Desktop Search Engine for Linux

by
Ahmad Razif bin Musa@Mahmud
supervised by

Mr Justin Dinesh Devaraj

A project dissertation submitted in a partial fulfillment of
the requirement for the
Bachelor of Technology (Hons)

(Business Information Systems)

July 2005/Jan 2006

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

&
B
Yo ¥
C LS g G f-wﬁ'vf\n"f Q«fﬁ-owam \meﬁ..rru\s‘.)
Mgl) L@r—/\v*\-k/\ :
ool R TN

TABLE OF CONTENTS

ABSTRACT ... riiriricrieniterstnesesnsasinrntessssesssasseestessarssesssatasstinnsessassesssssesnsenses i
ACKNOWLEDGEMENTccointiiiiiieseenensecisissens s e nssessosssissssvessersssosesssssreons i
CHAPTER T ottt ettt essesesretre e st eraeses st s b asaesassass sssssenensasaeens 3
INTRODUCTION....cccoepiiiierionisrenienieniiaentereessssresssessassensessestessassssssssensssssnssssssares 3
1.1 BACKGROUND STUDY ovciieiirninresvirnnieninsnarsensreraesserecsssesssrssessennes 3
1.2 PROBLEM STATEMENTctioiiiiririririte st res s essessesssns s s 4
1.2.1 Problem Identification..........cccocevvreeireveecencnnee it sessesaes 4
1.2.1.1 Difficult to find specific files in the hard drive........coooerrrmvivnnerinann. 4
1.2.1.2 Difficult to recall the name of files saved in the hard drive 4
1.2.1.3 Misplaced files in the bard drive.......cocoeveveeeicvnneeecercre i 4

1.3 SIGNIFICANT OF THE PROJECT.......oooeeeeeremeerecrenerereniereccssessnes 5
L4 OBJECTIVE . ceenireeinneaetesese s s ebesesnssssssassessssess ssasesnes 6
1.4.1 Objectives 0f the PIOJECE......cveerrrervmrerierrcrreresereerseesereesssiresseassiesses 6

L5 SCOPE OF STUDY cuooticrirrinsinietseineneesseessesssscsessrsssessersssesesssesanns 6
1.5.1 Personal computer hard driveccccvvvirveinre e e 6
1.5.2 Linux (Debian platform) Operating System.........ccovevereeeeveeeeeceenens 6
1.5.3 Search for text format filesovvvvererierereiericeec et 7
CHAPTER 2 ...ttt ee e ses s sttt sns s eensees s sases e s s snnn 8
LITERATURE REVIEWouiitinieiecieeeteeresesesestone b scesereseeneeseessaesssesesssseeanens 8
2.1 DESKTOP SEARCH ENGINE.........ccovimivrierreesieseeseseeeeeesssssssesesesanes 8
2.2 SEARCH ENGINE (Namazu INDEXER)......co.covevremerrerersisessssersnns 11
2.3 INFORMATION RETRIEVALocooiiricvierenenneeressevesorersasssresaneens 11
2.4 LINUX coiiictvintnienssecrtete e sresresesssbe s esstss st sessennsnessosasssssensnssnns 14
CHAPTER 3 ... ittt en st s resassseeess s sassesnsess s sose s oo 15
METHODOLOGYcovriiicnirniericnse s ssceesssssesssscssesssasasssesesessesssesssesssessesess 15
3.1 PROJECT FRAMEWORKooueeeeceensreteeeeeeee oo oo 15
3.1.1 Data Flow Diagram (DFD}uu.uceevcucrenreeseteeseeeseeeesesseosseeeessoone 16
3.12 Use Case MOdE]vcvrcieecrirnereecriecsseesesesesessesesssseesseesnns 17
3.1.3 Flow of indexing the files (Namazw).............cvoveveeeorevvern. eern 18
3.14 Flow of searching the files using JavaScriptcoooooevveemvnn . 19

3.2 INTEGRATION OF NAMAZU WITH THE WEB-BASED INTERFACE

20

3.3 PROGRAMMING LANGUAGES......coemeeeeeeereeeeeee oo 21
3.3.1 C programming Ianguagec.coeuveevrereeereeeeeeese oo 21
332 HTIMLuuoiiiccecterre ettt sessesesessses s ses e ess s s 21
333 JAVASCTIPL..covii e et e 21
334 Pl ot e e 22

34 DEVELOPMENT TOOLS......ccrvmuimeeeereeeeesrsereerseresiesessssesees s 22
34.1 Anjuta (IDE) ...t e 22
342 VIM EGIOL.....c.cooviirireiererenesenreiesssees i sessssessssssesensssesssssssesen 23

35 OTHER TOOLScovieimntieenncter ot sstss e seeseeseeeesesses s s 23

LIST OF ILLUSTRATIONS

Figure 1: Project Frameworkcc.oeeenevoiineirree et e eenssesmeenies 15
Figure 2: Data Flow Diagramccveeivncncninaviniinnenin ST seers 16
Figure 3: Use Case DIagramcccoiniriecirenecineicnniisessseneescesressssessensesssssanns 17
Figure 4: Flow of process indexing the files..........ccoovvircrennevenercr e 18
Figure 5: Flow of searching the files.........cocereiveerrcie et ernevonesens 19
Figure 6: Front page of the SYSIeM.........crvciviceimniiencericncnrsnniecnsesesessstoseresssanas 24
Figure 7: Simple Search QUETYc.ccvivvciiieineercircreererserressese s sresesesseencs vores 24
Figure 8: RESUIS PAGEcoveeriiniiierieiicrrircrceitteentermrrercstres bt se e e soe s e sarnns 25
Figure 9: Advanced Search Page Linkccocorvivinniinivcnicsininnnnoninnrennoneens 26
Figure 10: Advanced Search Pagecooveevriririniniricnircreeere et 26
Figure 11: Search with all the WOTdS......c...vevreeevvinieeerrereecc e neee e s reerassenne 27
Figure 12: Result of with all the WOIdSc.coicoecceriiencsrcesrccen s seaeresanens 28
Figure 13: Search the exact phrase.......c..cccoevveeeneee. beeereraeeteseeepeseentnane st e nneaenas 28
Figure 14: Result of exact phrase search........... fevereereoreessaartanses peorerretssae e nesentenr 29
Figure 15: Resulf with the bold Wordscccocvveveevieriinnniineinnensnenensesseresessessnnes 29
Figure 16: Search all words and exact phrase.......cc.coeceeererercceceenenanecesc e 30
Figure 17: Result of all words and exact phrase searchccooceveiciiieimeenncnenn. 31
Figure 18: All words, exact phrase and none of the word search......... dereneeeenaenanns 31
Figure 19: File searched by SYStem.....cccoivviiermriiiccrecrcte e iesnesresenn e senens 32
Figure 20: Prefix matching S€archcccooeeeceeiveivin e ar s ane e 32
Figure 21: Result of prefix matChingcocevcvrviericrcnrinier s scsrcnesrsss v sveennens 33
Figure 22: File contains with the prefix macthing keyword..........cccccoereivrevvurrinnnas 34
Figure 23: Inside matching searchcoveirininniccnncnncnccicnenenees U 34
Figure 24: Result file of Inside matchingccoeececeeceneccnns bersnsastsereniansterinesenns 35
Figure 25: Suffix matching Searchc.occveieeseniencneinnne e 35
Figure 26: Result of Suffix matching.................. eetrentenseest i n i et reeaet e st e ta s et renae s ereean 36
Figure 27: Regular expression SCarchesvieieniieoiarenmoeniseresesimesesssssesene 36
Figure 28: Result of Regular expression (PrOgram).........ooccceeeceeeercecareneerersesesnenns 37
Figure 29: Result of Regular expression (Problem).........ccccoroveeireeeeeernsresereescreonens 37
Figure 30: Comparison of Usability between DSEL, Ubuntu 5.10 and Namazu 40
Figure 31: Screenshot Of DSEL .ccccuviviieriivieie e cceccerec e enee s e e esses s asaneens 41
Figure 32: Screen Shot of Ubuntu File Search Toolc.oecreeeeeerrerveenieenseesresnnen. 41
Figure 33: Screen Shot of Namazu(Terminal)ccovivrncircvrierenersisnsecinsneernn. 42

Figure 34: Combination flow of Indexing and Searching files...........ceeeveeveneas voure. 44

LIST OF TABLES

Table 1: Benchmark Criteria for Desktop Search Toolsc.covivieviiecnrcrinceinsaianns 10
Table 2: Summary of Advanced Search Feattres...........cooueveviiniiinnninsininssesiesrennes 38
Table 3: Total mark of evaluation for usability testingcccvviniinricicnnnnnnns 39

Table 4: Comparison of Usability between DSEforLinux, Ubuntu 5,10 and
Namazu(TerMUDAL}ccvvevveereriariiienesereerrs s s sresess e tssres et e e s ressasersemsrbemsensieses 43

CERTIFICATION OF APPROVAL

Desktop Search Engine for Linux

by
Ahmad Razif bin Musa@Mahmud

A project dissertation submitted in a partial fulfillment of
the requirement for the
Bachelor of Technology (Hons)

(Business Information Systems)

Approved by,

/Q(&N;.

(Mr Justin Dinesh Devaraj)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
JULY 2005/JAN 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and the
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

(AHMAD RAZJF BIN MUSA@MAHMUD

ABSTRACT

Desktop Search Engine become more popular for personal and cnterprise
after some difficulties occurs when dealing with the huge amount of files and in a
multi-user environment. Desktop Search Engine for Linux is a desktop search tool,
integrated between Namazu with web-based interface that can search text format
files in the hard drive of personal computer. As increasingly demand for an effective
and efficient desktop search tools especially for the Linux environment where there
were just a few tools have been developed for Linux compared for Windows
although the usage of Linux operating system are increased from days to days. This
system is just for Linux (Debian platform) operating system and just search for a
text format files. This system index the entire words of files in the hard drive and
create one index files that contains all details about the files in the disk. The system
just refers to this index files when processing the searching process for a fast and
effective results. From the studies and analysis that has been done during the
development of this system, there have a benchmark criterion for desktop search
tools that can be use as a reference and also a lot of indexer that can be used to index
the files. Only the best indexer was be taken to integrate with this system. This
system still can be improved with the support, effort and deep knowledge about
desktop search tools and technical skiils.

ACKNOWLEDGEMENT

For the mutual understanding, motivation and co-operative action the author
would like to thank to supervisor Mr Justin Dinesh Devaraj and co-supervisor, Mr
Lo Hai Hiung who were always encourage and guide the author as their student in
completing this project. In addition, the author would like to acknowledge to the
Final Year Project Board that was accepting this project in the early stage of the
proposal of this project and also to Mr Albert that is an external examiner that has

evaluating and gave good comments during final presentation.

The author would wish to thank to UTP IT lecturers that were evaluate and
give a support with the good comments from the presentation. The wisdom that has
been bestowed will never be forgotten. Besides, thanks to Mr Rasky, FYP lab
technician who lend his hand in helping the testing process of the Linux operating
system on the FYP lab during the project development. Also a special thanks to
Mohd Hakim for their guide and support of JavaScript coding, Ahmad Fikri for his
logica! understanding help, Wan Anas for his comment about usability and as a
tester for this system, Firdaus Tan for the support of interface.

Last but not least, 2 million thanks to the MIMOS Open Source Software
staffs that give a support and idea for this project and also for introducing me to the
best ever operating system, Linux. Besides, thanks to FYP GIS group student and all
colleagues that support and give the author a spirit to finish this Desktop Search

Engine for Linux,

it

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND STUDY

The capacity of our PC hard drives has increased tremendously over the past
decade, and so has the number of files we usually store in our personal computer. It
is no wonder that sometimes we cannot find a document any more; even when we
know we saved it somewhere. Ironically, in quite a few of these cases nowadays, the
document we are looking for can be found faster on the World Wide Web search

than our personal computer.

Would not it be great if a computer could search all files that you want faster
and accurate without knowing the file names? 1f, for instance, it would anticipate
what files you need, search for it, and then automatically deliver the right files that
contain the relevant information. You’d never have to guess the right keywords of
filename or open every folder in the drive and open it one by one using a try and
error method just to find a required file. That will waste your time for just doing the

search method manually.

Desktop Search Engine for Linux is a ciesktop search too! that can search text
format files in the hard drive of personal computer. This system is an integrated
system of Namazu Desktop Search tool with the web-base interface. This system is
an improvement of Namazu Desktop Search tools. The description of integration

will be discussed in methodology part of this report.

1.2 PROBLEM STATEMENT

1.2.1 Problem Identification

As the increase of hard drive size, there will be more difficult to find the files
if we do not know the location of files and the actual name of that files. We can just
enter the name of file format such as .doc, .sxw, etc in the search tools that provide
by the current operating system but the problem now there were so many file that
have the same format. Another alternative is by open one by one folder in the drives
to find the required files. That approach is not effective and efficient and will waste
time. Below are other problems that related to the searching files in the hard drive

that usually occurs to the users:

1.2.1.1 Difficult to find specific files in the hard drive

People are willing to find a file faster and accurately. If the users must
waiting for the system a few minutes to completely search a required file, it will
waste the time especially when they are in urgent. The old system must explore one
by one folder in the hard drive to find a required file. The big problems occurred
when the users have a large size of hard drives and contain many partifions and

folders inside.

1.2.1.2 Difficult to recall the name of files saved in the hard drive

There are worst thing if we do not remember the name of a file especially
when in the urgent time and it’s an important file. This is always happen to the users

that have a short-term memory.

1.2.1.3 Misplaced files in the hard drive

Users will loss the location of files if other person was change the location
{cut and paste files to other partition or folder) of a certain file or they cannot
remember the location of files when some changes has been done by them. That case
makes users difficult to recall or find back the file they want.

13 SIGNIFICANT OF THE PROJECT

Desktop Search Engine for Linux hopefully can ease users to find the
required file by just key in the related keywords in provided textbox on the interface
of the system. So, users no longer need to search files manually using operating
system search files that required users to wait for a few minutes to see the results.
The results that displayed by the operating system search tools are in the form of
locations and it is difficult for users to find the files by just giving the address of
files.

Besides, users also can find the files although they cannot remember the
name of the files. That means, although users save the files using any file name (but
in the text file formats) and forgets about the name of files they saved, they still can
trace that files as long they remember the content of the files. In this world, users
will know although one word in the files that they want to search so to search the

files that just require strings/words that contain in the files is not possible.

Desktop Search Engine for Linux also displays all possible files and words
that have been filling as a result to the files searched. This system will display all
possible files that contain the files that have the required words/strings. Besides
display the possible files name, this system also display a short phrase of file content

on the screen to make sure users can identify the required files easily.

14 OBJECTIVE

1.4.1 Objectives of the project

i, To develop a desktop search engine for Linux user to find any text format
files in personal computer, no matter what type of text files format and
information they stored.

ii. To integrate Namazu with web-based environment to ease the users to
use the systems,

iii. To compare the performance of desktop search tools in searching files

using different tools of desktop search.

1.5 SCOPE OF STUDY

1.5.1 Personal computer hard drive

Desktop Search Engine for Linux developed just for searching files within a
personal computer bard drive. It can search all files in the hard drive faster and
efficient. Desktop Search Engine for Linux will create an index (play as a database)
of all files in the hard drive and the querying and matching process will refer to the
data contains in that index. This system cannot search the others files via network or

outside the personal computer hard drive.

1.5.2 Linux (Debian platform) Operating System

Linux is an operating system that is growing in popularity. More and more
businesses are recognizing the possibilities absolute customization can provide. The
open source code gives Linux an edge that just can’t be obtained from a corporate
proprictary program. Indeed, Linux has an edge over anything else on the market

simply because these corporations are trying to please everyone all the time which

just can’t be done. The open source code in Linux that can be change to anything
desired is something that closed source code can never have. Desktop Search Engine
for Linux developed under Linux Debian platform environment. This system cannot

operate in other than this operating system platform.

1.5.3 Search for text format files

Desktop Search Engine for Linux is a desktop search engine that can just
search any text format files in the hard drive. H is just limit to the search process of
text files that mean not search other that text files format. Below is the text files
format that can search by this system:

OpenOffice Tite:

O .SXW
o .sxi
o etc

-~ Microsoft Words files
o .doc
o .opt
o Xls
o etc

- html

- .shtml

- .htm

- .css

- .sql

- .odg

- Jdiz

- -ZIP

- .pdf

- java

- Js

-« mf

- .php

- Axt

CHAPTER 2

LITERATURE REVIEW

2.1 DESKTOP SEARCH ENGINE

Nowadays desktop search engine become more popular in the search engine
industry. Many big IT or Web organization are running into producing the best
desktop search engine such as Google with Google Desktop Search, Yahoo! with
Yahoo! Desktop Search, MSN with MSN Toolbar Suite and so on. Desktop search
engine is an application used to find data in a user's local system. In order to provide
quick access to files that contain certain text no matter the format, desktop search
programs index the content on the hard disk. All desktop search programs provide a
search for Microsoft Office files such as Word, Excel, PowerPoint and Outlook.

Some programs support non-Microsoft formats as well as locally stored Web pages.

The recent arrival of desktop search applications, which index all data on a
personal computer, promises to increase search efficiency on the desktop [1]. The
index method can search the required files faster when the system does not have to
search folder by folder in the bard drive. Desktop search features built into current
operating systems, e-mail programs, and other applications have far fewer
capabilities than Web search engines. They generally offer only simple keyword
searched of a set of files, usually of a single file type [2]. On the Web, search
engines can exploit information organized into a common HTML format with
standardized ways of identifying various document elements. The engines can use
this information, along with links to other documents, to make statistical guesses
that increase the likelihood of returning relevant results.

In the current approach to Knowledge Management and enterprise search,
capturing the structured data in an enterprise or government agency is a complicated
and difficult task since information resides in a variety of formats, systems, and
locations [6]. That mean, it requires an efficient and powerful search tool to solve all
this matters. Incorporates semantics is a approaches use by Beagle Desktop Search
where it uses explicit information, such as file size, creator, last modification date,
metadata embedded into specific files[11]. This approach can be use as an advance
for the metadata search in a system. The systems that provide an advance features

can have a good demand for enterprise usage.

The success of search and retrieval applications deployed in enterprises can
be limited by their ability to process unstructured business documents that represent
as much as 80% of an enterprise’s information {8]. In an effort to help understand
the differences between the latest desktop search tools on the market, the UW E-
Business Consortium recently conducted a benchmark study of 12 popular desktop
search tools. The benchmark criteria that were used for the evaluation included

usability, versatility, accuracy, efficiency, security, and enterprise readiness [4].

A new generation of desktop search tools is emerging that allows users to
quickly find relevant documents in computers across the enterprise the same way
search engines help locate information on the internet. Companies expect that this
technology will boost employee productivity and creativity and allow them to
compete successfully in today’s knowledge-driven economy [6]. In an effort to help
understand the differences between the latest desktop search tools on the internet,
the UW E-Business Consortium was conducting a benchmark study of 12 popular
deskiop search tools. The benchmark criteria that were used for the evaluation

included usability, versatility, efficiency, security, and enterprise readiness.

Table 1 shows the benchmark criteria that was perform by UW E-Business

Consortium [4] for desktop search tools:

Table 1: Benchmark Criteria for Desktop Search Tools

. Versatility

Good desktop search tools must be
easy to use, have a lower learning
curve, have professional aesthetics,
and require fewer steps to reach

desired output.

Accuracy

“Can you find what you are looking
for?” This criterion addresses
accuracy of search results as well as
other factors that help users find the

desired information.

‘Security and privacy are big
concerns, especially in an enterprise
environment. This criterion considers
how well vendors have incorporates

~security mechanisms.

Versatility describes how wide and
deep the.tool allows you to search.
This includes factors such as
supported document types, we/e-mail
integration, and multi-language

support.

' Efﬁciéncy '

This criterion assesses the tool’s
technically efficiency including
memory usage, indexing time or
indexed file sizes. The best tool

should not jeopardized overall PC

performance.

* Enterprise Readiness

While most tools are designed for the
consumer/home PC environment,
some are ready to be used in an
enterprise, This criterion may be

especially helpful for IT managers.

Each criterion was quantified and was given a rating, ranging from 1 (worst)

to 5 (best). The rating is based on sub criteria, which align with the main criterion’s

objective. The Desktop Search Engine for Linux that have been developed used this

benchmark criterion as a guideline to make sure this system still in the right track.

2.2 SEARCH ENGINE (Namazu INDEXER)

Desktop search tool required an index to make sure the system can search
require file faster and accurate. Indexer is an important component to generate an
index. Namazu indexer is a full-text search engine indexer intended for easy use. For
searching a great amount of document quickly, Namazu makes an index in advance.
The concept of index is just similar to an index of book [13]. The language that used
by this software is Perl and C. This indexer only can index local files that are not
including files in the networks.

This software has been chosen because this it is easy to use and support
Debian GNU/Linux, suit with an operating that been used that is Ubuntu 5.10. The
reason of using a freeware indexer rather than develop the new indexer was about
the time consuming and limited expertise to develop the own indexer. Namazu
indexer is a free software that is distributed via internct and users can redistribute or
modify it under the term of the GNU General Public License a as published by the
Free Software Foundation.

Namazu is being developed by Namazu Project. Filters enable Namazu to
index various formats of files. Mail/News filter works with no additives, some other
type requires third partie's filter executable although the calling capabilities included

in Namazu package.

2.3 INFORMATION RETRIEVAL

Information retrieval (IR) is the art and science of searching for information
in documents, searching for documents themselves, searching for metadata which
describe documents, or searching within databases, whether relational stand-alone
databases or hypertext networked databases such as the Internet or intranets, for text,
sound, images or data. There is a common confusion, however, between data

retrieval, document retrieval, information retrieval, and text retrieval, and each of

i1

these have their own bodies of literature, theory, praxis and techmologies [16].
Automated information retrieval (IR) systems were originally used to manage
information explosion in scientific literature in the last few decades. Many
universities and public librarics use IR systems to provide access to books, journals,
and other documents. IR systems are often related to object and query. Queries are
formal statements of information needs that are put to an IR system by the user. An
object is an entity which keeps or stores information in a database. User queries are
matched to documents stored in a database. A document is, therefore, a data object.
Often the documents themselves are not kept or stored directly in the IR system, but
are instead represented in the system by document surrogates.

Methods to support dynamically changing text collections can be divided
into two categories: Support for document insertions and support for document
deletions. Techniques to support document insertions into an existing index have
been studied by many researchers over the last decade. Most of them follow the
same basic scheme. They maintain both an on-disk and an in-memory index.
Postings for new documents are accumulated in main memory until it is exhausted,
and then the data in memory are somehow combined with the on-disk index.
Tomasic et al. present an in-place update scheme for inverted files, based on a
distinction between short lists and long lists. They also discuss how different
allocation strategies for the long lists affect index maintenance and query processing
performance. Lester et al. give an evaluation of three different methods to combine
the in-memory information with the on-disk data. Kabra et al. present a hybrid
IR/DB system with delayed update operations through in-memory buffers. All of
these solutions have in common that the entire on-disk index has to be read (or
wriiten) every time main memory is exhausted, which causes performance problems
for large collections. We show how the number of disk operations can be
significantly reduced, at minima! cost for query performance.

In contrast to the case of document insertions, a thorough evaluation of
techniques for document deletions is not available. Chiueh and Huang present a lazy
invalidation approach that keeps an in-memory list of all deleted documents and
performs a post-processing step for every query, taking the contents of that list into
account. The approach to document deletions presented in this paper is similar to
theirs, but more general, and is not done as a post-processing step, but integrated

into the actual query processing.

12

None of this related work provides a general discussion of how different
index maintenance strategies affect query processing performance and how this

implies opportunities for indexing versus query processing performance trade-offs.

The Wumpus Search System [12]

Wumpus is similar to other file system search engines, such as Google
Desktop Search2, Apple Spotlight3, or Beagle4. Unlike most desktop search
systems (except Spotlight), it is a true multi-user search system; only a single index
is used for all files in the file system, and security restrictions are applied at query
time in order to guarantee that the query results are consistent with all file
permissions.

File system search is different from the traditional information retrieval task.
The search engine not only has to deal with a large heterogeneous document
collection, but a file system is also a truly dynamic environment: files are constantly
created, modified, and deleted. The expected number of index update operations is
much greater than the number of queries to be processed. Using Wumpus, one of the
authors counted more than 4,000 index update operations (document insertions and
deletions) on his laptop computer during a typical work day.

Furthermore, when an e-mail arrives, or a new file is created, the user
expects the search system to reflect this change immediately. Delays greater than a
few seconds are not acceptable. This, together with the great number of update
operations that have to be performed, suggest that indexing performance plays a
much greater role than query processing performance in this particular domain.
Wumpus supports fast instantaneous updates (i.e., changes to the file system are
reflected by the search system within fractions of a second).

In addition to being a dynamic environment, file system search is a multi-
user application. In order to avoid wasting disk space due to indexing the same file
many times, a single index has to be used for all users in the system. Special care has

then to be taken so as to guarantee file system security.

13

24 LINUX

Nowadays, the usage of Linux as an operating system is tremendously
increased with the support from government and from awareness of publics. Linux is
a computer operating system and its kernel. It is one of the most prominent examples
of free software and of open-source development; unlike proprietary operating
systems such as Windows, all of its underlying source code is available to the public
for anyone to freely use, modify, improve and redistribute [15]. The freedom of use,
modify and redistribute the source of system make many people interested in joining

the Linux and open-source community.

14

CHAPTER 3

METHODOLOGY

3.1 PROJECT FRAMEWORK

Search Form
(HTML)

. Send search
Look in query
index Seach
Indexer Stores file Enai
— X . ngine
Namazu information Get list of ” “
() matches {JavaScript) Return formatted

results N Search Resuit

™, Display
Crawds fil d (HTML)
rawts fies an
extracts information _/—\
| DAV F——
Stored
Files

Figure 1: Project Framework

Figure 1 show, the system use an indexer to create an index files; their
location on a hard drive’s hierarchical tree file structure; file names, types, and
keywords. Once existing files are indexed, the indexer indexes new documents in
real time. The indexer also collects metadata, which let the engine access files more

intelligently by providing additional search parameters.

When a user fills out a search form and sends a query, the engine searches
the index, identifies the appropriate files, finds their locations on the drive, and
displays the results. During searches, the engine matches queries to indexed items to

find relevant files faster. The result will be display on the screen appropriately. The

15

users will give options whether to display the normal result or the result with the

descriptions.

First, users will choose the type of files they want to search whether it’s a
documents files, images files, audio sound etc. The search form also provides the
textbox that required the user to fill in the keywords of the related files they want to
search. Users will give options whether to use a default search or an advance search

that will search in an advanced.

3.1.1 Data Flow Diagram (DFD)

User -t Tosutls
guery
Index file Matching que Search
) uery-——jpm Document
Matching Y S—
keywords
Result files
) File address
indexing index:
Updated index——m Storage files «——

Figure 2: Data Flow Diagram

16

3.1.2 Use Case Model

Desktop Search Engine

Q VN Q

keywords

Index file

*

user

Display Resuit

Indexing l

Storage files

Figure 3: Use Case Diagram

Description:

1. Indexing index the storage files into an index file.
Indexing updates the updated files into an index file.
Index file store an index as a database of keywords.

User types required keywords to search in the system.

el N

The keywords entered by users will be match with the keywords stored in the
index file.
6. The system will display the related files that contain the keyword entered by

user.

17

3.1.3 Flow of indexing the files (Namazu)

Event

L

Open Folders

Y

Crawl Files

Extract Information

Store File
Information

Index Files

Figure 4: Flow of process indexing the files

Figure 4 shows the flow of the Indexer indexing the files. Firstly, an indexer
will open and enter a required folders or partition and crawls files with the text type
of files. The indexer will open the folder until the last folder one by one and extract
the file information. File information will be store into an index files. The
information that crawls by an indexer is filename, author, location (URI), date,

words inside files, and date of modification and so on.

18

3.1.4 Flow of searching the files using JavaSeript

e

Search Appiication 5

!

Get Search
Keywords

!

Search/Match with
index

!

index Files

A

Display Resuilts

Figure 5: Flow of searching the files

Figure § shows a flow of searching the files. A search application that is a
Desktop Search Engine for Linux will require a user to fill the required query that
consist of related word(s) that contain in the required files. After users key in the
word(s), the search engine will get the word(s) and search and match it with the
words in the index files. After finish the process of matching keywords, the system
will display the results that are related files that consist of keywords that have been
filled by the user.

19

3.2 INTEGRATION OF NAMAZU WITH THE WEB-BASED
INTERFACE

Namazu is an indexer that provides index and searching the related files. It is
an internal process that makes users difficult to interact with the system. A
convenience and user friendly interface can ease the users to interact with the
system. Namazu is not a user friendly application that makes a normal user quite
difficult to use. Namazu is working in the terminal/console that requires users to
type the command to run the searching process. The normal users that do not know
about the command cannot use this system. The command that use require user to
know the location of index file and also another options that related with the

command.

Users are well known and easy with the web base platform because this
platform is most familiar platform with to users. From the above problem, developer
was taking an initiative to develop a system that can ease the users to use the system.
Desktop Search Engine for Linux is an integration web-based system of Namazu
and its interface was developed using a web-based platform by using HTMIL. and

Javascript. Below is the reason why this system using this platform as an interface:

- casy to develop and maintain the interface
- can create an attractive and nice-looking appearance

- user are more familiar with the web base environment

The system consists of a text box for the users to fill the words/strings of the
files or the related files that they want to search. Then the button is a submit button
that will execute the process of searching the data. So, users no longer need to

remember or type a complex command in the terminal to search for a file.

20

33

PROGRAMMING LANGUAGES

331

33.2

33.3

C programming language

C language is a popular language preferred by professional
programmers. Because of its powerful and flexible language, this
language has been use by Namazu developer to develop the indexer
for Namazu [13].

This language actually will be a language that will operate the system
such as to index the words into the index files, to query the index and
SO on.

This language will operate with HTML language that is it will
provide an output source and then the system will use HTML
language to display the results.

HTML

This system is a web base system that shows the results in a web base
appearance. This system will also include a lot of HTML code as a
code for interface of the system.

This language is chosen because it is an easy learning language and
no need to learn another new language that required a lot of time to

master.

JavaSeript

JavaScript code has been used to support the system in handling an
advance search features for this system.
This code has been writing on the advance search files that connected

with the main or search files for the searching input.

21

34

3.3.4 Perl

o Perl programming language has been used as by the namazu indexer
installer to install the indexer in the system.

DEVELOPMENT TOOLS

3.4.1 Anjuta (IDE)

Anjuta is a versatile Integrated Development Environment (IDE) for C
and C++. It has been written for GTK+/GNOME, and features a number of
advanced programming facilities. It is a graphical interface to the collection of
command line programming tools available for Linux and UNIX systems. These

are usually run via a text console, and can be unfriendly to use.

Anjuta is an effort to marry the flexibility and power of command line
tools with the ease-of-use of the GNOME graphical user interface. It has been
made as user-friendly as possible.

34.1.1 Starting Anjuta:

To start Anjuta, open the GNOME Main Menu. Anjuta is found on the
Development submenu. In RedHat 8.0 or later anjuta can be found in Exira
submenu and then Programming submenu. The manual for starting and use

Anjuta is attached in the appendices part (Refer to Appendix 2).

Click on the Anjuta icon to start. The IDE (Integrated Development
Environment) will open. Alternatively, anjuta can be started from a terminal by
issuing the command anjuta. If anjuta is started for the first time, it will address

the users with a welcome message.

22

3.4.2 VIM Editor

VIM Editor is stand for Vi IMproved, is an open-source,
multiplatform text editor extended from vi. This editor is helpful in editing
program source code. This editor is used to support an Anjuta IDE during the
development phase of this project.

3.5 OTHER TOOLS

3.5.1 Hardware:

Personal Computer

- Processor: Pentium M 1.4
- RAM: 640 Mhz

- Hard drive: 40Gb

3.5.2 Operating system:

- Linux Ubuntu 5.10 (or others Debian platform Linux distro)
3.5.3 Softwares:

- NAMAZU(Freeware) as an indexer

3.5.4 Programming tools

- VI Editor

- CGI Apptication

- Anjuta IDE
- etc

23

CHAPTER 4

RESULTS AND DISCUSSION

41 RESULTS

- Desktop Search Engine for Linux
] | [searcht] et

Figure 6: Front page of the system

Figure 6 is a screen shot front page of the Desktop Search Engine for Linux.

This page consists of text box, search button, and also advanced search button. Text

box [iis a space that is provided to users to fill the keywords for

searching the files. Search bution is a button for system to process the

sl i LR

action. Advance search buiton is a link to an advance search page

that can ease the users to search for an advance in this system.

4.1.1 Simple Search Query

! Desktop Search Engine for Linux
|]i:_rr;- e ‘ 1Searchl i : i :

Figure 7: Simple Search Query

24

Figure 7 shows a screen shot for a simple search query that entered by the
users with the keyword “knowledge”. This system will match the keyword entered
by users with the index files and display the result in the result page (Figure 8). If
users enter two or more keywords in the text box, then system will search all
keywords match in the index files. That mean, all result files displayed contain any
keywords that has been entered in that files.

Desktop Search Engine for Linux

krowledge Searchl | advance search

Diaplay: i~ = Sort: [by score -

Results:

References: [knowledge: 120 1
Total 120 documents matching your query,

1. url.txt (score;: 22)
Author: unknowr
Date: Wed, 25 May 2005 19:10:39 +0730
-- Regards, THIRLMAL KANDIASAMY Researcher, Open Source R&D Lab Pervasive Compliting, MIMOS BERHAD Tel :
603-89965000 ext:8332 Fax : 603-B6579477 Web ! http/iwww.aslaosc.org http://community. aslaosc.o
Thomefmryukalprofile/ropal_lan0S/url.txt (45,941 bytes)

2. content. sxw (score: 13)
Author: Intan
Date:; Mon, 11 jul 2005 09:05:00 +0730
INTRODUCTION 1.1) BRIEF DESCRIPTION OF MIMOS BHD. MIMOS. BHD Is a research and development organization and
ls a government owned under Ministry of Science Technology end Innovation (MOSTH) . MIMOS co
{homamrvuka/profilefinternshipfintan/content. sxw (240,747 bytes)

[t 1 Omli Pk 1 i AL DAm AT ACC LIAT IR RIS STk I s

Figure 8: Results page

Figure 8 shows a results page that display results of searching processed.
From this page we can see that users are displayed with the keyword that they filled,
total documents that match with the query, and also the files name and its details
such as:

i Filename

it Author

iii. Date and last update time

iv. Shert description or content of file
\A URI of file
Vi. Size of file

25

4.1.2 Advanced Search Features

. Desktop Search Engine for Linux_
? f l }Search!|

Figure 9: Advanced Search Page Link

Desktop Search Engine for Linux has advance search functions that will ease

and help users to search in advance files that they want to search. Below (Figure 10)

is the screenshot of advance search page for Desktop Search Engine for Linux. The

system will display an advance search page when the user clicks the link to the page.

Link to advance search page are provided besides the text box search as shown as

Figure 9 (red oval).

'searchi| | Reset |

with all the words

The exact phrase

None of these words ‘

. Kéyword:t H Search!; l Reset I

prefix matching ¢ eg. format#
inside matching ¢ eg. *formats
sufflc matching ¢ eg. *format

HSearch!| | Reset l

Regular Expressions
eg. fprolgram|blem)siy
Grouping
ea, (linte or theES[lLand.N.eh.mnP nn.r windn;uq

Figure 10: Advanced Search Page

26

Figure 10 shows a screenshot of an advance search page that will help users

to search in advance the required file they want to search. These advance searches

features provide three criteria of advance searching that are:

i

il

il.

Normal search that consist of:

a. searching with all words

b. the exact phrase of text

c. the exclude function

Substring matching that consist of:
a. prefix matching

b. inside matching

¢. suffix matching

Complex searching that consist of:
a. regular expression

b. grouping capabilities

4.1.2.1 Search with all the words

ISearchI! | Reset i

with all the words [razif s
The exact phrase

Mone of these words l '

Figure 11: Search with all the words

The system will search keyword(s) that enter by user in this text
box and display the result in the result page. For example if user
enter keyword “razif mimos™ then the system will search all files
that contain this “razif mimos” keyword in the hard drive. Figure
11 shows user entered “razif mimos” in the with all the words text
box. If users entered three keywords in the text box, (eg.
knowledge acquisition performance) then the system will search

all files that contain these keywords in the hard drive.

27

Desktop Search Engina for Linux

frazit mimose. Search! | advance ,earci

Digplay: [16 =] Sart: ;w;cum 3

Results:

References: [razif: 50 }H mimos: 58]
Total 47 documents matching yaur guery.

1. rast. Zip (score: 425)
Authar unknown
Date: Fri, 15 jul 2005 09:55:14 40730
Just.php testl php map .kt mal.htra addressbackup. sxw fune.php ht.php test.html Behtmi reshtml tryphp
lktocatabase. php pagehtn test3.php malnpage.php test.htmi List2004cd.sxe maink.itm tes

[home/mryukaforofile/mimositest.zip (63,885 bytes)

2. content.sxw (scare: 205)
Authar: Intan))
Date: Mon, 11 jul 2005 £9:05:09 +o730 .
INTRODUCTION 1.13 BRIEF DESCRIPTION OF MIMOS BHD. MIMOS SHD is a research and development organization
and Is a government owned under Minlstry of Science Technology and Innovation (MOSTI} , MIMOS co

homeimnyukafprofie/internshipfintan/content.sxw (240,747 bytes)
3, Internship @ Mimes Open Soutce {score: 204}

Figure 12: Result of with all the words

Figure 12 shows a screen shot that display the result of keywords
that was entered to search the file that contains words razif and
mimos. There are 47 files (documents) that match with the query

or match with these two words.

4.1.2.2 Search the exact phrase

|Searchll | Reget I

with alk the words

The exact phrase |afmizd razif

Nane of these words E]

Figure 13: Search the exact phrase

This system also can ease the users to search file that contains an
exact phrase in hard drive. Figure 13 shows the screen shot of the
interface that can process this function. Users just fill in the exact
phrase of words they want into the text box and then the system
will match that exact phrase with the index file and display all file

that contains that phrase as a results. For example, the users enter

28

“ahmad razif” then system will search the files that contain this

phrase from index files and display the result on the result page.

Desktop Search Engine for Linux -

fahmad mzif) Searchl | advance search

Display: {70 =] Sort: [byscore v

Results:
Referencas: { [shrmad: 51 J[razif 50 11 44 }
Tatal 44 documents matching your guery,

1, test.zip {score: 47)
Author: unknour
Date: Fri, 15l 2008 09:55:14 +0730
Just.php testl.pig map it malnditm addresshackup.sxw func.php ht.php test beml Rthtmi rss.heml tryphp
finktodatabase php page.html test3.php mainpage.php test html List2004cd.sxc mainl.htm tes
Jhome/mryukafprofisimimosftest zip {63,885 bytes}

2. coltectionweeklvreflagtion. sxw (score: 35)
Auther: unknown
Date: Thu, 02 jun 2005 08:52:57 +0730
* Weeldy Reflection _* Date: 10/12/2004 Week: 1 Project: Asla OSC _ #Task Cormpleted® _1. Completed al 4 maocdules
provided from wwwilitrixsurvival.com webshke. 2, Read and make some exercises from the

fharme/mryukalprofliejweskly report/colectiorweekivreflection.sxw (11,312 bytes)

Figure 14: Resnlt of exact phrase search

Figure 14 show a result of exact phrase search that entered by
user with keywords “ahmad razif”. The system enclosed the
words with a curly bracket “fahmad razif}” to search this type of
matching. Users are not required to enter this curly bracket to
perform this kind of search. They just enter the require words in
the exact phrasé text box provided.

- 3. WEEKLY REPQRT {score; 30}
Author: unknown
Date: Tue, 12 juf 200
WEEKLY REPORT NA! AHMAD RAZIF BIA MUSA @ MAHMUD (3886} WEEK NO 23 DATE FROM TO BRIEF DESCRIPTION
OF DalLY ACTIMITIES & apahdon=2T05 Configure the apache Instai Fedora Core 3 Into as amain O
MQmeImrﬂke.'gronleAwek\y reportMeek23 sxw (10,521 bytes}

4, yerify, axw (score; 24)
Author: unkrown
Date: Tue, 26 Jui 2005 08:14:18 +0730
VERIFICATION STATEMENT { hereby verlfy that this report was written{ by Ahmad Razif bi
Information regardlng this company and the prajecte involved are NOTwaafidenta ’
Aarmeaimr. roflleffingl%20renartiverify.sxw (5,829 bytes)

Musa @ Mahimid and all

5. WEEKLY REPORT (score: 243
Author: unkrnown
Date: Jue, 12 jul 2005 17:21:16 +0730
WEEKLY REPORT NAME AMMAD RAZIF BIMN MUSA @ MAHMUD (3886) WEEK NG 29 DATE FROM TO BRIEF DESCRIPTION
QOF DALY ACTIVITIES 20 th - 24 th June 2005 Attended KICT4D Conference for Plenary Session Attended K
home/mrvukaiorofiiepwveakly reportiwesk29 . sxw (10,461 bytes)

Figure 15: Result with the bold words

29

4.1.2.3 None of these words

If users have an unwanted word that they do not want to include
in searching the file, then this function is the correct function to
do so. This function is working if both of all words function and
exact phrase function are filled with the keywords or either all
words function or exact phrase function are filled in with the
keyword. For example if user enters the keyword in none of these

words function text box, then the system will unable its function.

4.1.2.4 Alliwords and exact phrase search

lSearch!] ' Reset [

with all the words |imims
The exact phrase |zhiniad razif

None of these words ’ ‘

Figure 16: Search all words and exact phrase

Figure 16 shows a screenshot of searching with all words and the
exact phrase. Users can use this combination of searching when
they want to search a usval words and a word that in exact phrase.
For example as show in the Figure 16, user filled all words with
mimos and ahmad razif as an exact keyword that want o search.
This system will match string mimos and a phrase ahmad razif

with the index in the index file and display the result on the result

page.

30

Desktop Search Engine for Linux

jmimos and {ahmad mmzil}) gearchl | advance search

"Display: {10 =] Sort: [byscore 7

Results:

References: [mimos: 58 1 { [arenad: 51 T razif 50 1: 44 §
Total 42 documents matching your query.

1, test.Zlp {score: 437)
Author: unknown
Date: Frl, 15 jul 2005 09:55:14 +0730
Justphp testl pshp map bt matnhtm addressbackup sxw func.php ht.php tesl hml ht.html rss, html fry.php

2. WEEKLY REPORT {score: 63)

linktodtatabase php page.html test3.php manpage. php test.html List2004cd.sxe mainl.him tes
Jhomefmryuka/profle/mimositest.zip (63,885 bytes)

Author: unknow

Date: Tie, 12 fui 2005 17:20:59 +0730

WEEKLY REPORT NAME AMMAD RAZIF BIN MUSA @ MAHMLUD (3886) WEEK NO 32 DATE FROM TO BRIEF DESCRIPTION
OF DAILY ACTIVITIES 12 ndl - 15 th July 2005 Preparing Final Report Preparing Documentation for the sy

hamefmryukalprofileiweekly renortiweek32 sxw {10,360 bytes)

Figure 17: Result of all words and exact phrase search

Figure 17 shows a result page of all words and exact phrase
search that has been done by users with the keywords mimos and
“ahmad razif”’. The system will make a query mimos and {ahmad
razif} as a query to process. This query means to search all words

that have string mimos and phrase ahmad razif in the file.

4.1.2.4 Complex search (grouping)

]Searchli [Reset]

with alf the words |«

<ot @l

The exact phrase s sas Condinming

None of these words |J‘i'lii'r'lx:! gl]

Figure 18: All words, exact phrase and none of the word search

Users also can make a complex search using this advance search
function, User can combine these three functions to search a file.
For example, users want to search file that contain words “saved”
and “php” with the exact phrase of “message confirming” and not
contain word “mimos”. Then users just fill “saved php” in the all
words function text box, “message confirming” in exact phrase

function text box and “mimos” in the none of these word function

31

text box and then click the “Search !” button at above of the
function. Figure 18 show a screenshot of interface with the
content that filled by user to search files by using these three

features for an accurate searching.

File Edit View Intent Farmat Table Toals glmaw Help
B-oEe B8 y% s0R -4 6-¢ DO-F RSEE I .
= »

jootau i e |s - [A @ | El = [B]D @ .
[L g RRERT RN SRR 2 >
o myss_connecttiocalhost Susemame Smisviord);

: Bmysd_selest dbiScaiates e or diel "Unable to select atabase'y;

X Squery = "INSERT INTO cortacts YALUES 1", Sfirst’ $ast, $phone’ Smabile Sfax’ Semall'Sweb?";

: s eryldquery);

: mysg closel);

7 [

: This script shotkd then be saved as inserLphg o that ilcan be caked by the HTRIL lorm. It wiorks becatse, instead of the data baing entzred

N {ocaily. it ls being enlered ink> lhe form aind shored invasiables viichare than passed % the PHP.

; You couldalsoadd o this a: nput mnd younhoutd read the SR tuioris! i you

* do ot know how ko do this.

: Qutpuiling Date

Hew 5vul'mea! feast ong record, it many more, ipapsr TEETR Ry il be vanting 10 know how youcan cuteut s dala using PHP,

. Bk though youshouldde famiffar sith{eps sk find oul about them inthe tuloria on Free Webmaaler Help) as

P they ace ased kor this wary of oulpistling dea.

ﬁ Tiie first cominand you vl need o use {5 MZBOL quary made up Hke 1his:

b ELECT * FROM contaots

. -
. This is.n bask MySQL command which will iell the scripl ko sefectall the records inthe conlaits abls. Beeaisce thera will be culput from this 2
- command it must be exsculed with the results being assigned o & variable: a
.) -

Figure 19: File searched by system

Figure 19 shows a file (OpenOffice.org) that contains words that
required by user from the query. This file has all words that was
entered by user that are saved, php and message confirming and
not contain mimos keyword. The words have been mark with a

red ovul on the above figure (Figure 19).

4.1.2,5 Prefix matching

 filepart] IlSearch!I l Reset '
prefix matching ¥ eq. format* :

inside matching ¢ eg. Hormat*

suffic matching ¢ eg. *format

Figure 20: Prefix matching search

32

This function is to find the files with the terms that begin with the
keyword that entered} by user. For example if user wants to seatch
for file that contains word begin with “depart”, then they just fill
in the keyword “depi!irt” in the prefix matching text box and the
system will search zéll files contain words begin with “depart”
such as department, (Eieparture etc. Figure 20 shows a screenshot
of a keyword filled be user to search a prefix matching that begin
with the word departi. User must click the prefix matching radio

button to search for prefix matching. If not, the system will search
by defauit that is an inside matching.

Desktop SQarch Engine for Linux

faspan® 5 _Bearh | advance search

Display: {16 ~| Sort: [by score Ll

Results;
References: [departt: 531
Total 53 documents matching yeur query.

1. finalreportiayout. sxaw (score: 28)
Auther: unknown

Date: Frl, 15 jul 2005 09:52:38 +0730
FinAL REPORT Host Company’s Verification Statement Non Confldentlality Stetement Enclorsement by the PTC
EXECUTIVE SUMMARY MIMOS provide internship pregram alms to provide woriiing exparience to studen
fhomefmryuka/profie/mimos/finareportiavout sxw (1,543,407 bytes)

2. Detailed Report Week 1.sxw (score: 14) - \
Author: unknown 1

Date: Sun, 17 Jul 2005 05:25:45 + 0730

DETAILED REPQRT Student MName & SID : Mohd Farld Rofll (46561) Week No: 1 Objective Activities done this week are
meant ko introduce and Familiarize self with the company and depertment’s work environm
{hemafmrvakaforofiiefronal_janQ5/Detalled Report Weel 1.sxw (14,022 bytes)

|
Figure 21: Result of prefix matching

Figure 21 shows a re%sult of prefix matching that was entered by
user with the keyword depart. System will search all string that
begin with depart keyiwords in a hard drive. Figure 22 shows an
example of file that (!:ontain the keyword that begin with depart
keyword that is department.

33

T e T T o o e TR S S ALY

Flvls Edn V:u Insad Formal Table Tools Window Hs!p

B - &-ﬁ@aa "&r:’éﬁiﬁl 2%-¢ Oy REEBE
[fotau _ + [mbus Romen o | e - REAE III[_EEI[—I%J |

e S L Rt A T

s ¥l 3

MIMOS provide internship program ains to provide working experience 1w students

their senior year ab both locn) and Forcign wiversities. Universiti Tekpologi PETRONAS alsa

pravide H-month intemship progamme to their student o apply what they leam and whan is
buing prancticed. I enables students o obudn “hards-on” expericace in o real-world envicon ment.
under the puidance ol practicing professionals. The department thal has been placed for lhj:«l
':' ntemship wos ot ONSIOpen Source Snftware depuriment. There were a lolLf new (rimes that
T hees learn guring e inlemsitip ab i deparmien espavinkly by using LINUX opplivason.
“This deparment abso provide an ntereseing amd challeaging taskfproject to he done. There were 3

1k that s heen piven during the Rxmowth intemship e O35, The prajects inclode b tegration

oGH

el A1 Coantoaet Maannameny, Seckem b Pl bon Soonch Frciaae, Rosilba b e nbar

Figure 22: File contains with the prefix macthing keyword

4.1.2.6 Inside matching

Keyword: |forist HSearch!l l Reseat |
prefix matching ¥ eg. format*
inside matching ® eq. *ormat*
sufflc matching ¢ eq, Hormat

Figure 23: Inside matching search

This function is to find the files that have terms which contains
with the keyword that entered by user. For example, if user wants
to search for file that have a word that contain “formar” keyword,
then they just fill in the keyword format in the Inside matching
text box. The system will search all files that contains word that
contain a keyword “formar” such as information, transformation,
etc. Figure 23 shows a screenshot of keyword that has been filled

by user and clicked with inside matching radio button.

34

T

W8 Eot View Qo Buokmaks ool Help i T Mostly Cloudy, 32°C S 23°C s 32°C i

3 Thing £t RGN e - e nom e R =

& v 3 ST tewmomemyskaiporieopal. jainds/eaming2inuci2t-collection.200t201 * 3 @9 [l

A

DMINIMAL DNS value {CFLAGS varlable}, 836
DNO PASS value (CFLAGS varfable), 836
DNOMAIL (Gopher), 822
DNS {Domain Name System), 647, 678-679
document classes {LaTexX}, 357-358
documentation (Linux Documentation Project), 19
DocumentRoot varlable (srm.conf), B39
documents (HTML], see home pages
dolt function, ST/X {Smalltalk), 562
dofiar sign ($)

accessing shell variables, 265

Perl programening, 506

shell promat, 111, 120
Domain Name System (DNS), 647, 678-679
demaln hames, setting for amall utility, 712-713
DOMAIN varfable {Gopher), 823
domalns, NIS {Network FSTORNES
domalntable fie, 706-707
DOOM (game}, 981
DOs

boot sector, 72

LILO boot process, 77

Lhwiy interface with, 8
dot {.} command, 240, 263
double ink list ctags (C++), 457
dyuble guotation marks {* *}), shell programming, 267
down command {printers}, 593
down time, troubleshooting SC51 devices, 643
downloading

fles

BESs (Bulletin Board Systemns}, 1029-1034
FTP (File Transfer Protoeol), 1025-1027 »

o Service), 747

[Dona

Figure 24: Result file of Inside matching

Figure 24 shows a result page file that contains keywords of
inside matching of the keyword format. This file is a .html format
and contain the require keyword. This mean, system also can

search a file in the web base files such as .html, .him etc.

4.1.2.7 Suffix matching

Keyword: [furrm= HSearch!l [Reset |
prefix matching 7 eg. format# :

inside matching © ag. *ormat*

suffic matching ¥ eg. *format

Figure 25: Suffix matching search

This function is to search files with terms that terminate with the
filled word. For example if user want to search files that contain
term “format” at the end of word, then they just enter keyword
“format™ in the suffix matching text box. The system will search
all files that contain the keywords end with term “format” such as

reformat, etc.

35

Desktop Search Engine for Linux

Fiomat Sserchu achvance searcil

Display: 10 -] Sort: iby seore i

Results:

References: { Hormat: 716]
Total 716 documents matching your query.
1. Maximum RPM (RPM): appendix-d:EarthWeb Inc.- (score: 60}

Author; unknolr

Date: Mon, 21 Fab 2005 16:45:16 +0730

Avallable Tags far --queryformat Apendix O D.1, List of —cueryformat Tags --> Bravious | Table of Contents | Next Page
375 Page 376 The following tags are all the ones defined at the time this book

homelimnadke/erofile/ropai jan5dearning%20knux%20-collection%2? 00f%20 12%20ebooks-imaximum20rpm%2 0%2 Bror
(17,793 bytes)

2. Maximurn RPM (REM]: Getting Informaklon Abeut Packagas EarthWeb Inc.- (score; 58)
Author Lhkroin
Date: Mon, 21 Feb 2005 16:45:16 +0730
--= Previous | Table of Cantents | Next Page 69 5.2.2,11.1. Literal Text Any part of a famat string that |3 not assom&ted
With tags or array tterators wil be treated ac lfteral text, Literal text
fhome/mnalkaiprofietapal anDEl\earnIng%ZOlinux%EO coilectlon%EOof%ZDlz%ZOebcoks .'maxlmum%EOrpm%ZU%Zﬂlm

IO AAC b dany
-+ L

Figure 26: Result of Suffix matching

4,.1.2.7 Regular expression

i gram Blern i |]5earch!| | Reset |

Regular Expressions
eq. fpro{gramiblem)s?/
Grouping

eg. (linux or FreeBSD) and Netscape not Windows

Figure 27: Regular expression searches

This function can search files for pattern matching. This function

required users to enter the word surrounded by backslashes /.../.

For example, if user want to search files that contain words

program or problem then they just enter a keyword

/pro(blem|gram)/. The system will search all files that contain

keywords problem and program. Figure 27 shows a screenshot

with the string that has been filled by user.

36

i My SO+ ' ‘.-‘&G‘-—',‘.-"n -Tﬂﬂ!d%‘mt Mozills Fieedox - B A o e e
File Ech \riaw Qﬂ gookmams Tocls Help Mo&‘dy Clu.lﬂr 32°C %0 B0 pe o 3200 B

- @ -»‘B . A |_ ile: ##nometmiyuka:profilerropal jan08%mysal manualfmanusl_toc himk * 3G [EL)
B ¥ 357 T 0w FORINg Erie MARILIe ot & Cartain GO ” ; ~
* 3.6.3 Maximiurn of Column per Groug.
= 3.6.4 The Rows Holding the GrouD yise Maximum of & Certain Feld
& 3.6,5 Using User Verlables
» 3.6.6 Using Foreign Keys
» 3.6.7 Searching on Two Kevs
» 388 Celoulating Viskts Par Da
. 0 3.6.9 LISinc Auto: INCREMENY -
o 3.7 Querlés from the Twin Project
"= 3.7.1 Find All Non-gistributed Tmns
» 3.7.2 Show.s Tele of kiPalt Status

oo, l Over\dew of M@QL Programs
@4 Kking MySOL-Programs
4 3.5 eclfyving Program Options
» 4,31 Using Options on the Command Line
® 4.3.2 Using Option-Flles . -) .
w 4.3 3 Using Extvironment Varlables ta Specify Qptions
s 4.3 4 Uslng Optjons to Set Program Varlshles
5 Databgse Administration
o5l ih My3QL. Server and Server Startup Scripts -
5.1.1 Owerview of the Server-Side Scripts and Utilitles

® 5.1.2 The wysatd-mx Extended MySQOL Server

» 5.1.3 The wysald safe Server Startup Seript:

® 51 4 The aysal.s aryer Server Startup Seript

w 5.15The i Prodram for Manaagin Mu\tl le MyEGL Servers
o 5.2 Cunﬁ uring the i Server

¥ 52,7 gyesid Comrmang-Line Optlons .

& 5.2 2 The Server SOL Mode
o 52,3 Server System Varlables

& Fin: | {3Find Next 75 Find Previous [71Highlight Malch case

IlIIezmhmnelmwukmpmm@mpaI lantmysol manualeanual himitUsing MySOE. Programs

Figure 28: Result of Regular expression (Program)

Figure 28 shows a result page file that contain word program that
is one of the result after system processing the query. Figure 29

shows the same result page file that contain word problem.

T Ty e AT Y PR M T -
Ele Egt View Go DBeekmaks Jeols help Mostly Cloudy, 32°C 3. - 23°C ¢ 32°C 4
& 9 ool

r tlaz:mome/mryuka‘protilerropal_jan0smysol manualimanuat_toc sl * T3 Go I[GL

5 T3 PGk DDUGHS TOT py senehk . " " g

» 5.7.2.4 Repalr Oplions far wisswch
» 5:7.2.5.Other Options for ayissechk
5.7.2.6 nvissnchk Memory Usage

*

»57.2.7] 7 Using ayisanchk for Crash Recowver
= 5.7,2 B Hiow to Check ry1san Tabies for Errors

9 How tg Repalr Tables
».5.7.2.10 Tablg Obrimizatian
i me
= 5.7 4 -Getting Informatior About alible
e 5g M L Locallzaticn and internatlonal Lsage
5.8.1 The Chéracter Set Used for Date and Sorting
=.5.8.1 1 Lising the German Cheracter Set |
w 5.8.2 Setting:the Error Message Eanguage
" 5'.8;3- Addihg a-MNew Character Set -
5.8:4 The Character Deflfitlon Art
5 8.5 String Collating. Support
L] 5.5:6 Muilt i

w 5.0.8 MﬁQL Sarver Tme Zune Suppiory
5 9 The MySQL Lot Fles
® 5.9.1 The Error Log
® 5,892 The General Query Lo
w 5,93 The Undate Log
= 5.9.4 The Binary Lo
= 5.9.5The Slow-Query Lo
= 5.9.6 L oq Flle Malntenances
2 5.10 Running Multiole MySQL. Servers cn the Same Machine
® 5.10.1 Running Multinle Servers on Windows
¥ 5.10.1,1 Starting Muitibie Windows Servers at the Command Line
v 5,10,1.2 Starting Muitple Windows Servers as Services
E3 Fing: Ipmblem)y Find Next 7y Find Previaus (°'| Highlight Match case

!lile‘n‘mumelmryuha!pmii\snml janGxmyeqt manualeranual.imi#Problems with character sete

Figure 29: Result of Regular expression (Problem)

37

This advance features developed using JavaScript programming languages

that integrates in HTML web based page to ease users use the functions. This feature

was an advance of a Namazu features. Refer Appendix 2 for the user manual of this

system. Table 2 is a summary of an advance search feature:

Function _ Description
With all the.words search files that consist of all of the filled words
The exact phrase search files with the exact phrase of the filled words

Nene of the words

search files with none of the word(s) filled

Substring Matching
. search files with the terms that begin with the filled word
Prefix matching]
Eg. format* = formation, formated
_ search files with the terms that contain with the filled word
Inside Matching)
Eg. *format* = information, transformation
search files with the terms that terminate with the filled
Suffix Matching word

Eg. *net = internet, bonnet

Complex Searching

Reguiar expression

Search files for pattern matching; the words must be
surrounded by slashes like /.../
Eg. /pro(gram|blem)s?/ = programs, problems

Grouping

Group queries by surrounding them by parentheses

Eg. (Linux or FreeBSD) and Netscape not Windows

Table 2: Summary of Advanced Search Features

38

4.1.3 Comparison of Usability between DSEforLinux, Ubuntu 5.10 search

tool, and Namazu(Terminal) search tool.

Usability testing has been done to get the friendliest tool between Desktop
Search Engine for Linux, Namazu Terminal and Ubuntu 5.10 tool. This testing has
been conducted by 20 testers that are normal users, All testers were provided with
the evaluation form that consist of 4 categories that need to fill that are ease of use,
learning curve, professional aesthetic and steps to reach desired results. These
categories are based on benchmark of usability criteria that was perform by UW E-
Business Consortium [4]. These four categories must be filled by testers as marks
for each tool and categories that are from 1 (poor) until 5 (best). Table 3 shows a

resuit of evaluation usability testing for three search tools.

Ubuntu
DSEforLinux Namazu
5.10
Ease of use 85 62 29
Learning curve 90 55 26.5
Professional aesthetic 80 75 23.5
Steps to reach desired 85 68 31
output
Total 340 260 110
Average 17 13 5.5

Table 3: Total mark of evaluation for usability testing

The mark for each category is a sum of 20 forms that collected from 20
testers that have been tested these 3 tools that are DSEforLinux, Ubuntu 5.10 and
Namazu (Terminal). Total value was divided by 20 as an average for the results.

These results are compared as a comparison of usability mark for each tool.

39

4.2 DISCUSSIONS

Comparison of Usability between DSEL, Ubuntu
5.10 and Namazu

20 - DSEforLinux,
17
15 4 '
-
® 10 =
= Namazu, 5.5
5 .
0 .

Search Tools

Figure 30: Comparison of Usability between DSEL, Ubuntu 5.10 and Namazu

Figure 30 shows comparison of usability between DSELforLinux, Ubuntu
5.10 and Namazu (Terminal). This chart is based on result of Table 3. From this
chart we can see that usability mark for DSEforLinux is highest compared with
Ubuntu 5.10 and Namazu.

Usability is one of the characteristic that must been focus when dealing with
various levels of users. Sofiware developers must make sure they produce a user
friendly application that can ease users to deal or using that application. Good
desktop search tools must be easy to use, have a lower learning curve, have a

professional aesthetic, and require fewer steps to reach desired output [4].

40

Desktop Search Engine for Linux

frrcrionga _Saarch! j advance search

Diapley: {17 % Sort {533

Results:

References: [knowledge: 120]
Total 120 documents matching your query.

1. wrl ket (score: 22)
Authoer: uniknowrn
Oate: Wed, 25 May 2005 1910039 +0730)
- Regards, THIRUMAL KANDASAMY Résearcher, Open Source RED Lab Pervasive Complring, MIMOS BERHAE Tl
H03-00868000 axt:6332 Fax ; §03-86579477 Web : http:/vwwy.aglaosc.org http:icommunity.aslaose.o

fhomefmryuka/profie/ropai janQh/ur| bkt (45,941 bytes)

2. gontent.axw (score! 13)
Author; intan
Date: Mon, 11 jul 2005 09:05.09 40730
INTRODUCTION 1.1) BRIEF RESCRIPTION OF MiMOS BHD. MIMOS BHD Is aresearch and developrment organizaticn and
Is a government awned under Mlstry of Sclence Techrology and Inhovation {(MOSTE) . MIMOS co

fhamefmryukaiprafiefinternshipintanicantent sxw (248,747 bytes)

LY Crali o Ao BRI A I LA L ARG AP TP IT A £ .

Figure 31: Screenshot of DSEL

Name centains: | v
Look in folder: " agprote . w.
= Select more pptions | - | -
Contains the text: Irazif _) w B;éhave
Ayailable options: ;Nafﬁé rﬁatcha’s rééﬁéar Bx.pfeSBHiI;i:l- - v ' J}_A_dd
Sgarch resulls: N 8 filés found
Name Folder Size Type b
@bo&umaﬁtatiﬁnz.ddc brslllé;‘mimos . 26 M.B Mic-réét;ft. Word dr.mume
‘&) week 1.doc profilerweekly report 44.0 KB Microsoft Word docume o
. - D >
e | . Xgose [QEnd

Figure 32: Screen Shot of Ubuntu File Search Tool

41

Figure 33: Screen Shot of Namazu(Terminal)

Figure 31 is a screenshot of display page of Desktop Search Engine for
Linux. Figure 32 show a screenshot of Ubuntu File Search Tool that included in the
Ubuntu 5.10 distribution and Figure 33 is a screenshot of Namazu that run in
terminal. This three application test by users and comparison has been making to

measure the usability, accuracy, versatility and efficiency of the tools.

From this snapshot we can see DSEforLinux has a simple and easy interface
that can be use easily by any type of users. DSEforLinux just require user to fill the
text box without need to choose another function before proceed with the Search
button. An advance function also simple compare to Namazu and Ubuntu 5.10 tool.
The application interface for Ubuntu 5.10 is more complex than DSEforLinux that
require user to understand many functions that provided there. Namazu (Terminal)
search tool are most complicated tool because users need to know the command that
must use to execute the system and also users need to know the location of index

files to make sure system can search the files.
Table 4 is a comparison table between DSEforLinux, Ubuntu 5.10 and

Namazu Terminal that has been evaluated based on the benchmark criteria from UW

E-Business Consortium, University of Wisconsin-Madison [4]. This table explains a

42

brief about the advantages and disadvantages of these tools, the features that had

from tools ete.
Desktop Search Tools | N - Descriptions
- easy to use
- users easy to understand the functions
DSEforLinux (Desktop - results are easy to capture
Search Engine for Linux) | - suitable for non expert or normal user

- users no need learn much to use this system

- just a few step required to execute the system

- €asy to use

- functions are difficuit to understand

Ubuntu 5.10 File Search - not enough space for displaying result
Tool - non expert or normal user take time to learn

about the function

- user must take more steps to execute the system

- difficult to use because require type many words
in terminal

- functions based on manual; users must
Namazu(Terminal) remember and know the function keywords

- not suitable for non expert or normal users

- no attractive interface that can affect users to

use this system

Table 4: Comparison of Usability between DSEforLinux, Ubuntu 5.10 and
Namazu(Terminal)

43

4.2.5 Combination flow of Index and Searching

' Event - Search Application’ _
¥
Open Folders || ‘
Get Search
B Keywords
¥
Crawls Files
¥
$ Search/Match with|}
) Index
Extract information
Store File I indexFites |
Information B - <
4
Dispiay Results

Figure 34: Combination flow of Indexing and Searching files

Figure 34 is a combination flow between indexing and searching files. These
two important flows are éombining at the index files. The relationship is by the
indexing process is producing and index files while the searching process is
processing the keywords entered by users by matching it with the data in the index
files. The last resort is displaying results process where users can see all files that
contain the words that have been filled. Users can select the related files they want

by clicking the link to open or save the files.

44

CHAPTER S

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

Desktop Search becomes more popular for personal computer users
nowadays. Peoples are demand for the system with the high technology that can
provide accurate results, and also faster searching to search the files. Desktop Search
Engine for Linux can help users that using Linux operating system {Debian based) to
search files in their hard disk faster and accurate.

On the first half of the project implementation, analysis has been made in the
sense to understand the process involved in developing this system. Analysis also
has been done about the best tools to use to develop this system. The freeware
indexer that is Namazu has been chosen as an indexer and a backbone for this
system,

On the second half of the project implementation, the integration of interface
with an indexer has been done. Interface for displaying the results, front page of the
system, and also an advance search feature page have been develop to ease the users
using this system.

Desktop Search Engine for Linux can search text format file in the hard disk
of personal computer. The user just requires entering the related keyword in the
provided text box and then the system will process the transaction and the system
will display the results. This system also supported with an advance search features

that can help user to search files in more detail and accurate.

45

3.2 RECOMMENDATIONS

Desktop Search Engine for Linux is still in the development to fulfill the
requirement for benchmark criteria Consortium for desktop search tool that was
perform by UW E-Business. This system can be improve by adding a feature of
automatic index update that is a system always update the index files while the
personal computer running or after the user create or modify the new files in the
hard disk. This system also suggested by Mr Albert to add a help function to ease
the users to use the system.

This system also can be improve by adding a various file searches features
that is a features of searching another files such as mp3, pictures, video etc rather
than just a text format files. This added feature can upgrade this system to be a
multipurpose desktop search engine.

Besides, this system also can be improve by integrate this system with the
voice command search. This feature will enable a disable person to use this system.
Users also no longer need to type the keywords if this improvement is implemented

in this system.

46

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

[11]

REFERENCES

Chirita A., Gavriloaie R., Ghita S., Nejdl W., Paiua R. {2004).
Activity Based Metadata for Semantic Desktop Search. Hanover,
Germany.

Cole B. (2005). Industry Trends: Search Engines Tackle the Desktop.
www, informatik.uni-trier.de

Stellent (2005). Outside in Technology, A Stellent Product: Outside
In Unlocks Business Documents for Search and Retrieval Systems.
http://www.outsideinsdk.com

Noda T., Helwig S. (2005). Best Practice Reports: Benchmark Study
of Desktop Search Tools. UW E-Business Consortium, University of
Wisconsin-Madison.

Lopo E.d.C, Aitken P, Jones B.L (2000). SAMS Teach Yourself (C
for Linux Programming in 21 Days).

Nenov D. (2005). X1 Desktop Search Platform: User-Centric
Enterprisc Retrieval and Action. XI Technologies, Inc.

Clarke C.L.A, Buttcher S. (2005). A Security Model for Full-Text
File System Search in Multi-User Environment. School of Computer
Science, University of Waterloo, Canada.

Stellent {2005). Outside in Technology, A Stellent Product: Outside
In Unlocks Business Documents for Search and Retrieval Systems.
http://www.outsideinsdk.com

Johnson M. (July 2005). Personal Tech: Turning the Concept of
Search on its Head. http://www.boston.com.

Parker P. (July 2004). Clickz News: Blinkx Plans Ad Model for
Desktop/Web Search Tool. http://www.clickx.com/news

Paiu R. (January 2005). L3S Research Center: Beagle Desktop
Search and Activity Based Metadata. Hanover, Germany.

47

[12]

[13]

[14]

[15]

[16]

Buttcher S. and Clarke L.A.C. (2005) Indexing Time vs. Query Time
Tradeoffs in Dynamic Information Retrieval Systems, School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada.

Tabayashi S. (2006, Jan 29) Namazu: A Full Text Search Engine.
Retrieved February 12, 2006, from http://www.namazu.org

Search Tools Product Reports: Namazu Retrieved February 12, 2000,
from hitp://www.searchtools.com/tools/namazu.html

Advance Linux. Retrieved February 18, 2006 from
http://www.linux.com/

Information Retrieval. Retrieved May 17, 2006 from

http://www.answers.com/topic/information-retrieval ?7method=22

48

1PPENDICES

49

APPENDIX 1

USER MANUAL

DESKTOP SEARCH ENGINE FOR LINUX

50

DESKTOP SEARCH ENGINE FOR LINUX USER MANUAL

Table of Contents
1. Introduction
1.1 About Desktop Search Engine for Linux .. 52
2. Getting Started
2.1 Server REQUITEIMENT.oocooiiioiiiii e 53
2.2 Installing Namazuicccoooiiiiiiii e 53
221 Test before "make install” 53
222 Help Menu ...t 54
223 Running MKNMZ ... 54
224 Customizing mKNmMz..........................., 56
225 Targets of index Creation ... 59
226 RUnning namazu............c.o.oovvieieeioioii oo 59
227 Namazu COMPONENLESooruieiiiiiiiiiie e 59
23 mknmzcommand..................... e 60
231 MKNMNZ'S OPHOMS ...ttt 60
232 MKNMZIC SEHINES ..ot 62
233 Document fIlErs ..o 62
24 pamazu comMMandcccoooiviiiiiiiie e 67
24.1 DAMAZU'S OPLIONSiiiiiirire it erie ettt ae et eas et 67
242 NAMAZULC SEEINES ...ttt 69
243 Pefault Index ..., 69
244 Template files...............co.ooooii e, 69
Form settingsc.oooovviiierii oo R UUURUOPRUUDOPRR 70
3. Using Desktop Search Engine for Linux
3.1 Advance Search ... 71
3.1.1 Search with all the words..................... 72
3.1.2 All words and exact phrase search ... 74
3.13 Prefix matching ... 75
3.14 Inside matching ..., 75
3.1.5 Suffix matching................................... e 76
3.1.6 Regular eXpressiono 76

51

i. Introduction

1.1 About Desktop Search Engine for Linux

Desktop Search Engine for Linux was developed from November 2005 until
Jun 2006 and now still in development. This system is based on requirement for
Universiti Teknologi PETRONAS Final Year Project that every student should do as
a requirement to finish their study in this institution.

During an internship for 8 month at Open Source R&D team, MIMOS
Berhad, the author had introduced with an open source environment. Everything that
done were in open source application such as Operating System that used at the
workplace are using Linux rather than Microsoft Windows, Apache Server that is
one of the best web server, etc. During an internship, the author aware about the
open source development in this country are still slow and the awareness about open
source and the advantages behind open source environment still blur to the people in
the world.

Aware about the advantages of open source and the advantages of using
Linux give author a spirit to do a system that can be use by Linux users. With the
growth of a desktop search tools technology and a lack of support for Linux
environment, that factors give the spirit to author to develop this project. During the
planning stage, the author do a lot of studies about the tools that can be used to ease
me develop this system. Then, the author found an interesting application that can be
use as a based for my project. The author proposed this project to Final Year Project
Team about Desktop Search Engine for Linux and they were accepted it.

The idea for this system was about to integrate a freeware Namazu desktop
search tool with the web-base environment. Namazu indexer was the main factor
that forces author to use this tool. Namazu indexer can crawl text format information
from files and create one file that is index file. Then, search engine will process the
user query to match the query with information in the index files. The author knows
to develop his own indexer will take a long time to finish and this is an alternative

way for me to finish this system.

52

2. Getting Started

2.1 Server Requirement

As we know, Apache is one of the best web server in the world and it is an
open source web server so Linux Operating System usually provided with this web
server. If the users of Linux environment find out that their Linux do not have this
application then they can install it by using a synaptic package manager that

provided in the Linux package.

After installing the web server, then copy a namazu folder into web server folder,
usually at /var/'www/ folder. By using terminal, user must go to namazu folder. The
command that can be use by users to go to namazu folder from terminal is

/var/www/namazu . Then just type /s to list all files contain in that folder.

2.2 Installing Namazu

2.2.1 Test before "make install”

If you wish to test mknmz before make install, do

cd namazu-2.0.x (... where you have unpacked * tar.gz)

env pkgdatadir="pwd’ scripts/mknmz (in case ¢csh/tcsh)

or

pkgdatadir=. scripts/mknmz (in case with sh/bash).

These will refer adjacent pl, filter,template etc, not exisiting stuff under

/ust/local/share/namazu etc).
(To know more about this, see SPKGDATADIR variable in mknmz etc.)

You may try following examples for the first time to see the configuration, help, and

to generate indexes for ~/Mail stuff, respectively.

Jmknmz -C

Jmknmz --help

53

Jmknmz -O /tmp ~/Mail

2.2.2 Help Menu

If you just type mknmz or namazu with no argument, a short usage will be
displayed. If you feed --help as an argument, a long usage will be displayed. The
option -C will display the configurations at the time. Useful to remember these 3

option usages.

How to get hélp menus in command-line

ArgumentMe - ng other Arguments -
N One Sh ortUsage Cannotaddany argumem b]
?flhéiﬁ " LongUsage lgnoresother arguments

-C ‘Configurations Other arguments will have meanings.

2.2.3 Running mknmz

First, create index. Format is changed slightly from versions 1.4.0.8. URI
replacement is dealt with by specifying --replace option. URI replacement can be
done during namazu/namazu.cgi execution. In this case, run mknmz without --
replace option, and setup .namazurc so that URI replacement is performed during

namazu/namazu.cgi execution.
Run mknmz as follows.
mknmz [options] target directory

The above example creates index in the current directory. Use -O option to specify

the output directory.
For example,

mkdir /tmp/index
mknmz -O /imp/index \

54

--replace="s#/foo/bar/doc/#http://foo. bar jp/software/# \
foofbar/doc

mknmz will output the following meésages during the creation of index.

14 files are found to be indexed.

1/14 - /foo/bar/acrobat3.pdf [application/pdf]

2/14 - ffoo/bar/excel97 xls [application/excel]

3/14 - foo/bar/html html [text/htmi]

4/14 - /foo/bar/mail-multipart.txt [message/rfc822]
5/14 - /foo/bar/mail txt [message/rfc822]

6/14 - ffoo/bar/man.1 [text/x-roff]

7/14 - foo/bar/msg00000.html [text/himi; x-type=mhonarc]
8/14 - ffoo/bar/plain.txt [text/plain]

9/14 - ffoo/bar/plain.txt.Z [text/plain]

10/14 - /foo/bar/plain.txt.bz2 [text/plain]

11/14 - /foo/bar/plain.txt.gz [text/plain]

12/14 - foo/bar/rfc0000.txt [text/plain; x-type=tfc]
13/14 - ffoo/bar/tex tex [application/x-tex]

14/14 - /foo/bar/word97.doc [application/msword]

Writing index files...
| Base}
Date: Thu Mar 16 22:14:01 2000

Added Documents: 14
Size (bytes): 58,701
Total Documents: 14
Added Keywords: 95
Total Keywords: 95

Wakati: madule kakasi -ieuc -oeuc -w
Time (sec): 14

File/Sec: 1.00

System: linux

Perl: 5.00503

Namazu: 20X

55

« Result (Index) will be in /tmp/index (specified in -O)
+ Target documents are /foo/bar/doc
+« For URI

This means "documenis under /foo/bar/doc/ will appear as
http://foo.bar jp/software/, so please perform replacement like s#faaa#bbb# if
written in Perl." (In this example, {aaa) corresponds to {/foo/bar/doc/) and

(bbb) corresponds to (http://foo.bar jp/))

+ (Depending on $SALLOW FILE and $DENY FILE in
fust/local/etc/namazu/mknmzrc) target files may be *.himl *ixt, *tex,

* pdf, mails in MH format.
2.2.4 Customizing mknmz

Namazu was originally developed for processing HTML documents; Namazu can
now deal with various document styles. You will find useful scripts in

filters in Namazu manual.

Mails in MH format
run mknmz
% mknmz ~/Mail/foobar

MHonAre
Namazu will do specific processing for MHonArc HTML.

hnf

-mknmzre for hnf and guide can be obtained from Hyper NIKKI Svetem

Documents stored in other machines
Cannot search documents using Namazu alone. Need to use other tools (eg.

wget, NFS) that transfer the documents in combination.

For mknmz command-line arguments, you get usage information from mknmz -

help. With -C option, you get the configurations of the time.

Loaded rcfiie; /home/foobar/ mknmzre

30

System: linux

Namazu: 2.0.X

Perl: 5.00503

File-MMagtc: 1.25

NKF: module nkf

KAKASI: module kakasi -ieuc -oeuc -w

ChaSen: module_chasen -i e -j -F "%m "

MeCab: module mecab -Owakati -b 8192

Wakatt: module kakasi -1euc -oeuc -w

Lang Msg: C

Lang: C

Coding System: euc

CONFDIR: /usr/local/etc/namazu

LIBDIR: /usr/local/share/namazu/pl

FILTERDIR: /ust/local/share/namazu/filter

TEMPILATEDIR: /ust/local/share/namazu/template

Supported media types: (42)

Unsupported media types: (2) marked with minus (-) probably missing application

in your $path.

application/excel: excel.pl
application/gnumeric: gnumeric.pl
application/ichitaro5: taro56.pl
application/ichitaro6: taro56.pl
application/ichitaro7: taro7 10.pl
application/macbinary: macbinary.pl
application/msword: msword.pl
application/pdf: pdf pl
application/postscript: postscript.pl
application/powerpoint: powerpoint.pl
application/rtf: rtf pl
application/vnd kde kivio: koffice.pl
application/vnd kde kpresenter: koffice.pl
application/vnd kde kspread: koffice.pl
application/vnd kde kword: koffice.pl

57

application/vnd.oasis.opendocument. graphics: 0oo.pl
application/vnd.oasis.opendocument. presentation: 000.pl
application/vnd.oasis.opendocument. spreadsheet: 000.pl
application/vnd.oasis.opendocument.text: ooo.pl
application/vnd.sun.xml.calc: ooo.pl
appiication/vnd.sun.xml.draw: 000.pl
application/vnd.sun xml.impress: 00o.pl
application/vnd.sun.xml writer: 0oo.pl
application/x-apache-cache: apachecache.pl
application/x-bzip2: bzip2.p!
application/x-compress. compress.pl

- application/x-deb: deb.pl

- application/x-dvi: dvi.pl
application/x-gzip: gzip.pl
application/x-js-taro: taro7_10.pl
application/x-rpm: rpm.pl
application/x-tex: tex.pl
application/x-zip: zip.pl
audio/mpeg: mp3.pl
message/news: mailnews.pl
message/rfc822: mailnews.pl
text/hnf: hnf pl
text/html: html. pl
text/html; x-type=mhonarc. mhonarc.pl
text/html; x-type=pipermail: pipermail pl
text/plain
text/plain; x-type=rfc: rfc.pl
text/x-hdm!: hdml.pl
text/x-roff: man.pl

58

2.2.5 Targets of index creation

short
' fong name description
name
-F --target-list=FILE read in list of target files for index creation
--media- .
-t specify the document format of target files
type=MTYPE

specify the regular expression of target file
-—allow=PATTERN pectly gy P 8
names.

specify the regular expression of to-be-excluded
--deny=PATTERN pecify , & *P
file names.

specify the regular expression of to-be-excluded
--exclude=PATTERN
path names.

2.2.6 Running namazu
To search documents, do
% namazu query index
If you omit index, namaza will assume /usr/local/var/namazu/index as target.

Set up for namazu command will be done in pamazurc. An example of namazurc
can be found in /usr/local/etc/namazu/namazurc-sample in Namazu distribution

package.
2.2.7 Namazu components

Namazu is a full-text search engine. Namazu uses the index maker mknmz

command and the text searcher namazu command.

For quickly searching through many documents, Namazu generates an index similar

to that of a book's.

59

mknmz command compiles the index. The target directory for indexing is given as
an argument for mknmz. For example, if the target directory is

/home/foo/public_html, then type
% mknmz /home/foo/public_html

Now documents such as *.html and *.txt under /home/foo/public_htmi are indexed
and NMZ.* files are created in the directory where you run mknmz. NMZ.* files are

from Namazu's index.

The namazu command searches the index. For example:

% namazu bar /home/foo/Namazu/foobar

The above searches a keyword "bar" for the index under /home/foo/Namazu/bar.

2.3 mknmz command

2.3.1 mknmz's options

mknmz 2.0.x, an indexer of Namazu.

Usage: mknmz [options] <target>...

Target files:
-a, --all target all files.
-t, --media-type=MTYPE set the media type for all target files to MTYPE.
-h, --mailnews same as --media-type="message/rfc822'
--mhonarc same as --media-type="text/html; x-type=mhonarc’

-F, —target-list=FILE load FILE which contains a list of target files.
--allow=PATTERN set PATTERN for file names which should be
allowed.
--deny=PATTERN set PATTERN for file names which should be dented.
--exclude=PATTERN set PATTERN for pathnames which should be
excluded.
-g, ~-T0bots exclude HTML files containing
<meta name="ROBOTS" content="NOINDEX">

60

-M, --meta handle HTML. meta tags for field-specified search.
-1, ~-replace=CODE set CODE for replacing URL
--html-split split an HTML file with anchors.
—-mtime=NUM limit by mtime just like find(1)'s -mtime option.
e.g., -50 for recent 50 days, +50 for older than 50.

Morphological Analysis:
-b, -~use-mecab use MeCab for analyzing Japanese.
-c, --use-chasen use ChaSen for analyzing Japanese.

-k, --use-kakasi use KAKASI for analyzing Japanese.
-m, --use-chasen-noun use ChaSen for extracting only nouns.

-L, —-indexing-lang=L.ANG index with language specific processing.

Text Operations:
-E, --no-edge-symbol remove symbols on edge of word.
-G, --no-okurigana remove Okurigana in word.
-H, --no-hiragana ignore words consist of Hiragana only.
-K, --no-symbol remove symbols.

--decode-base64 decode base64 bodies within multipart entities.

Summarization:
-U, --no-encode-uri do not encode URL

-x, --no-heading-summary do not make summary with HTML's headings.

Index Construction:
—update=INDEX set INDEX for updating.

-z, --check-filesize detect file size changed.

-Y, --no-delete do not detect removed documents.

-Z, -no-update do not detect update and deleted documents.
Miscellaneous:

-s, --checkpoint turn on the checkpoint mechanism.

-C, --show-config show the current configuration.

-f, --config=FILE use FILE as a config file.

61

-, —-include=FILE include your customization FILE.
-0, —-output-dir=DIR set DIR to output the index.
-T, --template-dir=DIR set DIR having NMZ.{head,foot,body}.*.

-q, -~quiet suppress status messages during execution.
-v, --version show the version of namazu and exit.
-V, —-verbose be verbose.
-d, --debug be debug mode.
--help show this help and exit.
~-TIOTC do not read the personal initialization files.

- Terminate option list.

Report bugs to <http://www.namazu.org/trac-namazu/trac.cgi>

or <bug-namazu@namazu.org>.
2.3.2 mknmzre settings

Various settings are possible in mknmzrc or .mknmzrc. mknmzrc normally reads

configuration files in the order of

1. $(sysconfdir)/$(PACKAGE)/ mknmzrc
Usually, /usr/local/etc/namazu/mknmzrc
2. ~/mknmzrc
3. file which is specified by -f or --config=FILE --option,

If more than one configuration file is found, they all of the files are loaded.

Installation prepares a sample configuration file
$(sysconfdir)/$(PACKAGE)Y mknmzrc-sample. You can copy this 1o
$(sysconfdir)/$(PACK AGE)/mknmazrc or to ~/ mknmzrec in your home directory.

The setting details are given as comments in mknmzre-sample.
2.3.3 Document filters
mknmz automatically identifies target file types and performs the appropriate

document filtering. For HTML documents, filtering includes the extraction of <title>

62

or the deletion of HTML tags. The filtering is dealt with by document filters in
$(datadir)/$(PACKAGE)/filter. The standard document filters are described below.

apachecache pl

Handles an Apache's cache file.

Requirement: None

Note: --replace=apachecache::replacecode option replaces to original URI
bzip2.pl

Handles a bzip2-ed file.

Requirement; bzip2 command.
compress.pl

Handles a compress-ed file.

Requirement: compress command.
deb.pl

Handles a deb package.

Requirement: dpkg command.
dvi.pl

Handles a dvi file.

Requirement: dvi2tty

Suggested software: nkf (only for Japanese documents)
excel.pl

Handles a Microsoft Excel file.

Requirement: xiltml, (wvSummary, a part of wyWare}

Suggested software:]y (only for Japanese documents)
gnumeric.pl

Handles a Gnumeric file.

Requirement; gzip command or Compress::Zlib perl module,
gzip.pl

Handles a gzipped file.

Requirement: gzip command or Compress::Zlib perl module.
hdml.pl

Handles a HDML file.

Requirement: None
hnf.pl

63

Handles a file of Hyper NIKKI Svysteim Project.

Requirement: the haf filter is special: it requires namazu_for_hns of Hyper

MEKT System Projeci.

html.pl
Handles a HTML file.
Requirement: None
koffice.pl
Handles a KOffice KWord, KSpread, KPresenter, Kivio file.
Requirement: unzip, lv(only for Japanese documents)
macbinary.pl
Handles a MacBinary LIL Il file.
Avoid a problem with handle a MacBinary file.
Requirement: None
mailnews.pl
Handles a file of Mail/News and MHTML file.
Requirement: None

Note: To handle MHTML file and Attached base64 bodies, MIME :Baseod

and MIMUE: QuotedPrint are required.(perl5.8 contains them.) --decode-

base64 option is required when handling a MHTML file or base64-encoded
bodies.
man.pl
Handles a man file.
Requirement: nroff, eroff or jgroff
Note: To handle Japanese man, groff supporting -Tnippon is required.
mhonarc. p
Requirement: None
mp3.pl
Handles an MP3 file's 1D3 Tag

Requirement: MP3: Info pert module, (version 1.01 or later are suggested).

msword.pl
Handles a Microsoft Word file.

Suggested software:{v (only for Japanese documents)

64

000.pl

Handles an OpenOffice.org Writer, Calc, Impress, Draw file.

Requirement: ynzip

Suggested software:lv (only for Japanese documents)
pdfpl

Handles a PDF file.

Requirement: pdftotext, a part of xpdf (version 0.91 or later are suggested).
pipermail.pl

Handles a Mailman/pipermail file,

Regquirement: None
postscript.pl
Handles a PostScript file.
Requirement: ps2ascii
powerpoint.pl
Handles a Microsoft PowerPoint file.
Requirement: pptHtml, a part of xlHtmi, (wvSummary, a part of wvWare)

Suggested software:lv (only for Japanese documents
fasloed

rfc.pl
Handles an RFC file.
Requirement: None
rpm.pl
Handles an RPM package.
Requirement: rom
rtf pl
Handles a Microsoft Word file.
Requirement: ptf2himl
taro56.pl
Handles a file of Ichitaro, a Japanese word processor, versions 5 and 6.
Requirement: None
taro7 _10.pl
Handles a file of Ichitaro, a Japanese word processor, versions 7 through 13.
Requirement: unicode.pl, OLE-Storage Lite perl_module, IO-stringy perl
module.
tex.pl

65

Handles a TeX file.
Requirement: detex

zip.pl
Handles a Zip archive files.
Requirement: yuzip

Alternative: Compress: . Zlib perl module, Archive::Zip perl madule.

The following filters are for Windows only.

ichitaro456.pl
Handles a file of Ichitaro, a Japanese word processor, versions 4, 5 and 6.
Requirement: JSTXT
Note: JSTXT is a tool for MS-DOS.
oleexcel.pl
Handles a Microsoft Excel file.
Requirement: Microsoft Excel 97 SP1 or later, 2000, 2002(XP) or 2003
olemsword.pl
Handles a Microsoft Word file.
Requirement: Microsoft Word 97 SP1 or later, 98, 2000, 2002(XP) or 2003
olepowerpoint.pl
Handles a Microsoft PowerPoint file.
Requirement: Microsoft PowerPoint 97 SP1 or later, 2000, 2002(XP) or
2003
oletaro.pl
Handles a file of Ichitaro, a Japanese word processor, versions 4.
Requirement: Microsoft Word 97 SP1 or later, 98 or 2000
Requirement: and applicable document converter of Microsoft Office

attachment.

Handles a file of Ichitaro, a Japanese word processor, versions 5 through 6.
Requirement: Microsoft Word 97 SP1 or later, 98, 2000 or 2002(XP)
Requirement: and applicable document converter of Microsofti Office

attachment.

66

Handles a file of Ichitaro, a Japanese word processor, versions 7 through 13,
2004,
Requirement: Microsoft Word 97 SP1 or later, 98, 2000, 2002(XP) or 2003
Requirement: and applicable document converter of Microsoft Office
attachment.
olertf pl
Handles a Microsoft Word file.
Requirement: Microsoft Word 97 SP1 or later, 98, 2000, 2002(XP) or 2003
olevisio.pl
Handles a Microsoft Visio file.
Requirement: Microsoft Visio 2000, 2002 or 2003
xdoc2txt.pl
Handles a file of Microsoft Word, Excel, Powerpoint, Echitaro, etc.
Requirement: xdocZixi.exe

Note: xdoc2ixt.exe is a tool for MS-Win32,

NOTE: We believe that mknmz will work well on both the English version and the
Japanese version of Microsoft Office, but that is not yet confirmed. We would be

grateful if you would notify us how it works. Thanks in advance.

2.4 namazu command

2.4.1 namazu's options

namazu 2.0.x, a search program of Namazu.

Usage: namazu [options] <query> [index]...
-n, --max=NUM set the number of documenis shown to NUM.
-w, --whence=NUM set the first number of documents shown to NUM.
-1, --list print the results by listing the format.
-8, ~-short print the results in a short format.
—~result=EXT set NMZ result EXT for printing the results.
--late sort the documents in late order.

--carly sort the documents in early order.

67

—-sort=METHOD set a sort METHOD (score, date, field:name)
--ascending sort in ascending order (default: descending)
~a, ~-all print all results.
-¢, --count print only the number of hits.
-h, --html print in HTML format.
-1, --no-references do not display the reference hit counts.
-H, --page print the links of further results.
(This is nearly meaningless)
-F, --form force to print the <form™> ... </form> region.
-R, --no-replace do not replace the URI string.
-U, --no-decode-uri do not decode the URI when printing in a plain format.
-0, --output=FILE set the output file name to FILE.
-f, --config=FILE set the config file name to FILE.
-C, --show-config print the current configuration.
-q, --quiet do not display extira messages except search results.

-d, --debug be in debug mode.

-V, --Version show the namazu version and exit.
--help show this help and exit.
-~1I0rC do not read the personal initialization files.
-- Terminate option list.

Report bugs to <http://www.namazu. org/trac-namazu/trac.cgi>

or <bug-namazu(@namazu.org>.

You can specify one or more target indices in a command-line argument [index
dir].... If the target index is omitted, the Default index will be treated as the target

index.

By prefixing + such as +foo or +bar, you can specify a target index as a relative path

from the default index.

When executed from a command line, Namazu outputs query results in simple text

format. The -h option is required in order to display query results in HTML format.

68

- If you want to display query results from the 21st hit through the 40th, type -n 20 -w

20 on the command line. Note that -w is not 21 in this exampie.
2.4.2 namazurec settings

Various settings are possible in mknmzrc or .mknmzrc. Namazu normally reads

configuration files in the following order:

1. $(sysconfdir)/$S(PACKAGE)/namazurc
(Usually, /ust/local/etc/namazu/namazurc
2. ~/.namazurc
3. file which is specified by -f or --config=FILE --option.

(In case of C(l, it is .namazurc in the directory namazu.cgi is stored)
If more than one configuration file is found, all of the files are loaded.

Installation prepares a sample configyration file
$(sysconfdir)/$(PACKAGE)/namazurc-sample. You can copy this to
$(sysconfdir/ S(PACK AGE)/namazurc or to ~/.namazurc in your home directory.

The setting details are given as comments in namazurc-sample.
2.4.3 Default Index

The default index is the index that is used when no other index is specifiedand it

follows the rules described below.

o The default is $(localstatedir)/ S(PACKAGE)/index
Usually, /usr/local/var/namazu/index)

» Otherwise it is the directory which is specified by the Index directive of

2.4.4 Template files

Template files explain the display styles of query results in HTML. The details are
described below.

NMZ head

69

Header of search results.

NMZ foot
Footer of search results,
NMZ body
Description of Namazu's query.
NMZ tips
Tips on searching.
NMZ result

Format of search results.
These files are available for either language. Files suffixed by . ja are for Japanese.

2.4.5 Form seitings

Form 1s defined in NMZ_head. CGI variables are as follows:

query
specify a query expression.
max
specify the maximum number of query results to display at once,
result
specify the display style of query results.
sort
specify the sorting routine.
idxname
specify the name of the index to search.
subquery
specify the sub-query expression.
whence
specify where you wish to display query results.
reference
specify whether or not to display reference hit counts.
lang '
specify language of search resulits.

3. Using Desktop Search Engine for Linux

Figure 3.1 is the screen shot of index page of DSEforLinux. Users just fill the

keyword(s) they want to search in the provided text box! . After

. : P .
filted the keyword(s), user just need to enter the Search button 22"} that provided

at the right side of text box. Then, DSEforLinux will process that request and

display the result in a result page.

70

Desktop Search Engine for Linux

| | | searcht]

Figure 3.1 Index Search Page

3.1 Advance Search

If users want to search in advance the files that they want to search, then this
system provide an advance search functions that can search in details the request. An
advance search includes:

1v. Normal search that consist of’

a. searching with all words
b. the exact phrase of text
c. the exclude function
V. Substring matching that consist of:
a. prefix matching
b. inside matching
c. suffix matching
vi. Complex searching that consist of:
a. regular expression

b. grouping capabilities

Figure 3.2 is a screenshot of advance search after users click advance search
button. To use this features, user just filled the string or word they want to search or

do not want to search in the provided text box.

71

Figure 3.2 Advance Search Page

3.1.1 Search with all the words

Figure 35.3 All words search

The system will search keyword(s) that enter by user in this text box and
display the result in the result page. For example if user enter keyword “razif
mimos” then the system will search all files that contain this “razif mimos” keyword
in the hard drive. Figure 3.3 shows user entered “razif mimos” in the with all the

words text box. If users entered three keywords in the text box, {(eg. knowledge

72

acquisition performance) then the system will search all files that contain these

keywords in the hard drive.

3.1.2 Search the exact phrase

Figure 3.4 Search the exact phrase

This system also can ease the users to search file that contains an exact
phrase in hard drive. Figure 3.4 shows the screen shot of the interface that can
process this function. Users just fill in the exact phrase of words they want into the
text box and then the system will match that exact phrase with the index file and
display all file that contains that phrase as a results. For example, the users enter
“ahmad razif’ then system will search the files that contain this phrase from index

files and display the result on the result page.

3.1.3 None of these words

If users have an unwanted word that they do not want to include in searching
the file, then this function is the correct function to do so. This function is working if
both of all words function and exact phrase function are filled with the keywords or
either all words function or exact phrase function are filled in with the keyword. For
example if user enters the keyword in none of these words function text box, then the

system will unable its function.

73

3.1.4 All words and exact phrase search

Figure 3.5 Search all words and exact phrase

Figure 3.5 shows a screenshot of searching with all words and the exact
phrase. Users can use this combination of searching when they want to search a
usual words and a word that in exact phrase. For example as show in the Figure 16,
user filled all words with mimos and ahmad razif as an exact keyword that want to
search. This system will match string mimos and a phrase ahmad razif with the

index in the index file and display the result on the result page.

3.1.5 Complex search (grouping)

Figure 3.6 All words, exact phrase and none of the word search

Users also can make a complex search using this advance search function.
User can combine these three functions to search a file. For example, users want to
search file that contain words “saved” and “php” with the exact phrase of “message
confirming” and not contain word “mimos”. Then users just fill “saved php” in the
all words function text box, “message confirming” in exact phrase function text box
and “mimos” in the none of these word function text box and then click the “Search

I”” button at above of the function. Figure 3.6 show a screenshot of interface with the

74

content that filled by user to search files by using these three features for an accurate

searching.

3.1.6 Prefix matching

Figure 3.7 Prefix matching search

This function s to find the files with the terms that begin with the keyword
that entered by user. For example if user wants to search for file that contains word
begin with “depart”, then they just fill in the keyword “depart” in the prefix
matching text box and the system will search all files contain words begin with
“depart” such as department, departure ectc. Figure 3.7 shows a screenshot of a
keyword filled by user to search a prefix matching that begin with the word depart.
User must click the prefix matching radio button to search for prefix matching. If

not, the system will search by default that is an inside matching.

3.1.7 Inside matching

Figure 3.8 Inside matching search

This function is to find the files that have terms which contains with the
keyword that entered by user. For example, if user wants to search for file that have
a word that contain “format” keyword, then they just fill in the keyword format in
the Inside matching text box. The system will search all files that contains word that

contain a keyword “formaf” such as information, transformation, etc. Figure 3.8

73

shows a screenshot of keyword that has been filled by user and clicked with inside

matching radio button.

3.1.8 Suffix matching

Figure 3.9 Suffix matching search

This function is to search files with terms that terminate with the filled word.
For example if user want to search files that contain term “format” at the end of
word, then they just enter keyword “format” in the suffix matching text box. The
system will search all files that contain the keywords end with term “format” such as

reformat, etc.

3.1.9 Regular expression

Figure 3.10“Regular expression séarches

This function can search files for pattern matching. This function required
users to enter the word surrounded by backslashes /.../. For example, if user want to
search files that contain words program or problem then they just enter a keyword
/pro(blem|gram)/. The system will search all files that contain keywords problem
and program. Figure 3.10 shows a screenshot with the string that has been filled by

user.

76

APPENDIX 2

Comparison between DSEforLinux, Namazu and Ubuntu 5.10

77

A-2 Comparison between DSEforLinux, Ubuntu 5.10 search tool, and
Namazu(Terminal) search tool

A simple experiment has been done to measure the Accuracy and Efficiency
of this system (DSEforLinux) compared with another two tools that are Ubuntu 5.10
search tool (Ubuntu 5.10) and Namazu desktop search tool using terminal (Namazu
Terminal). Below is the step to measure the characteristic for accuracy, efficiency

and versatility:

1. Select a folder — One folder has been chosen that consist of 8 files. The
folder that has been chosen is cms folder from /home/profile/internship/cms
directory.

2. Select the keywords that will be use as 2 measurement — the keywords that
has been chosen are management, razif and page.

3. Count manually and verify the files that contain the selected keywords.
The details of files are recorded (as Table 3).

4. Open desktop search tools that will use to search the files with those 3
keywords — open DSEforLinux (Figure 7), Ubuntu 5.10 (Figure 34), and
Namazu(Terminal) (Figure 35).

5. Enter the keyword, and click or execute the system. If using DSEforLinux,
click the Search button, Ubuntu 5.10 click Find button and with Namazu type a
command namazu management /var/www/namazu . Time of the system processing
the query and display the result has been taken and record.

6. The result was compared by time, total files, and total result files (related
files) with those three search tool.

7. Then an analysis has been done to make a conclusion.
Tools that have been used to measure the time were a stop watch that has a

minutes, seconds and millisecond features. Times are record during the execution of

system until the system completely displays the results.

78

Figure 1 is a snapshot of folder and files that contains in that folder. These
files used as a measurement for the accuracy, efficiency and versatility of this

system.

SHApRDT ARGENCN.ELW

LR

AAEsmanual.pat

! i
Conlaet Management
Syslem.

[§.t6ms Fivig spaca 08B ME " T

Figure 36: cms folder and files
Table 1 below is a record detail of files in the cms folder from
/home/profile/internship/cms directory. This folder consists of 8 files. From folder
have 7 files that contain management keyword, 6 files with razif keyword and 6 files

with page keyword.
Files Keyword
: management | razif | page

1 | appendix. sxw 0 0 0
2 | Documentation.doc 95 1 16
3 | Documentation.sxw 95 1 16
4 | Documentation2.doc 69 2 16
5 | Documentation2. sxw 69 2 16

Documentation-Contact
6 | Management System.pdf 102 2 o
7 | frantpage.sxw 6 1 0
8 | TABmanual pdf 6 0 16

Total file that contains the keyword 7 6 6

Table 1: Details files in the CMS folder

79

Table 2 shows a results table that has been recorded. From his table we can
see the time (in second) that has been taken for each tool to process the query.
Besides, this record also shows a number of results that contain in the CMS folder

and the total files that have been searched by each tool.

Tools Keywords
management | razif | page
Time(sec) 2"73 1"30 1"10
DSEforLinux Result 7 6 6
Total files 206 50 1081
Time(sec) 1'42"68 1'16"75 | 2'10"59
Ubuntu 5.10 Result 1 1 7
Total files 178 8 987
Time(sec) 1"17 0"85 0"78
Namazua(Terminal) Result 7 2 6
Total files 206 50 1081

Table 2: Results table

A-2.1 Accuracy

A calculation has been made to measure the accuracy of this system
compared to the operating system files search tool. To measure the accuracy of the
system, results were divided by number of files that is the number of files in the
folder that contains that keyword.

Equation to calculate the accuracy of the systems:

Percentage Accuracy .
= {exact results from folder / total files in folder) x 100
of systems

80

After the value of accuracy calculated, then the average value calculated.
Table 3 shows the results of the accuracy between DSEforLinux {(Desktop Search
Engiﬁe for Linux), Ubuntu 5.10 (Linux Ubuntu 5.10 files search tool), and Namazu

Terminal search tool.

Keywords
Tools
management | razif page
Files 7 6 6
_ Result 7 6 6
DSEforLinux Accuracy 100% 100% 100%
Average
100%
result/file
Files 7 6 6
Result 1 1 7
Ubuntu 5.10 Accuracy 14.29% 16.67% | 116.67%
Average
49.21%
result/file
Files 7 6 6
Result 7 6 6
Namazu(Terminal) Accuracy 100% 100% 100%
Average
result/file 100%

Table 3: Results of acecuracy comparison between DSEforLinux, Ubuntu 5.10

and Namazu(Terminal)

From the results of Table 3, we can see that DSEforLinux and
Namazu(Terminal) has 100% accuracy when they can search all files that contain in
the cms folder. The average result/files of Ubuntu 5.10 just 49.21% because they

cannot search certain files in the cms folder.

81

A-2.2 Efficiency

Table 4 shows results of efficiency comparison between DSEforLinux,
Ubuntu 5.10 and Namazu(Terminal). The table shows total files, times recorded for
searching process and the efficiency results for these three search tools. The
efficiency results are got from the total files divided by time(sec). After got the value

of efficiency, then the average of efficiency calculated. Below is all data that got

from the record and calculation involved.

Keywords
Tools
management | razif | page
Total Files 206 50 75.46
Time(sec) 2"73 1"30 | 3846
DSEforLinux Lfficiency 75.46 3846 | 982.73
Average
365.55
file/second
Total Files 178 8 987
Time(sec) 1'42"60 1'16"75 | 2'10"59
Ubuntu 5.10 Efficiency 1.25 0.069 4.69
Average
¥ 2.00
file/second
Total Files 206 50 75.46
Time(sec) 1"17 0"85 0"78
Namazu(Terminal) Efficiency 176.07 58.82 | 1385.90
Average
540.26
file/second

Table 4: Results of efficiency comparison between DSEforLinux, Ubuntu 5,10

and Namazu(Terminal)

From the results of Table 4, we can see that average file/second for

DSEforLinux is 365.55. That means this search tools can search and display the

82

resuits in 365.55 files per second. The result for Ubuntu 5.10 is 2.00 files per second

and the result for Namazu(Terminal) is 540.26 files per second.

DISCUSSION

Comparison of Accuracy between DSEL, Ubuntu File Search Toel and Namazu

Accuracy (result/files)

2\ DSEforLinux
100%

Namazu(Termin
al) 100%

Ubuntu 5.10
49.21%

Figure 2: Accuracy graph of DSEforLinux, Ubuntu 5,10, and

Namazu(Terminal)

Figure 2 shows graph accuracy between DSEforLinux, Ubuntu 5.10 and
Namazu (Terminal). The data for this graph is taken from Table 3. From this graph
we can say that DSEforLinux and Namazu(Terminal) have the same percentage of
accuracy that is 100% compared to Ubuntu 5.10 that only 49.21%. That mean,
DSEforLinux and Namazu{Terminal) are more accurate in searching the files
compared to Ubuntu 5.10. The same value of DSEforLinux and Namazu{Terminal)
because DSEforLinux is using the same indexer and index files that used by Namazu

(Terminal). The engine of the DSEforLinux is taken from Namazu.

83

Comparison of Efficiency between DSEL, Ubuntu File Search Tool and

Namazu

Efficiency (files/second)

Namazu(Termin
600 Al 540726

DSEforLinux,
400 365.55

Ubuntu 5.10, 2

DSEforlinux Ubuntu 5.10 Namazu{Terminal)

Figure 37 Efficiency graph of DSEforLinux, Ubuntu 5.10 and

Namazu(Terminal)

Figure 3 shows graph of efficiency between DSEforLinux, Ubuntu 5.10 and
Namazu(Terminal). The data for this graph is taken from Table 4. From this graph
we can say that Namazu(Terminal) have the highest percentage of efficiency that are
540.26 files per second compared to DSEforLinux 365.55 files per second and
Ubuntu 5.10 with 2 files per second. That mean, Namazu(Terminal) can process the
query faster than DSEforLinux and Ubuntu 5.10. The factor that make Namazu
(Terminal) can search faster than other two tools is Namazu not required an interface
like DSEforLinux and it’s process the query in the terminal (internal process) that
are lighter than by using an external application. DSEforLinux required the web-
base interface to give an instruction to internal system and get back the data from
internal system to display the resuli. That takes a few second to process but both
DSEforLinux and Namazu (Terminal) are using index files that can make the
searching and matching process faster. Ubuntu 5.10 slower than others two tools
because this tools need to search every single file in the folder and display the result
on the screen. This Ubuntu 5.10 also not provided with the index files that slower

the process of matching the keyword.

84

Below is the summary table of efficiency characteristic between these three

tools:

DSEforLinux (Desktop Search Engine

for Linux)

- Fast sear.é.l.nng' the files
- Results displayed slower than Namazu

because this tool must load a web-based

page.

Ubuntu 5.10 Search File Tool

- Search files slower than DSEL and
Namazu

- Display results slower than another 2
tools and just display the file name and
location without description or other

details

Namazu (Terminal)

- Fast searching the files
- Results displayed faster than DSEL
because results are displayed directly n

terminal,

Table 5: Comparison of Efficiency between DSEL, Ubuntu File Search Tool

and Namazu

85

