CASE STUDY OF NITRIFIED ACID THAT ENABLE DEEPER PENETRATION OF ACID FOR MAXIMIZING PRODUCTION ENHANCEMENT IN SOUTHERN SARAWAK FIELD

By

Nurul Syafiqa Binti Abdul Wahab

DISSERTATION

Submitted to the Petroleum Engineering and Geoscience Programme

in partial fulfilment of the requirements for the

Bachelor of Engineering (Hons)

(Petroleum Engineering)

APRIL 2011

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan.

> Copyright by Nurul Syafiqa

CERTIFICATION OF APPROVAL

CASE STUDY OF NITRIFIED ACID THAT ENABLE DEEPER PENETRATION OF ACID FOR MAXIMIZING PRODUCTION ENHANCEMENT IN SOUTHERN SARAWAK FIELD

by

Nurul Syafiqa Binti Abdul Wahab

A project dissertation submitted to the Petroleum and Geoscience Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Petroleum Engineering)

Approved b (Assom auth I Petro versiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronsh Perak Darul Ridzuan, Malayele. **UNIVERSITI TEKNOLOGI PETRONAS**

TRONOH, PERAK

April 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

[NURUL SYAFIQA BINTI ABDUL WAHAB]

LIST OF FIGURES:

Figure 1: West Lutong and Tukau field	5
Figure 2: West Lutong field reservoir and depth structure map	6
Figure 3: Tukau reservoir model and depth structure map	7
Figure 4: SAF MK 11 will precipitate with calcium ions and form soluble precipitates in oil but precipitates in water.	insoluble 9
Figure 5: West Lutong Acidizing Evolution	9
Figure 6: WL-07S in K reservoir production data by OFM software	10
Figure 7: WL-08S1 in H reservoir production data by OFM software	11
Figure 8: TK-44 in 2-F1/F6 reservoir production data by OFM software	12
Figure 9: TK-45S in 2-E3/E9 reservoir production data by OFM software	13
Figure 10: Project Work flow	14
Figure11: WL-07L PROSPER well model	19
Figure 12: Sensitivity Plot WL-07L, Liquid rate versus Skin	20
Figure13: Inflow and Outflow Plot with sensitivity of skin from 36 to 45	20
Figure 14: System 3 variable output of WL-07L	21
Figure15: IPR plot for pre-acid WL-07L well model	21
Figure16: Inflow vs. Outflow plot of pre-acid WL-07L well model	21
Figure17: Inflow versus Outflow plot with each WL-07L skin reduction case	22
Figure18: Inflow versus Outflow plot with WC sensitivities for WL-07L	23
Figure19: WL-08S PROSPER well model	24
Figure20: Sensitivity Plot WL-08S, Liquid rate versus Skin	25
Figure21: Inflow and Outflow Plot with sensitivity of skin from 60 to 65	25

Figure 22: System 3 variable output of WL-08S	26
Figure23: IPR plot for pre-acid WL-08S well model	26
Figure24: Inflow vs. Outflow plot of pre-acid WL-08S well model	26
Figure25: Inflow versus Outflow plot with each WL-08S skin reduction case	27
Figure26: Inflow versus Outflow plot with WC sensitivities for WL-08S	28
Figure27: TK-44S PROSPER well model	29
Figure28: Sensitivity Plot TK-44S, Liquid rate versus Skin	30
Figure 29: Inflow and Outflow Plot with sensitivity of skin from 37 to 49	30
Figure 30: System 3 variable output of TK-44S	31
Figure31: IPR plot for pre-acid TK-44S well model	31
Figure32: Inflow vs. Outflow plot of pre-acid TK-44S well model	31
Figure33: Inflow versus Outflow plot with each TK-44S skin reduction case	32
Figure34: Inflow versus Outflow plot with WC sensitivities for TK-44S	33
Figure35: TK-45S PROSPER well model	34
Figure36: Sensitivity Plot TK-45S, Liquid rate versus Skin	35
Figure37: Inflow and Outflow Plot with sensitivity of skin from 100 to 120	35
Figure 38: System 3 variable output of TK-45S	36
Figure39: IPR plot for pre-acid TK-45S well model	37
Figure 40: Inflow vs. Outflow plot of pre-acid TK-45S well model	37
Figure41: Inflow versus Outflow plot with each TK-45Sskin reduction case	37
Figure42: Inflow versus Outflow plot with WC sensitivities for TK-45S	38
Figure43: Sensitivity Plot WL-07L, Liquid rate versus Skin	39
Figure44: Inflow and Outflow Plot with sensitivity of skin from 10 to 20	39
Figure 45: System 3 variable output of WL-07L	40
Figure46: IPR plot for post-acid WL-07L well model	40

Figure47: Inflow vs. Outflow plot of post-acid WL-07L well model	40
Figure48: Sensitivity Plot WL-08S, Liquid rate versus Skin	41
Figure49: Inflow and Outflow Plot with sensitivity of skin from 10 to 25	41
Figure 50: System 3 variable output of WL-08S	42
Figure51: IPR plot for post-acid WL-08S well model	42
Figure52: Inflow vs. Outflow plot of post-acid WL-08S well model	42
Figure53: Sensitivity Plot TK-44S, Liquid rate versus Skin	43
Figure54: Inflow and Outflow Plot with sensitivity of skin from 15 to 16	43
Figure55: System 3 variable output of TK-44S	44
Figure56: IPR plot for pre-acid TK-44S well model	44
Figure57: Inflow vs. Outflow plot of pre-acid TK-44S well model	44
Figure58: Sensitivity Plot TK-45S, Liquid rate versus Skin	45
Figure59: Inflow and Outflow Plot with sensitivity of skin from 50 to 60	45
Figure60: System 3 variable output of TK-45S	46
Figure61: IPR plot for pre-acid TK-45S well model	46
Figure62: Inflow vs. Outflow plot of pre-acid TK-45S well model	46

LIST OF TABLES:

Table 1: Key milestone for the whole activities conducted throughout FYP 2.	17
Table 2: Gantt Chart for the whole FYP.	18
Table 3: PVT data for WL-07L	19
Table 4: Reservoir rock and properties of WL-07L	20
Table5: WL-07L well test	20
Table6: Oil gain for WL-07L expected %skin reduction	22

Table7: Oil gain for each WC in WL-07L	23
Table8: PVT data for WL-08S	24
Table9: Reservoir rock and properties of WL-08S	24
Table10: WL-08S well test	25
Table11: Oil gain for WL-08S expected %skin reduction	27
Table12: Oil gain for each WC in WL-08S	28
Table13: Gravel pack properties of TK-44S	29
Table14: PVT data for TK-44S	29
Table15: Reservoir rock and properties of TK-44S	30
Table16: TK-44S well test	30
Table17: Oil gain for TK-44S expected %skin reduction	32
Table18: Oil gain for each WC in TK-44S	33
Table19: Gravel pack properties of TK-45S	34
Table20: PVT data for TK-45S	34
Table21: Reservoir rock and properties of TK-45S	35
Table22: TK-45S well test	35
Table23: Oil gain for TK-45S expected %skin reduction	37
Table24: Oil gain for each WC in TK-45S	38
Table25: WL-07L post-acid well test	39
Table26: WL-08S post-acid well test	41
Table27: TK-44S well test	43
Table28: TK-45S well test	45

TABLE OF CONTENTS

ABSTRACT	00
CHAPTER 1: INTRODUCTION	01
1.1. PROJECT BACKGROUND	01
1.2. PROBLEM STATEMENT	02
1.3. OBJECTIVE	03
1.4. SCOPE OF STUDY	03
CHAPTER 2: LITERATURE REVIEW	05
1.1. SUMMARY OF WEST LUTONG AND TUKAU FIELD	05
1.2. ACID RECIPE REVIEW	07
1.3. SELECTED ACIDIZING CANDIDATES IN WEST LUTONG REVIEW	10
1.4. SELECTED ACIDIZING CANDIDATES IN TUKAU REVIEW	12
CHAPTER 3: PROPOSED PROJECT METHODOLOGY	14
3.1. PROJECT ACTIVITY FLOW	14
3.2 RESEARCH METHODOLOGY	15
3.3 TOOLS REQUIRED	16
3.4 PROJECT KEY MILESTONES	17
3.5 PROJECT GANTT CHART	18
CHAPTER 4: RESULTS & DISCUSSION	19
4.1 PRE-ACID MODEL AND PREDICTION: WEST LUTONG	19
4.2 PRE-ACID MODEL AND PREDICTION: TUKAU	29
4.3 ACTUAL POST-ACID JOB WELL MODEL : WEST LUTONG	39
4.4 ACTUAL POST-ACID JOB WELL MODEL : TUKAU	43
4.5 DISCUSSIONS	47
CHAPTER 5: CONCLUSION	51
REFERENCE	52

ABSTRACT

With the increasing need for highly cost-effective well production enhancement applications, acid stimulation is becoming increasingly popular. To be successful, acidizing procedures require distribution of stimulation fluid across and within the desired treatment interval. Historically, this has been approached with mechanical placement or chemical or chemical diversion of treatment fluids. Method selection can be crucial to treatment success vary for matrix and fracture acidizing - in deviated wellbores, in sandstones and carbonates and in cased and perforated, gravel packed and open hole completions. Nitrified acid is the technique designed to remove well-bore formation damage which has occurred during the productive life of the well without causing additional damage with kill fluids. West Lutong and Tukau field are selected as the field of studies as this acid has shown several successful cases in Southern of Sarawak field. Tukau field has reduced watercut after using nitrified acid method for acidizing and currently this method is applied to West Lutong field with the combination of SAF MK II acid for high watercut wells. SAF MK II not reducing water cut but the chemical diverts the acid to oil zones and mostly stimulate oil zones only. Thus, more oil produce and water production maintained prior acid job. The project is also to determine the skin reduction for each field by using method used in PETRONAS Carigali Sdn. Bhd for acidizing treatment project. This project will be reviewed the production trend of both field as the determination of skin that reduced the production. The history of acid job and stimulation done for the fields will be analyzed to estimate the total reduction of skin and estimated the oil gained by using several simple mathematical equations before a simulation by using PROSPER will be done in order to confirm the calculations.

:

CHAPTER 1 INTRODUCTION

1.1 Background Study

With the increasing need for highly cost-effective well production enhancement applications, acid stimulation is becoming increasingly popular. To be successful, acidizing procedures require distribution of stimulation fluid across and within the desired treatment interval. Historically, this has been approached with mechanical placement or chemical or chemical diversion of treatment fluids. Method selection can be crucial to treatment success vary for matrix and fracture acidizing - in deviated wellbores, in sandstones and carbonates and in cased and perforated; gravel packed and open hole completions. Nitrified acid is the technique designed to remove well-bore formation damage which has occurred during the productive life of the well without causing additional damage with kill fluids. West Lutong and Tukau field are selected as the field of studies as this acid has shown several successful cases in Southern of Sarawak field. Tukau field has reduced watercut after using nitrified acid method for acidizing and currently this method is applied to West Lutong field with the combination of SAF MARK II acid for high watercut wells. SAF MARK II not reducing water cut but the chemical diverts the acid to oil zones and mostly stimulate oil zones only. Thus, more oil produce and water production maintained prior acid job. This project will be reviewed the production trend of both field as the determination of skin that reduced the production. The history of acid job and stimulation done for the fields will be analyzed to estimate the total reduction of skin and estimated the oil gained by using several simple mathematical equations before a simulation by using PROSPER will be done in order to confirm the calculations. In the next phase, the output from FYP1 will be use to estimate the expected post-acid skin and oil gain after acid job done. The actual post-acid result will be use in the end as the comparison between PROSPER well simulation and actual result.

1

1.2 Problem Statement

Acidizing is one of the method to enhance oil production of the well. A sudden and sharp decline in production is the strongest indicator of damage. Southern Sarawak field has increasing watercut since the field has been drilled for past 50 years. The presence of high watercut brings down the oil production of the field and also a difficulty for engineers in order to conduct acidizing job for oil production enhancement. Therefore, an effective acid which can maximize the reduction of the damage is needed in to obtain the optimum production for the field. Nitrified acid has been introduced to enable deep penetration of matrix for maximizing the oil production in Tukau and West Lutong field. West Lutong for example has been used nitrified acid with SAFMARK II for acidizing to optimize the deep penetration with high watercut formation.

1.2.1 Problem Identification

Before any modelling and simulation can be made using PROSPER, the needs of understanding the basic principle of the formation damage and nitrified acid is required. Besides having to understand the characteristic of the formation of the field, learning the method used in determining skin presence based on the production trend of the reservoir are also needed for the completion of the project. The history of acid job done in the field is also need to be reviewed and analyzed to determine the estimated percentage of *s*kin reduction after each acidizing. Only then can the modeling and stimulation of the targeted wells take place.

1.2.2 Significant of Project

This project is importance in order to recognize the best method of acid stimulation in Sarawak field for production enhancement. Nitrified acid method has shown several successful jobs in Tukau field, therefore a study about this method is useful in order to propose nitrified acid method that enables deeper penetration of acid.

2

1.3 Objectives

The objective of this project is:

- 1. To determine total skin reduction for West Lutong and Tukau field based on acid job history
- 2. To find the total skin reduction for both fields by using PROSPER modeling and simulation
- 3. To compare and analyzed well models constructed in order to determine whether nitrified acidizing is suitable in maximizing production and optimization for both field.

1.4 Scope of Study

The scope of study will focus on the function of nitrified acid that enable deeper penetration of acid and maximize production enhancement in the oil wells. For this case study, two fields in Southern of Sarawak are selected as the field of interest; Tukau and West Lutong field in order to analyze the production trend. The focus of studies are a Tukau string that used nitrified acid only and a West Lutong string which applied combination of nitrified acid and SAF MARK II for high water cut. The SAF MARK II would be extended findings for high water cut applications. The geological history of the field will be studies in order to identify the type of formation of the field. Then, the reservoir production trend will be reviewed in order to determine the formation damage (skin). Formation damage means the reduced of current production. The method to identify the skin is by review the production trend of the field or the well by using OFM software. The skin is occurred when there is a decline in the production graph with a maintain watercut and no other well problem available. Acidizing is one of the method to enhance the oil production and removed the damage by dissolving the particles between the grains of formation. Then, the study expands on the history of acid job done in the field in order to determine the total of skin reduced and the oil gain for the job done. The targeted wells will be modeled and stimulate by using PROSPER software in order to analyze the oil gained after acid job done with sensitivities of watercut.

1.4.1 The Relevancy of Project

This project is relevant to the study of nitrified acid as it focuses on the calculation of skin reduction and the oil gain for the job done. This project is relevance as it is one of the ways to optimizing the oil production instead of hydraulic fracturing, adding perforations and workover. Nitrified acid has been widely used in oil and gas industry around the world. With cost-effective approaches to well stimulation and proven technologies for increasing productivity, nitrified acid method is useful to be used in most reservoirs in Malaysia. Therefore, it is useful in order to maximize the profits gained by optimizing the oil wells production.

1.4.2 Feasibility of the Project within the Scope and Time frame

The project will be conducted starting with the collection of related materials such books, journals and technical papers specifically on acidizing method with different type of acid used and PROSPER application. Research will be done from time to time as to get a better understanding on the subject. This project will then focus on the modelling a well based on the current scenario by using PROSPER software. Based on the activities stated above, given 5 months for the researches and studies to be done as well as experiment activities and for the other 5 months for the finalization the analysis and result, the author feels that the project can be completed within the given time frame.

CHAPTER 2

LITERATURE REVIEW / THEORY

2.1 SUMMARY OF WEST LUTONG AND TUKAU FIELD

Figure 1: West Lutong and Tukau field

The West Lutong field was discovered by well WL-01 in 1966 and brought on production in mid 1968. It is located offshore Sarawak approximately 13Km north-west of Miri in water depth of 70 -100 ft. There are a total of 51 wells penetration (35 original holes and 16 sidetracks), which are distributed predominantly along the crest.

The reservoir sands are generally laterally correlatable over distances of 5000 to 10000 ft, suggesting limited stratigraphic complexity as well. Sands are loosely consolidated, fine to very fine and interbedded with layers of silts and clays. The porosity ranges from 14 to 26 % with a fieldwide mean of 20%. Permeabilities are in the order of 50 to 3000 mD while the average net-to-gross is 0.62. Net sand thickness is less than 30 ft, with most individual sands around 10 ft.

The reservoirs are subdivided into three groups; shallow reservoirs, main reservoirs and deep reservoirs. 'Shallow' reservoirs (A through J) at depths of 4000 to 5300 ft are generally unfaulted and characterised by large gas caps and thin oil rims. The main reservoirs (K through N) at depths of 5300 to 6000 ft are also generally unfaulted, have small or no gas caps and strong aquifer drive. Deep reservoirs (O through Z) at depths of 6000 to 9500 ft are dissected by a northwest-headed growth fault system.

Figure 2: West Lutong field reservoir and depth structure map

Tukau field was discovered by TK-02 in 1966 and started to produce in August 1975. It is located 30km offshore Lutong, Sarawak with the water depth of 160 ft. There are 51 wells penetration. The structure of this field is a north to south elongated anticline, dissected by a system of WNW-ESE trending synthetic/antithetic normal faults at the shallow levels and complicated by growth faults at deeper levels.

The major upper reservoirs are Block 1 which is consist of E9-F5, H4-H9, I series, J1-J9 and N sands and Block 2 where D9-E9, F1-F5, F3-G3 and J2-J9 sands are located. N, M, O and K are the major lower reservoir. The major hydrocarbon accumulations are between 2400 ft ss and 7500 ft ss in the E, F, H, I, J and N sands. The oil columns range is from 10 to 150 ft. All the main reservoir have strong water drive mechanism except in 1-L5/N5 reservoir which has combination of depletion and gas cap drive.

Figure 3: Tukau reservoir model and depth structure map

2.2 ACID RECIPE REVIEW

NITROGEN

Nitrogen is an odorless, colorless, nontoxic gas, which makes up about 78 percent of the earth's atmosphere. Gaseous nitrogen is taken from the atmosphere and processed into a liquid that can be easily transported and pumped. Upon reaching location, this liquid nitrogen can then be heated and pumped as a gas.

PHYSICAL CHARACTERISTICS

Liquid Nitrogen

- Weight -6.8 pounds per gallon
- Specific Gravity -0.809
- Boiling Point (-320 °F)
- Critical Pressure -492.2 psia
- Critical Temperature (-232.8 °F)

Gaseous Nitrogen

- Density 0.0724 pounds per SCF (Standard Cubic Foot)
- One gallon liquid converts to 93.11
 SCF gas

NITRIFIED ACID

Nitrogen can be effectively and economically used in acid stimulation because it alleviates the need for swabbing. Because of its low solubility in fluids, nitrogen commingled with acid assumes the state of compressed gas bubbles. These bubbles serve as a source of energy inside the fluids injected into the formation. When the well pressure is relieved the gas bubbles expand, greatly aiding the forcing of the fluids to the wellbore and up to the surface. This added force will also help remove insoluble precipitates and formation fines. It should be remembered that the nitrogen adds volume to the fluid. This is significant because the radius of fluid penetration away from the wellbore is relative to the volume injected at bottom hole conditions. Also, the volume of the nitrogen in the fluid must be calculated so that the proper amount of flush may be determined. In order to obtain the maximum benefit from using nitrogen commingled with fluids it is important to consider each job individually.

SAF MK 11

Earlier sandstone acid stimulation stimulate entire zonal interval with Half Strength BJ Sandstone Acid. The water zone is stimulated simultaneously with oil zone and the damages occur on water zone is removed. As the result, there will be some increase in not only oil production but water production as well. SAF MK 11 is a new sandstone acid stimulation technique which is act as water control diverter. This method will divert acid from the water zone to the oil zone. Hence, only the oil zone will be stimulate which results in high oil water ratio.

SAF MK II will precipitate when in contact with calcium ions. This precipitation is soluble in oil but insoluble in water. Therefore, it will divert acid from water zone to oil zone. The oil will dissolve the precipitates whereas water will not. Thus, acid stimulates the oil zone only and results high oil water ratio. This technique is applicable in high watercut formation for better penetration and higher oil production after acid job done.

8

Figure 4: SAF MK 11 will precipitate with calcium ions and form soluble precipitates in oil but insoluble

Figure 5: West Lutong Acidizing Evolution

2.3 SELECTED ACIDIZING CANDIDATES IN WEST LUTONG REVIEW

WL-07S: K reservoir

Figure 6: WL-07S in K reservoir production data by OFM software

The job was started 7 July 2009 and was completed on 12 July 2009. The objective of this acid stimulation is to stimulate the 1-K reservoirs to remove the skin in the well bore area and thus increase the production of the well via bullheading acid stimulation through long string. This is 4th acid treatment on this string since 2003. The acid recipe treatment used was S3 acid (Preflush/After Flush) and Half Strength BJ Sandstone Acid (Main Flush). As comparison, the previous 3 acid stimulation campaign in 2003, 2004, and 2007 which resulted in 78%, 66% and 68% skin reduction.

WL-08S: H reservoir

Figure 7: WL-08S1 in H reservoir production data by OFM software

The job was started 17 July 2009 and was completed on 20 July 2009. The objective of this acid stimulation is to stimulate the 1-H reservoirs to remove the skin in the well bore area and thus increase the production of the well via bullheading acid stimulation through long string. This is 5th acid treatment on this string since 2003. The acid recipe treatment used was S3 acid (Preflush/After Flush) and Half Strength BJ Sandstone Acid (Main Flush).

2.4 SELECTED ACIDIZING CANDIDATES IN TUKAU REVIEW

TK-44S: 2-F1/F6 reservoir

Figure 8: TK-44 in 2-F1/F6 reservoir production data by OFM software

- □ This well was completed in August 1982
- □ Stimulation history:
 - Jan 1992: 1000 bopd gain (Preflush: 15% HCL, Mainflush: 12% / 3% HCL-HF, Postflush: 3% HCL)
 - June 2004: minimal gain with 10% WC increased (Mainflush: Half strength SSA+Evirosol)

TK-45S: 2-E3/E9 reservoir

Figure 9: TK-45S in 2-E3/E9 reservoir production data by OFM software

- □ This well was completed in Aug 1982.
- □ Stimulation history:
 - July 1986 : 900 bopd gain (Preflush: 15% HCL, Mainflush: 12% / 3% HCL-HF, Postflush: 3% HCL)
 - Jan 1992 : 180 bopd gain (Preflush: 15% HCL, Mainflush: 12% / 3% HCL-HF, Postflush: 3% HCL)
 - Aug 2002 : No gain (Preflush: 10% HCL, Mainflush: BJSSA, Postflush: 10% HCL, Overflush: 3% NH₄Cl)
 - Nov 2006 : 250 bopd gain (Preflush: S³ acid, Mainflush: HalfStrength BJSSA, Postflush: S³ acid, Overflush: 3% NH₄Cl)

CHAPTER 3

METHODOLOGY

3.1PROJECT ACTIVITY FLOW

Figure 10: Project Work flow

3.2 RESEARCH METHODOLOGY

3.21. Determination of skin reduction:

Firstly, gathering of information is made on the geological view of the field, type of damage in the formation, production trend of the reservoirs, acid job history and type of acid used for the field. Each one of the well in West Lutong and Tukau field is reviewed in order to understand the production trend throughout years of production. Some of the well has stimulated with acidizing treatment in the past, therefore the average of skin reduction for each acidizing job done for each well is reviewed to understand the total skin reduced after each acid treatment done. The workflow for skin reduction estimation is:

1- each acid job in a

2- average in a wel

 estimation of average total skin reduction after acid job for each well •estimation of skin reduction for each field, based on both case studies in each well

The percentage of estimated skin reduction for each acid job done in a well will be predicted by using this formula.

% skin reduction = [(Skin before acid job) - (Skin after acid job)]/ Skin before acid job * 100%

Based on the calculation of skin reduction for each acidizing treatment done, the average of skin reduction for the well is calculated in order to get the total reduction of skin after all the acidizing treatment.

Average well skin reduction = sum of % skin reductions / total of acid treatment done

Next, the average skin reduction for both wells in West Lutong and Tukau will be calculated in order to estimate the total skin reduction for both fields.

Average field skin reduction = sum of average well skin reductions / total of wells calculated

The average skin reduction will be use as the outcome for this project and the input for well modeling by using PROSPER software in FYP 2.

3.2.2 PROSPER well model and simulations:

Secondly, the outcome of objective 1, which is 50% of skin reduction expected after acidizing job done is used in the simulation stage to model the well and to analyze the oil gained based on the acid job reduction skin theoretically. Pre-acid well model will be constructed based on well test data before acid job is done to determine current well skin. Then, sensitivities with 10% to 70% of skin reduction will be calculated in order to predict the post-acidizing oil gain and skin reduction. Next, the post-acid well model will be constructed by using well test data dated after acid job is done which is on July 2009 to determine the oil gain and actual skin reduced after acidizing. The total skin reduction for both fields will be calculated and compared with outcome of skin reduction calculated in FYP 1.

3.2.3 Analysis of Result and Discussion

Finally, the outcome of PROSPER simulation for pre-acid model, predicted post-acid well model with 50% skin reduction and post-acid well models will be compared and analyzed to determine whether nitrified acidizing method is suitable and effective for West Lutong and Tukau field.

3.3 TOOLS REQUIRED

For the accomplishment of the project, there are needs for a certain software application especially for Modelling and Simulation process to analyze the result of skin reduction based on the acid job done. This project needs to do modelling and simulation using PROSPER software based on the production data by using OFM software. The i-handbook by Schlumberger software is also used in order to construct well model based on the well diagram.

3.3 PROJECT ACTIVITIES:

No	Action Item	Action Item Action By							
1	Briefing & update on students progress	Coordinator / Students / Supervisors	8 February 2011	Week 3					
2	Project work commences	Students		Week 1 -8					
3.	Submission of Progress Report	Students	16 March 2011	Week 8					
4.	PRE-EDX combined with seminar/ Poster Exhibition/ Submission of Final Report (CD Softcopy & Softbound)	Students / Supervisor / Internal Examiner / Coordinator	4 April 2011	Week 11					
5.	EDX	Supervisors / FYP Committee	11 April 2011	Week 12					
6.	Final Oral Presentation	Students / Supervisors	20 April 2011	Week 13					
7.	Delivery of Final Report to External Examiner / Marking by External Examiner	FYP Committee / Coordinator	20-27 April 2011	Week 14					
8.	Submission of hardbound copies	Students	04 May 2011	Week 16					

Table 1: Key milestone for the whole activities conducted throughout FYP 2.

																		W	'eek,	/Mo	nth																
										Yea	r 201	LO (F	YP 1)											·			Year	r 201	.1 (F'	YP 2))					
No	Activities		Au	August September				October November December					Janu	iary			Febi	ruary	1	March Apr			ril														
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Introduction to FYP																																				
2	Selection of FYP Topic																																				
3	Preliminary Research Work					Shird Jaco																															
4	Submit Prelim Report	 		1	<u> </u>	1978	1004 01200				1				Constants		WTERO KO				-				1000000		2007 (64)										<u> </u>
5	Literature Review – Research Work																																				
6	Progress Report				1	Τ		1		Τ																·		1						ľ			
7	Interim Report / Final Draft																																				
8	Presentation			1	1	+	<u> </u>	1	1	1							*1*3001t										•••	1		1			†				<u> </u>
9	Preparation for PROSPER simulation																																				
10	Data gathering for PROSPER software																· · · ·									- <u> </u>						 					
11	Familiarize with PROSPER software																																				
12	Well modeling with PROSPER																																				
14	Post-acid model and simulation analysis																	~~~~																			
15	Result Analysis	1						1		1																		1.					11 11 11				i '
16	Pre EDX																																				<u> </u>
17	EDX																																				
18	Final oral presentation																												Ī								
19	Delivery of final report												,										· · · · ·											<u>.</u>			

Note: Green Box = completed project, yellow box = work in progress

 Table 2: Gantt Chart for the whole FYP.

CHAPTER 4

RESULT AND DISCUSSIONS

4.1 PRE-ACID MODELS AND PREDICTION: WEST LUTONG

WL-07L Pre-acid well model : K reservoir

Figure11: WL-07L PROSPER well model

In order to construct WL-07L well model, these data are needed as the input for this analysis:

- Well diagram for equipment input
- Well deviation data
- Geothermal gradient
- PVT data of WL-07L

Input	Value	Unit
GOR	247	scf/STB
Oil gravity	40	API
Gas specific gravity	0.67	
Pb	1950	psi
Во	1.133	RB/STB
μ	1.5	ср
Water salinity	14000	ppm

Table 3: PVT data for WL-07L

K reservoir rock and fluid properties

Input	Value	Unit
Pr	2250	psi
Tr	157	F
k	180	mD
thickness	47	ft
drainage area	3.14E6	ft ²
dietz shape factor	31.62	
wellbore radius	4.4	ft

Table 4: Reservoir rock and properties of WL-07L

Well test data

ACT. DATE	BEAN	GROSS (stb/d)	W/C (%)	NET (stb/d)	GAS OUTPUT (Mscf/d)	FORM GAS (Mscf/d)	GASLIFT (Mscf/d)	FGOR (scf /stb)	FGLR (scf/st b)	Wp (stb/ d)	FTHP (psig)	CHP (psig)	FLP (psig
4-May- 09	64	897	58	377	669	565.00	104	1501	630	520	120	540	70

Table5: WL-07L well test

After all data required was entered to construct WL-07L well model, the base skin input was set to 10 as the initial input of skin. Sensitivity to skin will be construct in order to search the pre-acid job skin based on the chosen West Lutong 2009 well test data for pre-acid skin. Well test data dated of 4th July 2009 is chosen as the reference for pre-acid job well model. The input for sensitivity to skin was generated from 10 to 90 to find out the best skin that represents the well test data.

Figure 12: Sensitivity Plot WL-07L, Liquid rate versus Skin

Figure 13: Inflow and Outflow Plot with sensitivity of skin from 36 to 45

Figure 12 shows that the higher skin of the well, the lower liquid rate will be produced. According to the graph of Liquid rate versus Skin (Figure 13), it shows that the skin of WL-07L must be in between 36 to 45 in order to match with well test data which is Q_{grass} = 897 bopd and Q_{net} =377 bopd at WC=58%. The value of skin sensitivity was setting again from 36 to 45 and the graph is plotted. Based on the graph, we can conclude that the matching skin for WL-07L is 43.2. Thus, the value of skin in IPR column is changed to 43.2.

Colculate	flot	Senalivity	Seculivity PvD	Report	Export	Optione Dover Main Litt Curves Help
Nexula						Vavallies
	Lingung Filata	Ot Rule	WEP Provides	PR Francisk	HT TARM SAR	
						0 + 897 9 hond
	COLUMNS!	I NTRANG	5-0	101	L MIT CO	Censs 037.3 Dopu
1	1.07634	0.45206	970.054	2248.67	1.25] Soktow
2	57.6230	24,2019	839.750	2175.39	67.3733	Solution Details
3	114.171	47.9518	652.907	2101.50	134.451	Qnat= 377.1 bopd
4	170.718	71.7016	657.002	3025.93	202.579	Last Res Organited and
5	227.265	35.4515	669.928	1549.5	271.069	Cine ma Itan
-	281 913	115.201	685.572	1071.77	342.456	Westline Sille Stiller
7	540.36	142.951	705.91	1792.57	414.502	Breation House Pressure - 821 MP
	396.907	196.701	728.257	1711/7	408 2003	A CONTRACT PARTY AND A CONTRACT AND
	453.454	190:451	743.19	1620 92	5813-8819	NUMBER OF THE OWNER
10	510 002	214.201	756.278	1543.82	841,634	
11	566.545	237 951	766.683	1456.27	722.091	5=43.2
12	623.096	261.7	790.042	1365.42	805.74	Allowing 14 20 10
310	679.643	285.45	793 587	1270.50	093.371	110 mar 100 07
18	736.191	2.20C	803.246	1120.57	506.164	
38	792.738	332.96	\$12,439	1063.49	1006.03	
16	848,295	356.7	821.309	545.804	1196.46	
17	305.002	380.45	823.875	009 645	1325.39	
10	962.36	404.199	836.25	624,559	1503.21	Ingenture Chapter 3153.1 1-1
15	TUTRSI	427.949	845.444	317.81	1002.65	
-20	1075.47	451.659	1854.457	5.84795	2107.30	

Figure 14: System 3 variable output of WL-07L

Based on figure 14, the pre-acid skin for WL-07L is matching at:

- S=43.2
- Q_{gross} = 897.9 bopd
- Q_{net}= 377.1 bopd

Error calculation: [(377.1-377)/ 377] *100% = 0.03%. The error is less then 5%, therefore, the output is approved.

Figure15: IPR plot for pre-acid WL-07L well model

Figure16: Inflow vs. Outflow plot of pre-acid WL-07L well model

Analysis of expected post-acid skin for WL-07L:

Referring to the output of Final Year Project 1, the expected skin reduction for nitrified acidizing based on the history acid job done for both field is 50%. In order to determine the oil gain for each percentage of skin reduction, the skin reduced for each 10%, 20%, 30%, 40%, 50%, 60% and 70% are calculated. After that, the sensitivity to skin reduced is constructed by using PROSPER software to determine the oil gain for each skin. The oil gains for each case are calculated by using:

Figure17: Inflow versus Outflow plot with each WL-07L skin reduction case

50% skin reduction is chosen as the base case for this acid job. The determination of Q gain when skin reduced to 50% is:

$$Q_{gain} = Q_{post-acid} - Q_{pre-acid}$$
$$= Q_{of skin+23.9} - Q_{of skin+47.78}$$
$$= 655.1 \text{ bopd} - 377.1 \text{ bopd}$$

=278 bopd

(

Therefore, the expected Q_{gain} after acid job is 278 bopd if the WC is maintained. WC tends to increase or decrease after acid job done. Thus, sensitivity for WC needs to be done in order to compare the Qeain for each WC case. Sensitivities to WC of 50%, 55%, 60%, 65% and 70% is run for skin of 21.6.

Figure 18: Inflow versus Outflow plot with WC sensitivities for WL-07L

%Skin reduction	%WC	Qoli (bopd)	Q gain (bopd)
50	50	779.4	402.3
50	55	701.8	324.7
50	60	625.2	248.1
50	65	543	165.9
50	70	456	78.9

Table7: Oil gain for each WC in WL-07L

60% of WC is chosen as the base case for WL-07L by assuming the WC is maintained after acidizing.

WL-08S Pre-acid well model: H reservoir

Figure19: WL-08S PROSPER well model

In order to construct WL-08S well model, these data are needed as the input for this analysis:

- Well diagram for equipment input
- Well deviation data
- Geothermal gradient
- PVT data of WL-08S

Imput	Value	Unit
GOR	485	scf/STB
Oil gravity	31.5	API
Gas specific gravity	0.67	
Pb	2252	psi
Во	1.26	RB/STB
μ	1	ср
Water salinity	20000	ppm

Table8: PVT data for WL-08S

H reservoir rock and fluid properties

Input	Value	Unit
Pr	2160	psi
Tr	164	F
k	90	mD
thickness	56	ft

drainage area	3.14E6	ft ²
dietz shape factor	31.62	
wellbore radius	3.1	ft

Table9: Reservoir rock and properties of WL-08S

Well test data

ACT. DATE	BEAN	GROSS (stb/d)	W/C (%)	NET (stb/ d)	GAS OUTPUT (Mscf/d)	GAS (Mscf/ d)	GASLIFT (Mscf/d)	FGOR (scf /stb)	FGLR (scf/ stb)	Wp (stb /d)	FTHP (psig)	CHP (psig)	FLP (psig
8-May- 09	64	416	75	104	490	155.00	335	1490	373	312	95	580	80

Table10: WL-08S well test

After all data required was entered to construct WL-08S well model, the base skin input was set to 10 as the initial input of skin. Sensitivity to skin will be construct in order to search the pre-acid job skin based on the chosen West Lutong 2009 well test data for pre-acid skin. Well test data dated of 8th May 2009 is chosen as the reference for pre-acid job well model. The input for sensitivity to skin was generated from 10 to 90 to find out the best skin that represents the well test data.

Figure20: Sensitivity Plot WL-08S, Liquid rate versus Skin

Figure 21: Inflow and Outflow Plot with sensitivity of skin from 60 to 65

Figure 20 shows that at the higher skin of the well, the lower liquid rate will be produced. According to the graph of Liquid rate versus Skin (Figure 20), it shows that the skin of WL-08Smust be between 40 to 70 in order to match with well test data which is Q_{gross} = 416 bopd and Q_{net} = 104 bopd at WC=75%. The value of skin sensitivity was setting again from 60 to 65 and the graph is plotted. Based on the graph, we

can conclude that the matching skin for WL-08S is 63.33. Thus, the value of skin in IPR column is changed to 63.33.

Calculate	Plot	Sensitivity	Sensitivity Pv	Bepor	t Export (Iplions Done Main		Lit	Curves	Heb	
Results						Variables					
	Liquid Plats	(Dit PLate	VLP Pleasant	IPT. Presso	in dP Total Skin						
									-		-
	C. U. D. D. Lewis	STR/dop	L ppg-1	I Manage	2001.0				Qen	-417.5 be	bq
1	0.59789	0.14947	995,191	2158.56	1.39716	Solution	1		1		
2	32.0083	8.00232	957,456	2082.42	71.8958	Solution Details	1000		-		
3	63.4207	15.0552	962.276	2005.63	143.104	Lopat	d PLater C	417.5	1119.0882		
- 4	94.832	23.708	992.905	1928.12	215.035	ti-ai	SETTING.	00.913	Mattran	0	4 bor
5	126.243	31.5609	1018.15	1849.79	207.773		1211,064	104.4	Contraction of	Indicate in the	
6	157.655	39.4137	1032.94	1770.56	361.421	and an and a second sec	on PLane	313.1			
2	109.065	47.2665	1042.61	1690.28	436.107	Sekaon Node Pre	eure.	1046.78			
8	220.478	55.1194	1049.57	1608.79	511.993	Wollboad Pre	10231,010	95.00			
9	251.089	62.9722	1030.84	1525.9	589.285	Wellhead Tampa	-touture	78.30	and P		-
10	203.3	70.8251	1031.02	1441.33	668,256	Fast Node Tempe	exalt PE	78.30	A IN		4
11	314.712	78.6779	1025	1354.7	749.282	Teles	Lat Silvery S	63.33		10.000	
12	346.123	86,5308	1625.57	1265.46	832.906	Testal CR	Se Dives	1037.92			
12	377 534	94 3836	1032.62	1172.8	379.956	der	PRODUCT	11.27			
14	408.946	102.236	1043.6	1075.31	1011.92	(2° U	Couvey !!	300.11			
15	440 357	110.099	1055.3	970.272	1111.25						
16	471.769	117.942	1066.39	850.685	1225 21						
17	500 18	125,795	1076.78	677.029	1293.24					1.00	
10	534.591	133.640	1086.58	452,858	1611.78	and the second second	Phone I	3730.7			
19	566.000	141.501	1055.9	229.688	1830.31	P	nepar	34 33,1			
20	597 414	149.354	1104 78	3 4 3021	0						

Figure 22: System 3 variable output of WL-08S

Based on figure 22, the pre-acid skin for WL-08S is matching at:

- S=63.33,
- Q_{gross}= 417.5 bopd
- Q_{net}= 104.4 bopd

Error calculation: [(417.5-416) /416]*100% = 0.36%.. The error is less then 5%, therefore, it is approved.

Figure 23: IPR plot for pre-acid WL-08S well model

Figure 24: Inflow vs. Outflow plot of pre-acid WL-08S we

Analysis of expected post-acid skin for WL-08S:

Figure25: Inflow versus Outflow plot with each WL-08S skin reduction case

50% skin reduction is chosen as the base case for this acid job. The determination of Q gain when skin reduced to 50% is:

```
Qgain = Qpost-acid - Qpre-acid
```

= Qof skin+31.7- Qof skin +63.33

=180.8 bopd - 104.4 bopd

=76.4 bopd

Therefore, the expected Q_{gain} after acid job is 76.4 bopd if the WC is maintained. WC tends to increase or decrease after acid job done. Thus, sensitivity for WC needs to be done in order to compare the Q_{gain} for each WC case. Sensitivities to WC of 65%, 70%, 75%, 80% and 85% is run for skin of 31.7.

Figure 26: Inflow versus Outflow plot with WC sensitivities for WL-08S

%WC	Qoli (bopd)	Q gain (bopd)
65	258.1	153.7
70	219.5	115.1
75	181	76.6
80	142.7	38.3
85	104.9	0.5
	%WC 65 70 75 80 85	Qoii (bopd) 65 258.1 70 219.5 75 181 80 142.7 85 104.9

Table12: Oil gain for each WC in WL-08S

75% of watercut is chosen as the base case for WL-08S acidizing as there is high possibility SAFMAK does not reduce the WC but maintain it after acidizing.

4.2 PRE-ACID MODEL AND PREDICTION: TUKAU

TK-44S Pre-acid well model: 2-F1/F6 reservoir

Figure27: TK-44S PROSPER well model

In order to construct TK-44S well model, these data are needed as the input for this analysis:

- Well diagram for equipment input
- Well deviation data
- Geothermal gradient
- Gravel pack properties

Input	Value	Unit
GP permeability	25000	mD
Perf. diameter	0.43	
GP length	3	inches
Shot density	6	
Perf. efficiency	0.7	
Overall heat transfer coefficient	8	ср
Perf. interval	35	ft

Table13: Gravel pack properties of TK-44S

PVT data of TK-44S

DEVELOPMENT	DATUM FT.SS	FORMATION TEMPERATUR DEG. F	INITIAL PRESSURE PSIG	OIL GRAVITY DEG. API	BOI RB/STB	RSI SCF/STB	8GI RB/MSCF	OIL VISCOSITY CP
2 - F1/F5	2790	145	1214	27.5	1.104	183	2.226	1.6

Table14: PVT data for TK-

F1/F6 reservoir rock and fluid properties

Input	Value	Unit
Pr	1045	psi
Tr	138	F
k	350	mD
thickness	58.9	ft
drainage area	1.131E6	ft ²
dietz shape factor	31.6	
wellbore radius	0.345	ft
wellbore radius Table15: Reservoir	0.345	ft

Well test data

DATE	ZONE	STT	BEAN	GROSS	WC	NET	GASOUT	FORMATION GAS	GASLIFT	TGLR	GOR	FTHP	CHP	FL
9-Aug- 08	2-F2/F5	GLI	64/128	787	47	417	1086	105	981	1380	251	140	440	12
4-Nov- 08	2-F2/F5	GLI	64/64	783	40	470	643	118	525	821	251	130	440	12
10-Dec- 08	2-F2/F5	GLI	64/128	660	45	363	559	112	447	847	309	170	570	14
6-Jan-09	2-F2/F5	GLI	64/64	861	45	474	952	166	786	1105	251	185	570	12
	AVERAG	GE		773	44	431	ANY NO		685		266	156	15.7	-

Table16: TK-44S well test

After all data required was entered to construct TK-44S well model, the base skin input was set to 10 as the initial input of skin. Sensitivity to skin will be constructed in order to search the pre-acid job skin based on the chosen Tukau 2009 well test data for pre-acid skin. The average well test data is chosen as the reference for pre-acid job well model. The input for sensitivity to skin was generated from 10 to 90 to find out the best skin that represents the well test data.

Figure 28: Sensitivity Plot TK-44S, Liquid rate versus Skin

Figure 29: Inflow and Outflow Plot with sensitivity of skin from 37 to 49

It shows that at the higher skin of the well, the lower liquid rate will be produced. According to the graph of Liquid rate versus Skin (Figure 28), it shows that the skin of TK-44Smust be between 30 to 60 in order to match with well test data which is Q_{gross} = 773 bopd and Q_{net} = 431 bopd at WC=44%. Based on the graph of liquid rate versus skin, we can conclude that the pre-acid skin of TK-44S is 39 which is matching with gross=771 bopd and net=431.7 bopd. Therefore, the input skin in IPR column will be changed to 39.

leta	-	Lipsthe	OFFice	VEPPen	n PS frees	n P Lossie	Vandden		
		C. C. C. Lange	- ESUATE	- 212	1. 100	pa -			0
	11	2.31004	0.82582	413.571	1044.37	8.53677	School Set one Datab		Contraction of the second in
	2	50.4291	33.2796	200.376	: 1011.21	29.9729	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OF THE OWNER OWNE OWNER OWNE	ment	and the second se
	2	112.786	65.9379	415 508	977.430	58.012	En Black	TIKAT	and the second second
		176.184	50.116	442104	543,002	87.7032	Contract of the second	(F113)	Q_+414.3 be
	3	234.302	101.254	455 63	357.544	118 104	And and Andrew Martin	Let 2	and a barrent of
	-5	292.7	163.912	470.492	871.895	149.296	Column Harts Distances	ICH. N.	
	2	251.019	196.62	460,162	625.07	101.331	States and the second	155.00	and the second se
	5	405 337	229.529	470.174	757 263	214.342	Number of Taxabase	11416	
	3	467.855	261.007	470 1000	750.367	248.441	Fart Node Temperature	114.16	
	10	525 972	294.545	407.258	718.21	283.785	1 and take	inta d	- Summer 40.54
	31	264,293	327 203	497 502	E76.597	330.571	Last Phile	255 34	Comment of the local division of the local d
	12	642 609	258.061	506.00	6132308	355.057	d'Entre	10.75	
	12	700.927	292,515	515.447	587.064	195.617	and the second	7242	
	15	758.245	425172	\$23.442	533.879	842,739	dP Land Cardid	14.40	Provide Statements
	15	817.562	457 635	530.541	408.544	439.199	Sand Coverd State	150	5.=154
	16	075.001	490.494	538.032	432.597	540.259	General Parts We	0.36,001	- Hereiter
	17	\$942	523152	544.776	265464	590.291			and the second se
	510	392.578	895 81	991.136	294,034	840.540	Inaction Dupits	24037	
	15	1090-84	508.452	557.355	175.274	278.841			Construction of the local division of the lo
	26	3109.15	621 126	563.296	288902	0			

Figure 30: System 3 variable output of TK-44S

Based on figure 30, the pre-acid skin for TK-44S is matching at:

 Pre-acid Skin = Total skin – Sand Control skin = 40.54 – 1.54

=39

- Qgross= 775.5 bopd
- Q_{net}= 434.3 bopd

Error calculation: (434.3 - 431)/ 431 = 0.77%. The error is less then 5%, therefore, it is approved.

Figure31: IPR plot for pre-acid TK-44S well model

Figure 32: Inflow vs. Outflow plot of pre-acid TK-44S well model

%Skin reduction	Skin reduced	Qoil (bopd)	Q gain (bopd)
10	35.1	467.3	33
20	31.2	506.1	71.8
30	27.3	553.3	119
40	23.4	609	174.7
50	19.5	653.6	219.3
60	15.6	705.2	270.9
70	11.7	795.7	361.4

Table17: Oil gain for TK-44S expected %sk reduction

Figure33: Inflow versus Outflow plot with each TK-44S skin reduction case

50% skin reduction is chosen as the base case for this acid job. The determination of Q gain when skin reduced to 50% is:

Qgain = Qpost-acid - Qpre-acid

= Q_{of skin+19.5}- Q_{of skin 39}

=653.6 bopd - 434.3 bopd

=219.3 bopd

Therefore, the expected Q_{gain} after acid job is 219.3 bopd if the WC is maintained. WC tends to increase or decrease after acid job done. Thus, sensitivity for WC needs to be done in order to compare the Q_{gain} for each WC case. Sensitivities to WC of 35%, 40%, 45%, 50% and 55% is run for skin of 19.5.

Figure34: Inflow versus Outflow plot with WC sensitivities for TK-44S

%Skin reduction	%WC	Qoil (bopd)	Q gain (bopd)
50	35	755.1	320.8
50	40	696.2	261.9
50	45	637.4	203.1
50	50	578.6	144.3
50	55	520	85.7

Table18: Oil gain for each WC in TK-44S

45% of watercut is chosen as the base case for TK-44S acidizing.

TK-45S Pre-acid well model: 2-E3/E9 reservoir

Figure35: TK-45S PROSPER well model

In order to construct TK-45S well model, these data are needed as the input for this analysis:

- Well diagram for equipment input
- Well deviation data
- Geothermal gradient
- Gravel pack properties

Input	Value	Unit
GP permeability	15500	mD
Perf. diameter	0.4	inches
GP length	0.5	inches
Shot density	4	
Perf. efficiency	1	
Overall heat transfer coeefficient	8	ср
Perf. interval	39	ft

Table19: Gravel pack properties of TK-45S

PVT data of TK-45S

DEVELOPMENT	DATUM FT.SS	FORMATION TEMPERATUR DEG. F	INITIAL PRESSURE PSIG	OIL GRAVITY DEG. API	BOI RB/STB	RSI SCF/STB	BGJ RB/MSCF	OIL VISCOSITY CP
2 - D9/E9	2570	142	1118	27	1.1	166	2.41	1.8

Table20: PVT data for TK-45S

Reservoir rock and fluid properties

Input	Value	Unit
Pr	900	psi
Tr	140	F
k	400	mD
thickness	162	ft
drainage area	3.146E6	ft ²
dietz shape factor	31.6	
wellbore radius	0.452	ft

Table21: Reservoir rock and properties of TK-45S

Well test data

DATE	ZONE	STT	BEAN	GROSS	wc	NET	GASOUT	FORMATION GAS	GASLIFT	TGLR	GOR	FTHP	CHP	
24-Feb- 09	2- E3/E9	GLI	64	604	38	374	743	75	668	1231	201	150	610	
26-Mar- 09	2- E3/E9	GLI	64	606	40	364	407	73	334	671.7	201	110	350	
	AVERAG	GE		605	39	369			501		201	130	480	

Table22: TK-45S well test

After all data required was entered to construct TK-45S well model, the base skin input was set to 10 as the initial input of skin. Sensitivity to skin will be construct in order to search the pre-acid job skin based on the chosen Tukau 2009 well test data for pre-acid skin. The average well test data is chosen as the reference for pre-acid job well model. The input for sensitivity to skin was generated from 10 to 90 to find out the best skin that represents the well test data.

Figure36: Sensitivity Plot TK-45S, Liquid rate versus Skin

Figure 37: Inflow and Outflow Plot with sensitivity of skin from 100 to 120

It shows that at the higher skin of the well, the lower liquid rate will be produced. According to the graph of Liquid rate versus Skin (Figure36), it shows that the skin of TK-45S must be between 100 to 120 in order to match with well test data which is Q_{gross} = 605 bopd and Q_{net} = 369 bopd at WC=39%. After setting the skin sensitivity from 100 to 120, the graph of figure is obtain. Based on the graph of Liquid rate versus skin, the matching skin with the well test data is 116. Thus, the input data in IPR column will be changed to 116.

Calculate	Plat	Sendarity	Sentitudy	YO Repor	Export Or	Ront Done Main	1.0	Curves	Help	
inter .	V				-	Vanables				
	Light Name	OUTLINE	VLP Press	In ITT PALEN	in off, heads print					
	CULLAR							-		
	0.982736	ES REMIENA	477.2%8	2019-447	0.52405	Soldion		P.		bog
2	52 5923	32 0813	845 1288	820.11	28.952	Solution Details		1		
2	104 202	615632	460.215	1940 235	86.6471	Logal (Logal	643.4	ALC: No.		
4	195 812	95.0454	475.78	819.775	art street	Lies Plain	74.717			
	387.433	126.627	490.935	775 681	115 107	Of Rate C	117	A STATISTICS	Mean	Let ge
	255 017	1555.0005	and still	745 555	145 201	Water Plant	237.7			
	210 642	100 #12	496,026	714 323	120.004	Subdays Number Personant	504.41		and the second se	
	107 107	111 174	All COL	440.5	3445 846	Wellwad Presser	130.00			
-	413.007	263 452	1052 1547	NAC NO.	345 (1)/2	Wallread Temporalizat	108.83	max.		
10		202 820	494 457	631 037	226.000	Fast Node Texperature	100.63	DUP F		
1	517.003	246.82	100 343	574 262	310.512	Fotal Share C	129.37		Sea and a se	1-25
10	100 001	346.903	#100 PMT	105.005	346-916	Total dP Siture	377,10			
	676 301	110 204	STORE BARK	405 344	700 417	d'Treison)	5,86		1000	
	671 101	ACAS NEW	815 322	4117 6411	100 1000	P Depute	367.62			
	273 671	Art Lei	836.400	AND REAL	4579.618	dP Sand Carled	24.56	17	See-9.37	
10	776.121	472.03	104 283	353.57	COLD 31 FT	Send Completion	AR	The second		
17	826 243	604 212	1019 7095	105 100	1000 9000	Gravel Plack Vo	0.30974			
11	1020-201	876.754	854 817	No. 198	632 368				000000000000000000000000000000000000000	
10	808-801	6273 1992	220.040	100.154	715 800	Ingentions Compile	1006.0		_	
10	1004 ST	2007.275	844 600	0.002216	0				1	
14	1911.571	2038-7248	264 MSC	2.32710	14					

Figure 38: System 3 variable output of TK-45S

Based on figure38, the pre-acid skin for TK-44S is matching at:

Pre-acid Skin = Total skin – Sand Control skin

=116

- Q_{gross}= 609.4 bopd
- Q_{net}= 371.7 bopd

Error calculation: [(609.4-605) /605]* 100% = 0.73 %. The error is less then 5%, therefore, it is approved.

Index (IPR) v Outlow (VLP) Pick (IX-455 0407/11 20 18:22)

Figure 40: Inflow vs. Outflow plot of pre-acid TK-45S

well model

Figure 39: IPR plot for pre-acid TK-45S well model

Analysis of expected post-acid skin for TK-45S:

%Skin reduction	Skin reduced	Qoil (bopd)	Q gain (bopd)
10	104.4	399	27.3
20	92.8	436.6	64.9
30	81.2	482.3	110.6
40	69.6	536.2	164.5
50	58	604.8	233.1
60	46.4	694.6	322.9
70	34.8	814.7	443

Table23: Oil gain for TK-45S expected %skin reduction

Figure 41: Inflow versus Outflow plot with each TK-45S skin reduction case

50% skin reduction is chosen as the base case for this acid job. The determination of Q gain when skin reduced to 50% is:

$$Q_{gain} = Q_{post-acid} - Q_{pre-acid}$$

= Qof skin58- Qof skin 116

=604.8 bopd - 371.7 bopd

=233.1 bopd

Therefore, the expected Qgain after acid job is 233.1 bopd if the WC is maintained. WC tends to increase or decrease after acid job done. Thus, sensitivity for WC needs to be done in order to compare the Qgain for each WC case. Sensitivities to WC of 30%, 35%, 40%, 45% and 50% is run for skin of 58.

Figure 42: Inflow versus Outflow plot with WC sensitivities for TK-45S

%Skin reduction	96WC	Qoli (bopd)	Q gain (bopd)		
50	30	702.2	330.5		
50	35	648.6	276.9		
50	40	595.2	223.5		
50	45	542	170.3		
50	50	489.2	117.5		

Table24: Oil gain for each WC in TK-455

40% of watercut is chosen as the base case for this acid job.

4.3 ACTUAL POST-ACID JOB WELL MODEL: WEST LUTONG

ACT. DATE	BEAN	GRO5S (stb/d)	W/C (%)	NET (stb/ d)	GAS OUTPUT (Mscf/d)	FORM GAS (Mscf/d)	GASLIFT (Mscf/d)	FGOR (scf /stb)	FGLR (scf/s tb)	Wp (stb/d)	FTHP (psig)	CHP (psig)	FLP (psig)
1-Feb- 09	64	2378	55	1070	2000	1800	200	1177	757	1308	120	500	80

WL-07L post-acid model: K reservoir

Table25: WL-07L post-acid well test

Well test data dated of 1st February 2010 is chosen as the reference for post-acid job well model. The input for sensitivity to skin was generated from 10 to 50 to find out the best skin that represents the well test data.

Figure43: Sensitivity Plot WL-07L, Liquid rate versus Skin

Figure 44: Inflow and Outflow Plot with sensitivity of skin from 10 to 20

According to the graph of Liquid rate versus Skin (Figure20), it shows that the skin of WL-07L must be between 10 to 20 in order to match with well test data which is Q_{gross} = 2378 bopd and Q_{net} = 1070 bopd at WC=55%. Based on figure 44, we can conclude that the matching skin for WL-07L is 11.11.

Calculate	Plot	Sensitivity	Sensitivity P	ND Report	Export O	pliana Dana Main	Litt	Curves Help
Terstator						Vatisbles		
	Liquid Hom	· CO Fiste	MLP Present	e IPA Piersua	e dP Tutel Skin			
	- 18-crive	- Sim/den	1. 1. 19	to regio	Elso Pelos	and a second		
1	3 23213	1.45446	961.791	2249.63	0.96533	Solution Details		
2	173.038	77.9671	5382741	2176.09	52.1221	Towned Date	22778	
3	342.844	154.29	541.27	2102.53	104.207		1251 282	
4	512.65	230.692	709.059	2027.97	157.315	Ob Diata	1009.9	
5	682.456	367.105	751.352	1951.98	231.563	Warmer Date	1202 2	
8	952.262	393.516	804 927	1974.73	267.095	Richardson Million Designation	1005 14	
7	1022.07	459.93	838.445	1795.95	324.047	and the second second second	120.00	1
	1191.07	536.343	878.884	1715.43	382 649	The second Property and the	114.45	
9	1361.68	612,755	907.303	1632.92	443.142	Elect Florin Lowering at an	114.46	
10	1521.49	689.168	934.063	1548.1	505.846	Total Chai	114.40	
11	1701.29	765.581	965.612	1490.55	571.177		1022 SIL	
12	1871.1	841.584	991.894	1369.7	639.696	(IP Fileboard	115.06	
13	2040.9	918.406	1017.38	1224.77	712.19	de turidu	824.33	
14	2210.71	994.819	1043.37	1174.58	789.824			
15	2380.51	1071.23	1069.6	1067.29	874.456			
16	25260.32	1147.64	1100.23	949.547	969.4			
17	2720.13	1224.06	1127.73	BT4.224	1081.91			
18	2069.93	1300.47	1155.7	637.590	1235.35	Instation Depth	2236.1	
.19	3059.74	1376.99	1184.33	331.865	1517.94			
20	3229.54	1452.3	1213.94	6.06021	1020.43			

Figure 45: System 3 variable output of WL-07L

Based on figure 45, the post-acid skin for WL-07L is matching at:

- S=11.11,
- Q_{gross}= 2377.6 bopd
- Q_{net}= 1069.9 bopd

Error calculation: [(1069.9-1070) /1070]*100% = 0.01%. The error is less then 5%, therefore, it is approved.

Figure46: IPR plot for post-acid WL-07L well model

Figure 47: Inflow vs. Outflow plot of post-acid WL-07L well model

WL-08S post-acid model: H reservoir

ACT. DATE	BEAN	GROSS (stb/d)	W/C (%)	NET (stb/ d)	GAS OUTPUT (Mscf/d)	FORM GAS (Mscf/d)	GASLIFT (Mscf/d)	FGOR (scf /stb)	FGLR (scf/s tb)	Wp (stb/d)	FTHP (psig)	CHP (psig)	FLP (psig)
3-Oct- 09	64	1098	72	307	546	458.00	88	1490	417	790.6	120	650	80
				Tabl	e26: WL-0	8S post-ac	id well test						

Well test data dated of 3rd October 2009 is chosen as the reference for post-acid job well model. The input for sensitivity to skin was generated from 10 to 50 to find out the best skin that represents the

Figure48: Sensitivity Plot WL-08S, Liquid rate versus Skin

Figure 49: Inflow and Outflow Plot with sensitivity of skin from 10 to 25

According to the graph of Liquid rate versus Skin (Figure 48), it shows that the skin of WL-08Smust be between 10 to 25 in order to match with well test data which is Q_{gross} = 1097.8 bopd and Q_{net} = 307.2 bopd at WC=72%. Based on figure 49, we can conclude that the matching skin for WL-08S is 21.67.

alculate	Plot	Sensitivity	Sensitivity Pr	vD Report	Export 0	ations Done Main	Lik	Curves He
rsits						Variables		
	Liquid Riele	Od Bale	VEP Pressue	PR Pressure	dP Total Skin			
	- 20 A.	- 5 11-			1			
	578/682	518/682	(prig	Ding .		Enhance		
1	1.50236	8.42066	1016.05	2158.58	1.14966	Solution Details		
2	80.4316	22.5208	900.524	2083.84	61.8752	Lipad Bate	1097.2	
3	159.361	44.621	793.508	2008.39	123.281	Gan Bata	457.758	ManL/day
4	238.29	66.7212	830.641	1332.16	185.442	Of Rate	307.2	
5	317.219	88.8214	858.264	1855.06	248.448	Water Ralat	790.0	STB/dag
6	396.148	110.922	878.822	1776.99	312.406	Schilton Node Pressien	996.78	
7	475.078	133.022	895.651	1697.81	377.448	Welfned Perssen	120.00	perc
8	554.007	155.122	910,39	1617.35	443.741	Wallvad Tempeuture	101,26	deg F
3	632.936	177.222	922.837	1535.4	511,495	First Node Temperature	101.26	deg #
10	711.865	199.322	935.812	1451.69	580.986	Total Skin	21.67	
11	790.795	221.422	948.419	1365.84	652.596	Total dP Skin	965.60	and .
12	869.724	243.523	960.848	1277.31	726.853	OP FINITION	52.24	
13	948.653	265.623	973.265	1185.31	804.561	dP Gravity	818.95	ipel =
14	1027.58	287.723	985,696	1088.52	897.025			
15	1106.51	309.823	998.255	994.529	976.657			
16	1185.44	331.923	1010.98	867.776	1079.02			
17	1264.37	354.023	1026.22	715.291	1217.09			
18	1343.3	376.124	1039.97	479.639	1438.3	Injection Depth-	3739.7	lines
19	1422.23	398.224	1054.22	242.178	1661.28			
20	1501.16	420.324	1068.93	3.63247	0			

Figure 50: System 3 variable output of WL-08S

Based on figure 50, the post-acid skin for WL-08S is matching at:

- S=21.67,
- Q_{gross}= 1097.2 bopd
- Q_{net}= 307.2 bopd

Error calculation: [(307.2-307) /307]*100% = 0.07%. The error is less then 5%, therefore, it is approved.

Figure 52: Inflow vs. Outflow plot of post-acid WL-08S well model

4.4 ACTUAL POST-ACID JOB WELL MODEL: TUKAU

TK-44S post-acid model: 2-F1/F6 reservoir

DATE Z	ONE	STT	BEAN	GROSS	WC	NET	GASOUT	GAS	GASLIFT	TGLR	GOR	FTHP	CHP	
11-Jan-	2-													
11 E	3/E9	GLI	64	660	44	374	743	75	959	1231	309	200	520	

Table27: TK-445 well test

Sensitivity to skin will be construct in order to search the post-acid job skin based on the chosen Tukau 2009 well test data for pre-acid skin. The input for sensitivity to skin was generated from 10 to 50 to find out the best skin that represents the well test data.

Figure53: Sensitivity Plot TK-44S, Liquid rate versus Skin

Figure 54: Inflow and Outflow Plot with sensitivity of skin from 15 to 16

According to the graph of Liquid rate versus Skin (Figure 53), it shows that the skin of TK-44S must be between 10 to 18 in order to match with well test data which is Q_{gross} = 1178 bopd and Q_{net} = 660 bopd at WC=44%. Based on the graph of Liquid rate versus skin (figure 54), the matching skin with the well test data is 15.44.

eude Lina	ed Rote	Cli Pate							
1.80	all Folm	5 1 10 PT Jac Ma	the second se		- Andrewski -	Vasiables			
1 10		- englisher.	VLP Pressan	IPH Pressan	dl? Total Sker				
	Biline	STRIday	D-rait	TIGHT .					
1 2 28	167	1 26319	259 645	1044 37	0.44556	Solution			
2 120	263	67.6273	455 814	1010 98	24 2287	50	Lution Dietaile		
3 299	27	133 991	496 973	976 766	49 2929		Liquid Riste	1176.7	STE/May
4 377	778	200 355	501 185	941 691	74 155		- Gar Rate	203.613	Mischiday
5 475	295	265.72	517 829	905 696	100.4		OfPate	658.9	STB-33b9
8 594	792	333.084	533.452	969 714	127 584		Water Rate	517.7	STB/day
7 713	3	399 448	551 285	830 667	155 783	S	Station Mode Pressure	669.49	prop
8 83	9617	465 912	565 809	791 461	195.09		Wellhead Pressure	200.00	20-62
9 950	314	532176	648 268	750.979	215.62	N N	Anterward Temperature	120.84	Heg F
10 105	28.8	590 54	659 729	209.077	247 516	Ð	of Naster Temperature	120.84	(Reg-F
11 118	7 33	EEA SILA	620 443	685 572	2901 1454		Total Stors	17.33	
12 120	5 BA	731 253	680 583	620.226	316 187		Total dP Skin	277.89	
13 142	4.74	797 532	690 257	572 716	353 519		diff Friction	17.25	(\$1\$)
14 154	2.95	963 996	699 555	522.59	301 506		dP Gravity	448.41	Per
15 166	1.36	930 361	771 054	469 179	436-616		dP Sand Control	26.90	(\$P\$7).
15 177	4 107	00E 70E	770 929	A11 A11	492 919		Sand Control Skin	1.89	
17 189	8 37	1063.09	786,697	247 367	537 529		Gravel Pack Ve	0.54926	BAYES
19 201	6.99	1129.45	794 341	272 957	600 578				
19 213	5 39	1195.82	801 93	173 535	690.286		tranction Debth	1953.8	
		- ISTANDE		a concertation.					

Figure 55: System 3 variable output of TK-44S

Based on figure55, the pre-acid skin for TK-44S is matching at:

Pre-acid Skin = Total skin – Sand Control skin

- Q_{gross}= 1176.7 bopd
- Q_{net}= 658.9 bopd

Error calculation: [(658.9-660) /660]* 100% = 0.16 %. The error is less then 5%, therefore, it is approved.

Figure 57: Inflow vs. Outflow plot of TK-44S post-acid we model

TK-45S post-acid model: 2-E3/E9 reservoir

DATE	ZONE	STT	BEAN	GROSS	wc	NET	GASOUT	FORMATION GAS	GASLIFT	TGLR	GOR	FTHP	СНР	FLP
24-Feb-	2- E3/E9	GLI	64	1052	40	631	743	75	437	1231	286	160	620	110

Table28: TK-45S well test

Sensitivity to skin will be construct in order to search the post-acid job skin based on the chosen Tukau 2009 well test data for pre-acid skin. The average well test data is chosen as the reference for pre-acid job well model. The input for sensitivity to skin was generated from 10 to 70 to find out the best skin that represents the well test data.

Figure58: Sensitivity Plot TK-45S, Liquid rate versus Skin

Figure 59: Inflow and Outflow Plot with sensitivity of skin from 50 to 60

According to the graph of Liquid rate versus Skin (Figure 56), it shows that the skin of TK-45S must be between 50 to 60 in order to match with well test data which is Q_{gross} = 1052 bopd and Q_{net} = 631 bopd at WC=40%. Based on the graph of Liquid rate versus skin (figure 57), the matching skin with the well test data is 51.

Calculate	Plot	Sensitivity	Sensitivity Pv	0 Report	Esport Og	stions Done Main	Litt	Euryes Help
make						Variables		
	Liquid Rate	Dia Riohe	VLP Preseure	IPH Plessure	dP Total Slon			
	STEDHAN				1 2540.5			
11	204113	1 22468	506 901	1999-421	0.51825	Solution		
2	109 276	65 5653	492 106	000 652	28.0782	Solution Distails		
	216.51	129.905	510 102	837 207	56.3078	Liquid Frate	1052.3	STE/day
	323 744	194 247	491 223	805 045	85 2486	Gas Rote	190.568	
-	430.979	256 597	494 832	772 118	114 949	ChiPote	631.4	STEALS
1	538 213	322.928	510.855	738 369	145 463	Waim Rate	420.9	STD/Hm/
	CAS 440	387 369	524 192	2013 732	170.96	Sphillen Node Preimie	562.50	DING
-	752 692	451 609	535.756	668 127	209 219	Wellheid Flessen	160.00	
	050 017	ETE OF	546 109	E31 457	242535	Wellhoads 7 emperature	116.34	-dieg F
10	DCT 1ET	1000 2001	FUNCE FOR	592 8122	777 73	First Nocle Temperature	116.34	
111	1074 29	E44 675	554.30	554 413	212153	Totai Skin	61.34	
12	1101 62	700 972	572 48	512 694	350 599	Fedel dP Skin	305,62	
14	1707.00	772 34 2	EDO 3E	471 199	309 924	dP Fachers	12.06	
10	1300.00	007 653	597 965	476.539	A21 100	dP Gitavity	367.15	
10	1602.32	001 004	505 000	379.234	475 199	dP Sand Centrol	46.77	
10	1003.02	966 234	602 104	328 479	522 652	Sand Control Star	10.34	
12	1717 29	1050.69	600 937	272 928	574.995	Gravel Pack Vo	053444	
10	1025.03	1095.02	E15 649	209.916	634 592	in the second second	anne n	
10	1972.26	1159.36	622 258	112 341	2019 845	Interchant Linterth	Teels D	
10	20201 6	1000.7	C'29 090	1 00502	0			
ag	Langra	i feed a	0600.030	r.ondie				

Figure60: System 3 variable output of TK-45S

Based on figure58, the pre-acid skin for TK-45S is matching at:

• Pre-acid Skin = Total skin - Sand Control skin

=51

- Q_{gross} = 1052 bopd
- Q_{net}= 631.4 bopd

Error calculation: [(631.4-631) /631]* 100% = 0.06 %. The error is less then 5%, therefore, it is approved.

Figure61: IPR plot for post-acid TK-45S well model

Figure 62: Inflow vs. Outflow plot of post-acid TK-45S we model

4.5 DISCUSSIONS

On skin reduction calculations, at least two cases will be compared in order to predict the possible skin reduces after acid treatment in the particular well. The particular candidate historical skin reduction will be reviewed to predict the average of skin reduction for previous acid job done. This method is used to find the estimation of skin reduction for each acidizing job done for the field. Both field has strong to moderate water drive mechanism, therefore, the reservoir pressure for both field is maintain even though it has been produced since 1966. Both West Lutong and Tukau field is situated near to each other; therefore, the lithology and reservoir properties are almost the same. This is the reason why this particular method is applied for skin reduction estimation in order to stimulate the well with nitrified acidizing method.

There will be a decrease in skin reduction after each acid job is done. It is because during early production years, the reserves for the well were high and the watercut was low or no watercut occured. Thus, any acid treatment would result in higher skin reduction. The varying skin reduction trend was also due to the acid recipe imposed for each candidate. Nitrified preflush/main flush/afterflush is also believed to contribute to deeper penetration of main flush in the near well bore area as evident in higher skin reduction/ gross/net oil. This method has been conducted in both field in 14 July 2009 and the result of well test data after the date has been used for post-acid simulation by PROSPER.

Referring to the output of Final Year Project 1, the expected skin reduction for nitrified acidizing based on the history acid job done for both field is 50%. After that, the sensitivity to skin reduced is construct by using PROSPER software to determine the oil gain for each skin. The oil gains for each case are calculated by using:

Qgain= Qpost-acid - Qpre-acid

= [(Skin before acid job) - (Skin after acid job)/ Skin before acid job]* 100%

The skin reduction percentage for each well will be calculated by using this equation:

% Skin reduction

By comparing both cases in WL-07L, the skin reduction in WL-07L is:

% Skin reduction (WL-07L) = $[(S_{pre-acid} - S_{post-acid})/S_{pre-acid}] * 100\%$ = [43.2 - 11.11) / 43.2] * 100%= 74.3% \approx 74%

The oil gain after acidizing for WL-07L is:

The percentage of oil gain after acidizing for WL-07L is:

%Oil gain (WL-07L) = [{Q_{post-acid} - Q_{pre-acid}} /Q_{pre-acid}] * 100% = [692.8 / 377.1] * 100% = 183% of oil gain

Based on the calculation, it can be concluded that the skin reduced almost 74% with nitrified acidizing method and SAFMAK II, which exceeding the predicted skin reduced for WL-08S which is 50%. The watercut for WL-07L is reduced from 58% to 55% after acid job done. The watercut has reduced due to increasing amount of oil after acid job. The oil gain is increasing 183% from pre-acid job. Therefore, we can conclude that this method is suitable and effective to be use in West Lutong with the additional usage of SAF MAK II. SAF MAK II has shown good stimulation and deeper penetration of acid in high watercut formation.

Next is the result discussion for WL-08S. By comparing both cases in WL-08S, the skin reduction in WL-08S is:

% Skin reduction (WL-08S)	= [(S _{pre-acid} -S _{post-acid})/ S _{pre-acid}] * 100%
	= [63.33- 21.67) / 63.33] * 100%
	= 65.8% ≈66%

The oil gain after acidizing for WL-08S is:

Oil gain (WL-08S) = Q_{post-acid} - Q_{pre-acid}

= 307.2- 104.4 bopd

= 202.8 bopd

The percentage of oil gain after acidizing for WL-08S is:

%Oil gain (WL-08S)

= [(Q_{post-acid} - Q_{pre-acid})/Q_{pre-acid}] * 100%
= [202.8 / 104.4] * 100%

= 194% of oil gain

WL-08S skin reduced from 63.33 to 21.67 after nitrified acidizing with additional SAF MAK II has done in 14 July 2009. Total of 66% of skin reduction is exceeding the predicted skin reduced for WL-08S which is 50%. Based on the simulation done by using PROSPER software, the oil rate for post acid job in WL-08S is increasing from 104.4 bopd to 307.2 bopd. The total percentage of oil gain by calculation is 194%. The watercut in WL-08S also has been reduced from 75% to 72% after acidizing job is done. Thus, we can conclude that SAFMAK II is effective in stimulate oil zone in high watercut formation and reduce or maintaining the watercut after acidizing done. Nitrified aciding is suitable and contributed a lot for deeper penetration of acid in stimulating the well.

Both wells in West Lutong has skin reduction more than 50% predicted earlier in the project, thus it is concluded that SAFMAK II and nitrified acidizing method is effective for stimulate high watercut formation.

Tukau field aciding campaign was done in the middle of July 2009 by using nitrified acidizing method with no SAFMAK II added. The well test data dated later by July 2009 has been reviewed in order to construct well model for post acid job. TK-44S result is reviewed and by comparing both cases in TK-44S, the skin reduction in TK-44S is:

% Skin reduction (TK-44S)

= [(S_{pre-acid}-S_{post-acid})/ S_{pre-acid}] * 100% = [39-15.44) / 39] * 100% = 60.4% ≈60%

The oil gain after acidizing for TK-44S is:

Oil gain (TK-44S)

= Q_{post-acid} - Q_{pre-acid} = Q_{15.44}-- Q₃₉ = 658.9-- 434.3 bopd

= 224.6 bopd

The percentage of oil gain after acidizing for TK-44S is:

%Oil gain (TK-44S) = [(Q_{post-acid} - Q_{pre-acid})/Q_{pre-acid}] * 100% = [224.6 / 434.3] * 100% = 52% of oil gain

The skin reduction for TK-44S is 60% which is exceeding 50% of skin reduction predicted before acid job done. The oil gain is increasing from 434.3 bopd to 658.9 bopd which is increasing 52% from pre-acid oil rate. The watercut for this well is maintaining 44% after acid job. Based on the result, we can conclude that nitrified acidizing method is suitable and effective in Tukau field but recommended to use SAF MAK II in the future for better stimulation.

Next is the result discussion of TK-45S. By comparing both cases in TK-45S, the skin reduction in TK-45S :

% Skin reduction (TK-45S) = [(S_{pre-acid} -S_{post-acid})/ S_{pre-acid}] * 100% = [116 - 51.1) / 116] * 100% = 55.9% ≈56%

The oil gain after acidizing for TK-45S is:

Oil gain (TK-45S) = $Q_{post-acid} - Q_{pre-acid}$ = $Q_{51.1} - Q_{116}$ = 631.4- 371.7 bopd = 259.7 bopd The percentage of oil gain after acidizing for TK-45S is:

Oil gain (TK-45S) = [(Q_{post-acid} - Q_{pre-acid})/Q_{pre-acid}] * 100% = [259.7 / 371.7] * 100% = 70% of oil gain

TK-45S skin reduced from 116 to 51.1 after nitrified acidizing with no additional SAF MAK II done. Total of 56% of skin reduction is exceeding the predicted skin reduced for TK-45S which is 50%. Based on the simulation done by using PROSPER software, the oil rate for post acid job in TK-45S is increasing from 371.7 bopd to 631.4 bopd. The total percentage of oil gain by calculation is 70%. The watercut in TK-45S

is increasing from 39% to 40% after acidizing job is done. The increasing of watercut after acid job is normal and predicted earlier as the watercut tends to increase or decrease after stimulation done. Based on the result, we can conclude that nitrified acidizing method is suitable and effective in Tukau field but recommended to use SAF MAK II in the future for better stimulation.

CHAPTER 5 CONCLUSION

ſ

As for the conclusion, the total skin reduction for both West Lutong and Tukau field is about 55% to 70% which indicates that the theory of 50% of skin reduction will be expected after nitrified acidizing done in Tukau and West Lutong in FYP 1 is confirmed.

Nitrified Preflush/Main Flush/Afterflush is believed to contribute to deeper penetration of main flush in the near well bore area as evident in higher skin reduction/ gross/net oillt can also be concluded that acidizing in high water cut is viable with SAF MK11 and current BJ Half Strength Sandstone Acid and S3 acid recipe. SAF MK11 diverter had proven its application to divert acidizing treatment fluid to damaged formation by sealing off water zone temporarily as evident in water cut reduction in both cases in West Lutong. Tukau field is recommended to use SAFMAK II for better stimulation in the future as the usage of SAF MAK II is effective in reducing/maintaining watercut after acidizing in high watercut formation.

REFERENCES

- BJ Oilwell Services (M) Sdn. Bhd , ENG112 N2 Nitrogen Uses and Applications Manual
- BJ Oilwell Services (M) Sdn. Bhd. SAF MK 11- "Water Control Diversion" presentation
- Nasr-El-Din, H.A., Al-Habib, N.S., Al-Mumen A.A., Jemmali, M. and Samuel, M., "A New Effective Stimulation Treatment for Long Horizontal Wells Drilled in Carbonate Reservoirs," paper SPE 86516
- Tukau Acid Campaign 2010 presentation
- TK-44S Acid Stimulation 2009 presentation
- TK-45S Acid Stimulation 2009 presentation
- Tukau Field Reservoir Management Review, 2009
- D PEB WLBK PE Post job report 2009
- Saudi Arabamco Journal of Technology, Nasr-El-Din, H.A., Al-Habib, N.S., Lahmadi.A., Jemmali,
 M. and Samuel, M "A Novel Technique to Acidize Horizontal Wells with Extended Reach," 2005
- West Lutong Acid Stimulation Innovation 2009
- West Lutong Field Reservoir Management Review, 2009