Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

ARTIFICIAL INTELLIGENT REMOTE CONTROL CAR (AI MOBILE) (A.K.A. REMOTE CONTROL CAR USING MATLAB)

Teoh Kok, Liang (2006) ARTIFICIAL INTELLIGENT REMOTE CONTROL CAR (AI MOBILE) (A.K.A. REMOTE CONTROL CAR USING MATLAB). Universiti Teknologi Petronas. (Unpublished)

[img] PDF
Download (2815Kb)

Abstract

The primary objective of this project is to construct a working prototype of a remote controlled car (a.k.a. AI Mobile) and its ability to control from MATLAB Graphical User Interface (GUI). It involves several EE areas in microcontroller, wireless communication and MATLAB. Secondary objective will be implementing artificial intelligence (AI) in a robot to perform tasks intelligently and autonomously. The car will be enhanced with systems like obstacles detection sensors, wireless camera, wireless microphone, and speed alteration. These systems will be combined by the PIC microcontroller and controlled from the remote computer with the aid of the MS Visual Basic GUI. With these artificial intelligent systems, successful execution of manyhuman-in-loop manipulation tasks which directlydepend on the operator's skill previously can be improved to: (i) permit easy and rapid incorporation of local sensory information to augment performance, and (ii) provide variable performance (precision- and power-) assist for output motions and forces. Such AI systems have enormous potential both reduce operator error and permit integration of greater autonomy into human and robot interactions which will eventually enhance security, safety, and performance. The AI systems are built on an existing platform modified from a remote controlled car. The processor used to coordinate the AI Mobile is the microcontroller PIC16F84A. The independent subsystems for controlling the AI Mobile via Microsoft Visual Basic include the serial communication interface, switching circuit, microcontroller, RF Transmitter & Receiver and Visual Basic programming.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 26 Sep 2013 13:25
Last Modified: 25 Jan 2017 09:46
URI: http://utpedia.utp.edu.my/id/eprint/6830

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...