
Design and Implementation of a General Purpose Fuzzy Control System

by

Selvakumar A/L Balasupramaniam

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

JUNE 2004

CERTIFICATION OF APPROVAL

Design and Implementation ofaGeneral Purpose Fuzzy Control System

by

Selvakumar A/L Balasupramaniam

Aproject dissertation submitted to the

Electrical and Electronic Engineering Programme

Universiti Teknologi PETRONAS

inpartial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL &ELECTRONIC ENGINEERING)

Approved by,

(Dr. Mohammad bin Awan)

UNIVERISTI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and the original work contained herein have not been undertaken or done by

unspecified sources or persons.

SELVAKUMAR A/L BALASUPRAMANIAM

11

ABSTRACT

The main objective of this final year project is to design and to implement a general

purpose Fuzzy control system that employs IF-THEN fuzzy rules. The design of the

general purpose Fuzzy controller has been refined to a Fuzzy airconditioner control

system. The Fuzzy control system for an air conditioning system is implemented

using two inputs and two outputs variables. The inputs to the system are the room

temperature and the room humidity while the outputs are the delta temperature

increase/decrease and the relative air flow, controlled by a motor. The Fuzzy air

conditioner makes reasoning similar to human decision making based on the room

temperature and the room humidity level to adjust the air flow speed and the

temperature out fiom the air conditioner with assumption of that the most

comfortable relative humidity level would be at around 45% RH and at room

temperature of 27° C. The Fuzzy air conditioner has the operating range of 10° Cto
50° C for the room temperature and ±10% RH for the room humidity. In this project,

the Fuzzy Logic Concept is used to implement a Fuzzy control system using 25 main

IF-THEN proposition statements. The project was implemented through software

(Active-HDL, MATLAB, Fuzzy Logic Toolbox, Project Navigator, and

FuzzyTECH) utilization for design development and verification as well as

laboratory activities for the hardware realization using Xilinx's VIRTEX II FPGA

chip. The author managed to design and implement a simple Fuzzy air conditioning

system that able to make decisions based the room temperature and the room

humidity at software realization stage only.

in

ACKNOWLEDGEMENT

During all the activities performed for this project, the author has received some
guidance and assistance which have enabled the author to perform the task smoothly.
Therefore, the author would like to take this opportunity to express his highest
gratitude mainly to following people in their contribution to the author in this project.

i) Associate Professor Dr. Mohammad Bin Awan (Supervisor) for providing
the necessary guidance to the author when the author faced some

problems regarding the project,

ii) Mr. Balbir Singh (Lecturer) for providing some assistance in certain areas

of the project,

iii) Encik Musa (Laboratory Technician) for providing the necessary

assistance for the author in laboratory activities of the project.

iv) Encik Ramli (Laboratory Technician) for the cooperation and guidance

given in usingcertainequipment.

The author also would like to express his appreciation to those who has assisted the

author and contributed effort in the completion of project for this semester.

Thank you very much.

iv

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL i

CERTIFICATION OF ORIGINALITY ii

ABSTRACT iii

ACKNOWLEDGEMENT iv

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4Scope of Study 3

CHAPTER 2: LITERATURE REVIEW AND THEORY 4

2.1 Fuzzy Logic Concept 4

2.1.1 Fuzzy Model 5

2.1.2 FuzzyRuleGeneration 6

2.1.3 Membership Functions 6

2.2 Control System Design 8

2.3 Fuzzy Control System Design 10

2.3.1 Procedure in Designing Fuzzy Control System 11

CHAPTER 3: METHODOLOGY / PROJECT WORK 13

3.1 Procedure Identification 13

3.2 Tools required 14

CHAPTER4: RESULTS AND DISCUSSION 15

4.1 Results and Findings 15

4.1.1 Membership Functions for Fuzzy air conditioner 16

4.1.2 Inference system of the Fuzzy air conditioner 23

4.1.3 VHDL coding of the Fuzzy control system 25

4.1.4 MATLAB Simulations 27

4.2 Discussions 28

4.2.1 Fuzzy air conditioner and its membership functions 28

4.2.2 Comparison between Mamdani andSugeno Method 30

4.2.2 Fuzzy Inference Proposition Rules andSurface Plot 31

4.2.3 VHDL programming andMATLAB simulation 32

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 33

5.1 Conclusion 33

5.2 Recommendation 35

REFERENCES 36

APPENDICES 37

VI

LIST OF FIGURES

Figure 1: Fuzzy Model 5
Figure 2: Fuzzy Rules Model 6
Figure 3: Membership function of car speed 8
Figure 4: Typical process control system 9
Figure 5: Fuzzy air conditioner l->
Figure 6: Membership function for room temperature 16
Figure 7: Membership function for room humidity 17
Figure 8: Membership function for delta temperature increase/decrease 18
Figure 9: Membership function for air flow motor 19
Figure 10: Membership function for room temperature 20
Figure 11: Membership function for room humidity 21

Figure 12: Delta Temperature Increase 22
Figure 13: Air Flow Motor -23
Figure 14: Surface plot of the inputs against delta temperature increase 24
Figure 15: Surface plot of the inputs against air flow motor 24
Figure 16: Apart of Fuzzification VHDL code 25
Figure 17: Apart of Inference VHDL code 26
Figure 18: Apart of Denazification VHDL code 26
Figure 19: Apart ofFuzzification MATLAB code 27
Figure 20: Apart of Inference MATLAB code 27
Figure 21: Apart ofDenazification MATLAB code 28
Figure 22: Example of non-linear relation between inputs and ouputs 31
Figure 23: Input membership function -Room temperature 37
Figure 24: Input membership function - Room humidity 37
Figure 25: Output membership function -Delta temperature increase 38
Figure 26: Output membership function - Air flow motor 38

Vll

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

Appendix K

Appendix L

Appendix M

Appendix N

Appendix O

LIST OF APPENDICES

: FIS Simulations 37

: Detail Rule Base Model 39

:Coding for Fuzzification in VHDL 40
: Testbenchcode forFuzzification • 43

:Coding for Rule Base - Inference in VHDL 45
: Test bench code for Inference 50

:Coding for Deflizzification in VHDL 52

: Test bench code for Defuzzification 54

: Matlab's M-file forFuzzification 56

: Matlab's M-file forInference 58

: Matlab's M-file forDefuzzification 60

: Matlab Results - Fuzzification 62

: Matlab Results - Inference 63

: Matlab Results - Defuzzification 64

:Sugeno method's sample calculation 65

vin

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Fuzzy logic is used in embedded control and information processing application.

Fuzzy provides a simple way to draw definite conclusions from vague, ambiguous or

imprecise information [9]. Fuzzy logic resembles human decision making with its

ability to work from approximate data and find precise solutions.

Unlike classical logic and conventional control system which requires a deep

understanding of a system, exact equations, and precise numeric values, Fuzzy logic

provides an alternative way of thinking, which allows modeling complex systems

using a higher level of knowledge and experience manipulation [4].

Fuzzy Logic allows expressing this knowledge with subjective, descriptive and

imprecise concepts. Some examples are that expressions of very hot, hot, not so hot,

warm, chill, cool and cold. Fuzzy Logic has been found to be very suitable for

embedded control applications. Fuzzy technology is used to improve quality and

reduce development time.

1.2 Problem Statement

The conventional control systems that have been implemented are depends on

precise range of input [6]. This hascaused the conventional control system to be less

robust or less flexible. Problem solving using the conventional method solves most

of the problems but not all, especially the problems that requires human reasoning.

The presence of human during problem solving activities might not be possible all

the time as well since the situation would not be favorable for human presence. The

problem solving should be solved byonly the presence ofmachine or itsequivalent.

Fuzzy logic is based on a simple rule-based IF -THEN [4] proposition statement

approach in solving control problem. The Fuzzy logic model is empirically-based,

relying on a person's experience rather than his/her technical understanding of the

system. Fuzzy logic utilizes imprecise yet very descriptive set of inputs such as cool,

cold, very cold and extremely coldto describe what is actually happening. Fuzzy

logic capability in mimicking the human behavior at fast rate enables fuzzy control

system to be more robust and reliable.

1.3 Objectives

Two main objectives were set to be achieved by the author at the end of the project.

The objectives of the project are as follow:

• To design a Fuzzycontrol system using Fuzzylogic concept for an air

conditioning system, or to design a Fuzzy air-conditioner that would

able to adjust its operation based on the room temperature and room

humidity.

• To implement the design of air conditioner Fuzzy control system

using VHDL programming language. "VHDL is chosen for the

implementation due to the reason that this hardware description

language is used more often nowadays in the industry and the

availability of the reference resources.

1.4 Scope of Study

The author was able to integrate the theoretical knowledge that has been learned

throughout the degree programme with practical approach throughout the project.

This project also helped the author to develop his knowledge in new type ofcontrol

system application, Fuzzy control system which is not taught through the academic

syllabus of the programme. Design and implementation stage ofthis project gave the

author a briefview of how integrated chips are designed andimplemented at real life

situation. The scope of this project included process of learning about the related

concept, familiaring with VHDL programming, designing the Fuzzy control system,

finalizing the Fuzzy control system design (Fuzzy air conditioner), developing the

Fuzzy control system design, implementation ofthe design and project presentation.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Fuzzy Logic Concept

The concept of Fuzzy Logic was introduced by Lotfi Zadeh, a professor at the

University of California at Berkeley, and presented as a way of processing data by

allowing partial set membership rather than crisp set membership or non-

membership [9]. This approach to set theory was not applied to control systems until

the 70's due to insufficient small-computer capability prior to that time. Fuzzy logic

concept reasoning is that people do not require precise numerical information based

inputs, and yet they are capable of highly adaptive control and decision making. If

feedback controllers could be programmed to accept noisy, imprecise input, the

controllers would be much more effective and perhaps easier to implement.

Fuzzy logic is a problem-solving control system methodology that can be

implemented in different kinds of system. It can be implemented in hardware,

software, or a combination of both. Fuzzy logic provides a simple way to arrive at a

definite conclusion basedupon vague, ambiguous, imprecise, noisy, or missing input

information. Fuzzy logic is based on a rule-based IF - THEN approach in solving

control problem rather than attempting to model a system mathematically. Fuzzy

logic's approach is to control problems by mimicking how a human would make

decisions, but in a faster rate.

2.1.1 Fuzzy Model

Fuzzy model [4] consists of four main elements mainly the inputs, Fuzzification,

Defuzzification and the outputs. The inputs and the outputs are the physical devices

or results that can be seen and desired by user. The Fuzzification and the

Defuzzification is the process performed with the aid of Fuzzy logic and Process

logic to relate the inputs to the outputs. Fuzzification process is performed by the

Fuzzifier, where crisp inputs are converted into Fuzzy based input representations.

Defuzzification is the process performed by the Defuzzifier, where the results of the

Fuzzy process logic outputs are converted into crisps values, or desired actions or

real time outputs. The exactrepresentation of a Fuzzy Model is shown in Figure 1.

D efuzzifier

'1 '

Process lDgj-c Knowledge base Physical device

j L

1 r

Fuzzifier

Figure 1: Fuzzy Model

The combination of the Process Logic and the Knowledge Base components is

known as the Inference system of a Fuzzy system. The whole Fuzzy system is

generally considered as consists of three steps; mainly Fuzzification, Inference and

Defuzzification. Fuzzification and Defuzzification are two steps that are

complementary to each other while the Inference is the process where the decision

making actually takes place. The Inference components differ from one Fuzzy

system to another because the architecture depends on the designer of the system.

2.1.2 Fuzzy Rule Generation

The Fuzzy rule [4] is basically based on the simple IF- THEN rule which relates the

input to the output through combinational logic relationship. The rules are usually

known as the proposition statements in layman's term. An example of the Fuzzy

rules is shown below where a Fuzzy system with two inputs, A and B, each having

two different situations of 1 and 2. The inputs can be combined through digital logic

operations such asthe AND or OR operators toproduce necessary output conditions.

IF Al and/or Bl THEN HI 1 ELSE

IF A2 and/or Bl THEN H21 ELSE

IF Al and/or B2 THEN H12 ELSE

IF A2 and/or B2 THEN H22.

The IF-THEN rules, when tabulated in a table similar to what shown below, the

obtained table, known as the Fuzzy Rules Model [4], shows much more clearly how

a Fuzzy Inference system actually works.

Al

A2

Hll H12

H21 H22

Bl B2

Figure 2: Fuzzy Rules Model

2.1.3 Membership Functions

Membership Functions [4] profiles are the plots of inputs to the respective degree of

truth. The degree of truth is a unitless value that defines how true the condition is.

Forexample, when a person with height of 170cm is considered as tall, the degree of

truth for that person is tall is 1.0. However, when another person with the height of

165cm, the degree of truth for that person is tall is less than 1.0, maybe around 0.8.

Usually, when the latter condition occurs in a Fuzzy system, it is defined two

linguistic variables. Linguistics variables are the variables used to define a value ora

condition with a setof range. Examples of linguistic variables for a category are Tall

and Short. Therefore, when the person with the height of 165cm is defined in term

Fuzzy system, it would be as 0.8 of Tall and 0.2 of Short. A membership function

usually consist more than two linguistic variables and each input and the output of a

Fuzzy system have its own membership function. The concepts of linguistic variable

and the membership function can be further explained using the example below

where the speed of a car is discussed.

Assuming the speedof a car can be categorized by three linguistic variables of slow,

moderate and fast. Thesecategories are represented by A, B and C respectively.

A = slow

B = moderate

C = fast

Assuming that the car could travel from the range of speed ofo to lOOkm/h and

range of each linguistic variable are defined as below.

A ={(0,0), (5,1), (10,1), (30,0)}

B = {(20, 0), (30, 1), (40, 1), (50, 1), (60, 0)}

C = {(50,0), (70,1), (80,1)}

The shape of the membership function for the car speed would be as shown below

where the symbol fi(x) represents the degree of truth for each linguistic variable at

different speed.

Figure 3: Membership function of car speed

Membership functions are the most important aspects of a Fuzzy system because the

proposition statements are based on the membership functions and the required in

Fuzzification, Inference and Defuzzification steps.

2.2 Control System Design

Control systems [6] are basically known as the systems used to maintain the

controlled variables at their required value. Typical control system contains

following main elements: process, sensor, controller, final controlling element. The

typical block diagram of a process that contains any control system is as shown In

Figure 4.

C?(s)

1 VJ Uumxi>«u«

y-
»

Gfiaittlfe
M¥

G*V#w —♦ {£$mw < ^
(* " j

j i.

\J($mm:

Figure 4: Typical process control system

In the block diagram above, the Controlled Variable (CV) [6] is any process variable

that needs to be controlled at desired value or range of values. The value or the range

of values that are specified for the controlled variable to achieve is known as the Set

Point (SP). The difference between Set Point and the Controlled Variable is known

as the Error (E) or offset. The main objective of any control system is to maintain the

particular system with zero value of error. To do so, the controller will get the error

value and perform some calculations to compensate the error. The output of the

controller, which is known as the Manipulated Variable (MV), will be used to control

the final controlling element, where the final controlling element controls some

variables that have causal relationship with the Controlled Variable. The controller

will compensate the error by changes the value of the final controlling elements so

that the error is reduced or eliminated. The disturbance variable (D) is any variable

that cannot be controlled but influences the output of process. Disturbances tend to

introduce error. Therefore, the controller must be able to compensate the error

introduced by the disturbance as well.

The control system above is specifically known as the Feedback Control System [6],

Feedback control system uses the output to maintain the controlled variable at its

desired value. There are other types of control system or strategy, such as Cascade

Control System, Feed Forward Control System, Feed Back -Feed Forward Control

System, Ratio Control System and etc. However, the main objective of mentioned

control systems is to maintain the controlled variables at their desired value in spite

of disturbance occurrence.

2.3 Fuzzy Control System Design

Fuzzy control system (FCS) [5] is the control system that utilizes the Fuzzy logic

reasoning concept. Fuzzy control system is assumed to be more robust and flexible

since it has the characteristic offered by the Fuzzy logic concept. Fuzzy control

system uses the available membership function of its inputs and its outputs to make

the decision. Unlike conventional control system which usually uses the PID system

and produces almost the same results if compared to another conventional control

system, a Fuzzy control system would not produce the same results compared to

another Fuzzy control system due to difference in the membership functions and the

IF-THEN rules design of the Fuzzy control system.

An example or Fuzzy control system is the Fuzzy washing machine [9], Fuzzy

washing machine's inputs usually are the level of dirtiness, number of cloth and the

water level. The outputs of the Fuzzy washing machine would be amount of

detergent needed and the washing time. Assuming in ideal case of one cloth with

100% level of dirtiness and 100% water level, the Fuzzy control system will then set

the detergent amount as 50 grams and washing time as 5 minutes. In another case of

where the level of dirtiness is less than 100%, the Fuzzy control system might set

different amount of detergent amount and washing time.

10

2.3.1 General Procedure in Designing Fuzzy Control System

There are five main steps involved in designing a Fuzzy Control System [4]. The

steps are listed below in sequence.

i) DefineFuzzyproblemin detail.

ii) Identify all important variable and theirranges.

iii) Determine membership profiles for each variable ranges.

iv) Determine rules (propositional statements) including action needed.

v) SelectDefuzzification methodology.

Define Fuzzy problem in detail

First step of any problem solving is the definition of the problem. Similar in this

procedure, the problem statement is defined and understood. The scope of the

problem is analyzed for feasibility. The objective ofthe problem solution is defined.

The important requirements such asthe inputs and the outputs are noticed.

Identify all important variable and their ranges.

Once the inputs and the outputs are located, their values or their range of values are

setor identified according to the problem statement orscope ofthe problem solution.

Determine membershipprofiles for each variable ranges.

Once the inputs and outputs ranges have been identified, the membership functions

for each variable (input and output) is defined or determined. The membership

function determines the degree of truth ofeach variable at different conditions.

11

Determine rules (propositional statements) including action needed.

The Fuzzy rules model which consists of IF-THEN statements must be generated.

The IF-THEN statements are based on their respective membership functions. The

IF-THEN statements related the input membership functions to the output

membership functions.

Select Defuzzification methodology.

The final step ofdesigning the Fuzzy control system is the Defuzzification where the

output statement (THEN) is directly mapped to some kind of physical representation

oraction. The step is also refers to the actual Fuzzy control system output realization.

12

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Procedure Identification

At the initial stage of the project which covers the entire semester one period,

literature review was carried out to familiarize with the Fuzzy logic concept. Once

the intended concept has been fully understood, the literature review was then

proceeded to focus more on the application of Fuzzy logic in designing and

implementation the required Fuzzy control system. The implementation process is

carried out through digital logic design, where digital components such as the shift

registers, carry-select adders and min/max combinational logic was also studied so

that the exact characteristics of the digital design of the Fuzzy control system could

be understood during the implementation. Since the project associated with two

inputs; room temperature and the room humidity, a literature review to understand

the correlation between the two inputs was also made so that the author could just

use only one input device to get two different types of inputs. The design

implementation required VHDL programming to construct the working code for the

final Fuzzy control system.

13

3.2 Tools required

The project involves VHDL Programming to design and implement the Fuzzy

controller.

Due to this, the following tools have been used in performing all the related activities

of the project:

• ALDEC's Active-HDL Verilog, VHDL and EDIF Simulation software -

This software was used to write and compile the VHDLprograms that

were used to realize the Fuzzy control system. VHDL was utilized to

design, write and simulate the logic design of the Fuzzy control system.

Once the programs have been constructed, compiled and verified, the

programs are tested using the test bench program codes to simulate the

intended output of the programs.

• MATLAB - This software was used as an alternative to the ALDEC's

Active-HDL Verilog, VHDL and EDIF Simulation software. The Fuzzy

control system component programs were constructed tested and

simulated using this software to validate the design. However, the

programs designed using this software could not be used for the

implementation of the Fuzzy control system on the intended hardware.

• Fuzzy Logic Toolbox of MATLAB (Fuzzy Inference System -FIS Editor

Viewer) - This toolbox of MATLAB software was used specifically to

assist in the Fuzzy Inference system of the Fuzzy control system. Though

the toolbox is specifically for the Fuzzy Inference system design, other

component designs of the Fuzzy control system are also possible, with

limited applications.

• FuzzyTECH 5.5 - This software was used to automatically generate the

proposition statements based on the membership functions of the Fuzzy

control system.

• Xilinx's Project Navigator - An important software that was used to

synthesize and to generate the net list files from the created VHDL

programs before the design could be downloaded to the FPGA.

14

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results and Findings

When the Fuzzy control system design was finalized to a Fuzzy air conditioning

system, two inputs and two outputs were defined. The inputs are the room

temperature and room humidity. The outputs are the delta temperature increase

required to be made by the control system and the air flow motor, or the fan speed. In

this project, it is assumed that the room humidity could be controlled by the rate of

air flow to the room as evaporation increases with high air movement and decreases

with low air movement. The overall Fuzzy air conditioner would be as illustrated by

Figure 5.

FUZZi CONTROL
SVSTEM t*

ROOM

| Temperature
controller

Humidity sensor

Temperature sensor

Figure 5: Fuzzy air conditioner

15

4.1.1 Membership Functions for Fuzzy air conditioner

There are four membership functions for the Fuzzy air conditioner. Two of the

membership functions are for the inputs; room temperature and the room humidity,

while the two are for the outputs; air flow and the delta temperature increase. The

membership functions are shown Figure 6.

Room Temperature

0.5 Cold Cool Warm Hoi

10 50

Figure 6: Membership function for room temperature

The membership function for the room temperature is defined for a temperature

range of from 10 C to 50 C. Five linguistic variables are used in the membership

function to defined five different ranges of room temperature. The linguistic

variables are cold, cool, normal, warm and hot. The temperature range for each

linguistic variable is shown below.

Cold ={(10,1), (16,1), (20,0)}

Cool = {(16,0), (20, 1), (24,1), (28,0)}

Normal = {(24, 0), (28, 1), (32, 1), (36, 0)}

Warm = {(32, 0), (36, 1), (40, 1), (44, 0)}

Hot= {(40, 1), (44,1), (50,1)}

16

0.5

Room Humidity

0.15 0.21 1.36 GAS 0.58 0.64 0.79 0.85 1.00

Very
Dry

0.2

Dry Norma! f Humid

0.4

Very
Humid

Figure 7: Membership function for room humidity

1.0

The membership function for the room humidity is defined for a range of 0 to 1.0 of

scale. Five linguistic variables are used in the membership function to defined five

different ranges of room humidity. The most comfortable room humidity is assumed

at 0.5 of scale. The linguistic variables used are very dry, dry, normal, humid and

very humid. The range for each linguistic variable is shown below.

Very dry ={(0,1), (0.15,1), (0.21,0)}

Dry = {(0.15, 0), (0.21, 1), (0.36, 1), (0.43, 0)}

Normal - {(0.36, 0), (0.43, 1), (0.58, 1), (0.64, 0)}

Humid = {(0.58, 0), (0.64, 1), (0.79, 1), (0.85, 0)}

Very humid - {(0.79, 1), (0.85, 1), (1.0, 1)}

17

-20

MOO**

0.5

-2D

Delist Temperature
Increase

-152 .11.2 -6.4 -2.4 2.4 6.4 11.2 15.2

NM NS PS PM

-12

20

2D

Figure 8: Membership function for delta temperature increase/decrease

The membership function for the delta temperature increase is defined for a

temperature range of from -20°C to 20°C. Five linguistic variables are used in the

membership function to defined five different ranges of delta temperature increase.

The linguistic variables are NM (negative medium), NS (negative small), Z (zero),

PS (positive small) and PM (positive medium). The membership function for

variable differs from the input variables in term of their range where in this

membership function, the range consist of both negative and positive values. The

main purpose of this type of range is to enable proper corrective action that would

lead to a stable condition, which is a principle of Bounded Input, Bounded Output

(BIBO). The temperature range for each linguistic variable is shown below.

NM= {(-20, 1), (-15.2, 1), (-11.2,0)}

NS- {(-15.2, 0), (-11.2, 1), (-6.4, 1), (-2.4, 0)}

Z= {(-6.4,0), (-2.4,1), (2.4,1), (6.4,0)}

PS = {(2.4,0), (6.4,1), (11.2,1), (15.2,0)}

PM= {(11.2,1), (15.2,1), (20,1)}

Air Flow Motor

MOO
-1.0 -0-7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 1.0

0.5 NM NS PM

-1.0 -0.6 -0.2 0 0 10

Figure 9: Membership function for air flow motor

The membership function for the air flow motor is defined for a range of from -1.0 to

1.0 of scale. Five linguistic variables are used in the membership function to defined

five different ranges of motor speed or air flow. The linguistic variables are NM

(negative medium), NS (negative small), Z (zero), PS (positive small) and PM

(positive medium). The membership function for this variable similar to that of delta

temperature increase in term of their range where the range consists of both negative

and positive values. The main purpose of this type of range is to enable proper

corrective action that would lead to a stable condition. The relative action range for

each linguistic variable is shown below.

NM ={(-1.0,1), (-0.7,1), (-0.5,0)}

NS= {(-0.7, 0), (-0.5, 1), (-0.3,1), (-0.1, 0)}

Z ={(-0.3,0), (-0.1, 1), (0.1, 1), (0.3,0)}

PS ={(0.1,0), (0.3, 1), (0.5, 1), (0.7,0)}

PM= {(0.5,1), (0.7,1), (1.0,1)}

However, to ease the code generation for the Fuzzification, Inference and

Defuzzification using VHDL language, the obtained membership functions were

simplified from type trapezoidal to type rectangular, as shown in Figure 10.

19

Figure 10: Membership function for room temperature

The temperature range for each linguistic variable is shown below.

Cold= {(10,1), (18,1), (18,0)}

Cool- {(18, 0), (18,1), (26, 1),(26, 0)}

Normal = {(26, 0), (26, 1), (34, 1), (34, 0)}

Warm = {(34, 0), (34, 1), (42, 1), (42, 0)}

Hot= {(42,1), (42,1), (50,1)}

20

MOO

t 0

O.S

0
0

Room Humidity

Very
Dry Dry Normal Humid

Very
Humid

0.2 0.4 0,6 0,8 1.0

Figure 11: Membership function for room humidity

The range for each linguistic variable is shown below.

Very dry ={(0,1), (0.2, 1), (0.2,0)}

Dry = {(0.2, 0), (0.2, 1), (0.4, 1), (0.4, 0)}

Normal = {(0.4, 0), (0.4, 1), (0.6, 1), (0.6, 0)}

Humid = {(0.6, 0), (0.6, 1), (0.8, 1), (0.8, 0)}

Very humid = {(0.8, 1), (0.8, 1), (1.0, 1)}

21

Delta Temperature
Increase

1.0

0.5 NM NS z PS PM

-20 -1 2 -4 0 4 12 20

Figure 12: Delta Temperature Increase

The temperature range for each linguistic variable is shown below.

NM = {(-20,1), (-12,1), (-12,0)}

NS= {(-12,0), (-12, 1), (-4,1), (-4,0)}

Z- {(-4,0), (-4,1), (4,1), (4,0)}

PS = {(4, 0), (4,1), (12, 1), (12,0)}

PM= {(12,1), (12,1), (20,1)}

22

Figure 13: Air Flow Motor

The relative action range for each linguistic variable is shown below.

NM= {(-1.0,1), (-0.6,1), (-0.6,0)}

NS= {(-0.6, 0), (-0.6, 1), (-0.2, 1), (-0.2, 0)}

Z= {(-0.2,0), (-0.2,1), (0.2,1), (0.2,0)}

PS ={(0.2,0), (0.2,1), (0.6,1), (0.6,0)}

PM= {(0.6,1), (0.6,1), (1.0,1)}

4.1.2 Inference system of the Fuzzy air conditioner

For generating and designing the Fuzzy control system's Inference system, the Fuzzy

Toolbox of MATLAB was utilized. With the Fuzzy Inference System (FIS) Editor

Viewer p rogram [7], the following I nference s ystem w as d eveloped for the F uzzy

control system. The toolbox requires for the membership function of the system, both

inputs and the outputs to be defined. Once this has been done, the proposition

statements of theFuzzy control system that have been decided earlier a re used to

generate the Inference system. The Inference system eventually used to map the

Fuzzy control system's inputs to their respective outputs. Figure 23 till Figure 26 in

Appendix A show the FIS simulation process. The Fuzzy Rules model for the Fuzzy

air conditioner system is shown in Appendix B. The Inference system is then plotted

23

using FIS to view the surface plot. The results are shown below where the Inference

system of the Fuzzy control system is plotted against each output variable.

•4 Sttrface Viftwet* Ai*c«r&' _-J.3j.xj
Fi!» Edit View Options

Temperature

iTempeialws' z\ V,,nplJ'-
" Vgrids

!Hjniciy "*] - C'JU'putJ jDefe_Tenpe!j*J

15

Re? inpjt Help Ctoie

ReacJy

Figure 14: Surface plot of the inputs against delta temperature increase

•sj Surface Viewer: AircohX ...IQ x

F:!e Hdr Vm Optwri

_-^S?^^V^
1^ -'"""" . '

05-

i. •» -•* • ...

50

KuiwMtf 0 10
Tsjjip3:aii.Te

X\W& JTempsraiure __[¥linPuC:
>< gilds' fig Vgrids

Hjmc.:j< 32MprtJ: | Au..Flew_aate_£j

fW. Input: Help Close

R&sdy

Figure 15: Surface plot of the inputs against air flow motor

24

4.1.3 VHDL coding of the Fuzzy control system

Code Generationfor Fuzzification

Based on the Fuzzification membership functions that the author has obtained, the

following VHDL codes were generated. The Fuzzification code is based on the

membership functions that have 5 linguistics variables for each of its inputs (two

inputs). A part of the coding for the Fuzzification is attached in shown in Figure 16.

The mil VHDL code and its respective test bench code are attached in Appendix C

andD.

sl~up th& tuzzy ranges. fhe tnsmharsitip functi on that will foe U3Sd

s a simple jraetaagia.

y pia(tuzayHldt.fi - 1 downto 0) <= Membership (fuEzyKldtb * I - X doimto fuazyUidth * G ,.

y_ps(fuszyWidth - i dostito 0 J <- membership(fuzzyKidth * 2 - i doimto iuzsyuideh * i i

y_ja t £uszy¥idt;h - I downed 0 j <= mentoership (fuzzyBidth * 3 - i downta fuzzySTidth * 2 ;

y_ns(fusEyWidth ~ I dotmto 0 3 <*> men&iership (fusay»idth * 4 ~ i downco fuKzySTidth * 3 t

y_nm(fuEsyVidch - i doanco 0) <<* men&jeirship (fuazyUidth * S - i downto fUEsytfidth * 4
'

Figure 16: A part of Fuzzification VHDL code

Code Generation for Inference (Rule Base)

The component of the Fuzzy control system is where the design IF-THEN

proposition statement is utilized. Rules are set by the designer so that the control

system would able to map the inputs to their respective outputs, depending on the

conditions and requirements. A part of the coding for the Inference and is attached in

shown in Figure 17. The full VHDL code its respective test bench code is attached in

Appendix E and F.

25

if difference • pmediiirw ami integral * plarge then

internal_contro 1_ pia «« nmedium;

eisif diffeeeace » pmedlwn and integral =8 pB)ediva» ttten

internai_cotmro1 pro <» s«ro;

eisif difference - pmediura and Integral * pswali then

lnt-eEaal_coriE.ro i _pwi <» psiaall;

elsif difference • prsadliuB and integral ' seco than

iatemaljsofttcol_p» <» ptnadiimi;

elsif difference s pmediww and Integral * nsisall then

inter&al_coatroi pja <=°" jnsediwn;

Figure 17: A part of Inference VHDL code

Code Generationfor Defuzzification

The Defuzzification code that has been generated uses the inferred values from the

Inference rule bases to produce the Defuzzification output. The output of the code

generation for the following code is in such that the only one output, which is the

motor speed (flow). Apart ofthe coding for the Defuzzification is attached inshown

in Figure 18. The full VHDL code and its respective test bench code are attached in

Appendix G and H.

if fazsy_output « pnsedium then

save_output J* de£uszi£y_ptM

els if f«zsy_out-put H psmall then

save^output :• defusei£yj?s;

elsif £uazy_ou«puc * zero Chen

s eve__outp«t J" de£uzzify_z;

a isIf f«ZEy_output = nsroall then

save_eii*fcp«t :* defussifyjns;

els if tus zyjautput - naHSdiraa then

save jatttput :» def«zzify_nm;

Figure 18: A part of Defuzzification VHDL code

26

4.1.4 MATLAB Simulations

Due to compilation difficulties in the ALDEC's Active HDL software, the intended

result from the VHDL program could not be obtained. To produce the exactly same

type of results, the MATLAB software was utilized. The software was used write all

three components of Fuzzy control system. The MATLAB M-file coding for the

Fuzzification, Inference and the Defuzzification programs are shown in Appendix I, J

and K. The MATLAB simulation results are shown in Appendix L, M and N. A

partial program containing the main interface of the M-files are shown in Figure 19

to Figure 21.

function U * tuzey

Temp • lnput('Enter raoa temperature value * ');
Him « inputj'Enter tooa humidity value • '5;

if ((Teiap>=10is!Teiap<=16)3
TeapJ.Vi-'col.i'
Te«p_tvl«l

elseif ((Teiip>«20)ii(Teaip<»24)5
Te;spJ<yi«' cool'
Temp tvi-1

Figure 19: A part of Fuzzification MATLAB code

Teap^LYl « input('Zntsz rooa temperature linguistic variable « ",'a'\,
Teap__LV2 = input{ 'Enter 100a teapeiature linguistic variable = ','s'J.
HuaJ.Vl - injnitCEtttec tooa huuidicy linguistic variable » ','s'J;
Hum_tV2 * input|'Enter room himidity linguistic war-leMe * ','8');

if tTeap_LVl"'BH't
Belta__teap_LVi='PH'

elseif (Temp_LVi=='JlS'3
Delta temp LVU-'PS'

elseif !Teap_LVl--'2')
Delta_teii!p LVls'Z'

elsei£ (TefcpJ,Vl»»' PS!)
De1ta_te»p_LVl='S3'

else (Teap LV1=-='PH')
Delta_te*p_LVl*'m'

end

Figure 20: A part of Inference MATLAB code

27

Tenip = input{'Enter room teapetature value = ');

Hum - inputj'Enter room humidity value <* ');
Teap^LVl • input('Enter rocs teaperature linguistic variable »
Teap_Lv2 * input£ 'Enter rooa temperature linguistic variable =• •
Hua_LVl » input('Enter room huaiaity linguistic variable « ','s
Hua_LVZ » inputf'Enter room hunddlty linguistic variable « ','3'
Delta_te»p_LVl » inputE'Enter delta room temperature linguistic
Delta_teiap_J,V2 • input('Enter delta coca temperature linguistic
AirEloM__LVl • input('Enter tooa a.ir flow linguistic variable »
Air£loH_LV2 = inputCEntec toon air flow linguistic variable »
Teap_tvl « inputfEnter room teaperature truth value " '):
Tes*p_tv2 » inputt'Enter room temperature truth value » •);
Huajwl » input('Enter rooa huaidity truth value - ');
HUB_tv2 » inputt'Enter rooa humidity tmtta value - ');

if {[Delta temp LVl-='BH'}6tTeap tvl-=l)}
c«£Teap-10)*U/6);
output___Delto__teap«t-20)+(c*a.8)

,'«');

,'*');

J;

it
variable - ','s'S

variable = V*'l
,'«'}*
,'»');

Figure 21: A part of Defuzzification MATLAB code

4.2 Discussions

A Fuzzy control system with two inputs and two outputs were designed. How this

two inputs and the two outputs are related through the membership functions that

have been defined, is discussed in following section. Other than that, the Mamdani's

method [7] of Inference used for the design is also explained. As a mean of

comparison, another method of Inference known as the Sugeno method [7] is also

discussed to clarify the different between these two methods.

4.2.1 Fuzzy air conditioner and its membership functions

The Fuzzy control system designed is a Fuzzy air conditioner which takes the room

temperature and the room humidity as the inputs to the system. The control system

will then try to maintain the room condition such that the room temperature and

room humidity would be at a comfortable level. In order to do so, the control system

will make use two parameters; the delta temperature increase and the air flow motor.

The room temperature is increased or decreased accordingly using the delta

temperature increase parameter while the room humidity would be controlled by air

flow to the room by the fan speed.

Studies were made on finding the correlation between the temperature and the

humidity to simplify the hardware design of the Fuzzy control system. Studies that

have been conducted showed that there is some correlation between temperature and

28

relative humidity (RH). This correlation can be made through a chart, known as the

psychrometric [10] chart. A psychrometric chart graphically illustrates the

relationships between air temperature and relative humidity as well as other

properties. However, in this project, the correlation is assumed to be unity and linear

along the temperature range specified for Fuzzy control system. The desired or most

comfortable humidity level for human is around 45% RH [11]. In the Fuzzy control

design, this level is assumed to b represented by the 0.5 of scale. The maximum and

the minimum humidity that the air flow motor would able to control are assumed

around ±10% RH.

Two types of membership functions have been utilized in the project; type

trapezoidal and type rectangular. Membership function type trapezoidal has been

seen and used commonly for the most of the Fuzzy application. This type of

membership function defines the transition between two adjacent linguistic variables

smoothly without abrupt changes. Therefore, Fuzzy calculation canbe assumed tobe

more accurate and the results resemble more to human reasoning. Membership

function type rectangular thathasbeen used as and alternative to simplify the VHDL

code generation is not widely used to the reason that there is no smooth transition

between the two adjacent linguistic variables in the membership functions. However,

due to its simplicity, the code generation of the component is less complicated than

the other types of membership functions. Though the membership function type

rectangular has been used for the VHDL code generation, for the MATLAB

simulations, membership function type rectangular was used to simulate Fuzzy

decision making.

There are few types of Fuzzy Inference calculation methods. Two most commonly

used calculation methods are the Mamdani method [7], which was introduced by

Ebrahim Mamdani, and Sugeno method [7]. In this project, a method similar to

Mamdani was used because the method is simpler to be executed or designed for the

programming activities. The details of the both Inference methods are explained in

the following subsection. Though the Fuzzy Inference is process of formulating the

mapping from a given input to an output using Fuzzy logic, these two types of

Inference systems differ in the way outputs are calculated.

29

4.2.2 Comparison between Mamdani and Sugeno Inference Method

The mapping provides a basis from which decisions can be made.

Mamdani Method

Mamdani Fuzzy Inference [7] method is the most commonly seen Fuzzy

methodology. Mamdani-type Inference expects the output membership functions to

be fuzzy sets. After the aggregation process, there will be Fuzzy set for each output

variable that needs to be defuzzified. In many cases, for more efficient Fuzzy

Inference, a single spike is used as the output membership functions rather than a

distributed fuzzy set. It enhances the efficiency of the Defuzzification process

because it greatly simplifies the computation required by the more general Mamdani

method, which finds the centroid of a two-dimensional function. Rather than

integrating across the two-dimensional function to find the centroid, the weighted

average of a few data points are used. Time and cost is reduced by this method since

less processing are being done but with accurate results.

Sugeno Method

Sugeno Inference method [7], also known as Takagi-Sugeno-Kang method of Fuzzy

Inference It is similar to the Mamdani method in many respects. In fact the first two

parts of the fuzzy Inference process, fuzzifying the inputs and applying the Fuzzy

operator, are exactly the same. The main difference between Mamdani-type of Fuzzy

Inference and Sugeno-type is that the output membership functions are only linear or

constant for Sugeno-type fuzzy Inference.

A typical fuzzy rule in a zero-order Sugeno fuzzy model has the form

ifx is A and y is B then z = k

where A and B are fuzzy sets in the antecedent, while A: is a crisply defined constant

in the consequent. Whenthe output of each rule is a constant, the similarity with

Mamdani's method is striking. The only distinctions are the fact that all output

membership functions are singleton spikes, and the implication and aggregation

methods are fixed and can not be edited. The implication method is simply

30

multiplication, and the aggregation operator just includes all of the singletons. More

details and a sample Inference calculation using the Sugeno method are attached in

Appendix O.

4.2.3 Fuzzy Inference Proposition Rules and the Surface Plot

From Appendix B, it can be seen that the two input variables are influencing the

output variables linearly. The room temperature is linearly controlling the delta

temperature increase and the room humidity uses the air flow motor to change the

humidity level. This is illustrated by the generated surface plot show in Figure 15.

The proposition statement are made in such conditioned so that the design of the

Fuzzy control system would be possible using the VHDL programming and

MATLAB simulation. For industrial solutions type of Fuzzy control system are not

linear. The inputs are non-linearly mapped by the outputs. An example of surface

plot of an industrial based Fuzzy Inference system is Figure 22.

-&£&.->..Input.

10-

Input 1 a o

Figure 22: Example of non-linear relation between inputs and ouputs

This type of Inference system is considered more 'Fuzzy' and resembles more

similar to human reasoning compared the one generated in the project. The linearity

of the Inference system is controlled by the assignment of degree of truth on each

proposition statements. In this project, degree of truth of 1.0 is assigned or every

31

proposition statements. If these assignments are changed accordingly, the Fuzzy

Inference system of this Fuzzy air conditioner would able to make a better decision

in controlling the room temperature and room humidity.

4.2.4 VHDL programming and MATLAB simulation

The VHDL programs [1], [2] of the Fuzzy control system were developed so that it

could be used to realize the system on the hardware (FPGA). Three different

components of the Fuzzy control system were coded using VHDL code. Rectangular

type membership functions were utilized for ease of code generation. The VHDL

code would basically get the inputs, performs Fuzzification on the inputs based on

the 5 linguistics variables that have been defined, performed the Inference operation

and return the corresponding outputs. The outputs of the Inference system then will

be used in the Defuzzification operation to convert the outputs to crisp values.

However, due to errors in compilation due to missing libraries of the software, results

could not be obtained. The programs were later converted into M-file and simulated

using MATLAB to get the results. The results of the MATLAB simulation can be

considered more accurate since the programs were developed based on the

trapezoidal type membership functions.

32

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Fuzzy control system is a system that resembles human reasoning and decision

making. The main advantage of the Fuzzy control system is that it can make decision

based on the vague and imprecise inputs or data. This allows it to be utilized in areas

or applications that require human reasoning and decision making.

Besides that, Fuzzy control system is based on empirical decision making. One does

not to fully understand every aspect of any system before implementing the control

system. Once a problem is carefully understood and objectives have been defined,

the Fuzzy control system can be developed straight away based on the understanding

or the required system. No detail knowledge is required of every single aspect of the

system since the objectives of a Fuzzycontrol system is get the desired outputs based

on the inputs. This is proven in this project where the author does not have detail

knowledge on how an air conditioner works. However, since the objective is to

control the room temperature and the room humidity, the Fuzzy control system was

developed based on controlling or adjusting the temperature increase and the air flow

motor.

Since it does not require detail understanding of a system, the development Fuzzy

control system is less time consuming as compared to other conventional control

system. There is no necessity to fully understand the exact operation of an air

33

conditioner. However, it would be the designer's advantage if the exact operation of

the system.

In this project of designing and developing a Fuzzy control system, a two inputs and

two outputs were specified to the control system. The Fuzzy control system are

required to make decision based on the room temperature and the room humidity to

control the level of air flow in the room and the amount of temperature that need to

be increased. As a result of this project, the required system was able to be designed.

The system is able to make the decision based on the specified variables which are

mainly utilizing the room temperature. However, much can be done to improve the

Fuzzy controller and the way to implement the Fuzzy controller. The

recommendations for the Fuzzy controller are mentioned in the following section.

34

5.2 Recommendation

The Fuzzy control system designed for the air conditioner contains three main steps;

Fuzzification, Inference and Defuzzification. In this project, all the codes were

generated manually, based on the author's understanding on the Fuzzy control

system. There are chances that the generated codes would not function or performed

exactly as intended by the designer. To avoid this problem, the author would like to

recommend of using the tailored software that are available in the industry to be used

since there are industry-certified and the design development process would consume

less time. When the design development consume less time as time consumed in this

project, the design implementation on the hardware can be considered and possible.

The hardware realization would show better and solid results. Besides that, the

results from the software utilization, a more accurate and precise results can be

expected.

In this project, the correlation between the room temperature and the room humidity

was assumed to be linear and unity. However, this would not be the case in the real

situation where at different Relative Humidity, the temperature changes or depends

non-linear. When in the future, this project is implemented through hardware

realization, either two different sensors are to be used or a program to correlate the

two inputs should be used. Besides that, other parameters can be included in the

future design development so that more accurate of control is possible.

35

REFERENCES

[I] S. Brown and Z. Vranesic, 2000, "FUNDAMENTALS OF DIGITAL LOGIC

WITH VHDL DESIGN", McGraw-Hill International Editions

[2] K.C. Chang, 1999,"Digital System Designwith VHDLand Synthesis: An

Integrated Approach", IEEE COMPUTER SOCIETY PRESS

[3] S. Dillen, F. Rashid and T. Chepyha, "Fuzzy Logic Controller in VHDL",

WaveRider

[4] M.R. Kaimal, S Dasgupta, M Harishankar, 1997, "Neuro-FuzzyControl

Systems", Narosa Publishing House

[5] A. Kandel and G. Langkolz, 1993, "Fuzzy Control System", CRC Press

[6] T.E. Marlin, 2000, "Process ControLDesigning Processesand Control Systems

for Dynamic Performance ", McGraw-Hill International Edition

[7] MATLAB Release 6.1 Help, "Mamdani and Sugeno Inference Method",

MathWorks Inc.

[8] V. Salapura and V. Hamann, "Implementing Fuzzy Control Systems Using and

Statecharts", Technische Universita't Wien

[9] <http://www.aptronix.com/fide/whatFuzzy.htm>

[10] < http://www/ianrpubs.unl.edu/seneralag/s626.htm>

[II] < http://www.science.howstuffworks.com/question651.htm >

36

APPENDICES

Appendix A: FIS Simulations

input variable "Tempars&ire"

Figure 23: Input membership function - Room temperature

^mmm.MffiftM.1 iFiiiiiii.iii n infimiffli im T-Pisas"w:
Ffe £sft «eft

FIS Variables

-jOj.X

HM NS I PS FM

teffltM«ft8«s,«r'ef«ure

inputvaitabis "Hunife&ty"

Figure 24: Input membership function - Room humidity

37

FIS Variables
Membership titDcdon ptets P101 i

NS "1 ' PS

Figure 25: Output membership function - Delta temperature increase

wnigaGE^---H-
Fife Ed

FIS Variables
junction plots pfotpoir*;

2 ' PS

^as3

Figure 26: Output membership function - Air flow motor

38

Appendix B: Detail Rule Base Model

IF THEN

Room

Temperature
Room Humidity Air Flow Motor

Delta

Temperature
Increase

Cold Very Dry PM PM

Cool Very Dry PM PS

Normal Very Dry PM z

Warm Very Dry PM NS

Hot Very Dry PM NM

Cold Dry PS PM

Cool Dry PS PS

Normal Dry PS Z

Warm Dry PS NS

Hot Dry PS NM

Cold Normal Z PM

Cool Normal Z PS

Normal Normal z Z

Warm Normal z NS

Hot Normal z NM

Cold Humid NS PM

Cool Humid NS PS

Normal Humid NS Z

Warm Humid NS NS

Hot Humid NS NM

Cold Very Humid NM PM

Cool Very Humid NM PS

Normal Very Humid NM Z

Warm Very Humid NM NS

Hot Very Humid NM NM

39

Appendix C: Coding for Fuzzification in VHDL

library ieee;
use ieee.std_logic_l 164.all;

library work;
use work.config.all;

entity Fuzzification is

generic (busWidth : positive := 4;

fuzzyWidth : positive := 3
);

port (clock : in std_logic;
reset : in std_logic;
data : in std_logic_vector(busWidth -1 downto 0);
membership : in std_logic_vector(5 * fuzzyWidth - 1 downto 0);
valid__in : in std_logic;
valid__out : out std_logic;
fuzzy_data : out std_logic_vector(2 downto 0)

);

end Fuzzification;

architecture membership_function of Fuzzification is

—Define the membership signals

signal fiizzy_pm : std_logic_vector(busWidth -1 downto 0);
signal fuzzy_ps : std_logic_vector(busWidth -1 downto 0);
signal fuzzyz : std_iogic_vector{ busWidth -1 downto 0);
signal fuzzy_ns : std_logic_vector(busWidth -1 downto 0);
signal fuzzynm : std_logic_vector(busWidth -1 downto 0);

—Define the fuzzy results, there are only 5 of them since there is only 5 membership functions

signal fuzzyresult: std_logic_vector(4 downto 0);

signal internal_data : std_logic_vector(2 downto 0);

signal extendones : stdJogic_vector(busWidth -1 downto fiizzyWidth);
signal extend_zeros : std__logicjvector(busWidth - 1 downto fuzzyWidth);

begin

extend_ones <= (others =>'l');
extendjzeros <= (others => '0');

—Set-up the fuzzy ranges. The membership function that will be used is a simple rectangle.

fuzzy_pm(fuzzyWidth - 1downto 0) <= membership{ fuzzyWidth * I -1 downto fuzzyWidth * 0);
fuzzy_ps(fuzzyWidth - 1 downto 0) <= membership(fuzzyWidth * 2 - i downto fuzzyWidth * 1);
fuzzy_z { fuzzyWidth -1 downto 0) <= membership(fuzzyWidth * 3 -1 downto fuzzyWidth * 2);
fuzzy__ns(fuzzyWidth -1 downto 0) <= membership(fuzzyWidth * 4 - 1 downto fuzzyWidth * 3);
fuzzy_nm(fuzzyWidth -1 downto 0) <= membership(fuzzyWidth * 5 - I downto fuzzyWidth * 4);

fuzzy_pm(busWidth - 1 downto fuzzyWidth) <= extend_zeros;
fuzzy_ps(busWidth -1 downto fuzzyWidth) <= extend_zeros;
fuzzy__z (busWidth -1 downto fuzzyWidth) <= extend_zeros;
fuzzy_ns(busWidth - 1 downto fiizzyWidth) <= extend_ones;
fuzzy_nm(busWidth - 1 downto fuzzyWidth) <= extend_ones;

compare_pm : Ipmcompare generic map (
ipm_width => busWidth,
lpm__representation => "signed",
lpm_pipeline => 1

)
port map (

40

dataa

datab

aclr

clock

ageb

);

=> data,
=> fuzzy_pm,

=> reset,

=> clock,
=> fuzzy_result(0)

compare_ps: Ipmcompare generic map (
lpmwidth => busWidth,
lpm_representation => "signed",
lpm_pipeline => 1

)
port map (

dataa

datab

aclr

clock

);

=> data,
=> fuzzy_ps,

=> reset,

=> clock,
=> fuzzyresult(l)

compare_z : lpm_compare generic map (
lpm_width => busWidth,
lpm_representation => "signed",
lpmpipeline => 1

)
port map (

dataa => data,
datab => fuzzy_z,
aclr => reset,
clock => clock,
aeb -> fuzzy_result(2)

);

compare_ns : lpm_compare generic map (
lpm_width => busWidth,
lpm_representation => "signed",
lpmpipeline => 1

)
port map (

dataa => data,
datab => fuzzy_ns,
aclr -> reset,
clock => clock,
aleb => fuzzy_result(3)

);

comparenm : Ipmcompare generic map (
lpm_width => busWidth,
lpm_representation => "signed",
Ipmjjipeline => 1

)
port map (

dataa => data,
datab => fuzzy_nm,
aclr => reset,
clock => clock,
aleb => fuzzy_result(4)

);

output: process

begin

wait until rising_edge(clock);

if reset = T then

internaldata <= zero;

else

if fuzzy_result(0) =' 1' then

internal_data <= pmedium;

41

elsif fuzzy_result(l) = 'l' then

internaldata <= psmali;

elsif fuzzy_result(2) =' 1' then

internal_data <= zero;

elsif fuzzy_result{4) = '1' then

interna l_data <= nmedium;

elsif fuzzy_result(3) = '1' then

internal_data <= nsmall;

else

interna l_data <= zero;

end if;

end if;

end process output;

flop_output: !pm_ff generic map (lpm_width => busWidth)
port map (

data => internal_data,
clock => clock,
sclr => reset,
q => fuzzy_data

);

flop_valid : synchronizer generic map (numberOfLevels => 3)
port map {

clock => clock,
reset => reset,

input
output

);

=> valid_in,
=> valid_out

end membership_function;

42

Appendix D: Test bench code for Fuzzification

library ieee;
use ieee.stdJogic_1164.aIl;

entity Fuzzificationjb is
end Fuzzification_tb;

architecture mixed of Fuzzif5cation_tb is

component Fuzzification is

port (clock : in stdjogic;
reset : in stdjogic;
data : in std_logic_vector(4 -1 downto 0 };
membership : in std logic_vector(5*3-1 downto 0);
valid_in : in stdjogic;
valid_out : out stdjogic;
fuzzy_data : out std_logic_vector(2 downto 0)

);

end component Fuzzification;

constant T_pw : time := 20 ns;
constant delayJime : time := 10 ns;
constant busWidth : positive := 2;

constant pmedium : stdjogicvector := "000"
constant psmall : stdJogic_vector ;= "001";
constant zero : std_logic_vector := "010";
constant nsmall : stdJogicjvector := "011";
constant nmedium : std logicvector := "100"

signal clock : stdjogic;
signal reset : stdjogic;

signal data : std_logic_vector(4 - 1 downto 0);
signal membership : std_logic_vector(5*3-1 downto 0);
signal validjn ; stdjogic;

signal data_delayed : std_logic_vector(4 -1 downto 0);
signal membership_delayed : std_logic_vector(5*3-1 downto 0);
signal validjn_delayed : stdjogic;

signal valid_out : stdjogic;
signal fuzzy_data : stdjogic_vector(2 downto 0};

begin

data_delayed <= data after delayJime;
membership_delayed <= membership after delayjime;
valid_in_delayed <= validjn after delay_time;

dut: Fuzzification port map (
clock => clock,
reset => reset,

data => data_delayed,
membership => membershipdelayed,
validjn => validJn_delayed,
validout =>valid_out,
fuzzy_data => fuzzy_data

);

clock_gen : process
begin

clock <= '0';

43

wait for T_pw;
clock <='l';
wait for T_pw;

end process clock_gen;

reset_control: process
begin

reset <=T;
wait for 4 * T_pw;

reset <='0';
wait;

end process reset_control;

input_control: process
begin

data <= (others => '0');
validjn <= '0';

membership <= "011100000001010"

wait for T_pw;

wait for 10 * 2 * T_pw;

validjn <=T;
data <= "0000";
wait for 4 * 2 * T_pw;

data <="0001";
wait for 4 * 2 * T_pw;

data <="0010";
wait for 4 * 2 * T_pw;

data <= "0011";
wait for 4 * 2 * T_pw;

data <="1100";
wait for 4 * 2 * T_pw;

data <=M110l";
wait for 4 * 2 * T_pw;

data <="1110";
wait for 4 * 2 * T_pw;

data <="1111";
wait for 4 * 2 * T_pw;

data <="00ll";
validjn <= '0';
wait;

end process input_control;
end mixed;

44

Appendix E: Coding for Rule Base - Inference in VHDL

library ieee;

use ieee.stdjogicj I64.all;

library work;

use work.config.all;

entity fuzzy_rulebase is

port {clock : in stdjogic;

reset : in stdjogic;

difference : in std logic__vector(2 downto 0);

integral : in stdJogic_vector(2 downto 0);

validjn : in stdjogic;

valid_out : out stdjogic;

control : out stdJogic_vector(2 downto 0)

);

end fuzzyrulebase;

architecture rules of fuzzy_rulebase is

signal internal_control : stdjogic_vector(2 downto 0);

signal internal_control_pm : stdjogic_vector(2 downto 0);

signal intemal_control_ps : stdlogicvectorf, 2 downto0);

signal intemal_control_z : stdlogic_vector(2 downto 0);

signal internal_control_ns : stdJogic_vector(2 downto 0);

signal internal_control_nm : stdJogic_vector(2 downto 0);

begin

control_rules_pm: process

begin

wait until rising_edge(clock);

if reset = T then

internai_contro ljpm <= zero;

else

if difference = pmedium and integral = pmedium then

internal_control_pm <= zero;

elsif difference = pmedium and integral = psmall then

internal_control_pm <= psmall;

elsif difference = pmedium and integral -zero then

45

internal_control_pm <= pmedium;

elsif difference = pmedium and integral = nsmall then

internal_control_pm <= pmedium;

elsif difference = pmedium and integral = nmedium then

internal_control_pm <= pmedium;

else

internal_control_pm <= zero;

end if;

end if;

end process contro l_rules__>m;

control_rules_ps : process

begin

wait until rising_edge(clock);

if reset = '1' then

internal_control.j)s <= zero;

else

if difference = psmall and integral = pmedium then

internalcontrol_ps <= nsmall;

elsif difference = psmall and integral = psmall then

internal_control_ps <= zero;

elsif difference = psmall and integral = zero then

internal_control_ps <= psmall;

elsif difference = psmall and integral = nsmall then

internal_control_ps <= psmall;

elsif difference = psmall and integral = nmedium then

internal_control_ps <= pmedium;

else

intemal_control_ps <= zero;

end if;

end if;

end process control_rules_ps;

controIrulesz : process

begin

wait until rising_edge{ clock);

if reset = T then

internal_control_z <= zero;

else

if difference = psmall and integral = pmedium then

internal_control_z <= nmedium;

elsif difference = psmall and integral = psmall then

internal_control_z <= nsmall;

elsif difference = psmall and integral = zero then

46

internal_control_z <= zero;

elsif difference = psmall and integral = nsmall then

internal_control_z <= psmall;

elsif difference = psmall and integral = nmedium then

internal_control_z <= psmall;

else

internal_control_z <= zero;

end if;

end if;

end process control_rules_z;

contro _rules_ns : process

begin

wait until rising_edge(clock);

ifreset-T then

internal_control_ns <= zero;

else

if difference - nsmall and integral = pmedium then

internaIcontrolns <= nmedium;

elsif difference = nsmall and integral = psmall then

internal_control_ns <= nmedium;

elsif difference = nsmall and integral = zero then

internal_control_ns <= nsmall;

elsif difference-nsmall and integral = nsmall then

internalcontrol_ns <= zero;

elsif difference = nsmall and integral - nmedium then

intemal_control_jis <- psmall;

else

internal_control_ns <= zero;

end if;

end if;

end process control_rules_ns;

control_ruIes_nm: process

begin

wait until rising_edge(clock);

if reset = T then

internalcontrolnm <= zero;

else

if difference = nmedium and integral = pmedium then

internal_control_nm <= nmedium;

elsif difference = nmedium and integral = psmall then

internal_control_nm <= nmedium;

elsif difference = nmedium and integral = zero then

internal_control_nm <= nmedium;

elsif difference = nmedium and integral = nsmall then

47

internal_control_nm <= nsmall;

elsif difference = nmedium and integral = nmedium then

internal_contro l_nm <= zero;

else

internal_control_nm <— zero;

end if;

end if;

end process control_rules_nm;

control_out: process

function check(value : in stdJogic_vector(2 downto 0)) return stdjogic is

variable return_value : stdjogic;

begin

if internal_control_pm —value or

interna _contro_ps = value or

interna l_controi_z = value or

internal_contro!_ns = value or

internal_control_nm - value then

retum_value :=T;

else

retum_value := '0';

end if;

return return_value;

end function check;

begin

wait until nsing_edge(clock);

ifreset= '1'then

control <= zero;

else

if check(pmedium) = '1' then

control <= pmedium;

elsif check(psmall) = '1' then

control <= psmall;

elsif check(nsmall) = '1' then

control <= nsmall;

elsif check(nmedium) = T then

control <= nmedium;

else

control <= zero;

end if;

end if;

48

end process control_out;

flopvalid : synchronizor generic map (numberOfLevels => 2)

port map (

end rules;

clock => clock,

reset => reset,

input => validjn,

output => valid_out

);

49

Appendix F: Test bench code for Inference

library ieee;
use ieee.stdjogicj 164.all;

entity fuzzy_rulebase_tb is
end fuzzy_rulebase_tb;

architecture mixed of fuzzy_rulebase_tb is

component fuzzy_rulebase is

port (clock : in stdjogic;
reset : in stdjogic;

difference : in stdJogic_vector(2 downto 0);
integral : in stdJogic_vector(2 downto 0);
validjn : in stdjogic;
valid_out : out stdjogic;
control : out stdlogic__vector(2 downto 0)

);

end component fuzzy_rulebase;

constant T_pw : time := 20 ns;
constant delay_time : time := 10 ns;
constant busWidth : positive := 2;

constant pmedium ; stdjogic_vector := "000";
constant psmall : stdJogic_vector := "001";
constant zero : stdjogicjvector := "010";
constant nsmall : stdJogic_vector := "011";
constant nmedium : stdJogic_vector := "100";

signal clock : stdjogic;
signal reset : stdjogic;

signal difference : stdJogic_vector(2 downto 0);
signal integral : stdjogic_vector(2 downto 0);
signal validjn : stdjogic;

signal difference_delayed : stc*Jogic_vector(2 downto 0);
signal integral_delayed : stdjogic_vector(2 downto 0);
signal valid_in_delayed : stdjogic;

signal valid_out : stdjogic;
signal control : stdJogic_vector(2 downto 0);

begin

difference_delayed <- difference after de1ay_time;
Integral_delayed <= integral after delay_time;
validjn_delayed <= validjn after delay_time;

dut: fuzzy_rulebase port map {
clock —>clock,
reset => reset,

difference => difference_delayed,
integral => integraldelayed,
validjn => valid_in_delayed,
valid_out =>valid_out,
control => control

);

clock_gen ; process
begin

wait for T_pw;
clock <= T;
wait for T_pw;

clock <= '0';

50

end process clock_gen;

resetcontrol: process
begin

reset <= '0';

reset <=T;
wait for 4 * T_pw;

wait;

end process reset_control;

input_control: process

procedure test_rule(input__l ; in stdJogic_vector(2 downto 0);
input_2 : in std_logic_vector(2 downto 0)

)is
begin

difference <= inputj;
integral <= input_2;

wait for 4 * 2 * T_pw;
validjn <- '1';
wait for 2 * T_pw;
validjn <= '0';

end procedure test_rule;

begin
difference <= pmedium;
integral<= psmall;
validjn <= '0';

wait for T_pw;

test_rule(pmedium, pmedium);
test_rule(pmedium, psmall);
test_rule(pmedium, zero);
test_rule(pmedium, nsmall);
test_rule(pmedium, nmedium);

test_rule(psmall, pmedium);
test_mle(psmall, psmall);
test_rule(psmall, zero);
test_rule(psmall, nsmall);
test_rule(psmall, nmedium);

test__ru!e(zero, pmedium);
test_rule(zero, psmall);
test_rule(zero, zero);
test_rule(zero, nsmall);
test_rule(zero, nmedium);

test_rule(nsmall, pmedium);
test_rule(nsmall, psmall);
test_rule(nsmall, zero);
test_rule(nsmall, nsmall);
test_rule(nsmall, nmedium);

test_rule(nmedium, pmedium);
test_rute(nmedium, psmall);
test_rule(nmedium, zero);
test_rule(nmedium, nsmall);
test_rule(nmedium, nmedium);

wait;

end process input_control;

end mixed;

51

Appendix G: Coding for Defuzzification in VHDL

library ieee;
use ieee.stdJogic_1164.all;

library work;
use work.config.all;

entity Defuzzification is

generic (busWidth : positive := 4;

fuzzyWidth : positive := 3

);

port (clock : in stdjogic;
reset : in stdjogic;
fuzzy_output: in std_logic_vector(2 downto 0);
membership : in std_logic_vector(5 * fuzzyWidth - 1downto0);
validjn : in stdjogic;
valid_out : out stdjogic;
output : out stdJogic_vector{ busWidth -1 downto 0)

);

end Defuzzification;

architecture membershipjunction of Defuzzification is

signal defuzzify_pm : std_logic_vector(fuzzyWidth - 3 downto 0);
signaldefuzzify_ps : stdjogic_vector(fuzzyWidth -1 downto0);
signaldefuzzifyz : stdjogic_vector(fuzzyWidth -1 downto 0);
signal defuzzifyns : stdJogic_vector{ fuzzyWidth -1 downto 0);
signal defuzzify_nm : std_logic_vector(fuzzyWidth -1 downto 0);

signal fuzzy_result: stdjogicvectorf 4 downto 0);

signal internal_output: stdJogic_vector(busWidth - I downto 0);

signal extend_ones : std_!ogic_vector(busWidth -1 downto fuzzyWidth);
signal extend_zeros : std_logic_vector(busWidth - 1 downto fuzzyWidth);

begin

extend__ones <= {others => '1');
extend__zeros<= (others => '0');

defuzzify_pm <= membership!, fuzzyWidth * 1 -1 downtofuzzyWidth * 0);
defuzzify_ps <= membershipf fuzzyWidth * 2 -1 downto fuzzyWidth * 1);
defuzzify_z <= membershipffuzzyWidth * 3 -1 downtofuzzyWidth * 2);
defuzzify_ns<= membershipf, fuzzyWidth * 4 -1 downto fuzzyWidth * 3);
defuzzify__nm <= membershipf fuzzyWidth * 5 -1 downto fuzzyWidth * 4);

defuzzify: process

variable save_output: std_logic_vector(fuzzyWidth -1 downto 0);

begin

wait until rising_edge(clock);

if reset = T then

saveoutput := defuzzify_z;

else

if fuzzy_output = pmedium then
save_output := defuzzify_pm;

elsif fuzzy_output-psmall then
save_output := defuzzify_ps;

elsif fuzzy_output = zero then
save_output := defuzzify_z;

elsif fuzzy_output = nsmall then

52

save_output := defuzzify_ns;
elsif fuzzy_putput = nmedium then

save_output := defiizzify_nm;
else

save_output := defuzzify_z;
end if;

end if;

intemal_output(fuzzyWidth - 1 downto 0) <= save_output;

if save_output{ fuzzyWidth -1) =' 1' then

intemal_output(busWidth - 1 downto fuzzyWidth) <= extend_ones;

else

internal_output(busWidth - 1 downto fuzzyWidth) <= extend_zeros;

end if;

end process defuzzify;

sync_output: lpm_ff generic map (lpm_width => busWidth)
port map (

data => internal_output,
clock => clock,
sclr => reset,
q => output

);

flop_yalid : synchronizor generic map (numberOfLevels => 2)
port map (

clock => clock,
reset => reset,

input => validjn,
output => valid_out

);

end membership_function;

53

Appendix H: Test bench code for Defuzzification

library ieee;
use ieee.stdJogic_1164.all;

entity Defuzzificationjb is
end Defuzzificationjb;

architecture mixed of Defuzzificationjb is

component Defuzzification is

port (clock : in stdjogic;
reset : in stdjogic;
fuzzy_output: in std logic_vector(2 downto 0);
membership : in std_logic_vector(5*3-1 downto 0);
validjn : in stdjogic;
valid_out : out stdjogic;
output : out std_logic_vector(4-1 downto 0)

);

end component Defuzzification;

constant T_pw : time :=20ns;
constant delayjime : time := 10 ns;
constant busWidth : positive := 2;

constant pmedium : stdjogicvector := "000";
constant psmall : std logic^vector := "001";
constant zero : std_logic_vector := "010";
constant nsmall : std_logic_vector := "011";
constant nmedium : stdJogic_vector := "100";

signal clock : stdjogic;
signal reset : stdjogic;

signal fuzzyoutput: stdJogic_vector(2 downto 0);
signal membership : std_logic_vector(5*3-1 downto 0);
signal validjn : stdjogic;

signal fuzzy_output_delayed : std_logic_vector(2 downto 0);
signal membership_delayed : stdJogic_vector(5*3-1 downto 0);
signal valid indelayed : stdjogic;

signal validout: stdjogic;
signal output : std_logic_vector(4-1 downto 0);

begin

fuzzy_output_delayed <= fuzzy_output after delayjime;
membership delayed <= membership after delay time;
valid_in_delayed <= validjn after delayjime;

dut: Defuzzification port map (
clock => clock,
reset => reset,

fuzzy_output => fuzzy_output_delayed,
membership => membership_delayed,
validjn => validindelayed,
valid_out => validout,
output => output

);

clock_gen : process
begin

clock <='0';
wait for T_pw;
clock <='l'i
wait for T_pw;

end process clock_gen;

54

reset control: process
begin

reset <= '1';
wait for 4 * Tpw;

reset <= '0';

reset <= '0';
wait for 76 * Tpw;

reset <='lr;
wait for 10 * T_pw;

wait;

end process reset_control;

input_control: process
begin

fuzzy_ourput <= (others => '0');
valid in <= '0';

membership <= "011100000001010";

wait for Tpw;

wait for 10 * 2 * T_pw;

fuzzyoutput <= pmedium;
wait for 4 * 2 * T_pw;

fuzzy_output <= psmall;
wait for 4 * 2 * T_pw;

fuzzyoutput <= zero;
wait for 4 * 2 * T_pw;

fuzzy_output <= nsmall;
wait for 4 * 2 * T_pw;

fuzzy_output <- nmedium;
waitfor4*2 * Tpw;

fuzzy_output <= pmedium;
validjn <='0';

wait;

end process inputcontrol;

end mixed;

55

Appendix I: Matlab's M-file for Fuzzification

function [] = fuzzy (Temp,Hum)

Temp = input('Enter room temperature value = ');

Hum = input('Enter room humidity value =');

if((Temp>=10)&(Temp<=16))

Temp_LV 1—coId'

Temp_tvl=l

elseif <(Temp>=20)&(Temp<=24))

Temp_LVl-cool'

Temp_tvl=l

elseif((Temp>=28)&(Temp<=32))

Temp_LVl -normal'

Temp_tvl = l

elseif ((Temp>=36}&(Temp<=40))

Temp_LV 1-warm'

Tempjvl=l

elseif ((Temp>=44)&(Temp<=50))

Temp_LVl='hot'

Temp_tvl=l

elseif ((Temp>l 6)&{Temp<20))

TempJ-Vl-cold'

Temp_LV2='cool'

a = Temp-16;

Temp_tvl= 1-0.25 *a

Temp_tv2=0.25*a

elseif ({Temp>24)&(Temp<28))

Temp_LV 1—cool'

Temp_LV2—normal'

a - Temp-24;

Temp_tvl- l-0.25*a

TempJv2= 0.25 *a

elseif ((Temp>32)&(Temp<36»

TempLVl-normal'

Temp_LV2='warm'

a = Temp-32;

Tempjvl= l-0.25*a

Temp_tv2-0.25*a

else «Temp>40)&(Temp<44))

Temp_LV1-warm'

Temp_LV2=,hot'

a = Temp ^10;

Temp_tvl= 1-0.25 *a

Temp_tv2=0.25*a

end

if ((Hum>=0)&(Hum<=0.15))

56

Hum_LV1-'Negative Medium'

Hum_tvl=l

elseif <(Hum>=0.2125)&{Hum<=0.3625))

Hum_LVl='Negative Small'

Hum_tvl=l

elseif ((Hum>=0.425)&fHum<=0.575))

HumLV 1-Zero'

Hum_tvl=l

elseif ((Hum>-0.6375)&(Hum<=0.7875))

HumJL-Vl-Positive Small'

Hum_tvl=l

elseif ((Hum>=0.85)&(Hum<=1.0))

HumLVl-Positive Medium'

Hum_tvl=l

elseif ((Hum>0.15)&(Hum<0.2125))

Hum_LVl—Negative Medium'

Hum_LV2='Negative Small'

b = Hum-0.15;

Humjvl=l-16*b

Hum_tv2=16*b

elseif ((Hum>0.3625)&(Hum<0.425))

Hum_LV 1-Negative Small'

Hum_LV2='Zero'

b = Hum-0.3625;

Humjvl- M6*b

Hum_tv2= 16*b

elseif ((Hum>0.575)&(Hum<0.6375))

Hum_LVl-'Zero'

Hum_LV2='Positive Small'

b = Hum-0.575;

Hum_tvl- l-16*b

Hum_tv2= 16*b

else ((Hum>0.7875)&(Hum<0.85))

Hum_LVl='Positive Small'

Hum_LV2-Positive Medium'

b = Hum-0.7875;

Humjvl=l-16*b

Hum_Jv2=16*b

End

57

Appendix J: Matlab's M-file for Inference

function [] —infer (x);

TempJ-Vl = input('Enter room temperature linguistic variable = ','s');

Temp_LV2 = input('Enter room temperature linguistic variable = ','s');

Hum_LVl = input('Enterroomhumidity linguisticvariable= ','s');

Hum_LV2 - input('Enter room humidity linguistic variable = ','s');

if(Temp_LVl=='NM')

Delta_temp_LVl='PM'

elseif (Temp_LVl=-'NSt)

Deltajemp_LVl=='PS'

elseif (Temp_LVl='Z')

Delta_temp_LVl='Z'

elseif (Temp„LVl='PS')

Delta_temp_LVl='NS'

else (Temp_LVl=,PM')

Delta_temp_LVl='NM'

end

if(Temp_LV2—*NM')

Delta_temp_LV2='PM'

elseif (Temp_LV2='NS,)

Delta_temp_LV2='PS'

elseif (Temp_LV2='Z')

De!ta_temp_LV2='Z'

elseif (Temp_LV2='PS')

Delta_temp_LV2='NS'

else {Temp_LV2=='PM')

Delta_temp_LV2='NM'

end

if(Hum_LVl='NM')

Airflow_LVl-'NM'

elseif(Hum_LVl--'NS')

Airflow_LVl='NS'

elseif (Hum_LVl=='Z')

Airflow_LVl='Z'

elseif (Hum_LVl=='PS')

Airflow_LVl='PS'

else(Hum_LVl=='PM')

Airflow_LVl='PM'

end

if(Hum_LV2='NM')

Airflow_LV2='NM'

elseif (Hum_LV2—'NS')

Airflow_LV2='NS'

elseif (Hum_LV2==,Z')

58

Airflow_LV2='Z'

elseif <Hum_LV2='PS')

Airflow_LV2='PS'

else (Hum_LV2=='PM')

Airflow_LV2='PM'

end

59

Appendix K: Matlab's M-file for Defuzzification

function [] = defuzzy (x)

Temp = input('Enterroom temperature value =');

Hum - input('Enter room humidity value =');

Temp_LVl = input('Enter roomtemperature linguistic variable = ','s');

Temp_LV2= input('Enterroomtemperaturelinguisticvariable= ','s');

HumLVl = input('Enterroomhumidity linguisticvariable= ','s');

Hum_LV2 = input('Enter room humidity linguistic variable = ','s');

Delta_temp_LV1= input('Enter deltaroom temperature linguistic variable = ','s');

Delta_temp_LV2 = input('Enter deltaroom temperature linguistic variable = ','s');

Airflow_LVl = input{'Enter room air flow linguistic variable = ','s');

Airflow_LV2= input('Enterroom air flow linguisticvariable= ','s');

Tempjvl = input('Enterroomtemperaturetruth value-');

Temp_tv2= input('Enterroomtemperaturetruth value=');

Hum_tv1 = input('Enter room humidity truth value =');

HumJv2 = input('Enterroom humiditytruth value=');

if((Delta_temp_LVl=='NM*)&(Temp_tvl=l))

c=(Temp-10)*0.2;

output_Delta_temp=c*6

elseif ((Delta_temp_LVl=='NS,)&(Temp_tvl==l))

c=(Temp-20)*0.2;

output_Delta_temp=(c*4)+10

elseif ((DeltaJemp_LVl='Z')&(TempJvl==l))

c=(Temp-28)*0.2;

outputJ)elta_temp=(c*4)+18

elseif ((DeltaJemp_LVl='PS')&{Temp_tvl=l))

c=(Temp-36)*0.2;

outputJ)eltajemp=(c*4)+26

else((Delta_temp_LV1='PM')&(Temp_tv1=1))

c-(Temp-44)*0.2;

output_DeltaJemp=(c*6)+34

end

if((Airflow_LVl='NM')&(Hum_tvl=-l))

d=(Hum-0)*(l/0.15);

output_Airflow=d*0.15

elseif (<Airflow_LVl==*NS')&(Hum_tvl=l))

d=(Hum-0.2125)*(l/0.15);

output_Airflow=(d*0.15)+0.2125

elseif ((AirflowJ.Vl==,Z')&(Hum_tvl=l))

d-(Hum-0.425)*(l/0.15);

output_Airflow=(d*0.15)+0.425

elseif ((Airflow_LVl=='PS')&(Hum_tvl=l))

d=(Hum-0.6375)*(l/0.15);

output_Airflow=(d*0.15)+0.6375

else((Airflow_LVl=,PM')&(Hum_tvl=l))

60

dKHum-0.85)*(l/0.15);

output_Airflow={d*0.15)+0.85

end

if(((Delta_temp_LVl-='NM')&(Delta_temp_LV2=,NS'))&(Temp_tvl—1))

tvf=min(Tempjv1,TempJv2);

output_Delta_temp=10-4*tvf

elseif (((Delta_temp_LVl='NS')&(Delta_temp_LV2='Z'))&(Temp_tvl-^l))

lvf=min(Temp_tvl,Temp_tv2);

outputJ3elta_temp=l 8-4*tvf

elseif (((DeltaJemp_LVl=='Z')&(Delta_temp_LV2=='PS'))&(Temp^tvl~-l))

tvf=min(Temp_tvl,Temp_tv2);

output_DeltaJemp=26-4*tvf

else(((Delta_temp_LVl—'PS')&(DeltaJemp_LV2==,PM'))&(Temp_tvl~-l))

tvf=min(TernpJv1,Temp_tv2);

output_Delta_temp=34-4*tvf

end

if (((Airflow_LV 1=='NM')&(Airflow_LV2--'NS'))&(Hum_tvl-^ 1))

tvf=min(Hum_Jv 1,Hum_tv2);

output_Airflow=0.2125-0.0625*tvf

elseif (((Airflow_LVl—'NS')&(Airflow_LV2==,Z'))&(Hum_tvl—1))

tvf=min(HumJvl,Hum_tv2);

output_Airflow=0.425-0.0625*tvf

elseif (((Airflow^LVl—'Z'J&tAirflow^va^PS'^&tHum^l--=!))

tvf=min(Hum_tvl,Hum_tv2);

output_Airflow=0.6375-0.0625 *tvf

else(((Airflow_LVl=='PS')&(Airnow_LV2=='PM'))&(Hum_tvl--l))

tvf=min(Hum_tvl,Hum_tv2);

output_Airflow=0.85-0.0625*tvf

end

61

Appendix L: Matlab Results - Fuzzification

» fuzzyinput

Enter room temperature value = 35
Enter room humidity value = 0.65

Temp_LVl =

normal

Temp_LV2 -

warm

Temp_tvl -

0.2500

Temp_tv2 =

0.7500

Hum_LVl =

Positive Small

Humtvl =

1

62

Appendix M: Matlab Results - Inference

»Inference

Enter room temperature linguistic variable = Z
Enter room temperature linguistic variable = PS
Enter room humidity linguistic variable = PS
Enter room humidity linguistic variable =

Delta_templ =

Z

De!ta_temp2 =

NS

Airflow 1 =

PS

Airflow2 =

PM

63

Appendix N: Matlab Results - Defuzzification

» Defuzzification

Enter room temperature value = 35
Enter room humidity value = 0.65
Enter room temperature linguistic variable = Z
Enter room temperature linguistic variable = PS
Enter room humidity linguistic variable = PS
Enter room humidity linguistic variable =
Enter delta room temperature linguistic variable = Z
Enter delta room temperature linguistic variable = NS
Enter room air flow linguistic variable = PM
Enter room air flow linguistic variable —
Enter room temperature truth value = 0.25
Enter room temperature truth value = 0.75
Enter room humidity truth value = 1
Enter room humidity truth value =

outputJJeltajemp =

2.2000

output_Airflow =

0.3000

output_Delta_temp =

14.2000

64

Appendix O: Sugeno method's sample calculation

ifi.

B- «

O K •

t

The figure above shows the Fuzzy tipping model developed for use as a zero-order

Sugeno system. Fortunately it is frequently the case that singleton output functions

65

are completely sufficient for a given problem's needs. The more general first-order

Sugeno fuzzy model has rules of the form

ifx is A andy is B then z =p*x + q*y + r

where A and B are fuzzy sets in the antecedent, while p, q, and r are all constants.

The easiest way to visualize the first-order system is to think of each rule as defining

the location of a "moving singleton." That is, the singleton output spikes can move

around in a linear fashion in the output space, depending on what the input is. This

also tends to make the system notation very compact and efficient. Higher order

Sugeno fuzzy models are possible, but they introduce significant complexity with

little obvious merit.

Because of the linear dependence of each rule on the system's input variables, the

Sugeno method is ideal for acting as an interpolating supervisor of multiple linear

controllers that are to be applied, respectively, to different operating conditions of a

dynamic nonlinear system. For example, the performance of an aircraft may change

dramatically with altitude and Mach number. Linear controllers, though easy to

compute and well-suited to any given flight condition, must be updated regularly and

smoothly to keep up with the changing state of the flight vehicle. A Sugeno fuzzy

Inference system is extremely well suited to the task of smoothly interpolating the

linear gains that would be applied across the input space; it's a natural and efficient

gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear systems

by interpolating multiple linear models.

66

