameter varies in the range of 9-12 mm, spindle speed from 250 to 500 rpm, feed 

rate varies from 0.13 to 0.36 mm/rev, thrust force from I 088.1 to 3323.1 N, torque 

from I 0.67 to 33.11 Nm, feed vibration from 15.46 to 61.51 m/s2, and radial vibration 

from 16.21 to 62.36 m/s2. The value of flank wear varies in the range of0.06 to 0.24 

mm. 

The dataset was randomly divided into three separate datasets, training dataset 

includes a total of 50 data, validation dataset includes a total of 7 data and testing 

dataset includes 7 data. 

Table 4.3 Statistical analysis of drilling machine dataset 

Training data (50 set) Validation data (7 set ) Testing data (7 set) 

Variables Min Max 
Mean 

Min Max Mean Min Max Mean 

Drill 
9 12 10.63 9 12 10.25 9 12 10.23 diameter 

Spindle 
250 500 364.87 250 500 365 250 500 361.15 

speed 

Feed rate 0.13 0.36 0.23 0.13 0.36 0.22 0.13 0.36 0.24 

Thrust 
1150.9 3311.2 2036.24 1088.1 3323.1 1817.91 1185.2 3284.2 2041.73 force 

Torque 11.06 33.11 20.50 10.67 33.08 18.43 11.43 32.95 20.4 

Feed 
17.21 57.11 35.51 18.63 55.46 33.94 15.46 61.51 33.77 vibration 

Radial 
18.1 59.49 36.98 19.52 57.43 35.45 16.21 62.36 35.03 vibration 

Flank 
O.Q7 0.24 0.14 0.09 0.18 0.14 0.06 0.2 0.14 

wear 
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4.3.3.2 Network architecture 

A diagram of feed-forward with back propagation training algorithm for drilling 

process is illustrated in Figure 4.6. The network has three layers, an input layer with 

seven input variables, a hidden layer and an output layer which gives the flank wear. 

The input variables are drill diameter, spindle speed, feed rate, thrust force, torque, 

feed vibration, and radial vibration, whereas flank wear is the output variable. The 

output neuron is flank wear. 

Drill diameter 

Feed rate 

Spindle speed 

Flank wear 
Thrust force 

Torque 

Feed vibration 

Radial vibration 

Input Layer Hidden Loyer Output Loyer 

Figure 4.6 A schematic of the multilayer feed-forward ANN architecture for flank 
wear 

4.3.4 XOR problem 

Exclusive OR (XOR) is standard problem; the data consist of two binary input 

variables and a single binary output variable and has historically been considered as a 

benchmarking problem for the initial testing of different ANN models performance. 

XOR is a simple nonlinear function that cannot be emulated with a network with just 

an output layer. 

4.3.4.1 Input and output variables 

The dataset of XOR problem consists of four training samples. If the two inputs are 

identical, the output is 0. If the inputs are different ( {0, 1} or {I, 0} ), the output is 1. 

The truth table of this problem is shown in Table 4.4. 
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Table 4.4 XOR mapping 

Input! ~ lnput2 Output=x~ 
I I 0 

I 0 I 

0 I I 
0 0 0 

4.3.4.2 Network architecture 

A diagram of feed-forward with back propagation training algorithm for XOR 

problem is illustrated in Figure 4.7. The network has three layers, an input layer with 

two input variables, a hidden layer and an output layer which gives the output. 

Input! 
Output 

Input2 

Figure 4.7 A schematic of the multilayer feed-forward ANN architecture for XOR 

4.4 The algorithm 

The algorithm of the proposed GA-ANN consists of three main parts: the "user level" 

part, the "genetic algorithm" part and the "training" part. The first part deals with the 

input/output procedures, even as the other two parts, which have several sub-sections, 

interconnect with each other and with the first part to accomplish the desired process. 

The algorithm is shown sequentially in Figure 4.8. Each box in Figure 4.8 represents a 

separate function and the names of these functions are shown at the top of each box. 

The links between functions are shown with the appropriate arrows. An 

explanation of the algorithm and the symbols involved follows: 

• In the beginning, the user gives some parameters, which are input training set 

(P), the output training set (T), the number of generation of the GA (N), the 
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size of population (M), and finally the crossover and mutation probabilities 

(Pc) and (Pm). This information is then passed on to another function called 

GA. 

• The GA randomly generates an initial population of m individual 

chromosomes CXinitiaJ). Each of which represents specific network architecture, 

activation function, training algorithm, initial weight, learning rate, 

momentum term and epoch size. 

• Repeat the next steps until the maximum number of generation (N) is reached. 

o The population of binary string is passes to decoding function, where each 

string of the binary values is decoded into explicit information about the 

multilayer feed-forward ANN architecture and training parameters. 

o The fitness of each individual string is calculated. 

o According to this fitness value, the GA (function 'selection') selects the 

new group of string, which will continue as parents in the next generation 

of the GA (Xparents): 

o The strings are then subjected to crossover operation with a given 

probability, Pc. 

o Perform mutation with a given probability, Pm. 

o Then the final population is formed (Xnew). 

o Decode each chromosome in the new generation. Train each network and 

compute the new MSE values after the training of each new chromosome. 

• Finally the best string, that is the string that gives the minimum fitness, is 

returned to the user, together with its corresponding minimum MSE (best 

MSE) and some other information useful for statistical analysis. 

The details about the GA parameters that were used (population s1zes, 

probabilities of crossover and mutation, etc.) as well as the result of the applications, 

are presented in Chapter 5. The approach was developed in MATLAB with Neural 

networks Toolbox. 
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X 

Best MSE X 
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Figure 4.8 Sequence diagram of the algorithm 

0 

The algorithm for improving multilayer feed-forward ANN performance has been 

developed. Therefore, the multilayer feed-forward ANN architecture and training 

parameters including, training algorithm, number of hidden layers, number of neurons 

in hidden layer, activation function, initial weight, learning rate, momentum term and 

epoch size are adopted using GA. 

The new GA-ANN approach described in this chapter has been designed to be 

usable for any kinds of science and engineering modeling domains and is not limited 

to petroleum and energy domain alone. To implement the GA-ANN approach, a large 

hierarchy of MATLAB code has been created and executed, and these are presented 

in a format similar to algorithm. 
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The networks that have been developed as presented in sections 4.1.2, 4.2.2, 4.3.2 and 

4.4.2 have an architecture that can handle almost all four applications. These networks 

have been used to predict iso-pentane (iC5) and normal pentane (nC5) for the CRU 

debutanizer, net power and T4 for gas turbine single shaft, flank wear for drilling 

process, and the output ofXOR problem. 
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Chapter 5 

RESULTS AND DISCUSSION 

5.1 Introduction 

In this study, four different experimental datasets have been used to design and 

simulate the new approach. For the debutanizer of CRU unit the numbers of datasets 

for training, cross-validation and testing network are 320, 40 and 40, respectively. For 

the gas turbine the numbers of data sets for training, cross-validation and testing 

network are 40, I 0 and I 0, respectively. For the drilling process the numbers of data 

sets for training, cross-validation and testing network are 41, 12 and 12, respectively. 

Finally, for XOR problem the numbers of training networks are 4 datasets. The results 

of proposed GA-ANN, together with some additional information about its 

generalization capability and stability of multilayer feed-forward, prediction 

efficiency, accuracy, optimality and simulation time, are presented in this chapter. For 

judging the new GA method against the existing ones that are proposed to work in 

multilayer feed-forward ANN, likes most previous works the simulation has used as a 

verification method. 

5.2 GA method 

The training sets for the prediction of iC5, nC5, flank wear, net power and T4, and 

finally the output of XOR problem with data collected as described in Chapter 5 were 

fed into the GA method. 

The mechanism of GA method has been presented in Chapter 4. GA is a 

probabilistic adaptive optimization algorithm, thus, the entire optimization process 

must be repeated a number of times, and beginning from different random initial 

populations of possible solution each time. The fundamental parameters of GA that 



must be explored are the number of individual in population (m), the number of 

generations (n), the probability of crossover (Pc), and the probability of mutation 

(Pm). In this work, a number of experiments have been conducted to determine the 

best possible ANN design and training parameters. 

The initial populations of each run of the GA method, that is the initial values of 

the 42-bit binary strings as they are described in Chapter 3, were formed randomly 

and evaluated in each generation. One-point crossover which is one of the most 

common types of crossover is used (Goldberg, 1989a, b, c). Table 5.1 shows the 

optimal GA parameters that were used to achieve the results. 

Table 5.1 GA parameters 

Parameter Optimal value 

Population size 20 
Maximum number of generation 30 
Crossover probability Pc 0.95 
Mutation probability Pm 0.05 

5.2.1 Prediction of iC5 and nC5 using GA-ANN approach 

Figure 5.1 shows the best mean squared errors (MSEs) attained by the GA-ANN 

approach as a function of the crossover probability for three different values of 

mutation probability. The best performance was achieved for Pc = 0.95 and Pm = 

0.05. 
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Figure 5.1 GA method performance for several crossover and mutation probabilities 

In this study, the number of individual between 10 and 20 in the population were 

examined, and the best MSE values are shown in Figure 5.2. The best performance of 

GA method was achieved with the population size of 20. Further, two different values 

of generation numbers were explored, 20 and 30, and the results after 30 generations 

are generally better. 
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Figure 5.2 GA method performance for several population size and two values of 
generation size 

Figure 5.3 shows the best MSE values found after each generation during the GA 

method process. In this run, the best MSE was found after 26 generations. The 

corresponding average MSE values of the entire population after each generation is 

shown in Figure 5.4. 
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Figure 5.3 Best MSE found during GA process for the iC5 and nC5 prediction 
model 
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Figure 5.4 Average MSE of the entire population during GA process for the iC5 and 
nC 5 prediction model 

0 The first best solution found is the string: 

10 001001 01 1000000001 00000100 OOOOlllJ 10 0001 

Which are interpreted as a single hidden layer network with 15 neurons, logistic 

sigmoid activation function in hidden neurons and pure linear function in output 

neurons, trained with the Levenberg-Marquardt back-propagation algorithm that used 

a 0.519716 value as initial weight, by learning rate of 0.0258574 71, with a value for 

momentum term of 0.061401 after 200 epochs. This solution gave a MSE value of 

0.0019 for iCs and 0.0002 for nC5. 
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D The second best solution found is the string : 

-----------------------------------------------, 
: 10 00010010 1100011011 00001100 {){JI)J 10000110101 I 
I I 

·----------------------------------------------~ 
Which is interpreted as a single hidden layer with 7 neurons, tangent sigmoid 

activation function in hidden neurons, and tangent sigmoid in output neurons, trained 

with Levenberg-Marquardt back-propagation algorithm that used a 0.784855 value as 

initial weight, by learning rate of 0.047401462, with a value for momentum term of 

0.095949 after 600 epochs. This solution gave MSE value of 0.0019 for iC5 and 

0.00027 for nC5. 

D The string : 

------------------------------------------------
1 10 ooot oo 1 o 1110 tlOOll oooooooo noon t 1111 o t 0101 I 
I 

'-----------------------------------------------' 
is found as the third best solution, which was interoperated as one hidden layer with 7 

neurons, tangent sigmoid activation function in hidden neurons and tangent sigmoid 

in output neurons, trained with Levenberg-Marquardt back-propagation algorithm that 

used a 0.932469 value as initial weight, by learning rate of 0.009802252, with a value 

for momentum term of0.5 after 600 epochs. This solution gave MSE value of0.0019 

for iCs and 0.00028 for nCs. 

5.2.2 Prediction of flank wear using GA-ANN approach 

Figure 5.5 shows the best MSE values found after each generation during GA method 

process. In this run, the best MSE was found after 29 generations. The corresponding 

average MSE values of the entire population after each generation are shown in 

Figure 5.6. 
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Figure 5.6 Average MSE of the entire population during GA method process 

0 The best solution found is the string: 

-----------------------------------------------~ 

: 00 101000 10 1100llll00 00000011 0000001000 0001 

Which is interpreted as a one hidden layer NN with 17 neurons, tangent sigmoid 

activation function in hidden neurons, and tangent sigmoid function in output 

neurons, trained with the Steepest Descent back-propagation algorithm that used a 

0.519716 value as initial weight, by learning rate of 0.025857471 with a value for 
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momentum term of 0.061401 after 200 epochs. This solution gave a value of 

0.000019 for the MSE of flank wear. 

D The second best solution found is the string: 

-----------------------------------------------, 
11 111001 01 1100100101 00001001 OOfiOHltOOO 0111 

I 

L-----------------------------------------------1 

Which is interpreted as a two hidden layer with 7 neurons in the first hidden layer and 

8 neurons in the second hidden layer, logistic sigmoid activation function in hidden 

neurons, and pure linear function in output neurons, trained with Conjugate-Gradient 

back-propagation algorithm that used a 0.796258 value as initial weight, by learning 

rate of 0.042659856, with a value for momentum term of 0.048739 after 800 epochs. 

This solution gave a value of 0.0000 19for the MSE of flank wear. 

D The string: 

-----------------------------------------------l 
: 10 110001 01 1010011101 00000001 0001001111 0111 : 
• _______________________________________________ j 

is found as the third best solution, which is interoperated as a two hidden layer NN 

with 6 neurons in the first hidden layer and 7 neurons in the second hidden layer, 

logistic sigmoid activation function in hidden neurons, and pure linear function in 

output neurons, trained with Levenberg-Marquardt back-propagation algorithm that 

used a 0.796258 value as initial weight, by learning rate of 0.5, with a value for 

momentum term of 0.2 after 800 epochs. This solution gave a MSE value of 0.000020 

for flank wear. 

5.2.3 Prediction of net power and T4 using GA-ANN approach 

Figure 5.7 shows the best MSE values found after each generation during GA method 

process. In this run, the best MSE was found after 28 generations. The corresponding 

average MSE values of the entire population after each generation are shown in 

Figure 5.8. 
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Figure 5.7 Best MSE found during GA process for the net power and T4 
prediction model 
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Generation No. 

Figure 5.8 Average MSE of the entire population during GA process for net power 
and T4 

0 The first best solution found is the string: 

00101000 1011.11011010 000001010000000011 0011 

Which is interpreted as a two hidden layer NN with 5 neurons in the first hidden layer 

and 3 neurons in the second hidden layer, tangent sigmoid activation function in 

hidden neurons, and tangent sigmoid function output neurons, trained with the 

Steepest Decent back-propagation algorithm that used a 0.963612 value as initial 

weight, by learning rate of0.02999195, with a value for momentum term of0.001419 
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after 400 epochs. This solution gave a MSE value of0.0001 for net power and 0.0003 

for T4. 

D The second best solution found is the string: 

~----------------------------------------------, 

10110111 00 1111111001 000001011 (1()())()()0()()0 0001 
I 
-----------------------------------------------~ 

Which is interpreted as a two hidden layer with 7 neurons in the first hidden layer and 

6 neurons in the second hidden layer, logistic sigmoid activation function in hidden 

neurons, and logistic sigmoid function in output neurons, trained with Levenberg­

Marquardt back-propagation algorithm that used a 0.994243 value as initial weight, 

by learning rate of 0.046191556, with a value for momentum term of 0.06616 after 

200 epochs. This solution gave a MSE value of 0.0003 for net power and 0.0001 for 

T4. 

D The third best solution found is the string: 

-----------------------------------------------. 
I 10 110001 01 111100001 000000010 0(101()JJlJ 0 0101 : _______________________________________________ } 

Which was interoperated as a two hidden layer NN with 6 neurons in the first hidden 

layer and 6 neurons in the second hidden layer, logistic sigmoid activation function in 

hidden neurons, and pure linear function in output neurons, trained with Levenberg­

Marquardt back-propagation algorithm that used a 0.483295 value as initial weight, 

by learning rate of 0.019257477, with a value for momentum rate of 0.094629 after 

600 epochs. This solution gave a MSE value of 0.0001 for net power and 0.0001 for 

T4. 

5.2.4 Prediction of XOR output using GA-ANN approach 

Figure 5.9 shows the best MSE values found after each generation during GA method 

process. In this run, the best MSE was found after 13 generations. The corresponding 

average MSE values of the entire population after each generation are shown in 

Figure 5.10. 
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Figure 5.9 Best MSE found during GA process for the XOR output prediction 
model 
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Figure 5.10 Average MSE of the entire population during GA process for the 
XOR output prediction model 

D The first best solution found is the string: 

00 111100 10 0000011010 00000110 0000110001 0011 I 
I I 

'-----------------------------------------------' 
Which is interpreted as a two hidden layer NN with 8 neurons in the first hidden layer 

and 5 neurons in the second hidden layer, tangent sigmoid activation function in first 

hidden neurons, and tangent sigmoid function in output neurons, trained with the 

Steepest Decent back-propagation algorithm that used a 0.059031 value as initial 

weight, by learning rate of 0.031922630, with a value for momentum term of 
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0.052192 after 400 epochs. This solution gave a MSE value of 0.0002 for XOR 

output. 

D The second best solution found is the string: 

-----------------------------------------------, 
: 10 001101 1 l 00001 10010 00111001 000 I 000000 0001 : 

~-----------------------------------------------· 
Which is interpreted as a single hidden layer with 17 neurons, tangent sigmoid 

activation function in hidden neurons, and pure linear function in output neurons, 

trained with Levenberg-Marquardt back-propagation algorithm that used a 0.053863 

value as initial weight, by learning rate of 0.257846170, with a value for momentum 

term of 0.024855after 200 epochs. This solution gave a MSE value of 0.0004 for 

XOR output. 

D The third best solution found is the string: 

------------------------------------------------1 I 
11100111 01 00000101001 000000010 000010()010 OOJO I 

I I 

•-----------------------------------------------· 

Which was interoperated as a two hidden layer NN with 5 neurons in the first hidden 

layer and 3 neurons in the second hidden layer, logistic sigmoid activation function in 

hidden neurons, and pure linear function in output neurons, trained with Conjugate 

Gradient back-propagation algorithm that used a 0.020618 value as initial weight, by 

learning rate of 0.036382, with a value for momentum rate of 0.094629 after 300 

epochs. This solution gave a MSE value of 0.0004 for XOR output. 

5.3 Benchmarking 

The proposed GA-ANN is compared with most outstanding approaches that have 

been proposed for optimizing multilayer feed-forward ANN parameters using GA. 

The comparison performance metrics are as follows: 

• Optimality 

• Generalization capability and stability of multilayer feed-forward ANN 

• Prediction effectiveness 

• Simulation time 
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5.3.1 Genetic algorithms to select architecture of a feed-fonvard artificial neural 

network (Jasmina and Ramazan 2001) 

In the approach of Jasmina and Ramazan (200 I), a genetic algorithm has been applied 

to select the optimum architecture offeed-forward ANN, mainly to evolve the number 

of hidden layers and connection weights. The multilayer feed-forward parameters 

haven't been comprehensively utilized. In this approach, the number of hidden 

neurons, type of activation function, learning· rate, momentum term and epoch size 

have not been considered. Figure 5.11 shows the GA structure of Jasmina and 

Ramazan approach. 

' ,, 
' 10 " 010 
I II I 

--L-- - --[ Jbt" to "'"""'""mb" of htddo" 

2 bits to represent initial 

Figure 5.11 GA structure of Jasmina and Ramazan approach 

5.3.2 Genetic algorithms to find the number of hidden layer nodes of a feed­

fonvard artificial neural network (Torres et a!. 2005) 

The multilayer feed-forward ANN parameter that has been optimized in Torres et a!. 

2005 work is the number of hidden layer neurons. In this approach, number of hidden 

layers, type of activation function, initial weight, learning rate, momentum term and 

epoch size have not been considered either. The GA structure of Torres et a!. 

approach is shown Figure 5.12 . 

.... -----------, 
: 0JOIOQ I 

-----L---~ bt" to cop~rnt oombot of htddrn 

Figure 5.12 GA structure ofTorres eta!. approach 
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5.3.3 A combination of genetic algorithm and artificial neural network (Makoto 

et al. 2006) 

The Makoto et al. 2006 work is focused on the optimization of weight connection of 

feed-forward ANN using genetic algorithm. In this work, the number of hidden 

layers, number of neurons in hidden layer, type of activation function, learning rate, 

momentum term and epoch size have not been considered as well. Figure 5.13 shows 

the GA structure of Makoto et al. approach. 

-----------, 
: Ill IIIII : 

---- -[--- 5 bits to represent connection 

Figure 5.13 GA structure of Makoto et al. approach 

5.3.4 Feed-forward neural networks designed and parameterized by genetic 

algorithms (Ferentinos 2005) 

The Ferentinos 2005 work is considered as one of the most recent approaches that 

have been applied to the selection of the following multilayer feed-forward ANN 

parameters using genetic algorithm: 

• Minimization algorithm used by the back-propagation training algorithm. 

• The architecture of the ANN. 

• The types of activation functions of the hidden neurons and the output 

neurons. 

There are some multilayer feed-forward parameters that have not been considered 

in this approach such as initial weight, learning rate, momentum term and epoch size. 

The GA structure of Ferentinos approach is shown in Figure 5.14. 
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' - - - - - ~ 
1

- - -[-- - ~' - -c- 2 bits to represent activation function 

3 bits to represent number of hidden layers and 
neurons of hidden layer 

2 bits to represent training algorithm 

Figure 5.14 GA structure of Ferentinos approach 

5.3.5 Design of neural networks using genetic algorithm (Manojit and Deoki 

2006) 

A methodology based on genetic algorithm (GA) has been developed by Manojit and 

Deoki (2006) to overcome the problem of designing ANN by a trial and error 

procedure. This involves optimally determining the number of hidden layers, number 

of neurons in each hidden layer, and activation functions. In their work, training 

algorithm, learning rate, momentum term, initial weight and epoch size have not been 

considered. Figure 5.15 shows the GA structure ofManojit and Deoki approach. 

,--------,----,----
1 ~ 11 I 
1, ___ o[1~ ___ ( _1~ __ ;~ _o ___ ; 

L 1 bit to reoresent activation function L, bi" <o "'"""' oomb" of hfddeo "'"''"' 

3 bits to represent number of hidden layers 

Figure 5.15 GA structure ofManojit and Deoki approach 

5.4 Comparative study 

The dataset of the four applications have been used to evaluate the prediction 

performance. 
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5.4.1 Optimality 

In order to assess the optimality degree of the proposed approach with the other 

existing approaches of multilayer feed-forward ANN using GA, Table 5.2 shows the 

parameters of multilayer feed-forward ANN that have been covered in the proposed 

approach and five other approaches. Further, Table 5.2 shows that the proposed 

approach has provided a comprehensive optimization for architecture and training 

parameters of multilayer feed-forward ANN which means less human dependent, and 

higher precision and effectiveness have been achieved. 

Table 5.2 Required architecture and training parameters of multilayer feed-forward 
ANN 

Hidden Hidden Training Activation Initial Learning Momentum Epoch 
Approach layers neurons algorithm function weight rate tenn size 

Jasmina 
and 

" " X X X X X X 

Ramazan 
(200 I) 
Torres et 
al. (2005) " " X X X X X X 

Makoto et 
X X X " al. (2006) 

X X X X 

Ferentinos 

" " " " (2005) 
X X X X 

Manojit 
and Deoki " " X " X X X X 

(2006) 
Proposed 
GA-ANN " " " " " " " " (20 I 0) 

Necessary GA specifications are the subject of comparison in Table 5.3; GA 

features that are applied for comprehensive optimum method are the subject of 

comparison in Table 5.4. 
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Table 5.3 GA specification of proposed and other approaches 

Number of Encoding Chromosome Selection Mutation Crossover 
Approach individuals type length method method method 

. 

Jasmina and 
Ramazan 2 Indirect 7 Tournament Not 

One point 
(200 I) mentioned 

Torres et aL 
2 Indirect 6 Roulette 

Not 
One point (2005) mentioned 

Makoto et aL 
I Indirect 5 

Not Not Not 
(2006) mentioned mentioned mentioned 
Ferentinos 

Proportional 
Occasional 

(2005) 4 Indirect 10 random One-point selection 
alteration 

Manojit and Occasional 
Deoki (2006) 3 Indirect 6 Tournament random One-point 

alteration 
Proposed GA-

Proportional 
Occasional 

ANN (2010) 8 Indirect 42 
selection 

random One-point 
alteration 

a e eatures o · propose T bl 54 GA fi f an ot d d h er approac h es 
Population size Number of Pc Pm Fitness 

Approach generation function 

Jasmina and 50 30 0.6 0.0033 MSE 
Ramazan (200 I) 
Torres et aL (2005) Not mentioned Not Not Not Not 

mentioned mentioned mentioned mentioned 
Makoto et aL (2006) Not mentioned 40 0.7 0.01 R' 

Ferentinos (2005) 20 30 0.9 0.05 MSE 

Manojit and Deoki 50 100 
(2006\ 

0.4 0.08 SSE 

Proposed GA-ANN 20 10-30 0.05, 0.01, 0.5-0.95 MSE 
(20 I 0\ and 0.1 

5.4.2 Generalization capability and stability of multilayer feed-fonvard ANN 

Data processing techniques have the greatest effect on the ANN generalization and 

performance. In the proposed approach, a comprehensive data pre-processing 

techniques are provided to improve the generalization capability and performance of 

multilayer feed-forward ANN. These techniques include missing value removal, data 

outlier detection and removal, data normalization, and data partitioning. The data pre­

processing techniques are listed in Table 5.5, including the technique employed in our 

approach. 
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Table 5.5 Data pre-processing techniques 

Approach 
Missing value Data outlier Data Data 
removal removal normalization partitioning 

Jasmina and Ramazan 
(200 I) 

X X .y X 

Torres et al. (2005) X X .y X 

Makoto et al. (2006) X X .y X 

Ferentinos (2005) X X .y .y 
Manojit and Deoki 

X X .y .y 
(2006) 
Proposed GA-ANN .y .y .y .y 
(20 I 0) 

The number of hidden layers and neurons per layer influence the generalization 

capability and reliability of the ANN. The more hidden layers the ANNs possess, the 

more precise the ANNs are. However, the ANN operation calculation rate is slower. 

Therefore, the number of hidden layers is reasonably designed in accordance with the 

computation speed and the performance precision. The number of neurons in hidden 

layers is related to the precision. Theoretically, the more number of neurons in the 

hidden layers, the lesser would be the errors in the system, which will result in an 

interminable computation. 

The epoch size affects multilayer feed-forward ANN generalization capability. 

The use of small epoch size may produce ANN that is incapable of representing the 

data, whereas, a large epoch may enable ANN to memorize the data, but will 

demonstrate bad generalization to untrained data. 

In addition, a smaller value of learning rate may slow down the training speed. 

Though, a high value of learning rate increases the training speed but the network 

becomes unstable. ANN features that are necessary for generalization capability and 

stability are the subject of comparison in Table 5.6. 
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Table 5.6 Necessary features for generalization capability and stability 

ANN features 

Epoch size Learning rate Momentum Hidden layers Hidden neurons 

Approach 
term 

Jasmina and Trial-and- Not Not Single hidden Adopted using 
Ramazan (200 I) error mentioned mentioned layer GNI-8 

Torres et al. Trial-and- Not Not Single hidden Adopted using GA 
(2005) error mentioned mentioned layer 

Makoto et al. 1000 0.1 0.8 Adopted using Adopted using GA 
(2006) GA 

Ferentinos 1000 On-line Not Adopted using Adopted using GN 
(2005) adjustable mentioned GNsingle & 30 & 8 

learning rate two 
Manojit and Trial-and- 0.05 0.5 Adopted using Adopted using GN 
Deoki (2006) error GNsingle, two 10, 10&10 

& three 
Proposed GA- Adopted Adopted Adopted Adopted using Adopted using 
ANN (2010) usingGA usingGA using GA GNsingle & GN30& 8 

two 

5.4.3 Prediction effectiveness 

The performance of the proposed GA-ANN approach is compared to the existing 

approaches in terms of prediction effectiveness; the results are summarized in Table 

5.7. 

Table 5.7 Results of the proposed GA-ANN approach and other approaches in terms 
of prediction effectiveness 

Jasmina and Torres et al. Makoto et al. Ferentinos Manojit and Proposed GA-
Ramazan (200 I) (2005) (2006) (2005) Deoki (2006) ANN (2010) 

MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE 

Output 

iC, 0.042 0.205 0.113 0.336 0.301 0.549 0.032 0.179 0.221 0.470 0.002 0.045 

nC5 0.077 0.277 0.215 0.464 0.419 0.647 0.036 0.190 0.197 0.444 0.0002 0.014 

Flank 
wear 

0.013 0.114 0.032 0.179 0.012 0.110 0.007 0.084 0.058 0.241 0.00002 0.004 

Net 0.483 0.695 0.313 0.559 0.442 0.665 0.037 0.192 0.33 0.574 0.0001 0.010 
power 
T4 0.325 0.570 0.295 0.543 0.256 0.506 0.131 0.362 0.114 0.338 0.0001 0.010 

XOR 0.039 0.197 0.006 0.077 0.016 0.126 0.001 0.032 0.077 0.277 0.0002 0.014 
output 

In this work, mean square error (MSE), and root mean square error (RMSE) have 

been utilized to evaluate the prediction efficiency of the proposed approach and other 

approaches. In general, if the values of MSE and RMSE are close to zero, that means 

perfect prediction efficiency has been achieved. 
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From Table 5.7, it is obvious that the proposed GA-ANN approach is capable of 

judging a good solution that will give effective prediction performance of the 

multilayer feed-forward ANN. 

A comparison of the results produced by the proposed GA-ANN approach and by 

the other approaches in terms of effectiveness clearly indicates that the proposed GA­

ANN approach has achieved a higher degree of success. Figure 5.16 and Figure 5.17 

show the performance comparison of the proposed approach and other approaches in 

terms of MSE and RMSE. 

2 

H 1.5 
1 

0.5 
0 

Approach 

-<>-XOR output 

-+-T4 

~Net power 

-s!l- Flank wear 

~nC5 

~iC5 

Figure 5.16 Comparison of proposed approach with other approaches in terms of 
prediction effectiveness (MSE) 

0.8 
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"' ~ 0.4 
Cl: 0.2 
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Approach 

~iC5 

~nC5 

-.!~-Flank wear 

~Net power 

-+-T4 

-<>-XOR output 

Figure 5.17 Comparison of proposed approach with other approaches in terms of 
prediction effectiveness (RMSE) 

Besides that, the coefficient correlation and determination coefficient of the 

proposed GA-ANN approach and the other five approaches in order to measure the 

performance of prediction are summarized in Table 5.8. 
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Table 5.8 Results of the proposed GA-ANN approach and other approaches in terms 
of prediction perofrmance 

Jasmina and 
Torres al. Makoto al. Fcrentinos . Manojit and Proposed GA·. Approach Ramazan et et 

(2001) 
(2005) (2006) (2005) Deoki (2006) · ANN (2010) 

Output R R' R R' R R' R R' R R' R R' 

iCs 0.931 0.867 0.943 0.889 0.933 0.870 0.965 0.931 0.956 0.914 0.998 0.996 

nC, 0.922 0.850 0.947 0.897 0.934 0.872 0.954 0.910 0.963 0.927 0.998 0.996 

Flank wear 0.96 0.922 0.955 0.912 0.961 0.924 0.97 0.941 0.963 0.927 0.995 0.990 

Net power 
0.946 0.895 0.921 0.848 0.903 0.815 0.952 0.906 0.942 0.887 0.994 0.988 

T4 0.938 0.880 0.947 0.897 0.91 0.828 0.955 0.912 0.955 0.912 0.989 0.978 

XOR 0.976 0.953 0.966 0.933 0.95 0.903 0.973 0.947 0.971 0.943 0.995 0.990 
output 

In practical, correlation coefficient (R) and determination coefficient (R2
) are 

utilized to measure the performance of prediction model; if the values of R and R2 are 

close to one that means high prediction performance has been achieved. 

From Table 5.8, it is obvious that the proposed GA-ANN approach is capable of 

judging a good solution that will give a highly prediction performance of the 

multilayer feed-forward ANN. 

A comparison of the results produced by the proposed GA-ANN approach and by 

the other approaches in terms of effectiveness clearly indicates that the proposed GA­

ANN approach has achieved a higher degree of success. Figure 5.18 and Figure 5.19 

show the comparison of performance of the proposed approach and the other five 

approaches. 
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0.8 
0.6 
0.4 

0.2 

0 

Approach 

-o-iCS 

-o-nes 
~Flank wear 

-Net power 

--T4 

-o- XOR output 

Figure 5.18 Comparison of proposed approach with other approaches in terms of 
prediction performance (R) 
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Figure 5.19 Comparison of proposed approach with other approaches in terms of 
prediction performance (R2

) 

5.4.4 Simulation time 

MATLAB 2009a with 6.0.2 Neural Networks Toolbox has been used to simulate the 

whole approaches. The simulation time of the proposed GA-ANN approach and the 

other approaches are summarized in Table 5.9. 

Table 5.9 Simulation time of proposed GA-ANN approach and other approaches 

Jasmina and Torres et al. Makoto et al. 
Manojit and 

Proposed GA-
Approach Ramazan Ferentinos (2005) Deoki Saraf 
Feature (2001) 

(2005) (2006) (2006) ANN (2010) 

No of hidden 
layers 
neurons, 

No of hidden No of hidden 
activation 

No of hidden layers , neurons, layers, 
function, 

Optimized No of hidden Connection training 
layers and activation neurons, and 

parameters weights neurons weights 
function and activation algorithm, 

training algorithm function 
initial weight, 
learning rate, 
momentum 
term and 
epoch size 

No. of optimized 
parameters 2 I I 3 3 8 

GA structure 5 6 5 10 6 42 

Application Simulation Time 

Debutanizer 
16:58 17:36 10:11 21:33 19:20 19:23 

Drilling process 14:39 15:24 12:46 15:57 13:17 15:44 

Gas turbine 
11:42 13:51 13:49 16:21 14:50 14:20 

XOR 2:26 3:31 3:16 3:00 2:45 3:10 
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Although the proposed approach has comprehensively been covered every aspect 

of multilayer feed-forward neural networks, which means the use of long space 

solution, this approach has given acceptable simulation time compared to other 

approaches that use short space solution and utilize a few multilayer feed-forward 

neural network parameters. 

Approach 

-o-Debutanizer 

-a-Drilling process 

~Gas turbine 

~XOR 

Figure 5.20 Comparison of proposed approach with other approaches in terms of 
simulation time 

A comparison of the results achieved by the proposed GA-ANN approach and by 

the other approaches in terms of simulation time clearly indicates that the proposed 

GA-ANN approach has achieved acceptable degree of success. Figure 5.20 compares 

the simulation time of the proposed approach and other approaches. 

5.5 Summary 

The results of the proposed GA-ANN approach that has been used to predict the 

outputs of four different datasets described in chapter 4 have been presented in this 

chapter, including a discussion of the developed GA-ANN approach. A direct 

comparison between five outstanding approaches and the proposed GA-ANN has 

been conducted; the results have given a clear indication of the degree of success of 

the proposed GA-ANN approach in terms of generalization capability and training 

stability, optimality, performance prediction effectiveness, prediction accuracy and 

simulation time. In this work, MATLAB 2009a software with Neural Networks 

Toolbox was employed to develop the GA-ANN approach. 
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Chapter 6 

CONCLUSION AND RECOMMENDATION 

This chapter summarizes the findings from this thesis, contribution and provides 

some recommendations for further work. 

6.1 Conclusion 

The main goal of this work is to propose a methodology for determining the optimum 

architecture and training parameters of multilayer feed-forward artificial neural 

network (ANN) and to contribute to existing work on multilayer feed-forward ANN 

designing and training performance, based on a genetic algorithm (GA). 

Despite the popularity of multilayer feed-forward ANN, there are still some 

challenges concerning the development of multilayer feed-forward ANN model that is 

able to perform effectively and accurately. In other words, the desired performance is 

depended on the selection of appropriate architecture and training parameters. These 

parameters include the number of hidden layers, number of hidden neurons, type of 

training algorithm, type of activation function, initial weight, learning rate, 

momentum term and epoch size. 

There are existing attempts based on GA to optimize multilayer feed-forward 

ANN parameters, but, these attempts still focus only on parts of the parameters. For 

example (Blanco et a!. 2001; Taeksoo and Han 2000; Sedki et a!. 2009) applied GA 

method to evolve the connection weights of multilayer feed-forward ANN. Another 

GA method was used by (Hyun-jung and Shin 2007) to optimize both connection 

weights and number of hidden neurons, while (Ferentinos 2005) considered a binary­

encoded GA to determine the optimum multilayer feed-forward ANN structure, 

training algorithm, and activation function. 



In this work, the GA-based approach has been tested on four different datasets. 

One of them is from Universiti Teknologi PETRONAS GDC plant (TAURUS 60 gas 

turbine single-shaft generator set) collected during Jan. to Feb. 2008 period. Another 

dataset was collected from PETRONAS Penapisan (Melaka) Sdn Bhd from Jan. to 

Feb. 2007. The third dataset is a published experimental dataset of flank wear for 

drilling process (Panda et al. 2008). Lastly, standard XOR problem dataset was used 

to ensure the applicability of the proposed GA-ANN approach. 

The data preprocessing is one of the most important issues in the success of any 

multilayer feed-forward ANN design. In this research a comprehensive data 

preprocessing techniques have been provided. These techniques include missing value 

removal, data outlier detection and removal, data normalization, and data partitioning. 

Then the GA method was applied to obtain the optimal multilayer feed-forward 

ANN architecture and training parameters. There are three major reasons for the 

implementation of a GA instead of a conventional optimization technique in this 

approach (Karr 1995): 

• The GA works and focuses directly on a coded form of the problem's 

parameter set and not on the parameters themselves. 

• The GA process is started from a group of points of the solution space (initial 

population) and not from a single point, therefore, reducing the chance of 

converging to local optima. 

• The sampling process is conducted using the genetic operators (i.e., selection, 

crossover, and mutation) which are stochastic rules and not deterministic rules. 

Based on the approaches extracted from some applications of GA encoding in the 

works of previous researchers, indirect encoding scheme has been applied, which is 

the way of encoding several possible chromosomes of multilayer feed-forward ANN 

into specific genotypes, in the form of a simple binary string comprised of a series of 

0 and 1 in order to encode the decision variables of a specific problem. A 

chromosome, in this research, consists of the training algorithm, number of hidden 

layers and neurons in each hidden layer, activation functions of the hidden and output 

neurons, initial weight, learning rate, momentum term, and epoch size. A genotype is 
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a sequence of bits (0 or 1) with a specific constant length. Each genotype corresponds 

to a unique chromosome. 

Several algorithms for improving multilayer feed-forward ANN performance have 

been developed. These algorithms have been implemented using MATLAB 2009a 

and Neural networks Toolbox. 

The results of the proposed approach have been compared with the most 

outstanding approaches that have been proposed for optimizing multilayer feed­

forward ANN parameters using GA. The comparison performance metrics are as 

follows: 

• Optimality 

• Generalization capability and stability of multilayer feed-forward ANN 

• Prediction effectiveness 

• Simulation time 

As far as the application of the new method for ANN combination based on GA is 

concerned, the following conclusions can be extracted: 

• GA encoding and optimization can be successfully adopted to a combinatorial 

problem such as the decision of what is the best multilayer feed-forward ANN 

structure, training algorithm, activation functions, initial weight, learning rate, 

momentum term, and epoch size for a specific model. 

• Compared to the existing approaches, the proposed approach give better 

results in terms of prediction effectiveness and accuracy. For example, the 

proposed approach gave results of MSE value in range of (0.00004 to 0.0002) 

for all applications, whereas the range of best MSE value by the other 

approaches is (0.001 to 0.036). In terms of prediction accuracy, the proposed 

approach gave results of R value in the range of (0.989 to 0.998) for all 

applications, whereas the range of best R value given by the other approaches 

is (0.815 to 0.976). 

• In most cases, the proposed approach should be more desirable because it is an 

automated technique, compared to the other approaches. 
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• For some cases, the results of the proposed approach could g1ve useful 

information and insights for further, more successful applications of the other 

approaches. 

Nevertheless, the proposed approach can be extended to different minimization 

algorithms of the back-propagation, or network architectures different from that 

presented here, more potential activation function types, different values of the initial 

weight and epoch size. 

6.2 Contributions 

In contrary to the previous works that have been partially designated for some 

parameters of multilayer feed-forward ANN, a new GA-ANN approach that covers 

most of those required parameters have been presented. The research considerably 

contributes to demonstrating the strength of genetic algorithm (GA) and the 

predetermined objectives have already been achieved. The proposed research method 

is considered novel in the sense that it proves that GA-based method can be 

comprehensively utilized to determine multilayer feed-forward ANN architecture and 

training parameters such as number of hidden layers, number of neurons in hidden 

layer, training algorithm, activation function, initial weight, learning rate, momentum 

term and epoch size. 

Specifically, the proposed approach has contributed to the followings: 

• Auto design of multilayer feed-forward ANN, because the proposed approach 

optimizes most of architecture and training parameters. 

• Effective and precise performance, besides, less human dependence than 

existing approaches, proposed approach achieved low sum square error and 

high value of determination coefficient compared to existing approaches. 

• Generalization capability and training stability of multilayer feed-forward 

ANN, this work focused on the multilayer feed-forward parameters that have a 

great affect on these performance metrics. 
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• Demonstrates the hybridization capability of GA with multilayer feed-forward 

ANN. 

6.3 Recommendations for future work 

With respect to this thesis, the following three areas are recommended for future 

work. 

6.3.1 Evolving the network structure 

Based on theory, the number of hidden layers and the number of neurons in hidden 

layer have a significant effect on network performance (Torres et al. 2005). Therefore, 

the proposed GA method can be extended to determine extra number of hidden layers 

with even extra number of neurons in the hidden layer of multilayer feed-forward 

ANN. 

6.3.2 Selection of minimization and activation function 

Although evolving adaptive characteristics using GA-based method has shown 

multilayer feed-forward ANN robustness, we believe, and from the results obtained 

from this research, it can be further extended to evolve more minimization functions 

of back-propagation algorithm and activation function types. Because the use of 

different activation function may achieve totally different multilayer feed-forward 

ANN performance, and different minimization function of back propagation 

algorithm may give quite different multilayer feed-forward ANN performance 

(Ferentinos 2005). 

6.3.3 Selection of GA parameters 

Although the GA method has been successful at improving multilayer feed-forward 

ANN architecture and training parameters, there is still a big challenge to select the 

appropriate GA design parameters in order to reduce the dependency on human ; for 

example the selection of population size, number of generations , and probability of 
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crossover and mutation. These parameters have a significant effect on the GA 

performance. Appropriate selection method is required towards fully auto design of 

GA (Ferentinos 2005). 
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