
Desktop Search Engine for Linux

by

Ahmad Razifbin Musa@Mahmud

supervised by

Mr Justin Dinesh Devaraj

A project dissertation submitted in a partial fulfillment of

the requirement for the

Bachelor ofTechnology (Hons)

(Business Information Systems)

July 2005/Jan 2006

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

oft

TABLE OF CONTENTS

ABSTRACT ; i

ACKNOWLEDGEMENT ii
CHAPTER 1 3
INTRODUCTION 3

1.1 BACKGROUND STUDY 3
1.2 PROBLEM STATEMENT 4

1.2.1 Problem Identification 4

1.2.1.1 Difficult to find specific files in the hard drive 4
1.2.1.2 Difficult to recall the name of files saved in the hard drive 4
1.2.1.3 Misplaced files in the hard drive 4

1.3 SIGNIFICANT OF THE PROJECT , 5
1.4 OBJECTIVE 6

1.4.1 Objectives ofthe project 6
1.5 SCOPE OF STUDY 6

1.5.1 Personal computer hard drive 6
1.5.2 Linux(Debianplatform) Operating System 6
1.5.3 Search for text format files 7

CHAPTER2 ' g
LITERATUREREVIEW 8

2.1 DESKTOP SEARCH ENGINE 8
2.2 SEARCH ENGINE (Namazu INDEXER) 11
2.3 INFORMATION RETRIEVAL 11
2.4 LINUX 14

CHAPTER3 15
METHODOLOGY 15

3.1 PROJECT FRAMEWORK .15
3.1.1 DataFlow Diagram (DFD) 16
3.1.2 Use Case Model 17
3.1.3 Flowof indexing the files (Namazu) ,..,. 18
3.1.4 Flow ofsearching the files using JavaScript 19

3.2 INTEGRATION OF NAMAZU WITH THE WEB-BASED INTERFACE
20

3.3 PROGRAMMING LANGUAGES 21
3.3.1 C programming language 21
3.3.2 HTML ""21
3.3.3 JavaScript 21
3.3.4 Perl .ZZZZZ'Z "' 22

3.4 DEVELOPMENT TOOLS .ZZ ' ' 22
3.4.1 Anjuta(IDE) 22
3.4.2 VIM Editor. 73

3.5 OTHER TOOLS ?3

LIST OF ILLUSTRATIONS

Figure 1: Project Framework 15
Figure 2: Data Flow Diagram 16
Figure 3: Use Case Diagram 17
Figure 4: Flow ofprocess indexing the files 18
Figure 5: Flow ofsearching the files 19
Figure 6: Front page ofthe system 24
Figure 7: Simple Search Query 24
Figure 8: Results page 25
Figure 9: Advanced Search Page Link 26
Figure 10: Advanced Search Page 26
Figure 11: Search with all the words.. 27
Figure 12: Result ofwith all the words 28
Figure 13: Search the exact phrase 28
Figure 14: Result of exact phrase search 29
Figure 15: Result with the bold words .29
Figure 16: Search all words and exact phrase 30
Figure 17: Result ofall words and exact phrase search 31
Figure 18: All words, exact phrase and none ofthe word search......... 31
Figure 19: File searched by system 32
Figure 20: Prefix matching search 32
Figure 21: Result ofprefix matching 33
Figure 22: File contains with the prefix macthing keyword 34
Figure 23: Inside matching search 34
Figure 24: Result file ofInside matching 35
Figure 25: Suffix matching search 35
Figure 26: Result ofSuffix matching 36
Figure 27: Regular expression searches 36
Figure 28: Result ofRegular expression (Program) 37
Figure 29: Result ofRegular expression (Problem) 37
Figure 30: Comparison ofUsability between DSEL, Ubuntu 5.10 and Namazu 40
Figure 31: ScreenshotofDSEL.. 41
Figure 32: Screen Shot ofUbuntu File Search Tool 41
Figure 33: Screen Shot ofNamazu(Terminal) 42
Figure 34: Combination flow ofIndexing and Searching files 44

LIST OF TABLES

Table 1: Benchmark Criteria for Desktop Search Tools 10
Table 2: Summary ofAdvanced SearchFeatures 38
Table 3: Total mark ofevaluation for usability testing 39
Table 4: Comparison ofUsability between DSEforLinux, Ubuntu 5.10 and
Namazu(Terminal) 43

CERTIFICATION OF APPROVAL

Desktop Search Engine for Linux

by

Ahmad Razifbin Musa@Mahmud

A project dissertation submittedin a partial fulfillment of

the requirement for the

Bachelor ofTechnology (Hons)

(Business Information Systems)

Approved by,

(Mr Justin Dinesh Devaraj)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JULY 2005/JAN 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and the

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

(AHMAD RAZ|F BIN MUSA@MAHMUD

ABSTRACT

Desktop Search Engine become more popular for personal and enterprise

after some difficulties occurs when dealing with the huge amount of files and in a

multi-user environment. Desktop Search Engine for Linux is a desktop search tool,

integrated between Namazu with web-based interface that can search text format

files inthehard drive ofpersonal computer. As increasingly demand for aneffective

and efficient desktop search tools especially for the Linux environment where there

were just a few tools have been developed for Linux compared for Windows

although the usage of Linux operating system are increased from days to days. This

system is just for Linux (Debian platform) operating system and just search for a

text format files. This system index the entire words of files in the hard drive and

create one index files that contains all details about the files in the disk. The system

just refers to this index files when processing the searching process for a fast and

effective results. From the studies and analysis that has been done during the

development of this system, there have a benchmark criterion for desktop search

tools that can be use as a reference and also a lot of indexer that can be used to index

the files. Only the best indexer was be taken to integrate with this system. This

system still can be improved with the support, effort and deep knowledge about

desktop searchtools and technical skills.

ACKNOWLEDGEMENT

For the mutual understanding, motivation and co-operative actionthe author

would like to thank to supervisor Mr Justin Dinesh Devaraj and co-supervisor, Mr

Lo Hai Hiung who were always encourage and guide the author as their student in

completing this project. In addition, the author would like to acknowledge to the

Final Year Project Board that was accepting this project in the early stage of the

proposal of this project and also to Mr Albert that is an external examiner that has

evaluating and gavegoodcomments during finalpresentation.

The author would wish to thank to UTP IT lecturers that were evaluate and

give a support with the good comments from the presentation. The wisdom that has

been bestowed will never be forgotten. Besides, thanks to Mr Rasky, FYP lab

technician who lend his hand in helping the testing process of the Linux operating

system on the FYP lab during the project development. Also a special thanks to

Mohd Hakim for their guide and support of JavaScript coding, Ahmad Fikri for his

logical understanding help, Wan Anas for his comment about usability and as a

tester for this system, Firdaus Tanfor the support of interface.

Last but not least, a million thanks to the MIMOS Open Source Software

staffs that give a support and Idea for this project and also for introducing me to the

bestever operating system, Linux. Besides, thanks to FYP GIS group student andall

colleagues that support and give the author a spirit to finish this Desktop Search

Engine for Linux.

u

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND STUDY

The capacityofour PC hard drives has increasedtremendously over the past

decade, and so has the number of files we usually store in our personal computer. It

is no wonder that sometimes we cannot find a document any more; even when we

know we saved it somewhere. Ironically, in quite a few ofthese cases nowadays, the

document we are looking for can be found fester on the World Wide Web search

than our personal computer.

Would not it be great if a computer could search all files that you want faster

and accurate without knowing the file names? If, for instance, it would anticipate

what files you need, search for it, and then automatically deliver the right files that

contain the relevant information. You'd never have to guess the right keywords of

filename or open every folder in the drive and open it one by one using a try and

error methodjust to find a required file. That will waste your time for just doing the

search method manually.

Desktop Search Engine for Linux is a desktop search tool that can search text

format files in the hard drive of personal computer. This system is an integrated

systemof Namazu Desktop Searchtool with the web-base interface. This systemis

an improvement of Namazu Desktop Search tools. The description of integration

will be discussed in methodology part of this report.

1.2 PROBLEM STATEMENT

1.2.1 Problem Identification

As the increase ofhard drive size, there will be more difficult to find the files

if we do not know the location of files and the actual name ofthat files. We can just

enter the name of file format such as .doc, .sxw, etc in the search tools that provide

by the current operating system but the problem now there were so many file that

have the same format. Another alternative is by open one by one folder in the drives

to find the required files. That approach is not effective and efficient and will waste

time. Below are other problems that related to the searching files in the hard drive

that usually occurs to the users:

1.2.1.1 Difficult to find specific files in the hard drive

People are willing to find a file faster and accurately. If the users must

waiting for the system a few minutes to completely search a required file, it will

waste the time especially whenthey are in urgent. The old systemmust explore one

by one folder in the hard drive to find a required file. The big problems occurred

when the users have a large size of hard drives and contain many partitions and

folders inside.

1.2.1.2 Difficult to recall the name of files saved in the hard drive

There are worst thing if we do not remember the name of a file especially

when in the urgent time and it's an important file. This is always happen to the users

that have a short-term memory.

1.2.1.3 Misplaced files in the hard drive

Users will loss the location of files if other person was change the location

(cut and paste files to other partition or folder) of a certain file or they cannot

remember the location of files when some changes has been done by them. That case

makes users difficult to recall or find back the file they want.

1.3 SIGNIFICANT OF THE PROJECT

Desktop Search Engine for Linux hopefully can ease users to find the

required fileby just key in the relatedkeywords in provided textbox on the interface

of the system. So, users no longer need to search files manually using operating

system search files that required users to wait for a few minutes to see the results.

The results that displayed by the operating system search tools are in the form of

locations and it is difficult for users to find the files by just giving the address of

files.

Besides, users also can find the files although they cannot remember the

name ofthe files. That means, although users save the files using any file name (but

in the text file formats) and forgets about the name of files they saved, they still can

trace that files as long they remember the content of the files. In this world, users

will know although one word in the files that they want to search so to search the

files that just require strings/words that contain in the files is not possible.

Desktop Search Engine for Linux also displays all possible files and words

that have been filling as a result to the files searched. This system will display all

possible files that contain the files that have the required words/strings. Besides

display the possible files name, this system also display a short phrase of file content

on the screen to make sure users can identify the required files easily.

1.4 OBJECTIVE

1.4.1 Objectives of the project

i. To develop a desktop search engine forLinux user to find any textformat

files in personal computer, no matter what type of text files format and

information they stored,

ii. To integrate Namazu with web-based environment to ease the users to

use the systems,

iii. To compare the performance of desktop search tools in searching files

using different tools ofdesktop search.

1.5 SCOPE OF STUDY

1.5.1 Personal computer hard drive

Desktop SearchEngine for Linuxdeveloped just for searching files within a

personal computer hard drive. It can search all files in the hard drive faster and

efficient. Desktop Search Engine for Linux will create an index (play as a database)

ofall files in the hard drive and the querying and matching process will refer to the

data contains in that index. This system cannot search the others files via network or

outside the personal computer hard drive.

1.5.2 Linux (Debian platform) Operating System

Linux is an operating system that is growing in popularity. More and more

businesses are recognizing the possibilities absolutecustomization can provide. The

open source code gives Linux an edge that just can't be obtained from a corporate

proprietary program. Indeed, Linux has an edge over anything else on the market

simply because these corporations are trying to please everyone all the time which

just can't be done. The open source code in Linux that can be change to anything

desired is something that closedsource code can never have. DesktopSearchEngine

for Linux developed underLinuxDebianplatformenvironment. This systemcannot

operate in other than this operatingsystemplatform.

1.5.3 Search for text format files

Desktop Search Engine for Linux is a desktop search engine that can just

searchany text format files in the hard drive. It is just limit to the searchprocessof

text files that mean not search other that text files format. Below is the text files

format that can search by this system:

OpenOffice fm~
0 .sxw

o .sxi

o etc

Microsoft Words files

o .doc

o .ppt
o .xls

o etc

.html

.shtml

.htm

.CSS

.sql

.odg

.diz

.zip

.pdf

.java
js
.mf

.php

.txt

CHAPTER 2

LITERATURE REVIEW

2.1 DESKTOP SEARCH ENGINE

Nowadays desktop search engine become more popular in the search engine

industry. Many big IT or Web organization are running into producing the best

desktop search engine such as Google with Google Desktop Search, Yahoo! with

Yahoo! Desktop Search, MSN with MSN Toolbar Suite and so on. Desktop search

engine is an applicationused to find data in a user's local system. In order to provide

quick access to files that contain certain text no matter the format, desktop search

programs index the content on the hard disk. All desktop search programs provide a

search for Microsoft Office files such as Word, Excel, PowerPoint and Outlook.

Some programs support non-Microsoft formats as well as locally stored Web pages.

The recent arrival of desktop search applications, which index all data on a

personal computer, promises to increase search efficiency on the desktop [1]. The

index method can search the required files faster when the system does not have to

search folder by folder in the hard drive. Desktop search features built into current

operating systems, e-mail programs, and other applications have far fewer

capabilities than Web search engines. They generally offer only simple keyword

searched of a set of files, usually of a single file type [2]. On the Web, search

engines can exploit information organized into a common HTML format with

standardized ways of identifying various document elements. The engines can use

this information, along with links to other documents, to make statistical guesses

that increase the likelihood ofreturning relevant results.

In the current approach to Knowledge Management and enterprise search,

capturing the structured data inanenterprise or government agency is a complicated

and difficult task since information resides in a variety of formats, systems, and

locations [6]. That mean, it requires anefficient and powerful search tool to solve all

this matters. Incorporates semantics is a approaches use by Beagle Desktop Search

where it uses explicit information, such as file size, creator, last modification date,

metadata embedded into specific files[ll]. This approach can be use as an advance

for the metadata search in a system The systems that provide an advance features

can have a good demand for enterprise usage.

The success of search and retrieval applications deployed in enterprises can

be limited by their ability to process unstructured business documents that represent

as much as 80% of an enterprise's information [8], In an effort to help understand

the differences between the latest desktop search tools on the market, the UW E-

Business Consortium recently conducted a benchmark study of 12 popular desktop

search tools. The benchmark criteria that were used for the evaluation included

usability, versatility, accuracy, efficiency, security, andenterprise readiness [4].

A new generation of desktop search tools is emerging that allows users to

quickly find relevant documents in computers across the enterprise the same way

search engines help locate information on the internet. Companies expect that this

technology will boost employee productivity and creativity and allow them to

compete successfiilly in today's knowledge-driven economy [6]. In an effort to help

understand the differences between the latest desktop search tools on the internet,

the UW E-Business Consortium was conducting a benchmark study of 12 popular

desktop search tools. The benchmark criteria that were used for the evaluation

included usability, versatility, efficiency, security, and enterprise readiness.

Table 1 shows the benchmark criteria that was perform by UW E-Business

Consortium [4] for desktop search tools:

Table 1: Benchmark Criteria for Desktop Search Tools

Usability

Good desktop search tools must be

easyto use, have a lowerlearning

curve, haveprofessional aesthetics,

and require fewer stepsto reach

desired output.

Accuracy

"Can you find what you are looking

for?" This criterion addresses

accuracy of searchresults as well as

other factors that help users find the

desired information.

Security

Security and privacy are big

concerns, especially in an enterprise

environment. This criterion considers

how well vendors have incorporates

security mechanisms.

Versatility

Versatility describes howwideand

deep thetoolallows you to search.

This includes factors such as

supported document types, we/e-mail

integration, and multi-language

support.

Efficiency

This criterion assesses the tool's

technically efficiency including

memory usage, indexing time or

indexed file sizes. The best tool

should not jeopardized overall PC

performance.

Enterprise Readiness

While most tools are designed for the

consumer/home PC environment,

some are ready to be used in an

enterprise. This criterion may be

especially helpful for IT managers.

Each criterion wasquantified and wasgiven a rating, ranging from 1 (worst)

to 5 (best). The rating is based on sub criteria, which align with the main criterion's

10

objective. The Desktop Search Engine for Linux that have been developed used this

benchmark criterion asa guideline to make sure this system still intheright track.

2.2 SEARCH ENGINE (Namazu INDEXER)

Desktop search tool required an index to make sure the system can search

require file faster and accurate. Indexer is an important component to generate an

index. Namazu indexer is a full-text search engine indexer intended for easy use. For

searching a great amount ofdocument quickly, Namazu makes an index in advance.

The concept of index isjust similar to anindex of book [13]. The language that used

by this software is Perl and C. This indexer only can index local files that are not

including files in the networks.

This software has been chosen because this it is easy to use and support

Debian GNU/Linux, suit with an operating that beenused that is Ubuntu 5.10. The

reason of using a freeware indexer rather than develop the new indexer was about

the time consuming and limited expertise to develop the own indexer. Namazu

indexer is a free software that is distributed via internet and users can redistribute or

modify it under the termof the GNU General Public License a as published by the

Free Software Foundation.

Namazu is being developed by Namazu Project. Filters enable Namazu to

index various formats of files. Mail/News filter works with no additives, some other

type requires third partie's filter executable although thecalling capabilities included

in Namazu package.

2.3 INFORMATION RETRIEVAL

Information retrieval (IR) is the art and science of searching for information

in documents, searching for documents themselves, searching for metadata which

describe documents, or searching within databases, whether relational stand-alone

databases or hypertext networked databases suchas the Internet or intranets, for text,

sound, images or data. There is a common confusion, however, between data

retrieval, document retrieval, information retrieval, and text retrieval, and each of

11

these have their own bodies of literature, theory, praxis and technologies [16].

Automated information retrieval (IR) systems were originally used to manage

information explosion in scientific literature in the last few decades. Many

universities and public libraries use IR systems to provide access to books, journals,

and other documents. IR systems are often related to object and query. Queries are

formal statements of information needs that are put to an IR system by the user. An

object is an entity which keeps or stores information ina database. User queries are

matched to documents stored in a database. A document is, therefore, a data object.

Oftenthe documents themselves are not kept or storeddirectly in the IR system, but

are instead represented in the system by document surrogates.

Methods to support dynamically changing text collections can be divided

into two categories: Support for document insertions and support for document

deletions. Techniques to support document insertions into an existing index have

been studied by many researchers over the last decade. Most of them follow the

same basic scheme. They maintain both an on*disk and an in-memory index.

Postings for new documents are accumulated in main memory until it is exhausted,

and then the data in memory are somehow combined with the on-disk index.

Tomasic et al. present an in-place update scheme for inverted files, based on a

distinction between short lists and long lists. They also discuss how different

allocation strategies for the long lists affect index maintenance and query processing

performance. Lester et al. give an evaluation of three different methods to combine

the in-memory information with the on-disk data. Kabra et al. present a hybrid

IR/DB system with delayed update operations through in-memory buffers. All of

these solutions have in common that the entire on-disk index has to be read (or

written) every time main memory is exhausted, which causes performance problems

for large collections. We show how the number of disk operations can be

significantly reduced, at rninimal cost for query performance.

In contrast to the case of document insertions, a thorough evaluation of

techniques for documentdeletions is not available. Chiuehand Huang present a lazy

invalidation approach that keeps an in-memory list of all deleted documents and

performs a post-processing step for every query, taking the contents of that list into

account. The approach to document deletions presented in this paper is similar to

theirs, but more general, and is not done as a post-processing step, but integrated

into the actual query processing.

12

None of this related work provides a general discussion of how different

index maintenance strategies affect query processing performance and how this

implies opportunities for indexing versus query processing performance trade-offs.

The Wumpus Search System [12]

Wumpus is similar to other file system search engines, such as Google

Desktop Search2, Apple Spotlight3, or Beagle4. Unlike most desktop search

systems (except Spotlight), it is a true multi-user search system; only a single index

is used for all files in the file system, and security restrictions are applied at query

time in order to guarantee that the query results are consistent with all file

permissions.

File system search is different from the traditional information retrieval task.

The search engine not only has to deal with a large heterogeneous document

collection, but a file system is also a truly dynamic environment: files are constantly

created, modified, and deleted. The expected number of index update operations is

much greater thanthe number of queries to beprocessed. Using Wumpus, one of the

authors counted more than 4,000 index update operations (document insertions and

deletions) on his laptop computerduring a typical work day.

Furthermore, when an e-mail arrives, or a new file is created, the user

expects the search system to reflect this change immediately. Delays greater than a

few seconds are not acceptable. This, together with the great number of update

operations that have to be performed, suggest that indexing performance plays a

much greater role than query processing performance in this particular domain.

Wumpus supports fast instantaneous updates (i.e., changes to the file system are

reflectedby the search systemwithin fractions ofa second).

In addition to being a dynamic environment, file system search is a multi

user application. In order to avoid wasting disk space due to indexing the same file

many times, a single index has to be used for all users in the system. Specialcare has

then to be taken so as to guarantee file system security.

13

2.4 LINUX

Nowadays, the usage of Linux as an operating system is tremendously

increased with the support from government and from awareness ofpublics. Linux is

a computer operating system and its kernel. It is one ofthe most prominent examples

of free software and of open-source development; unlike proprietary operating

systems such as Windows, all of its underlying source code is available to the public

for anyone to freely use, modify, improve and redistribute [15]. The freedom of use,

modify and redistribute the source of system make many people interested in joining

the Linux and open-source community.

14

CHAPTER 3

METHODOLOGY

3.1 PROJECT FRAMEWORK

Indexer

(Namazu)

Crawls files and

extracts information

Stores file

"information

Look in

index

Get list of

matches

Send search

query

Seach

Engine
(JavaScript) Return formatted

results Search Result

Display
(HTML)

Figure 1: Project Framework

Figure 1 show, the system use an indexer to create an index files; their

location on a hard drive's hierarchical tree file structure; file names, types, and

keywords. Once existing files are indexed, the indexer indexes new documents in

real time. The indexer also collects metadata, which let the engine access files more

intelligently hy providing additionalsearch parameters.

When a user fills out a search form and sends a query, the engine searches

the index, identifies the appropriate files, finds their locations on the drive, and

displaysthe results. During searches, the engine matchesqueries to indexed itemsto

find relevant files faster. The result will be display on the screen appropriately. The

15

users will give options whether to display the normal result or the result with the

descriptions.

First, users will choose the type of files they want to search whether it's a

documents files, images files, audio sound etc. The search form also provides the

textbox that required the user to fill in the keywords of the related files they want to

search. Users will give options whether to use a default search or an advance search

that will search in an advanced.

3.1.1 Data Flow Diagram (DFD)

User

query

I
Matching

-resuHs-

Index file -Matching que
-quel

keywords

Result files

Indexing -index-

Updated index- Storage files -*-

Figure 2: Data Flow Diagram

16

Search

Document

File address

3.1.2 Use Case Model

Desktop Search Engine

O

user

Storage files

Figure 3: Use Case Diagram

Description:

1. Indexing index the storage files into an index file.

2. Indexingupdatesthe updated files into an index file.

3. Index file store an index as a database ofkeywords.

4. User types required keywords to search in the system.

5. The keywords entered by users will be match with the keywords stored in the

index file.

6. The system will display the related files that contain the keyword entered by

user.

17

3.1.3 Flow of indexing the files (Namazu)

Event

Open Folders

Crawl Files

Extract Information

Store File

Information

Figure 4: Flow of process indexing the files

Figure 4 showsthe flow ofthe Indexer indexing the files. Firstly, an indexer

will open and enter a required folders or partitionand crawls files with the text type

of files. The indexer will open the folder until the last folder one by one and extract

the file information. File information will be store into an index files. The

information that crawls by an indexer is filename, author, location (URI), date,

words inside files, and date of modification and so on.

18

3.1.4 Flow of searching the files using JavaScript

Get Search

Keywords

Search/Match with

Index

Index Files

Display Results

Figure 5: Flow of searching the files

Figure 5 shows a flow of searching the files. A search application that is a

Desktop Search Engine for Linux will require a user to fill the required query that

consist of related word(s) that contain in the required files. After users key in the

word(s), the search engine will get the word(s) and search and match It with the

words in the index files. After finish the process of matching keywords, the system

will display the results that are related files that consist ofkeywords that have been

filled by the user.

19

3.2 INTEGRATION OF NAMAZU WITH THE WEB-BASED

INTERFACE

Namazu is an indexer that provides indexand searching the relatedfiles. It is

an internal process that makes users difficult to interact with the system. A

convenience and user friendly interface can ease the users to interact with the

system. Namazu is not a user friendly application that makes a normal user quite

difficult to use. Namazu is working in the terminal/console that requires users to

type the command to run the searching process. The normal users that do not know

about the command cannot use this system. The command that use require user to

know the location of index file and also another options that related with the

command.

Users are well known and easy with the web base platform because this

platformis most femiliar platform with to users. From the above problem, developer

was taking an initiative to develop a system that can ease the users to use the system.

Desktop Search Engine for Linux is an integration web-based system of Namazu

and its interface was developed using a web-based platform by using HTML and

Javascript. Below is the reason why this system using this platform as an interface:

- easy to develop and maintain the interface

- can create an attractive and nice-looking appearance

- user are more femiliar with the web base environment

The system consists of a text box for the users to fill the words/strings ofthe

files or the related files that they want to search. Then the button is a submit button

that will execute the process of searching the data. So, users no longer need to

remember or type a complex command in the terminal to search for a file.

20

3.3 PROGRAMMING LANGUAGES

3.3.1 C programming language

o C language is a popular language preferred by professional

programmers. Because of its powerful and flexible language, this

language has been use by Namazu developer to develop the indexer

for Namazu [13].

o This languageactually will be a languagethat will operate the system

such as to index the words into the index files, to query the index and

soon.

o This language will operate with HTML language that is it will

provide an output source and then the system will use HTML

language to display the results.

3.3.2 HTML

o This system is a web base systemthat shows the results in a web base

appearance. This system will also include a lot of HTML code as a

code for interface ofthe system.

o This language is chosen because it is an easy learning language and

no need to learn another new language that required a lot of time to

master.

3.3.3 JavaScript

o JavaScript code has been used to support the system in handling an

advance search features for this system.

o This code has been writing on the advance search files that connected

with the main or search files for the searching input.

21

3.3.4 Perl

o Perl programming language hasbeen used asbythenamazu indexer

installer to install the indexer in the system

3.4 DEVELOPMENT TOOLS

3.4.1 Anjuta (IDE)

Anjuta is a versatile Integrated Development Environment (IDE) for C

and C++. It has been written for GTK+/GNOME, and features a number of

advanced programming fecilities. It is a graphical interface to the collection of

command lineprogramming tools available for Linux and UNIX systems. These

are usually run via a text console, and canbe unfriendly to use.

Anjuta is an effort to marry the flexibility and power of command line

tools with the ease-of-use of the GNOME graphical user interface. It has been

made as user-friendly as possible.

3.4.1.1 Starting Anjuta:

To start Anjuta, open the GNOME Main Menu. Anjuta is found on the

Development submenu. In RedHat 8.0 or later anjuta can be found in Extra

submenu and then Programming submenu. The manual for starting and use

Anjuta is attached in the appendices part (Refer to Appendix 2).

Click on the Anjuta icon to start. The IDE (Integrated Development

Environment) will open. Alternatively, anjuta can be started from a terminal by

issuing the command anjuta. Ifanjuta is started for the first time, it will address

the users with a welcome message.

22

3.4.2 VIM Editor

VIM Editor is stand for Vi IMproved, is an open-source,

multiplatform text editor extended from vi. This editor is helpful in editing

program source code. This editor isused to support anAnjuta IDE during the

development phase ofthis project.

3.5 OTHER TOOLS

3.5.1 Hardware:

Personal Computer
- Processor: Pentium M 1.4

- RAM: 640 Mhz

- Hard drive: 40Gb

3.5.2 Operating system:

- LinuxUbuntu 5.10 (or others DebianplatformLinux distro)

3.5.3 Softwares:

- NAMAZU(Freeware) as an indexer

3.5.4 Programming tools

- VI Editor

- CGI Application
- Anjuta IDE
- etc

23

CHAPTER 4

RESULTS AND DISCUSSION

4.1 RESULTS

j j

Desktop Search Engine for Linux
Search!

; i

Figure 6: Front page of the system

Figure 6 is a screen shot front page ofthe Desktop SearchEngine for Linux.

This page consists of text box, search button, and also advanced search button. Text

is a space that is provided to users to fill the keywords forbox I ________

searching the files. Search button

action. Advance search button

Searchl is a button for system to process the

is a link to an advance search page

that can ease the users to search for an advance in this system.

4.1.1 Simple Search Query

Figure 7: Simple Search^Query

24

Figure 7 shows a screen shot for a simple search query that entered by the

users with the keyword "knowledge". This system will match the keyword entered

by users with the index files and display the result in the result page (Figure 8). If

users enter two or more keywords in the text box, then system will search all

keywords match in the index files. That mean, all result files displayed contain any

keywords that has been entered in that files.

Desktop Search Engine for Linux
liSowiaSai ~ " Saarchi j advance search

Display: |"'0"zi Sort: payscore

Results:

References: [knowledge: 120]

Total 120 documents matching your query.

l.url.txt (score: 22)
Author: unknown
Date: Wed, 25May2005 19:10:33 +0730
-- Regards, THIRUMAL KANDASAMY Researcher, OpenSourceR&D LabPervasive Computing, MIMOS BERHAD Tel:
603-89965000 ext:6332 Fax : 603-86579477 Web : http:/Mvw/.asiaosc.org rittp://community.aslaosc,o
/home/mryuka/proflle/ropaljan05/url.txt (45,941 bytes)

2. content, sxw (score: 13)
Author: /man
Date: Mon, 11 Jul 2005 09:05:09 +0730
INTRODUCTION 1.1) BRIEF DESCRIPTION OF MIMOS BHD. MIMOS BHD Is a research and development organization and
Is a government owned under Ministry of ScienceTechnology and Innovation(MOST!). MIMOS co
/home/mrvuka/profile/lnternshlp/lntan/cantent.sxw(240,747 bytes)

-• -• i„-,T- --•— --•= "-J—nn.^r ' " n„p-*-i.-ng_.__r. -AT I nil I- nin enit I nil,C. „k^-..C-~.._...

Figure 8: Results page

Figure 8 shows a results page that display results of searching processed.

Fromthis page we can see that usersare displayed with the keyword that they filled,

total documents that match with the query, and also the files name and its details

such as:

i. Filename

ii. Author

iii. Date and last update time

iv. Short description or content of file

v. URI of file

vi. Size of file

25

4.1.2 Advanced Search Features

Figure 9: Advanced Search Page Link

Desktop Search Engine for Linux hasadvance search functions that willease

andhelpusers to search inadvance files that theywant to search. Below (Figure 10)

is the screenshot ofadvance search page for Desktop SearchEngine for Linux. The

system will display an advance search page when theuser clicks the link to thepage.

Link to advance search page are provided besides the text box search as shown as

Figure 9 (red oval).

Search) Reset

With all the words

The exact phrase

None of these wor ds

Keyword:

prefix matching
inside matching

eg. format*
eg,*format*

sufflc matching ?*" eg.*format

Search! j Reset

Search! Reset

Regular Expressions

eg, /program|blem)s?/

Grouping

en- (l'"trK or FrgpRSD 1 and Netsranpi not Windows

Figure 10: Advanced Search Page

26

Figure 10shows a screenshot of an advance search page thatwill help users

to search in advance the required file they want to search. These advance searches

features provide three criteria of advance searching that are:

L Normal search that consist of:

a. searching with all words

b. the exact phrase oftext

c. the exclude function

ii. Substring matching that consist of:

a. prefix matching

b. inside matching

c. suffix matching

iii. Complexsearchingthat consist of:

a. regular expression

b. grouping capabilities

4.1.2.1 Search with all the words

Search1 Reset

With all the words

The exact phrase

r^ihr,im,^|

None of these words

Figure 11: Search with ail the words

The system will search keyword(s) that enter by user in this text

box and display the result in the result page. For example if user

enter keyword "razif mimos" then the system will search all files

that contain this "razif mimos" keyword in the hard drive. Figure

11 shows user entered "razifmimos" in the with all the words text

box. If users entered three keywords in the text box, (eg.

knowledge acquisition performance) then the system will search

all files that contain these keywords in the hard drive.

27

Desktop Search Engine for Linux
„____ _ - Search| , ac|vance search

Display: piT"j»j Sort: [by score"

Results:

References; [razif: 50 J t mimos: 56 J

Total 47 documents matcrrino your query.

1-1as„zip (score: 425)
Author: unknown
Date: Frl, 15Jul 2005 09:55:14 +0730
lust.phptestl.php tnap.html maln.htm addressbackup.sxw funcphp ht.phptest.lTtml ht.htmf rss.html try.php
lfnktodatabase.phppage-htmltest3.php mainpage.php test.htmt Llst2004cd.sxc mainLhtm tes
/home/mryuka/profile/mimos/tesl.zip (63,885 bytes)

2. content.sxw (score: 205)
Author: Inrsn
Date: Man, 11 Jul2005 09:05:09 +0730
INTRODUCTION 1.1) BRIEFDESCRlFTtON OF MIMOS BHD. MIMOS BHD Is a research and development organization
and Isa government owned under Ministry of ScienceTechnology and Innovation(MOST!), MIMOS co
/home/mryLilo/proflle/lntemsrilp/intan/cDntent.sxw (240,747 bytes)

3. Internship @> Mimos Open Source (score: 204)

Figure 12: Result ofwith all the words

Figure 12 shows a screen shot that display the result ofkeywords

that was entered to search the file that contains words razif and

mimos. There are 47 files (documents) that match with the query

or match with these two words.

4.1.2.2 Search the exact phrase

Search1 Reset

With all the words

The exact phrase _ i_
d i riTi'i i"*_ilj

None of these wards

Figure 13: Search the exact phrase

This system also can ease the users to search file that contains an

exact phrase in hard drive. Figure 13 shows the screen shot ofthe

interface that can process this function. Users just fill in the exact

phrase of words they want into the text box and then the system

will match that exact phrase with the index file and displayall file

that contains that phrase as a results. For example, the users enter

28

liahmad razif then system will search the files that contain this

phrase fromindexfiles and display the result on the result page.

Desktop Search Engine for Linux
jjahmadrarfj ~~""~ Searchl jadvance search

Display: jtb -j Sort: fby score

Results:

References: ([ahmad: 51] [razir: 50]:: 44 }

Total 44 documents matching your query.

1, teat, zip (score: 47)
Author: unknown
Date: Fri, 15Jul 2005 09:55:14 +0730
Just-php testl.php map.html maln.htm addressbackup.sxw funcphp ht.php test.html ht.html rss.html try.php
Bnktodatabase.php pege.html test3.php mahpage.php test.html Llst2004cd.sxc mafal.htm tes
;hQme/mrvukg/profil£/mimQs/test.zip (63,865 bytes)

2. -ollectionweeklvrefl-cti-n,sxw (score: 36)
Author: unknown
Date: Thu, 02Jun 2005 08:52:57+0730
* Weekly Reflection * Date: 10/12/2004 Week: 1 Project: AsiaOSC _ *Task Completed* _1. Completedall 4 modules
provided from viAvwlnuxsurvfwal.com website. 2. Read andmake some exercises from Fhe
/home/mrvuka/prQflleM'eeklv report/collectlonweeklyreflectlqn.SKw (11,312 bytes)

Figure 14: Result of exact phrase search

Figure 14 show a result of exact phrase search that entered hy

user with keywords "ahmad razif. The system enclosed the

words with a curly bracket "{ahmad razif} " to search this type of

matching. Users are not required to enter this curly bracket to

perform this kind of search. They just enter the require words in

the exact phrase text box provided.

3. WEEKLY REPORT (score; 30)
Author unknown _____
Date: Tue, 12Jul 20054gft/;4V +i
WEEKLY REPORT NAMEAHMAD RAZIFBJI* MUSA <§> MAHMUD (3886) WEEK NO 23 DATE FROM TO BRIEF DESCRIPTION
OF DAILY ACTIVITIES 9tTr«a3'HiMaf-OC-Configure the apache Install Fedora Core3 Into as a main O
/home/mrvuka/profileAveeklvreDor-wgek23.sxw (10,521 bytes)

4. verify, axw (score: 24)
Author: unknown
Date: Tue, 26Jul 2005 08:14:18 +0730
VERIFICATION STATEMENT Ihereby verify thatthis report was writtei£by Ahmad Razif bj)Mitsa (_• Mahmud and all
Informationregarding this company and the projects Invoh/ed are no!
/home/fnrvuka/orofl[e/flnal%2QreportA/erlfv.sxw (5,829 bytes)

5. WEEKLY REPORT (score: 24)
Author: unknown
Date: Tue, 12 Jul 2005 17:21:16 +0730
WEEKLY REPORT NAME AHMAD RA21F BIN MUSA @ MAHMUD(3B86) WEB< NO 29 DATE FROM TO BRIEF DESCRIPTION
OF DAILY ACTIVITIES 20 th - 24 th June 2005 Attended KICT4D Conference for Plenary Session Attended K
/home/tnryuka/profIle/weeklyrep or_week29. s xw (10,461 bytes)

Figure 15: Result with the bold words

29

4.1.2.3 None of these words

If users have an unwanted word that they do not want to include

in searching the file, then this function is the correct function to

do so. This function is working if both of all words function and

exact phrase function are filled with the keywords or either all

words function or exact phrase function are filled in with the

keyword. For example if user enters the keyword in none ofthese

wordsfunction text box, then the systemwill unable its function.

4.1.2.4 All words and exact phrase search

Search! Reset

With all the words

The exact phrase

m Ti _••:.

•s.l ivrid razif

None of these words

Figure 16: Search all words and exact phrase

Figure 16 shows a screenshot of searching with all words and the

exact phrase. Users can use this combination of searching when

they want to search a usual words and a word that in exact phrase.

For example as show in the Figure 16, user filled all words with

mimos and ahmad razif as an exact keyword that want to search.

This system will match string mimos and a phrase ahmad razif

with the index in the index file and display the result on the result

page.

30

Desktop Search Engine for Linux
[mimos andliiimad'n-ii} ' ~~ Searchi [advance search

Display;[io 3 Sort! [by store »|

Results:

References; [mimos: 58]{[ahmad: 51] [razif: 50 1;: 44 }

Total 42 document- matching your query-

1. test, zip (Score: 437)
Author: unknown
Date: Frl, 15Jul 2005 09:55:14 +0730
Just.php testLphp map.html main.htm dddressbac(<iip.sxw funcphp ht.pliptest.htmlht.html rss.htmltry.php
llnktodatabase.php page.html test3.php malnpage.php test.html Llst2Q04cd.sxc malnl.htm tes
;home/mrvuka/proflle;mimos/test.zlp (63,885 bytes)

2. WEEKLY REPORT (score: 63)
Author: unknown
Date: Tue, 12Jul 2005 17:20:59 +0730
WEEKLY REPORT NAME AHMAD RAZIF BINMUSA @ MAMMUD (3886) WEEK NO 32 DATE FROM TO BRIEF DESCRIPTION
OF DAILY ACTIVITIES 12 nd -15 th July2005 Preparing Final Report Preparing Documentation for the sy
/hQme/mryuka/proflleM'eeklv reoort/week32 .sxw (10,360 bytes)

Figure 17: Result of all words and exact phrase search

Figure 17 shows a result page of all words and exact phrase

search that has been done by users with the keywords mimos and

"ahmad razif. The systemwill make a query mimos and {ahmad

razif} as a queryto process. This querymeans to search all words

that have string mimos and phrase ahmad razif in the file.

4.1.2.4 Complex search (grouping)

Search1 j Reset

With all the words

The exact phrase

•:.?iV~l ph

f 1 \-r:-;.,-)'.['-

None of these words mil no \

Figure 18: All words, exact phrase and none of the word search

Users also can make a complex search using this advance search

function. User can combine these three functions to search a file.

For example, users want to search file that contain words "saved"

and "php" with the exact phrase of"message confirming" and not

contain word "mimos". Then users just fill "saved php" in the all

words function text box, "message confirming" in exact phrase

function text box and "mimos" in the none of these word function

31

text box and then click the "Search !" button at above of the

function. Figure 18 show a screenshot of interface with the

content that filled by user to search files by using these three

features for an accurate searching.

j'OalaoM-nmytqmit*OpM0nioesWD-Wrttef-

File Edit View insert Format Table Tools Wlnoaw Help

E_-_=>Qi53|MiQaS •*[*! K e_jIB-__ *•* __G3-!^__^
®(S® |S;QBig(a]BH g__QIAriaT;HelvetJca.sans sent

nj^j:onnect(kcsliest, Sjaengme,Sw5a"udI:
SlOlfsg!_selecl_dh(Scb1-hase)or 6ei 'Unableto select—ifabase'!;

Squery - 'INSERT INTO contacts VALUES rJ.'Sfirsf.«ast,,,Spr_r_VS.lnabile,,lSfax'.,SemaHVSw©bV:
i_K*.quefV(Sq'_f¥);

__S*jkj_|);

TNs script stolidIto^bssmedas mjert^M thatilcanb being entered
local!/, itIstelngentered into thefonnand WeiedinvaiaUsi ntfcharettenpassedtolhePHP.

You coidslsoacti to this K^a mtswge corfiminj tiw^ta inpul TNi(ls basic PHP, Ihougj^mdyouarcbifdieadthe
do not k row hew to cb Ink

•tutorial ilyou

Outputling Data

Now yenhav*_1 leastonetscotd.ilnotmany more, to
Befofebsjnriit) ihouc^i yaust~uidbe famiHar nitn
the/ areusedtoithisway ofoulpuaing _!a.

|Tflilbe (antingto knuv twsyou canoutpul _s oala using PHP,
iinPHP(jouc*lindodaboWIhemin(l»lutoTiBlonFr»Wetoo|^

TiiaiinioaninBndy(Sunillne«lto_elsafJs§Oiquetyinii*i|>lfte(li);

SELECT' FROM contort:

This tsataslcHjSgj, command vrWch *(Ilell thescri^feselKtall lie records inthecertacts lable. Because thete mill beoulo_from this
commandItmustbeeiecdsd *ilhIhe tesullsbsiiKf assignedto e variable:

Figure 19: File searched by system

Figure 19 shows a file (OpenOffice.org) that contains words that

required by user from the query. This file has all words that was

entered by user that are saved, php and message confirming and

not contain mimos keyword. The words have been mark with a

red ovul on the above figure (Figure 19).

4.1.2.5 Prefix matching

Keyword: d-p*rt| Search! Reset

prefix mat

Inside mat

sufffc mat(

ching *• eg. format*
ching C eg.*format*
hing ^ eg.*format

Figure 20: Prefix matching search

32

This function is to find the files with the terms that begin with the

keyword that entered by user. Forexample if userwants to search

for file that contains word begin with "depart", then they just fill

in the keyword "depart" in the prefix matching text box and the

system will search all files contain words begin with "depart"

such as department, (ieparture etc. Figure 20 shows a screenshot

of a keyword filled by user to search a prefix matching that begin

with the word depart. User must click the prefix matching radio

button to search for prefix matching. Ifnot, the systemwill search

by default that is an inside matching.

Desktop Search Engine for Linux
bepari' " """" ' SearehiJ advance search

Display; fib "£\ Sort: [By score

Results:

References: [depart*: 53]

Total 53 documents matching your query.

1, finalreportlayout.sxw (score: 28)
Author: unknown
Data: Frl, 15 jut 2005 09:52:38 +0730
FINAL REPORT Host Company's Verification Statement Non-Confldentlality Statement Endorsement by the PTC
EXECUTIVE SUMMARY MIMOSprovide Internship program alms to provide working experience to studen
/home/'mrvuka/proflle/mlmos/finalreportlavoLit.sxw (1,543,407 bytes)

2. Detailed Report Week l.sxw (score: 14) j
Author: unknown i

Date: Sun 17Jul 200505:25:45 +0730
DETAILED REPORT Student Name _ SID : Mohd Farld Rofll{4661) Week No: 1 Objective Activities done this week are
meant to Introduce and familiarize self with the company and department's work environtn
/hcme/mrvuka/proflle/ropal ianQ5;Petalled Report Week l.sxw (14,022 bytes)

Figure 21: Result of prefix matching

Figure 21 shows a result of prefix matching that was entered by

user with the keyword depart. System will search all string that

begin with depart keywords in a hard drive. Figure 22 shows an

example of file that contain the keyword that begin with depart

keyword that is department.

33

>ilniiMpMI~raui"-penQ)llo-o(S'WriKf - • - -

File Edit Vie* Miami Forma TaWa Tpais Window Help

__ - e_ g __ [__| s a __ •»«. h
Nimbus Reman NoS L

<* • ^ __•*_> __4® 1 i

(SLDLD ©El__(l!aPl__ _3f_D
..6...;^.

MIMOS provide internship program aims to provide working experience 10 students in

their senior year at boih local and foreign universities. Ugiversiti TgfcjKJuK! PETRONAS also

provide H-month internship jyvjuggime to their student tt> •ippty what they leum und what is

being pi-jetiecd. Il enables Mdenls to ohuiin -hands-on' experience in u real-world environment,

tinder the guidance ofptxtking professional1;. The department thai has been rdmed fur thi*|

inlenisjiip ivas al (ISSII)pen SoLireeSnl'lwarer department. There- were a lot nl'iiew tilings tir.it

lias been Lara during die internship al this department especially by using I.INUX application.

This itepartinenl also provide ni5 [WertMingami challenging tusk/project to be done. There were 3

l-jik thill k» been given during the R-riimilhinternship ;il OSS. The pinjeets include Integration

,,1-l.iJHr r™Hvi U-n™.™w 1i' » •*i,in,.«t-h.n'!..:m-I«.Fi>iMB-: B.-vil.'' ih.-«v ii ..•..- :..~i

Figure 22: File contains with the prefix macthing keyword

4.1.2.6 Inside matching

Keyword: format Search! Reset

prefix mat

inside mat

suffic mate

ching '<'' eg. format*
ching ® eg.*format*
.hing *"J eg.*forrnat

Figure 23: Inside matching search

This function is to find the files that have terms which contains

with the keyword that entered by user. For example, if user wants

to search for file that have a word that contain "format" keyword,

then they just fill in the keyword format in the Inside matching

text box. The system will search all files that contains word that

contain a keyword "formaf such as information, transformation,

etc. Figure 23 shows a screenshot ofkeyword that has been filled

by user and clicked with inside matching radio button.

34

^Unw-Wnte-rn^ThM-attiore^ -'• - '*^_"#
E«B £<St View _o Bnokmart.3 locla jjetp Mostly Cloudy. 32»C H ' E3-C .j. 32'C _•'

Hle;to1i„n_niryuk_|̂ lle<ro(>aUanO_le_rfr^£0llw - 'Ts 3o |'f_L

DMiNIMAL ONS value (CFLAGS variable}, 836
DNO PASS value ICFLAGS variable}, 836
DNOMAIL (Gopher), 822
DNS (Domain Name System), 647, 678-679
document classes {LaTeX}, 357-358
documentation (Linux Documentation Project), 19
DocumentRoot variable (srm.conf), 639
documents (HTML), see home pages
dolt function, ST7X (Smalltalk), 562
doBar sign (*)

accessing shell variables, 265
Perl programming, 506
shell prompt, 111, 120

Domain Name System (DNS), 647, 678-679
domain names, setting for small utility, 712-7X3
DOMAIN variable (Gopher), 823
domains, NIS (Network UPggHqM Service), 747
domalntable fB*, 706-707
DOOM (game), 981
DOS

boot sector, 72
LILO boot process, 11
Linux interface with, 8

dot (.) command, 240, 263
double Hnk net class (C++), 497
double quotation marks {" "), shell programming, 267
down command (printers), 593
down time, troubleshooting SCSI devices, 643
downloading

files
BBSs (Bulletin Board Systems), 1029-1034
FTP (File Transfer Protocol), 1025-1027

Figure 24: Result file of Inside matching

Figure 24 shows a result page file that contains keywords of

inside matching ofthe keyword format. This file is a .html format

and contain the require keyword. This mean, system also can

search a file in the weh base files such as .html, ,htm etc.

4.1.2.7 Suffix matching

Keyword: format Search! Reset

prefix matching >' eg.format*
inside matching " eg.*format*
suffic matching **' eg. format

Figure 25: Suffix matching search

This function is to search files with terms that terminate with the

filled word. For example if user want to search files that contain

term "format" at the end of word, then they just enter keyword

"format" in the suffix matching text box. The system will search

all files that contain the keywords end with term "format" such as

reformat, etc.

35

Desktop Search Engine for Linux
RoSnS ~ ~~~ ~ ~ searchi ! advance search

Display; \io ?_\ Sort: [by score

Results:

References; ['format: 716]

Total 716 documents matching your query.

i. Maximum RPM (RPM):.ppendlx-d: EarthWeb Inc.- (score; 60)
Author unknown
Date: Mm, 21 Feb 2005 16:45:16 +0730
Available Tags for --queryformat Apendlx DD.l, Listof -queryformat Tags -> Previous | Table of Contents j NextPage
375 Page 376 The following tags are aH the ones defined at the time this book
/home/mrwka/pronie;ropaijanQ5/lgarninq%20linux%20-collectlan%2Qof%2Q12%20ebooks-/maximum%20rDm%20%2Brot
(17,793 bytes)

2. Maximum RPM(RPM1:Getting Information About Packages:EarthWeb Inc.- (score: 58]
Author; unknown
Date: Won, 21 Feb 2005 16:45:16 +0730
--> Previous[Table of Contents | NextPage69 5.2.2.11,1. Literal Text Anypart of a format string that Isnot associated
With tags or array Iterators will be treated as literaltext, Literal text
/homefrnryuka/proflle/ropal ian05/learnlnq%20llnux%20-collectlon%2Qof%2D12%20ebooks-/maxlmurn%20rpm%2Q%23rpf f
m Ann \~. *—-\

Figure 26: Result of Suffix matching

4.1.2.7 Regular expression

i,',fii''"iU.]i,Hn"!Jbl'riTii:.,; Search! Reset

Regular Expressions

eg. /pr_(gram|blem}s?/

Grouping

eg. (linux or FreeBSD) and Netscape not Windows

Figure 27: Regular expression searches

This function can search files for pattern matching. This function

required users to enter the word surrounded by backslashes /.../.

For example, if user want to search files that contain words

program or problem then they just enter a keyword

/pro(blem|gram)A The system will search all files that contain

keywords problem and program. Figure 27 shows a screenshot

with the string that has been filled by user.

36

FJle gall Vlwi go gpokmaflts Tools fclelp Mostly Ckmfly. 32°C --";, 23°C tf 32°C tx

S £?) ^J ,!_,-', ||_ (ilsi'.'/riDiiis'miyukariratlla'ropai janOB/mysql manual/maraiHl loq.hlrnl * Qj Go (|Gj,
""-'3.B.2 IheftawHoidlnq'tneWakimum ota Lertain ubtumn
• 3,6.3 Maximum of Column per GroUp
• 3.6.4 The flows Holding the Group-wise Maximum of a Certain Field
> 3.6,5 Using User Variables
• 3.6.6 Using Foreign Keys

• 3.6.7 Searching on Two Keys
• 3,6.8 Calculating Visits Per Day

» 3.6.9 Using mo incus-Mr

n 3.7 Queries from the Twin Prolect
• 3.7.1 And All Non-distributed Twins

• 3.7.2 Show a Table of Twin Pair Status

o 3.B Using MySqL with Apache
• ffUsing MySQL. ,BtPH8B5

q-4.1 Overview of MySQL Programs
o 4,2 Invoking MySQLPrograms
o 4,3 Specifying Program Options

• 4.3.1 Using Options on the Command Line
> 4,3.2 Using Option Files

• 4.3,3 Using Environment Variables to SpecifyOptions
• 4.3.4.Uslng Options to Set Program Variables

» 5 Database Administration
o 5.1 The MySQL Server and Server Startup Scripts

• 5.1,1 Overview of the Server-Side Scripts and Utilities
• 5.1.2 The •vsnid-mai! Extended MySQL Server
• 5.1.3 The resold safe Server Startup Script
• 5.1.4The lysaLsBrvarServer Startup Script
• 5.1.5 The resold mlti Program for Managing MultipleMySQL Servers

c 5.2 Configuring the MySQL Server
" 5.2.1 avsaidCommand-Line Options
> 5.2.2 The Server SQL Mode

- 5.2.3 Server System Variables

_J Find: I ©Find Mem SFind Previous i.")HtgHlfgfn Matchcase
| llle:wnQm»miyuka<prorlIe.fopal JanOSVmysql. manjal'irianuaMitmlWJsInQ MySQL. Programs

Figure 28: Result of Regular expression (Program)

Figure 28 shows a result page file that contain wordprogram that

is one of the result after system processing the query. Figure 29

shows the same result page file that contain wordproblem.

^t^8a-f_ter_„*M«r_aHnrv_*lon_i_t_ph^ - — - - -.-O^x
FJle Edit View So Bookmarks Tools Help MostlyCloudy. 32°C :;'; 23°C ^ 32°C ti

•^£t ^J c_,;i [1 lilejjVrtome/mryuka'prorU&'ropal JanOS'mysql manual/manuatjoc.himi * I^Qo {(gL
- a.y.^.dLnecKUpuons ror rehswchii 'I' ™" ™
• 5.7.2.4 Repair Options far reisanehk

• 5.7.2.5 Other Options for nyiaB_hli

• 5.7.2.6 n»isB»crik Memory Usage

• 5.7.2.7 Usiiia •visanchfc for Crash Recovery
• 5.7,2.8 HqwtpCheckHfisAH Tables for Errors
• 5.7,2.9 Howto Repair Tables
• 5.7.2.10 Table Optimization

> 5.7.3 Setting Up a Table Maintenance Schedule
• 5.7.4 Getting Information About a Table

o 5.8 MySQULocallzatipn andJnternatlQnalUsage
• S.B.I The Character Set Used for Data and Sorting

• 5.8.1,1 Using the German Character Set
" 5.8.2 Setting the Error Message Language
" 5.8.3 Adding a Mew Character Set

• 5,8.4 The Character Definition Arrays
" 5.8.5 String, Collating Support
* ^•.6.,Multj-Bvte Character Support
• &;.a,7lPffifs Witft Character Setg
• 5.8,8 MySQL Server Time Zone Support

o 5.9 The MySQL Log Files
• 5.9.1 The Error Log
• 5.9.2 The General Query Log
• 5.9.3 The Update Log
• 5.9.4 The Binary Loo

• 5.9.5 The Slaw Query Loo

• 5.9.6 Log File Maintenance
o 5.10 Running Multiple MySQL Servers on the Same Machine

• 5.10.1 Running MultipleServers on Windows
• 5.10.1,1 Starting MultipleWindows Servers at the Command line
• 5,10.1,2 Starting Multiple Windows Servers as Services

Q Find: [problemfj>Find Next QFindPrevious , iHighllfjtir Matchcase

Hle..<MlGmeJmryuka/[yolilB7ropai janOi'myBql manual/oianual.hlmlllProblemb win character sets

Figure 29: Result of Regular expression (Problem)

37

This advance features developed using JavaScript programming languages

that integrates in HTML web based page to easeusersuse the functions. This feature

was an advance of a Namazu features. Refer Appendix 2 for the user manual of this

system. Table 2 is a summaryofan advancesearch feature:

Function Description

With all the words search files that consist of all ofthe filled words

The exact phrase search files with the exact phrase ofthe filled words

None ofthe words search files with none ofthe word(s) filled

Substring Matching

Prefix matching
search files with the terms that begin with the filled word

Eg. format* = formation, formated

Inside Matching
search files with the terms that contain with the filled word

Eg. *format* - information, transformation

Suffix Matching

search files with the terms that terminate with the filled

word

Eg. *net - internet, bonnet

Complex Searching

Regular expression

Search files for pattern matching; the words must be

surrounded by slashes like /.../

Eg. /pro(gram|blem)s?/ = programs, problems

Grouping
Group queries by surrounding them by parentheses

Eg. (Linux or FreeBSD) and Netscape not Windows

Table 2: Summary of Advanced Search Features

38

4.1.3 Comparison of Usability between DSEforLinux, Ubuntu 5.10 search

tool, and Namazu(Terminal) search tool.

Usability testing has been done to get the friendliest tool between Desktop

Search Engine for Linux, Namazu Terminal and Ubuntu 5.10 tool. This testing has

been conducted by 20 testers that are normal users. All testers were provided with

the evaluation form that consist of 4 categories that need to fill that are ease ofuse,

learning curve, professional aesthetic and steps to reach desired results. These

categories are based on benchmark of usability criteria that was perform by UW E-

Business Consortium [4]. These four categories must be filled by testers as marks

for each tool and categories that are from 1 (poor) until 5 (best). Table 3 shows a

result ofevaluation usability testing for three search tools.

DSEforLinux

Ubuntu

5.10

Namazu

Ease of use 85 62 29

Learning curve 90 55 26.5

Professional aesthetic 80 75 23.5

Steps to reach desired

output
85 68 31

Total

Average

340 260 110

17 13 5.5

Table 3: Total mark of evaluation for usability testing

The mark for each category is a sum of 20 forms that collected from 20

testers that have been tested these 3 tools that are DSEforLinux, Ubuntu 5.10 and

Namazu (Terminal). Total value was divided by 20 as an average for the results.

These results are compared as a comparison ofusability mark for each tool.

39

4.2 DISCUSSIONS

20

15

I 10
_E

Comparison of Usability between DSEL, Ubuntu
5.10 and Namazu

DSEforLinux,

17

buntu 5.10, 13

Namazu, 5.5

Search Tools

Figure30: Comparison of Usability between DSEL, Ubuntu 5.10and Namazu

Figure 30 shows comparison of usability between DSELforLinux, Ubuntu

5.10 and Namazu (Terminal). This chart is based on result of Table 3. From this

chart we can see that usability mark for DSEforLinux is highest compared with

Ubuntu 5.10 and Namazu.

Usability is one of the characteristic that mustbeen focus when dealing with

various levels of users. Software developers must make sure they produce a user

friendly application that can ease users to deal or using that application. Good

desktop search tools must be easy to use, have a lower learning curve, have a

professional aesthetic, and require fewer steps to reach desired output [4].

40

Desktop Search Engine for Linux
Saarclil I advance search

Display: fWVj Sort; Tafi

Rasults:

References: [knovdedge; 120]

Total 120 documents matching your quary.

l.url.fact (score: 22)

Author unknown
One: W£d, 25 May200$ 1Q.-10.-39+0730
- Regards, THIRUMAL KArCASAMY Researcher, Open Source R&DLab Pervasive Computing, MIMOS BStHAD Tel:
603-69965000 ext:6332 Fan ; 603-66579477 Web : http://uvww.a_aosc.orghttp://comrminlty.asiaosc,a
/ho me/mrvuka/profile/ropa ij anO5/urI.ut (45,941 bytes)

2. content.sxw (score: 13)
Author: Aitan
D«e;Mcn UJul 2005 09:05:09+0730
INTRODUCTION 1.1) BRIEFDESCRIPTION OF MiMOSBHD. MIMOSBHD Is a research and development organization and
Is a government owned under Ministry of Science Technology and Innovation [MOST!). MIMOSco
/home/mrvuka/prafi le/lnfernshlp/intan/con tent. s xw (240,747 bytes)

-i_,n.i,^.-jn.nrr_ iwi wn .rtMT.ioiu.Ci

Figure 31: Screenshot of DSEL

i!j3#^te8#ouoa^8eare^hjr F«er

N Namecontains: I
<*

t_ook in folder: :profile

Select more options

Contains the text: razif

Available options: Name matches regular expression

Search results:

"O" x-

w» Remove

4> Add

B files found

Name Folder Size Type

|^D_c_mentation2.doc profile;mimos 2.6 MB Microsoft Word docume

[^weekl.doc profile/weekly ..report 44.0 KB Microsoft Word docume

btelp X Close RlEInd

Figure 32: Screen Shot of Ubuntu File Search Tool

41

, _ite Edit Iflew lerrmnal Tabs Help

Figure 33: Screen Shot of Namazu(Terminal)

Figure 31 is a screenshot of display page of Desktop Search Engine for

Linux. Figure 32 show a screenshot ofUbuntu File Search Tool that included in the

Ubuntu 5.10 distribution and Figure 33 is a screenshot of Namazu that run in

terminal. This three application test by users and comparison has been making to

measure the usability, accuracy, versatility andefficiency ofthe tools.

From this snapshot wecansee DSEforLinux has a simple and easy interface

that can be useeasily by anytype of users. DSEforLinux just require userto fill the

text box without need to choose another function before proceed with the Search

button. An advance function also simple compare to Namazu and Ubuntu 5.10 tool.

The application interface for Ubuntu 5.10 is more complex than DSEforLinux that

require user to understand many functions that provided there. Namazu (Terminal)

search tool are most complicated tool because users need to know the command that

must use to execute the system and also users need to know the location of index

files to make sure system can search the files.

Table 4 is a comparison table between DSEforLinux, Ubuntu 5.10 and

Namazu Terminal that has been evaluated based on the benchmark criteria from UW

E-Business Consortium, University of Wisconsin-Madison [4]. This table explains a

42

brief about the advantages and disadvantages of these tools, the features that had

from tools etc.

Desktop Search Tools Descriptions

DSEforLinux (Desktop
Search Engine for Linux)

- easy to use

- users easy to understand the functions

- results are easy to capture

- suitable for non expert or normal user

- users no need learn much to use this system

- just a few step required to execute the system

Ubuntu 5.10 File Search

Tool

- easy to use

- functions are difficult to understand

- not enough space for displaying result

- non expert or normaluser take time to learn

about the function

- user must take more steps to execute the system

Namazu(Terminal)

- difficult to use because require type many words

in terminal

- functions based on manual; users must

remember and know the function keywords

- not suitable for non expert or normal users

- no attractive interface that can affect users to

use this system

Table 4: Comparison of Usability between DSEforLinux, Ubuntu 5.10 and
Namazu(Terminal)

43

4.2.5 Combination flow of Index and Searching

Event

Open Folders

Crawls Files

Extract Information

Store File

Information
Index Fifes

Search Application

Get Search

Keywords

Search/Match with

Index

Display Results

Figure 34: Combination flow of Indexing and Searching files

Figure 34 isa combination flow between indexing and searching files. These

two important flows are combining at the index files. The relationship is by the

indexing process is producing and index files while the searching process is

processing the keywords entered by users by matching it with the data in the index

files. The last resort is displaying results process where users can see all files that

contain the words that have been filled. Users can select the related files they want

by clickingthe link to open or save the files.

44

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

Desktop Search becomes more popular for personal computer users

nowadays. Peoples are demand for the system with the high technology that can

provide accurateresults, and also faster searching to searchthe files. Desktop Search

Engine for Linuxcan helpusers that using Linuxoperating system(Debian based) to

search files in their hard disk faster and accurate.

On the first half ofthe project implementation, analysis has been made in the

sense to understand the process involved in developing this system. Analysis also

has been done about the best tools to use to develop this system. The freeware

indexer that is Namazu has been chosen as an indexer and a backbone for this

system

Onthe second half ofthe project implementation, the integration of interface

with an indexer has been done. Interface for displaying the results, front page of the

system, and also an advance search feature pagehave beendevelop to ease the users

using this system.

Desktop Search Engine for Linux can search text format file in the hard disk

of personal computer. The user just requires entering the related keyword in the

provided text box and then the system will process the transaction and the system

will display the results. This system also supported with an advance search features

that can help user to search files in more detail and accurate.

45

5.2 RECOMMENDATIONS

Desktop Search Engine for Linux is still in the development to fulfill the

requirement for benchmark criteria Consortium for desktop search tool that was

perform by UW E-Business. This system can be improve by adding a feature of

automatic index update that is a system always update the index files while the

personal computer running or after the user create or modify the new files in the

hard disk. This system also suggested by Mr Albert to add a help function to ease

the users to use the system.

This system also can be improve by adding a various file searches features

that is a features of searching another files such as mp3, pictures, video etc rather

than just a text format files. This added feature can upgrade this system to be a

multipurpose desktop search engine.

Besides, this system also can be improve by integrate this system with the

voice command search. This feature will enable a disable person to use this system.

Users also no longer need to type the keywords if this improvement is implemented

in this system.

46

REFERENCES

[I] Chirita A., Gavriloaie R., Ghita S., Nejdl W., Paiua R. (2004).

Activity Based Metadata for Semantic Desktop Search. Hanover,

Germany.

[2] Cole B. (2005). Industry Trends: Search Engines Tackle the Desktop.

www.inforrnatik.uni-trier.de

[3] Stellent (2005). Outside in Technology, A Stellent Product: Outside

In Unlocks Business Documents for Search and Retrieval Systems.

http://www.outsideinsdk.com

[4] Noda T., Helwig S. (2005). Best Practice Reports: Benchmark Study

of Desktop Search Tools. UW E-Business Consortium, University of

Wisconsin-Madison.

[5] Lopo E.d.C, Aitken P, Jones B.L (2000). SAMS Teach Yourself (C

for Linux Programming in 21 Days).

[6] Nenov D. (2005). XI Desktop Search Platform: User-Centric

Enterprise Retrieval and Action. XI Technologies, Inc.

[7] Clarke C.L.A, Buttcher S. (2005). A Security Model for Full-Text

File System Search in Multi-User Environment. School of Computer

Science, University of Waterloo, Canada.

[81 Stellent (2005). Outside in Technology, A Stellent Product: Outside

In Unlocks Business Documents for Search and Retrieval Systems.

http ://www.outsideinsdk.com

[9] Johnson M. (July 2005). Personal Tech: Turning the Concept of

Search on its Head, http://www.boston.com.

[10] Parker P. (July 2004). Clickz News: Blinkx Plans Ad Model for

Desktop/Web Search Tool, http://www.clickx.com/news

[II] Paiu R. (January 2005). L3S Research Center: Beagle Desktop

Search and Activity Based Metadata. Hanover, Germany.

47

[12] Buttcher S. and Clarke L.A.C. (2005) Indexing Time vs. Query Time

Tradeoffs in Dynamic Information Retrieval Systems, School of

Computer Science, University ofWaterloo, Waterloo, Ontario,

Canada,

[13] Tabayashi S. (2006, Jan 29) Namazu: AFull Text Search Engine.

Retrieved February 12,2006, fromhttp://www.namazu.org

[14] Search Tools Product Reports: Namazu Retrieved February 12, 2006,

fromhttp://www.searchtools.com/tools/namazu.html

[15] Advance Linux. Retrieved February 18,2006 from

http://www.linux.com/

[16] Information Retrieval. Retrieved May 17,2006 from

http://www.answers.com/topic/information-retrieval?method:=22

48

^PENDICES

49

APPENDIX 1

USER MANUAL

DESKTOP SEARCH ENGINE FOR LINUX

50

DESKTOP SEARCH ENGINE FOR LINUX USER MANUAL

Table of Contents

1. Introduction

1.1 About Desktop Search Engine for Linux 52
2. Getting Started

2.1 Server Requirement 53
2.2 Installing Namazu 53

2.2.1 Test before "make install" 53

2.2.2 Help Menu 54
2.2.3 Running mknmz 54
2.2.4 Customizing mknmz 56
2.2.5 Targets of index creation 59
2.2.6 Running namazu 59
2.2.7 Namazu components 59

2.3 mknmz command 60

2.3.1 mknmz's options 60
2.3.2 mknmzrc settings 62
2.3.3 Document filters 62

2.4 namazu command 67

2.4.1 namazu's options 67
2.4.2 namazurc settings 69
2.4.3 Default Index 69

2.4.4 Template files 69
Form settings 70

3. Using Desktop Search Engine for Linux
3.1 Advance Search 71

3.1.1 Search with all the words 72
3.1.2 All words and exact phrase search 74
3.1.3 Prefix matching 75
3.1.4 Inside matching 75
3.1.5 Suffix matching 76
3.1.6 Regular expression 76

51

1. Introduction

1.1 About Desktop Search Engine for Linux

Desktop Search Engine for Linux was developed from November 2005 until

Jun 2006 and now still in development. This system is based on requirement for

Universiti Teknologi PETRONAS Final Year Project that every student should do as

a requirement to finish their study in this institution.

During an internship for 8 month at Open Source R&D team, MIMOS

Berhad, the authorhad introduced with an open source environment. Everything that

done were in open source application such as Operating System that used at the

workplace are using Linux rather than Microsoft Windows, Apache Server that is

one of the best web server, etc. During an internship, the author aware about the

open source development in this country are still slow and the awareness about open

source and the advantages behind open source environment still blur to the people in

the world.

Aware about the advantages of open source and the advantages of using

Linux give author a spirit to do a systemthat can be use by Linux users. With the

growth of a desktop search tools technology and a lack of support for Linux

environment, that factors give the spirit to authorto develop this project. During the

planning stage, the author do a lot of studies about the tools that can be used to ease

me develop this system. Then, the author found an interesting application that canbe

use as a based for myproject. The author proposed this project to Final YearProject

Team about Desktop SearchEngine for Linux and they were accepted it.

The idea for this system was about to integrate a freeware Namazu desktop

search tool with the web-base environment. Namazu indexer was the main factor

that forces author to use this tool. Namazu indexer can crawl text format information

from files and create one file that is index file. Then, search engine will process the

user query to match the query with information in the index files. The author knows

to develop his own indexer will take a long time to finish and this is an alternative

way for me to finish this system.

52

2. Getting Started

2.1 Server Requirement

As we know, Apache is one of the best web server in the world and it is an

open source web server so Linux Operating System usually provided with this web

server. If the users of Linux environment find out that their Linux do not have this

application then they can install it by using a synaptic package manager that

provided in the Linux package.

After installing the web server, then copy a namazu folder into web server folder,

usually at /var/www/ folder. By using terminal, user must go to namazu folder. The

command that can be use by users to go to namazu folder from terminal is

/var/www/namazu . Then just type Is to list all files contain in that folder.

2.2 Installing Namazu

2.2.1 Test before "make install"

Ifyou wish to test mknmz before make install, do

cd namazu-2.0.x (... where you have unpacked *.tar.gz)

env pkgdatadi^=,pwd, scripts/mknmz (in case csh/tcsh)

or

pkgdatadir^. scripts/mknmz (in case with sh/bash).

These will refer adjacent pl,filter,template etc, not exisiting stuff under

/usr/local/share/namazu etc).

(Toknow more about this, seeSPKGDATADIR variable in mknmz etc.)

Youmay try following examples for the first timeto seethe configuration, help, and

to generate indexes for -/Mail stuff, respectively.

./mknmz -C

./mknmz —help

53

./mknmz -O /tmp -/Mail

2.2.2 Help Menu

If you just type mknmz or namazu with no argument, a short usage will be

displayed. If you feed —help as an argument, a long usage will be displayed. The

option -C will display the configurations at the time. Useful to remember these 3

option usages.

How to get help menus in command-line

Argument Meaning jOther Arguments

;None Short Usage ;Cannot add any argument

—help Long Usage IIgnores other arguments

-C Configurations; Other arguments will have meanings.

2.2.3 Running mknmz

First, create index. Format is changed slightly from versions 1.4.0.8. URI

replacement is dealt with by specifying —replace option. URI replacement can be

done during namazu/namazu.cgi execution. In this case, run mknmz without ~

replace option, and setup .namazurc so that URI replacement is performed during

namazu/namazu.cgi execution.

Run mknmz as follows.

mknmz [options] target directory

The above example creates index in the current directory. Use -O option to specify

the output directory.

For example,

mkdir /tmp/index

mknmz -O /tmp/index \

54

--replace^Wfoo/bar/doc/#http://foo.bar.jp/software/#' \

/foo/bar/doc

mknmz will output the following messages during the creation of index.

14 files are found to be indexed.

1/14 - /foo/bar/acrobat3.pdf [application/pdf]

2/14 -/foo/bar/excel97.x!s [application/excel]

3/14 - /foo/bar/html.html [text/html]

4/14 - /foo/bar/mail-multipart.txt [message/rfc822]

5/14 - /foo/bar/mail.txt [message/rfc822]

6/14 - /foo/bar/man. 1 [text/x-roffj

7/14 - /foo/bar/msgOOOOO.html [text/html; x-type-mhonarc]

8/14 - /foo/bar/piain.txt [text/plain]

9/14 - /foo/bar/plain.txt.Z [text/plain]

10/14 - /foo/bar/plain.txt.bz2 [text/plain]

11/14 - /foo/bar/plain.txtgz [text/plain]

12/14 - /foo/bar/rfc0000.txt [text/plain; x-type-rfc]

13/14 - /foo/bar/tex.tex [application/x-tex]

14/14 -/foo/bar/word97.doc [application/msword]

Writing index files...

[Base]

Date: ThuMar 16 22:14:01 2000

Added Documents: 14

Size (bytes): 58,701

Total Documents: 14

Added Keywords: 95

Total Keywords: 95

Wakati: modulekakasi -ieuc -oeuc -w

Time (sec): 14

File/Sec: LOO

System: linux

Perl: 5.00503

Namazu: 2.0.X

55

• Result (Index) will be in /tmp/index (specified in -O)

• Target documents are /foo/bar/doc

• For URI

This means "documents under /foo/bar/doc/ will appear as

http://foo.barjp/software/, so please perform replacement like s#aaa#bbb# if

written in Perl." (In this example, (aaa) corresponds to (/foo/bar/doc/) and

(bbb) corresponds to (http://foo.bar.jp/))

• (Depending on $ALLOW_FILE and SDENYFILE in

/usr/local/etc/namazu/mknmzrc) target files may be *.html, *.txt, *.tex,

*.pdf, mails in MH format.

2.2.4 Customizing mknmz

Namazu was originally developed for processing HTML documents; Namazu can

now deal with various document styles. You will find useful scripts in

/usr/local/share/namazu/filter, and detailed explanation will be found in Document

filters in Namazu manual.

Mails in MH format

run mknmz

% mknmz ~/Mail/foobar

x

Namazu will do specific processing for MHonArc HTML.

hnf

.mknmzrc for hnf and guide can be obtained from Hyper NIKKI System

Documents stored in other machines

Cannot search documents using Namazu alone. Need to use other tools (eg.

wget, NFS) that transfer the documents in combination.

For mknmz command-line arguments, you get usage information from mknmz -

help. With -C option, you get the configurations of the time.

Loaded rcflle: /home/foobar/.mknmzrc

56

System: linux

Namazu: 2.0.X

Perl: 5.00503

File-MMagic: 1.25

NKF: module_nkf

KAKASI: module_kakasi -ieuc -oeuc -w

ChaSen: module_chasen -i e -j -F "%m "

MeCab: modulemecab -Owakati -b 8192

Wakati: module_kakasi -ieuc -oeuc -w

LangMsg: C

Lang: C

Coding System: euc

CONFDIR: /usr/local/etc/namazu

LIBDIR: /usr/local/share/namazu/pl

FILTERDIR: /usr/local/share/namazu/filter

TEMPLATEDIR: /usr/local/share/namazu/template

Supported media types: (42)

Unsupported media types: (2) marked with minus (-) probably missing application

in your $path.

application/excel: excel.pl

application/gnumeric: gnumeric.pl

application/ichitaro5: taro56.pl

application/ichitaro6: taro56.pl

application/ichitaro7: taro7_10.pl

application/macbinary: macbinary.pl

application/msword: msword.pl

application/pdf: pdf.pl

application/postscript: postscript.pl

application/powerpoint: powerpoint.pl

application/rtf: rtf.pl

application/vnd.kde.kivio: kofflce.pl

application/vnd.kde.kpresenter: koffice.pl

application/vnd.kde.kspread: koffice.pl

application/vnd.kde.kword: koffice.pl

57

application/vnd.oasis.opendocument.graphics: ooo.pl

application/vnd.oasis.opendocument.presentation: ooo.pl

application/vnd.oasis.opendocument.spreadsheet: ooo.pl

application/vnd.oasis.opendocument.text: ooo.pl

application/vnd.suaxml.calc: ooo.pl

application/vnd.sun.xml.draw: ooo.pl

application/vnd.sun.xml.impress: ooo.pl

application/vnd.sun.xml.writer: ooo.pl

application/x-apache-cache: apachecache.pl

application/x-bzip2: bzip2.pl

application/x-compress: compress.pl

•application/x-deb: deb.pl

•application/x-dvi: dvi.pl

application/x-gzip: gzip.pl

application/x-js-taro: taro7_10.pl

application/x-rpm: rpm.pl

application/x-tex: tex.pl

application/x-zip: zip.pl

audio/mpeg: mp3.pl

message/news: mailnews.pl

message/rfc822: mailnews.pl

text/hnf: hnfpi

text/html: html.pl

text/html; x-type^mhonarc: mhonarc.pl

text/html; x-type=pipercnail: pipermail.pl

text/plain

text/plain; x-type=rfc: rfc.pl

text/x-hdml: hdml.pl

text/x-roff: man.pl

58

2.2.5 Targets of index creation

short
long name description

name

-F —target-lisHFILE read in list of target files for index creation

—media-
-t specify the document format of target files

type-MTYPE

specify the regular expression of target file
-allow-PATTERN

names.

specify the regular expression of to-be-excluded
-deny-PATTERN

file names.

specify the regular expression of to-be-excluded
-exclude-PATTERN

path names.

2.2.6 Running namazu

To search documents, do

% namazu query index

Ifyou omit index, namazu will assume /usr/local/var/namazu/index as target.

Set up for namazu command will be done in narnazurc. An example of namazurc

can be found in /usr/local/etc/namazu/namazurc-sample in Namazu distribution

package.

2.2.7 Namazu components

Namazu is a full-text search engine. Namazu uses the index maker mknmz

command and the text searcher namazu command.

For quickly searching through many documents, Namazu generates an index similar

to that of a book's.

59

mknmz command compiles the index. The target directory for indexing is given as

an argument for mknmz. For example, if the target directory is

/home/foo/publichtml, then type

% mknmz /home/foo/publichtml

Now documents such as *.html and *.txt under /home/foo/publichtml are indexed

and NMZ.* files are created in the directory where you run mknmz. NMZ.* files are

from Namazu's index.

The namazu command searches the index. For example:

% namazu bar /home/foo/Namazu/foobar

The above searches a keyword "bar" for the index under /home/foo/Namazu/bar.

2.3 mknmz command

2.3.1 mknmz's options

mknmz 2.0.x, an indexer ofNamazu.

Usage: mknmz [options] <target>...

Target files:

-a, —all target all files.

-t, -media-type-MTYPE set the media type for all target files to MTYPE.

-h, —mailnews same as ~media-type^'message/rfc822'

—mhonarc same as —media-type^'text/html; x-type=mhonarc'

-F, —target-list=FILE load FILE which contains a list of target files.

-allow-PATTERN set PATTERN for file names which should be

allowed.

-deny^PATTERN set PATTERN for file names which should be denied,

-excluded?ATTERN set PATTERN for pathnames which should be

excluded.

-e, —robots exclude HTML files containing

<meta name-"ROBOTS" content="NOINDEXH>

60

-M, -meta handle HTML meta tags for field-specified search.

-r, ~replace=CODE set CODE for replacing URI.

—html-split split an HTML file with anchors.

—mtime=NUM limit by mtime just like find(l)'s -mtime option.

e.g., -50 for recent 50 days, +50 for older than 50.

Morphological Analysis:

-b, —use-mecab use MeCab for analyzing Japanese.

-c, —use-chasen use ChaSen for analyzing Japanese.

-k, —use-kakasi use KAKASI for analyzing Japanese,

-m, -use-chasen-noun use ChaSen for extracting only nouns.

-L, —indexing-lang=LANG index with language specific processing.

Text Operations:

-E, —no-edge-symbol remove symbols on edge ofword.

-G, ~no-okurigana remove Okurigana in word.

-H, -no-hiragana ignore words consist ofHiragana only.

-K, —no-symbol remove symbols.

-decode-base64 decode base64 bodies within multipart entities.

Summarization:

-U, —no-encode-uri do not encode URI.

-x, —no-heading-summary do not make summary with HTML's headings.

Index Construction:

»update=INDEX set INDEX for updating,

-z, —check-filesize detect file size changed.

-Y, —no-delete do not detect removed documents.

-Z, -no-update do not detect update and deleted documents.

Miscellaneous:

-s, -checkpoint turn on the checkpoint mechanism.

-C, --show-config show the current configuration.

-f, —config=FILE use FILE as a config file.

61

-I, —include^FILE include your customization FILE.

-O, —output-dir=DIR set DIR to output the index.

-T, ~-template-dir=DIR set DIR having NMZ.{head,foot,body}. *.

-q, —quiet suppress status messages during execution.

-v, —version show the version ofnamazu and exit.

-V, -verbose be verbose.

-d, —debug be debug mode.

-help show this help and exit.

-norc do not read the personal initialization files.

Terminate option list.

Report bugs to <http://www.namazu.org/trac-namazu/trac.cgi>

or <bug-namazu@namazu.org>.

2.3.2 mknmzrc settings

Various settings are possible in mknmzrc or .mknmzrc. mknmzrc normally reads

configuration files in the order of

1. $(sysconfdir)/$(PACKAGE)/mknmzrc

Usually,/usr/local/etc/namazu/mknmzrc

2. -/.mknmzrc

3. file which is specified by -for -config^FILE -option.

If more than one configuration file is found, they all of the files are loaded.

Installation prepares a sample configuration file

$(sysconfdir)/$(PACKAGE)/mknmzrc-sample. You can copy this to

$(sysconfdir)/$(PACKAGE)/mknmzrc or to -/.mknmzrc in your home directory.

The setting details are given as comments in mknmzrc-sample.

2.3.3 Document filters

mknmz automatically identifies target file types and performs the appropriate

document filtering. For HTML documents, filtering includes the extraction of<title>

62

or the deletion of HTML tags. The filtering is dealt with by document filters in

$(datadir)/$(PACKAGE)/filter. The standard document filters are described below.

apachecache.pl

Handles an Apache's cache file.

Requirement: None

Note: --replace=apachecache::replacecode option replaces to original URI

bzip2.pl

Handles a bzip2-ed file.

Requirement: bzip2 command.

compress.pl

Handles a compress-ed file.

Requirement: compress command.

deb.pl

Handles a deb package.

Requirement: dpkg command.

dvi.pl

Handles a dvi file.

Requirement: dvi2tty

Suggested software: nkf (only for Japanese documents)

excel.pl

Handles a Microsoft Excel file.

Requirement: x[Iitm|, (wvSummary, a part of wvWare)

Suggested software:|v (only for Japanese documents)

gnumeric.pl

Handles a Gnumeric file.

Requirement: gzip command or Compress: :Zlib perl module.

gzip.pl

Handles a gzipped file.

Requirement: gziri command or Compress::Zlib perl module.

hdml.pl

Handles a HDML file.

Requirement: None

hnf.pl

63

Handles a file of Hyper NTKKI System Project.

Requirement: the hnf filter is special: it requires namazu_for_hns of Hyper

N1KKI System Project.

html.pl

Handles a HTML file.

Requirement: None

koffice.pl

Handles a KOffice KWord, KSpread, KPresenter, Kivio file.

Requirement: unzip, Iy(only for Japanese documents)

macbinary.pl

Handles a MacBinary 1,11,111 file.

Avoida problemwith handle a MacBinary file.

Requirement: None

mailnews.pl

Handles a file ofMail/News and MHTML file.

Requirement: None

Note: To handle MHTML file and Attached base64 bodies, MIME::Base64

and MIME::QuotedPrint are required.(per!5.8 contains them) -decode-

base64 option is required when handling a MHTML file or base64-encoded

bodies.

man.pl

Handles a man file.

Requirement: nroff, grofforjgroff

Note: To handle Japanese man, groff supporting -Tnippon is required.

mhonarc.pl

Handles a MHonArc file.

Requirement: None

mp3.pl

Handles an MP3 file's ID3 Tag

Requirement: MP3::_nfo perl module, (version 1.01 or later are suggested).

msword.pl

Handles a Microsoft Word file.

Requirement: wvWare

Suggested software:|v (only for Japanese documents)

64

ooo.pl

Handles an OpenOffice.org Writer, Calc, Impress, Draw file.

Requirement: unzip.

Suggested software:iv (only for Japanese documents)

pdf.pl

Handles a PDF file.

Requirement: pdftotext, a part of xpdf (version 0.91 or later are suggested).

pipermail.pl

Handles a Maihnan/pipermail file,

Requirement: None

postscript.pl

Handles a PostScript file.

Requirement: ps2ascii

powerpoint.pl

Handles a Microsoft PowerPoint file.

Requirement: pptHtml, a part ofxlHtml, (wvSummary, a part of wvWare)

Suggested software:lv (only for Japanese documents)

rfc.pl

Handles an RFC file.

Requirement: None

rpm.pl

Handles an RPM package.

Requirement: rpm

rtf.pl

Handles a Microsoft Word file.

Requirement: rjf2jttml

taro56.pl

Handles a file ofIchitaro, a Japanese word processor, versions 5 and 6.

Requirement: None

taro7_10.pl

Handlesa file ofIchitaro, a Japanese word processor, versions7 through 13.

Requirement: imicode.pl OLE-StorageJLite perl module. IO-stringy per

tex.pl

65

Handles a TeX file.

Requirement: detex

zip.pl

Handles a Zip archive files.

Requirement: unzip.

Alternative: Compress: :Zlib perl module, Archive: :Zip perl module.

The following filters are for Windows only.

ichitaro456.pl

Handles a file of Ichitaro, a Japanese word processor, versions 4, 5 and 6.

Requirement: JSTXT

Note: JSTXT is a tool for MS-DOS.

oleexcel.pl

Handles a Microsoft Excel file.

Requirement: Microsoft Excel 97 SPl or later, 2000, 2002(XP) or 2003

olemsword.pl

Handles a Microsoft Word file.

Requirement: Microsoft Word 97 SPl or later, 98, 2000, 2002(XP) or 2003

olepowerpoint.pi

Handles a Microsoft PowerPoint file.

Requirement: Microsoft PowerPoint 97 SPl or later, 2000, 2002(XP) or

2003

oletaro.pl

Handles a file ofIchitaro, a Japanese word processor, versions 4.

Requirement: Microsoft Word 97 SPl or later, 98 or 2000

Requirement: and applicable document converter of Microsoft Office

attachment.

Handlesa file ofIchitaro, a Japaneseword processor, versions5 through 6.

Requirement: Microsoft Word 97 SPl or later, 98, 2000 or 2002(XP)

Requirement: and applicable document converter of Microsoft Office

attachment.

66

Handles a file of Ichitaro, a Japanese word processor, versions 7 through 13,

2004.

Requirement: Microsoft Word 97 SPl or later, 98,2000, 2002(XP) or 2003

Requirement: and applicable document converter of Microsoft Office

attachment.

olertf.pl

Handles a Microsoft Word file.

Requirement: Microsoft Word 97 SPl or later, 98,2000, 2002(XP) or 2003

olevisio.pl

Handles a Microsoft Visio file.

Requirement: Microsoft Visio 2000, 2002 or 2003

xdoc2txt.pl

Handles a file ofMicrosoft Word, Excel, Powerpoint, Ichitaro, etc.

Requirement: xdoc2rxt.exe

Note: xdoc2txt.exe is a tool for MS-Win32.

NOTE: We believe that mknmz will work well on both the English version and the

Japanese version of Microsoft Office, but that is not yet confirmed. We would be

grateful if you would notify us how it works. Thanks in advance.

2.4 namazu command

2.4.1 namazu's options

namazu 2.0.x, a search program ofNamazu.

Usage: namazu [options] <query> [index]...

-n, —max=NUM set the number of documents shown to NUM.

-w, —whenceHSTUM set the first number of documents shown to NUM.

-1, —list print the results by listing the format.

-s, —short print the results in a short format.

—resuIt=EXT set NMZ.result.EXT for printing the results.

—late sort the documents in late order.

-early sort the documents in early order.

67

-sort-METHOD set a sort METHOD (score, date, field:name)

—ascending sort in ascending order (default: descending)

-a, —all print all results,

-c, —count print only the number of hits,

-h, —html print in HTML format,

-r, —no-references do not display the reference hit counts.

-H, —page print the links of further results.

(This is nearly meaningless)

-F, —form force to print the <form> ... </form> region.

-R, -no-replace do not replace the URI string.

-U, ~no-decode-uri do not decode the URI when printing in a plain format,

-o, —output=FILE set the output file name to FILE.

-f, --config=FILE set the config file name to FILE.

-C, -show-config print the current configuration.

-q, —quiet do not display extra messages except search results,

-d, —debug be in debug mode.

-v, —version show the namazu version and exit.

-help show this help and exit.

-norc do not read the personal initialization files.

Terminate option list.

Report bugs to <http://www.namazu.org/trac-namazu/trac.cgi>

or <bug-namazu@namazu.org>

You can specify one or more target indices in a command-line argument [index

dir].... If the target index is omitted, the Default index will be treated as the target

index.

By prefixing+ such as +foo or +bar, you can specifya target index as a relativepath

from the default index.

When executed from a command line, Namazu outputs query results in simple text

format. The -h option is required in order to display query results in HTML format.

68

If you want to display query results from the 21st hit through the 40th, type -n 20 -w

20 on the command line. Note that -w is not 21 in this example.

2.4.2 namazurc settings

Various settings are possible in mknmzrc or .mknmzrc. Namazu normally reads

configuration files in the following order:

1. $(sysconfdir)/$(PACKAGE)/namazurc

(Usually, /usr/iocal/etc/namazu/namazurc

2. -/.namazurc

3. file which is specified by -f or —config=FILE —option.

(In case ofCGI, it is .namazurc in the directory namazu.cgi is stored)

If more than one configuration file is found, all of the files are loaded.

Installation prepares a sample configuration file

$(sysconfdir)/$(PACKAGE)/namazurc-sample. You can copy this to

$(sysconfdir)/$(PACKAGE)/namazurc or to -/.namazurc in your home directory.

The setting details are given as comments in namazurc-sample.

2.4.3 Default Index

The default index is the index that is used when no other index is specifiedand it

follows the rules described below.

• The default is $(iocalstatedir)/$(PACKAGE)/index

Usually, /usr/local/var/namazu/index)

• Otherwise it is the directory which is specified by the Index directive of

namazurc.

2.4.4 Template files

Template files explain the display styles of query results in HTML. The details are
described below.

Z.head

69

Header of search results.

Footer of search results,

v

Description of Namazu's query.
NMZ.tips

Tips on searching.
VlZ.result

Format of search results.

These files are available for either language. Files suffixed by . j a are for Japanese.

2.4.5 Form settings

Form is defined in NMZ.head. CGI variables are as follows:

query

specify a query expression,
max

specifythe maximum number ofquery results to display at once.
result

specify the display style ofquery results,
sort

specify the sorting routine.
idxname

specify the name ofthe index to search.
subquery

specify the sub-query expression.
whence

specify where you wish to display query results,
reference

specify whether or not to display reference hit counts.
lang

specify language of search results.

3. Using Desktop Search Engine for Linux

Figure 3.1 is the screen shot of index page of DSEforLinux. Users just fill the

keyword(s) they want to search in the provided text boxL_ J. After

filled the keyword(s), user just need to enter the Search button-ea~rc--) that provided

at the right side of text box. Then, DSEforLinux will process that request and

display the result in a result page.

70

Desktop Search Engine for Linux
!Search!

Figure 3.1 Index Search Page

3.1 Advance Search

Ifusers want to search in advance the files that they want to search, then this

system provide an advance search functions that can search in details the request. An

advance search includes:

iv. Normal search that consist of:

a. searching with all words

b. the exact phrase of text

c. the exclude function

v. Substring matching that consist of:

a. prefix matching

b. inside matching

c. suffix matching

vi. Complex searching that consist of:

a. regular expression

b. grouping capabilities

Figure 3.2 is a screenshot of advance search after users click advance search

button. To use this features, user just filled the string or word they want to search or

do not want to search in the provided text box.

71

SB^fm.

Search! j. j. Reset

With"all the words

The exact phrase j
i

. None of these words
...j._._._

Keyword: j

prefix matching -:'
inside matching •"
suffic matching ;J

!"Search! | i Reset

•eg. format*' •
-'eg.*format*
eg. format

More Compter Searching:

"Search) i J.-Reset •j

Regular Expressions

eg. /prb(gram|blem)s?/

Grouping

• an. < liniix nrFrsaRSn !), Rnd.Nersr ana not' Windows

Figure 3.2 Advance Search Page

3.1.1 Search with all the words

W i 1 "**
(Tv 'f ifi< W0&0m$m'$$!§£?/ '~~X*j •* " 5

- •-.' '..'. •-';

W^M^^^^^WW'

jSearch! | Reset 1

With all the

The exact p

None of the

words . j
hrase |

s _ words [

!'
i '

]

Figure 35.3 AH words search

The system will search keyword(s) that enter by user in this text box and

display the result in the result page. For example if user enter keyword "razif

mimos" then the systemwill search all files that containthis "razif mimos" keyword

in the hard drive. Figure 3.3 shows user entered "razif mimos" in the with all the

words text box. If users entered three keywords in the text box, (eg. knowledge

72

acquisition performance) then the system will search all files that contain these

keywords in the hard drive.

3.1.2 Search the exact phrase

^^^v^^^^-^^^^w^^^ ^A^k r%c^

Search! Reset

With alt the words

The exact phrase

. None of these words

Figure 3.4 Search the exact phrase

This system also can ease the users to search file that contains an exact

phrase in hard drive. Figure 3.4 shows the screen shot of the interface that can

process this function. Users just fill in the exact phrase of words they want into the

text box and then the system will match that exact phrase with the index file and

display all file that contains that phrase as a results. For example, the users enter

aahmad razif then system will search the files that contain this phrase from index

files and display the result on the result page.

3.1.3 None of these words

If users have an unwanted word that they do not want to include in searching

the file, then this function is the correct function to do so. This function is working if

both ofall wordsfunction and exactphrasefunction are filled with the keywords or

either all wordsfunction or exact phrasefunction are filled in with the keyword. For

example ifuser enters the keyword in none ofthese wordsfunction text box, then the

system will unable its function.

73

3.1.4 All words and exact phrase search

Search! I i Reset '

With al! the words [.

The exact phrase!

None of these words

Figure 3.5 Search all words and exact phrase

Figure 3.5 shows a screenshot of searching with all words and the exact

phrase. Users can use this combination of searching when they want to search a

usual words and a word that in exact phrase. For example as show in the Figure 16,

user filled all words with mimos and ahmadrazif as an exact keyword that want to

search. This system will match string mimos and a phrase ahmad razif with the

index in the index file and display the result on the result page.

3.1.5 Complex search (grouping)

Show result with:

Search! I. j- Reset.

Withairthewords"!-i>:,^..!f,j

The exact phrase \u <-<\;v~-.o

None of these words r^:--.

Figure 3.6 AH words, exact phrase and none of the word search

Users also can make a complex search using this advance search function.

User can combine these three functions to search a file. For example, users want to

search file that containwords "saved" and "php" with the exact phrase of "message

confirming" and not contain word "mimos". Then users just fill "saved php" in the

all words function text box, "message confirming" in exact phrase function text box

and "mimos" in the none of these word function text box and then click the "Search

!" button at above ofthe function. Figure 3.6 show a screenshot of interface with the

74

content that filled by user to search files by using these three features for an accurate

searching.

3.1.6 Prefix matching

Sfc'-^V? A ;*j?_<_££ >W^3 •^' tr*£*^ v v^> /-> <\

Keyword:
L

ptefix matching * eg. format*
inside matching eg, ♦format*

suffic matching eg,*format

Search!! I Reset

Figure 3.7 Prefix matching search

This function is to find the files with the terms that begin with the keyword

that entered by user. For example if user wants to search for file that contains word

begin with "depart", then they just fill in the keyword "depart" in the prefix

matching text box and the system will search all files contain words begin with

"depart" such as department, departure etc. Figure 3.7 shows a screenshot of a

keyword filled by user to search a prefix matching that begin with the word depart.

User must click the prefix matching radio button to search for prefix matching. If

not, the system will search by default that is an inside matching.

3.1.7 Inside matching

i_? ., n v >^9liII_HHflO

Keyword: j

prefix matching
inside matching
suffic matching

"| [Search! \
,V 'Z. ?$?'?'k

j Reset j
eg. format*

• eg, format*
eg, ♦format

Figure 3.8 Inside matching search

This function is to find the files that have terms which contains with the

keyword that entered by user. For example, if user wants to search for file that have

a word that contain "format keyword, then they just fill in the keywordformat in

the Inside matching text box. The system will search all files that contains word that

contain a keyword "format such as information, transformation, etc. Figure 3.8

75

shows a screenshot of keyword that has been filled by user and clicked with inside

matching radio button.

3.1.8 Suffix matching

- • substrfiia Matchinc $*\y\:f:;~ ;;&£,.v^^V'W—' *>>w- ..f^rt^-^V <.% -A &. i

Keyword: [

prefix matching

i Search!
, i i !

Reset ;

eg. format*

inside matching eg. *format+
suffic matching * eg, ^format

Figure 3.9 Suffix matching search

This function is to search files with terms that terminate with the filled word.

For example if user want to search files that contain term "format" at the end of

word, then they just enter keyword "format" in the suffix matching text box. The

system will search all files that contain the keywords end with term "format" such as

reformat, etc.

3.1.9 Regular expression

SearchIj | Reset

Regular Expressions

eg./prcigram"jblem)s?/. . ,

Grouping

eg. t jinuxorFreeBSD). and Netscape'not-Windows

Figure 3.10 Regular expression searches

This function can search files for pattern matching. This function required

users to enter the word surrounded by backslashes /.../. For example, if user want to

search files that contain words program or problem then they just enter a keyword

/pro(blem[gram)/. The system will search all files that contain keywords problem

and program. Figure 3.10 shows a screenshot with the string that has been filled by

user.

76

APPENDIX 2

Comparison between DSEforLinux, Namazu and Ubuntu 5.10

77

A-2 Comparison between DSEforLinux, Ubuntu 5.10 search tool, and
Namazu(Terminal) search tool

A simple experiment has been done to measure the Accuracy and Efficiency

ofthis system (DSEforLinux) compared with another two tools that are Ubuntu 5.10

search tool (Ubuntu 5.10) and Namazu desktop search tool using terminal (Namazu

Terminal). Below is the step to measure the characteristic for accuracy, efficiency

and versatility:

1. Select a folder - One folder has been chosen that consist of 8 files. The

folder that has been chosen is cms folder from /home/profile/internship/cms

directory.

2. Select the keywords that will be use as a measurement - the keywords that

has been chosen are management, razif and page.

3. Count manually and verify the files that contain the selected keywords.

The details of files are recorded (as Table 3).

4. Open desktop search tools that will use to search the files with those 3

keywords - open DSEforLinux (Figure 7), Ubuntu 5.10 (Figure 34), and

Namazu(Terminal) (Figure 35).

5. Enter the keyword, and click or execute the system. Ifusing DSEforLinux,

click the Search button, Ubuntu 5.10 click Find button and with Namazu type a

command namazu management /var/www/namazu . Time of the system processing

the query and display the result has been taken and record.

6. The result was compared by time, total files, and total result files (related

files) with those three search tool.

7. Then an analysis has been done to make a conclusion.

Tools that have been used to measure the time were a stop watch that has a

minutes, seconds and millisecond features. Times are record during the execution of

system until the system completely displays the results.

78

Figure 1 is a snapshot of folder and files that contains in that folder. These

files used as a measurement for the accuracy, efficiency and versatility of this

system.

^•nms-PHeBrowser -:-, •-.•-.- • ••-.-, -%:.->

_lle Etfri ¥ie« _3 B«akffl9*5 _slp

<p - & - ." •_•
-Basil Up ffeloatt Hume Compter

QHcmc profile : ttlaiuslup~'{mivf srwpieport '

-fel
____)

<S^ 10D?i S^ - Vie* an lepra

-_L_3-,L-j
FJcciimMallon doc [VurnMi'Blion wn QoKiimanlaliriMS Our.

[-its'
DKumeniaricna.SKW Dsetmieiaation-

Coniact Management

ft items; FfHR apa^e: 359 ME

1 Atsmaijijal.par

Figure 36: cms folder and files

Table 1 below is a record detail of files in the cms folder from

/home/profiie/internship/cms directory. This folder consists of 8 files. From folder

have 7 files that contain management keyword, 6 files with razif keyword and 6 files

with page keyword.

1

2

3

4

5

6

7

8

Files
Keyword

management razif page

appendix,sxw 0 0 0

Documentation.doc 95 1 16

Documentation,sxw 95 1 16

Documentation2.doc 69 2 16

Documentation.sxw 69 2 16

Documentation-Contact

Management System.pdf
102 2 16

frantpage.sxw 6 1 0

TABmanual.pdf 6 0 16

Total file that contains the keyword 7 6 6

Table 1: Details files in the CMS folder

79

Table 2 shows a results table that has been recorded. From his table we can

see the time (in second) that has been taken for each tool to process the query.

Besides, this record also shows a number of results that contain in the CMS folder

and the total files that have been searched by each tool.

Tools
Keywords

management razif page

DSEforLinux

Time(sec) 2"73 1"30 1"10

Result 7 6 6

Totalfiles 206 50 1081

Ubuntu 5.10

Time(sec) 1'42"68 1'16"75 2'10"59

Result 1 1 7

Totalfiles 178 8 987

Namazu(Terminal)

Time(sec) 1"17 0"85 0"78

Result 7 2 6

Totalfiles 206 50 1081

Table 2: Results table

A-2.1 Accuracy

A calculation has been made to measure the accuracy of this system

compared to the operating system files search tool. To measure the accuracy of the

system, results were divided by number of files that is the number of files in the

folder that contains that keyword.

Equation to calculate the accuracy ofthe systems:

Percentage Accuracy

of systems
(exact results from folder / total files in folder) x 100

80

After the value of accuracy calculated, then the average value calculated.

Table 3 shows the results of the accuracy between DSEforLinux (Desktop Search

Engine for Linux), Ubuntu 5.10 (Linux Ubuntu 5.10 files search tool), and Namazu

Terminal search tool.

Tools
Keywords

management razif page

DSEforLinux

Files 1 6 6

Result 7 6 6

Accuracy 100% 100% 100%

Average

result/file
100%

Ubuntu 5.10

Files 7 6 6

Result 1 1 7

Accuracy 14.29% 16.67% 116.67%

Average

result/file
49.21%

Namazu(Terminal)

Files 7 6 6

Result 7 6 6

Accuracy 100% 100% 100%

Average

result/file 100%

Table 3: Results of accuracy comparison between DSEforLinux, Ubuntu 5.10

and Namazu(Terminal)

From the results of Table 3, we can see that DSEforLinux and

Namazu(Terminal) has 100% accuracy when they can search all files that contain in

the cms folder. The average result/files of Ubuntu 5.10 just 49.21% because they

cannot search certain files in the cms folder.

A-2.2 Efficiency

Table 4 shows results of efficiency comparison between DSEforLinux,

Ubuntu 5.10 and Namazu(Terminal). The table shows total files, times recorded for

searching process and the efficiency results for these three search tools. The

efficiency results are got from the total files divided by time(sec). After got the value

of efficiency, then the average of efficiency calculated. Below is all data that got

from the record and calculation involved.

Tools
Keywords

management razif page

DSEforLinux

Total Files 206 50 75.46

Time(sec) 2"73 1"30 38.46

Efficiency 75.46 38.46 982.73

Average

file/second
365.55

Ubuntu 5.10

Total Files 178 8 987

Time(sec) 1'42"60 H6"75 2'10"59

Efficiency 1.25 0.069 4.69

Average

file/second
2.00

Namazu(Terminal)

Total Files 206 50 75.46

Time(sec) 1"17 0"85 0"78

Efficiency 176.07 58.82 1385.90

Average

file/second
540.26

Table 4: Results of efficiency comparison between DSEforLinux, Ubuntu 5.10

and NamazufTerminal)

From the results of Table 4, we can see that average file/second for

DSEforLinux is 365.55. That means this search tools can search and display the

82

results in 365.55 files per second. The result for Ubuntu 5.10 is 2.00 files per second

and the result for Namazu(Terminal) is 540.26 files per second.

DISCUSSION

Comparison ofAccuracy between DSEL, Ubuntu File Search Tool and Namazu

Accuracy {result/files)

Namazu(Termin
al) 100%

Ubuntu 5.10

49.21%

DSEforLinux

: 100%

Figure 2: Accuracy graph of DSEforLinux, Ubuntu 5.10, and

Namazu(Terminal)

Figure 2 shows graph accuracy between DSEforLinux, Ubuntu 5.10 and

Namazu (Terminal). The data for this graph is taken from Table 3. From this graph

we can say that DSEforLinux and Namazu(Terminal) have the same percentage of

accuracy that is 100% compared to Ubuntu 5.10 that only 49.21%. That mean,

DSEforLinux and Namazu(Terminal) are more accurate in searching the files

compared to Ubuntu 5.10. The same value ofDSEforLinux and Namazu(Terminal)

because DSEforLinux is using the same indexer and index files that used by Namazu

(Terminal). The engine of the DSEforLinux is taken from Namazu.

83

Comparison of Efficiency between DSEL, Ubuntu File Search Tool and

Namazu

600-

500 -

400 -

300 -

200 -

100

0-

Efficiency (files/second)

Namazu(Term in
a!}, -4U.26

DSEforLinux,
365 55

Ubuntu 5.10, 2

DSEforLinux Ubuntu 5.10

i

Namazu(Terminal)

Figure 37 Efficiency graph of DSEforLinux, Ubuntu 5.10 and

Namazu(Terminal)

Figure 3 shows graph of efficiency between DSEforLinux, Ubuntu 5.10 and

Namazu(Terminal). The data for this graph is taken from Table 4. From this graph

we can say that Namazu(Terminal) have the highest percentage ofefficiency that are

540.26 files per second compared to DSEforLinux 365.55 files per second and

Ubuntu 5.10 with 2 files per second. That mean, Namazu(Terminal) can process the

query faster than DSEforLinux and Ubuntu 5.10. The factor that make Namazu

(Terminal) can search faster than other two tools is Namazu not required an interface

like DSEforLinux and it's process the query in the terminal (internal process) that

are lighter than by using an external application. DSEforLinux required the web-

base interface to give an instruction to internal system and get back the data from

internal system to display the result. That takes a few second to process but both

DSEforLinux and Namazu (Terminal) are using index files that can make the

searching and matching process faster. Ubuntu 5.10 slower than others two tools

because this tools need to search every single file in the folder and display the result

on the screen. This Ubuntu 5.10 also not provided with the index files that slower

the process of matching the keyword.

84

Below is the summary table ofefficiency characteristic between these three

tools:

Desktop Search Tools Descriptions

DSEforLinux (Desktop Search Engine

for Linux)

- Fast searching the files

- Results displayed slower than Namazu

because this tool must load a web-based

page.

Ubuntu 5.10 Search File Tool

- Search files slower than DSEL and

Namazu

- Display results slower than another 2

tools and just display the file name and

location without description or other

details

Namazu (Terminal)

- Fast searching the files

- Results displayed faster than DSEL

because results are displayed directly in

terminal.

Table 5: Comparison of Efficiency between DSEL, Ubuntu File Search Tool

and Namazu

85

