Design and Implementation of a General Purpose Fuzzy Control System

by

Selvakumar A/L Balasupramaniam

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

JUNE 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Design and Implementation of a General Purpose Fuzzy Control System

by
Selvakumar A/l Balasupramaniam

A project dissertation submitted to the
Electrical and Electronic Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONIC ENGINEERING)

Approved by,

N dllan

(Dr. Mohammad bin Awan)

UNIVERISTI TEKNOLOGI PETRONAS
TRONOH, PERAK
June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that T am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and the original work contained herein have not been undertaken or done by

unspecified sources or persons.

SELVAKUMAR A/L. BALASUPRAMANIAM

i1

ABSTRACT

The main objective of this final year project is to design and to implement a general
purpose Fuzzy control system that employs IF-THEN fuzzy rules. The design of the
general purpose Fuzzy controller has been refined to a Fuzzy air conditioner control
system. The Fuzzy control system for an air conditioning system is implemented
using two inputs and two outputs variables. The inputs to the system are the room
temperature and the room humidity while the outputs are the delta temperature
increase/dectrease and the relative air flow, controlled by a motor. The Fuzzy air
conditioner makes reasoning similar to human decision making based on the room
temperature and the room humidity level to adjust the air flow speed and the
temperature out from the air conditioner with assumption of that the most
comfortable relative humidity level would be at around 45% RH and at room
temperature of 27° C. The Fuzzy air conditioner has the operating range of 10° C to
50° C for the room temperature and 10% RH for the room humidity. In this project,
the Fuzzy Logic Concept is used to implement a Fuzzy control system using 25 main
IF-THEN proposition statements. The project was implemented through software
(Active-HDL, MATLAB, Fuzzy Logic Toolbox, Project Navigator, and
FuzzyTECH) utilization for design development and verification as well as
laboratory activities for the hardware realization using Xilinx’s VIRTEX II FPGA
chip. The author managed to design and implement a simple Fuzzy air conditioning
system that able to make decisions based the room temperature and the room

humidity at software realization stage only.

il

ACKNOWLEDGEMENT

During all the activities performed for this project, the author has received some
guidance and assistance which have enabled the author to perform the task smoothly.
Therefore, the author would like to take this opportunity to express his highest

gratitude mainly to following people in their contribution to the author in this project.

i) Associate Professor Dr. Mohammad Bin Awan (Supervisor) for providing
the necessary guidance to the author when the author faced some
problems regarding the project.

11) Mr. Balbir Singh (Lecturer) for providing some assistance in certain areas
of the project.

iily Encik Musa (Laboratory Technician) for providing the necessary
assistance for the author in laboratory activities of the project.

iv) Encik Ramli (Laboratory T echnician) for the cooperation and guidance

given in using certain equipment.

The author also would like to express his appreciation to those who has assisted the

author and contributed effort in the completion of project for this semester.

Thank you very much.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ..ot et s i
CERTIFICATION OF ORIGINALITY ...ccooviiceiriiiniiinie s srsnesssss s ii
ABSTRACT ... ceeeiitee et eveesseraet e rse s st bbb s s a s b re s s ch e s e s st n et iii
ACKNOWLEDGEMENTo.ooviieieiniiisteeeeseissrnssseeseess e s ssssss st nas v
CHAPTER 1: INTRODUCTION ...ciiieeircec it ssn s 1
1.1 Background of StudY ..o 1

1.2 Problem Statement.coeevrmeerirnninnire e ste s sesnne 2

1.3 ODJECHIVES wuvueviiiircerire st 2

1.4 Scope of STUAY ...t 3

CHAPTER 2: LITERATURE REVIEW AND THEORYccoconiiniiiincnines 4
2.1 Fuzzy Logic Concept ..ot 4

2.1.1 FUzzy MOGelcvevirrrrceciniiss s inssssssess e s 9

2.1.2 Fuzzy Rule Generationccvvvveviirnicsiesnmnisnsncncnenns 6

2.1.3 Membership FUnctions.......c..ccoovvnvnncreer i 6

2.2 Control System DesiZn ..o 8

2.3 Fuzzy Control System Design............ccoeireminnrnrniencnnicienens 10

2.3.1 Procedure in Designing Fuzzy Control System 11

CHAPTER 3: METHODOLOGY / PROJECT WORKceiririir e 13
3.1 Procedure Identification...........cccovvminnieneenmecenecn e 13

3.2 ToOlS TEQUITEd ..ot e 14

CHAPTER 4: RESULTS AND DISCUSSION.......cociviniiiviienmessssmnnssssnscnenes 13
4.1 Results and FINAINGSccccurmmrmmnnnniiiiii e 15

4.1.1 Membership Functions for Fuzzy air conditioner........... 16

4.1.2 Inference system of the Fuzzy air conditioner................ 23

4.1.3 VHDL coding of the Fuzzy control system 25

4.1 4 MATLAB Simulations.........ccccovvrervecornmissunnsecensiesnns 27

4.2 DISCUSSIONS ..vvivrererreeeerieiestsneeseisnesserassreeessira st s s asnassssasasssssenss 28

4.2.1 Fuzzy air conditioner and its membership functions...... 28

4.2.2 Comparison between Mamdani and Sugeno Method 30

4.2.2 Fuzzy Inference Proposition Rules and Surface Plot...... 31

4.2.3 VHDL programming and MATLAR simulation 32

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS ..o 33

5.1 CONCIUSION 1veirvvireceerrecrie et s e i3
5.2 RecommEndationccccoveeceenimreririnsnn e s 35
REFERENCES ..o oot ettt eteeeeeeettassasasses e see e oaansmas s by e et smn s sem s n e s 36
APPENDICES ..ot ceieetteteeteueebesssseeestsressesssst st sres s aesaaresas s e s s st 37

vi

LIST OF FIGURES

Figure 1: Fuzzy MOodel. ...t 5
Figure 2: Fuzzy Rules MOdel. ...t 6
Figure 3: Membership function of car speed ... 8
Figure 4: Typical process Control SYSETM ...t 9
Figure 5: Fuzzy air conditioner.........coovvvnirnen: e ter ettt st et 15
Figure 6: Membership function for Toom femMPETatire ... 16
Figure 7: Membership function for room humidity ... 17
Figure 8: Membership function for delta temperature increase/decrease...uiinireenees 18
Figure 9: Membership function for air flow MOTOT ... 19
Figure 10: Membership function for room t€mMperatureoov o 20
Figure 11: Membership function for room Rumidity ..o 21
Figure 12: Delta Temperature INCTEase.c.nrviimsmmminssissrssnsssiississi s s 22
Figure 13: Ar FLOW MOTOT ...t 23
Figure 14: Surface plot of the inputs against delta temperature inCreaseccevenvcns 24
Figure 15: Surface plot of the inputs against air flow MOtOT ... 24
Figure 16: A part of Fuzzification VHDL COU@ ...cvrmiiiiinisisseess 25
Figure 17: A part of Inference VHDL €0de ..o 26
Figure 18: A part of Defuzzification VHDL C0d€ooiiiiiiiniiiriniininnness 26
Figure 19: A part of Fuzzification MATLAB €0de ..o 27
Figure 20: A part of Inference MATLAB Code ...ovioiiniicnni s 27
Figure 21: A part of Defuzzification MATLAB €O ...ooivivinvininninni e 28
Figure 22: Example of non-linear relation between inputs and oUputs ..o 31
Figure 23: Input membership function - ROOm teMPETALUIe ...oovvvvvovciiiisisisnsr s 37
Figure 24: Input membership function — Room humidity .oeeeeeecere e 37
Figure 25: Output membership function - Delta temperature TNCTEASE overenecrrvcciibitnins 38
Figure 26: Qutput membership function — Air flow mMOTOr. ... 38

vii

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Appendix G
Appendix H
Appendix I

Appendix J

Appendix K
Appendix L
Appendix M
Appendix N
Appendix O

LIST OF APPENDICES

* FIS SIMULATIONS. 11eeevrvereeeeiersssesseeeeessesssereras s s assrsra s s 37
- Detail Rule Base Model. ..o 39
: Coding for Fuzzification in VHDL ... 40
- Test bench code for Fuzzification.......er i 43
- Coding for Rule Base — Inference in VHDL w.ooviriciinninnns 45
- Test bench code for Inference ... 50
: Coding for Defuzzification in VHDL oo 52
- Test bench code for Defuzzification........oveiniiies 54
- Matlab’s M-file for Fuzzification ... 56
- Matlab’s M-file for Inference ..o 58
: Matlab’s M-file for Defuzzification..........cocovvinrnnmnine 60
- Matlab Results — FUzZIfiCation ... 62
- Matlab Resulis — INFETENCE .ouvverriieeiiriiirnee e 63
- Matlab Results — Defuzzification ..o 64
- Sugeno method’s sample calculation........coomine 65

viil

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Fuzzy logic is used in embedded control and information processing application.
Fuzzy provides a simple way to draw definite conclusions from vague, ambiguous or
imprecise information [9]. Fuzzy logic resembles human decision making with its

ability to work from approximate data and find precise solutions.

Unlike classical logic and conventional control system which requires a deep
understanding of a system, exact equations, and precise numeric values, Fuzzy logic
provides an alternative way of thinking, which allows modeling complex systems

using a higher level of knowledge and experience manipulation [4].

Fuzzy Logic allows expressing this knowledge with subjective, descriptive and
imprecise concepts. Some examples are that expressions of very hot, hot, not so hot,
warm, chill, cool and cold. Fuzzy Logic has been found to be very suitable for
embedded control applications. Fuzzy technology is used to improve quality and

reduce development time.

1.2 Problem Statement

The conventional control systems that have been implemented are depends on
precise range of input [6]. This has caused the conventional control system to be less
robust or less flexible. Problem solving using the conventional method sclves most
of the problems but not all, especially the problems that requires human reasoning.
The presence of human during problem solving activities might not be possible all
the time as well since the situation would not be favorable for human presence. The

problem solving should be solved by only the presence of machine or its equivalent.

Fuzzy logic is based on a simple rule-based IF “THEN [4] proposition statement
approach in solving control problem. The Fuzzy logic model is empirically-based,
relying on a person’s experience tather than his/her technical understanding of the
system. Fuzzy logic utilizes imprecise yet very descriptive set of inputs such as cool,
cold, very cold and extremely cold to describe what is actually happening. Fuzzy
logic capability in mimicking the human behavior at fast rate enables fuzzy control

system to be more robust and reliable.
1.3 Objectives

Two main objectives were sct to be achieved by the author at the end of the project.
The objectives of the project are as follow:

e To design a Fuzzy control system using Fuzzy logic concept for an air
conditioning system, or to design a Fuzzy air-conditioner that would
able to adjust its operation based on the room temperature and room
humidity.

o To implement the design of air conditioner Fuzzy confrol system
using VHDL programming language. VHDL is chosen for the
implementation due to the reason that this hardware description
language is used more often nowadays in the industry and the

availability of the reference resources.

1.4 Scope of Study

The author was able to integrate the theoretical knowledge that has been learned
throughout the degree programme with practical approach throughout the project.
This project also helped the author to develop his knowledge in new type of control
system application, Fuzzy control system which is not taught through the academic
syllabus of the programme. Design and implementation stage of this project gave the
author a brief view of how integrated chips are designed and implemented at real life
situation. The scope of this project included process of learning about the related
concept, familiaring with VHDL programming, designing the Fuzzy control system,
finalizing the Fuzzy control system design (Fuzzy air conditioner), developing the

Fuzzy control system design, implementation of the design and project presentation.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Fuzzy Logic Concept

The concept of Fuzzy Logic was introduced by Lotfi Zadeh, a professor at the
University of California at Berkeley, and presented as a way of processing data by
allowing partial set membership rather than crisp set membership or non-
membership [9]. This approach to set theory was not applied to control systems until
the 70's due to insufficient small-computer capability prior to that time. Fuzzy logic
concept reasoning is that people do not require precise numerical information based
inputs, and yet they are capable of highly adaptive contro]l and decision making. If
feedback controllers could be programmed to accept noisy, imprecise input, the

controllers would be much more effective and perhaps easier to implement.

Fuzzy logic is a problem-solving control system methodology that can be
implemented in different kinds of system. It can be implemented in hardware,
software, or a combination of both. Fuzzy logic provides a simple way to arrive at a
definite conclusion based upon vague, ambiguous, imprecise, noisy, or missing input
information. Fuzzy logic is based on a rule-based IF - THEN approach in solving
contro} problem rather than attempting to model a system mathematically. Fuzzy
logic’s approach is to control problems by mimicking how a human would make

decisions, but in a faster rate.

2.1.1 Fuzzy Model

Fuzzy model [4] consists of four main elements mainly the inputs, Fuzzification,
Defuzzification and the outputs. The inputs and the outputs are the physical devices
or results that can be seen and desired by user. The Fuzzification and the
Defuzzification is the process performed with the aid of Fuzzy logic and Process
logic to relate the inputs to the outputs. Fuzzification process is performed by the
Fuzzifier, where crisp inputs are converted into Fuzzy based input representations.
Defuzzification is the process performed by the Defuzzifier, where the results of the
Fuzzy process logic outputs are converted into crisps values, or desired actions or

real time outputs. The exact representation of a Fuzzy Model is shown in Figure 1.

p Defuzzifier

FProcesslogic |g——— Knowledge biase Ph::,r_sical' device

¥

Fuzzifier i

Figure 1: Fuzzy Model

The combination of the Process Logic and the Knowledge Base components is
known as the Inference system of a Fuzzy system. The whole Fuzzy system is
generally considered as consists of three steps; mainly Fuzzification, Inference and
Defuzzification. Fuzzification and Defuzzification are two steps that are
complementary to each other while the Inference is the process where the decision
making actually takes place. The Inference components differ from one Fuzzy

system to another because the architecture depends on the designer of the system.

2.1.2 Fuzzy Rule Generation

The Fuzzy rule [4] is basically based on the simple IF — THEN rule which relates the
input to the output through combinational logic relationship. The rules are usually
known as the proposition statements in layman’s term. An example of the Fuzzy
rules is shown below where a Fuzzy system with two inputs, A and B, each having
two different situations of 1 and 2. The inputs can be combined through digital logic

operations such as the AND or OR operators to produce necessary output conditions.

IF Al and/or B THEN H11 ELSE
IF A2 and/or Bl THEN H21 ELSE
IF Al and/or B2 THEN H12 ELSE
IF A2 and/or B2 THEN H22.

The IF-THEN rules, when tabulated in a table similar to what shown below, the
obtained table, known as the Fuzzy Rules Model [4], shows much more clearly how

a Fuzzy Inference system actually works.

Al Hi1 | Hiz2

A2 Hz1 | H2Z

Bi B2

Figure 2: Fuzzy Rules Model

2.1.3 Membership Functions

Membership Functions [4] profiles are the plots of inputs to the respective degree of
truth. The degree of truth is a unitless value that defines how true the condition is.
For example, when a person with height of 170cm is considered as tall, the degree of
truth for that person is tall is 1.0. However, when another person with the height of
165cm, the degree of truth for that person is tall is less than 1.0, maybe around 0.8.

Usually, when the latter condition occurs in a Fuzzy system, it is defined two

linguistic variables. Linguistics variables are the variables used to define a value or a
condition with a set of range. Examples of linguistic variables for a category are Tall
and Short. Therefore, when the person with the height of 165¢m is defined in term
Fuzzy system, it would be as 0.8 of Tall and 0.2 of Short. A membership function
usually consist more than two linguistic variables and each input and the output of a
Fuzzy system have its own membership function. The concepts of linguistic variable
and the membership function can be further explained using the example below

where the speed of a car is discussed.

Assuming the speed of a car can be categorized by three linguistic variables of slow,

moderate and fast. These categories are represented by A, B and C respectively.

A =slow
B = moderate

C = fast

Assuming that the car could travel from the range of speed of o to 100km/h and

range of each linguistic variable are defined as below.

A={(0,0), (5, 1), (10, 1), (30, 0)}
B = {(20, 0), (30, 1), (40, 1), (50, 1), (60, 0}
C = {(50, 0), (70, 1), (80, 1)}

The shape of the membership function for the car speed would be as shown below
where the symbol u(x) represents the degree of truth for each linguistic variable at
different speed.

e

0 10 20 30

l L,
40 50 60 70

30 %

Figure 3: Membership function of car speed

Membership functions are the most important aspects of a Fuzzy system because the
proposition statements are based on the membership functions and the required in

Fuzzification, Inference and Defuzzification steps.

2.2 Control System Design

Control systems [6] are basically known as the systems used to maintain the
confrolled variables at their required value. Typical control system contains
following main elements: process, sensor, controller, final controlling element. The

typical block diagram of a process that contains any control system is as shown In

Figure 4.

D 1§ el

MY
@ " Gvaw ™

Figure 4: Typical process control system

In the block diagram above, the Controlied Variable (CV) [6] is any process variable
that needs to be controlled at desired value or range of values. The value or the range
of values that are specified for the controlled variable to achieve is known as the Set
Point (SP). The difference between Set Point and the Controlled Variable is known
as the Error (E) or offset. The main objective of any control system is to maintain the
particular system with zero value of error. To do so, the controller will get the error
value and perform some calculations to compensate the error. The output of the
controller, which is known as the Manipulated Variable (MV), will be used to control
the final controlling element, where the final controlling element controls some
variables that have causal relationship with the Controlled Variable. The controller
will compensate the error by changes the value of the final controlling elements so
that the error is reduced or eliminated. The disturbance variable (DD} is any variable
that cannot be controlled but influences the output of process. Disturbances tend to
introduce error. Therefore, the controller must be able to compensate the error

introduced by the disturbance as well.

The control system above is specifically known as the Feedback Control System [6].
Feedback control system uses the output to maintain the c ontrolled variable at its
desired value. There are other types of control system or strategy, such as Cascade
Control System, Feed Forward Control System, Feed Back -Feed Forward Control

System, Ratio Control System and etc. However, the main objective of mentioned

control systems is to maintain the controlled variables at their desired value in spite

of disturbance occurrence.

2.3 Fuzzy Control System Design

Fuzzy control system (FCS) [5] is the control system that utilizes the Fuzzy logic
reasoning concept. Fuzzy control system is assumed to be more robust and flexible
since it has the characteristic offered by the Fuzzy logic concept. Fuzzy control
system uses the available membership function of its inputs and its outputs to make
the decision. Unlike conventional control system which usually uses the PID system
and produces almost the same results if compared to another conventional control
system, a Fuzzy control system would not produce the same results compared to
another Fuzzy control system due to difference in the membership functions and the

IF-THEN rules design of the Fuzzy control system.

An example or Fuzzy control system is the Fuzzy washing machine [9]. Fuzzy
washing machine’s inputs usually are the level of dirtiness, number of cloth and the
water level. The outputs of the Fuzzy washing machine would be amount of
detergent needed and the washing time. Assuming in ideal case of one cloth with
100% level of dirtiness and 100% water level, the Fuzzy control system will then set
the detergent amount as 50 grams and washing time as 5 minutes. In another case of
where the level of dirtiness is less than 100%, the Fuzzy control system might set

different amount of detergent amount and washing time.

10

2.3.1 General Procedure in Designing Fuzzy Control System

There are five main steps involved in designing a Fuzzy Control S ystem [4]. The

steps are listed below in sequence.

i) Define Fuzzy problem in detail.

it) Identify all important variable and their ranges.

iii) Determine membership profiles for each variable ranges.

v) Determine rules (propositional statements) including action needed.

v) Select Defuzzification methodology.
Define Fuzzy problem in detail.
First step of any problem solving is the definition o f the problem. Similar in this
procedure, the problem statement is defined and understood. The scope of the
problem is analyzed for feasibility. The objective of the problem solution is defined.
The important requirements such as the inputs and the outputs are noticed.

Identify all important vaviable and their ranges.

Once the inputs and the outputs are located, their values or their range of values are

set or identified according to the problem statement or scope of the problem solution.
Determine membership profiles for each variable ranges.
Once the inputs and outputs ranges have been identified, the membership functions

for each variable (input and output) is defined or determined. The membership

function determines the degree of truth of each variable at different conditions.

11

Determine rules (propositional statements) including action needed.

The Fuzzy rules model which consists of IF-THEN statements must be generated.
The TF-THEN statements are based on their respective membership functions. The
IF-THEN statements related the input membership functions to the output

membership functions.
Select Defuzzification methodology.
The final step of designing the Fuzzy control system is the Defuzzification where the

output statement (THEN) is directly mapped to some kind of physical representation

or action. The step is also refers to the actual Fuzzy control system output realization.

12

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Procedure Identification

At the initial stage of the project which covers the entire semester one period,
literature review was carried out to familiarize with the Fuzzy logic concept. Once
the intended concept has been fully understood, the literature review was then
proceeded to focus more on the application of Fuzzy logic in designing and
implementation the required Fuzzy c ontrol system. The implementation process is
carried out through digital logic design, where digital components such as the shift
registers, carry-select adders and min/max combinational logic was also studied so
that the exact characteristics of the digital design of the Fuzzy control system could
be understood during the implementation. Since the project associated with two
inputs; room temperature and the room humidity, a literature review to understand
the correlation between the two inputs was also made so that the author could just
use only one input device to get two different types of inputs. The design
implementation required VHDL programming to construct the working code for the

final Fuzzy control system.

13

3.2 Tools required

The project involves VHDL Programming to design and implement the Fuzzy

controller.

Due to this, the following tools have been used in performing all the related activities

of the project:

ALDEC’s Active-HDL Verilog, VHDL and EDIF Simulation software —
This software was used to write and c ompile the VHDL programs that
were used to realize the Fuzzy control system. VHDL was utilized to
design, write and simulate the logic design of the Fuzzy control system.
Once the programs have been constructed, compiled and verified, the
programs are tested using the test bench program codes to simulate the
intended output of the programs.

MATLAB - This software was used as an alternative to the ALDEC’s
Active-HDL Verilog, VHDL and EDIF Simulation software. The Fuzzy
control system component programs were constructed tested and
simulated using this software to validate the design. However, the
programs designed using this software could not be used for the
implementation of the Fuzzy control system on the intended hardware.
Fuzzy Logic Toolbox of MATLAB (Fuzzy Inference System —FIS Editor
Viewer) — This toolbox of MATLAB software was used specifically to
assist in the Fuzzy Inference system of the Fuzzy control system. Though
the toolbox is specifically for the Fuzzy Inference system design, other
component designs of the Fuzzy control system are also possible, with
lmmited applications.

FuzzyTECH 5.5 — This software was used to automatically generate the
proposition statements based on the membership functions of the Fuzzy
control system.

Xilinx’s Project Navigator — An important software that was used to
synthesize and to generate the net list files from the created VHDL
programs before the design could be downloaded to the FPGA.

14

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results and Findings

When the Fuzzy control system design was finalized to a Fuzzy air conditioning
system, two inputs and two outputs were defined. The inputs are the room
temperature and room humidity. The outputs are the delta temperature increase
required to be made by the control system and the air flow motor, or the fan speed. In
this project, it is assumed that the room humidity could be controlled by the rate of
air flow to the room as evaporation increases with high air movement and decreases
with low air movement. The overall Fuzzy air conditioner would be as illustrated by

Figure 5.

Humidity sensor

W%%ﬁ%mmﬁ%W%%WWWWWW%WWMMMEWWWW

Temperalure gensor

Figure 5: Fuzzy air conditioner

15

4.1.1 Membership Functions for Fuzzy air conditioner

There are four membership functions for the Fuzzy air conditioner. Two of the
membership functions are for the inputs; room temperature and the room humidity,

while the two are for the outputs; air flow and the delta temperature increase. The
membership functions are shown Figure 6.

Room Temperature
10 6 =0 %4 28 ‘32 36 490 44 50
Hx)
10 .
i
i
’(;
0s{ Cold |

50

Figure 6: Membership function for room temperature

The membership function for the room temperature is defined for a temperature

range of from 10°C to 50°C. Five linguistic variables are used in the membership

function to defined five different ranges of room temperature. The linguistic

variables are cold, cool, normal, warm and hot. The temperature range for each
linguistic variable is shown below.

Cold = {(10, 1), (16, 1), (20, 0)}
Cool = {(16, 0), (20, 1), (24, 1), (28, 0)}
Normal = {(24, 0), (28, 1), (32, 1), (36, 0)}

Warm = {(32, 0), (36, 1), (40, 1), (44, 0)}
Hot = {(40, 1), (44, 1), (50, 1)}

16

Room Humidity
0 u1s oo 036 043 058 064 079 085 .00
;ju——-——-——-ﬁ
'3;0' :‘
|
4
|
|
1]
5
os] Very |
|
i
o \
f 0.2

Figure 7: Membership function for room humidity

The membership function for the room humidity is defined for a range of 0 to 1.0 of
scale. Five linguistic variables are used in the membership function to defined five
different ranges of room humidity. The most comfortable room humidity is assumed

at 0.5 of scale. The linguistic variables used are very dry, dry, normal, humid and

very humid. The range for each linguistic variable is shown below.

Very dry = {(0, 1), (0.15, 1), (0.21, 0)}

Dry = {{0.15, 0), (0.21, 1), (0.36, 1), (0.43, O)}
Normal = {(0.36, 0), (0.43, 1), (0.58, 1), (0.64, 0)}
Humid = {(0.58, 0), (0.64, 1), (0.79, 1), (0.8, 0)}
Very humid = {(0.79, 1), (0.85, 1), (1.0, 1)}

17

Delta Temperature
Inerease

20 <152 412 64 24 24 B4 112 152 28
e . .
10 %

|
. b
65| NM | NS {; z

20

Figure 8: Membership function for delta temperature increase/decrease

The membership function for the delta temperature increase is defined for a
temperature range of from -20°C to 20°C. Five linguistic variables are used in the
membership function to defined five different ranges of delta temperature increase.
The linguistic variables are NM (negative medium), NS (negative small), Z (zero),
PS (positive small) and PM (positive medium). The membership function for
variable differs from the input variables in term of their range where in this
membership function, the range consist o f both negative and p ositive values. The
main purpose of this type of range is to enable proper corrective action that would
lead to a stable condition, which is a principle of Bounded Input, Bounded Output

(BIBO). The temperature range for each linguistic variable is shown below.

NM = {(-20, 1), (-15.2, 1), (-11.2, 0)}
NS= {(-15.2,0), (-11.2, 1), (-6.4, 1), (-2.4, O)}
Z=1{(-64,0), (-2.4, 1), (2.4, 1), (6.4, 0)}

PS = {(2.4, 0), (6.4, 1), (112, 1), (15.2, 0)}
PM = {(11.2, 1), (15.2, 1), (20, 1)}

18

Alr Fiow Motor
1.0 -0.7 05 43 -0 0t 33 G8 07 1.8
HEO T
10 1 H H H
ig :’ L I{ f;
1 ; . { j
i / !
Loy ; i
L ! !
i Pod 3
e i .
\ ! f
05 NM ! N8 | Z PS | PM
[/
{1 | f
i i i
A / j
cd f
' i
a : I ;
-1.0 -0 -0.2 il ng 10

Figure 9: Membership function for air flow motor

The membership function for the air flow motor is defined for a range of from -1.0 to
1.0 of scale. Five linguistic variables are used in the membership function to defined

five different ranges of motor speed or air flow. The linguistic variables are NM
(negative medium), NS (negative small), Z (zero), PS (positive small) and PM
(positive medium). The membership function for this variable similar to that of delta
temperature increase in term of their range where the range consists of both negative
and positive values. The main purpose of this type of range is to enable proper

corrective action that would lead to a stable condition. The relative action range for

each linguistic variable is shown below.

NM = {(-1.0, 1), (-0.7, 1), (-0.5, 0)}
NS= {(-0.7, 0), (-0.5, 1), (0.3, 1), (-0.1, 0)}
Z=1(-0.3, 0), (-0.1, 1), (0.1, 1), (0.3, 0)}
PS = {(0.1, 0), (0.3, 1), (0.5, 1), (0.7, 0)}

PM = {(0.5, 1), (0.7, 1), (1.0, 1)}

However, to ease the code generation for the Fuzzification, Inference and

Defuzzification using VHDL language, the obtained membership functions were

simplified from type trapezoidal to type rectangular, as shown in Figure 10.

19

U

Room Temperature

18

0.5

Cold

Cool

Mormal

Waren

Hot

18

7%

34

42

80

Figure 10: Membership function for room temperature

The temperature range for each linguistic variable is shown below.

Cold = {(10, 1), (18, 1), (18, 0)}
Cool = {(18, 0), (18, 1), (26, 1), (26, 0)}
Normal = {(26, 0), (26, 1), (34, 1), (34, 0)}

“Warm = {(34, 0), (34, 1), (42, 1), (42, 0)}

Hot = {(42, 1), (42, 1), (50, 1)}

20

Room Humitity
HOY.
to
Very y Very
08 Ory Dry Normal Humid Humid
D
0 02 04 08 08 10

Figure 11: Membership function for room humidity

The range for each linguistic variable is shown below.

Very dry = {(0, 1), (0.2, 1), (0.2, 0)}

Dry = {(0.2, 0, (0.2, 1), (0.4, 1), (0.4, 0)}
Normal = {(0.4, 0), (0.4, 1), (0.6, 1), (0.6, 0)}
Humid = {(0.6, 0), (0.6, 1), (0.8, 1), (0.8, 0)}
Very humid = {(0.8, 1), (0.8, 1), (1.0, 1)}

21

Delta Temperature
Increase
Hix)
10
06| NM NS Z PS PM
8 -
20 12 4 0 4 12 20

Figure 12: Delia Temperature Increase

The temperature range for each linguistic variable is shown below.

NM = {(-20, 1), (-12, 1), (-12, 0)}
NS= {(-12, 0, (-12, 1), (-4, 1), (-4, 0)}
Z=1-40) (4 1), (4, 1), (4, 0}

PS = {(4,0), (4, 1), (12, 1), (12, 0)}
PM = {(12, 1), (12, 1), (20, 1)}

22

Air Flow Motor
RIbY
1.0
0s N N$ Z Ps P
o ;
1.0 -0:8 820 02 6.8 1.0

Figure 13: Air Flow Motor

The relative action range for each linguistic variable is shown below.

NM = {(-1.0, 1), (-0.6, 1), (-0.6, 0)}

NS= {(-0.6, 0), (0.6, 1}, (0.2, 1), {-0.2, 0)}
Z=1{(-0.2,0), (-0.2, 1), (0.2, 1), (0.2, 0)}
PS = {(0.2, 0), (0.2, 1), (0.6, 1), (0.6, 0)}
PM = {(0.6, 1), (0.6, 1), (1.0, 1)}

4.1.2 Inference system of the Fuzzy air conditioner

For generating and designing the Fuzzy control system’s Inference system, the Fuzzy
Toolbox of MATLAB was utilized. With the Fuzzy Inference System (FIS) Editor
Viewer program [7], the following I nference system was developed for the Fuzzy
control system. The toolbox requires for the membership function of the system, both
mputs and the outputs to be defined. Once this has been done, the proposition
statements of the Fuzzy control system that have been decided earlier are used to
generate the Inference system. The Inference system eventually used to map the
Fuzzy control system’s inputs to their respective outputs. Figure 23 till Figure 26 in
Appendix A show the FIS simulation process. The Fuzzy Rules model for the Fuzzy

air conditioner system is shown in Appendix B. The Inference system is then plotted

23

using FIS to view the surface plot. The results are shown below where the Inference

system of the Fuzzy control system is plotted against each output variable.

Figure 15: Surface plot of the inputs against air flow motor

24

4.1.3 VHDL coding of the Fuzzy control system

Code Generation for Fuyzification

Based on the Fuzzification membership functions that the author has obtained, the

following VHDL codes were generated. The Fuzzification code is based on the

membership functions that have 5 linguistics variables for each of its inputs (two

inputs). A part of the coding for the Fuzzification is attached in shown in Figure 16.

The full VHDL code and its respective test bench code are attached in Appendix C

and D,

eb-up bthe fuzzy ronges. The memberskip functien that wiil be
s & simple roctangle,

y_pre{ IuzzyWideh - 1 downto 2) <= mescbership(fnzzy¥idth = 1
¢ _ps{ fuzzyWidth - 1 downto 0 |} £m. menbecship | fuazeyWidth 1 2

Tyt { fuzzy¥idgth - & downto £) <= mewbership(fuzzy¥Widrh ¥ 3
y.as{ fuzzyWidth - 1 downte o} <= menberahip | fuzsyPidth v 4
v mn{ fuzzy¥ideh ~ 3 downte U) <= mewberstiip(fuzzyWideh *

wa el

1 deownto
1 dounte
L desnte
1 downte
1 downto

[N S T |

fuzzyWidth
fuzzyWidih
fuzzyWidth
fuznzyWidih
fugzyWideh

X o oM oH ¥

o B oose 2%

K}
ik
j:

Figure 16: A part of Fuzzification VHDL code

Code Generation for Inference (Rule Base)

The component of the Fuzzy control system is where the design IF-THEN

proposition statement is ufilized. Rules are set by the designer so that the ¢ ontrol

system would able to map the inputs to their respective outputs, depending on the

conditions and requirements. A part of the coding for the Inference and is attached in

shown in Figure 17. The full VHDL code its respective test bench code is attached in

Appendix E and F.

25

if diffeérence = predium and integral = plarge shex
internal control pi <8 nedinum;

o181t diffsrende = pmediuwn and integral * pmedium then
internal contyol pm < gero:

gigif differsnce =~ pmgdium au_ni integral & pamall then
intefnal cohtrol pie <= pmmally

elaif difference = pmediue and integral = 5ert then
interaal contral pm 4= pmediige

elaif difference = pmediun shd inteégral = nesmall -then

invernal_soatrol pm <= preddum:

Figure 17: A part of Inference VHDL code

Code Generation for Defuzzification

The Defuzzification code that has been generated uses the inferred values from the
Inference rule bases to produce the Defuzzification output. The output of the code
generation for the following code is in such that the only one output, which is the
motor speed (flow). A part of the coding for the Defuzzification is attached in shown
in Figure 18. The full VHDL code and its respective test bench code are attached in
Appendix G and H.

&£ fu_zzy_‘ﬁoutpu’t = pedium then
save_output. = defuzzify po;
elgif fuzzy__out:pﬁt = ﬁsmli than
save_subput = defuzziiyﬁps;
elsif. furzy_oubtput = Zero then
save puvput o= defuzzify z:
elsif fugey_ourput = nswall. theh
ssve_output i deiuzziiyﬁzms
ekoif fuzzy_output = rmeedium t.'hen_

save outpur ¥ defuzsify nme

Figure 18: A part of Defuzzification VHDL code

26

4.1.4 MATLAB Simulations

Due to compilation difficulties in the ALDEC’s Active HDL software, the intended
result from the VHDL program could not be obtained. To produce the exactly same
type of results, the MATLARB software was utilized. The software was used write all
three components o f Fuzzy ¢ ontrol system. The MATLAB M-file c odmg for the
Fuzzification, Inference and the Defuzzification programs are shown in Appendix I, J
and K. The MATLAB simulation results are shownin Appendix L, M and N. A
partial program containing the main interface of the M-files are shown in Figure 19

to Figure 21.

function [J = fuzzy {(Temp,Hum)

Tenp = input('Fater room temperature value = '};
Hum w input (' Encer yoon hunidicy vaelue = '):

if ({Texp>=10)6{Teups=lE))
Tewp, L¥l='cold!
Temwp_tvl=l

elseif [{Teap>=20)a{Tenp=24}))
Temp LVie'conl)!
Tewp tvlsl

Figure 19: A part of Fuzzification MATLAB code

Temp LVL = input{'Enter roowm veaperathze linguizvic varisble = *,'st)y
Tesp_LV2 = input{'Inter Inom temperature linguisric wariable = *,‘3’};
Hiam LVA = ioput{'Enter room husidicy linguistic veriable » ','s*);
Hus L¥2 = jnput{’Enter room Hmidity linguistic warienle = ', 'at)s

if (Teap LVLies BE*§
Pelta temp EVi='PH!
elseif |[Tepp LVis='¥3')
Delea temwp LVLsw'Bg?
elagif (Tewp IWl=='2")
Delta temp LY1e'Z!
elgeif |Temp L¥lew'P5')
Delta, temp LVl='N3°
alge {Temp LY¥l=='PH')
Beloa_ temp LVis '3’
etd

Figure 20; A part of Inference MATLAB code

27

Tenp = input{'Enter rdom temperature value = *):

Hum = impuci'Enter room hunidity value = *3; .

Toup LV1 = input{’'intér reok tesperavure linguistic warisble = :, a‘}:

Teup_ bVE = inpun{'Enter roow temperaturse lingiiscls varisble = *,'a3');

Hum LYl = fnpat('Enter foop Humidivy lihguistic warighle = ',7&%);

Him LVZ » lopuc{'Enter roop hus{dity lidguistic vaciable = ', 's')}

Dalta_tewp LV1 = input{’Enter delte zoos vempeératuxe linguisvic varieble = *,'s'):
Delvd temp LU2 « imput{‘Enter delta roca tesperature linguistis variable = #,t8');
Afrflow LVl » inpur{‘Enter rosm air flew linguistic varjshle = 1,'3'):

Adxfiow LVZ = input{‘Enter room asix flow linguistic variable = 1, 's'j;

Teap_twl = input{'Enter rook temperstufe truth value » '}

Teop_ow2 » inpuat('Enter rook temperature tcuch value 5 '}y

Hum twl = input{'Enter room hueidity truth veiue = '):

Bup_rtvi = input{'Enter. room husidity truth velug = ')!

if {{Delva _vemp LVls='NH'}e({Teap_tvwl==1)}
o= {Temp-10) ¥ {L/8)
outpug Delte tenps={-20)+{c*4.8)

Figure 21: A part of Defuzzification MATLAB code

4.2 Discussions

A Fuzzy control system with two inputs and two outputs were designed. How this
two inputs and the two outputs are related through the membership functions that
have been defined, is discussed in following section. Other than that, the Mamdani’s
method [7] of Inference used for the design is also explained. As a mean of
comparison, another method of Inference known as the Sugeno method [7] is also

discussed to clarify the different between these two methods.

4.2.1 Fuzzy air conditioner and its membership functions

The Fuzzy control system designed is a Fuzzy air conditioner which takes the room
temperature and the room humidity as the inputs to the system. The control system
will then try to maintain the room condition such that the room temperature and
room humidity would be at a comfortable level. In order to do so, the control system
will make use two parameters; the delta temperature increase and the air flow motor.
The room temperature is increased or decreased accordingly using the delta
temperature increase parameter while the room humidity would be controlled by air

flow to the room by the fan speed.
Studies were made on finding the correlation between the temperature and the

humidity to simplify the hardware design of the Fuzzy control system. Studies that

have been conducted showed that there is some correlation between temperature and

28

relative humidity (RH). This correlation can be made through a chart, known as the
psychrometric [10] chart. A psychrometric chart graphically illustrates the
relationships between air temperature and relative humidity as well as other
properties. However, in this project, the correlation is assumed to be unity and linear
along the temperature range specified for Fuzzy control system. The desired or most
comfortable humidity level for human is around 45% RH [11]. In the Fuzzy control
design, this level is assumed to b represented by the 0.5 of scale. The maximum and
the minimum humidity that the air flow motor would able to control ar¢ assumed

around £10% RH.

Two types of membership functions have been utilized in the project; type
trapezoidal and type rectangular. Membership function type trapezoidal has been
seen and used commonly for the most of the Fuzzy application. This type of
membership function defines the transition between two adjacent linguistic variables
smoothly without abrupt changes. Therefore, Fuzzy calculation can be assumed to be
more accurate and the results resemble more to human reasoning. Membership
function type tectangular that has been used as and alternative to simplify the VHDL
code generation is not widely used to the reason that there is no smooth transition
between the two adjacent linguistic variables in the membership functions. However,
due to its simplicity, the code generation of the component is less complicated than
the other types of membership functions. Though the membership function type
rectangular has been used for the VHDL code generation, for the MATLAB
simulations, membership function type rectangular was used to simulate Fuzzy

decision making.

There are few types of Fuzzy Inference calculation methods. Two most commonly
used calculation methods are the Mamdani method [7], which was introduced by
Ebrahim Mamdani, and Sugeno method [7]. In this project, a method similar to
Mamdani was used because the method is simpler to be executed or designed for the
programming activities. The details of the both Inference methods are explained in
the following subsection. Though the Fuzzy Inference is process of formulating the
mapping from a given input to an output using Fuzzy logic, these two types of

Inference systems differ in the way outputs are calculated.

29

4.2.2 Comparison between Mamdani and Sugeno Inference Method

The mapping provides a basis from which decisions can be made.
Mamdani Method

Mamdani Fuzzy Inference [7] method is the most commonly seen Fuzzy
methodology. Mamdani-type Inference expects the output membership functions to
be fuzzy sets. After the aggregation process, there will be Fuzzy set for each output
variable that needs to be defuzzified. In many cases, for more efficient Fuzzy
Inference, a single spike is used as the output membership functions rather than a
distributed fuzzy set. It enhances the efficiency of the Defuzzification process
because it greatly simplifies the computation required by the more general Mamdani
method, which finds the centroid of a two-dimensional function. Rather than
integrating across the t wo-dimensional function to find the centroid, the weighted
average of a few data points are used. Time and cost is reduced by this method since

less processing are being done but with accurate results.
Sugeno Method

Sugeno Inference method [7], also known as Takagi-Sugeno-Kang method of Fuzzy
Inference It is similar to the Mamdani method in many respects. In fact the first two
parts of the fuzzy Inference process, fuzzifying the inputs and applying the Fuzzy
operator, are exactly the same. The main difference between Mamdani-type of Fuzzy
Inference and Sugeno-type is that the output membership functions are only linear or

constant for Sugeno-type fuzzy Inference.
A typical fuzzy rule in a zero-order Sugeno fuzzy model has the form
ifxis4andyis Bthenz=%

where 4 and B are fuzzy sets in the antecedent, while k& is a crisply defined constant
in the consequent. When the output ofeach rule is a constant, the similarity with
Mamdani's method is striking. The only distinctions are the fact that all output
membership functions are singleton spikes, and the implication and aggregation

methods are fixed and can not be edited. The implication method is simply

30

multiplication, and the aggregation operator just includes all of the singletons. More
details and a sample Inference calculation using the Sugeno method are attached in

Appendix Q.
4.2.3 Fuzzy Inference Proposition Rules and the Surface Plot

From Appendix B,itcanbe seen that the two input variables are influencing the
output variables linearly. The room temperature is linearly controlling the delta
temperature increase and the room humidity uses the air flow motor to change the
humidity level. This is illustrated by the generated surface plot show in Figure 15.
The proposition statement are made in such conditioned so that the design of the
Fuzzy control system would be possible using the VHDL programming and
MATLAB simulation. For indusirial solutions type of Fuzzy control system are not
linear. The inputs are non-linearly mapped by the outputs. An example of surface

plot of an industrial based Fuzzy Inference system is Figure 22.

Inpuf 1 ¥.o0

Output

Figure 22: Example of non-linear relation between inputs and ouputs

This type of Inference system is considered more ‘Fuzzy’ and resembles more
similar to human reasoning compared the one generated in the project. The linearity
of the Inference system is controlled by the assignment of degree of truth on cach

proposition s tatements. In this project, degree of truth of 1.0 is assigned or every

31

proposition statements. If these assignments are changed accordingly, the Fuzzy
Inference system of this Fuzzy air conditioner would able to make a better decision

in controlling the room temperature and room humidity.

4.2.4 VHDL programming and MATLAB simulation

The VHDL programs [1], [2] of the Fuzzy control system were developed so that it
could be used to realize the system on the hardware (FPGA). Three different
components of the Fuzzy control system were coded using VHDL code. Rectangular
type membership functions were utilized for ease of code generation. The VHDL
code would basically get the inputs, performs Fuzzification on the inputs based on
the 5 linguistics variables that have been defined, performed the Inference operation
and return the corresponding outputs. The outputs of the Inference system then will
be used in the Defuzzification operation to convert the outputs to crisp values.
However, due to errors in compilation due to missing libraries of the software, results
could not be obtained. The programs were later converted into M-file and simulated
using MATLAB to get the results. The results of the MATLAB simulation can be
considered more accurate since the programs were developed based on the

trapezoidal type membership functions.

32

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Fuzzy control system is a system that resembles human reasoning and decision
making. The main advantage of the Fuzzy control system is that it can make decision
based on the vague and imprecise inputs or data. This allows it to be utilized in areas

or applications that require human reasoning and decision making.

Besides that, Fuzzy control system is based on empirical decision making. One does
not to fully understand every aspect of any system before implementing the control
system. Once a problem is carefully understood and objectives have been defined,
the Fuzzy control system can be developed straight away based on the understanding
or the required system. No detail knowledge is required of every single aspect of the
system since the objectives of a Fuzzy control system is get the desired outputs based
on the inputs. This is proven in this project where the author does not have detail
knowledge on how an air conditioner works. However, since the objective is {o
control the room temperature and the room humidity, the Fuzzy control system was
developed based on controlling or adjusting the temperature increase and the air flow

moftor.

Since it does not require detail understanding of a system, the development Fuzzy
control system is less time consuming as compared to other conventional control

system. There is no necessity to fully understand the exact operation of an air

33

conditioner. However, it would be the designer’s advantage if the exact operation of

the system.

In this project of designing and developing a Fuzzy control system, a two inputs and
two outputs were specified to the control system. The Fuzzy control system are
required to make decision based on the room temperature and the room humidity to
control the level of air flow in the room and the amount of temperature that need to
be increased. As a result of this project, the required system was able to be designed.
The system is able to make the decision based on the specified variables which are
mainly utilizing the room temperature. However, much can be done to improve the
Fuzzy coniroller and the way to implement the Fuzzy controller. The

recommendations for the Fuzzy controller are mentioned in the following section.

34

5.2 Recommendation

The Fuzzy control system designed for the air conditioner contains three main steps;
Fuzzification, Inference and Defuzzification. In this project, all the codes were
generated manually, based on the author’s understanding on the Fuzzy control
system. There are chances that the generated codes would not function or performed
exactly as intended by the designer. To avoid this problem, the author would like to
recommend of using the tailored software that are available in the industry to be used
since there are industry-certified and the design development process would consume
less time. When the design development consume less time as time consumed in this
project, the design implementation on the hardware can be considered and possible.
The hardware realization would show better and solid results. Besides that, the
results from the software utilization, a more accurate and precise results can be

expected.

In this project, the correlation between the room temperature and the room humidity
was assumed to be linear and unity. However, this would not be the case in the real
situation where at different Relative Humidity, the temperature changes or depends
non-linear. When in the future, this project is implemented through hardware
realization, either two different sensors are to be used or a program to correlate the
two inputs should be used. Besides that, other parameters can be included in the

future design development so that more accurate of control is possible.

35

REFERENCES

[1]S. Brown and Z. Vranesic, 2000, “FUNDAMENTALS OF DIGITAL LOGIC
WITH VHDL DESIGN”, McGraw-Hill International Editions

[2] K.C. Chang, 1999, “Digital System Design with VHDL and Synthesis: An
Integrated Approach”, IEEE COMPUTER SOCIETY PRESS

[3] S. Dillen, F. Rashid and T. Chepyha, “Fuzzy Logic Controller in VHDL,
WaveRider

[4] M.R. Kaimal, S Dasgupta, M Harishankar, 1997, “Neuro-Fuzzy Control

Systems”, Narosa Publishing House
[5] A. Kandel and G. Langkolz, 1993, “Fuzzy Control System®, CRC Press

[6] T.E. Marlin, 2000, “Process Control:Designing Processes and Control Systems

for Dynamic Performance “, McGraw-Hill International Edition

[7] MATLAB Release 6.1 Help, “Mamdani and Sugeno Inference Method®,
MathWorks Inc.

[8] V. Salapura and V. Hamann, “Implementing Fuzzy Control Systems Using and

Statecharts”, Technische Universita™t Wien

[9] <http.//www.aptronix.com/fide/whatFuzzy. him>

[10] < hitp.:/rwww/ianrpubs.unl.edu/generalag/g626. him>

[11] < http:/rwww.science. howstuffworks.com/question65 1. htm >

36

APPENDICES

Appendix A: FIS Simulations

040 T8 51
i hiidl

i
s

Figure 24: Input membership function — Room humidity

37

Figure 26: Qutput membership function — Air flow motor

38

Appendix B: Detail Rule Base Model

IF THEN
Room Delta
T Room Humidity Air Flow Motor Temperature
emperature
Increase
Cold Very Dry PM PM
Cool Very Dry PM PS
Normal Very Dry PM Z
Warm Very Dry PM NS
Hot Very Dry PM NM
Cold Dry PS PM
Cool Dry PS PS
Normal Dry PS Z
Warm Dry PS NS
Hot Dry PS NM
Cold Normal Z PM
Cool Normal 7z PS
Normal Normal Z Z
Warm Normal Z NS
Hot Normal Z NM
Cold Humid NS PM
Cool Humid NS PS
Normal Humid NS Z
Warm Humid NS NS
Hot Humid NS NM
Cold Very Humid NM PM
Cool Very Humid NM PS
Normal Very Humid NM Z
Warm Very Humid NM NS
Hot Very Humid NM NM

39

Appendix C: Coding for Fuzzification in VHDL

library ieee;
use ieee.std_logic_1164.all;

library work;
use work.config.all;

entity Fuzzification is
generic { busWidth : positive := 4,

fuzzyWidth : positive := 3
I3

pert (clock :in std_logic;
reset :in std_logic;
data :in std_logic vector(busWidth - 1 dowato 0);
membership : in std_logic vector(5 * fuzzyWidth - 1 downto 0);
valid_in :in std_logic;
valid_out : outstd logic;
fuzzy_data : out std_logic_vector(2 downto 0 }
);

end Fuzzification;
architecture membership_function of Fuzzification is
-- Define the membership signals

signal fuzzy pm : std_logic_vector(busWidth - 1 downto Q);
signal fuzzy ps : std_logic_vector{ busWidth - 1 downto 0);
signal fuzzy_z :std_logic_vector{ busWidth - | downto 0 };
signal fuzzy ns :std_logic_vector{ busWidth - 1 downto 0);
signal fuzzy_nm : std_logic vector(busWidth - 1 downto 0);

-- Define the fuzzy results, there are only 5 of them since there is only 5 membership functions

signal fuzzy_result : std_logic_vector(4 downto 0);
signal internal_data : std_logic_vector(2 downto 0);

signal extend ones : std_fogic_vector(busWidth - I downto fuzzyWidth);
signal extend _zeros : std_logic_vector{ busWidth - 1 downtoe fuzzyWidth };

begin

extend_ones <= (others=>'1");
extend_zeros <= (others =>'0');

-- Set-up the fuzzy ranges. The membership function that will be used is a simple rectangle.

fuzzy_pm(fuzzyWidth - 1 downto 0) <= membership(fuzzyWidth * 1 - 1 downto fuzzyWidth *0);
fuzzy_ps(fuzzyWidth - 1 downto 0) <= membership(fuzzyWidth * 2 - | downto fuzzyWidth * 1);
fuzzy z (fuzzyWidth - | downto () <= membership(fuzzyWidth * 3 - | downto fuzzyWidth * 2);
fuzzy_ns(fuzzyWidth - | downto &) <= membership(fuzzyWidth * 4 - | downto fuzzyWidth * 3);
fuzzy nm(fuzzyWidth - 1 downto 0) <= membership(fuzzyWidth * 5 - [downto fuzzyWidth * 4);

fuzzy pm(busWidth - | downto fuzzyWidth) <= extend_zeros;
fuzzy ps(busWidth - 1 downto fuzzyWidth) <= extend_zeros;
fuzzy z (busWidth - | downto fuzzyWidth) <= extend_zeros;
fuzzy_ns(busWidth - | downto fuzzyWidth) <= extend_ones;
fuzzy nm(busWidth - 1 downto fuzzyWidth) <= extend ones;

compare_pm : l[pm_compare generic map {
ipm_width == busWidth,
Ipm_representation == "signed",
ipm_pipeline =>1

port map (

40

dataa => data,

datab => fuzzy pm,
aclr => reset,
clack =>¢lock,
ageb => fuzzy_result(0)
¥
compare_ps : lpm_compare generic map {
lpm_width => busWidth,

lpm_representation => "signed",
Ipm_pipeline =>1

port map (
dataa => data,
datab => fuzzy ps,
aclr => reset,
clock => clock,
ageb => fuzzy_result(1)
)

compare_z : lpm_compare generic map {
Ipm_width =>busWidth,
lpm_representation => "signed",
Ipm_pipeline =>1

port map (
dataa => data,
datab => fuzzy z,
aclr = reset,
clock => clock,
aeb => fuzzy result(2}
)
compare_ns : Ipm_compare generic map {
lpm_width => busWidth,
lpm_representation => "signed”,
lpm_pipeline =>1
port map {
dataa => data,
datab =>fuzzy_ns,
aclr => reset,
clock => clock,
aleb => fuzzy result(3)
)i
compare_nm : Ipm_compare generic map (
Ipm_width => busWidth,

Ipm_representation => "signed",
Ipm_pipeline =>1

port map
dataa => data,
datab => fuzzy_nm,
acly == reset,
clock == clock,
aleb => fuzzy_result(4)
);

output : process
begin

wait until vising_edge(clock);
ifreset="1"then

internal_data <= zero;
else

if fuzzy result(C) ='1'then

internal_data <= pmedium;

41

elsif fuzzy result(1)="'1'then
internal_data <= psmali;
elsif fuzzy_result{2) ="1' then

internal_data <= zero;

elsif fuzzy_result{4) ="'1" then
internal_data <= nmedium;
elsif fuzzy_result(3)="'1" then
internal_data <= nsmall;
else
internal_data <= zero;
end if;
end if}
end process output;

flop_output : Ipm_fT generic map (lpm_width => busWidth)
port map (
data => internal_data,
clock =>ciock,
selr => reset,
q => fuzzy data

k
flop_valid : synchronizor generic map (numberQfLevels => 3 }
port map (
clock => clock,
reset =2 reset,
input =>valid_in,
oufput =2 valid_out
%

end membership_function;

42

Appendix D: Test bench code for Fuzzification

library ieee;
use ieee.std_logic 1164.all;

entity Fuzzification_tb is
end Fuzzification_th;

architecture mixed of Fuzzification_tb is
component Fuzzification is

port (clock :in std logic;
reset :in std_logic;
data :in std logic vector(4 -1 downtoQ);
membership : in std_logic_vector(5 *3 - | downto 0);
valid_in :in std_logic;
valid_out : out std_logic;
fuzzy_data : out std_logic_vector(2 downta 0)

)3

end compenent Fuzzification;

constant T_pw :time :=20ns;
constant delay time : time = 10 ns;
constant busWidth : positive 1= 2;

constant pmedium : std logic vector := "000",
constant psmall : std_logic_vector ;= "001";
constant zero : std_logic_vector :="010";
constant nsmall : std_logic_vector == "011"
constant nmedium ; std_logic_vector ;= "100",

signal clock : std_logic;
signal reset : std_logic;

signal data :std_logic_vector(4 - | downto 0);
signal membership : std_logic_vector(5 * 3 - 1 downta 0);
signal valid_in :std logic;

signal data_delayed :std_logic_vector{ 4 - | downto 0);
signal membership_delayed : std_logic_vector(5 * 3 - | downto 0);
signal valid_in_delayed : std_logic;

signal valid_out : std_logic;
signal fuzzy_data : std_logic_vector(2 downto { };

begin

data_delayed <=data after delay time;
membership_delayed <= membership after delay_time;
valid_in_delayed <=valid_in after delay_time;

dut : Fuzzification port map (
ciock = clock,
reset => reset,
data =>data_delayed,
membership == membership delayed,
valid_in =>valid_in_delayed,
valid_out => valid out,
fuzzy data => fuzzy data

)i
clock_gen : process
begin

clock <="0";

43

wait for T_pw;
clock <="1";
wait for T_pw;

end process clock_gen;

reset_control : process
begin

reset <='1",
wait for 4 ¥ T_pw,

reset <="'0";
wail;
end process reset_control;

input_control : process
begin

data <= (others=>'0"};
valid in <=0

membership <="011100000001010";
wait for T_pw;
wait for 10 %2 *T_pw;

valid_in <="1
data <="0000";
wait for 4 *¥2 * T _pw;

data <="0001";
wait ford4 * 2 * T_pw;

data <="0010";
wait for4 *2 * T_pw;

data <="0011";
wait for 4 ¥ 2 * T_pw;

data <="1100"
wait for 4 * 2 * T pw;

data <="1101"
wait for4 *Z * T _pw;

data <="1110";
wait for4 * 2 T pw;

data <="1111"%
wait ford *2 * T _pw;

data <="0011";
valid in <='0"
wait;
end process input_control;
end mixed;

44

Appendix E: Coding for Rule Base — Inference in VHDL

library ieee;

use jeee.std_logic_1164.all;

library work;

use work.config.all;
entity fuzzy rulebase is

port {clock :in std_logic;
reset :in std logic;
difference :in std_logic_vector(2 downto 0 };
integral :in std_logic_vector(2 downto 0);
valid_in :in std_logic;
valid_out : out std_logic;
control : out std_logic_vector(2 downto 0)

%

end fuzzy rulebase;

architecture rules of fuzzy_rulebase is
signal internal_control : std_logic_vector(2 downto 0);
signal internal_control_pm : std_logic_vector{ 2 downto 0);
signal internal_control_ps : std_logic_vector{ 2 downto 0);
signal internal_control_z : sid_logic_vector{ 2 downto 0);
signal internal_control_ns : std_logic_vector{ 2 downto 0);
signal internal_control_nm : std_logic_vector{ 2 downto 0);

begin

control_rules_pm : process

begin

wait until rising_edge(clock };

if reset="1"then
internal_control_pm <= zero,

else
if difference = pmedium and integral = pmedium then

internal_control_pm <= zero;

elsif difference = pmedium and integral = psmall then

internal_control_pm <= psmall;

elsif difference = pmedium and integral = zero then

45

internal_control_pm <= pmedium;

elsif difference = pmedium and integra! = nsmall then
internal_control_pm <= pmedium;

elsif difference = pmedium and integral = nmedium then
internal_control_pm <= pmedium;

else
internal _control pm <= zero;

end ift

end if

end process control_rules_pm;

control_tules_ps : process

begin

wait until rising_edge(clock);

if reset ='1' then
internal_contro]_ps <= zero;
else
if difference = psmall and integral = pmedium then
internal control ps <=nsmall;
elsif difference = psmall and integral = psmall then
internal_control_ps <= zero;
elsif difference = psmall and integral = zero then
internal_control_ps <= psmall;
elsif difference = psmall and integral = nsmall then
internal_control_ps <= psmall;
elsif difference = psmall and integral = nmedium then
internal_control_ps <= pmedium;
else
internal_control_ps <= zero;
end if}
end if;

end process control rules ps;

control_rules z : process

hegin

wait until rising_edge(clock);

if reset = '1" then

internal_control z <= zero;
else
if difference = psmall and integral = pmedium then
internal_centrel_z <= nmedium,
elsif difference = psmall and integral = psmall then
internal_contrel_z <= nsmall;

elsif difference = psmall and integral = zero then

46

internal_control_z <= zero;

elsif difference = psmall and integral = nsmall then
internal_control_z <= psmall;

elsif difference = psmall and integral = nmedium then
internal_control z <= psmall;

else
internal_control_z <= zero;

end if;

end ift

end process control_rules_z;

control_rules_ns : process

begin

wait until rising_edge(clock);

if reset ="1" then
internal control ns <= zero;
else
if difference =nsmall and integral = pmedium then
internal_control_ns <= nmedium;
elsif difference = nsmall and integral = psmall then
internal_control_ns <= nmedium;
elsif difference = nsmall and integral = zero then
internal_control_ns <= nsmall;
elsif difference = nsmall and integral = nsmali then
internal control ns <= zere;
elsif difference = nsmall and integral = nmedium then
internal_control_ns <= psmall;
else
internal_control_ns <= zero;
end if;
end if;

end process control_rules_ns;

control_rules_nm : process

begin

wait until rising_edge(clock);

if reset ='I" then
internal_control_nm <= zero;
else
if difference = nmedium and integral = pmedium then
internal_control_nm <= nmedium;
elsif difference = nmedium and integral = psmal! then
internal_control_nm <= nmedium;
elsif difference = nmedium and integral = zero then
internal_control_nm <= nmedium;

elsif difference = nmedium and integral = nsmal} then

47

internal_control_nm <= nsmall;
elsif difference = nmedium and integral = nmedium then
internal control nm <= zero;
else
internal_contrel_nm <= zero;
end if}
end if}

end process control_rules nro;

COH[TO]_OLIt I process

function check(value : in std_logic_vector{ 2 downto 0)) return std_logic is

variable return_value : std_logic;

begin

if internal control_pm= value or
internal_control_ps = value or
mternal control z = value or
internal_control_ns = value or

internal_control_nm = value then

return_valoe :='1";

else

return_value :='0';
end if;
return return_value;

end function check;

begin

wait until rising_edge({ clock);

if reset="1" then
contrel <= zero;
else
if check(pmedium) ="'1" then
control <= pmedium;
elsif check(psmall } ="1" then
control <= psmall;
elsif check(nsmall } ="'1' then
control <= nsmall;
elsif check(nmedium } = '1" then
contral <= nmedium;
else
control <= zero;
end if

end if;

48

end process control_out;

flop valid : synchronizor generic map (numberQfLevels =>2)

port map (
clock ==> clock,
reset => reset,
input =>valid_in,
output == valid_out
%

end rules;

49

Appendix F: Test bench code for Inference

library ieee;
use ieee.std_logic_1164.all;

entity fuzzy rulebase_tb is
end fuzzy rulebase th;

architecture mixed of fuzzy_rulebase_tb is
component fuzzy rulebase is

port (clock :in sid_logic;
reset :in std_logic;

difference : in std_logic_vector(2 downte 0);
integral :in std_logic_vector(2 downto 0);
valid_in :in std logic;

valid_out : outstd_logic;

control : out std logic_vector(2 downto 0)

b3
end component fuzzy rulebase;
constant T_pw stime = 20 ns;
constant delay_time : time = 10 ns;

constant busWidth : positive :==2;

constant pmedium : std logic vector := "000";
constant psmal! : std_logic_vector = "001";
constant zero : std_logic_vector :="010";
constant nsmall : std_logic_vector := "011"
constant nmedium : std_logic_vector == "104";

signal clock : std_logic;
signal reset :std_logic;

signal difference : std_logic_vector(2 downta 0);
signal integral : std logic vector(2 downto ();
signal valid_in :std_logic;

signal difference_delayed : std_logic vector(2 downto 0);
signal integral delayed :std logic_vector{2 downto 0 };
signal valid_in_delayed : std_logic;

signal valid out :std logic;
signal control : std_logic_vector(2 downto 0);

begin

difference_delayed <= difference after delay_time;
integral delayed <= integral after delay_time;
valid_in_delayed <=valid_in after delay_time;

dut : fuzzy rulebase port map {
clock => clock,
reset = reset,
difference => difference_delayed,
integral => integral_delayed,
valid_in =>valid_in_delayed,
valid out =>valid_out,
control == control

);

clock_gen : process
begin
clock <='0;
wait for T_pw;
clock <="'1%
wait for T_pw;

50

end process clock_gen;

reset_control : process
begin
reset <=1,
wait for 4 * T_pw;

reset <='0;
wait;

end process reset_control;

input_coentrel : process

procedure test_rule(input_1 : in std_Jogic_vector(2 downto 0);
input_2 : in std_logic_vector(2 downto 0)
)is
begin

difference <= input_1;
integral <= input 2;

wait for4 *2 * T pw;
valid_in <="1

wait for 2 * T_pw,;
valid_in <=0

end procedure test_rule;

begin
difference <= pmedium;
integral <= psmall;
valid_in <='04

wait for T pw;

test_rule{ pmedium, pmedium);
test rule(pmedium, psmall);
test_rule(prediumn, zero);
test_rule(pmedium, nsmall);
test_rule(pmedium, nmedium);

test rule(psmall, pmedium);
test_rule{ psmall, psmall);
test rule(psmall, zero };
test_rule(psmall, nsmali)
test_rule{ psmall, nmedium);

test_rule(zero, pmedium);
test_rule(zero, psmall };
test_rule(zero, zero);
test_rule{ zere, nsmall },
test_rule(zero, nmedium);

test_rule(nsmall, pmedium);
test_rule{ nsmall, psmal!);
test_rule{ nsmall, zero);
test rule{ nsmall, nsmall);
test rule{ nsmali, nmedium);

test_rule(nmedium, pmedium };
test_rule(nmedium, psmall);
test_rule(nmedium, zero);
test_rule(nmedium, nsmall J;
test_rule(nmedium, nmedium);
wait;

end process input_control;

end mixed;

51

Appendix G: Coding for Defuzzification in VHDL

library ieee;
use ieee.std_logic_1164.all;

library work;
use work.config.all;

entity Defuzzification is
generic { busWidth : positive :=4;

fuzzyWidth : positive =3
%

port { clock :in std_logic;
reset tin std_logie;
fuzzy_output : in std_logic_vector{ 2 downto 0);
membership :in std_logic vector(5 * fuzzyWidth - 1 downte 0 };
valid_in :in std_logic;
valid_out : out std_logic;
output : out std_logic_vector(busWidth - 1 downto 0)
%

end Defuzzification;

architecture membership_function of Defuzzification is
signal defuzzify pm :std_logic_vector(fuzzyWidth - 1 downto (0);
signal defuzzify ps :std_logic_vector(fuzzyWidth - 1 downto 0);
signal defuzzify z :std logic_vecter(fuzzyWidth - 1 downto 0);
signal defuzzify ns :std_Jogic_vector(fuzzyWidth - 1 downto 0);
signal defuzzify nm : std_logic_vector(fuzzyWidth - 1 downto 0);
signal fuzzy_result : std_logic_vector(4 downto 0);
signal internal_output : std_logic_vector(busWidth - | downto 0);

signal extend_ones : std_logic_vector{ busWidth - 1 downto fuzzyWidth);
signal extend_zeros : std_logic_vector{ busWidth - | downto fuzzyWidth);

begin

extend_ones <= {others=>"'1"});
extend _zeros <= (others =>'0");

defuzzify_pm <= membership(fuzzyWidth * 1 - 1 downto fuzzyWidth * 0);
defuzzify_ps <= membership(fuzzyWidth * 2 - 1 downto fuzzyWidth * 1);
defuzzify_z <= membership(fuzzyWidth * 3 - 1 downto fuzzyWidth * 2);
defuzzify_ns <= membership(fuzzyWidth * 4 - 1 downto fuzzyWidth *3);
defuzzify nm <= membership(fuzzyWidth * 5 - 1 downto fuzzyWidth * 4);

defuzzify : process
variable save_output : std_logic_vector(fuzzyWidth - 1 downto G };
begin
wait until rising_edge(clock);
ifreset ="l" then
save_output := defuzzify z;
else
if fuzzy_output = pmedium then
save_output := defuzzify_pm,
elsif fuzzy_output = psmall then
save_output := defuzzify_ps;
elsif fuzzy output=zero then

save_output := defuzzify z;
elgif fuzzy_output = nsmall then

52

save_output := defuzzify ns;
elsif fuzzy output = nmedium then
save_output := defuzzify nm;
else
save output = defuzzify_z;
end if;
end if}

intemal_output{ fuzzyWidth - | downto 0) <= save_output;
if save_output(fuzzyWidth - 1)="1"then
internal_output(busWidth - | downto fuzzyWidth) <= extend_ones;
else
internal_output{ busWidth - 1 downto fuzzyWidth) <= extend_zeros;
end if
end process defuzzify,
sync_output : lpm_{f generic map (lpm_width => busWidih)
port map (

data => internal_output,
clock =>clock,

sl => reset,
q => pitput
%
flop_valid : synchrenizor generic map (numberOfLevels =>2)
port map {
clock => clock,
reset = reset,
input =>valid_in,
cutput => valid_out
)

end membership_fumction;

53

Appendix H: Test bench code for Defuzzification

library ieee;
use ieee.std_logic_1164.all;

entity Defuzzification_tb is
end Defuzzification_th;

architecture mixed of Defuzzification_tb is
component Defuzzification is

port (clock :in std_logic;
resct tin std_logic;
fuzzy_output : in std_logic_vector(2 downto 0);
membership :in std_logic_vector(5* 3 -1 downto 0);
valid_in :in std_logic;
valid_out : ountstd_logic;

output : outstd_logic_vector(4 -1 downto 0)

)!

end component Defuzzification;

constant T_pw :time :=20ns;
. constant delay time : time :=10ns;
constant busWidth : positive :=2;

constant pmedium : std_logic_vector = "000";
constant psmall : std_logic_vector := "001";
constant zero : std_logic_vector :="010";
constant nsmall : std_logic_vector := "011";
constant nmediam : std_logic_vector := "100";

signal clock : std_logic;
signal reset : std_logic;

signal fuzzy output : std_legic_vector(2 dewnto 0);
signal membership : std_logic_vector(5* 3 -1 downto 0);
signal valid_in : std_logic;

signal fuzzy_output_delayed : std_logic_vector(2 downto &);
signal membership_delayed : std_logic_vector(5* 3 - 1 downto 0);
signal valid_in_delayed : std_logic;

signal valid_out : std_logic;
signal output : std_logic_vector(4 -1 downto 0);

begin

fiezzy_output_delayed <= fuzzy_output after delay_time;
membership_delayed <= membership after delay_time;
valid_in_delayed <=valid_in after delay_time;

dut : Defuzzification port map (
clock == clock,
reset => reset,
fuzzy_output => fuzzy output_delayed,
membership => membership_delayed,
valid_in => valid_in_delayed,
valid_out =>valid_out,

output => output
)]
clock gen : process
begin
clock <="'0";
wait for T_pw;
clock <='1%

wait for T_pw;

end process clock_gen;

54

reset_control : process
begin

reset <="'1";
wait for 4 * T_pw;
reset <='0";
wait for 76 * T_pw;
reset <="'1";
wait for 10 * T_pw;
reset <='{";
wait;
end process reset_control;

input_control : process
begin

fuzzy output <= (others =>'0");
valid in <='0';

membership <="011100000001010";
wait for T_pw;

waitfor 10* 2 * T _pw;

fuzzy output <= pmedium;
waitfor 4 *2* T _pw;

fuzzy_output <= psmall;
wait for 4 * 2 * T_pw;

fuzzy_output <= zero;
waitfor4 *2*+ T pw;

fuzzy_output <= nsmall;
waitfor 4 *2* T _pw;

fuzzy_output <= nmedium;
waitfor 4 * 2% T pw;

fuzzy_output <= pmedium;
valid_in <='D";

wait;

end process inpat_control;

end mixed;

55

Appendix I: Matlab’s M-file for Fuzzification

function [= fuzzy (Termp,Hum)

Temp = input(’Enter room temperature value =");

Hum = input{’Enter room humidity value ="),

if ((Temp>=10)&(Temp<=16))
Temp_LV1='cold'
Temp_tvl=1

elseif {{Temp>=20)&(Temp<=24))
Temp_LVI1='¢cool'
Temp_tvl=1

elseif ((Temp>=28)&(Temp<=32))
Temp_LV1="normal'
Temp_tvl=1

elseil ((Temp>=36)}&(Temp<=40))
Temp_LV1="warm'
Temp_tvl=1

elseif ((Temp>=44)&(Temp<=50})
Temp_LVi="hot'
Temp tvl=1

elseif ({Temp>16)&(Temp<20))
Temp_LV1='cold'
Temp_LV2="cool'
a=Temp-10;
Temp_tvi=1-0.25%
Temp_tv2=0.25%a

elseif ({Temp>24)&(Temp<28))
Temp_LVI1="cocl'
Temp LV2="normal'
a=Temp-24;
Temp_tvl=1-0.25%a
Temp_tv2=0.25%a

elseif ({Temp>32)&(Temp<36))
Temp_LVI1="normal'
Temp LV2='warm'
a=Temp-32;
Temp_tvl=1-0.25%a
Temp_tv2=0.25%

else ({Temp>40)8(Temp<44))
Temp LV1="warm'
Temp_LV2="hot'
a = Temp-40;
Temp tvl=1-0.25%a
Temp_tv2=0.25*

end

if (Hum>=0) & (Hum<=0.15))

56

Hum_LVI1='Negative Medium'
Hum_tvl=I1

elseif {(Hum>=0.2125)&(Hum<=0.3625))
Hum_LVI1='"Negative Small'
Hum_tvl=1

elseif ((Hum>=0.425)&(Hum<=0.575))
Hum LVI1='"Zero'
Hum_tvl=l

elseif ((Hum>=0.6375)&(Hum==0.7875)}
Hum_LV1="Positive Small'
Hum_tvl=i

elseif (Hum>=0.85)&(Hum<=1.0))
Hum_LV1="Positive Medium'
Hum tvi=1

elseif ((Hum™>0.15)&(Hum<0.2125))
Hum_LV1="Negative Medium'
Hum_LV2="Negative Small'
b=Hum-0.15;
Hum_tvl=1-16*b
Hum_tv2= 16%b

elseif ((Hum=>0.3625)&{Hum<0.425))
Hum_LVi="Negative Small’
Hum_LV2="Zero'
b = Hum-0.3625;
Hum_tvl= 1-16%b
Hum_tv2= 16*b

elseif ({(Hum>0.575)8&(Hum<0.6375})
Hum_LVI1='Zero'
Hum_LV2="Positive Small’
b =Hum-0.575;
Hum_tvl=1-16%
Hum_tv2= 16*b

else ((Hum>0.7875)&{Hum<0.85)}
Hum_LV1="Positive Small'
Hum_LV2="Positive Medium'
b= Hum-0.7875;
Hum_tvl=1-16*b
Hum_tv2=16*b

End

57

Appendix J: Matlab’s M-file for Inference

fimetion [] = infer (x);

Temp_LV1 = input{'Enter room temperature linguistic variable =",'s");
Temp LV2 = input("Bater room temperature linguistic variable ='s");
Hum_LV! = input('Enter room humidity linguistic variable =,'s");

Hum_1 V2 = input('Enter room humidity linguistic variable ="/s");

if {(Temp_LV1=="NM")
Delta_temp LYV1="PM'
elseif (Temp LVI1='NS")
Delta_temp_LV1=="P§'
elseif (Temp_LV1="Z")
Delta_temp LVI="Z"
elseif (Temp_LVI="PS")
Delta temp LVI='NS'
else (Temp LV 1==PM)
Delta_temp LVI=NM'

end

if (Temp_LV2==NM"
Delta_temp_LV2="PM'
elseif (Temp_LV2—"NS"
Delta_temp LV2=="P§'
elseif (Temp LV2=="2")
Delta_temp LV2='Z'
elseif {Temp_LV2Z="P§")
Delta_temp_ LV2='NS§'
else (Temp_LV2==PM)
Delta_temp LV2=NM'

end

if (Hum_LV1==NM"
Airflow_LV{='NM'
elseif (Hum LVI1==NS"}
Airflow_LVI=NS'
elseif (Hum_LV1=="7")
Airflow LV1="Z'
elseif (Hum_LV1=='PS)
Airflow_LV1=PS8'
else {Hum_LV1=="PM"
Airflow_LV1=PM'

end

if (Hum_LV2==NM"
Airflow LV2='NM'

elseif (Hum_LV2==NS")
Airflow_LV2='N§'

elseif (Hum LV2=='Z")

58

Airflow_LV2="2'
elseif (Hum_LV2=="P5")

Airflow LV2="PS'
else (Hum_LV2==PM")

Airflow_LV2=PM'

end

59

Appendix K: Matlab’s M-file for Defuzzification

function [] = defuzzy (x)

Temp = input('Enter room temperature value =");

Hum = input('Enter room humidity value =");

Temp_LV1 = input('Enter room temperature linguistic variable ="'s");
Temp_L'V2 = inpui('Enter room temperature linguistic variable =",'s");

Hum_LV1 = input{'Enter room humidity linguistic variable = 's";

Hum_LV2 = input{Enter room humidity linguistic variable ='s";
Delta_temp_LV1 = input('Enter delta room temperature linguistic variable =,'s");
Delta_temp_LV2 = input(Enter delta room temperature linguistic variable ="'s");
Airflow_LV1 = input{'Enter room air flow linguistic variable ='s");
Airflow_LV2 = input(‘Enter room air flow linguistic variable ='s");

Temp_tv1 = input{'Enter room temperature truth valie =");

Temp_tv2 = input{'Enter roem temperature truth value =)

Hum_tvl = input{'Enter room humidity truth value =");

Hum_tv2 = input{'Enter room humidity truth value =");

if ((Delta_temp_LVI=="NM")&(Temp_tvl==1))
c=(Temp-10)*0.2;
output_Delta_temp=c*6

elseif ((Delta_temp_LV [==NS"18&(Temp_tvi==1))
c=(Temp-20)*0.2;
cutput_Delta_temp=(c*4)}+10

elseif (Delta_temp_LV1=="Z&(Temp_tvl==1))

c=(Temp-28)*0.2;
output_Delta_temp=(c*4)+18

elseif (Delta_ternp_LV1=="PS"&{Temp_tvl==1)}
c=(Temp-36)*0.2;
autput_Delta_temp=(c*4)+26

else((Delta_temp_LV 1="PM)&(Temp_tv1==1})
c=(Temp-44)*0.2;
output_Delta_temp=(c*6)+34

end

if ((Airflow _LVI=NM"Y&(Hum_tvi==1))
d=(Hum-0)y*(1/0.15);
output_Airflow=d*0.15

clseif ({Airflow LV1=="NSV&(Hum_tvi==1)}
d=(Hum-0.2125)*(1/0.15);
output_Airflow=(d*0.15)+0.2125

elseif ({Airflow_LV1="Z&(Hum_tvl==1)}
d=(Hum-0.425)*(1/0.15);
output_Airflow=(d*0.15)+0.425

elseif ((Airflow_LV1==PS8)&Hum_tvi=1))
d=(Hum-0.6375)*(1/0.15);
output_Airflow={d*0.15)+0.6375

else {(Airflow LV I1==PM)&(Hum_tv1=1))

60

d=(Hum-0.85)*(1/0.15);
output_Airflow=(d*0.15)+0.85

end

if ({(Delta_temp_LV1==NM"&(Delta_temp_LV2==N8")&(Temp_tv1~=1))
tvf=min{Temp_tvl,Temp_tv2);
output_Delta_temp=10-4*tvf

elseif (((Dela_temp_LVI==N8"&(Delta_temp_LV2=="2"))&(Temp_tvl~=1))
wvfEmin{Temp_tvl, Temp_tv2);
output_Delta_temp=18-4*vf

elseif (((Delta_temp_LV1=="2)&(Delta_temp_LV2==P8")&(Temp_tvl~=1))
tviEmin(Temp_tvl, Temp_tv2};
output_Delta_temp=26-4*tvf

else (((Delta_temp_ LV1==P8"&(Delta_temp_LV2==PM"))&(Temp_tvl~=1))
tvfEmin(Temp_tvl, Temp_tvZ);
output_Delta_ternp=34-4*vf

end

if (((Airflow_LVI==NM"&(Airflow_LV2=='NS)&({Hum_tvl-=1)}
tvi=min(Hum_tvl,Hum_tv2);
output_Airflow=0.2125-0.0625%tvf

elseif (((Airflow_LV1==NSY&{Airflow_1.V2=="Z'})&(Hum_tvl~=1))
tvf=min{Hum_tvi,Hum tv2);
output_Airflow=0.425-0.0625*vf

elseif (((Airflow_LVI==Z)&{Airflow_LV2="PS")&{Hum_tvl~=1))
tvf=min{Hum_tvl,Hum_tv2);
output_Airflow=0.6375-0.0025*tvf

else ({(Airflow_LV1=="PS"&{Airflow_LV2==PM")&(Hum_tvl-=1})
tvf=min{Hum_tvl,Hum_tv2});
output_Airflow=~0.85-0.0625*tv{

end

61

Appendix L: Matlab Results — Fuzzification

>> fuzzyinput

Enter room temperature value = 35
Enter room humidity value = 0.65

Temp LVI1=
normal
Temp_LV2 =
warm
Temp tvl =
0.2500
Temp_tv2 =
0.7500
Hum LVI1=
Positive Small
Hum_tvl =

1

62

Appendix M: Matlab Results — Inference

>> Inference

Enter room temperature linguistic variable = Z
Enter room temperature linguistic variable = PS
Enter reom humidity linguistic variable = PS
Enter room humidity linguistic variable =
Delta_templ =

Z

Delta_temp2 =

NS

Airflow] =

PS

Airflow2 =

PM

63

Appendix N:; Matlab Results — Defuzzification

>> Defuzzification

Enter room temperature value = 35

Enter room humidity value = 0.65

Enter room temperature linguistic variable = Z
Enter room temperature linguistic variable = P§
Enter room humidity linguistic variable = PS

Enter room humidity linguistic variable =

Enter delta room temperature Hnguistic variable = Z
Enter delta room temperature linguistic vartable = NS
Enter room air flow linguistic variable = PM

Enter room air flow linguistic variable =

Enter room temperature truth value = 0.25

Enter room temperature truth value = 0.75

Enter room humidity truth value = |

Enter room humidity truth value =

output Delta temp =
2.2000

cutput_Airflow =
0.3000

output_Delta_temp =

14.2000

64

Appendix O: Sugeno method’s sample calculation

(oBmiare
procarens

e i
Em%%w%«
fkdy 'y

%EOL =l
wdine Z ndu L Induw
¢=poo} oS
m ancusuel mdiy UBYL SNOPIGR W PSOS T IO USRS i GRS wm
m S E - n
28 s AR— :
m afieioans dy uay
] WY T
W B
damuo = dy ey praves s posy o so0d sianinee

]

dirsyo oo

i !
P
iy ek pezed 3

Sugeno system. Fortunately it is frequently the case that singleton output functions

The figure above shows the Fuzzy tipping model developed for use as a zero-order

65

are completely sufficient for a given problem's needs. The more general first-order

Sugeno fuzzy model has rules of the form
ifxisAand yis Bthenz=p*x +g*y+r

where A and B are fuzzy sets in the antecedent, while p, ¢, and r are all constants.
The easiest way to visualize the first-order system is to think of each rule as defining
the location of a "moving singleton." That is, the singleton output spikes can move
around in a linear fashion in the output space, depending on what the input is. This
also tends to make the system notation very compact and efficient. Higher order
Sugeno fuzzy models are possible, but they introduce significant complexity with

little obvious ment.

Because of the linear dependence of each rule on the system's input variables, the
Sugeno method is ideal for acting as an interpolating supervisor of multiple linear
controllers that are to be applied, respectively, to different operating conditions of a
dynamic nonlinear system. For example, the performance of an aircraft may change
dramatically with altitude and Mach number. Linear controllers, though easy to
compute and well-suited to any given flight condition, must be updated regularly and
smoothly to keep up with the changing state of the flight vehicle. A Sugeno fuzzy
Inference system is extremely well suited to the task of smoothly interpolating the
linear gains that would be applied across the input space; it's a natural and efficient
gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear systems

by interpolating multiple linear models.

60

