CERTIFICATION OF APPROVAL

BIOMETRICS:
FINGERPRINT RECOGNITION

by

Raja Mohd. Firdaus Raja Aljunid

A project dissertation submitted to the
Electical and Electronics Engineering Programme
Universiti Teknologi PETRONAS
In partial fulfillment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved by,

s

Mr. Patrick Sebastian

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
DECEMBER 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and a cknowledgements,

and that the original work contained herein have not been undertaken or done unspecified

gources Or persons.

¢

\ N
Raja M\éhd. Firdaus Raja Aljunid

TABLE OF CONTENTS

Acknowledgement 1
Abstract 2
CHAPTER 1: INTRODUCTION 3
1.1 Problem Statement 3
1.2 Objectives and Scope of Study 4
1.3 Background of Study 5
1.3.1 Introduction to Biometrics 8
1.3.1.1 Application of Biometrics 9
1.3.2 Fingerprint 10
1.3.2.1 Fingerprint Formation 11
CHAPTER 2: LITERATURE REVIEW 12
CHAPTER 3: METHODOLOGY 14
CHAPTER 4: DISCUSSIONS 18
4.1 Fingerprint Matching 18
4.2 Fingerprint Classification 19
4.3 Fingerprint Image Enhancement 23
4.3.1 Methods 23
44 Graphic User Interface (GUI) 26
4.5 Displaying the Original Image 28
4.6 Centralizing Function 31
47 Crop 33
48 Sectorized 35
49 Normalized 38
4.10 Featured Data 40
411 Finger code 44

4.12 Checking

CHAPTER 5: CONCLUSION

45

47

BIBLIOGRAPHY

48

REFERENCES

51

Figure 1.1:

Figure 1.2:
Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.2:

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 4.14:
Figure 4.15:

LIST OF FIGURES

Various electronic access applications in widespread use that
require automatic authentication

Orientation field, thinned ridges, minutiae, and singular points
The basic theory or flow of the fingerprint recognition

System diagram for an automatic verification system

Flow chart showing the flow of the project

Flow chart showing the flow of the program

Six major fingerprint classes. Twin loop images are labeled as
whorl in the NIST-4 database.

Orientation field, thinned ridges, minutiae, and singular points
The source code of the GUI at first attempt.

The GUI of the Fingerprint Recognition

The code in MATHLAB which is used to call the image and
display the image.

The original image is displayed with the MATHLAB tmage
Viewer

The original image of the fingerprint is display at the center of
the GUI

The centralizing function displays the image and binarized it.

The crop image of the centralized fingerprint. The crop function

will only extract the fingerprint from the center to a certain pixels.

The sectorized print is show is the smaller figure. The circle
indicating that the area is sectored and will be analyzed.

The small picture shows the normalized fingerprint afier
normalization.

The feature of the fingerprint is being extracted.

The feature of the fingerprint is being saved in database.

The fingerprint data is successfully saved in database as * DAT

format.

12
14
16
17

21

22

26

27

28

29

30
31

35

38

40

44

44

Figure 4.16:
Figure 4.17:
Figure 4.18:

The tab to select the checking of the fingerprint.
The result of fingerprint scanning.
The result of database scanning that is not the same or exist in

the database.

45
45

46

ACKNOWLEDGEMENT

I want to praise to the AL-Mighty Allah s.w.t for giving me the chance to finish my
project for this whole year. I want to thank to my family for supporting me for the
whole 5 year when I’'m studying in University Technology of PETRONAS. I want to
give my greatest gratitude to my supervisor, Mr. Patrick Sebastian from Flectrical &
Electronics Department for supervising me and helping me during this year for this
projet. My gratitude also for Mr. Luigi Rosa, an engineer for SIEMENS in Italy for
helping me with the programming codes. Dr. Salil Prabhakar for the theory of the
image processing especially in fingerprint recognition. My technician, Miss Siti Hawa
from the Electrical & Electronics Department of UTP. My friends for supporting and
helping me with this project. Far and foremost, the University Technology of

PETRONAS that has given me the chance to study in engineering here. Thank you.

ABSTRACT

Accurate automatic personal identification is critical in a variety of applications in our
electronically interconnected society. Biometrics, which refers to identification based
on physical or behavioral characteristics, is being increasingly adopted to provide
positive identification with a high degree of confidence. Among all the biometric
technigues, fingerprint-based authentication systems have received the most attention
because of the long history of fingerprints and their extensive use in forensics.

However, the numerous fingerprint systems currently available still do not meet the
stringent performance requirements of several important civilian applications. To
assess the performance limitations of popular minutiae-based fingerprint verification
system, we theoretically estimate the probability of a false correspondence between
two fingerprints from different fingers based on the minutiac representation of
fingerprints. Due to the limited amount of information present in the minutiae-based

representation, it is desirable to explore alternative representations of fingerprints.

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Fingerprint identification is one of the most important biometric methods used in
security. The task in this project is to develop and implement a program that 1s able to

identify or verify a fingerprint.

1.2 Objectives and Scope of Study

The scope of study is to design and construct an algorithm on identifying a person
using fingerprints. The objective of the project is to develop and understand the
algorithm in a fingerprint identification system.

The scope of the study is in what are/is the program being used in the development
stage. For this Final Year Design Project, MATLAB has been choose to design the

project and develop the program.

1.3 Background of Study

With the advent of electronic banking, e-commerce, and smartcards and an increased
emphasis on the privacy and security of information stored in various databases,
automatic personal identification has become a very important topic. Accurate
automatic personal identification is now needed in a wide range of civilian
applications involving the use of passports, cellular telephones, automatic teller
machines, and driver licenses. Traditional knowledge-based (password or Personal
Identification Number (PIN)) and token-based (passport, driver license, and ID card)
identifications are prone to fraud because PINs maybe forgotten or guessed by an
imposter and the tokens may be lost or stolen. Therefore, traditional knowledge-based
and token-based approaches are unable to satisfy the security requirements of our

electronically interconnected information society (see Figure 1.1).

Cellular
Phone

Asrport
Check-in

Figure 1.1: Various electronic access applications in widespread use that require
automatic authentication.

g
AL

Thinned ridges Minutine {3, Core {0}, and Delta (L),

Figure 1.2: Orientation field, thinned ridges, minutiae, and singular points.

1.3.1 Introduction to Biometrics

Biometrics, which refers to identifying an individual based on his or her physiological
or behavioral characteristics, has the capability to reliably distinguish between an
authorized person and an imposter. Since biometric characteristics are distinctive, can
not be forgotten or lost, and the person to be authenticated needs to be physically
present at the point of identification, biometrics is inherently more reliable and more
capable than traditional knowledge-based and token-based techniques. Biometrics
also has a number of disadvantages. For example, if a password or an ID card is
compromised, it can be easily replaced. However, once a biometrics is compromised,
it is not possible to replace it. Similarly, users can have a different password for each
account, thus if the password for one account is compromised, the other accounts are
still safe. However, if a biometrics is compromised, all biometrics-based accounts can
be broken-in. Among all biometrics (e.g., face, fingerprint, hand geometry, iris, retina,
signature, voice print, facial, thermogram, hand vein, gait, ear, odor, keystroke
dynamics, etc.), fingerprint-based identification is one of the most mature and proven

technique.

1.3.1.1 Application of Biometrics

Biometrics has been widely used in forensics applications such as criminal
identification and prison security. The biometric technology is rapidly evolving and
has a very strong potential to be widely adopted in civilian applications such as
electronic banking, e-commerce, and access control. Due to a rapid increase in the
number and use of electronic transactions, electronic banking and elecironic
commerce are becoming one of the most important emerging applications of
biometrics. These applications include credit card and smart card security, ATM
security, check cashing and fund transfers, online transactions and web access. The
physical access conirol applications have traditionally wused token-based
authentication. With the progress in biometric technology, these applications will
increasingly use biometrics for authentication. Remote login and data access
applications have traditionally used knowledge-based authentication. These
applications have already started using biometrics for person authentication. The use
of biometrics will become more widespread in coming years as the technology
matures and becomes more trust worthy. Other biometric applications include welfare
disbursement, immigration checkpoints, national ID, voter and driver registration, and

time and attendance.

1.3.2 Fingerprint

Fingerprints are the ridge and furrow patterns on the tip of the finger and have been
used extensively for personal identification of people. Figure 1.2 shows an example of
a fingerprint. The biological properties of fingerprint formation are well understood
and fingerprints have been used for identification purposes for ¢ enturies. Since the
beginning of the 20th century, fingerprints have been extensively used for
identification of criminals by the various forensic departments around the world. Due
to its criminal connotations, some people feel uncomfortable in providing their
fingerprints for identification in civilian applications. However, since fingerprint-
based biometric systems offer positive identification with a very high degree of
confidence, and compact solid state fingerprint sensors can be embedded in various
systems (e.g., cellular phones), fingerprint-based authentication is becoming more and
more popular in a number of civilian and commercial applications such as, welfare
disbursement, cellular phone access, and laptop computer log-in. The availability of
cheap and compact solid state scanners as well as robust fingerprint matchers are two
important factors in the popularity of ﬁngerprint-based identification systems.
Fingerprints also have a number o { disadvantages as compared to other biometrics.
For example, approximately 4% of the population does not have good quality
fingerprints, manual workers get regular scratches on their fingers which poses a
difficulty to the matching system, finger skin peels off due to weather, fingers develop
natural permanent creases, temporary creases are formed when the hands are
immersed in water for a long time, and dirty fingers can not be properly imaged with
the existing fingerprint sensors. Further, since fingerprints can not be captured
without the user’s knowledge, they are not suited for certain applications such as

surveillance.

10

1.3.2.1 Fingerprint Formation

Fingerprints are fully formed at about seven months of fetus development and finger
ridge configurations do not change throughout the life of an individual except due to
accidents such as bruises and cuts on the finger tips. This property makes fingerprints
a very attractive biometric identifier. Biological organisms, in general, are the
consequence of the interaction of genes and environment. It is assumed that the
phenotype is uniquely determined by the interaction of a specific genotype and a
specific environment. Physical appearance and fingerprints are, in general, a part of
an individual’s phenotype. In the case of fingerprints, the genes determine the general
characteristics of the pattern. Fingerprint formation is similar to the growth of
capillaries and blood vessels in angiogenesis. The general characteristics of the
fingerprint emerge as the skin on the fingertip begins to differentiate. However, the
flow of amniotic fluids around the fetus and its position in the uterus change during
the differentiation process. Thus, the cells on the fingertip grow i a
microenvironment that is slightly different from hand to hand and finger to finger.
The finer details of the fingerprints are determined by this changing
microenvironment. A small difference in microenvironment is amplified by the
differentiation process of the cells. There are so many variations during the formation
of fingerprints that it would be virtually impossible for two fingerprints to be alike.
But since the fingerprints are differentiated from the same genes, they will not be
totally random patterns either, We could say that the fingerprint formation process is a

chaotic system rather than a random one.

11

CHAPTER 2

LITERATURE REVIEW

Necessary information on program structure, design of the system and the flow of the
system must be acquired. Another important aspect of the identification and
recognition is the part of comparison and recognition result. Below is the program

flow of the system.

Enrollment
Biometrics Capture Feature
data Extract
Template
Database
Identification I Feature Extract
Biometrics Capture
Data A‘
’ 0
Comparison <

Figure 2.1: The basic theory or flow of the fingerprint recognition

Generally, all biometrics system contain two parts, enrollment and identification part,

The enrollment part functions to have a user’s characteristic registered so that it can

12

be used as a criterion when identification is performed; whereas the identification part

provides the user interface to have then end user’s characteristics capture and verified.

e Capture stage

This is the process that a p hysical or behavioral sample is input to the system.
Different system use different devices to get the sample. Generally, physical
biometrics data are capture by some type of cameras and the sample is stored as a

digital image for processing.

o Feature Extraction Stage
This is the process that the unique data are extracted from the sample and a
template is created. The template for any two persons should be different and

different sample from same person should be similar enough.

o Comparison Stage

It is the process that the newly extracted template from a sample is compared to a
registered in the system. Because even the samples from the same person may
vary from time to time, the comparison algorithm should tolerate the tiny changes
from the s ame p erson yet d istinguish d ifferent p ersons. F or e xample, the finger
may contact with the live scanner at different place, direction and pressure, so in

practice, no two exact same samples.

e Decision Stage
This stage is the process that the system decides whether the template extracted

from the new sample matches the registered one.

As was stated previously, this system will be able to identify the owner of a
fingerprint. with reasonable accuracy and will have the ability to reject a fingerprint
when the system is "unsure" of it's results. The system presented has been divided into
three stages: preprocessing of a fingerprint image, extraction of the features that
represent the fingerprint, and the classification of the fingerprint for a decision or a

rejection.

13

CHAPTER 3

METHODOLOGY

' Enrollmenf Module

| Feature

B Lxtractor

Feature

Feature

ame Ny .
— B Extractor e Matcher |

henticition Modu

Figure 3.1: System diagram for an automatic verification system.

The figure above, which is figure 3.1, is the standard working or flow of the
fingerprint identification. A biometric system can be operated in two modes: I)
verification mode and 2) i dentification m ode. In the verificationmode, a biometric
system either accepts or rejects a user’s claimed identity while a biometric system
operating in the identification mode establishes the identity of the user without a
claimed identity. Fingerprint identification is a more difficult problem than fingerprint
verification because a huge number of comparisons need to be performed in
identification. In this report, I have focused on a biometric system operating in a
verification mode and an indexing scheme (fingerprint classification) that can be used

in an identification system.

14

The first part or step of all is to choose the correct programming language to use for
this programming. There are many type of language can be use, C++, C language,

JAVA, Visual Basic, Visual Basic.Net and many more.

Therefore, for this particular programming, it required a necessary programming tool
that has image processing toolbox. So the software or program that will be chosen is
MATLAB. 1 am currently using MATLAB 6 version 12. This software is chosen
because it has the capability to process the image using the image processing toolbox

given by default. It also has the capability to process high definition of images.

The other programming language is not quite suitable such as C++ or C because the
programming itself. We need to define everything including the libraries that are
needed. For the GUI programming, it would be really hard because the statement are

using a lot of IF statements.

For this particular part, a simple GUI is enough for this study. As the objective stated,

student just need to show the program is running and the methods used.

15

Scan
fingerprint into
bitmap format

2

Create the
program

v

Test the
program

v

Modify the
program

v

Test the

program

>

v

Finalize the
program

Figure 3.2: Flow chart showing the flow of the project

16

Run the
program

'

Centralized the
fingerprint

v

Crop the
middle of the

fingerprint

v

Sectorized

!

Normalized

v

Featured the
data of the
fingerprint

v

Finger code the
data

v

Check with the
database

Figure 3.3: Flow chart showing the flow of the program. -

17

CHAPTER 4
DISCUSSION

4.1 Fingerprint Matching

Among all the biometric techniques, fingerprint-based identification is the oldest
method which has been successfully used in numerous applications. Everyone is
known to have unique, immutable fingerprints. A fingerprint is made of a series of
ridges and furrows on the surface of the finger. The uniqueness of a fingerprint can be
determined by the pattern of ridges and furrows as well as the minutiae points.
Minutiae points are local ridge characteristics that occur at either a ridge bifurcation

or a ridge ending.

Fingerprint matching techniques can be placed into two categories: minutae-based and
correlation based. Minutiae-based techniques first find minutiae points and then map
their relative placement on the finger. However, there are some difficulties when
using this approach. It is difficult to extract the minutiac points accurately when the
fingerprint is of low quality. Also this method does not take into account the global
pattern of ridges and furrows. The correlation-based method is able to overcome some
of the difficulties of the minutiae-based approach. However, it has some of its own
shortcomings. Correlation-based techniques require the precise location of a

registration point and are affected by image translation and rotation.

18

Fingerprint matching based on minutiae has problems in matching different sized
{(unregistered) minutiae patterns. Local ridge structures can not be completely
characterized by minutiac. We are trying an alternate representation of fingerprints
which will capture more local information and yield a fixed length code for the
fingerprint. The matching will then hopefully become a relatively simple task of

calculating the Euclidean distance will between the two codes.

4.2 Fingerprint Classification

Large volumes of fingerprints are collected and stored everyday in a wide range of
applications including forensics, access control, and driver license registration. To
reduce the search time and computational complexity, it is desirable to classify these
fingerprints in an accurate and consistent manner so that the input fingerprint is
required to be matched only with a subset of the fingerprints in the database.

Large volumes of fingerprints are collected and stored everyday in a wide range of
applications, including forensics, access control, and driver license registration.
Automatic identity recognition based on fingerprints requires that the input fingerprint
be matched with a large number of fingerprints stored in a database (the FBI database
currently contains more than 630 million fingerprints!). To reduce the search time and
computational complexity, it is desirable to classify these fingerprints in an accurate
and consistent manner such that the input fingerprint needs to be matched only with a
subset of the fingerprints in the database. Fingerprint classification is a technique used
to assign a fingerprint into one of the several pre-specified types already established
in the literature (and used in forensic applications) which can provide an indexing
mechanism. Fingerprint classiﬁcatidn can be viewed as a coarse level matching of the
fingerprints. An input fingerprint is first matched to one of the pre-specified types and
then it is compared to a subset of the database corresponding to that fingerprint type.
To increase the search efficiency, the fingerprint classification algorithm can classify
a fingerprint into more than one class. For example, if the ﬁﬁgcrprint database is

binned into five classes, and a fingerprint classifier outputs two classes (primary and

19

secondary) with high accuracy, then the identification system will only need to search
two of the five bins, thus decreasing the search space 2.5 folds. Continuous
classification of fingerprints is also very attractive for indexing where fingerprints are
not partitioned in non-overlapping classes, but each fingerprint is characterized with a
numerical vector summarizing its main features. The continuous features obtained are
used for indexing fingerprints through spatial data structures and for retrieving
fingerprints by means of spatial queries. In this report, I have concentrated on an
exclusive fingerprint classification and classify fingerprints into five distinct classes,
namely, whorl (W), right loop (R), left loop (L), arch (A), and tented arch (T) (Figure
4.2). The five classes are chosen based on the classes identified by the National
Institute of Standards and Technology (NIST) to benchmark automatic fingerprint
classification algorithms, The natural proportion of occurrence of these five major
classes of fingerprints is 0.3252, 0.3648, 0:1703, 0:0616, and 0:0779 for whorl, right
loop, left loop, arch, and tented arch, respectively. There are two main types of
features in a fingerprint: (¥) global ridge and furrow structures which form special
patterns in the central region of the fingerprint, and (if} local ridge and furrow minute
details (see Figure 4.3). A fingerprint is classified based on only the first type of
features and is uniquely identified based on the second type of features (ridge endings
and bifurcations, also known as minutiae). See Figure 4.3 for examples of ridges,

minutiae, orientation field and singular points in a fingerprint image.

20

Tonted Arch (T}

Figure 4.2: Six major fingerprint classes. Twin loop images are labeled as whorl in the
NIST-4 database.

21

Orientation field

iy

E
O L .

“

Thinned ridges Minutiae (), Core {0}, and Delta (L),

Figure 4.3: Orientation field, thinned ridges, minutiae, and singular points.

22

4.3 Fingerprint Image Enhancement

A critical step in automatic fingerprint matching is to automatically and reliably
extract minutiae from the input fingerprint images. However, the performance ofa
minutiae extraction algorithm relies heavily on the quality of the input fingerprint
images. In order to ensure that the performance of an automatic fingerprint
identification/verification system will be robust with respect to the quality of the
fingerprint images, it is essential to incorporate a fingerprint enhancement algorithm

in the minutiae extraction module.

4.3.1 Methods

The most common method of generating a template emulates the traditional method
of matching "minutiae"-— bifurcations, divergences, enclosures, endings, and valleys
in the ridge pattern. Each minutia is described by a set of numeric variables.
Approximately 80 percent of biometric vendors use minutiae in some fashion. Other
methods include using "traditional" pattern matching techniques and using moiré
fringe patterns. The fingerprint has one of the largest biometric templates, ranging
from 250 bytes (minutiac) to over 1,000 bytes (pattern matching). Note that the
template holds only particular data about the fingerprint (the minutiae), not the image
of the fingerprint itself, nor can the full fingerprint be reconstructed from the

template.

Minutiac points are referred to as 'points' because the fingerprint scanner assigns
locations (points) to the minutiae using X, Y and directional variables. Minutiae

points are and can be made up of the following characteristics:

23

1. Bifurcation
« the point at which a ridge splits into multiple ridges, called branches
2. Divergence

o this is the point where parallel ridges either spread apart or come

together
3. Enclosure

» occurs when a ridge splits into two branches and then comes together

again shortly thereafter
4. Ending
e occurs when a ridge terminates
5. Valley

e spaces or gaps that are on either side of a ridge

Other methods o f'identifying a p erson's fingerprint i nclude c ounting the number of
ridges between points, processing the fingerprint image and recording the print's

sound waves,

Fingerprint imaging technology is based on two clectronic capturing methods: optical
and capacitive. Optical fingerprint technologies require the user to place his or her
finger on a glass substrate at which point an internal light source from the fingerprint
device is projected onto the fingerprint. The image is then captured by a charge-
coupled device (CCD). Optical methods have been used extensively and have been in
existence for the past decade. They are proven but are on the expensive side and are
not always reliable due to environmental conditions. A build up of dirt, grime, and oil

from one's finger can leave a "ghost" image which is referred to as a "latent image".

24

On the other hand, capacitive imaging looks to make fingerprint imaging available to
the masses by making fingerprint imaging devices (hardware) more compact in size,
less expensive., and more reliable. Capacitive systems analyze one's fingerprint by
detecting the electrical field around the fingerprint using a sensor chip and an array of

circuits.

When a person's fingerprint is initially captured, a 'template' is constructed and stored
in a data storage system or database. This 'template' is then used to compare against a
person's fingerprint for each subsequent time he or she scans their finger. The
fingerprint requires one of the largest data templates in the biometric field. The finger
data template can range anywhere from several hundred bytes to over 1,000 bytes
depending upon the level of security that is required and the method that is used to

scan one's fingerprint.

After the first half or Final Year Project Part 1 has finished, the second part of my
FYP project is to produce the GUJ, the Graphic User Interface. This where everything
will be displayed: the original image, grayscale image, and the results from the

database or fingerprint matching.

25

4.4 Graphic User Interface (GUI)

The GUI is has its own main role in any program. The purpose of GUI is to show the

user where or something that is visible to their eyes.

This is the proposed GUI, the rectangle shape. But there is some problem in this

source codes. There are lines that are unrecognizable by the MATLAB.

K

18 s @ BB ABEE

Function varabgout = newsgul {varagin} -

~| 4F nargin == 0 $launch gud
- fig = cpenfig{ufilenase, ‘reussa’y;

fuye Fysten oolor
- seti{fig, 'Cojur’,get (0, 'defaultficoncroiBackygrowndColor ')) 2

Lgeperate 8 structure of handles oo pess to callbacks apd store 16
el mendles » guikandles{flg
guidataifig, handles):

- ifl nagoun > €
- varargout{i} = fig
i end

-1 glgeil izchar{vararginil)) %invoke nemed subfunetion or callbsck

[R VPTG PO S Y
i

- Ly

Lo
i
{

1t (margout:
{varargout{linsrgout}] = fevel(verargin{:}); 3feval spicchyard e

a2 Bad B
ol ntd
g:

g
=i
[T T S R I |

elpe
feval (varargin{i}}:
2nd
catch
dispilasterr};
and

25/-

- ene

321 |

3 Ffgmotion o display originel isage

k' function verargeut = priginal {allback(h,eventdata handies, verarywing ;
35]~1 eoxas{hendles. origine} fum); ¥

4| SO : s i‘{w'

Figure 4.4: The source code of the GUT at first attempt.

26

Fle Edt View Insert Jook Window Halp

Figure 4.5: The GUI of the Fingerprint Recognition.

27

4.5 Displaying the Original Image

In this part, the original image of the thumbprint will be displayed using the:

imread command syntax.

The syntax should be written as follows:

image = imread (‘filename.extension”)

This is what is written in the MATLARB FILE.

o f\manggﬁpﬁwﬁmmédmmg;m i

DEES s m@ o AhH| a0 BRE BB s
1 sfunssion to display the priginal image Nord
2
-1 image « imshoe{'1i9 7. bmp')
4 : : L - : : : .) Lo e

Ready =~ - o

Figure 4.6: the code in MATLAB which is used to call the image and display the
image.

28

This should be the result of the abbve action:

Figure 4.7: The original image is displayed with the MATLAB image viewer.

29

0 ridhedcoieieain

Figure 4.8: The original image of the fingerprint 1s display at the center of the GUL

30

4.6 Centralizing Function

A function which accept an input image and determines the coordinates of the core
point. The core point is determinated by complex filtering. The region of interest is
determinated fixing a minimum threshold value for the variance. Input image is
divided into non-overlapping blocks and only blocks with a variance smaller than this
threshold value are considered background. The logical matrix (associated to the
region of interest) is first closed (Matlab function imclose), then eroded (Matlab
function imerode) with two given structuring elements. The image is "mirrored”

before convolution with complex filter, and then it is re-cropped to its original sizes.

Figure 4.9: The centralizing function displays the image and binarized it.

The main usage for this function is to centralize everything that is not centralized
during scanning process to capture the fingerprint image. The function will
automatically determine the centre of the fingerprint and determined the core as
explained in the above paragraph. The portion of the source code use for this program

is as shown in the next page.

31

function Centralize(DemoFig)

lpad 'informations.dat' -mat

if nargin<1
DemoFig = gebf;
end
set(DemoFig, Pointer','watch');
setstatus(DemoFig, Centralizing..., please wait !!1');
ud=get(DemoFig,'Userdata');
fingerprint = getimage(ud hOriginallmage);

fingerprint = fingerprint*graylevmax;

[BinarizedPrint,XofCenter,YofCenter] = centralizing(fingerprint,0);

set(get(ud. hComponent8 Axes, 'title"), 'string’, ‘Binarized Print’);
set(ud.hComponent8Image, 'Cdata’, BinarizedPrint);
set(Demokig,Pointer’,'arrow');

setstatus(DemoFig, Finished centralization’);
ud.OriginallmagelsStale = 0;

set(DemoFig, 'UserData', ud);

drawnow

32

4.7 Crop

For the crop function, it is used to crop the original fingerprint and make it to a
smaller image. The image that is crop is basically and usually the center of the
thumbprint or fingerprint where the calculation will be made to determined the owner

of the fingerprint. The basic identification will be determined by minuate, ridges and

valleys of the fingerprint.

Figure 4.10: The crop image of the centralized fingerprint, The crop function will

only extract the fingerprint from the centre to a certain pixels.

The portion of the codes used for this section is shown in the next page.

33

function Crop(DemoFig)
%
load 'informations.dat' -mat
1f nargin<1
DemoFig = gebf;
end
set{DemoFig,Pointer','watch');
setstatus(DemoFig,'Cropping..., please wait !11");
ud=get(DemoFig, Userdata’);
fingerprint = getimage(ud.hOriginallmage),

fingerprint = fingerprint*graylevmax;

[BinarizedPrint,XofCenter, Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter,Y ofCenter,fingerprint);

CroppedPrint = double(CroppedPrint)/graylevmax;
set{get(ud.hComponent1Axes, 'title'), 'string’, 'Cropped Print’);
set(ud. hComponent1Image, 'Cdata’, CroppedPrint);

set(get(ud. hComponent8Axes, 'title"), 'string', 'Binarized Print');
set{ud.hComponent8Ilmage, 'Cdata’, BinarizedPrint);
set(DemoFig, Pointer','arrow’);

setstatus(DemoFig, Finished Crop');
ud.Component1ImagelsStale = 0;

set(DemoFig, 'UserData’, ud};

drawnow

34

4.8 Sectorized

Sectorization is used to determine the sector where we want to analyze. The purpose

of this is to make sure that the only specified area of interest will be analyzed. The

unwanted sectors have already been cropped earlier in the crop section.

Figure 4.11: The sectorized print is show is the smaller figure. The circle indicating

that the the area is sectored and will be analyzed.

The portion of the codes used for this section is shown in the next page.

35

function Sectorize{DemoFig)

%

load 'informations.dat’ -mat

if nargin<1

DemoFig = gebf;
end
set(DemoFig, Pointer','watch’);
setstatus(DemoFig,'Sectorizing..., please wait !!!");
ud=get(DemoFig,"Userdata’);
fingerprint = getimage(ud. hOriginalimage);

fingerprint = fingerprint*graylevmax;

[BinarizedPrint,XofCenter,Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter,YofCenter,fingerprint);
for (1=1:1:175*175)
tmp=CroppedPrint(i);
CroppedPrint(i)=whichsector(i);
if (CroppedPrint(i)==36 | CroppedPrint(i)==37)
CroppedPrint(i)=tmp/graylevmax,
else
CroppedPrint(i)=CroppedPrint(i)/64;

end

end

36

set(get(ud.hComponent1 Axes, 'title"), 'string’, 'SectorizedPrint');
set(ud.hComponent1image, 'Cdata’, CroppedPrint);
set(DemoFig, Pointer','arrow');

setstatus(DemoFig,'Finished Sectorization');

ud.Component] ImagelsStale = 0;

set(DemoFig, "UserData', ud);

drawnow

37

4.9 Normalized

Normalizing means that the fingerprint is being sectorized than transfer the image to

grayscale. Then the fingerprint is being enhanced for a clearer view of the pattern for

the upcoming calculation of the program for identification purpose.

Figure 4.12: The small picture shows the normalized fingerprint after normalization.

The portion of the codes used for this section is shown in the next page.

38

function Normalize(DemoFig)
%

load 'informations.dat' -mat

if nargin<l

DemoFig = gebf;,
end
set{DemoFig, Pointer','watch');
setstatus(DemoFig,'Normalizing..., please wait !!!");
ud=get(DemoFig,'Userdata’);
fingerprint = getimage(ud.hOriginallmage);

fingerprint = fingerprint* graylevmax;

[BinarizedPrint, XofCenter,YofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter,YofCenter,fingerprint);

[NormalizedPrint,vector] = sector_norm(CroppedPrint , 0, 0);

CroppedPrint = double(CroppedPrint)/graylevmax;
NormalizedPrint = double(NormalizedPrint)/100;
set(get(ud.hComponent1Axes, 'title"), 'string’, 'Cropped Print'),
set(ud.hComponent1Image, 'Cdata’, CroppedPrint);

set(get(ud. hComponent8 Axes, 'title"), 'string', Normalized Print');
set(ud. hComponent8Image, 'Cdata’, NormalizedPrint);
set{DemoFig, Pointer',arrow’);

setstatus(DemoFig, Finished normalization');
ud.Component1ImagelsStale = 0;

set(DemoFig, 'UserData', ud);

drawnow

39

4,10 Featured Data

For this part, the feature or the data from the fingerprint is being extracted from the

fingerprint. The six (6) crop images below shown are the convoluted data with certain

angle.

[Fi g o Dot Tocs Window tep

. o :degn-nq Faitures

Figure 4.13: The feature of the fingerprint is being extracted.

The portion of the codes used for this section is shown in the next page.

40

function Features(DemoFig)
%

load 'informations.dat’ -mat

if nargin<1
DemoFig = gebf;
end
set(DemoFig, Pointer','watch');
setstatus(DemoFig,'Convoluting with eight Gabor filters in process...");
ud=get(DemoFig,"Userdata');
fingerprint = getimage(ud.hOriginallmage);

fingerprint = fingerprint*graylevmax;

N=175;

num_disk=8;

[BinarizedPrint,XofCenter,YofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter,Y ofCenter,fingerprint);

[NormalizedPrint,vector]=sector_norm{CroppedPrint,0,1);

for (angle=0:1:num_disk-1)

gabor=gabor2d_sub(angle,num_disk);
z2=gabor;

z1=NormalizedPrint;

zlx=size(z1,1);

zly=size(z1,2);

z2x=size(z2,1);

z2y=size(z2,2);

41

ComponentPrint=real(ifft2(fft2(z1,z1 x +z2x-1,z1y+z2y-1) *ffi2(z2,z1 x+z2x-
1,zly+z2y-1)));

px=({z2x-1)+mod((z2x-1),2))/2,

py=((z2y-1)+mod((z2y-1),2))/2;

ComponentPrint=ComponentPrint(px+1:px+z1x,py+1:pyt+zly);

[disk,vector]=sector norm{ComponentPrint,1,0);

img = double(ComponentPrint)/graylevmax;,
imgl = double(disk)/51200;
switch angle<8
case (angle==0),
set(get(ud. hComponent1 Axes, 'title"), 'string’, '0 degree Features’);
set(ud. hComponent1lmage, 'Cdata’, imgl);
case (angle==1),
set(get(ud.hComponent2Axes, 'title"), 'string', '22.5 degree Features');
set(ud.hComponent2Image, 'Cdata’, imgl);
case (angle==2),
set(get(ud.hComponent3Axes, 'title"), 'string, '45 degree Features');
set(ud.hComponent3Image, 'Cdata’, imgl);
case (angle==13),
set(get(ud. hComponent4 Axes, 'title'), 'string’, '67.5 degree Features');
set(ud.hComponent4image, 'Cdata’, imgl);
case (angle==4),
set(get(ud. hComponent5Axes, 'title"), 'string’, '90 degree Features');
set(ud. hComponent5Image, 'Cdata’, imgl);
case (angle==5),
set(get(ud.hComponent6 Axes, 'title'), 'string), '112.5 degree Features');
set(ud hComponent6lmage, 'Cdata’, imgl);
case (angle==6),
set(get(ud hComponent7Axes, 'title'), 'string’, '135 degree Features'),
set(ud.hComponent7image, 'Cdata’, imgl);
case (angle==7),

42

set(get(ud. hComponent8 Axes, 'title'), 'string', '157.5 degree Features');
set(ud.hComponent8Image, 'Cdata’, imgl);

otherwise
error("Nothing !");

end

end

set(DemoFig,'Pointer','arrow');
setstatus(Demo¥Fig, Features were extracted');
set(Demo¥Fig, 'UserData’, ud);

drawnow

43

4.11 Finger Code

This is where the database of the fingerprint(s) is saved. The function used to make

the database will save the fingerprint data in *.DAT format.

Bl Fdt Yow lnert Tods \ndow

" B Pedtuiss

. i
OOK

Figure 4.15: The fingerprint data is successfully saved in database as * DAT format.

44

4.12 Checking

For this part, the program will check the database and look for the identical or nearly

same fingerprint as been added in the database earlier.

, Uagiee Camporint’

Gabo ke

Cunvohde

Fedligas
ulode

Figure 4.16: The tab to select the checking of the fingerprint.

D-dag;aa_c_n_m'ponenl et

The negrtst fingyiptinl present in DateBas which maichs input firgemiint
£ -is 1 with o distancs of 10 : .

Figure 4.17: The result of fingerprint scanning.

45

If the fingerprint 1s being check and have the database in the program, the MATLAB
will automatically display the result of it. The result shown that the fingerprint that is
check matches with the database no 1 with the distance 0. That means that the
fingerprint is the same with the database and exactly 100% match. But is the database

is not same or exactly like the database have, the result will display like this:

Seshl e

Yhe neatest fingeiid precent in DataBave which matche Mput ingerptint
F i T w8 tistanco of 10291334863

22h degros Comigiorieni: 45 degros Coangu

Figure 4.18: The result of database scanning that is not the same or exist in the

database.

If the database is not exist or the fingerprint is not likely the same or nearly, the
display of the result will be like matching fingerprint 1 but the distance is 1029289.%,

means that the fingerprint is not exactly or nearly match in the database.

46

CHAPTER S5
CONCLUSION

For the c onclusion, the objective o f this Final Y car Design Project is reached. The
objective is to design or build a program that can check the fingerprint whether it is
match, exist or not in the database.

Although the objective has been reached, the program is still having flaws. The
program can be modified more to ensure that the program will run smoothly in the
future. Some of the function are not well organized, programmed. For upcoming
future, hopefully there will be a student or students that are willing to take this project
and enhance it furthermore in this BIOMETRICS TECHNOLOGY.

47

BIBLIOGRAPHY

A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel Texture Analysis Using
Localized Spatial Filters,” IEEFE Trans. Pattern Anal. and Machine Intell., Vol, 12,
No. 1, pp. 55-73, January 1990.

Access the Web with your face.

http://www.miros.com/web access demo page.htm.

A. K. Hrechak and J. A. McHugh, “Automated Fingerprint Recognition Using
Structural Matching,” Pattern Recognition, Vol. 23, pp. 893-904, 1990.

A. K. Jain, A. Ross, and S. Prabhakar, “Fingerprint Matching Using Minutiae and
Texture Features”, to appear in the International Conference on Image Processing

(ICIP), Greece, October 7-10, 2001.

A. K. Jain and D, Zongker, “Feature Selection: Evaluation, Application, and
Small Sample Performance”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 19, No.
2, pp. 153-158, 1997.

A. K. Jain, L. Hong, S. Pankanti, and Ruud Bolle, “An Identity Authentication
System Using Fingerprints,” Proceedings of the [EEE, Vol. 85, No. 9, pp. 1365-1388,
1997,

A. K, Jain, L. Hong, and R. Bolle, “On-line Fingerprint Verification,” IEEE
Trans. Pattern Anal. and Machine Intell., Vol. 19, No. 4, pp. 302-314, 1997.

A. K. Jain, R, M. Bolle, and S. Pankanti (editors), Biometrics: Personal Identification
in a Networked Society, Kluwer Academic Publishers, 1999,

48

A. K. Jain, S. Prabhakar, and A. Ross, “Fingerprint Matching: Data Acquisition and
Performance Evaluation”, MSU Technical Report TR99-14, 1999,

American National Standard for Information Systems — Data Format for the
Interchange of Fingerprint Information, Doc No. ANSINIST-CSL. 1-1993, American
National Standards Institute, New York, 1993.

A. P. Fitz and R. J. Green, “Fingerprint Classification Using Hexagonal Fast Fourier
Transform,” Pattern Recognition, Vol. 29, No. 10, pp. 1587-1597, 1996.

B. G. Sherlock and D. M. Monro, “A Model for Interpreting Fingerprint Topology,”
Pattern Recognition, Vol. 26, No. 7, pp. 1047-1055, 1993.

[35] B. Moayer and K. Fu, “A Tree System Approach for Fingerprint Pattern
Recognition,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 8 no. 3, pp. 376-
388, 1986.

D. B. G. Sherlock, D. M. Monro, and K, Millard, “Fingerprint Enhancement by
Directional Fourier Filtering,” Proc. Inst. Elect. Eng. Visual Image Signal
Processing, Vol. 141, No. 2, pp. 87-94, 1994,

Digital Biometrics, Inc., Biometric Identification Products. Available at:

http://www.digitalbiometrics.com/

Digital Persona, Inc., Fingerprint-based Biometric Authentication.

http://www.digitalpersona.com/

E. Newham, The Biometric Report. New York: SBJ Services, 1995.
http://www.sjb.co.uk/.

E. P. Richards, “Phenotype vs. Genotype: Why Identical Twins Have Different

Fingerprints?” http://www.forensic-evidence.com/site/ID Twins.himl.

49

Federal Bureau of Investigation. www.fbi.gov

Identix Incorporated. www.identix.com

50

REFERENCES

1. AUTOMATED BIOMETRICS Technologies and Systems;
David D Zhang - KLUMWER ACADEMIC PUBLISHERS

2. MATLAB SOFTWARE Release 12, HELP FILE

51

Programming codes

THE PROGRAM

function fpextractdemo(action, varargin)

if nargin<l,
action="InitializeFPEXTRACTDEMO";
end;

feval(action,varargin{:})
return;

%%%
%%% Sub-function - InitializeFPEXTRACTDEMO
% %%

function InitializeFPEXTRACTDEMO()

% If fpextractdemo is already running, bring it to the foreground
h = findobij(allchild(0), 'tag', 'Extracting FingerPrint Features Demo");
if ~isempty(h)
figure(h(1))
return
end

screenl) = get(0, "ScreenDepth");
if screenD>8
grayres=256;
else
grayres=128;
end

FpextractDemoVFig = figure(...
Name','Extracting FingerPrint Features Demo, ...
NumberTitle','off, 'HandleVisibility', ‘on', ...
'tag', 'Extracting FingerPrint Features Demo, ...
'Visible','off', Resize', 'off,...
BusyAction','Queue’,'Interruptible’,'off, ...
'Color', [.8 .8 .8], ...

"IntegerHandle', 'off', ...
'Colormap', gray(grayres)),

figpos = get(FpextractDemoFig, 'position');
figpos(3:4) = [1050 525];

% Adjust the size of the figure window
horizDecorations = 10; % resize controls, etc.

Properties of Raja Mohd Firdaus

Programming codes

vertDecorations = 45; % title bar, etc.
screenSize = get(0,'ScreenSize');

dx = screenSize(3) - figpos(1) - figpos(3) - horizDecorations;
dy = screenSize(4) - figpos(2) - figpos(4) - vertDecorations;
if (dx <0)
figpos(1) = max(5,figpos(1) + dx);
end
if (dy < 0)
figpos(2) = max(5,figpos(2) + dy);
end
set(FpextractDemoFig, 'position’, figpos);

rows = figpos(4);
cols = figpos(3});

% Colors

bgcolor = [0.45 0.45 0.45]; % Background color for frames
wdcolor =[.8 .8 .8]; % Window color

fgeolor =11 1]; % For text

hs = (cols-(6*¥175)) / 5; % Horizantal Spacing
vs = (rows)/8; % Vertical Spacing

%
% Parameters for all buttons and menus

Std.Interruptible = 'off’;
Std.BusyAction = 'queue’;

% Defaults for image axes

Ax = Std;

Ax.Units = 'Pixels’;

Ax Parent = FpextractDemoFig;
Ax.ydir = 'reverse';

Ax.XLim =1[.5 128.5];
Ax.YLim =1{.5 128.5];
Ax.CLim= [0 1];

Ax. XTick =1];

Ax. YTick=T}];

Img = Std;

Img.CData = [];

Img.Xdata = [1 128];
Img.Ydata = {1 128];
Img.CDataMapping = 'Scaled';

Properties of Raja Mohd Firdaus

il

Programming codes

Img.Erasemode = 'none’;

Ctl = Std;
Ctl.Units = Pixels’;
Ctl.Parent = FpextractDemoFig;

Bin = Ctl;
Btn.Style = 'pushbutton’;
Btn.Enable = 'off’;

Edit = Ctl;

Edit.Style = "edit’;
Edit.Horizontal Alignment = 'right';
Edit.BackgroundColor = 'white';
Edit.ForegroundColor = 'black’;

Menu = Ctl;
Menu.Style = 'Popupmenu’;

Text = Ctl;

Text.Style = 'text’;
Text.Horizontal Alignment = 'left";
Text.BackgroundColor = bgcolor;
Text.ForegroundColor = fgcolor;

%o
% 0 degree Component
ud.hComponent] Axes = axes(Ax, ...

"Position’, [0*vs/6 S*vs-vs/6 175 175]);
title('0 degree Component’);
ud.hComponentImage = image(img, ...

'Parent’, ud.hComponent} Axes);
9, S
% Original FingerPrint
ud.hOriginalAxes = axes(Ax, ...

"Position’, [cols/2-128 5*vs-vs/6-81 256 256]);
title("Original FingerPrint');
ud.hOriginallmage = image(Img, ...

"Parent’, ud. hOriginal Axes);
ud.OriginallmagelsStale = 1;

Properties of Raja Mohd Firdaus

il

Programming codes

%____

% 157.5 degree Component

ud.hComponent8Axes = axes(Ax, ...
'Position’, [cols-175 5*vs-vs/6 175 175]);

title('157.5 degree Component’);

ud.hComponent8lmage = image(Img, ...
'Parent’, ud.hComponent8Axes);

%
% 22.5 degrec Component
ud.hComponent2Axes = axes(Ax, ...
"Position’, [hs vs/2 175 1757);
title("22.5 degree Component’);
ud.hComponent2Image = image(Img, ...
"Parent’, ud. hComponent2 Axes);

%
% 45 degree Component
ud.hComponent3Axes = axes(Ax, ...
'Position’, [2*hs+1*175 vs/2 175 175]);
title('45 degree Component');
ud.hComponent3Image = image(Img, ...
'Parent’, ud.hComponent3Axes);
%__
% 67.5 degree Component
ud.hComponent4Axes = axes(Ax, ...
'Position’, [3*hs+2*175 vs/2 175 175]);
title("67.5 degree Component');
ud.hComponent4Image = image(Img, ...
Parent', ud hComponent4Axes);

%

% 90 degree Component
ud.hComponent5Axes = axes{Ax, ...
"Position’, [4*hs+3*175 vs/2 175 175]);
title('90 degree Component');
ud.hComponentSImage = image(Img, ...
'Parent’, ud hCompaonent5SAxes);

% 112.5 degree Component
ud.hComponent6Axes = axes(Ax, ...
'Position’, [5¥hs+4*175 vs/2 175 175]);
title('112.5 degree Component');
ud.hComponent6Image = image(Img, ...
'Parent’, ud.hComponentbAxes);

Properties of Raja Mohd Firdaus

iv

Programming codes

Y%

% 135 degree Component

ud hComponent7 Axes = axes(AX, ...
"Position’, [6*hs+5*175 vs/2 175 175]);

title("135 degree Component');

ud.hComponent7Image = image(Img, ...
"Parent’, ud.hComponent7Axes);

% S —
% The frame
ud.hControiFrame = uiconirol(Std, ...
'Parent’, FpextractDemoFig, ...
'Style', 'Frame', ...
"Units', 'pixels’, ...
"Position’, [vs/6 5*vs-vs/6-81 200 vs+vs/8], ...
"BackgroundColor', bgcolor);

%

% Image popup menu

ud.himgPop = uvicontrol(Menu, ...
"Position',[vs/6+vs/8 5*ys-2¥vs/3+7 180 vs/16], ...
'String’,' Whorl|Twin loop|Left loopiRight loop|Other image', ...
'Callback’, fpextractdemo("LoadNewImage")');

% Text label for Image Menu Popup

uicontrol(Text, ...
'Position’,[vs/6+vs/8 5*vs-vs/6-vs/3-2 180 vs/4], ...
'String’,'Select a type of fingerprint:"),

%
% Extracting Step popup menu
ud.hSelectStepPop = uicontrol(Menu, ...
'Position’,[vs/6+vs/8 4*vs-7 120 vs/16], ...
'String','Centralize|Crop|Sectorize{Normalize|Gabor
filters|Convolute|Features|FingerCode|Check’, ...
'Callback’, fpextractdemo("SelectExtractingStep")');
% Text label for Extracting Step Menu Popup
uicontrol(Text, ...
'"Position’,[vs/6+vs/8 4%vs-4 90 vs/4], ...
'‘String','Select step to:");

Properties of Raja Mohd Firdaus

Programming codes

0/
% Frame for Info and Close
ud.hinfoCloseFrame = uicontrol(Std, ...
"Parent’, FpextractDemoFig, ...
'Style', 'Frame', ...
"‘Units', 'pixels), ...
"Position’, [3*hst+2*175 2 vs/2+2*175 vs/2-4], ...
'BackgroundColor’, bgcolor);

%
% Buttons - Info and Close
ud.hInfo=uicontrol(Btn, ...
"Position’,[3*hst2*175+vs/2 7 vs/8+135-vs/2 vs/4], ...
"String’,'Info, ...
'Callback’,’helpwin fpextractdemo');

ud.hClose=uicontrol(Bin, ...
"Position',[4*hs+3*175+vs/2 7 vs/8+135-vs/2 vs/4], ...
'String','Close’, ...
'Callback','close(gebf)));

%
% Status bar
ud.hStatus = uicontrol(Std, ...
"Parent’, FpextractDemoFig, ...
'Style','text’, ...
"Units','pixels’, ...
"Position’,fhs vs/8 2%175-vs/8 vs/4], ...
"Foreground', [.8 0 0], ...
"Background',wdcolor, ...
'Horiz','center’, ...
"Tag', 'Status’, ...
'String,'Initializing fpextractdemo...’);

set(FpextractDemoFig, 'UserData’, ud);
set(FpextractDemoFig, 'visible','on',' HandleVisibility','callback");
set([ud.hInfo ud.hClose], 'Enable’, 'on');

LoadNewlmage(FpextractDemoFig);
SelectExtractingStep(FpextractDemoFig);
return

Properties of Raja Mohd Firdaus

vi

Programming codes

Yo b e YeYe YooV Ve %o Ye Y% Ye % %% e %% % % Yo %o %% % % 6% % Yo

%%%
%%% Sub-Function - LoadNewlmage
%%%

function LoadNewlmage(DemoFig)
% Load a new image from a mat-file

if nargin<1
DemoFig = gcbf;
end

set(DemoFig,'Pointer’,'watch');
ud=get(DemoFig,Userdata’);

v = get(ud.himgPop, {'value','String'});
name = deblank(v{2}(v{1},));
drawnow

switch name
case 'Right loop!,
namefile="37_7.bmp’;
|img,map]=imread(namefile);
case "Whorl',
namefile='19_7.bmp’;
[img,map |=imread(namefile);
case 'Left loop’,
namefile="37_3.bmp’;
[img,map}=imread(namefile);
case "Twin loop',
namefile="37_5 2.bmp’;
[img,map|=imread(namefile};
case 'Other image',
[namefile,pathname}=uigetfile("* bmp’,'Chose BMP GrayScale Image');
if namefile~=0
[img,map]=imread(strcat(pathname,namefile));
else
disp(' Chose a file! ');
[img,map]=imread('37_7.bmp");
end
otherwise
error('fpextractdemo: Unknown Image Option!");
end
% If image is N x M with mod(N,8)~=0 or mod(M,8)~=0
% input image is resized.
imgN=size(img,1);
imgM=size(img,2);

Properties of Raja Mohd Firdaus

vii

Programming codes

modN=mod(imgN,8);
modM=mod(imgM,8);

%
% save informations in informations.dat
if isa(img,'uint8")
graylevmax=2"8-1;
end
if isa(img,'uint16")
graylevmax=2"16-1;
end
if isa(img,'uint32")
graylevmax=232-1;
end
save('informations.dat','graylevmax’,'img');

%
% resize
%
img=img(modN+1:imgN,modM+1:imgM);
%
img = double(img)/graylevmax;

set(get{ud.hOriginal Axes, 'title"), 'string’, 'Original FingerPrint');
set(get(ud.hComponent1 Axes, 'title'), 'string', '0 degree Component');
set(get(ud.hComponentbAxes, 'title'), 'string’, '112.5 degree Component');
set(ud.hOriginallmage, 'Cdata’, img);

set(DemoFig,'Pointer','arrow");

setstatus(DemoFig,'Please select a step to process..."),

return;

%
%%%
%%% Sub-Function - SelectExtractingStep
%%%

function SelectExtractingStep(DemoFig)
% l.oad a step

if nargin<l
DemoFig = gcbf;
end

set(DemoFig,'Pointer’,'watch');
ud=get(DemoFig,'Userdata');

v = get(ud.hSelectStepPop,{'value','String'});
name = deblank(v{2}(v{1},));

Properties of Raja Mohd Firdaus

viii

Programming codes

drawnow

switch name
case 'Centralize',
Centratize(DemoFig);
case 'Crop',
Crop(DemoFig);
case 'Sectorize’,
Sectorize(DemoFig);
case 'Normalize',
Normalize(DemoFig);
case 'Gabor filters',
Gaborfilter(DemoFig);
case 'Convolute’,
Convolute(DemoFig);
case 'Features',
Features(DemoFig);
case 'FingerCode',
Fingercode(DemoFig);
case 'Check’,
Check{DemoFig);
otherwise
error('fpextractdemo: Unknown Image Option!");
end

return;

%

%%%
%%% Sub-Function - Centralize
%%%

function Centralize(DemoFig)
load 'informations.dat’ -mat

if nargin<l

DemoFig = gcbf;
end
set(DemoFig, Pointer’,'watch');
setstatus(DemoFig,'Centralizing..., please wait !!!");
ud=get(DemoFig, Userdata');
fingerprint = getimage(ud.hOriginallmage);
fingerprint = fingerprint*graylevmax;

[BinarizedPrint,XofCenter,YofCenter] = centralizing(fingerprint,0);

Properties of Raja Mohd Firdaus

Programming codes

set(get(ud hComponent8 Axes, 'title"), 'string’, '‘Binarized Print');
set(ud.hComponent8Image, 'Cdata’, BinarizedPrint);
set(DemoFig, Pointer’,'arrow');

setstatus(DemoFig, Finished centralization");
ud.OriginallmagelsStale = 0;

set{(DemoFig, 'UserData’, ud);

drawnow

%

%%%
%% % Sub-Function ~ Crop
%%%

function Crop(DemoFig)
%
load 'informations.dat’ -mat
if nargin<1
DemoFig = gcbf;
end
set(DemoFig, Pointer','watch');
setstatus(DemoFig,'Cropping..., please wait !!1");
ud=get(DemoFig,'Userdata’);
fingerprint = getimage(ud.hOriginalimage);

fingerprint = fingerprint*graylevmax;

[BinarizedPrint, XofCenter, Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter, YofCenter,fingerprint);

CroppedPrint = double(CroppedPrint)/graylevmax;
set(get(ud.hComponent1 Axes, 'title"), 'string’, 'Cropped Print');
set(ud.hComponent 1 Image, 'Cdata’, CroppedPrint);
set{get(ud.hComponent8Axes, 'title"), 'string’, 'Binarized Print');
set(ud.hComponent8Image, 'Cdata’, BinarizedPrint);
set{DemoFig,'Pointer’,'arrow’);

setstatus{DemoFig, Finished Crop');
ud.Component 1 ImagelsStale = 0;

set(DemoFig, 'UserData', ud);

drawnow

Properties of Raja Mohd Firdaus

Programming codes

Y%

%%%
% %% Sub-Function - Sectorize
29% %

function Sectorize(DemoFig)
%
load 'informations.dat' -mat

if nargin<l

PemoFig = gebf;
end
set{DemoFig,'Pointer’,'watch');
setstatus(DemoFig, Sectorizing..., please wait !!1");
ud=get(DemoFig,'Userdata’);
fingerprint = getimage(ud.hOriginalimage);

fingerprint = fingerprint*graylevmax;

[BinarizedPrint,XofCenter, Y ofCenter}=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter, Y ofCenter,fingerprint);
for (i=1:1:175%175)
tmp=CroppedPrint(i);
CroppedPrint(i)=whichsector(i);
if (CroppedPrint(i)==36 | CroppedPrint(i)==37)
CroppedPrint(i)=tmp/graylevmax;
else
CroppedPrint{(i)=CroppedPrint(i)/64;
end

end

set(get(ud.hComponent 1 Axes, 'title"), 'string', 'SectorizedPrint’);
set(ud. hComponent1Image, 'Cdata’, CroppedPrint);
set(DemoFig, Pointer','arrow’);
setstatus(DemoFig,'Finished Sectorization');
ud.Component1ImagelsStale = 0;

set(DemoFig, 'UserData', ud);

drawnow

Properties of Raja Mohd Firdaus

xi

Programming codes

%
%%%
%%% Sub-Function -~ Normalize
26%%

function Normalize(DemoFig)
%
load 'informations.dat’ -mat

if nargin<1
DemoFig = gebf;
end
set(Demo¥Fig, Pointer','watch');
setstatus(DemoFig, Normalizing..., please wait !!!");
vd=get(DemoFig,"Userdata’);
fingerprint = getimage(ud.hOriginallmage);

{ingerprint = fingerprint*graylevmax;

[BinarizedPrint, XofCenter,Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter, YofCenter,fingerprint);
[NormalizedPrint,vector] = sector_norm(CroppedPrint , 0, 0);

CroppedPrint = double(CroppedPrint)/graylevmax;
NormalizedPrint = double(NormalizedPrint)/100;
set(get(ud.hComponent1 Axes, 'title"), 'string’, 'Cropped Print’);
set(ud hComponent1Image, 'Cdata’, CroppedPrint);
set(get(ud.hComponent8 Axes, 'title"), 'string’, 'Normalized Print’);
set(ud.hComponent8Image, 'Cdata’, NormalizedPrint);
set(DemoFig, Pointer','arrow');

setstatus(DemoFig, Finished normalization');
ud.Component1ImagelsStale = 0;

set(DemoFig, 'UserData', ud);

drawnow

% I —

%%%
%%% Sub-Function - Gaborfilter
%%%

function Gaborfilter(DemoFig)
%

if nargin<1
DemoFig = gebt;

Properties of Raja Mohd Firdaus

xii

Programming codes

end

set(DemoFig, Pointer','watch');

setstatus(Demokig,'Gabor filter will be shown..., please wait I!!");
ud=get(DemoFig,'Userdata');

num_disk=8;
for (angle=0:1:0um_disk-1)

gabor=gabor2d_sub(angle,num_disk);
gabor=gabor*128;
switch angle<num_disk
case (angle==0),
set{get(ud. hComponent1 Axes, 'title"), 'string’, '0 degree gabor');
set{ud.hComponent1Image, 'Cdata’, gabor);
case (angle==1), ‘
set(get(ud.hComponent2 Axes, 'title'), 'string’, 22.5 degree gabor');
set(ud.hComponent2Image, 'Cdata’, gabor);
case (angle==2),
set(get(ud.hComponent3Axes, 'title"), 'string’, '45 degree gabor”);
set(ud:hComponent3Image, 'Cdata’, gabor);
case (angle==3), ,
set(get(ud.hComponent4Axes, 'title"), 'string’, '67.5 degree gabor’);
set(ud:hComponent4Image, 'Cdata’, gabor);
case (angle==4),
set(get(ud.hComponentSAxes, 'title"), 'string', '90 degree gabor');
set(ud.hComponent5Image, 'Cdata’, gabor);
case (angle=5),
set(get(ud.hComponent6Axes, 'title'), 'string’, '112.5 degree gabor');
set(ud-hComponent6lmage, 'Cdata’, gabor);
case (angle==6),
set(get(ud.hComponent7 Axes, 'title"), 'string’, '135 degree gabor');
set(ud.-hComponent7Image, 'Cdata’, gabor};
case (angle==7),
set{get(ud.hComponent8 Axes, 'title"), 'string’, '157.5 degree gabor');
set(ud:hComponent8image, 'Cdata’, gabor);
otherwise
error('Nothing !);
end

end

set(DemoFig, Pointer','arrow’);
setstatus(DemoFig,'Gabor Filters were shown');
ud.OriginallmagelsStale = 0;

set(DemoFig, 'UserData’, ud);

Properties of Raja Mohd Firdaus Xiil

Programming codes

drawnow

%

%% %
%% % Sub-Function - Convolute
%% %

function Convolute(DemoFig)
%
load 'informations.dat' -mat

if nargin<1
DemoFig = gebf;
end
set(DemoFig, Pointer','watch');
setstatus(DemoFig,'Convoluting with eight Gabor filters in process...");
ud=get(DemoFig, Userdata');
fingerprint = getimage(ud.hOriginallmage);

load 'informations.dat' -mat
fingerprint = fingerprint*graylevmax;

N=175;
num_disk=8;

[BinarizedPrint,XofCenter, Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter, Y of Center, fingerprint);
[NormalizedPrint,vector]=sector_norm(CroppedPrint,0,1);

for (angle=0:1:num_disk-1)

gabor=gabor2d_sub(angle,num_disk);

z2=gabor;

z1=NormalizedPrint;

zlx=size(z1,1);

zly=size(z1,2);

z2x=size(z2,1);

72y=size(z2,2},

ComponentPrint=real(iff:2(fft2(z1,z1x+z2x-1,z1y+z2y-1).*i2(z22,z1 x+z2x-
Lzly+z2y-1)));

px=((z2x-~1)ytmod((z2x-1),2))/2;

py=((22y-1yHmod((22y-1),2))/2;

ComponentPrint=ComponentPrint(px+1:px+zlx,py+1:py+zly);

[disk,vector]=sector norm(ComponentPrint, 1,0);
img = double(ComponentPrint)/graylevmax;

Properties of Raja Mohd Firdaus

Xiv

Programming codes

switch angle<8

case (angle==0),
set{get(ud hComponent1 Axes, 'title"), 'string’, '0 degree Component’);
set{ud.hComponent1Image, 'Cdata’, img);

case (angle==1),
set{get(ud.hComponent2Axes, 'title'), 'string’, '22.5 degree Component’);
set{ud.hComponent2Image, 'Cdata’, img);

case (angle==2),
set(get(ud.hComponent3Axes, 'title"), 'string’, '45 degree Component');
set(ud.hComponent3Image, 'Cdata’, img);

case (angle==3),
set(get(ud.hComponent4 Axes, 'title"), 'string', '67.5 degree Component’);
set(ud.hComponent4lmage, 'Cdata’, img);

case (angle=—=4),
set(get(ud.hComponent5Axes, 'title'), 'string', '90 degree Component');
set(ud.hComponent35Image, 'Cdata’, img);

case (angle==>5),
set(get(ud-hComponent6Axes, 'title'), 'string’, '112.5-degree Component’);
set(ud.hComponent6lmage, 'Cdata’, img);

case (angle==6),
set(get{ud.hComponent7Axes, 'title'), 'string’, '135 degree Component');
set(ud.hComponent7Image, 'Cdata’, img);

case (angle==7),
set(get(ud.hComponent8Axes, 'title"), 'string’, '157.5 degree Component');
set(ud.hComponent8Image, 'Cdata’, img);

otherwise
error('Nothing !");

end

end

set(DemoFig, Pointer’,'arrow');
setstatus(DemoFig, Finished Convolution');
set(DemoFig, 'UserData', ud);

drawnow

%

%%%
%% % Sub-Function - Features
%%%

function Features(DemoFig)
%
load "informations.dat' -mat

Properties of Raja Mohd Firdaus

Programming codes

if nargin<i
DemoFig = gcbf;
end
set(DemoFig, Pointer','watch');
setstatus(DemoFig,'Convoluting with eight Gabor filters in process...");
ud=get(DemoFig,"Userdata’);
fingerprint = gettimage(ud.hOriginallmage);

fingerprint = fingerprint*graylevmax;

N=175;
num_disk=8;

[BinarizedPrint,XofCenter,Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter, Y of Center,fingerprint);
[NormalizedPrint,vector}=sector norm(CroppedPrint,0,1);

for (angle=0:1:num_disk-1}

gabor=gabor2d sub(angle,num disk);

z2=gabor;

z1=NormalizedPrint;

zlx=size(zl,1);

zly=size(z1,2);

22x=size(z2,1);

72y=size(z2,2);

ComponentPrint=real(ifft2(fft2(z1,z1 x+z2x-1,z1 y+22y-1).*ft2(z2,z1 x+z2x-
l,z1y+z2y-1)));

px=((z2x-1)*+mod((z2x-1),2))/2;

py=((22y-1)+mod((z2y-1),2))/2;

ComponentPrint=ComponentPrint(px+1:px+z1x,py+1:py+zly);

[disk,vector}=sector norm(ComponentPrint,1,0);

img = double(ComponentPrint)/graylevmax;
img! = double(disk)/51200;
switch angle<§
case (angle==0),
set(get(ud.hComponent] Axes, 'title"), 'string’, '0 degree Features');
set{ud.hComponent1Image, 'Cdata’, img1);
case (angle==1),
set(get(ud.hComponent2 Axes, 'title"), 'string’, '22.5 degree Features');
set(ud.hComponent2Image, 'Cdata’, imgt);
case (angle==2),
set(get(ud.hComponent3Axes, 'title"), 'string’, '45 degree Features');
set(ud.hComponent3Image, 'Cdata’, imgl);

Propetties of Raja Mohd Firdaus xvi

Programming codes

case (angle==3),

set(get(ud hComponentdAxes, 'title"), 'string’, '67.5 degree Features');

set(ud.hComponent4Image, 'Cdata’, img1);

case (angle=4),
set(get(ud.hComponent5Axes, 'title"), 'string’, '90 degree Features");
set(ud.hComponentSImage, 'Cdata’, imgl);

case {angle==5),

set(get(ud.hComponent6Axes, 'title"), 'string', '112.5 degree Features');

set(ud.hComponent6lmage, 'Cdata’, imgl);
case (angle==6),

set(get(ud.hComponent7Axes, 'title"), 'string', '135 degree Features');

set(ud.hComponent7Image, 'Cdata’, imgl);
case {angle==7),

set(get(ud.hComponent8Axes, 'title'), 'string', '157.5 degree Features');

set(ud.hComponent8Image, 'Cdata’, imgl);
otherwise
error('Nothing 1');
end

end

set(DemoVFig,'Pointer’,'arrow’);
setstatus(DemoFig,'Features were extracted');
set(DemoFig, 'UserData’, ud);

drawnow

Yo

%

%%%
%%% Sub-Function - FingerCode
%%%

function Fingercode(DemoFig)
%
load 'informations.dat' -mat

if nargin<l
DemoFig = gcbf;
end

set{Demokig, Pointer','watch'");
setstatus(DemoFig,'FingerCode in process...");
ud=get(DemoFig,'Userdata');

fingerprint = getimage(ud.hOriginallmage);

Properties of Raja Mohd Firdaus

Xvii

Programming codes

fingerprint = fingerprint* graylevmax;

N=175;
num_disk=8;

[BinarizedPrint,XofCenter, Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint]=cropping(XofCenter, Y ofCenter,fingerprint);
[NormalizedPrint,vector|=sector norm(CroppedPrint,0,1);

for (angle=0:1:num_disk-1}
gabor=gabor2d_sub(angle,num_disk);
z2=gabor;
z1=NormalizedPrint;
zlx=size(z1,1);
zly=size(z1,2),
z2x=size(z2,1);
z2y=size(z2,2);

ComponentPrint=real (ifft2(fft2(z],z1x+z2x-1,z1y+z2y-1).*{fi2(z2,z1 x+22x-

1,zly+z2y-1)));
px=((z2x-1)y+mod((z2x-1),2))/2;
py=((22y-1)y* mod((z2y-1),2))/2;
ComponentPrint=ComponentPrint{px+1:px+z1x,py+1:py+zly);
[disk,vectorj=sector norm(ComponentPrint,1,0);
%img = double(ComponentPrint)/graylevmax;
%imgl = double(disk)/51200;
finger_codel{anglet+1}=vector(1:36);

end

load("informations.dat’,'img’,'-mat’);
img=imrotate(img,22.5/2);

imgN=size(img,1);

imgM=size(img,2);

modN=mod{imgN,8);

modM=mod(imgM,8);
fingerprint=double(img(modN-+1:imgN,modM+1:imgM));

[BinarizedPrint,XofCenter, Y ofCenter}=centralizing{fingerprint,0);
[CroppedPrint]=cropping(XofCenter, Y ofCenter, fingerprint);
[NormalizedPrint,vector}=sector norm(CroppedPrint,0,1);

for (angle=0:1:num_disk-1)
gabor=gabor2d_sub(angie,num_disk);
z2=gabor;
z1=NormalizedPrint;

Properties of Raja Mohd Firdaus

Xviil

Programming codes

zlx=size(z1,1);
zly=size(z1,2);
z2x=size(z2,1);
72y=size(z2,2);
ComponentPrint=real (ifft2(fft2(z1,z1x+z2x-1,z1 y+z2y-1). *{ft2(z2,21 x+22x-
1,21y+z2y-1)));
px=({z2x-1)+mod((z2x-1),2))/2;
py=((z2y-1)yrmod((z2y-1),2))/2;
ComponentPrint=ComponentPrint(px+1:px+zlx,py+1:py+zly);
[disk,vector]=sector_norm(ComponentPrint,1,0);
%img = double(ComponentPrint)/graylevmax;
%img! = double(disk)/51200;
finger code2{angle+ I }=vector(1:36);
end
% FingerCode added to database
if (exist('fp_database.dat)==2)
load('fp_database.dat’,-mat");
fp number=fp number+l;
data{fp number,1}=finger codel;
data{fp number,2}=finger code2;
save('fp_database.dat','data','fp_number',-append’);
else
fp number=1;
data{fp_number,]}=finger codel;
data{fp number,2}=finger _code2;
save('fp_database.dat','data’,'fp_number');
end

message=strcat('FingerCode was succesfully added to database. Fingerprint no.
Lnum2str(fp_number));
msgbox{message, FingerCode DataBase’,' help');

set(DemoFig,'Pointer','arrow’);

setstatus(DemoFig, FingerCode calculated");

set(DemoFig, "UserData’, ud);

drawnow

% e —

Yo
%%%%
%%% Sub-Function - Check
%6%%

function Check(DemoFig)
%
load "informations.dat’ -mat

Properties of Raja Mohd Firdaus Xix

Programming codes

if nargin<l
DemoFig = gebf;
end

set(DemoFig, Pointer','watch’);
setstatus(DemoFig, DataBase Scanning...");
ud=get(DemoFig,'Userdata’);

fingerprint = getimage(ud.hOriginallmage);

fingerprint = fingerprint*graylevmax;

N=175;
num_disk=8;

[BinarizedPrint, XofCenter, Y ofCenter]=centralizing(fingerprint,0);
[CroppedPrint|=cropping(XofCenter, Y of Center, fingerprint);
[NormalizedPrint,vector]=sector_norm(CroppedPrint,0,1);

for (angle=0:1:num_disk-1}
gabor=gabor2d_sub(angle,num_disk);
z2=gabor;
z1=NormalizedPrint;
zlx=size(z1,1);
zly=size(z1,2);
z2x=size(z2,1);
z2y=size(z2,2),
ComponentPrint=real (iffi2(fft2(z1,z1x+22x-1,z1y+z2y-1). *{i2(z2,2 1 x+22x-
Lzly+z2y-1));
px=((22x-1)+mod((z2x-1),2))/2;
py=((z2y-1y+mod((z2y-1),2))/2;
ComponentPrint=ComponentPrint(px+1:px+zlx,py+1:py+zly);
[disk,vector]=sector norm(ComponentPrint,1,0);
%img = double(ComponentPrint)/graylevmax;
%img1 = double(disk)/51200;
finger code{angle+1}=vector(1:36);
end

% FingerCode of input fngerprint has just been calculated.
% Checking with BadaBase
if (exist("fp_database.dat’y==2)
load('fp_database.dat',-mat");
%---- alloco memoria

Properties of Raja Mohd Firdaus

XX

Programming codes

ruotol=zeros(36,1);
ruoto2=zeros(36,1);
vettore_d1=zeros(12,1);
vettore_d2=zeros(12,1);
best. matching=zeros(fp_number.,1);
% start checking
for scanning=1:fp_number
fcodel=data{scanning,1};
fcode2=data{scanning,2};
for rotazione=0:1:11
d1=0;
d2=0;
for disco=1:8
fl=fcodel {disco};
f2=fcode2 {disco};
% ora ruoto f1 ed f2 della rotazione ciclica -----—-—--
for old_pos=1:12
new_pos=mod(old_pos+rotazione,12);
if (new pos==0)
new pos=12;
end
ruotol(new_pos)=fl{old pos);
ruotol(new_pos+12)=fl1(old pos+12);
ruotol(new_pos+24)=fl{old_pos+24);
ruoto2(new_pos)=f2(old_pos);
ruoto2(new_pos+12)=f2(old_pos+12);
ruoto2(new_pos+24y=12(old_pos+24);
end
%
dl=d1+norm(finger code{disco}-ruotol);
d2=d2+norm({finger_code{disco}-ruoto2);
end
vettore_d1(rotazione+1)=d1;
vettore_d2(rotazione+1)=d2;
end
[min_d1,pos min_dl1}=min(vettore dl1);
[min_d2,pos min_d2}=min(vettore_d2);
if min_d1<min_d2
minimo=min_dl;
else
minimo=min_d2;
end
best_matching(scanning)=minimo;
end
[distanza minima,posizione_minimo]=min(best_matching);
beep;

Properties of Raja Mohd Firdaus xxi

Programming codes

message=strcat('The nearest fingerprint present in DataBase which matchs input
fingerprint is : ',;num2str(posizione_minimo),...
' with a distance of : ',num2str(distanza_minima));
msgbox(message,' DataBase Info','help');
%

else
message="DataBase is empty. No check is possible.’;
msgbox(message,'FingerCode DataBase Error','warn');
end

set{Demokig, Pointer','arrow"};

setstatus(DemoFig,' DataBase Scanning completed");
set{DemoFig, 'UserData’, ud),

drawnow

%-‘.u_u S —

Properties of Raja Mohd Firdaus xxii

