
Cluster Computing and Performance Measurement

by

Mohd Azzart Moideen

Dissertation submitted in partial fulfillment of
The requirements for the

Bachelorof Engineering (Hons)
(InformationTechnology)

JULY 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

O-cc-v-V i

Approved by,

CERTIFICATION OF APPROVAL

Cluster Computing and Performance Measurement

by

Mohd Azzart Moideen

Final Draft submitted to the

Information Technology Programme
Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the
BACHELOR OFTECHNOLOGY (Hons)

(INFORMATION TECHNOLOGY)

(Mr. Suhaimi Abdul Rahman)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

November 2004

11

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project,that

the original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

. u/ -

MOHD AZZART MOIDEEN

111

ABSTRACT

There is a continual demand for greater computational power from computer systems

than is currently possible. Areas requiring great computational speed include numerical

simulation of scientific and engineering problems. Such problems often need huge

quantities of repetitive calculations on large amount of data to give valid results.

Cluster computing offers many advantages as a highly cost-effective and often scalable

approach for high-performance computing in general. To achieve the full potential of

high performance computing systems, centralized configuration services are the starting

point. For a large scale of projects, cluster computing is required where it is supposed

to be optimized for the system topology and management of the project. This paper

presents the consequences of using cluster computing and performance management

and the consequences without this technology. The experimental results of this paper

highlight the affects of the design of this service and provide a comprehensive

performance analysis of the project.

IV

ACKNOWLEDGEMENT

Bismillah ar-Rahmani Ar-Raheem

In the Name ofAllah, TheMost Compassionate, the Most Merciful

In order to complete this report, I have been doing researches over internet and books

over cluster computing and distributed computing. In this Cluster Computing and

Performance Measurement project, I would like to thank:

1) Mr Suhaimi Abdul Rahman, my supervisor (for giving me the guidelines and

ways in producing a good output and full support in terms of knowledge input

along this internship)

2) The Backbone Of This FYP Committee - Mr. Mohd Nor Ibrahim and Ms
Vivien, and all IT/IS lecturers, (for giving full commitment in term of providing
info about the final year project)

3) Universiti Teknologi PETRONAS - all UTP staff (for the full cooperation and
providing me very convenient places to complete the project with the provided
utilities)

4) My parents, Tn Hj. Moideen Ahmad and Pn Hjh Harizon Mohd Isa and family

who supports me financially and mentally

5) Friends, for their support and informations over my FYP project

6) Those who are involved directly and indirectly towards the project.

ABBREVIATIONS AND NOMENCLATURES

MPI

HASP

PC

COTS

OS

OTS

HTML

NASA

MPP

SMP

CC-NUMA

NIC

LSF

CODINE

USB

Message Passing Interface

Houston Automatic Spooling Priority

Personal Computer

Commodity-off-the-shelf

Operating Systems

Off-the-shelf

Hyper Text Markup Language

National Aerospace Association

Massively Parallel Processors

Symmetric Multiprocessors

Cache-CoherentNonuniform Memory Access

Network Interface Card

Load Sharing Facility

Computing In Distributed Networked Environments

Universal Serial Bus

VI

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL .

CERTIFICATION OF ORIGINALITY

CERTIFICATION. .

ABSTRACT

ACKNOWLEDGEMENT. .

ABBREVIATION AND NOMENCLATURES.

CHAPTER 1

CHAPTER 2:

CHAPTER 3

INTRODUCTION. .

1.1 Background of Study .

1.2 Problem Statement. .

1.3 Objectives Of The Project.

1.4 And Scope Of Study. .

LITERATURE REVIEW.

2.1 Literature Review.

METHODOLOGY. .

3.1 System Development Methodology.

3.2 Project Methodology .

3.2.1 Planning.

3.2.2 Analysis.

3.2.3 Design.

3.2.4 Implementation.

3.2.5 System Operation and Support

3.3 Tools and Hardware Required.

vn

1

ii

iii

iv

v

vi

9

9

10

10

11

13

14

14

15

CHAPTER 4

CHAPTER 5

REFERENCES

APPENDICES

RESULTS AND DISCUSSION . . 21

4.1 Results . 21

4.2 Discussion . 23

4.2.1 Speedup factor . 23

4.2.2 Efficiency . . 25

4.2.3 What is the Maximum Speedup? . 27

4.2.4 How MPI works? . . 30

CONCLUSION AND RECOMMENDATION 35

5.1 Conclusion . . .35

5.2 Recommendation . . .35

36

37

vm

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

Chapter 1 explains the fundamental information of the project, which

consists of background of study, problem statement, objective and scope of the

project. A brief explanation of 'Cluster Computing' is also included in this

section.

1.1 Background of the project

This report is written as a pre-requisite for undergraduate students to

complete the studies. 'Cluster Computing and Performance Measurement' is

chosen the title for the author's final year project as it could help the author to

enhance and in-depth with all the theories the author have learnt during his

years of studies.

The initial idea leadingto 'Cluster Computing' was developedin the

1960s by IBM as a way of linking large mainframes to provide a cost-effective

form of commercial parallelism. Duringthose days, IBM's HASP (Houston

Automatic Spooling Priority) systemand its successor, JES (Job Entry System),

provided a way of distributing work to a user-constructed mainframe cluster.

IBM still supports clustering operating system, middleware, and system

management software to provide dramatic performance and cost improvements

whilepermittinglarge mainframe users to continueto run their existing

applications. The recent advances in these technologies and their availability as

cheap and commodity components are making clusters or networks of

computers (PCs, workstations, and SMPs) an appealing vehicle for cost-

effective parallel computing.Clusters, built using commodity-off-the-shelf

(COTS) hardware components as well as free, or commonly used, software, are

playing major role in redefining the concept of super computing.

Clusters computing have emerged as a low cost solution providing a high

performance and high availability in creatinga super machine system. Thereare

so many reasons why cluster computing is chosen instead of using distributed

computing. Cluster supports both parallel and sequential programs. E.g.

Emerging OSs like Solaris MC and UnixWare. Cluster nodes have a strong

nodes sense of membership (unlike distributed systems) Single point of entry :

A user can connect to the cluster as a single system (like telnet

Beowulf.myinstitute.edu), instead of connecting to individual nodes as in the

case of distributed systems (like nodel.beowulf.myinstitue.edu). The above

property is exhibited by only CLUSTER COMPUTING. Today, a wide range of

applications are hungry for higher computing power, even though single

processor PCs and workstations now can provide extremely fast processing, the

even faster execution that multiple processors can achieve by working

concurrently is still needed.

Now, finally, costs are falling as well. Networked clusters of commodity

PCs and workstations using off-the-shelf processors and communication

platforms such as Myrinet, Fast Ethernet and etc are becoming increasingly cost

effective and popular. This concept, known as cluster computing, will continue

to flourish; clusters can provide enormous computing power that a pool of users

can share or that can be collectively used to solve a single application.

1.2 Problem statement

Very often applications need more computing power than a sequential computer

can provide. One way of overcoming this limitation is to improvethe operating speed

of processors and other components so that they can offer the power required by

computationally intensive applications. Even thoughthis is currentlypossible to a

certain extent, future improvements are constrained by the speed of light,

thermodynamic laws, and the high financial costs for processor fabrication. A viable

and cost-effective alternative solution is to connect multiple processors together and

coordinate their computational efforts. The resulting systems are popularly known as

parallel computers, and they allow the sharing of a computational task among multiple

processors.

In this cyber era, speed has been increasing rapidly. People are chasing towards

this in order to reduce costs and time. Computing is an evolutionary process. Five

generations ofdevelopment history with each generation improving on the previous

one in terms of technology, architecture, software, applications, and representative

systems. As part of this evolution, computing requirements driven by applications have

always outpaced the available technology. So system designers have always needed to

seek faster, more cost effective computing systems and environment. The problem with

coping the speed in processing, programming and etc can be done by using cluster

computing. Cluster computing provides the best solution, by offering computing power

that greatly exceeds the technological limitations of single processor systems.

1.3 Objective

This project is done in two phases. In the first phase, the research has been done

to understand the concept of cluster computing and the performance measurement. In

the second phase, it concentrates on the design and development of the cluster

computing and how to performthe measurement. Objectives of the project to be

achieved are as follow:

1) To make a research on understanding on how cluster computing works and how

it will be implemented

2) To setup the network which will consist of several PCs for cluster computing

3) To make a measurement using time between sequential and parallel

processing.

1.4 Scope of study

Clusters offer the following features at a relatively low :

• High performance

• Expandability and Scalability

• High Throughput

• High Availability

The research area for this project will cover cluster computing and the

performance measurement. Thisproject will be implemented in Data Communication

lab. The cluster will be able to prove extra speed and performance inprocessing data. A

program of calculating numerical method (engineering mathematics) will be created

where itwill betested onboth cluster PCs and PC with a single processor. Basically,

the project will show how fast and reliable cluster PCs are inprocessing data.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Literature Review

This chapter contains the acknowledged findings on this field, consisting of

relevant theories, hypothesis, facts and data which are relevant to the objective

and the research of this project.

Researcher [1] David Abramson of Monash University during a talk "From

PC Cluster to a global Computational Grid," indicates that by taking a global view,

the scheduling system uses various kinds of parameters to determine a scheduling

policy for optimally completing an application execution. These parameters

include resource architecture and configuration, resource capability, resource

requirements, priority, network latency and bandwidth, reliability of resources,

contention, user preference, application deadline, and user willingness to pay for

resource usage.

Researcher [2] Thomas Sterling of the California Institute of Technology and

NASA's Jet Propulsion Laboratory presented the cluster system used at JPL. He

gave a broader perspective on cluster computing and talked about current trends

leading to very large-scale clusters that can deliver teraflop or even petaflop

performance. Building such systems will require SOCs (systems-on-a-chip),

gigahertz processor clock rates, VLIW (very long instruction word) architecture,

Gbit DRAMs, On board microdisks, optical fiber and wave division multiplexing

communication platform.

Researcher [3] Pfister points out, there are three ways to improve performance

which are work harder, work smarter and get help. In terms of computing technologies,

the analogy to this mantra is that working harder is like using faster software (high

performance processors or peripheral devices). Working smarterconcerns doing

things more efficiently and this revolves around the algorithms and techniques used

to solve computational tasks.Finally, getting help refers to using multiple computers

to solve a particular task.

Sequential era
P

ARCHITECTURE

SYSTEM SOFTWARE

APPLICATIONS

PROB SOLVING

ARCHITECTURE

Parallel era SYSTEM SOFTWARE

APPLICATIONS

PROB SOLVING

1940 50 60 70 80 90 2000 2030

.COMMERCIALIZATION.

R&D COMMODITY

FIGURE 2.1 Two eras of computing.

Table 2.1 shows a modified version comparing the architectural and functional

characteristics of these machines originally given in [4] by Hwang and Xu.During the

past decade many different computer systems supporting high performance computing

have emerged. Their taxonomy is based on how their processors, memory, and

interconnect are laid out. The most common systems are :

• Massively Parallel Processors (MPP)

• Symmetric Multiprocessors (SMP)

• Cache-Coherent Non-uniform Memory Access (CC-NUMA)

• Distributed Systems

• Clusters

Researcher [5] Rajkumar from Monash University says a cluster is a type of

parallel or distributed processing system, which consists of a collection of

interconnected stand-alone computers working together as a single, integrated

computing resource. A computer node can be single or multiprocessor system (PCs,

workstations, or SMPs) with memory, I/O facilities, and an operating system. A cluster

generally to two or more computers (nodes) connected together.The nodes can exist in

a single cabinet or be physically separated and connected via a LAN. An interconnected

(LAN-based) cluster of computers can appear as a single system to users and

applicatios. Such a system can provide a cost-effective way to gain features and

benefits (fast and reliable services) that have historically only on more expensive

proprietary shared memory systems.

Researcher [6] Prof Michael Allen, a full professor in the Department of

Computer Science at the University of North Carolina at Charlotte, indicates that there

is a continual demand for greater computational power from computer systems than is

currently possible. Areas requiring great computational speed include numerical

simulation of scientific and engineering problems. Such problems often need huge

quantities of repetitive calculations on large amounts of data to give valid results.

Calculations must be completed within a 'reasonable' time period. In manufacturing

realm, engineering calculations and simulations must be achieved within seconds or

minutes if possible. A simulation that takes two weeks to reach a solution is usually

unacceptable in a design environment, because the time has to be short enough for the

designer to work effectively. As systems become more complex, it takes more time to

simulate them. There are some problems that have specific deadline for the

computations, for example, weather forecasting. Taking two days to forecast the local

weather accurately for the next day would make the prediction useless. Some areas,

such as modeling large DNA structures and global weather forecasting, are grand

challenge problems. A grand challenge problem is one that cannot be solved in a

reasonable amount of time with today's computer.

Researcher [7] Professor Barry Wilkinson of Western Carolina University

indicates that apart from obtaining the potential for increased speed on an existing

problem, the use of multiple computers/processors often allows a larger problem or a

more precise solution of a problem to be solved in a reasonable amount of time. For

example, computing many physical phenomena involves dividing the problem into

discrete solution points. As we have mentioned, forecasting the weather involves

dividing the air into a three- dimensional grid of solution points occur in many other

applications. A multiple computer or multiprocessor solution will often allow more

solution points to be computed in a given time, and hence more precise solution. A

related factor is that multiple computers very often have more total main memory than

a single computer, enabling problems that require larger amounts of main memory to be

tackled.

CHAPTER 3

3.0 METHODOLOGY AND PROJECT WORK

Chapter 3 features the detailed description of methodology and procedure of

completing this project. This methodology is implemented in order to ensure that the

project is running as required. An overview of the network is also described in this

chapter.

3.1 Project Methodology

Methodology plays a vital role in completing any project. This methodology

consists of 5 important phases that are:

a. Planning

b. Analysis

c. Design

d. Implementation &testing

e. Operation and support

Planning

j i 1'

—•
Analysis

"

Design

i i

V

Implementation
& Testins

V
f

Operation & Suppoi
\

Figure 3.1 shows the cluster computing development life cycle

3.1.1 Planning

System planning begins with a formal proposal or request for the project. In this

phase, the purpose is to identify clearly the nature and scope of the business

opportunity or problem by performing preliminary investigation or also called as

feasibility study. The outcome from this study is project scope. This preliminary

investigation is a critical step since the outcome will affect the entire of our

development process.

At this phase, the project started with the request from the lecturers to submit the

project proposal. As discussed with the author's supervisor, this topic was selected

since it is an interesting topic to discover. During this stage, a proposal was sent to the

FYP committee for approval. Scope of studies was also established during this period.

Note: Please view appendix for Gantt Chart

3.1.2 Analysis

10

The purpose of this phase is to understand the requirements and build a logical

model for the cluster computing environment. As implementing the project, this is the

phase of doing research and analysis. Information, data and findings were collected as

much as possible during this stage.

The software and hardware for the project are identified during this phase.

Hardware

For each PC:

- Pentium 4 processor 2.0 GHz or AMD Athlon 2.0 Ghz processor

- 512 Mb RAM

- CDROM 52X

- Hard disk with at least 20 G of space

Minimum 32 bit Graphic Card

- USB port

- Portable USB drive minimum of 128 Mb of space

Software

Using Linux, for each PC :

- Red Hat Linux 9.0 (shrike)

- GNU++ compiler

PICO or LV for script editing

Message Passing Interface software

11

Using windows,for each PC:

- Microsoft Windows 2000 or XP Professional SP1

- MPICH installer

- ADOBE acrobat reader

- Microsoft Visual C++ compiler

This is the example of current planning of the architecture

Parallel App

Sequential App Parallel Programming Environment

Cluster Middleware

(Single System Image and Availability Infrastructure)
s

PcW/S PcW/S PcW/S

Comm S/W Comm S/W Comm S/W

Net. Net. Net.

High Speed Network/Switch

The following are some prominent components of cluster computers

12

• Multiple High Performance Computers (PCs,Workstations,or SMPs)

• State-of-the-art Operating Systems (Layered or Micro-Kernel based)

• High Performance Networks/Switches

• Network Interface Cards (NICs)

• Fast Communication Protocols and Services

• Cluster Middleware

o Hardware (such as DEC Memory Channel,hardware DSM, and SMP

techniques)

o Operating System Kernel or Gluing Layer (such as Solaris MC and

GLU-nix)

o Applications and subsystems

• Applications (such as system management tools and electronic

forms)

• Runtime systems (such as software DSM and parallel file

system)

• Resource Management and scheduling software (such as LSF

(Load Sharing Facility) and CODINE (Computing In

Distributed Networked Environments))

o Parallel Programming Environments and tools (such as PVM and MPI)

o Applications

• Sequential

• Parallel or Distributed

3.1.3 Design

In this phase, all necessary inputs, outputs,, interfaces and processes were

identified. The tools needed for the design phase were downloaded and installed. PCs

will be setup as clusters and single processing PC as control experiment.

Below is the design for Cluster computing in Data Communication lab.

13

For starting, 3 Pentiums with 4 2.0 Ghz will be used, with one domain server

There will be one master and two slaves

Each PCs will be interconnected using network switch with unique Internet

Protocol address

Next, the Operating System of each PC is installed.

The software, compiler etc will be setup too.

The programming stage will start after this stage.

3.1.4 Implementation

During the implementation phase, the system is constructed. The documents are

written, tested and documented, and the cluster is setup and programmed. The

implementation will be based on the design made earlier.

There will be two choices in implementing the cluster computing environment based on

operating systems:

14

• Using Microsoft Windows 2000 or XP

o The library will be Message Passing Interface (MPI)

o The compiler and programming platform will be visual C++

o The programming language used is C language

• Using Linux Redhat 9.0 (shrike)

o The library will be Message Passing Interface (MPI)

o The compiler will be GCC or GNU++

o The programming platform will be pico or vi which available

automatically with the operating systems.

o The programming language used is C language

3.1.5 System Operation and Support

During system operation and support, the maintenance will maintain and enhance

the cluster computing system. Maintenance changes correct errors and adapt to changes

in the environment, while enhancements provide new features and benefits. The

objective during this phase is to maximize return on the IT/IS investment. The system

developed shall be a well-designed system that is reliable, maintainable and scaleable.

During this stage, the drawback of the system will be identified and future

enhancements will be made.

15

3.2 Why MPI?

MPI (Message-Passing Interface) is a standard specification for message-passing

libraries. MPICH is a portable implementation of the full MPI specification for a wide

variety of parallel computing environments. MPICH contains, along with the MPI

library itself, a programming environment for working with MPI programs. The

programming environment includes a portable startup mechanism, several profiling

libraries for studying the performance of MPI programs, and an X interface to all of the

tools.

The current release supports tcp/ip and shared memory connections. Interprocess

communication on a single machine is done through shared memory queues and

communication between processes on separate machines is done through sockets.The

code provided can be compiled using MS Visual C++ 6.0 and Visual Fortran 6.0. The

dlls provided have the C and Fortran.

16

CHAPTER 4

4.0 Results and Discussions

This chapter compiles the current findings of the project work. There are

several important and informative facts and information that comes from journals and

online resources.

Processors Sequential Parallel

Time taken (s) 11.1156 s 3.5674s

Note : The number entered for both processing are 9 digits numbers

Table 4.1.1 : Results for numerical method calculation using sequential and

parallel processors

4.1 Results

Based on the results of the tested sequential and parallel processing, the author

found that parallel processing has much more better performance and faster processing.

In his programming, the author have been using timer in computing a complex

mathematical calculation using both sequential and parallel processing. Parallel

processing and programming took muchmore less time to completethe task as it divide

the task to the nodes (using three PCs and three Processors) rather than using a

sequential processing and programming. The approximate time for sequential

programming to calculate nine digits numbers of error in numerical method calculation

took about nearly 11.11 seconds while parallel programming took only about 3

seconds. It is proven that using parallel programming and processing is much more

efficient in cost and time consuming.

17

4.2 Discussions on potential for increased computational speed

For further explanation, the numberof processes or processors will be identified

asp. I will use the term "multiprocessor" to include all parallel computer systems that

contain more than one processor.

4.2.1 Speedup factor

The first point of interest when developing solutions on a multiprocessor is the

question of how much faster the multiprocessor solves the problem under

consideration. In doing this comparison, one would use the best solution on the single

processor, that is, the best sequential algorithm on the single processor system compare

against the parallel algorithm under investigation on the multiprocessor.The speedup

factor, S(p), is a measure of relative performance, which is defined as :

S(p) = Ts/ Tp

Ts = Execution time using single processor system (with the best sequential algorithm)

Tp = Execution time using a multiprocessor with p processors

Note : The speedupfactor is normally afunction ofboth p andthe number ofdata

items beingprocessed.

S(p) gives the increase in speed in using the multiprocessor. Note that the underlying

algorithm for the parallel implementation mightnot be the same as the algorithm on the

single-processor system (and is usually different)

In theoreticalanalysis, the speedup factor can also be cast in terms of

computational steps :

S(p) = No. of computational steps using one processor

No of parallel computational steps withp processors

The maximum speedup possible isusuallyp wimp processors {linear speedup). The

speedup ofp would be achieved when the computation can be divided into equal-

duration processes, with one process mapped onto one processor and no additional

overhead in the parallel

4.2.2 Efficiency

It is sometimes useful to know how long processors are being used on the

computation,which can befound from the (system) efficiency. The efficiency,^ is

defined as

E= Ts/TpXp

Where Ts = Execution time using one processor

Tp = Executiontime usingmultiprocessor

P = number of processors

Which leads to

E = S(p)X100%

P

When E is given as a percentage. For example, if E= 50%, the procesors are being used

halfthe time on actual computation, onaverage.The efficiency of 100%o occurs where

all the processors are being used on computations atall times and the speedup factor

Sip), is p.

19

4.2.3 What is the Maximum Speedup?

Several factors will appear as overhead in the parallel version and limit the speedup,

notably.

- Periods when not all the processors can be performing useful work and are

simply idle

- Extra computations in the parallel version not appearing in the sequential

version; for example, to recomputed constants locally.

Communication time between processes.

It is reasonable to expect that some part of a computation cannot be divided into

concurrence processes and must be perform sequentially. Let us assume that during

some period perhaps an initialization period or the period before concurrent processes

are set up, only one processor is doing useful work, and for the rest of the computation

additional processors are operating on processes.

Assuming there will be some parts that are only executed on one processor,

the ideal situation would be for all the available processors to operate simultaneously

for the other times. If the fraction of the computation that cannot be divided into

concurrent parts, the time to perform the computation with p processors is given by fts+

(l-f)ts/p, as illustrated in figure 4..1.Illustrated is the case with a single serial part at

the beginning of the computation, but serial part could be distributed throughout the

computation. Hence, the speedup factor given by

$ip) = ts = p

fts+(l-f)ts/p 1 + (P-I)f

The equation known as Amdahl's law (Amdahl,1967). Figure 4.1 shows Sip) plotted

against number of processors and against f. We see that indeed a speed improvement is

indicated. However, the fraction of the computation if a significant increase in speed is

to be achieved. Even with an infinite number of processors, the maximum speedup is

limited to 1/f

20

For example, with only 5% of the computation being serial, the maximum speedup is

20, irrespective of the number of processors. Amdahl used this argument to promote

single-processor systwms in 1960s.Ofcourse, one can counter this by saying that even

speedup of 20 would be impressive.

fts

Serial section

|a) One processor

lb) Multiple Processors

tp (l-f)ts/p

ts

() -fits

Parallel Section

P Processors

Figure 4.1 Parallelizing sequential problem - Amdahl's Law

21

Speed up factor, s(p)

20 f=0%

f=5%

f= 10%

f=20%

4 8 12 16 20

Number of processors,/;

(a)

Speed up factor, s(p)

20 H

16

12

p-16

p-256

0.2 0.4 0.6 0.8 1.0

Serial fraction,/

(b)

Figure 4.2 (a) Speedup against number of processors (b)Speed up against serial fraction

22

CHAPTER 5

5.0 Conclusion

There is a continual demand for greater computational power from computer

systems than is currently possible. Areas requiring great computational speed include

numerical simulation of scientific and engineering problems .Such problems often need

huge quantityof repetitive calculations on large amountof data to give valid results.

Computations must be completed withina 'reasonable' time. Therefore, cluster

computing is the solution.

These cluster computing developmentshave created a beehive of activity

throughout the world - newbooks, workshops andconferences, withparticipation from

both academic and industry. Today, a wide range of applications are hungry for higher

computing power, and even though single processor PCs and workstations now can

provide extremely fast processing, the even faster execution that multiple processors

can achieve by working concurrently is still needed.

5.1 Recommendation

There are many ways to enhance and improve this project. Below are the

recommendations for the project and future enhancements:

i) The project shouldhave interface instead of using command prompt

in controlling it.

ii) The project should be able to run on multiple and different

Operating Systems, e.g Windows and Linux run simultaneously as

slaves.

iii) The research of the project should include details on differentiations

in prices, performances, constraints and etc. between

Supercomputers and Cluster PCs.

23

REFERENCES

[1] Users' Guide to mpich, a Portable Implementation of MPI

http://www-fp.mcs.anl.gov/~lusk/papers/mpich-guide/paper.html

[2] MPICH-V - Introduction

www.lri.fr/~qk/IVIPICH-V/

[3] Portable MPI Model Implementation over GM Version mpich-1.2.6..13b

www-mvri.com/scs/READMES/README-mpich-qm

[4] Mark Chu-Carroll and Lori Pollock, "Composite Tree Parallelism: Language

Support for General Purpose Parallel Programming", Journal of Programming

Languages, Vol. 5, Issue 1, pp. 1-36, 1997

Available at www.eecis.udel.edu/~pollock/cluster.html

[5] Rajkumar Buyya 2000"High Performance Cluster Computing:

Programming and Applications, Volume 2" Prentice Hall

[6] Rajkumar Buyya 2000 "High Performance Cluster Computing:

Architecture and system design, Volume 1" Prentice Hall

[7] Barry Wilkinson "Parallel Programming - Techniques and Applications

Using Networked Workstations and parallel Computers, second edition"

Prentice Hall

24

APPENDIX 1

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

APPENDIX 6

APPENDIX 7

APPENDIX 8

Appendices

PROJECT SCHEDULE

MPI CONFIGURATION TOOL

MPIRUN

MPI JOB MANAGER

MPI UPDATE TOOLS

HOW TO SETUP MPI

HOW MPI WORKS

OTHERS FULL CODING OF PARALLEL

PROGRAMMING

25

O
n

11 I?
"

~1
3~

1
5

IF 2
0

21 "2
2" 23 ~2
4~ 2
7

.2
8

_ 15
"

1
7

!T
as

k-
N

am
e

-
G

at
he

r
R

eq
u

ir
em

en
ts

A
cc

om
pl

is
h

Pr
oj

ec
tR

es
ea

rc
h

G
at

he
r A

ll
R

eq
ui

re
m

en
tP

la
nn

ed

Pr
ep

ar
ea

nc
ia

cc
om

pl
is

h
L

ite
ra

tu
re

R
ev

ie
w

-
P

ro
je

ct
D

es
ig

n

-
P

re
pa

re
P

ro
je

ct
D

es
ig

n

D
es

ig
n

th
e

N
et

w
or

k

D
es

ig
n

th
e

co
m

pu
te

r
po

si
tio

n

In
st

al
lt

h
e

O
S

n
ee

d
ed

In
sta

ll
th

e
co

m
po

ne
nt

s
ne

ed
ed

-
P

ro
je

ct
D

ev
el

o
p

m
en

t

C
on

st
ru

ct
in

g
th

e
cl

us
te

rw
ith

pr
og

ra
m

m
in

g

-
Im

pl
em

en
ta

ti
on

r
C

on
st

ru
ct

th
e

P
ro

gr
am

m
in

g

C
on

st
ru

ct
th

e
sy

st
em

w
ith

Pr
og

ra
m

m
in

g

C
on

st
ru

ct
th

e
sy

st
em

w
ith

cl
us

te
rs

Fi
na

liz
e

co
ns

tru
ct

in
g

th
e

sy
st

em

-
S

ys
te

m
T

es
ti

n
g

an
d

P
ro

je
ct

D
is

se
rt

at
io

n

C
on

du
ct

th
e

Sy
st

em
T

es
tin

g

Fi
na

liz
e

Sy
st

em
Te

st
in

g

D
ur

at
io

n
S

ta
rt

35
da

ys
W

ed
6/

9/
04

13
da

ys
W

ed
6/

9/
04

10
da

ys
:

M
on

6/
28

/0
4

11
da

ys
M

on
7/

12
/0

4

F
in

is
h

P
re

d
e
c
e
ss

o
rs

F
ri

7
/2

3
/0

4
1

S
u

n
6/

27
/0

4.

Fr
i7

/9
/0

4;
9

Fr
i7

/2
3

/0
4

:1
0

14
d

a
ys

M
on

7/
26

/0
4

M
on

8/
9/

04
7

1
4

d
a

ys
M

on
7,

26
/0

4
M

on
8/

9/
04

3d
ay

s'"
Mo

n7
/26

/04
'W

ed
7/2

8/0
4;

~2
day

s"
Ih

ii"
7/2

9/0
4!

Fh
7/3

0?0
4|1

5
3

da
ys

;
Sa

t7
/3

1/
04

:
M

on
8/

2j
04

!1
6

7
da

ys
'

M
on

8/
2/

04
:

M
on

8/
3/

04
:

2
8

d
a

ys
M

on
8/

9*
)4

M
on

9/
13

/0
4;

28
da

ys
'

M
on

8/
9/

04
1

M
on

9/
13

/0
4:

1
6

d
a

ys
;

T
ue

9/
14

/0
4

T
ue

10
/5

/0
41

13
SS

16
da

ys
T

ue
9/

14
/0

4
T

ue
10

/5
/0

4;

5d
ay

s!
Tu

e9
/1

4/
04

;
M

on
9/2

0/0
4;

6
da

ys
j

T
ue

9/
21

/0
4

T
ue

9/
28

/0
4'

5d
ay

s?
yV

ed
9/2

9/0
4

Tu
e1

0/
5/

04
;

3d
ay

sI
W

ed
10

/6/
04

Fri
10

/8/
04

|23
2d

ay
s;

W
ed

10
/6

/0
4

T
hu

10
/7

^4

1
da

y.
Fr

i1
0/

6/
04

Fr
i1

0/
8/

04
.3

0

> T
3 C
D

3 Q
.

x
'

r 1)Select the hosts toconfigure -

Add Select

Enter the password to connect to the
remote mpd's

r

yj- Iinstalled using the
default passphrase

Appendix 2

- 2) Select the options to setand their values

j-xl
i F hosts

r Show configuration:

launch timeout 10 [J"" 10

use job host j&J j"no~ i J~ y#
lobhost: !

job host fnpd pa;i,;'j.ih^;R i I

n rank based colored output (yes no
V logon dots duiing pwd decryption [yes no

attempt lomimic local network . ,....
\ drive mapping of the current

directory

display system debug dialog
F when processes crash

(applies to -localonly only)

V catch unhanded exceptions..

yes

yes

^j

yes

yes

no Jill]!™
r mpirun prints the exit codes.

F redirect mpd output to log...

loq fie name:

r

yes nor enable -localroot option by default

Apply I Set the selected options
Set the selected

,, ,, I Modify theselected options
Modify L.llJaj.,_ul,,.t_!on the above hostonly

Apply Single
options onthe
highlighted host only

27

OK

Cancel

File Edit View Help

Application:

Number of processes j1 ~rj
Output:

IReady

Appendix 3

Run Break

28

"3J
Advanced Options

(* Any hosts

r Hosts reset

ulp-2f7rna9i733:

NUM M--

Appendix 4

_ «/^UVR' V' -.

Connect connect to a job host

Jobs: Refresh Remove

Job: f™" Fui! de

29

-fr »-!**•**#»-* ^4$

OK

Cancel

Appendix 5

Here are the steps in setting up MPI for windows:

1) Prepare at least 3 PCs with interconnected on a switch with isolated Internet

Protocol address

2) Download MPICH installer

3) Install the installer on each node

4) Configure the MPICH configuration files

5) Compile an MPI application

After executing mpich.nt.l.2.x.exe, two SDK directories will be created

- SDK contains the libraries and include files necessary to compile an mpi
application with MS Visual C++ 6 and/or Visual Fortran 6.

6) Run an application.

• Each launcher provides an application launcher called MPIRun.exe.

Instructions and command options can be found in the users manual and a

short list of options is presented by executing mpirun -help.

• If you installed the binary distribution and selected all the defaults then

these are the steps to get mpirun to work:

o After running setup on all the nodes, execute MPIConfig.exe

(Start^>Programs=>MPICH=>mpd=>mpich configuration tool)

• Select all the nodes where you installed mpich.

• Click Apply. This will set the hosts entry on all the nodes

30

•Mft.Jf-4 *1 ^J.A-V •*> .*-«rii^t-*-..' *" -i*P«V%**

-1) Select the hosts to configure - •2] Select the options to set and their values 1p Show configura,ion:
Add Select

Enter the password to connect to the
remote mpd's

r

& I installed using the
default passphrase

W hosts

r launch timeout

V use job host

JIG
yes no

job host:

T iob host]3SSp^

yes no

ye*

r rank based colored output

f logon dots duiing pwd deciyption

attempt to mimic local network
r drive mapping of the current

director

display system debug dialog
P when processes crash

(applies to -localonly only)

r catch unhanded exceptions

r mpirun prints the exit codes

V redirect mpd output to log yes

ioqfile name:

r* enable -localroot option by default

Apply Set the selected options

Apply Single Set the selected
options on the
highlighted host only

Figure 3.3.6.1 The interface for MPI configuration

31

V I>'e;. rio_
V Ive-? no j

i ye£|) no

ye.s no

y^: no

yes no

r je£jI"no~

,(. I Modify theselected options
Modify

ontheabove host only

OK

Cancel

Figure 3.3.6.2 The interface for executing the parallel and sequential programming

32

|U»A'

^

+> -p U]JI vldFRJi!

I"TgCfiiVjeffj]g£lgjw

cpi.obi - 0 KIIl'IS".

|E \jf. \J\ "m* .vrrr Jj?a itii _rrk urn* |_rh

fi|i«yfl|JtfeB|^ii'|lS5l|»r— ~
^jj'ifcctdliMfflKf!] ^jjf wfi I BO

p-nnldn Vi It'
J"hnh:iri :-r.rin \)

5iacli.de <n«th b>

r-fnh f ;r~nh .i)
f

;-3trj. i'.a / ;:j -*v;.

v::d racial irqe. c'.wr Kft^vd'

t
irt. rlnnr - (1. r. rri ruvr-rs -:
caible n^CT • U^G^OJ'^JIMZJ*:.
Ljwjly .i>• jj_ pi :l. ;jj.. a.
ljmjIh lUr^.int. suds„..w.
irt. rnnhir
cbr prcc«rc MMflTI M. riCtEICM IIHE1;

VP" Trr.^-rgr: ^rcf'i;

M. Cum .-Ba.-.:XH QU ^iU'.uvi-I!-
Jtf^&L_^u_yt£_ij.dtidlyiuu«iur_udJW t:id.=lfcu.,i.

iprin^i's^sri.Troiass Won •is'-u".
i^_d. i)iuL«Li,u:'_rjsu,^!,

""•irt'h'ft.niT)-

sLla i duL=^

(
i: i'vr.d •• 3:
{
jr-it.-i'V-r -fr Tcrnrr rf inhrrMlft [f 711'
Ksaf^d'.to):

C D«ir.i:vr'si

i;lupV"it.rinn:t''

J\ftM / lf».q \».[,ll:,;„/ jt _nJ r1bs^^^^ feslti ji_ 'j<*_LIj? |̂tjj.F<I../ ||l

JflJKJ

ji.CjI k: GL 3V1 Itf

la^ ii^j^;CiMfa^i^:,,jjtoM; *iL»tf

Figure 3.3.6.3 The interface for programming platform

33

Below are the coding for parallel programming using c command n visual C++

compiler. The library used are MPI library

#include "mpi.h"
#include <stdio.h>

#include <math.h>

double f(double a)

{

return (4.0 / (1.0 + a*a));

}

void main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;
double startwtime, endwtime;

int namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,Sargv);
MPI_Comm_size(MPI_COMM_WORLD,Snumprocs);
MPI_Comm_rank (MPI__COMM_WORLD, Smyid) ;
MPI_Get_processor_name(processor_name,&namelen);

fprintf(stderr,"Process %d on %s\n",

myid,

processor_name);
fflush

stderr);

n = 0;

while (!done)

{

if (myid == 0)

{

printf("Enter the number of intervals: (0 quits)
");fflush(stdout);

34

scanf("%d",&n);

startwtime = MPI_Wtime();

}

MPI^Bcast(&n, 1, MPI^INT, 0, MPI_COMM_WORLD);
if (n == 0)

done = 1;

else

{

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid +1; i <= n; i += numprocs)

{

x = h * ((double)i - 0.5) ;

sum +- f(x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI^DOUBLE, MPI_SUM,
0, MPI COMM WORLD);

if (myid == 0)

{

printf("pi is approximately %.16f, Error

is %.16f\n",

pi, fabs(pi - PI25DT));

e = MPIjAftimeO ;

"wall clock time = %f\n", endwtime-startwtime);

}

}

MPI_Finalize();
}

35

endwtim

printf

Appendix 6

How MPI works?

Message-Passing Routines

Basic send and receive routines

Send and receive message-passing calls often have the form

Send (parameter_list)

Recv (parameter_list)

Where send () is placed in the source process originating the message, and recv () is

placed in the destination process to collect the message being sent. The actual

parameters will depend the software and in some cases can be complex.The simplest set

of parameters would be the destination ID and message in send () and the source ID and

the name of the location for receiving message in recv ().For the C language, we might

have the call

Send (&X,destination_id);

In the source process, and the call

Recv (&y,source_id)

In the destination process, to send the data x in the source process to y in the destination

process. The order of parameters depends upon the system. We will show the process

identification after the data and use an & with a single data element, as the specification

usually calls for a pointer here. In this example, x must have been preloaded with the

data to be sent and x and y must be the same type and size.Often, we want to send more

36

complex messages then simply one data element, and then a more powerful message

formation is needed. Various mechanisms are provided for send/receive routines for

efficient code and flexibility.

Process 1 Process 2

Figure 4.2.4.1 Passing a message between processes using send () and recv ()

library calls

Sychronous message passing

The term synchronous is used for routines that return when the message transfer has

been completed. A synchronous send routine will wait until the complete message that

it has sent has been accepted by the receiving process before returning. A synchronous

receive routine will wait the message it is expecting arrives and the message is stored

before returning. A pair of processes, one with a synchronous send operation and one

with a matching synchronous recieveoperation, will be synchronized, with neither the

source process nor the destination process able to proceed until the message has been

passed from the source process to the destination process.Hence, synchronous routines

intrinsically perform two actions: they transfer data, and they synchronize

37

processes.The term rendezvous is used to describe the meeting and synchronization of

two processes through synchronous send/receive operations.

Synchronous send and receive operations do not need message buffer

storage.They suggest some form of signaling, such as three way protocol in which the

source first sends a "request to send" message to the destination.When the destination is

ready to accept the message, it returns an acknowledgement. Upon receiving this

acknowledgement, the source sends the actual messages. Synchronous message-passing

is shown in figure 4.2.4.2 using the 3 -way protocol. In figure 4.2.4.2 (a), process 1

reaches its send() before process 2 reaches its recv().At that time, process 2 must

awaken process 1 with some form of "signal", and then both can participate in the

message transfer. Note that in figure 4.2.4.2 (a), the message is kept in the source

process until it can be sent.In figure 4.2.4.2 (b), process 2 reaches its recv () before

process 1 has reached its send ().Now, process 2 must be suspended until both can

participate in the message transfer. The exact mechanism for suspending and

awakening processes is system dependent.

Suspend process

Both processes

continue

Process 1 Process 2

Request to send

Acknowledgement

Message

Figure 4.2.4.2 (a) When send () occur Before recv()

38

Both processes

continue

Process 1

Request to send

Message

Figure 4.2.4.2 (b) When recv() occurBefore send()

Process 2

4.2.4.3 Message Selection

To provide greater flexibility, messages can be selected by a message tag

attached to the message.The message tag is typically a user-chosen positive integer

(including zero) that can be used to differentiatebetween different type of messages

being sent.Then specific receive routines can be made to accept only messages with a

specific message tag and ignore other messages. Amessage tag will be an additional

parameter in send () and recv (), usually immediately following the source / destination

identification. For example, to send a message, x, with message tag 5 from a source

process, 1, to a destination process, 2, and assign to y, we might have

Send (&x, 2 , 5)

In the source process and

recv (&y, 1,5) in the destination process. The message tag is carried within the

message.If special type matching is not required, a wild card can be used in place of a

message tag, so that the recv () will match with any send ().

39

4.2.4.4 Broadcast

There are usually many other message-passing and related routines that provide

desirable features. A process is frequently required to send the same message more than

one destination process. The term broadcast is used to describe sending the same

message to all the processes concerned with the problem.

Broadcast is illustrated in figure 4.2.4.4.The processes that are to participate in

the broadcast must be identified, typically by first forming a named group of processes

to be used as a parameter in the broadcast routines. In Figure 4.2.4.4, process 0 is

identified as the root process within the broadcast parameters.The root process could be

any process in the group. In this example, the root process holds the data to be

broadcast in buf. Figure 4.2.4.4 shows each process executing the same broadcast

routine, which is very convenient for SPMD model, in which all processes have the

same program.Figure 4.2.4.4 also shows the root receiving the data, which the

arrangement used in MPI but it depends upon the message passing system.

Process 0 Process 1 Process

p-i

Figure 4.2.4.4 Broadcast Operation

40

#include <stdio.h>

#include <math.h>

#ifhdefHUGE_VAL
#define HUGE_VAL 10.0e38
#endif

Appendix 8

#include "mpi.h"
#include "mpptest.h"
#include "getopts.h"
int _NUMNODES, _MYPROCID;

#ifdef HAVEJ3TDLIB_H
#include <stdlib.h>

#endif

#ifndef DEFAULT_AVG
#define DEFAULT_AVG 50
#endif

#include <string.h>

/* Forward declarations */

void PrintHelp(char *[]);

/*

This is a simple program to test the communications performance of
a parallel machine.

*/

/* If doinfo is 0, don't write out the various text lines */
static int doinfo = 1;

/* Scaling of time and rate */
static double TimeScale = 1.0;
static double RateScale = 1.0;

/* The maximum of the MPIWtick values for all processes */
static double gwtick;

/* This is the number of times to run a test, taking as time the minimum

41

achieve timing.
(NOT CURRENTLY IMPLEMENTED)
This uses an adaptive approach that also stops when
minThreshTest values are within a few percent of the current minimum

n_avg - number of iterations used to average the time for a test
n_rep - number of repititions of a test, used to sample test average
to avoid transient effects

*/

static int minreps = 30;
/* n_stable is the number of tests that must not (significantly, see

repsThresh) change the results before mpptest will decide that no
further tests are required

*/

static int n_stable;
static double repsThresh = 0.05;

/* n_smooth is the number of passes over the data that will be taken to
smooth out any anomolies, defined as times that deviate significantly from
a linear progression

*/

static int n_smooth = 5;
char protocol_name[256];

/*

We would also like to adaptively modify the number of repetitions to
meet a time estimate (later, we'd like to meet a statistical estimate).

One relatively easy way to do this is to use a linear estimate (either
extrapolation or interpolation) based on 2 other computations.
That is, if the goal time is T and the measured tuples (time,reps,len)
are, the formula for the local time is s + r n, where

r = (time2/reps2 - timel/repsl) / (len2 - lenl)
s = timel/repsl - r * lenl

Then the appropriate number of repititions to use is

Tgoal / (s + r * len) = reps
*/

static double Tgoal = 1.0;
/* If less than Tgoalmin is spent, increase the number of tests to average */
static double TgoalMin = 0.5;
static int autoavg = 0;

/* This structure allows a collection of arbitray sizes to be specified */

42

#define MAX_SIZE_LIST 256
static int sizelist[MAX_SIZE_LIST];
static int nsizes = 0;

/* We wish to control the TOTAL amount of time that the test takes.

We could do this with gettimeofday or clock or something, but fortunately
the MPI timer is an elapsed timer */

static double max_run_time = 15.0*60.0;
static double start_time = 0.0;

/* All test data is contained in an array of values. Because we may
adaptively choose the message lengths, provision is made to maintain the
list elements in an array, and for many processing tasks (output, smoothing)
only the list version is used. */

/* These are used to contain results for a single test */
typedef struct _TwinResults {

double t, /* min of the observations (per loop) */

max_time, /* max of the observations (per loop) */
sum_time; /* sum of all of the observations */

int len; /* length of the message for this test */
int ntests; /* number of observations */
int n_avg; /* number of times to run a test to get average

time */

int new_min_found; /* true if a new minimum was found */
int n_loop; /* number of times the timing loop was

run and accepted */
struct TwinResults *next, *prev;
} TwinResults;

TwinResults *AllocResultsArray(int);
void FreeResults(TwinResults *);
void SetResultsForStrided(int first, int last, int incr, TwinResults *twin);
void SetResultsForList(int sizelistfj, int nsizes, TwinResults *twin);
void SetRepsForList(TwinResults *, int);
int RunTest(TwinResults *, double (*)(int,int,void *), void *, double);
int RunTestList(TwinResults *, double (*)(int,int,void*), void*);
int SmoothList(TwinResults *, double (*)(int,int,void *), void *);
int RefineTestList(TwinResults *, double (*)(int,int,void *),void *,

int, double);

43

void OutputTestList(TwinResults *, void *, int, int, int);
double LinearTimeEst(TwinResults *, double);
double LinearTimeEstBase(TwinResults *, TwinResults *, TwinResults*, double);
TwinResults *InsertElm(TwinResults *, TwinResults *);

/* Initialize the results array of a given list of data */

/* This structure is used to provice information for the automatic
message-length routines */

typedef struct {
double (*f)(int, int, void *);
int reps, procl, proc2;
void *msgctx;
/* Here is where we should put "recent" timing data used to estimate

the values of reps */
double tl,t2;
int lenl, len2;
} TwinTest;

int main(int argc, char *argv[])

{
int dist;
double (* BasicCommTestX int, int, void *) = 0;
void *MsgCtx = 0; /* This is the context of the

message-passing operation */
void *outctx;
void (*ChangeDist)(int, PairData) = 0;
int n_avg, procl, proc2, distance_flag, distance;
int first,last,incr, svals[3];
int autosize = 0, autodx;
double autorel;
double wtick;
char units[32]; /* Name of units of length */

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &_NUMNODES);
MPI_Comm_rank(MPI_COMMJWORLD, &_JvlYPROCID);

/* Get the maximum clock grain */
wtick - MPI_Wtick();
MPI_Allreduce(&wtick, &gwtick, 1, MPIJDOUBLE, MPI_MAX,

MPI_COMM__WORLD);

/* Set the default test name and labels */

44

strcpy(protocolname, "blocking");
strcpy(units, "(bytes)");

if (SYArgHasName(&argc, argv, 1, "-help")) {
if

L_MYPROCID = 0) PrintHelp(argv);
MPI_F

inalize();
return

0;

}

if CJNUMNODES < 2 && !SYArgHasName(&argc, argv, 0, "-memcpy")) {
fprintf(

stderr, "Must run mpptest with at least 2 nodes\n");
MPI_F

inalize();
return

i;

}

/* Get the output context */
outctx = SetupGraph(&argc, argv);
if (SYArgHasName(&argc, argv, 1, "-noinfo")) doinfo = 0;

/* Procl *must* be 0 because of the way other data is collected */
procl = 0;
proc2 - __NUMNODES-l;
distance_flag = 0;
if (SYArgHasName(&argc, argv, 0, "-logscale")) {

] = sizeof(int);

] =131072; /* 128k*/

] =32;

}
else {

] =0;

] - 1024;

] =32;

}
if (SYArgHasName(&argc, argv, 1, "-distance")) distance_flag++;

45

svals[0

svals[l

svals[2

svals[0

svals[l

svals[2

SYArgGetIntVec(&argc, argv, 1, "-size", 3, svals);
nsizes - SYArgGetIntList(&argc, argv, 1, "-sizelist", MAX_SIZE_LIST,

sizelist);

if (SYArgHasName(&argc, argv, 1, "-logscale")) {

the sizelist field to specify a collection of power of

sizes. This is a temporary hack until we have something

better. You can use the -size argument to set min and max values

stride is ignored) */

= 0;

(svals[0] = 0) {

sizelist[nsizes++] = 0;

4;

svals[0];

k <= svalsfl] && nsizes < MAX_SIZE_LIST) {

sizelist[nsizes++] = k;

2;

Need to tell graphics package to use log/log scale */

ale(outctx, 1);

}

/* Get the number of tests to average over */
n_avg = DEFAULT_AVG;
if (SYArgHasName(&argc, argv, 1, "-autoavg")) {

autoavg - 1;

46

/* Use

two

(the

intk;
nsizes

if

k =

}
else {

k =

}
while(

k *=

}
/*

DataSc

=5; /* Set anew default. This can be ovenidden */

SYArgGetInt(&argc, argv, 1, "-n_avg", &n__avg); /* was -reps */
if (SYArgGetDouble(&argc, argv, 1, "-tgoal", &Tgoal)) {

(TgoalMin >0.1 *Tgoal) TgoalMin =0.1 *Tgoal;
SYArgGetDouble(&argc, argv, 1, "-rthresh", &repsThresh);

SYArgGetInt(&argc, argv, 1, "-sample_reps", &minreps);
n stable -minreps;
SYArgGetInt(&argc, argv, 1, "-^stable", &n_stable),
SYArgGetDouble(&argc, argv, 1, "-max^untime", &max„run_time);
if (SYArgHasName(&argc, argv, 1, "-quick) ||

HasName(&argc, argv, 1, "-fast")) {
/* This is a short cut for
-autoavg -n_stable 5 */
autoavg = 1;
n_avg = 5;
n__stable = 5;

}

autosize =SYArgHasName(&argc, argv, 1, "-auto");
if(autosize) {

= 4;

Getlnt(&argc, argv, 1, "-autodx", &autodx);

= 0.02;

GetDouble(&argo,argv,l,"-autorel",&autorel);

,*Lthe general test based on the presence of an -gop, -overlap, -bisect
or no arg */
SetPattern(&argc, argv);if (SYArgHasName(&argc, argv, 1, -gop)) I

need to fix this cast eventually*/

ommTest =(double (*)(int,int,void*))

47

n_avg

if

SYArg

autodx

SYArg

autorel

SYArg

/* we

BasicC

MsgSize;

cbuf[32];

(SYArgHasName(&argc, argv, 1, "-sync")) {

BasicCommTest = round_trip_b_overlap;

strcpy(protocol_name, "blocking");

/* Assume -async */

BasicCommTest = round_trip_nb_overlap;

strcpy(protocol_name, "nonblocking");

ze = 0;

Getlnt(&argc, argv, 1, "-overlapmsgsize", &MsgSize);

x = OverlapInit(procl, proc2, MsgSize);

Compute floating point lengths if requested */

(SYArgHasName(&argc, argv, 1, "-overlapauto")) {

OverlapSizes(MsgSize >= 0 ? MsgSize : 0, svals, MsgCtx);

protocol_name, "-overlap");

(MsgSize >= 0) {

sprintf(cbuf, "-%d bytes", MsgSize);

strcpy(cbuf, "-no msgs");

protocol_name, cbuf);

cale = 0.5:

49

int

char

if

}
else {

}
MsgSi

SYArg

MsgCt

/*

if

}
strcat(

if

}
else {

}
strcat(

TimeS

ale = 2.0;

}
else if (SYArgHasName(&argc, argv, 1, "-memcpy")) {

use vector = 0;

x -0;

eDist = 0;

cale =1.0;

ale-1.0;

ctor = SYArgHasName(&argc, argv, 1, "-vector");

memcpy_rate__int, memcpy_rate_double */

(SYArgHasName(&argc, argv, 1, "-int")) {

(use_vector) {

{

ommTest = memcpy_rate_int;

protocol_name, "memcpy-int");

(SYArgHasName(&argc, argv, 1, "-double")) {

(use_vector) {

ommTest = memcpy_rate_double_vector;

protocol_name, "memcpy-double-vector");

50

RateSc

int

MsgCt

Chang

TimeS

RateSc

use_ve

/*

if

if

}
else

BasicC

strcpy(

}
}
else if

if

BasicC

strcpy(

>
else

ommTest = memcpy_rate_double;

protocol_name, "memcpy-double");

#ifdef HAVE_LONG_LONG

(SYArgHasName(&argc, argv, 1, "-longlong")) {

(use_vector) {

ommTest = memcpy_rate_long_long_vector;

protocol_name, "memcpy-longlong-vector");

ommTest = memcpy_rate_long__long;

protocol_name, "memcpy-longlong");

#endif

BasicCommTest = memcpy_rate;

strcpy(protocol_name, "memcpy");

}
else {

by default */

ommTest = GetPairFunction(&argc, argv, protocol_name);

x = Pairlnit(procl, proc2);

51

BasicC

strcpy(

}
}

else if

if

BasicC

strcpy(

}
else

BasicC

strcpy(

}
}

else {

}

/* Pair

BasicC

MsgCt

Chang
eDist = PairChange;

if

(SYArgHasName(&argc, argv, 1, "-debug"))

PrintPairInfo(MsgCtx);
TimeS

cale = 0.5;

RateSc

ale = 2.0;

}
first = svals[0];
last = svalsfl];
incr = svals [2];
if (incr — 0) incr = 1;

/*

Finally, we are ready to run the tests. We want to report times as
the times for a single link, and rates as the aggregate rate.
To do this, we need to know how to scale both the times and the rates.

Times: scaledby the number of one-way trips measured by the base testing
code. This is often 2 trips, or a scaling of 1/2.

Rates: scaled by the number of simultaneousparticipants (as well as
the scaling in times). Compute the ratesbased on the updated time,
then multiply by the number of participants. Note that, for a single
sender, time and rate are inversely proportional (that is, ifTimeScale
is0.5,RateScaleis2.0).

*/

startjime = MPI_Wtime();

/* If the distance flag is set, we look at a range of distances. Otherwise,
we just use the first and last processor */
if (doinfo && _MYPROCID = 0) {

Header

Graph(outctx, protocol_name, (char *)0, units);
}
if(distance_flag) {

for(dist
ance=l ;distance<GetMaxIndex();distance++) }

proc2 = GetNeighbor(0, distance, 0);

52

if

(ChangeDist)

(*Chan
geDist)(distance, MsgCtx);

time_function(n_avg,first,last,incr,proc1,proc2,

BasicCommTest,outctx,

autosize,autodx,autorel,MsgCtx);

}
}
else{

time f

unction(n_avg,first,last,incr,procl,proc2,BasicCommTest,outctx,

autosize,autodx,autorel,MsgCtx);
}

/*

Generate the "end of page". This allows multiple distance graphs on the
same plot

*/

if (doinfo && _JviYPROCID == 0)

geGraph(outctx);
EndGraph(outctx);

MPI_Finalize();
return 0;

}

/*

This is the basic routine for timing an operation.

Input Parameters:
• n„avS _Basic number of times to run basic test (see below)
. first,last,incr - length of data is first, first+incr,... last

(if last != first + k * incr, then actual last value is the
value of first + k * incr that is <= last and such that

first + (k+1) * incr > last, just as you'd expect)
. procl,proc2 - processors to participate in communication. Note that

all processors must call because we use global operations to

53

EndPa

manage some operations, and we want to avoid using process-subset
operations (supported in Chameleon) to simplify porting this code

. CommTest - Routine to call to run a basic test. This routine returns
the time that the test took in seconds.

. outctx - Pointer to output context

. autosize - If true, the actual sizes are pickedautomatically. That is
instead of using first, first + incr,..., the routine choses values
of len such that first <= len <= last and other properties, given
by autodx and autorel, are satisfied.

. autodx - Parameter for TSTldauto, used to set minimum distance between
test sizes. 4 (for 4 bytes) is good for small values of last

. autorel - Relative errortolerance used by TSTldauto in determining the
message sizes used.

. msgctx - Context to pass through to operation routine
*/

void time_function(int n_avg, int first, int last, int incr,

procl, int proc2, double (*CommTest)(int,int,void*),

void *outctx, int autosize, int autodx,

double autorel, void *msgctx)
{

int distance, myproc;
int n_without_change; /* Number of times through the list without

changes */

myproc =_MYPROCID;
distance = ((procl)<(proc2)?(proc2)-(procl):(procl)-(proc2));

/* Run test, using either the simpledirect test or the automatic length
test */

if (autosize) {

esults *twin;

AllocResultsArray(1024);

ultsForStrided(first, last, (last-first)/8, twin);

tests */

54

int

TwinR

intk;

twin -

SetRes

/* Run

sForList(twin, n_avg);

(k=0; k<minreps/5; k++) {

kk;

(kk=0;kk<5;kk++)

RunTestList(twin, CommTest, msgctx);

Don't refine on the last iteration */

J-minreps-l)

RefineTestList(twin, CommTest, msgctx, autodx, autorel);

(k=l; k<n_smooth; k++) {

(!SmoothList(twin, CommTest, msgctx)) break;

Final output */

(myproc = 0)

OutputTestList(twin, outctx, procl, proc2, distance);

sults(twin);

}
else {

esults *twin;

(nsizes) {

- AllocResuitsArray(nsizes);

SetResultsForList(sizelist, nsizes, twin);

nsizes = 1 + (last - first)/incr;

55

SetRep

for

int

for

(void)

/*

if (k

}
for

if

}
/*

if

FreeRe

TwinR

intk;
if

twin

}
else {

= AIlocResultsArray(nsizes);

SetResultsForStrided(first, last, incr, twin);

tests */

sForList(twin, n_avg);

outchange = 0;

(k=l; k<minreps; k++) {

(RunTestList(twin, CommTest, msgctx)) {

n_without_change = 0;

n_without_change++;

(n_without_change > n_stable) {
#if DEBUG AUTO

"Breaking because stable results reached\n");
#endif

(k=l; k<n_smooth; k++) {

(!SmoothList(twin, CommTest, msgctx)) break;

Final output */

(myproc == 0)

OutputTestList(twin, outctx,procl, proc2, distance);

sults(twin);

56

twin

}

/* Run

SetRep

n_with

for

if

}
else

if

printf(

break;

}
}
for

if

}
/*

if

FreeRe

}
if (myproc == 0)

DrawG

raph(outctx, 0, 0, 0.0, 0.0);

}

I* **

Utility routines

************** + ******^**^^^^4:^^^^^**^**^^^*^^ + ^^^^^^^^^^^^^^^^ + ^^^^j(!!j;;)!

*******/

void PrintHelp(char *argv[])
{
if LMYPROCID != 0) return;
fprintf(stderr, "%s - test individual communication speeds\n", argv[0]);

fprintf(stderr,
"Test a single communication link by various methods. The tests are \n\
combinations of\n\

Protocol: \n\

-sync Blocking sends/receives (default)\n\
-async NonBlocking sends/receives\n\
-ssend MPI Syncronous send (MPI_Ssend) and MPI_Irecv\n\
-force Ready-receiver (with a null message)\n\
-persistant Persistant communication^
-put MPI_Put (only on systems that support it)\n\
-get MPI_Get (only on systems that support it)\n\
-vector Data is separated by constant stride (only with MPI, using UBs)\n\
-vectortype Data is separated by constant stride (only with MPI, using \n\

MPI_Type_vector)\n\
\n\

Message data:\n\
-cachesize n Perform test so that cached data is NOT reused\n\

\n\

-vstride n For -vector, set the stride between elements\n\
Message pattern:\n\
-roundtrip Roundtrip messages (default)\n\
-head Head-to-head messages\n\
-halo Halo Exchange (multiple head-to-head; limited options)\n\
\n");

PrintHaloHelpQ;

57

fprintf(stderr, "\
-memcpy Memory copy performance (no communication)\n\
-memcpy -int Memory copy using a for-loop with integers\n\
-memcpy -double Memory copy using a for-loop with doubles\n\
-memcpy -longlong Memory copy using a for-loop with long longs\n");

fprintf(stderr,
' Message test type:\n\
(if not specified, only communication tests run)\n\
-overlap Overlap computation with communication (see -size)\n\
-overlapmsgsize nn\n\

Size of messages to overlap with is nn bytes.\n\
-bisect Bisection test (all processes participate)\n\
-bisectdist n Distance between processes\n\

\nM);

fprintf(stderr,
1 Message sizes:\n\
-size start end stride (default 0 1024 32)\n\

Messages of length (start + i*stride) for i=0,l,.„ until\n\
the length is greater than end.\n\

-sizelist nl,n2,...\n\
Messages of length nl, n2, etc are used. This overrides \n\
-size\n\

-logscale Messages of length 2**i are used. The -size argument\n\
may be used to set the limits. If-logscale is given,\n\
the default limits are from sizeof(int) to 128 k.\n\

-auto Compute message sizes automatically (to create a smooth\n\
graph. Use -size values for lower and upper range\n\

-autodx n Minimum number of bytes between samples when using -auto\n\
-autorel d Relative error tolerance when using -auto (0.02 by default)\n");

fprintf(stderr, "\n\
Detailed control of tests:\n\

-quick Short hand for -autoavg -nestable 5\n\
this is a good choice for performing a relatively quick and\n\
accurate assessment of communication performance\n\

-n_avg n Number of times a test is run; the time is averaged over this\n\
number of tests (default %d)\n\

-autoavg Compute the number of times a message is sent automatically\n\
-tgoal d Time that each test should take, in seconds. Use with \n\

-autoavg\n\
-rthresh d Fractional threshold used to determine when minimum time\n\

has been found. The default is 0.05.\n\

-sample_reps n Number of times a full test is run in order to find the\n\
minimum average time. The default is 30\n\

58

-n_stable n Number of full tests that must not changethe minimum\n\
average value before mpptest will stop testing. By default,\n\
the value of-sample_reps is used (i.e.,no early termination)\n\

-max_run_time n Maximum number of seconds for all tests. The default\n\
is %d\n\

\n", DEFAULT_AVG, (int)max_run_time);

fprintf(stderr, "\n\
Collective operations may betested with -gop [options]:\n");

PrintGOPHelpO;

PrintGraphHelp();
PrintPatternHelpO;
fflush(stderr);
}

59

