
IMPLEMENTATION OF FIR FILTERS IN

HARDWARE DESCRIPTION LANGUAGE (HDL)

By

TONGKINWAH

FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

©Copyright 2006

by

Tong Kin Wah, 2006

n

Approved by:

CERTIFICATION OF APPROVAL

IMPLEMENTATION OF FIR FILTERS IN

HARDWARE DESCRIPTION LANGUAGE (HDL)

by

Tong Kin Wah

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti TeknologiPETRONAS

in partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Azrina Binti Abd. Aziz

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2006

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Tong Kin Wah

IV

ABSTRACT

Digital filters are used in digital signal processing (DSP) to improve the quality of a

signal, to extract information from signals or to separate two or more signals previously

combined. The advancements in VLSI technology have seen the growing popularity of

digital filters rather than analog filters. Due to a surge in high performance portable

systems, there is a continuous drive for methodologies and approaches of low power and

high throughput FIR filter cores. The components of an FIR filter include adders,

multipliers, memory unit and control unit. This project intends to compare the

performances of different structures of adders and multipliers and integrate these

structures to yield a filter which displays the best performance in terms of area, speed

and power consumption. The hardware implementation of FIR filters is done using

Verilog Hardware Description Language (HDL). All the filter components are modeled

using HDL, in which they are then synthesized, implemented and simulated. The

simulated design that has been verified is downloaded into Field Programmable Gate

Array (FPGA), where Xilinx Virtex-II chip is used. Hardware verification is performed

by testing the filter output using a logic analyzer. Important considerations in this project

are the selection of appropriate number of bits for input samples and filter coefficients,

and also the number representation scheme. The choices made will affect the

performance of the filter. This project brings out the importance of exploring varies

structures of adders and multipliers that will improve filter performance. This area of

study is lacking although there exists innumerable research on advance techniques to

implement low power and high throughput filter. The designed FIR filter in this project

can be further improved by comparing more structures of adders and multipliers, and

incorporating some advance techniques.

ACKNOWLEDGEMENTS

This design project has equipped me with abundance knowledge and it would not

be a success without the help of a legion of people. First and foremost, I would like to

express my heartfelt gratitude to my supervisor, Azrina, who has not failed to attend to

my needs. She is indeed very helpful in attempting to provide solutions to my problems

and lead me to the resources that are of great help. I would also want to thank her for

directing one ofmy problems to her friend, Weng Fook Lee, who has actually provided

me with suggestions thatguide me through the design process.

I am also indebted to three lecturers, Mr. Lo, Mr. Patrick and Dr. Yap, who have

helped and guided me much in this project. I want to thank them for spending hours with

me in debugging and for their precious piece ofadvice. Besides, they are patient with all

my inquiries and are always willing to lend a helping hand. Not forgetting also to give

my thanks to the lab technician, Kak Azira, for the eagerness to help in every way

regarding the lab equipment. It would be a tough time without her help in installing the
software and obtaining the lab equipment and manuals.

There is another person whom I owe my thanks to - Kuang Sun, who is one of

Mr. Lo's FYP students. He is oftremendous help in my project since apart ofhis project

is rather similar to mine. With his help and advice in using the software and lab

equipment, a lot of time is saved and more focus can be put into the design. Lastly, I

want to take this opportunity to thank everyone who has directly or indirectly involved in

this project, be it offering technical information or giving other useful advice. Once

again, thank you so much for providing me with a wonderful experience in completing
this project.

VI

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 BACKGROUND OF STUDY 1

1.2 PROBLEM STATEMENT 2

1.3 OBJECTIVES 3

1.4 SCOPE OF STUDY 3

CHAPTER 2 LITERATURE REVIEW/THEORY 5

2.1 DIGITAL FIR FILTERS 5

2.2 TWO's COMPLEMENT 8

2.3 ADDERS 9

2.3.1 Carry-Look-Ahead Adder (CLA) 9

2.3.2 Carry-Save Adder (CSA) 11

2.4 MULTIPLIERS 13

2.4.1 Radix-4 Booth's Multiplier (Booth's Algorithm) 14

2.4.2 Baugh-Wooley Array Multiplier 17

CHAPTER 3 METHODOLOGY/PROJECT WORK 20

3.1 PROJECT FLOW 20

3.2 BASIC DESIGN METHODOLOGY 23

3.3 BIT REPRESENTATION SCHEME. 24

3.4 IDENTIFICATION OF TOOLS 24

3.5 TASKS ACCOMPLISHED 25

3.6 PROBLEMS ENCOUNTERED 25

3.7 TESTING & TROUBLESHOOTING 26

CHAPTER 4 RESULTS & DISCUSSION 27

4.1 FIR FILTER SPECIFICATIONS 27

4.1.1 Analysis of Designed FIR Filter 27

4.2 VERILOG CODES 30

vn

4.2.1 Baugh-WooleyArray Multiplier 30

4.2.2 Carry-Look-Ahead Adder (CLA) 32

4.2.3 Shift Register (Delay Units) 33

4.2.4 Filter Implementation 34

4.3 SOFTWARE SIMULATIONS 37

4.3.1 Performance Comparisons 38

4.3.2 Complete filter 39

4.4 HARDWARE SYNTHESIS 42

4.5 DISCUSSION 43

CHAPTER 5 CONCLUSION & RECOMMENDATIONS 46

REFERENCES 47

APPENDICES 49

APPENDIX A 49

APPENDIX B 65

vin

LIST OF TABLES

Table 1Advantages and disadvantages of digital filters 6

Table 2 Comparison between FIR and IIR filters 7

Table 3 Radix-4 Booth's recoding 14

Table 4 Selection of multiplier based on fewer transitions inO's or l's 15

Table 5 Filter specifications 27

Table 6 Performance comparison between multipliers 38

Table 7 Performance comparison between adders with one input port 38

Table 8Performance comparison between adders with eight input ports 38

Table 9 Complete filter performance 40

IX

LIST OF FIGURES

Figure 1 A simplified block diagram of a real-time digital filter with analog input and
output signals 5

Figure 2 A conceptual representation ofa digital filter 6

Figure 3 Gate-level circuits and equations for (a) halfadder and (b) full adder 9

Figure 4 A 4-bit CLA showing carry-out circuitry 10

Figure 5 General block diagram layout for a CSA using full adders 12

Figure 6 Sequential multiplication of2's-complement numbers with right shifts 13

Figure 7 Radix-4 multiplication with modified Booth's recoding 15

Figure 8Hardware realization ofradix-4 multiplier based on Booth's recoding 16

Figure 9 Recoding logic and multiplexer to generate partial products 17

Figure 10A 5-bit Baugh-Wooley multiplier 19

Figure 11 (a)DF FIR filter architecture (b)TDF FIRfilter architecture 20

Figure 12 Entire project flow 22

Figure 13 Steps in designing small modules of a filter 23

Figure 14 Codes to test the filter performance 28

Figure 15 Original signal and generated random noise 29

Figure 16Noisy signal andfiltered signal 29

Figure 17Partial codes of Baugh-Wooley multiplier 30

Figure 18 Test-bench for Baugh-Wooley array multiplier 31

Figure 19 Full adder 31

Figure 20 Half adder 31

Figure 21 16-bit CLA 32

Figure 22 17-bit CLA 32

Figure 23 Shift register acts as delay units by flip-flop instantiations 33

Figure 24 Verilog codes of a D flip-flop 33

Figure 25 Verilog description for the complete filter 35

Figure 26 Test-bench for the complete filter 36

Figure 27 Partial results for the functional simulation of the filter test-bench 39

Figure 28 Partial results for the timingsimulation of the filter test-bench 40

x

Figure 29 Partial waveforms for the functional simulation of filter test-bench 41

Figure 30 Partial waveforms for the timingsimulation of filter test-bench 41

Figure 31 Signal generator module providing inputs to filter 42

Figure 32 Top-level module 42

Figure 33 Verilog codes of signal generator module 42

Figure 34 Baugh-Wooley multiplier with instantiations of full adders 51

Figure 35 Radix-4 Booth's multiplier with 8-bit inputs 52

Figure 36 Recoding logic and multiplexer to generate partial products 52

Figure 37 CSA for Booth's multiplier to sum all partial products 54

Figure 38 Test-bench for radix-4 Booth's multiplier 54

Figure 39 16-bit CSA adding four operands 56

Figure 40 16-bit CSA adding five operands 58

Figure 41 19-bit CSA adding four operands 60

Figure 42 4-bit CLA without sign extension 61

Figure 43 4-bit CLA with sign extension 62

Figure 44 18-bit CLA 63

Figure 45 19-bit CLA 63

Figure 46 20-bit CLA 64

Figure 47 Results offunctional simulation for the test-bench ofBooth's multiplier 65

Figure 48 Results of timing simulation for the test-bench ofBooth's multiplier 65

Figure 49 Results offunctional simulation for the test-bench ofBaugh-Wooley multiplier
65

Figure 50 Results of timing simulation for the test-bench ofBaugh-Wooley multiplier.66

Figure 51 Overall adder formed by CLA instantiations with only one input port 66

Figure 52 Test-bench for the overall adder with CLA instantiations and one input port.67

Figure 53 Overall adder formed by CLA instantiations with eight input ports 67

Figure 54 Test-bench for the overall adder with CLA instantiations and eight input ports
68

Figure 55 Results of functional simulation for CLA with one input port 68

Figure 56Results of timing simulation for CLA with one input port 68

Figure 57 Results of functional simulation for CLA with eight input ports 68

Figure 58 Results of timing simulation for CLA with eight input ports 69

XI

Figure 59 Overall adder formed by CSA instantiations with only one input port 69

Figure 60 Test-bench for the overall adder with CSA instantiations and one input port.70

Figure 61 Overall adder formed by CSA instantiations with eight input ports 70

Figure 62 Test-bench for the overall adder with CSA instantiations and eight input ports
71

Figure 63 Results offunctional simulation for CSA with one input port 71

Figure 64 Results of timing simulation for CSA with one input port 71

Figure 65 Results offunctional simulation for CSA with eight input ports 71

Figure 66 Results oftiming simulation for CSA with eight input ports 72

xn

ASIC

CLA

CSA

DF

DSP

FIR

FPGA

HDL

IIR

IOB

TDF

VHDL

VLSI

LIST OF ABBREVIATIONS

Application-Specific Integrated Circuit

Carry-Look-Ahead Adder

Carry-Save Adder

Direct Form

Digital Signal Processing

Finite Impulse Response

Field Programmable Gate Array

Hardware Description Language

Infinite Impulse Response

Input/Output Block

Transpose Direct Form

Very high speed HDL

Very Large Scale Integration

xin

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Digital filtering is one of the most important operations in digital signal

processing (DSP). Digital filters are widely used in any area where information is

handled in digital form or controlled by a digital processor. The continuous growing
trend towards digital solutions can be seen in all areas - from electronic instrumentation,

control, data manipulation, signals processing, telecommunication to consumer

electronics. Due to the advancements in VLSI technology, digital filters are fabricated

with greater reliability, smaller size, lower cost, lower power consumption and higher
operation speed.

The objectives of using digital filters in DSP are to improve the quality of a

signal (for example, to remove or reduce noise), to extract information from signals or to

separate two or more signals previously combined. The use ofdigital filters is especially

important to minimize the distortion of the in-band signal components. For instance,

digital filter is used in speech synthesis - the Speak and Spell is an example in which it is

an electronic learning aid for children and uses the LPC (linear predictive coding)

techniques, where the actual human speech to be reproduced later is modeled as the

response ofa time-varying digital filter to aperiodic or random excitation signal.

There is a continuous demand for low power and high throughput FIR filtering

cores in DSP architectures. Researches in the literature have developed a number of

techniques to implement digital filters in achieving the above purposes. These include

the following: use of differential coefficients, wordlength optimization, multirate

architectures and dynamic adjustment of filter order [1,2]. Other techniques introduced

by researches include coefficient segmentation, block processing and combined

segmentation and block processing algorithms, as demonstrated in [3,4,5]. The choice of

number representation scheme, investigated in [6,7], can affect the filter performance.

1

Digital filters are normally modeled using software simulation and then

synthesized into corresponding hardware circuit using field programmable gate arrays

(FPGAs) or application-specific integrated circuits (ASICs). A Hardware Description

Language (HDL) provides the framework for the complete logical design. Verilog and

VHDL are the two most commonly used HDLs today. Verilog as an HDL was

introduced by Cadence Design Systems; they placed it into the public domain in 1990. It

was established as a formal IEEE Standard in 1995. The revised version has been

brought out in 2001.

Software simulators offer flexible schemes to code the algorithm from a choice of

many languages but cannot always offer the speed that a hardware simulator can.

Unfortunately, building hardware prototypes to model different systems can be costly

and time consuming when constant changes have to be made. Therefore, a middle

ground might be found using custom computing platforms or programmable logic. Such

systems can offer similar flexibility as software and still retain some or all of the

hardware acceleration at the cost ofa shorter implementation cycle.

FPGAs are becoming increasingly popular for rapid prototyping of designs with

the aid ofsoftware simulation and synthesis. Software synthesis tools translate high-level

language descriptions of the implementation into formats that may be loaded directly

into the FPGAs. An increasing number of design changes through software synthesis

become more cost effective than similar changes done for hardware prototypes. In

addition, the implementation may be constructed on existing hardware to help further
reduce the cost.

1.2 PROBLEM STATEMENT

The requirement of this project title is to implement FIR filters using suitable

Hardware Description Language (HDL). The design can then be synthesized into

hardware circuit using FPGA. In fact, there are innumerable methodologies and

techniques used to implement low power and high throughput FIR filtering cores, as

discussed in [1,2]. The components of a filter include adders, multipliers, memory unit

and control unit. Different structures of adders and multipliers will give different

performance. Hence, this project aims at modeling the components in HDL and

investigating the performance of different structures of adders and multipliers using a

simulation tool. The performance is to be viewed in terms of structure size, speed and

power consumption.

The adder and multiplier structures, that give the best performance, are to be used

in the filter design and the overall filter performance is analyzed. Once software

simulation is completed and successful, the final filter design is downloaded into FPGA

and verified to ensure that the filter is functioning properly. Performance comparison

analyses among various structures of adder and multiplier are lacking since many

researches currently focus on the filter implementation techniques. Hence, this project

brings out the importance ofinvestigating the structures ofadders and multipliers.

1.3 OBJECTIVES

1. To develop software simulations for FIR filters using Verilog HDL.

2. To compare the performance of the different structures of adders and multipliers in

relation to area, speed and power consumption.

3. To select the structures of adder and multiplier with the best performance and

integrate them with memory unit and control unit to build the overall filter.

4. To select a suitable computational arithmetic (unsigned, signed, fixed or floating

point) and the number of bits to represent filter coefficients and input data.

5. To synthesize the filter design into hardware using FPGA and verify its functionality

using appropriate equipment.

1.4 SCOPE OF STUDY

1. The concepts and theories of FIR filters are learnt.

2. The design methodology for FIR filters from specifications, coefficients calculation,

filter structure, finite wordlength effects to filter implementation are learnt.

3

3. A suitable data processing style and computational arithmetic for representing the

input samples and filter coefficients are decided upon.

4. Each component of the filter (adders, multipliers, memory unit and control unit) is

coded into Verilog and their functionalities are verified.

5. Different types of adders and multipliers are explored. The performance of different

structures of each component is compared in terms of area, speed and power

consumption.

6. All components are integrated to form a complete filter. The final design is verified

functionally and a detail analysis is done.

7. The debugged design in HDL is synthesized into corresponding hardware circuit

through FPGA.

CHAPTER 2

LITERATURE REVIEW/THEORY

2.1 DIGITAL FIR FILTERS

A filter is essentially a system or network that selectively changes the wave

shape, amplitude-frequency and/or phase-frequency characteristics of a signal in a

desired maimer. A digital filter is a mathematical algorithm implemented in hardware

and/or software that operates on a digital input signal to produce a digital output signal

for the purpose ofachieving filtering objective. Digital filters often operate on digitized

analog signals or just numbers, representing some variable.

A simplified block diagram of a real-time digital filter, with analog input and

output signals, is given in Figure 1. The bandlimited analog signal is sampled

periodically and converted into a series of digital samples, x(n). The digital processor

implements the filtering operation, mapping the input sequence, x(n), into the output

sequence, y(n), in accordance with a computational algorithm for the filter. The DAC

converts the digitally filtered output into analog values which are then analog filtered to

smooth and remove unwanted high frequency components [8].

ADC with

sample and
hold

x(t) Input
filter

x(n) Digital
processor

y(n) DAC Output
filter

y(t)
Analog

•

Analog
input output

Figure 1 A simplified block diagram of a real-time digital filter with analog input and
output signals [8]

Digital filters play important roles in DSP. Compared to analog filters, they are

preferred in a number of applications; for example, data compression, biomedical signal

processing, speech processing, image processing, data transmission, digital audio and

telephone echo cancellation. The advantages and disadvantages of digital filters

compared to analog filters are summarized in Table 1.

Table 1Advantages and disadvantages ofdigital filters [8]

Advantages Disadvantages

Can have truly linearphase response. Speed limitation. Operating speed of
digital filters depend on speed of digital
processor used and the number of
arithmetic operations performed.

Performance of filters does not vary with
environmental changes - eliminates the need
to calibrate periodically.

Frequency response can be automatically
adjusted if it is implemented using a
programmable processor.

Several input signals or channels can be
filtered by one digital filter without
replicating the hardware.

Finite wordlength effects. Digital filters
are subjected to ADC noise resulting from
quantizing a continuous signal and to
roundoff noise incurred during
computation.Both filtered and unfiltered data can be saved

for further use.

Can be fabricated small in size and consume
low power due to advancements in VLSI
technology.

Long design and development times.
Hardware development for digital filters
can consume a longer time than for analog
filters.

More flexible in terms of precision- only
limited by the wordlength used.

Can be made to work over a wide range of
frequencies even at very low frequencies.

Digital filters can be divided into two categories, namely infinite impulse

response (IIR) and finite impulse response (FIR) filters. Either type of filter, in its basic

form, can be represented by its impulse response sequence, h(k) as in Figure 2. The

choice between FIRand IIR filters depends largely on the relative advantages of the two

filter types (See Table 2).

x(n)
(input sequence)

h(k),k = 0,\,...

(impulse response)
yfa)

(output sequence)

Figure 2 A conceptual representation of a digital filter

Table 2 Comparison between FIR and IIR filters [8]

FIR filter IIR filter

Can have exactly linear phase response
Nonlinear phase response, especially at
band edges

Nonrecursive, always stable Stability problems

Finite wordlength effects are much less
severe

Finite wordlength effects are more severe

Requires more processing time and storage
for a given amplitude response specification

Less coefficients leading to less processing
time and storage

Filters with arbitrary frequency responses
are easier to be synthesized

Analog filters are readily transformed into
equivalent IIR filters meeting similar
specifications

The basic FIR filter is characterized by the following two equations:

N-l

y(ri) =^ h(k)x(n ~k) Equation 1

N-\

H(z) =Yjh(k)z~k Equation 2
*=o

where h(k) are the impulse response coefficients of the filter, H(z) is the transfer function

of the filter and N is the filter length, which is the number of filter coefficients. The sole

objective of most FIR coefficient calculation (or approximation) methods is to obtain

values of h(n) such that the resulting filter meets the design specifications. Several

methods are available to obtain h(n) and the most commonly used are window, optimal

(Parks-McClellan) and frequency sampling methods. All three lead to linear phase FIR

filters.

The number of bits used to represent the input data to the filter and the filter

coefficients and in performing arithmetic operations must be small for efficiency and to

limit the cost of the digital filter. The problems caused by using a finite number of bits

are referred to as finite wordlength effects and can lead to performance degradation of

the filter. Finite wordlength effects include [8]:

7

i) ADC noise. ADC quantization noise which results when the filter input is derived

from analog signals.

ii) Coefficient quantization errors. These result from representing filter coefficients

with a limited number of bits,

iii) Roundoff errors from quantizing results of arithmetic operations. This may be

caused by the wordlength of the processor used.

iv) Arithmetic overflow. This occurs when partial sums or filter output exceeds the

permissible wordlength of the system.

The computation of output sequence, y(n) involves multiplications,

additions/subtractions and delays. Thus, filter implementation needs the following basic
components:

i) memory (RAM) to store the present and past input samples, x(n) and x(n-k)

ii) memory (RAM or ROM) for storing the filter coefficients, the h(k)

iii) multipliers to multiply input samples andfilter coefficients

iv) adders to sum the outputs from multipliers

v) control unit to schedule the operations of all components in a filter

2.2 TWO'S COMPLEMENT

Two's complement number representation is used to represent signed numbers.

This form of representation is also known as radix complement (RC) representation.

Two's complement is selected over other representation schemes because it is able to

perform signed addition and multiplication using the same circuitry as in unsigned

addition and multiplication. To obtain the two's complement of a number, first

complement (negate) all the bits in the number, including the sign bit and all magnitude

bits, then add one to the least significant bit of the number. In order to add or multiply

two 4-bit operands, signedextension needs to be carriedout beforehand, so that the MSB

is the sign bit and all four bits are magnitude bits. For example, integer 5 is represented

by 00T012 while integer -5 is represented by 110112. Hence, addition of two 4-bit

operands requires a 5-bit adder.

2.3 ADDERS

The iterative design process is used to design adder and subtractor circuits at gate

level. Two's complement representation of signed numbers is used so that subtraction

can be done using the same circuitry as in addition. The two basic adders are half adder

(HA) and full adder (FA). A halfadder is capable of adding two 1-bit operands while a

full adder can add two 1-bit operands and an input carry. Both adders result in two

outputs - a sum and an output carry. The gate-level circuits and equations for half adder

and full adderare shownin Figure 3.

Higher bits adders are formed by employing the full adders andhalf adders where

appropriate in an iterative modular design process. Examples of higher bit adders are

ripple-carry adders, carry-look-ahead adders, carry-save adders, carry-select adders and

carry-skip adders.

AO

BO
YSO

\cpi ;

„---"'

CO

Gate-levef circuit

Equations:
S0 = A0©B0

CO1-A0.B0

(a)

'Gate-level 'circuil

Equations:
S = CI0A©B

CO = A.B+CI.A+CI.B

or

CO = (A©B).CI+A.B
(b)

Figure 3 Gate-level circuits and equations for (a)halfadder and (b) full adder

2.3.1 Carry-Look-Ahead Adder (CLA)

The 4-bit CLA showing the carry-out circuitry is indicated in Figure 4. This

figure assumes that there is no input carry at bit position 0. The propagation delay times

shown inparentheses for the carry-out bits and the sum bits for the CLA are substantially

smaller than that of ripple-carry adder as the number of stages increases. The CLA

contains carry-generate terms (Gj = Aj.Bi) and carry-propagate terms (Pj = Aj+Bj). From

full adder, COj+i = Aj.Bj + CIj.(Aj+Bj). The carry bit contains one carry-generate term

and one carry-propagate term. When the expression Aj.Bj is 1, the carry-out bit becomes

1 independent of the carry-in bit, CIj and so the expression Aj.Bj is called the carry-

generate term. It generates the carry-out bit [9].

J L
A if a

FA rain iiv flu;

Si

\? B2

.l-Amimssili*

Si

A, « fV

,40

i

HI)

1

HA iNitVuS She
t-a.ny-.iwlcirri^l

A

i

Or.j

f rvpT-aiil Qn.-ii.il

Figure 4 A 4-bit CLA showing carry-out circuitry [9]

When the carry-in bit CIj is 1 and the expression Aj+Bj is also 1, the carry-out bit

becomes 1 and so the expression Aj+Bj is called the carry-propagate term. It propagates

or moves the value CIj to the carry-out bit [9]. The carry-out bit of the non-ripple

expandable CLA can be written as follows for each bit position:

Bit position 0:
COl =G0 + CI0.P0

Bit position 1:
C02-G1+CI1.P1

= G1 + C01.P1

-G1+G0.P1+CI0.P0.P1

CIj - COj

Bit position 2:
C03 - G2 + CI2.P2

= G2 + C02.P2

- G2 + G1.P2 + G0.P1.P2 + CI0.P0.P1.P2

10

In general, CLA bit position organization scheme for i = 0,1,2...:
COi+1 = Gi+ Gj-i.Pj + Gi-2.Pi-i.Pi + Gi.3.Pi.2.Pi-i.Pi + ...+ CI0.P0.Pl...PM.Pj

Equation 3

Since each carry-out bit is in SOP (sum of product) form, each function can be

implemented as a 2-level gate circuit that is dependent only on the carry-generate and

carry-propagate terms for the current bit position and all the previous (or less significant)

bit positions. Since each carry-generate carry-propagate term required only a single gate

level of logic, each carry-out function past bit position 0 can be implemented as a 3-level

gate circuit with settling time (propagation delay time) of just 3tp. This reduces the

settling time for the sum bits to only 6tp for any CLA with three or more bits [9].

Three things limit the usefulness of CLA circuitry when it is applied over a large

number of stages:

i) The carry-generation term GO from first bit position must be capable of driving

each of the succeeding stages.

ii) Each succeeding stage requires gates with an increasing number of inputs (gates

with a higher fan-in).

iii) Gate count increases and thus, cost increases with each additional stage.

Due to these limiting factors, CLA is usually implemented over small groups of bits

(such as 4 bits). The carry-look-ahead technique can then be applied again over the

groups as they are cascaded [9].

2.3.2 Carry-Save Adder (CSA)

Carry-save adders are designed to add more than two operands. This technique

involves cascading full adders such that the carry output of each adder is shifted to the

left one bit position and added to anFA in the next row(referred to as carry save) except

for the last row. A single RCA (ripple-carry adder) or CLA may be used in the last row.

The concept is illustrated below for the addition of five 1-bit operands A0, BO, CO, DO

and E0. The following relationship is used to determine the number of rows of adders

required [9].

11

Number of rows of adders = Number of operands to be added - 1

AO Operand 1
BO Operand 2

+ CO Operand 3
S10 Sum, Row 1

COl 1 Carry, Row 2 (carry save)
+ DO Operand 4

S21S20 Sum, Row 2
C021 Carry, Row 3 (carry save)
+ EO Operand 5

S31 S30 Sum, Row 3
C032 C031 Carry, Row 4 (carry save)

C043 C042 C041 Carry, Row 4 (no carry save)
S43 S42 S41 S40 Sum, Row 4 (last row)

Extending the concept for more bits, a general block diagram layout for a CSA using FA

can be drawn. The diagram layout is illustrated in Figure 5. This type of circuit

configuration is also referred to as a Wallace-Tree Summing Network. HA can be used

in places where only two bits must be added and the least significant bit is not required

for the adder in the last row [9],

Ai ia irf

UJ
A ft CI

FA

CO $

m

FA

E7

T * V

FA

J , L

t 1 t

SI

Alflt Cl

-i i-.{
FA

J'A

El

ii
J-A

u.
FA

All BO C!i

iii
FA

i t 1

FA

\'A

T^CND

•ill

II.™-1

^0N13

Ri."iiv 7

VOS'D

Raw 3

L-itt K'-w

Figure 5 General block diagram layout for a CSA using full adders [9]

12

2.4 MULTIPLIERS

Multiplication of signed numbers represented by two's complement is not as

straightforward as multiplication of unsigned numbers. Multiplication of signed numbers

employs an algorithm, either right-shift or left-shift algorithm. In this section, right-shift

algorithm will be discussed as this involves less hardware realization. Multiplication

with right shifts uses top-to-bottom accumulation as governed by the following equation:

p(/+D' =(p(/) +xya2*)2-1 with p^ =0 and
|—add—| pW =p = ax +p^z*
j—shift right—|

The example in Figure 6 shows a sequential multiplication of two's complement

numbers with right shifts. The multiplicand is -10 and multiplier is 11, which yields

result -110. For two's complement, arithmetic shift right (ASR) is used to preserve the

MSB in which the contents are shifted right by one bit. For example, 1101 becomes 1110

and 0101 becomes 0010. The carry-out is discarded for the addition of previous and

current partial products.

Previous partial

a

X

pM
+ X0£J

= = == =

1
O

0

1

0

J

0

0

1

0

0

'I

1

_1

0

1

0

1

0
0

:==========

product ""-^

Current partial
\ 2p<1> 1 -1

1

1

0

1

0

1

0

1

1

1

1

0

1

0
0

product

Left-most bit 1 is __—-——~

NOT carry-out

pt2^
+x2a

•¥• 1 1

1

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1 0

bit, it is the sign
bit produced
during ASR

2p<3> 1 1
1

1

1

I

0

0

1

1

0

0

1

1

0

0

0
0

0

1 0
0 1 0

2p<^>

+xfia

1 1

1

0

0

1

0

0

0

0

0

1

0

0 10

OO10

2p<3>
p(5)

1 1
1

1
1

0

1

0

0

1
0

0 0 10
10 0 10

Figure 6 Sequential multiplication of 2's-complementnumbers with right shifts [10]

13

2.4.1 Radix-4 Booth's Multiplier (Booth's Algorithm)

Booth's Algorithm is used to replace strings of l's in multiplier by +1 and -1.

This is the most basic form of Booth Algorithm called radix-2 Booth recoding. There are

two ways to speed up the multiplication process:

i) Reducing the number of operands to be added by handling more than one

multiplier bit at a time.

ii) Adding the operands faster via parallel/pipelined multi-operand addition using
tree and array multipliers.

Radix-4 Booth's recoding is a variation of modified Booth's Algorithm. Table 3

shows the recoding techniques associated with radix-4 Booth's Algorithm. Multiplier bit

position is denoted x-, and the recoded version for multiplier is ziP_. An example to recode

the multiplier is provided below the table. From the example, it can be seen that a 16-bit

multiplier is recoded to an 8-bit operand, thus reducing the number of partial products to

be added.

Table 3 Radix-4 Booth's recoding [10]

,+1 Xy xM y,-.M y{ Zji2 Explanation

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 1 0 2

1 0 0 -1 0 "2

1 0 1 -1 1 -1

1 1 0 0 -1 -|

1 1 1 0 0 0

No string of 1s in sight

End of string of 1s

Isolated 1

End of string of 1s

Beginning of string of 1 s

End a string, begin new one

Beginning of string of 1 s

Continuation of string of 1s

Example: (21 31 22 32)k)Ur

1 0 0J_ 2J_ ®_}_ 1_0 2_0 1_J_ 1_0 Operand x

(1) "2 2 12 -1-1 0-2 Receded
version z

14

-a = 1010

-2a-10100

Shifted 2 bits to

the right and sign
extended

a 0 1 1 0

X 1 0 1 0

z -1 -2 Recodec

p<°) 0 0 0 0 0 0

+zQa 1 1 0 1 0 0

4^0) 1 1 0 1 0 0
p^T^"M -1 1 1 0 1 0 0

+z^a 1 1 1 0 1 0

4p<2> 1 1 0 1 1 1 0 0
p(2) 1 1 0 1 1 1 0 0

Figure 7 Radix-4 multiplication with modified Booth's recoding [10]

The example in Figure 7 illustrates radix-4 multiplication with modified Booth's

recoding of the two's complement multiplier. The multiplicand is 6 whereas the

multiplier is -6, which gives -36 as the result. Since the multiplier is 4-bit long, only two

additions of partial products are required with radix-4 multiplication. The redundant sign

bits in front of the final result canbe discarded. Note that right-shift algorithm is used.

An advantage of using modified Booth's recoding technique is that the number of

partial products is reduced which in turnreduces the hardware and delay required to sum

the partial products. This is because when there is a string of 0 or a string of 1 in the

multiplier, only shifting operation is performed, which is faster than addition. Hence, it is

often wise to choose one of the two's complement numbers that has fewer changes in 0's

or l's as the multiplier. For instance, consider the two's complement numbers 101001

and 111001 in Table 4. A disadvantage of Booth's Algorithm is that it adds delay into

the formation of partial products.

Table 4 Selection of multiplier based on fewer transitions in 0's or 1's

101001

111001

4 changes. From 1 to 0, from 0 back to 1, then back to 0, from 0
to 1 for the last bit.

2 changes. The 1 in bit-3 changes to 0, then 0 in bit-1 changes
to 1. Selected as multiplier.

15

The hardware implementation of radix-4 multiplier requires registers for

multiplicand, multiplier and partial product, recoding logic, multiplexer and adder. The

simplified block diagram for a radix-4 multiplier based on Booth's recoding is

represented in Figure 8.

Multiplier in . u MtlU'iplu-;i[Kt

~+h
ft

P
2-hk ^hi

-Mn ,\ r X i ' * ' k

RecoJiiiLr Lcal^l;

IU- 1nu'Li noon ,.(

* >a c^2a

i, or 2u

I'^^.ti'S .Mux/
j o.

:>ekn.

+ k-l1r ^
AdclVunirue-t 1zo ;1)

control To jiddcr input

Figure 8Hardware realization ofradix-4 multiplier based on Booth's recoding [10]

Figure 9 shows the recoding logic and multiplexer to generate a partial product.

The multiplier group consists of 3 bits of the multiplier (xi+J xt x,w). Output of the booth

decoder will select 0, M or 2M where M is the multiplicand. The XOR gates are used to

generate one's complement by inverting all the bits. If the MSB of the multiplier group is

0, then the partial product will be 0, M or 2M; if the MSB of the multiplier group is 1,

then all the bits of the partial product will be inverted. -M or -2M can be generated by

adding S=l in which two's complement ofpartial product is created. The resulted partial

product is then added to the previous partial product stored in a register that are shifted

two bits to the right. Normally, CSA will be used so that multiple operands can be added

simultaneously.

16

Multpli:on«
A

vMUilplit'i
UiuJ|j

Figure 9 Recoding logic and multiplexer to generate partial products [10]

2.4.2 Baugh-Wooley Array Multiplier

Baugh-Wooley array multiplier is used to multiply positive and negative numbers

in two's complement. Theprinciple of this multiplier is that the subtraction can be added

by complementing the subtrahend and adding 1. This multiplier has a regular structure

and is governed by a final equation derived as follows [11]:

Let us consider two numbers A and B:

A=(a».l-ao) = -V-2'-1 + 2;»1.21
0

B = <bM...b0)=.bM.2»-i + 21>i.2i

The product of A and B is given by the following equation:
n-2 n-2 iu2 n-2

0 0 0 0

In order to use only adder cells, the negative terms are rewritten as:

-an.i2bi-2i+1Ul =an-i-(-22lu2 +2M +SbT 2i+lul)

17

Hence, the product of A and B becomes:

A.B = «v1.b^1.22*-2+2 5>it>j2i+j
o o

The final equation is:

AB

since

+ b
n-l

+ a n-l

n-2

-22n"2 + 2n4 +2aT-2i+n"]

n-.

.22n-2 + 2n-l+2bi.2i+n-1
0

_ o2n-l-22a-1 + ^T+bn.1 +am4bn.i).22*-2

n-2 n.2

+2 SMj^ + ^ +b^)^1
0 0

n-2 n-2

+2bn-l3T2i+nl+2an4bi2i+nl
0 0

- (bn.! + aB-i).22n-2 = -2211"1 + fc +bn-iU2"-2

Equation 4

A and B are n-bit operands, so their product is a 2n-bit number. Consequently,

the most significant weight is 2n-l, and the first term -22""1 is taken into account by

adding a 1 in the most significant cell of the multiplier. Figure 10 shows the structure of

a 5-bit Baugh-Wooley multiplier and can be verified using the final equation by

substituting n=5. The array comprises of (n-l)*(n-l)+l full adders, multiplication units

(AND gates) and carry propagation adders.

W = AND(X ,Y) .
ij i J

W = AND(X' ,Y) ,

Figure 10A 5-bitBaugh-Wooley multiplier

19

01

0
worj

I

h

III

I

FA V-
an

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 PROJECT FLOW

The flow of the entire project is outlined as seen in Figure 12. The design

methodology for an FIR filter starts from filter specifications, coefficients calculations,

filter structure, study of finite wordlength effects and finally filter implementation.

Specifications of the filter are determined based on the type of filter designed. There are

four types of filters, namely low-pass, high-pass, bandpass and bandstop filter. Several

methods are available to obtain filter coefficients and the most commonly used are

window, optimal and frequency sampling methods. Two most basic FIR filter

architectures are direct form (DF) and transpose direct form (TDF), given in Figure 11.

In this project, a low-pass FIR filter with DF architecture is designed using Kaiser

Window method.

x{n) yz
XI [1

m*\7 kd \7 i*2

PCViCn} PCVj(rO

sfagtii —k

ri]x[»-<N-l)}
u j

', siiiyesr.i

Figure 11 (a) DF FIR filter architecture (b) TDF FIR filter architecture [12]

20

The different structures of adders and multipliers are explored and some of the

structureshave already been discussed in the previous chapter. Design description, which

is to describe the circuit in terms of its behaviour, can be done in a few levels of

abstractions. The lowest level is circuit level with switches as the basic element,

followed by gate level, data flow level and lastly, the highest level, which is behavioural

level. In common practice, both gate level and data flow level modeling (RTL level) are

used because many of the behavioural level constructs are not directly synthesizable.

Even if synthesizable, they are likely to yield relatively redundant or wrong hardware.

The number of bits used to represent input data and filter coefficients, and also the

number representation scheme are important considerations that can affect the filter

performance.

A basic FIR filter consists of multipliers, adders and delay units, as can be

deduced from Equation 1 (page 7). Depending on the architecture and performance

objectives, a filter can also have memory and control unit. Each of the filter components

is coded into Verilog and its functionality is verified. Performance comparison is done

for different structures of adders and multipliers in view of their propagation delay, area

and power consumption. Two different structures of adders and multipliers are compared

in this project. The better component structure based on performance is chosen to be

integrated into the complete filter design. Functionality of the complete filter is verified

through simulation and its performance is tabulated. Once successful, the design is

downloaded into FPGA and functionality verification is carried out by analyzing the

filter output using a logic analyzer.

21

Extensive research on

- FIR filters concepts &
design methods

- Adders and multipliers

Familiarize with Verilog HDL
and design software

Decision on number of bits used to

represent data and computational
arithmetic (unsigned, signed, fixed,

floating, etc.)

1
Coding of each

components of filter

"

Simulation

Select the best component
structure based on

performance

Integrate all components
to form complete filter &

verify functionality

Area, speed and power
consumption analysis

I
Download into FPGA

Figure 12 Entire project flow

22

Debugging

3.2 BASIC DESIGN METHODOLOGY

Figure 13 indicates the crucial steps in designing small modules of a filter. Each

of the small modules is simulated and verified separately to ease debugging task.

Determine

specification

Verify results

Place and

route

Structure design to
register transfer level

Synthesize
design

Final

verification

3

Capture design
as Verilog

Verify design

Figure 13 Steps in designing small modules of a filter [13]

1. Determine specification. The specification details the behavior and interface of each

module in the design. At the module level, the specification includes the following:

i) A description of the top-level behavior of the module

ii) A description of all inputs and outputs, their timingand constraints

iii) Performance requirements and constraints

2. Structure design to register transfer level (RTL). This is a logic design phase where a

block diagram for the design is determined, which includes registers and functions of

combinational logic.

3. Capture design as Verilog. Design description can be done based on a few levels of

abstraction - the highest is behavioral level, followed by data flow level, gate level

and the lowest switch (circuit) level. Many of the behavioral level constructs are not

directly synthesizable; even if synthesized they are likely to yield relatively

redundant or wrong hardware. The solution is to redo the behavioral modules at

lower levels.

23

4. Verify design. This is a pre-synthesis verification process to determine that the design

is 100% functionally correct. This process is known as functional simulation.

5. Synthesize design. Synthesis tools are used to transform the Verilog design into a

gate level design.

6. Verify results of synthesis. Gate-level simulation, timing analysis and other

techniques are used to verify that the design produced by the synthesis tool is correct

and consistent with the Verilog RTL design.

7. Place and route. This stage is referred to as physical design where the actual layout

of the chip is determined. The gates in the chip are assigned (placement) to positions

on the chip and then connected together with wires (routing). Post-place-and-route

simulation can then be performed to obtain area and timing information.

8. Final verification. A number of final checks are done to ensure that the chip is wired

up correctly and is manufacturable. Thenature of these checks is beyond the scope of

this project.

3.3 BIT REPRESENTATION SCHEME

In this project, the number of bits used to represent input data and filter

coefficients is eight bits. Signed numbers will be used with two's complement as the

representation scheme. Fixed-point numbers will be employed instead of floating-point

which needs a more complex number representation scheme. Area, speed and power

consumption analyses are performed by using ModelSim and Xilinx ISE simulation

tools.

3.4 IDENTIFICATION OF TOOLS

1. ModelSim and Xilinx ISE simulation tools

2. MATLAB

3. Virtex-II xc2vl000 reference board - an FPGA which enables the filter design to be

programmed into.

4. Agilent Technologies 1673G logic analyzer and probes

5. Xilinx JTAG cable

24

3.5 TASKS ACCOMPLISHED

1. Two structures of adders and multipliers are designed, simulated and their

performances are compared. The adders are CLA and CSA while multipliers are

radix-4 Booth's multiplier and Baugh-Wooley array multiplier. CLA and Baugh-

Wooley multiplier are found to have better performance compared to their

counterparts.

2. A DF low-pass, 18l1 order FIR filter is designed by using adders, multipliers and

delay units. The filter is implemented using parallel approach, which eliminates the

need of memory and control unit.

. The performance of the complete filter is analyzed. Its functionality is verified

through software simulation, as well as hardware verification.

4. The degree to which the filter can reduce or eliminate high-frequency noise is

analyzed using MATLAB.

J

3.6 PROBLEMS ENCOUNTERED

Throughout this project, some problems and challenges are encountered as

discussed briefly below:

1. Inexperience in employing the different levels of abstractions of Verilog coding. As

mentioned, some codes written in behavioural level may be non-synthesizable.

Considerable amount of time is used to debug the faulty codes when simulation fails

or gives incorrect output.

2. Limitation of Virtex-II device. This device has 172 bonded IOBs. However, both

adders accept outputs from 19multipliers simultaneously, which gives a total of 304

bits for all outputs of multipliers. Limitation of the target device causes simulations

to fail for both CLA andCSA. The solution is discussed in the next chapter.

3. Incapability of I673G logic analyzer toprovide inputs. The available logic analyzer

in the lab is not able to provide inputs to the filter that is downloaded into the Virtex-

II chip. Hence, inputs to the filter are provided manually by extending the codes to

account for a signal generator module.

4. Difficulty inpredicting the output from the filter. It can be seen from the codes that

filter operation is controlled by the triggering of clock. During hardware testing of

25

the filter functionality, the onboard clock is utilized and is always running once the

board is powered-up. Therefore, it is very hard to compare the output from

simulations and output obtained from logic analyzer. A manual push button

(availableon the board) is used to serve the function of a clock trigger.

3.7 TESTING & TROUBLESHOOTING

A lot of debugging is done on the codes when simulation fails or gives incorrect

output. This is often so when behavioural level modeling is used to model the filter

components. Behavioural level modeling is inevitable when conditional expressions are

employed in the process of designing. Examples of these type of constructs are 'if, 'if-

else', 'while' and 'for'. In this case, experience is vital to recognize the way of writing

that results in codes that are synthesizable.

All the filter components are simulated and verified to ensure that their intended

functionalities are correct before proceeding to the next step in designing. The complete

filter does not require much troubleshooting since all lower level modules are

functioning correctly. The simulated design is verified through hardware synthesis using

FPGA so as to be sure that the filter is working correctly in practical.

26

CHAPTER 4

RESULTS & DISCUSSION

4.1 FIR FILTER SPECIFICATIONS

A low-pass FIR filter is designed using Kaiser Window with MATLAB 'sptool'.

A set of filter specifications is defined in Table 5.

Table 5 Filter specifications

Specifications Values

Passband frequency, Fp 1000 Hz

Stopband frequency, Fs 2000 Hz

Passband ripple, Rp 0.4455 dB (5%)

Stopband ripple, Rs 40dB(l%)

Sampling frequency, Fsamp 8000 Hz

This set ofspecifications yields an 18th order filter with 19 coefficients altogether.
The specifications are chosen such that the number of coefficients is not too big in order

to reduce the filter size. The multiplication and addition process canied out by the filter

is intended to be parallel so that the throughput and sample rate of the filter can be

maximized. Due to the parallelism, the number of coefficients has to be small in order to

reduce hardware. FIR filters can also be implemented in sequential in which this

approach aims to minimize area requirements through the reuse of as much hardware as

possible. However, its bottleneck is low throughput. Direct form (DF) FIR filter is

realized in this project.

4.1.1 Analysis of Designed FIR Filter

The defined filter specifications are analyzed to determine the level of filter

performance in removing or reducing high-frequency noise. It can be seen in Figure 14

that the generated signal has frequency of 500Hz and random noise has frequencies

ranging from 500Hz to 8000Hz. The two signals are combined to create a noisy signal, z,

which is then allowed to pass through to the designed filter that ultimately gives filtered

27

output y. The second plot in Figure 16resembles the original signal in which the filtered

signal is relatively smooth without jagged edges caused by high-frequency noise. Since

the cutoff frequency of designed filter is 1500 Hz, any frequencies above this will be

significantly suppressed. These suppressed frequencies have negligible amplitudes owing

to the 40 dB stopband ripple. However, the filtered output displays a phase lag or termed

group delay of nine. The group delay of a filter is a measure of the average delay of the

filter as a function offrequency. It is the negative first derivative of the phase response of

the filter.

1 %freq of signal = 5UGH™ mi r/h 3amp Ling fi.eq=8000flz
2 - f=3000;

3 - t=0:l/f:1;

4 - x=sin(2*pi*500*t);
5 %to create noise with 16 differ =nt frequencies
6 - for k=l:16

7 - nn(k,:)=0.08*randn(l)*sin(2 *pi*k*5CiO*t) ;
S ~ end

9 - sum=0;

10 - for k = l:JL6

11 - sum=sum.+nn(k,:) ;
12 - end

13 - s=x+sum;

14 %filtl consists of designed filter specs
15 - y=fliter (filtl. tf .num,l,z) ;
16 - m=l:100;

17

18 - figure(1);
19 - subplot(2,1,1); plot(x(m));
20 - xlabel('Time index n'); ylabel{ Amplitude');
21 - title('Signal, :•: = sin (500\pit ');
22 - subplot(2,1,2); plot(sum(m));
23 - xlabel('Time index n1); ylabel(Amplitude') ;
24 - title('Random noise, gum');
25 - figure(2);
26 - subplot(2,l,l); plot(s(ia));
27 ~ xlabel('Time index n'); ylabel(Amplitude ') ;
28 - titlef'Moisy signal, x + sum');
29 - subplot(2,l,2); plot(y(m));
30 — xlabel('Time index n1); ylabel(Amplitude') ;
31

"

title('Filtered signal, y');

Figure 14 Codes to test the filter performance

28

Signal, x= sin (SOOrt)

90 100

0.4

40 50 BO

Time index n

Random noise, sum
i r i r

J 1 I L-0.4
0 10 20 3D 40 50 ED 70 80 90 100

Time index n

1.5

» 0-5
T5

£

<-0.5

-1

-1.5

Figure 15 Original signal and generated random noise

Noisy signal, x + sum

A
i

\ /

[1 1 1

\

\ f\
—i r

A /
- V

1 1

V
i i

V
1

V
1

J \
1 i i

'ir.
0 10 20 30 40 50 60. 70

Time index n

Filtered signal, y

90 100

Figure 16 Noisy signal and filtered signal

29

4.2 VERILOG CODES

This section indicates the associated codes that are used in the filter design. These

include codes for Baugh-Wooley array multiplier, CLA, shift register and the complete

filter. Note that other Verilog codes associated with radix-4 Booth's multiplier and carry-

save adder are included in Appendix A.

4.2.1 Baugh-Wooley Array Multiplier

Variable B (codes in Figure 17) represents the coefficient of the filter and is

declared as parameter so that its value can be changed in the complete filter design

during instantiation of this module. The following codes illustrate an example which

declares B as having the hexadecimal value 02. The test-bench for Baugh-Wooley array

multiplier instantiates the module 'Wooley' that declares B as an input port rather than

parameter in order to be used for simulation purpose. The complete codes for this

multiplier are shown in Figure 34 in Appendix A.

' 'S-i.ae.sc&le Ins/Ipi
nociult Uneioy(A,PJ;

otttpuc ilS;0! P;

paraameer 17-G)E •= G'hQZ;

wire

vire

trir o

vi.ee

wire

nice

uira

iflte

i/ito

"ire

"ire

"IT: a

Tiire

[48:Q)U;

I s: n | if;, m;

*uailL,Bansl2,iiUs»13,st^jaI4,B,!mlS,»uiiliS,sUiti.
«un2.1 „ amuZ2,sva&S , sun£f|, suai2£,sun^fc, sut£

SfJtn31,syjks3 2,sviSi33,£i-iii34,s,uita3oJ,SlUx3i5,!gUji3

ccut-0, qout-1,couk2, cqvx.3, coyi; 4,eoucS, c&xc
cout-11, cout12, cout 13 , cout, 14 , cowt i 5 , c out 1
*sqw,z X, qquzZZ , cout 23, co«'t Z4, a wx. Z%,<so\saS
*:cut31,cout32,cout 33,coute 34,cent35,co*3
COW4 1, e«4r,*l2 , qoy.t 43 „.RWt 4=1,GOUt 4 S , CfJWC 4
couliSl,cout-52, cout53r cowbS4,.couti 55, cows,5

(isiitin UEO] -* AEOJ EB{D];

OEsicp U[l] = A£1J t B|0];

assign ITE2} b A[£] s. B|01;

assic^, H[3) = A£3] £ B JO] ;

assioa "143 = &E47 a B?01;

assign U[£] - A£S] & BSD];

fiSS5,gtt lt£S] = MS] <5. Hi QJ ;

=iii4M,.-suii'S, sural

7,suail0rsurii5,

7,suai38,sui*35,

S,caytl7,cnubl

6,co«t.37,CDufc3

U;

swte3 0;

SUIl4D;

C*wt9,e

8 , couc-1

0„ecut-3

9 , cquc.20 .;

3,CGUT-30,

9„caut.40;

Figure 17 Partial codes of Baugh-Wooleymultiplier

30

'tiseseaLe ins/Vpa

module Wooley cat;

rsg [liO]it,s;

wire [15;0]P;

Hooiev r/oo [A^J3TP) ;
initial.

begin

A •> 8'hDOj B ^ 6 liDO;

#1DQ k - p1 ftCi£; E - a1hint

#30 A = S'hll; 3 = B'ftlCLJ

#S0 A - 8'h2l; D - Q'h2ta;

#50 A = B'H31; 3 = B'b32;

ji'SG k •=• £"liS2; B - 8'hiOj

£5D k - B^hif; 3 - B'h7a;

Jr-SD A = B"iic5; 3 = 8'hfob;

#50 k - Cliff; 9 - Q'htfi
erid

initial Suraziitor [Srealt iji'G r " A-4h, BHh, produce thw, A,B,P];

e nctoio cftil e

Figure 18Test-bench for Baugh-Wooley array multiplier

module txxl i adder (cits,hi a, sum, coot) ;

iaput ci n b, a;

OUCpUt- ffUlll cd ut;

wire SOl;

wire CGI;

irire CG2;

halt adder haL(a,b,5Ql can.;

half adder ha2 (sin, £01 aiun,CD2) ;

b.33 ign coat " C01 C02;

endrnodule

Figure 19 Full adder

module half adder(A, B, sura, cout);

input A,B;

output sum, 2 out;

assign CO lit = A & B;

assign sunn = A A B;

enclmadule

Figure 20 Half adder

31

4.2.2 Carry-Look-Ahead Adder (CLA)

Figures 21 and 22 represent 16-bit CLA and 17-bit CLA respectively. As the

names imply, a 16-bit CLA is capable of adding two operands that have 16 bits. Note

that the Verilog codes for CLA_nsx (4-bit CLA without sign extension), CLA (4-bit

CLA with sign extension), CLAJ8 (18-bit CLA), CLAJ 9 and CLA20 are attached to

Appendix A.

// 16-bit CLA

module CLA_16(A,33 ,S);

input flfiiQ]A;

input E15:Q]B;

output £16:0]S;

isrire CIO = 0;

uiCB CD1,C0Z,C03;

CIjA n$v. clanl (A[3 <U,B[3:0] ,CT0 ,3[3 01 , C01> ;

CLA nsx clsn2(&[7 4],B[7:«] ,C€1 ,5[7 4] C02) ;

CLAjtisy. clajn3(A[11^03 ,S[1I: B],C02,S 11 8| ,CM) ;

CLA clal(Afl5:l2] B[1S:121, CQ3, S[1S. 12} fS[lSJ);

enduedule

Figure 21 16-bit CLA

// 17-bit CLA

module CLAJ.7(A,B,S);

input [IS:OjA;

input [16:0]3;

dUt^Ut [17;0]3;

wise C01^C02,CD3,CQ4;

•tfitfl A17,A1S,A19,BJ.7,BIS, 619,318,813,520;
wire CIO = 0;

Ql.k_nB-A clsmJ(if3:a],B[a;03,Pia,Si3;0| ,CU1) ;

CLAjisx clan2<A[?:4],B[7:4I,C0Jt,Sr7:41 ,CK) ;
CLA_nsj(clan3<A[ll:SJ ,Bfil:8] ,C02,S[li:8J,CQ3) ;
CLA_nsK Qian.'HA[2,S: 12] ,B[.1,5; li?f , CD3, ZllBiXZ 1, GCKi) ;

assign A1'J=AU6] ,Aie=AU6) fA19=A[16] ;

assifln B17=Bri6] ,B1B-B[i6] FB19=BUS] -'

CLA elal({Al-»,AlB,A17,AU6.}»- {Sl£|f BIS, B17„ BUS) ,J,C04, {519,318, S[17 :lfij >,S20J ;

endiao dul e

Figure 22 17-bit CLA

32

4.2.3 Shift Register (Delay Units)

Figure 23 shows the codes for a shift register which consists of instantiations of

eighteen flip-flops. The flip-flops serve as delay units for the filter.

'"tiHieseale lns/lps

iradule delayjcik, ceset.fx(yl,y2jy3,, y4,yS,, ?6ry7,y8/y9J
ylD, yll, y!2, yl3, yl<t, ylS.. y lfi., y 17.. ylS J ;

input clkjreset;
input [1:0]:-:;

output [7iQ)yl)y2i->,
output [7:0]yll,yl£

!*yS,y6,y7,y8,y9,yl0j
>,yl'3,.ylS,,yi6Jyl?J yl6j

x,yi: ;

71,y2);
y2 ..y3 r ;

yS\.y4),

y<5,y5) ;

yS.yfi) ;

y6,y7);

yT, yS) i
y3,y9)j

fy9,yl0)j
,ylO,yllj;

,yll,yl2>;

,yl2,yL3);

,yl3,yi4J; "
ryl4,ylS);

,yl5,ylfij;

,yifi,yl?>;
,yl*/,yL&>;

fli.pt lop

flipflop

flipflop

f1ipflop

flipflop
flip-flop-

flip flop

flipflop

flipflop

flip-flop

ilipflop
flipflop

flipflop

f lipflop

flipflop

flipflop

flipflop

flipflop

endmodule

ft 1 yE'kkt resez,
if 2 (slk,reset,

f£3 jcik, reset,,

ft^.(c-ikt reset,
ff5;cik, re sec,

f £a=- ^crife, iresec,,

f f? (elk, reset-,
fz8^clk,reset,,

££S (Erik,, reset,,

if10 (clk^resec

fill (elk^reset

£112(elk,reset

££13 (clJc, reset

££l4(clk, reset

ifIS(elk,reaet
if16 (elk,.reset

fflV (elk, reset

fi18(cik^reset

Figure 23 Shift register acts as delay units by flip-flop instantiations

' tiitaescale ins/1pa
module •£lipflop (elk, reaert,, x , y!;

input: elk,reses;

input [7:0]xj

output [7:0]y;

re/g [7 :0]y;

always 0(jjqsedge elk on pos sdge rsset)

begin

y <= 0;

else

y <= x;

end

endmodule

Figure 24 Verilog codes of a D flip-flop

33

4,2.4 Filter Implementation

The Verilog description for the complete filter and its associated test-bench can

be seen in Figures 25 and 26respectively. During the instantiations ofmultipliers, the

filter coefficients are changed using the syntax found in Figure 25.

'cluescais Ins/lps

module: Eilttr(clock,rc5C&,d<ita_iafout!-;

input cIqck,reset;

input [?:0]data_iei;
nuiiput [20:Q]out;
reg [7iCi]aea;

tffics C?:0]ylryK,y?,y4,y5,yS,Y7,^fv9/ylO,yU,V^#Yl3,Y^,¥i5rliefYn,y.iaj
utXB [15:0]PigPZJP3^?4,P5,Pe^P7^PB,P9,?ia,PUJPlZ/P13/PinJP15,P16^?17,PlB,PlS;
wire ri6:03Ba,Ite,Rc,MrRe,Ef,Ro,^,Ri;
witi: [J7;0]Ra*,RbbrRcc,Kdd,B.ee;
wire ris:D]S£C,Rgg;
wire [ISrOjadahj
wire B^l!>,ci®rci9;

//regis car 'nsn' aces aa butcee con data storage ton one clock cycle
•always ^Iposc^je- clock o:. pasedge reseti
begin.

LI(l£3Et]

begin.

ma <= a'tiOd;

dst-a._out < - B' liO-D;

end.

else

begin

tk»tQ._cmt- <* mm?
ia*"p <= d,Btf3_Jn;

end

end,

delay sSiCt /sg/Ccloclit reset,dacaj>uE,yl,y2,v3/Y^y^/YS^v^xyS^yg,y10,y1JL,
y!2,yl3,714,715,Yl6,yl7Jyl8) j

//iBstastlacioris sf nineteen, matipilets
tfoalGY f[6-hOO| Bultltdaca^wtjPl};
Wooley *|3'h00| BttLt2(yl,Paj;
Wooley iiult3iiv2,?-3! ,-
ttottisy :mdi>*Hy3,i,4,| ;
tfooley SflS'bfel uultS(y4,?S);
r/maiey #|sjhis; mux6 (y5.,FS);
Wooley pliS'hfcj nuitV (y6,i'7) I

continue.

34

u^oley (ftS-tsOd) a«ltQ(y7,PWj ;
Uaoley (f[B'fc25J fciUc9(y8,P9] j
n<jolry *[B*ta30) B«lClO(Y9,Pia);
Uooley ^r[E»h25] tiUclHyiD^Pii);

IToolcy rfLS'hOd) miItl2tyll,P12);
Uaol&y g[B'ts£c] HLUcl3fyl2,P13);
Ifeolcy i([e'hf8] Kidtl4(Yl3,P14};
tTaoley ?[B'h£e) &nlclSi;yl4,,?15);
Ucrolcy nu.itl6[yl5,Hi5);
Iks oley uultl7[ylSfP17J ;

Itooley iflS'hOO) it«lcl9(yl7,PlB);
Ifcoley ?[BJhDG) asiUcig^ylS, ?19) •

//ittsemLiacioBB o£ aS3e&ii tit si: add tfpenteda irith viryin^ nti£ib&£ a£ bins
CIA_16 cl alSa [Pi , J>2 ,Rc I ;
CU_lfi C.lbi6Jj(P3>?4i,Rb] ;
CLA_1S cial6c[f,iJjl6J.fl.c-I;
CU_16 clalfid[P7,PajRd|;
C.LA._16 caaI6.e[^9,J'J.D,^e);
CLft_16 cltsIS£|'Pll).P]2,K.Ej ;
ClA_X6 elai&<f[P13,PM,ftg);
CtA_lfi clal6h(P15,Plfi,Jlh;| ;
CLAJL6 Clal6l.(Pil7,l'l8^11) ;

assign. nl& - 1'lStlSJ;
Cl^lV clol7o[K«i,Jlh,RftflJ;
tLA_i7 clal71i[r<cJ-]MJfibli);
Z\£l*l clo.lTctRe,R£,Rs:i;J;
tiA_n clai7dtPgJKhJ.Rfi3.j£
CUJ.7 rl.one£»i,(»l6,P19J,BecJ;
CIA_1S clalSatRaafPibfEttJ;
CUM 0 clalSb tPcCxRad^BgD);
CLA.^19 clBl9a[Mx.,Rgg,Hfcui};

assign rlB = Ree[i7]/ -19 - Rse[l7];
CLA_20 clo3Cta(Rhlsricl9,rl8,Pec),outy;

Figure 25 Verilog description for the complete filter

35

'tixteacaie lns/lpa

module f iltei:_n£b i);

reg cIqck,reset;

teg [7; Dldata^in;
wire [2d:AjQLit;

integer i;

pstiiaete;: offset = 1G0;

pdionctei: cycle - 20;

filter filet, clock ij clock) f . reset(reset),,. da.co_in(cata__in), .outlcutl) ;

initial

begin

doc;* = 0; resec = 0; ciata_m = 8'hDO;
£offset;

fotev£c ^cytie slack = "docs;

initial

begin

jf(olffsct-l-cycic) react =• 1;
s cycle;

reset - 0;

data_iti = 9 'hOl;

far(.i*Q; i<20; i»i+l)

iSfcyci£"*2);

&ata_m - datQ_in + 3'dS;
end

initial faonitei [SLias," clock =̂ i, resets%b, input=^h, pucput=^h", clock,reset,&ata_ir-,out]

Figure 26 Test-bench for the complete filter

36

4.3 SOFTWARE SIMULATIONS

Functional and timing simulation results for radix-4 Booth's multiplier and

Baugh-Wooleymultiplier are included in Appendix B.

Simulations for CLA for performance comparison are done based on the overall

adder formed by multiple CLA instantiations. However, the large amount of I/Os of

overall adder has exceeded the amount of I/Os that the selected device is capable of

handling, which causes simulation to fail. Thus, some of the input ports are declared as

'wire' and assigned values internally. To ensure the accuracy of the simulation results in

terms of performance criteria, two sets of the number of input ports are chosen, which

are one and eight input ports. It can be seen in Tables 7 and 8 that the percentage

difference follows a consistent trend for the three performance criteria. All three criteria

- path delay, area and power consumption decrease by half when input port increases

from one to eight. The respective Verilog codes are attached to Appendix B, shown in

Figures 51 and 53, together with the simulation results for both test-benches.

Similar to CLA, the simulations for CSA for performance comparison are done

based on the overall adder formed by multiple CSA instantiations. The CSA also

encounters the same problem as in the case of CLA. Similar method as in CLA is used to

perform simulations on CSA. The Verilog codes for overall adder with one input and

eight input ports are included in Appendix B, shown in Figures 59 and 61, together with

the simulation results for both test-benches.

37

4.3.1 Performance Comparisons

The following results are obtained through functional and timing simulations

using Xilinx ISE synthesis tool.

Table 6 Performance comparison between multipliers

Booth's Multiplier
Baugh-Wooley

Multiplier

Percentage difference
(Baugh-Wooley as

reference)
Maximum path

delay after place &
route (ns)

24.542 25.078 2.14%

Area (no. of slices
out of 5120)

78 64 -21.88%

Power consumption
(mW)

510.34 481.65 -5.96%

Table 7Performance comparison between adders with one input port

One input Carry-look-ahead
adder (CLA)

Carry-save adder
(CSA)

Percentage difference
(CLA as reference)

Maximum path
delay after place &

route (ns)
27.200 26.090 4.08%

Area (no. of slices
out of 5120)

31 51 -64.52%

Power consumption
(mW)

570.49 510.34 10.54%

Table 8 Performance comparison between adders with eight input ports

Eight inputs

Maximum path
delay after place &

route (ns)

Area (no. of slices
out of 5120)

Power consumption
(mW)

Carry-look-ahead
adder (CLA)

37.115

183

817.12

Carry-save adder
(CSA)

36.205

245

775.55

38

Percentage difference
(CLA as reference)

2.45%

-33.88%

5.09%

4.3.2 Complete filter

Both the functional and timing simulation results for the complete filter are

displayed in Figures 27 and 28. Only part of the results is shown.

0 tlock^o,
120 clocks,
140 clack-Q,
IW clock—s,
iao clocks.
zoo clock-=l,
?.?Q clock=0,
?.*Q elock=i,
•?SU ClO£k=0,
?©a clock=s.
3 00 ClOC^D,
?•?.(! ClOCk=S,J
jMO ciock-n,
sea ClOCk=^,
•im clock=0,
4GQ ciQck=i,
420 ciock=oJ
44 0 clocks*;,
Ai-Q ClQCk=Q,
430 clock=l,
'500 ClQCk=QH
520 clock=i1
S40 clock-O,
%&n clocks
KSO clocksO,
£00 ciock=i,
£20 clocked,
£^fi clock-*,
•seo clock-Q,
•G8Q clock—a,
700 clock-O,
720 clo ck~i,
7t0 clock-O,
760 clock-!,
780 clock«0,
SOO clock-l,
620 tlack^O,
810 clock-I,
660 clock-o.
950 Clock—i.
9OT tlrjck-O,
320 i 1 (jck=s,

rcsct-o, inpuc^oo.,
rcsct-l, tnput'-OO,
reset—0, inputs a,
reset—"0, input^Gl,
reset=D, input-OS,
rcsct=0, inpLJfe=06,
re5ee=o, input=a.b,
rt^tn=u. inp-uc—ob,
rejs£'&=o, input-so,
reseL-u, lrlf>u?;=ao.
res&t=ci, 1Plf>U ^—3,5 3
re§£i:=g, inputs,
r'es&i:=Q, inpiJt=ia]
reset=a, t tip u 5=1^
reset==Q, i jij3iuc=a,fa
rfi%ex=€>, mpucsiif,
rsset:=a, inputs: 4,
t-e setsfl, inpuc=2*s
reset=D., iflf>UC=29,
reset=s, inp-uc^ss,
re5ei=0J inpuc=?e!,
res £1=0,, mpuc=2ej
reset-D, mpuc-sa,
resets, inpuc-33,
resete-dj inpu^=3S1
resets, inpucrrss,
res£t*«£)j inpuojd',
reset-ol, inpLiC"3d1
reset—0, inpnc-42,
rcset-o, l!npilE"-^2',
reset—0, -inpuc-M?,
reset—o. input—^7,
rcsct'-O, inpuc-^c,
rcset^-D, input-^c,
resets. i npu£"52,
resct-p, input-si.
rc5Ct=D, input^SS,
reset—0, input-5S,
reset—ij, input-5b,
reset-D, inptj'^=5b,
reset=0, 'inptJt=eo.,
resct=Q, inpu'^ssgo,

output-
Output1
output
output
output
outpuS-
output-
output^
OUCpUt-
i3UtpLlt=
au£pui;=

oucpu-c
oucpui;
ou
QUCpiJT;=
output
oucpui=
aucpuE=
oucput=
QUCptJCs
OLICpUI=
oucpui-
aucpuc-
autpui-
outpui-
0LICpU7>
outputs
QLItput-
QUtpLtt"
output-
output-
oucput-
output*-
GLJtpUt-
OlJtPLlt'
output1
output-
output=
output=
output-
oumut=

'00 GOOD

-oooogo //at this time,input data iu stores in register

•OOODOO //input; 01 iu available at data-out r y[l]
•000000

koodoo //input oe is available at da£&_oytt y[j]
OOOCiCO

;Q00QO3 //V[3!i

in«B
=&opa^o

•aQmi'2

:OQQ0&0

•ittfub
ifffab
•ooooof //y(.9>
(jooeof
G00107 //y[io)
GO Olil?

0002e^ //y[lt]
•'0002e-t

-000562 //y[12]
•D00S&2

•000810 //y[i3]
•O0DS1O

•oooaas //yti+]
-oooaaiS

^ooodia //y[i5]
•ooodia
^ooofae //y[ie]
-ooof^e

=ooii(JO //y[l73
=ooi?oo

=O0L4SO //y[is]
=00148-0

=O0i^OT //y[19]

//y[?I

//y[Si

Figure 27 Partial results for the functional simulation of the filter test-bench

39

0 clock=o re5et=0, input=oo, output=xxxxxx
27 clock=o reset=o, input=00, output=oooooo

12 0 clock=i reset=l, i nput=QQ, output=oooooo
160 clock=i reset=o, i nput=oi, output=oooooo
200 clock=i reset=0, i nput=06, output=oooooo
240 clock=i reset=0, i nput=ob, output=oooooo
280 clock=i reset=o, input=10, output=oooooo
293 clock=l reset=0, input=io, OUtpUt=000002
3 00 clock=o reset=o, input=l5, output=000002
320 clock=l reset=o, inpur=i5, 0Utput=0Q0002
334 clock=l reset=o, 1l1pUt=15 , output=oooooe
360 clock=i reset=o, input=ia, output=oooooe
336 clock=o reset=o, i nput^if, output=O00020
400 clock=i reset=o, i nput=lf, OUtput=000020
42 2 clock=0 reset=o, i nput=2 4, OUtput=000022
440 clock=l reset=0, i nput=24, OUtput=OO0022
466 clock=o reset=o, i nput=2 9, output=oooooo
430 clock=i reset=o, i nput=2 9, OUtput=000000
504 clock=o reset=o, input=2e, output=lfffdb
520 clock=i reset=o, input=2e, output=ifffdb
54S clock=o reset=0, input=3 3, output=ooooof
EGO clock=l reset=0, input=3 3, output=ooooof
583 clock=o reEet=o, i nput=3S, OUtput=000107
600 clock=i reset=0, i nput=3 3, 0UtpLlt=000107
62 3 c1ock=Q reset=o, i nput=3d, OUtpUt=0002e4
640 clock=l reset=0, input=3d, OLItpUt=0002e4
664 clock=o reset=0, input=42, OUtput=0005£2
630 clock=i reEet=o, input=42, OUtput=0005£2
705 clock=o reset=o, input=47, OUtput=000310
720 clock=i re5et=o, input=47, OUCput=000310
743 clock=o reset=o, i nput=4c, output=oooaa6
760 clock=l reset=0, i nput=4c, output=oooaas
737 c1ock=Q reset=0, input=5i, output=ooodla
800 clock=l reset=0, input=5i, output=ooodia
82S clock=o reset=0, input=56, output=ooofss
840 clock=i reset=0, input=56, OUtput=O00f83
864 clock=0 reset=0, input=5b, OUtput=001200
330 clock=i reset=o, input=5b, OUtpUt=001200
904 clock=o reset=o, input=eo, OUtput=001430
92 0 clock=l reset=0, i nput=eo, OUtput=001430
944 clock=o reset^O, i nput=65, OUtput=001700

Figure 28 Partial results for the timing simulation of the filter test-bench

Table 9 Complete filter performance

Complete filter using Baugh-Wooley array
multipliers and carry-look-ahead adders

Maximum path delay after
place & route (ns) 32.133

Area (no. of slices out of
5120) 414

Power consumption (mW) 709.11

40

N
o

w
:

1
5

0
0

n
s

.
P

cl
oc

k
0

.

p
re

s
e
t

.
0

0
n

s
1

4
0

2
8

0
n

s
4

2
0

5
6

0
n

s
7

0
0

6
6

a^
da

ta
_i

n[
7:

0]
10

1
(

•0
;.

^
^

X
T

J
Z

*
Z

)C
l]

D
C

^
ffl

^!
ou

t[2
0:

0]
12

91
9(

21
'hJ

^X
XX

X
~X

0
~

t
^

t
^

t
x

^
x

^
^

t
-
^

^
^

t
t
y

t
s
-
t
^

^

t
A

i*
l
^

e
^

K

N
o

w
:

1
5

0
0

n
s

^f
l

cl
oc

k

<
yi

re
se

t

F
ig

u
re

29
P

ar
ti

al
w

av
ef

o
rm

s
fo

r
th

e
fu

n
ct

io
n

al
si

m
u

la
ti

o
n

o
f

fi
lt

er
te

st
-b

en
ch

6
0

0
n

s
7

5
0

0
n

s

1
I

!
I

1
5

0 I
|

3
0

0
n

s

I
I

I
I

I
4

5
0

I
I

I
..:_

-
_

.
.
_

ssK
da

taj
np

io]
101

(
^

_
j^

Z
Z

3
C

C
Q

E
X

E
X

3
I^

a
gC

ou
t[2

0:
0]

12
91

8^
X

T
~

•"•
.'

Q
•••

«•
-..

•
~

~
~

- >
C

Z
3

C
jI

T
]5

IJ
II

C
O

C
^

^

Fi
gu

re
30

Pa
rt

ia
l

w
av

ef
or

m
s

fo
rt

he
tim

in
g

si
m

ul
at

io
n

o
ff

ilt
er

te
st

-b
en

ch

4
1

4.4 HARDWARE SYNTHESIS

The design is programmed into Virtex-II chip and it is tested using a logic

analyzer. It is supposed that the logic analyzer provides input to the filter and at the same

time, the filter output is observed. Unfortunately, the logic analyzer available is unable to

provide input. Thus, the codes are extended to account for the input generator module

that is used to provide inputs to the filter manually. This concept is illustrated in Figure

31.

Top-level
xfnl

Signal generator
module

Filter module
y[n]

Figure 31 Signal generator module providing inputs to filter

/ *Thi3 program iaatatit-intczr the sianaX generator module and
filter irodTile-.

*/

"-imeacalE isia/lps
aioduie iai^er^in (clock,. eeaEX t out]i

injmt Tine!;'j Ssafct.;
q -nz p u t lT2DiQ] qui:;

vire [1:0Jdaca in;

input ijen gen^clock,cts t%, cist is in);
tLLter t.i it \cIocHl, reaei: , dac a In, a at) ;

enckiioclule

Figure 32 Top-level module

//This pre orcan ccucratco input davQ intcrnaily to the flltCET.

' Liine'scais ins/i pa

niDcmlG input gen (clocl^resec, data mi;

•i^pUt eldck, £%S4t%>;

output, p:0]data iej

rca fJ:0]data_in - 6'hOOj

aluays Q^posedgs cloeK a£ poseflge reseci
b eai m

if (Keaet] iiata as <- a'hQD;
else

data iK <" data in -t 3'd5;

«nrl

cndmodule

Figure 33 Verilog codes of signal generator module

42

4.5 DISCUSSION

The module that describes the radix-4 Booth's multiplier with 8-bit inputs (see

Figure 35 in Appendix A) instantiates four 'Boothpar' modules which in turn yield four

partial products. All four partial products are summed using a 16-bit CSA. 'Boothpar'

module realizes the hardware implementation of recoding logic and multiplexer. In

'CSA_16_booth' module, the 9-bit partial products are required to be shifted accordingly

based on the weights of bits in each partial product. Functional and timing simulations

for Booth's multiplier are verified and found to be identical.

Baugh-Wooley array multiplier basically consists of AND gates and full adders

as reflected by the structure in Figure 10. Functional and timing simulations for Baugh-

Wooley multiplier are also verified and found to be identical. From the performance

comparison in Table 6, both multipliers have almost similar path delay with Booth's

multiplier delay recorded at a slightly lower value. However, the area occupied by

Booth's multiplier is 78 slices as compared to 64 slices for Baugh-Wooley multiplier.

Power consumption for Baugh-Wooley multiplier is about 30mW less than Booth's

multiplier. By looking at the percentage difference, Baugh-Wooley multiplier displays a

better performance and hence, it is selected for the filter design.

Basically, for CLA modules, there are multiple instantiations of 'CLAnsx'

modules followed by an instantiation of 'CLA' module. 'CLA_nsx' module performs

addition between two 4-bit operands that are not signed extended. On the contrary,

'CLA' module adds two 4-bit operands that are sign extended, where these four bits are

the upper four bits of an operand. Sign extension is necessary for the upper four bits in

order to obtain the correct result.

Figures 42 and 43 (in Appendix A) show the HDL descriptions for modules

'CLAnsx' and 'CLA' respectively. It can be seen that the codes are divided into four

stages since it is a 4-bit adder in the case of 'CLA_nsx\ The basis to this block of codes

is according to the formula given in Equation 3. In the case of 'CLA', there is an extra

stage owing to sign extension of operands. Output S4 is the sign bit, which corresponds

43

to S[16] of top-level module 'CLA_16'. The carry-out bit, C05 can be discarded since

the output range requires only five bits for a 4-bit adder. Higher-order adders can be

designed by cascading several 'CLA_nsx' modules with one 'CLA' module for the

upper four bits.

The overall adder formed by several CLA instantiations accepts outputs from 19

multipliers simultaneously since the multiplication and addition process is carried out in

parallel. Each multiplier output consists of 16 bits, thus there are 304 bits for all outputs

of the 19 multipliers. However, the target device has only 172 bonded IOBs. Therefore, a

method is used, which is mentioned in 'Software Simulations' section, in order to

perform simulations on the adder. Similar problem is encountered by overall adder with

several CSA instantiations and the same method is used to resolve it.

The overall adder formed by multiple CSA instantiations (module 'adder_csa' in

Figure 59 or 61 in Appendix B) instantiates three 16-bit adders capable of adding five

operands, one 16-bit and one 19-bit adder, in which both are capable of adding four

operands. This is the best combination of different sizes of adders due to two reasons:

1. If CSA was to add three operands, it will function like a ripple-carry adder, thus

the advantage of using CSA cannot be displayed.

2. The more operands that CSA adds, the more number of bits of sign extension is

required since adding two operands requires one sign extension. More sign

extensions increase hardware.

Functional and timing simulation results for CLA and CSA are done for overall

adders that have one and eight input ports. By looking at the performance comparison in

Tables 7 and 8, CLA has a significantly smaller area compared to CSA, which are

64.52%) and 33.88%o less for overall adder with one input port and eight input ports

respectively. The trade-offs for the decrease in area are the increase in path delay and

power consumption. CLA indicates an increase of 4.08% path delay and 10.54% power

consumption for adder with one input port while for adder with eight input ports, an

increase of 2.45% path delay and 5.09% power consumption can be observed. It can be

44

safely said that CLA portrays a better performance compared to CSA judging at the

much higher decrease in area. Hence, it is selected for the filter design.

Since the design is an 18t!l order filter, there are eighteen delay units for the input
samples to pass through. The delay units are implemented using D flip-flops where in

this design, the input data appears at the output at the positive edge ofclock that triggers

the flip-flop. In the 'delay' module in Figure 23, it instantiates eighteen flip-flops which

are actually cascaded to form a shift register. The HDL description for the complete filter

inFigure 25 is rather straightforward. The 'always' construct defines a register that holds

an input sample temporarily for one clock cycle before going out to the shift register.

The functional and timing simulations for the filter are verified.

In this filter design, memory unit and control unit are omitted because the

arithmetic operations are performed in parallel. RAM which is used to store the input

samples is replaced by a single register. ROM which is initially suggested to be used to

store filter coefficients is not necessary because the coefficients are directly defined as

parameter in the multiplier module. Control unit is also not required as the processing of

data and output sample, y[n] are all carried out in one clock cycle. The omission of

memory unit and control unit introduces simplicity in this design and also the use of less

hardware, hence reducing cost.

The functionality of the filter is verified by implementing it into FPGA. During

hardware verification, there is a difficulty to predict the filter output because the onboard

24 MHz oscillator is used as clock, which starts running once the board is supplied with

power. This problem is highlighted in the preceding chapter. Hence, a manual push

button is used in order to test the output of the filter. When the button is pushed, it

signifies the triggering of clock and thus, starts the operation of the filter for one clock

cycle. The output can then be observed on the logic analyzer for eachclock cycle.

45

CHAPTER 5

CONCLUSION & RECOMMENDATIONS

This project requires the implementation of FIR filter through HDL in which the

filter components can be divided into adders, multipliers, memory unit and control unit.

Two's complement number representation and eight bits are used to represent input data

and filter coefficients. Fixed point numbers are used. In this project, carry-look-ahead

adder and carry-save adder are designed and compared. In the case ofmultiplier, radix-4

Booth's multiplier and Baugh-Wooley array multiplier are designed and compared. Both

carry-look-ahead adder and Baugh-Wooley array multiplier display better performance

compared to their counterparts. Hence, they are selected to be used in the filter design.

The design is an eighteenth order filter and has nineteen filter coefficients. Therefore, the

shift register has eighteen D flip-flops cascaded. Memory unit and control unit are

omitted because arithmetic operations of the filter are carried out in parallel. The filter

employs DF architecture and its performance obtained via simulations is summarized.

The complete filter are synthesized, implemented using FPGA and overall functionality

is validated through hardware.

Improvements can be made to the current design, which include the following:

i) More structures of adders and multipliers can be compared for their performance.

ii) Other factors that affect the filter performance can be incorporated into the design.

These factors include the use of different number representation schemes like sign

magnitude and advance techniques like differential coefficient method (DCM).

iii) A combination of sequential and parallel filter implementation approach can be

explored to determine the trade-off between consumed areaand throughput.

iv) The versatility of this design enables the filter to be modified to other types besides

low-pass based on specific applications. However, one limitation is that the

verification of the design is rather cumbersome due to the lack of suitable equipment.

46

REFERENCES

[I] A.T. Erdoganand T. Arslan, "High Throughput FIR FilterDesign for Low Power

SOC Applications", University of Edinburgh, 2000, pp. 374-378.

[2] A.T. Erdogan and T. Arslan, "Low Power FIR Filter Implementations Based on

Coefficient Ordering Algorithm", Proceedings of the IEEE Computer Society

Annual Symposium on VLSI Emerging Trends in VLSI Systems Design, 2004.

[3] A.T. Erdogan, M. Hasanand T. Arslan, "Algorithmic LowPower FIR cores", IEE

Proc.-Circuits Devices Syst, Vol. 150, No. 3, June 2003, pp. 155-160.

[4] C.H. Wang, A.T. Erdogan, T. Arslan, "High Throughput and Low Power FIR

Filtering IP Cores", University of Edinburgh, 2004, pp. 127-130.

[5] A.T. Erdogan and T. Arslan, "LowPower Block Based FIRFiltering Cores",

University of Edinburgh, 2003, pp. 341-344.

[6] T. Arslan and A.T. Erdogan, "LowPower Implementation of High Throughput FIR

' Filters", University of Edinburgh, 2002, pp. 373-376.

[7] A.T. Erdogan, E. Zwyssig and T. Arslan, "Architectural Trade-offs in the Design of

Low PowerFIR Filtering Cores", IEE Proc.-Circuits Devices Syst., Vol. 151, No.

1, Feb. 2004, pp.10-17.

[8] Emmanuel C. Ifeachor, Barrie W. Jervis, Digital Signal Processing, A Practical

Approach, 2nd Ed., Prentice Hall, 2002.

[9] Richard S. Sandige, Digital Design Essentials, Prentice Hall, 2002.

[10] Prof. Vojin G. Oklobdzija, University of California, "Lecture 9: Multipliers", 11

May 2004, http://lapwww.epflxWcourses/comparitWLectiires/VLSI-Arithmetic-

Lect-9-Multiplier.pdf

[II] D. Mlynek, "Chapter 6 Arithmetic for Digital Systems", 11 October 1998,

http://www.vlsi.wpi.edu/webcourse/ch06/ch06.html

[12] A.T. Erdogan, T. Arslan and D.H. Horrocks, "Low PowerMultiplication Schemes

for Single Miltiplier CMOS Based FIRDigital FilterImplementations", University

of Wales Cardiff, 1997, pp. 1940-1943.

[13] David R. Smith, Paul D. Franzon, Verilog Stylesfor Synthesis ofDigitalSystems,

Prentice Hall, 2001.

47

[14] T. Arslan, Chapter 4: VLSI Design, Institute for System Level Integration/

University of Edinburgh, 2001/2002.

[15] T.R. Padmanabhan, B. Bala Tripura Sundari, Design Through Verilog HDL, Wiley

Inter-Science, 2004.

[16] Weng Fook Lee, Verilog Codingfor Logic Synthesis, Wiley Inter-Science, 2003.

[17] Stephen Brown, Zvonko Vranesic, Fundamentals ofDigital Logic with Verilog

Design, McGraw Hill, 2003.

[18] Virtex-II XC2V40/XC2V1000 Reference Board User's Guide.

[19] Software manual for Xilinx, http://www.xilinx.com/support/software manuals.htm

48

APPENDICES

APPENDIX A

1. Baugh-Wooley Array Multiplier

nodule 'UoolaytA,f);

input ['.J: 01 A;

output U5:0|P;

patanctc: |7:0)B = e'hOZ,-

rare

"ire

irii: q

i.i ic «

'"'Ire

trite

uite

vine

"Ire

wire

in-re

wile

uuO, sijal „syn4 j, »n3 , ?uafl „sur fi, sun &, sua"?, KUTifci , ?uu«, sural Q;
sLuiil,^uMl2,iuia3,&Lail4,3l^l5,sij3il6,S>^17,Eual8,aiml3,siut£D;
,ffuu£i, cuio£ 2, =un23 , sua.24„suialSfKua2£, cua.2V, suai2a, -sun29, subi3 fl;
s.Uei31 , si*fo3£ ,suii33 , suu.34, Suio35,S'un3S, SU&37,su^38 ,SU&33, Suto401
sumil, siTO-s 2 ,su3i43;

cautO, caiae 1, coucS, coutS, c out 4, cows r cout S, c omc*? rco w§, csut: 9, c
ecut-11, cout12:,cout,13, cout 14, cout I5 , ecut i £, cout 17, coy119 , caufcl &
^CUT,2l,cQurJ?_2,cGUt?.3,cour,S4,GOuc.?;5^oouc26,crjycS7,cciiJcZ8,C-oy^?9
coT.it-31, ccut32 , cout 33, cout 34, cout 35,cout-36,coufe37,eout30, cotit-l9
Ccire4J , cout 42,, court's, GOi4t4-q,c;<5iJiTn4£,c;osjt'tS,coyc:47/CQ'uc4gj.cou!:49
ccut-52 , csut-52 , cout S3, cout 54, c out 5S, c cut 5C, c out-5 7 ;

B&sifcn "10] -<• A£Q] & B|D] ;

acsigw U(l] = AJ1] fi. B !D] ;
assian H(£] -Am 6.BJD1;

assign U[3) - A£3] tBiO|;

&5Si«3S» HE4J = AS41 4 BIDl;

assign U(£] - A[SI & B(D];
flsnirp-i in*] = Atft] d h;dj ;

iVsskjm l.f[7) = MO] >i HjlJ;

ascites tf[S] - A[l] iBll];

assign TI£§) = kit) &. BiUi

assign "[10! - Am s B[l);
ossitp-j 11(115 = AH) s BUI;

assiijifj K[iEj - Af5) 5 BUS;

assicm U(13; - A[6) fi B[l);

assign. HE1-^ -A[05 £212];
asss.gs y-U.'i! = ALU S SU1;
assign U[lfij - A[2J s DEE];

= a[3] fi am;

- AM) 5 B[2U
=* A[£J i B[23;

s-ssig-rt Htm

BLjfsi^is W[ia j

lilSSit l[Z0>< ^ A[6| S Bt2);

49

.ccut-SQ;

,cou<&3o,

.caus-4Q;

continue.

fissian ¥£21] = Aroi £ B[3J;

£=SStgT; 0J[22] = All] £ e[3);
assign ¥[£3] r, A [21 i B[31;

as-iigti WI24J = AI3I £ B E3 J ;
£SS i gis KT(£$J = A[4] i B£3|;
ii*?^igis ¥[2S] ^ A [5] £ B[33;

sttr-sigra ¥££?] •= A [S]
4

B [3] ;

assign WtZS] = A tO I fi B[4);

assigr* ¥[23] = A [11 £ B [4 : ,-

ass i qyi erooj •= A[2] £ B[4);
assi gij. art 91] = M3] £ B [4) ;
ess i. yi-. ¥[32.] " A [41 4 B[4];

stsr-sicro &TC3S] = A £51 A B [4] ;

assign «f(34] = A(S[6 B[4);

*e«:«igTi GT[3£]

asslarc W£35]

SsSrSl^Ti 5J[37]

assign &T[33]

assign ¥£39]

assign DI[4C0

assign OT[41]

assign 6)£42]
iisigii ¥[43]

assign ¥[-U]

assign &T(4S]
assign. rj[4S]

assign*. ¥[4 7]

assign WC-tS]

assign TJIJO]

assign FLU]

assign ¥1|2]
isssicji'i Wl? 3]

assign ¥1M]

sssigr* WM5J

assign. ¥U6]

a^-sigrt W2J0]

assign W£il]
assign &TZ|2]

a.= cigK ¥2jS]

assign W!4J

A[0]

Alll
A[Z]

A [31

A [41

A[£]

A [€]

AH]

A [2]

A[3]

A [4]

A [S]

AI61

G[S]

B(S)
B[5j

B[5]

B[Si

B[S)

B[5]

B[6J

B[6J,

B[S],

B[61.

B[fiJ,

B[fi],

£ B[6];

[~A[D])dB£5]

(~A[1])£B(7]

l"-A[3])4B[7]

!!-A.[4]KB[7]

t-A[5))fiBC3]

(*A[61Jfi3(7]

A[7K£-B[0)>.

AL?]i{*B[l)),

A[7]4(~B[Z]J,

A[71-i f-B[3] J ,

A|7|U*-B|4]),

50

continue.

assise U£[5] " A.[?H*-BL5p ;
assign ir£r£l = AE7J4<*BI6J3 ;

W&I'e i$ftd=0^

mrs hig!v=l;

assign V3-h [7 \ S.E [7) ;

assign p(0.l=1f !0f;

fiiil_iddcr faKgt-jd^El] ,tT(7] ,3?Ii] ^coutOJ ;
fill l_aci.de t l-az <.tiwi,r\\\Z}, iff si ,sxiM).eout-i:i ;
hai_addce t_3<!gttd,,U[3],U[?],s«nL,eout£!;
*uU__>id«st- fa4{-atid,i;r£4] ,V£LO] ^xia2,cout'3S r
Wtl_sid(l«ti: j;ai;(e|nd,ll££] ,11(11] ,,sUH.3,i5axit4) ;
full tadder f »e (gndrTJ[S] ,¥{1£] , si,«i4,cout-Er ;
*-uli_acidetr i a7 (gncj, V£ Lo) ,W£133 ,swfl.5-,coyr,&3 ;
ixili____ddcE £ii8(iH'[l4|,coat0,sua.0,PI2J , cout? , i
luli^aadet* fa3ijSlfi5f,couti,£i.iuii,suni6,cciu.c8!i;
fxill__dd<iK- fiiO(Mlifii ,cdut£,smi2irsiiii7I,cai^t-9j ;
iall_isddec £aII(S[l7] ,eou^3,:sufl3,s^e,c6„t£0) ,
iull-_?*4dflE isllK(W[a8! ,eaui;4,sxm4,raT.iS,*:ai.itU) ;
fxil ladder fai3(¥[29i f CQiit-5, jmnS, _l_i,1 D, ea-ufc. 12 J ;-
iuii^acideir 3fal4 (WisOl ycsuts^wg Ui ,suuU,eovixi3);
£xill__ddp;r faiS<W[£iJ , caufc? , s-xra.6,P [3 5,=outi't) ;
lul i__ti.de tr laiecwiZEj,couts,Sim?,suu.1 g,esuc 15) ;
fxil____.d_r f_I?(W|23J ,e_xi_3,_„_8I,_x___31,c©xifcls:j ,-
Jull__ddei- £_i8 (5J[Z4 [„c.utlO,s-xlaiS,_cOii4,_gut L7) ;
fuli_addiss- falS(Kt[£5l J.coi,ml.l./:SfialO/.ST,i».L£1, cotjcJ&J ;
fuil^adder *__0([iJ[2S| ,_»xifcl_,_ttiill,_xuil_,_-ut-lS'J ;
IuU._ati,det- iaEUWIS?!, cout 13^if2 IZ] ,suxil7,ccru";_ej;
*xill__ddc;r fa22(B[28| ,ccuti'l,suiil2,r M] ,cout_l> ,-
lu_l__tidet- £a_3(W[£9j ,eoutl5,suiil:3,s-._ils,cou,:.2-!;
fuil_ssdd,<se £a24(W l„0i f cw-tl£v£xtal4,_xisil£,cc<xr=.23.) ;
£uil__dde- ta£Si;W[SI| ,cou«.171,3AttiiS,3iua.20,co\i,iZ4J ,
rwi Ijs&cis * t&:S^(ifl|3§|,,ccjuxIS,si,uiLS,,.si,i*^'] „coij-;!H ;
iuii^addec £_£7 f7J £33] ,-G4.it_9rsx_il7,_xi_.2„i,co\x,;2_J ;
XuiJ._sti.de r taE8(!rt| 34 j ,ccmt.ZO,i.i2 £31 ^sxmZ-s, couz-Zl J ;
fxiil__dd_tr f_29<„[3.£] ,cc„t_i,„x'i_.18,:P | S],coxrc.„S} ;
_ull„&cLdet £_3D<W|'36| ,euut„£;.^lS,s\ua._4 ^cou'^.SJ ;
_xiU_addft<r fa3i(Wl3*?! ,coxit2'3, svia20, sxi_.2_,,._<ni-iG'; ;
f'.ai__ddet: f._32<W[38i ,^o'.tt24v.«i.m£l, ^l_2£, .ou^SlJ ;
luLL^drf^t t a,33 fifl i 39 | , couT-/i:6, s.un?:;, sius ;r7,,aoivr.:}?,;. ;
£xill _ddce f _3 4 (FJ [4ft j ,_a.utZ_,sx_i:23,_ti_.23j[_©xi__3:;i ;
Jul l_sti.de t: la35(WKiI ,ccvut._7, W2 E4 | ,si.ui25,cout:-34) ;
fXLll____ddcir £a3S(W|.42i ,caxit2S,:_,xi__24,-I<] 6J „cou-c'3f.) ;
rull_add^f Ija.37" (DJI 43 I ,cou«-5',,3i._L2S,s_i3Q,couiM3iJ3 ;
fxill__„ddflit- f^3S fUt | 44j ^co\n;3ii:il,'s:_i24, s^ul31,cou^:.'̂ •?; ;
fiiLl_addcr £_39{Tjr!1.5],cout31,2i_jE7 , Eu_32ircaiit3fl I ;
lulJ_ad'ier i._4fj(if,i 46] r cout32, suiiZS r su_s33,eouc3Sj ;
s«ll_adj(*or f_itl('lifi|47] , cant 35;sii_29 , su«34,eouc40 I ;
lull^adder £a4E(i'HS3.caut34,Tf2E^] ,sij_.3S,eeu«41! j
uil_ad(©r £_42(KltCi] ^ce.xst3Si.s-Ha.30, s«_aS,cow:.4£ I ;
*n.ll_ddfitir f_44(¥l(l] ,e*uit36,»i,_x31.,!su_3 3,'.'-BUt431;
;uU_is«!c«iss ta4S£lfi,[2] ,fl?.ut37,.svi!a3;: j,fimtas, co«t44l | ;
full^-ddar f_4S JTf-[3] ,cciut3S^si(ffl33,sui_33,c:ini.fc4£} i
Jxjl.l_aflder (a47(ifl E4l ,nour-39isijKl3'5isu(i;4a,cci-ij-46J ;
fxill^addor £a4S(IjriE£] , cout4Q,sxi_-35 , c«e4i,caut.47 j ;
full_adcSer Ia49(KI£61 ,count4li,trie js] ,suit4S,eou^4gj;
fxiil^ad^or fa£D(tf3,-Aj7] ,'B[?i) ; svai.4 3, caxis-4 91 ;
iull^adder laSKAl?! ,B[7] ,ss4Ki3S,P|7! ,couc5-0I ;
:xill_addQr £•„££ (cout,£Q„=our,42 , sti_a'? vP [SI ,coxir£li ;
Ixil.l__ddt:r £^S3 Cccut-51 ,ceu.t43, sue&30 ,P (3 1 ,cgutS2! ^
rxiJ i_nddor faSM (coticMjCcutMl, svite39^ P|J,Cl] , cflycW) ;
Sxill_Qdder £a5 S (cPUtiO ,cout4S r =udi40, P [11] , co-ieS4) ^

full^oddcr £a,57(caxit.ES,co'ut4l7^suiii-5£,P |13[fco*it£G) ;
:ull_a«asej.- xsSBiicouc^e^cu^^s, sun»43,p U4l, co«tsv);
£xxll___addoy faS.9 (coxxcST ,cout<1!3,high, ? [IS | ,CQ(:•

Figure 34 Baugh-Wooley multiplier with instantiations of full adders

51

2. Radix-4 Booth's Multiplier

//Psdi,x--4 Booth timHijUlet arith 8-teit input operands, ge?tts
//16-toic result,

module 3oatH(A, Bs R) ;

input [7;0]A;

input n:0]B;
output £15:0J.fi;

wire EBt0]P1,P3,?3,p^;

uire [S: 0] Bl;

assign 31 = B « I;

Boothpar pari U, 61(2 iO] ,, HI] ;
Boothpar pars (A,Bi^;2],P2);
Eoothpa.r par3 (A, Bl [6 :"s] ,P3) ;
Boothpar par4 (A, Blf 8 : 6] , PI) ;

CSA_16_toooth csa(PL,P2,P3,t>4,ft! ;

endtroduic

Figure 35 Radix-4 Booth's multiplier with 8-bit inputs

/*Thi» p r ogr am imp ,l«na gift; s toha jrecqdiri*r l«?gic and
-jui'ciplexer toe radix-4 seoeh 's &lgoric;J^_ to generate
p n,i"t i Cl J, p x-Qduct
* /

E.

1

TilQ GTJ 1 Q Boethpar U,B,P|;

input. [7;Q]A;

input 12:0JB;
output [9;Q}P;

wire A£^P3;
wir<? | 3: Q]oxxt;.

/* srispt <S xt unsio x siraodsd £bi: this cusn -.rhran MSB a£ multiplicand is 1
and decoded ve.r sioii oi! 3-bis multiplier group is l(H~li and also
WSB of

a-ssign

siulfciplipr g-rsiup is 0.

Aa=A[7]: // sicp-j QKt«nsficm
assign n = Bioj r-B [1];

assign MS = ~(H [tB[il-*Bm) ; // £*_«ltiplicax-id
assign outtO] •= (H 6 A101 > " Bf2);
assign out[I] = ((H2 4 A[0]J ,H & A[1]J1 A B[2J;

assign out[2) = (<HZ £ A(l]} 1H 4 A[2]3! A B[2);
assign out[3] s (<H2 c M21) £M £ A[3]) J "• E['2] ;

assign OXJt [41 = (CM2 i A(3]J IK & AMI)} ~ BIZ);
assigit _ufc[5] k ((HZ £ Mill iH £ &££])) * B[2];

assign OUttS) = ((M£ & MS]) {E £ A[S])J - B[Z);
assign out[7] « ((He & A£S]J {Ei.in])l A B['2J,-
as sign out[6) = ((HZ 4 A(7]3 m i. ASM '• £tZ] ;
si'SHig—, P =• OXlfc * BTZ];

assign P9 = EM £ AS) ~ BIZ] ;

eadmodule

Figure 36 Recoding logic andmultiplexer to generate partial products

52

/*7his program adds Eoui lS-bit- opur—ids, creating a IS"bit CSA.
The 9-bit input operands aza internally signed extended to 1G bits.
InpxLt opo rands are shifted la-ffc accordingly he i ova addition to
inpioiiant the Booth' s algorithm.
T/

n.od,uie CSA_.lfi_hoo-b.(A.,8,CrIl,S) ;

input

input

input

input

butput,

wire

wire

wire

vriria

xTj,jre

wire

wire

u i r g

|S:0|A; // PI
i8:QjE3; // 9Z«l
|B:0]C; a P3*<4

t8:0]D; // P4s<5

[1S:0]3^

316,817,;

^ufllO,sum.l,sxlll2,sxiIc3,sl_ca4,syLlS,sxlllC^,suI£7,sum.8,siis^/sxllilG,;
a __11 , sual 2ysual 3 , ex_e14 , s*._alSvsxml 6 , su_17 , ev.io.18 „ siml 9 , sxua201
^uiB21,svi^££,sxm23',sim24,s^T_'2Si, !:xm^6,=xi_27,sum28,sxm^S,sx^ffi30J
coxstO,c^5y^l,CDUt2,cc•ut3^cou--4,cout£,coxlte,couc7JcDuta,cautS,£?olJclO;
eoiftll^Mwia, cout A3,cOTRW^BOUtii.cwrtie^cogcL?, cout ie,Pwtl9,coTO20;
c^Jt£l,cout2£,cout23,CQUc£4,G'OUt2S,cc^t2S,couc-27,cout2S,cwt?9,cout30.
couc3.1,cout3£,cout33rcouic34,cout3S,couc36,couc3V,coui:39,cox3C33,co'at40,
cau^4.1,^oUT:,42r cout4Src©uc44,cout4£rcouc^6;

£xili

£ull~
full

£uli_
full]
tul 1_
culi_
£uil.
dluia_
Cuil_
Euli^
£ull^
euii]
.ExLiif
iuii"

adder £_MCfrtd,A[0] ^gnd^U-O, coutQ) ;
adder £aZ{gnd,A£1] ,gn.d, su_l , coutl) ;
adder £a3 jgnd,A[2],B[Q],sus2,cout2 J;
adder £a4 Jtpid,Ji [3] ,B[1] , sxx_3 , caxi.t-3) ;

_addoK eaiSiCfG],Af*l],B[2] , smul, cout 4) ;
adAar fiftS j C11] „Jl fS] ,B [3] , sunS ,coutS) ;

.flticipr ca7(CI2] ,,M£1 ,8[4! , suiiS^outft) ;

.adder taG {C I3] , k\ ?'| ,B[S|, sua"?,cout?) ;
adder Ca9 ! C j •*) ,A ISj ,B [61 , suxlH , coutS) ;
adder CalU IC [5J ,A 1.8] ,B[7 | , svn.9 , ccnscS) ;
adder Call*ciej ,A [8],3[S|,sunlo,couclO)

adder £-iESC[7],A[S],S[3].,sU!all,l:CJUCll)
add«r E_I3JC[8] ,A[S] ,B[6|, Sxm,I£ ,ce.uiilZJ
-dder £_14 j'C[8] ,A[8] ,B[S] , ssua.13 , coutlSJ
adder £._1£(C IB) ,A[9] ,3[B] , cu_.I-i, coxitis J
adder £aIS (C |'S] ,A [8] ,B [9] , =unl>5 , coxitis J

53

continue,

tuklm
'EUlJ.„
£ull_
£uil_

£uil_
ruLl_
cull_

£vU_
£ull_

iull_
full,"
fall"
£ull_

.£U11_
cull"
full"

£xall_

EUll_
iull~
tull~
£xaU_
£x.ill_
iull_

•fuliI
E\lllm

£ull_

ex~ii_
Ellll.^
full.
£x3ll_

£ull

^adder
__adcler

_dd=*

adder

___dder
_adci.er
adder

_d&e*r

__dder
^adder
_adcier

a, due::

__dd=i"

_adde*"
_adder

siddtsr

adder

adder

,adder

-ddc^

adder

adder

adder

ad cle i:

adder

adder

adder

adder

add*?*-

feddei8

fal? [gnd,sumO,qnd,S[Q] rcoutl6) ;

fal3tcoutO,£ajnl,i3ndl,s\ffil^,cc5Utl7) ;
fal9{cout^,s'-m£,gyid1,Ki.wl7/c;g>utl0;i ;
£a20'|eou£2.,s.u_;3,cjnd|rsu_lS,c;6util?) ;
£a_l Ccout 3,, sun4., gad, sl_i19 ,cout20) ;
fa22'£c-out4.r£!juiS,g!id,£iju20,_ciut2i) ;
fa?3tcoijt5,s''.mSrDtO] , s\ua21, ecn,;t22l ;
Sa£4 tcoxafcG,si.T_.7,D[l] fsxmZ2, cout23} ;
£_2 5^ctiU!l7,SLOi8,r'[2] ,sum23,coutZ43 ;
£_£6*eoix8,,£ui3.9,in3] fsu_.24,cout2£j ;
faZ7[couc9,suE.10,&[4) ,sua25,ccmt2SJ;
fa28tc'Ox?vlQPsxiTOll,I>Ei:i ,suir<2S, touts?)
f_.£3 iaoi&llfG\utiL2,'D[&] , sxxm27, ccxibSS)

•icSUel2,SUtti3,D[7] , £U_.2S,COUC2 3)

Jeou£l3,su_J.4,D[8] ,sx_i23,eout303
tcoucl4rsuiaiSr]>£g] ,su_30„cout31)

fa31

f_32

fgnd,s\mlS,foutl£,S [

[COU&3Zr3UJ_i7,COUD.l7

[oouc 33, sum! S, cout18

[c out 34 , Sinai 9, cout19

t ctuv 3-S, sum^O , col*'?, 0
i[co,U5:35,sxi_i£l/ caUt.21

{cout37, sxmZ Z, coxib 2 2

•tcouc 38 , sum£ 3, cout 2 3

tc^ut33,.suKi£4,cout£4

fq^Wt'SO, swnSf, coisfcgS
{c out -\1,sxtaS 6, couft £ 6

•Jcou£-4£^siE_.27ii,coue27
{c<mfc43rsum£S,covfc28
ieout44, sum£9, cout £9

i a oxas;4 S, sum3 0, caxjt 3 Q

[cQU£4S,coUfc31,ctMJx;l

1_34

fa3S

fa36

1],cout3£j;

,3[2J ,ccjU£33J ;

,£[3],cout34);

,S[4],cout35);

,S[$1,qovft3€);
,£'[£] ,ccmt27> ;

„S[7],cout3S J;

,S[S1,cout39>;

,3191 rcowJ0);

,SUQJ,cou_4I) ,

,S[113,cout4£),

,S['l2 3,co__-JS) .
rS(13),cout44).

,SU4),cout4S) -
„S[J-5] / c<™t46) j

5,316,, 317/;

ta33

ia40

r'a-13

ia.44

£a_S

fa<3S

fa47

£_<33

endiGodule

Figure 37 CSA for Booth's multiplier to sum all partial products

' tiiL-escEsle Ins/ lps
module sootii tss.;

ferj [7:03 A^B;

wiEE [1£:0]R;

Booth tiootJilfA^^nj j
iniciai

begin

A = 0' 1?P0: B = Q' noo;

SiQQ A - B'hOl; B - B'blO;
^50 a. = e'his; e - S'liia;

i^SO A - 8'hal; B = S'iiSfa;
^50 A = R'fjSt; B = a'h32,'

$5G A •--• 8'b83; B ~ S'hSC;

#50 A = 8'ba^; B = 8'his;

#50 A - B'hdc; B - 8'h9b;
#50 A = 81 fitto; B = e'hCZ,"

end

anir-lai

^monitor (?rcsltimc .," A-^ta^ B'-^b, product^*:hJf, A,B,E] ;

eiichviGduie

Figure 38 Test-bench for radix-4 Booth's multiplier

54

3. Carry-Save Adder (CSA)

/•This program adds lour 16-bit. operands, creating a 16-blt CSA.
33_ifh optiE-rid is Siejri-eiitiiiiiSed In gSnfij?_fc j* Zhs i6fch _rid ITth bit.
•ECkc bit sign csfcerasian for addition o£ tex$o operands)
T/

nodule CSA_16(AhJ3,C,DxSl ;

iiipxib

input

OUtp'UC

xtir-^

wi ro

"i re

vir e

i/ire

xri re

iri re

wire

wire

xfirti

xrire

!1£:0)A;

115:0]3;

!1£:Q]C;

Ij.S;QIX>;

117:015; // S18_5j.S not needed as cucput,hence declarsd as Hire

A1S, A17,B16,B 17, CIS, Cl?, IUG, 017,218,319,;
su~0,:ixiil1, EU_2,sxnt3,=xm'l, cxiiaE, i;xiihS.,su_.7 , sxauS, =u_9 „=umlQ;
sutsI lyHiiiiJ?,si,ial.3,suHii4f sumlS^ swRiS^syAiT^ssuialS^iiTnia^ sux«2 0;
s\u^21,s^^£2,su^£3,sua£4,sx^2£,sxu426,su_.£T,sua28rsT.i[o2y,s\m3D;
suio31, sim,3Z ,S'J_.33 ,sum34;

0&Ut.O,coutl,coUt2,cout3,E;ouii4JLout..£,coiLt6,cout.7,cout.S,coub9,^oxit.lO;
couCll,cax^l£,cnuei3,caut,a^,coxxtl£,coutie,ec,u'!;17,coi.ifclB,cou!t.l9^ccj^t20J
caxitSl. ,cout?.2vcQut?3,cQutS;4,cnutg£/co-a'c26,covis£7,cc,uc£e,cc.xjc29y cout30j
coi>t.31,coxit32xcont33,CD\it34,eciut3£,cout36,couT:.37,cQiJic3e,cout39,cout40j
couc4l,co^t42,coxxii43,cout'34,cciUT:'SS^coux:46,cou5:47rcouc4e,cc>ui:.49,c:oxiCSCi;
C:&usc;.Sl,eaut.£2;

assign AA6=A[LS1 ,Ba6=3U5] ,CI,5 =CI1&]/&J,S=D [J.S1 ;
assign Al?=A[15j ,Bl?=BUS) ,C17=C \1S] ,Di'J=»tiSI ;
Julljad&er Ial(C[0.! ,A[0J ,S| 0] ,su&'Q,ecut0 3 ;
fxlll__dd« f_2 (C[1J ,A[1] ,Bfl] ,_ual,ctmfcl) ;
ful.l_a.ddBr fa3(C[2J ,A[£] ,33^2] ,5Li_.'2,ceut.£S ;
;uJ.l_addei- ia4 (C131 ,.k [31 ,33 S3] ,sxm'3,cpx3t31 ;
full__dder faS(C(4I,A|4],3(4),sua4,couc4);
fulljadder £_6(C[^j ,AI5J .BIS],suaiS,cout-S) ;
fUll^addeK f_7(C[.6I ,A[6] ,33 IS] , sc_a.6 re GxiliS) ;
f_l.l_ad.dBi: fa@(C[7j,A[?],J3n] ,su_.7y cout?) ;
mH_.nddcir faStCES^AfS] ,33J9] , suae , ewfoSJ ;
fxUl_adder falQ (CO) ,A[9|,B !*) ,su_.9,cpuc9j ;
£ulimadder t_ll(C(iD),A[10!,B[10|, suialO, e out10)
£ull__ader 1-12 (S[II),A Ell! ,E[11] ,su_ll,t:i3utll}
full__dder f_13{CEI2],A[12) ,B [12] , au_l£,coxLtl2>
f_ll_addor ial< (C [13) , A[L35,33' [13] , si_El2,ecmfcl3j
iuI3_ai3der ialB (C(i41, A[141 ,B IH I ,sial4,coutl4)
fuli__adder :&1S (C£iS) ,AUS ! ,B IIS | , stj_1 S, =out 1 ii)
full^adder i_17(C16,Aie,Bi6,$u_lfi,coutl6) ;
full__dder t_1S (Cl? ,A17,D1? , £u_17 , cawtl?) ;

55

continue.

£_11 add* i! lai.5

full ^adder iaZO

iv.ll __adclior T5£ X

euii adder £a22

euii adder fa23

full _a cider fa£4

fu.ll adder fa2£

Cull adder taZ6

full _adder £a£7

(ull _ndder £a2B

Jf'lill adder laSS

full _addsr £a30

full £tddf)r f»31

full adder i_32

full._adder £a33

Hull._a ddra i' fa34

£Xill___adcfcr fa3S

full"j&dder fa36

£ull_ i_dd_if £&37

cuii_ ad.de r fa38

full"_adder £&39

£uli_ adder fa'-i 0

rull^ adder la41

full...adder £a4 2

£.uJU_ adder £a.l 3

£ull_ adde£ la44

full] adder fatS

full__add«iv f»46

full_ _ride t la.47

£uli_jadder fa.48

fillip_add'Br fa* 9

£ttll_ add^r faSO

tuli_ adder faSl

full".adder fa52

full.. adder faS3

£ull" adder iaS4

cixdnodxilc

gm.d,£u_a,D[0] ,S[OJ ,eaUfclB) ,

coutO,switl,J>£i] ,su_18,csu£iS>) ;
ccutl,suifc2,B[2] , sual9,cout,20) ;

eout.£,B.uit3,D[33 ,SU_S0,c>3UtZl) ;

eout3,su_4,I>[4] ,S'un21, coxier) -f
cout4,suii5rI>[5] ,sxi3i22,cout£33 ;
cout.51,»u_£,D[G] , suu£3,coufc2'i) ;

coutoHsu_?,]>[?) ,su_24,C€>UC2&) ;

cout7,s«js8,P[8) ,sij_.J5,co*t2ej ;
cout8,cu_3,D[9] , su_26,coi;t27) ;

cout.9,su_l€l,D!10) ,sx_iZ7,couc-£B>;

coutlO,su_.llirD [11] ,sij_.28,cout29)
e out Li, sural;?,!) [IS] ,svm23„coutgo)
ee>uulZ,*fl_Li3,H [13] , 3U_30 ,e&_e.31)

coufcl3,su_14,B [14] ,su_31,.couc3£)
coutl4^su3tll£J,U [IS] >s-u_3^,cnxit33)
eeu&l S, su_l£,3>16,ssx_3 3,coat34) ;

coutl6,s\i_il?,D17,st._i34,20ut3£|i ;

grid , siusl B, c out IS , S [

cout3 6 , si_.l S, c out13

coutS1?, suii£0, cout2(l

cout3B,EX_,21,cout21

cout39, su_22, eoatZZ

cout4 0, sxml 3, e o\it23
caut *l1, sxiia2 *t, c out £ 4

COUt42., SU_25 , cout,£5

cout43, sx_26, cout2S
c out 4 4 „ 5UB1.E 7, c out SJ 7

trout-4 5 , 5u_-E B, Cout-28

cout46,su_2S!,cput29
cout47r^UBi30J coutSD
cout4 D,s!i_i31, cout 31

c out4 9, siaa.3 2, c out3 £

cout S0,sum3 3,ciutS3
cottteS I , jsu_:3 <3 , c out 3 4

couto7,cout35,c.auti

1] ,caxit36) ;

,5|Zj ,ceases?) ;

,S|3] ..coutaS) ;
,S|4] ,Goufc3SiJ ;

,S|SJ ,ooutc40J ;

,S|6|,cout4l);
,3571 ,eoufc'i2) •,

,3 s8J ,CDxit43) ;

,S|9],couc44);

,S!10],cout45 J ,

,3 ill] ,-eoull4fi) .

,S(l£J,cout47);
,SS.U) ,cout49J:

,3jl4] ,c:out4SJ ,

,S{l-S),COUt5Cl) ;

,S{1S),coutSL)j

,3U7] ,coutSaj ;

7,S1S,S19J -r

Figure 39 16-bit CSA adding four operands

56

/ntils propraa adds five 16-Dic operands, creatine* a IS-Uit CSA..
Kacb operand is si(m.-e steaded co generate the lSth„i"?th and
(One bat siccr. est-ens ion cor addition of two operands'!
*/

Modul* C£A_lS_£[A,E„C,S#SJ,a) ;

input [IS: 0]A,E , C ,D ,.E ;
output [1S:0]£;

wiJrc

wire

wire

wir*

wi.tr^

wire

wire

witc

wire

wire

wits

A16,A17,A18,BIi3,Bi7,ElS,C16,C17,C18r&16,ra7,Die,S16,ai7JE13;
313,520,321;

siugQ, sural, suu.2, su»3, su_4,sum5,=.uiB6., si.ua.7 , suu8 rsu_9, sum10;
«uj»il, su_12, sunt.3. su»14,su_l$, sural*, suw.iv, suulS, svx.L%,s\wZ0;
?UBi21,siiTt22,sxm^3F5\]3i24r-?umJS,^wn2'iSvSUtta?,5u-:;;e,suyi;^,^ua-i3Ci;
snjmv2.1,, fixiK.3Z , sxi-33, sxra-i34 , suaiSS, srumSfe, gTiitS? , sxip.3S , susi39 , ?xim40 ;
culls']!, sxie.42, sxmil3„kxx_44, s!Lia»4E,srtJini'dfe, stj._.-j7 , smuiS, sxi_.49,t'.i_£0;
sxs_.Sl ,su_£.2, su_JJ2, sxi_,S4,suai£E,s-uiii.E6;
coutO,cautl, coxi-bS:, cou&3,coufc4,cout£1,.-o.wt.<; ,cout7 , cout.9, =*u&9,coufcl0j
coufcll,coue.12, coxitis ,couil4,coutl£,cout16, coxit 17, coxitis,coutl3_.cout2.CI,
oi>Ub£l,ctncG22,ee«ut£3,c9^^

couc.si,cout3£,cout33,co«a':.34,couc35,ec-uL;3b\eout37,coxrc33,oout:3Si,cout>50(
coLK41,coufe4Z,cow;43,cou^44,CDUi;.^.!:1,co.ui:4 6,crJut47,cout-iS,cciUc43,iroiJC.*0,
ewtSl,ecmT.-S2,coux:S3,cous.54^^^^

ec-ufc iir-1, cout 62, cout €3, go-..k.«54, rauc£$, cout 66, cout s',c out:. Ss, coucSy , cowt")0 -
CCUt71 ,T0Ut7/:,CCUr,?3,GCiUv74,CQUfc?r.,CC.Xft7$;

.assign A1S"

3.EJsign A17-

a^sign A13-

lull^-ddej;
£ullm_d£3ej:
£ul.l_addei:

rull^addei1
tul.l_adder
•fiul.l_ftrji$er
trull_a<3d*i-
£ull__dd*i'
£ull__ddei:
£ull_._dder
£ull_adder
£Ull_adder

Hull^sdder

tull_adder
tuli adder

C16"C[1S],D1S*DI1£J.,B1G«
G17"-C[.LS],D17-I>[1S3,I17'
CL0-C[1S] ,t>lS»I>[15] ,E1S'

„E|D| ,,su»€),«>ue.Q) ;
f 33 11 j , sval, ^outl J ;

, B 121 , su_2 , €Our:-2);

,B;3]' rsuai3,co',ic.3) ;

,Bt4l .1,sua4J,'S«3ur:-4);

, S | £ I „ stiaS , •coufcfi) ;

,2|71,s^m7^^oyt7);
,E [3] , cvtstS, =outS) ;

3 ,B£0| ,si_5,ooufc3);

iOi ,B[10J ,sumlO,coutlO) i
US ,B[li] ,i.^_.ll,,~ouL.ll) i

!ZP,BElzi,s'j_.iz,couicia);
13?,B[13.| ,^_il.3,COUC-i3);

14 i ,Bt 14 | ,5*.™il4,coucl4) ;

ii[i£],Eie=BiiSi,

111IB) ,E17«D|1£I ,

A £1.5] ,B1.8*Bi 15 j,

£_1(C[0],A|0)
£&2(C[1],A|1)

ia3(Ct£J,AlZl
ta4lCl%)cP.f2)

taSCi;i4),A|43

f^(C|S),Am
fa?(C[6),A|6]

faS(C[7],A{7|

f_SiC[S],A[9 3

f_10(C[9],AI9

JI_11(C[1Q],A
£_12(C|11),A

ial3(Cfl2J,A

1-14(CU3],A
fal&CCIl4j,A

57

E!i£:

E [IS;

continue.

lull_adder
£xill_stdd^r

full_adder
full adder

full.
fXill_

full]
full'
lull

£ih11_

fiall'
£ull_
£ull_
full.,
full,
full"
£uil_
full.

full,
full"
full"
£_il_
£xjllm

full_
£uil_
£ull_

fxsll^
full'
£ull_
£-ll_

full_
£ull_

tulK
full

full,.
full"
£uil_
£U11_

tuil_

full_
£ull_
£ul.l_

fuU_

£ull_

*tjU_

ful£__

tul.J._

£uii„
fU.l:I_
fu!.l_

£uli_

tuU_
iuil_
full

Irull

lull^
full.
full

lull,.
full

full"

addeii;

..adder
adder

_adder
__d.de t

_add.sr
_adder
_adde r
_a&de £

_adder
.adder
_ad.de r
q.ddar

^adder
_adder
_adder
_„dd«sr

_ad de r

adder

addei*

.adcUaj,-

^adder
adder

.adder
_addQt*
adder

adder

adder

ad dci'

addar

adder

adder

_add«r

.ad de i;

.adder

.adder
add&r

ciddsr

Udder

iid-dar

adder

.adder
^sddar
&ddi:r

fadder
adder

.adel a r
adder

adde r

sd<3.e r

adder

adder

add si*

adde r

uddei

adde x

n-w.-1-i n C.L11 C

£_16{CUS] ,AliS),BU&i,su_lS,cautl£) ;
tall tCae,AXSit31GJ,5ru_16,c<3Ut'ltji> }

fal8CC17,A17,.Bl?,3X_a7,cioxj.tl7? ;
fal9[C15,A18,Bie,suLil8,coutl8!;

£a21CcoutO,

£_22 Ecoutl,
f_23 I cout2,
£_24{cout3,

f.aZ5 [cout1!,

feSSJcoiitS,

fa27[cout6,
t&ZeEGDue?„

f.nZ9 taawzB,

£a30 EcoutS,

fa31{coutl0

£_32 (eou_ll

frfa{dou&l"2

£s34 "cout 1.3

fE3S[coutl4

f_36 £coneIS

£»37[aoutlG

fa38{coxrt;.l7

. D i Q] #sustlSJ,c»u_I3) ;

su_.l,Dfil , su»20,coufc20)

s_u2,I>{2] ,su_21,cout2i)
sx_.3,D 13) ,5U_22„couc22)

Sx*Ja'l,D [4] , 3 USb;2 3, <S ©U*3 2 3)

Sua£,D [SI , sum24,coutZ4)

£%_i'S,D [§] ,.su_££,cox!.t2S)

su_7,D [7] , SX-.2S, cout 26 J
Si_i8,D [B J ,3X_o27,couc,£7)

suei9,D [9] ,su»£8,cout^8)

su_10,I>S101 , suki23,couc2
,su_ll,i5[ll] ,sx_30,cout

,su_12„DU2] ,su_31,ccut
, su1ml3,|S(1*3] ,,.^-01931 g,«out

, su_U4,J>[14] ,su_33,cout

, su_l£,l>E15] ,su_34„cout

,-ru_lS,3>lS,sx_.3S,cout3S
,Suml7,B17, ^U_3&,_ciut:.3S

, SMm.l3,j>18J,5xjr;i37,c-J'ut37

fa39 (grid, su_13 , S[0) ,S£0] ,c

Ee4u tcout13,au_EQ,2[IE,su_3S,

£rHliCQU&"J<j,5wi£l, 5££! , *su»"J*3,
fs42tcout21,su_.ZZ,3[31 ,sum40,
fa43tcout22,su_23,2[4J ,suro4l,
£_44[GQxtc.J.3,sxL_.24,i:i Sj ,au_42,
£&4.5 [sPufc£4.,suin£S,S [S] , sum-ib,
f s4S {cout25,su_2'6r2 [7] , sum**4,
£a47 tcout26,su_2?,3 [8i ,suj_4S,
£_4S{COUC.2?,SLU_2S,3[9j ,SU_*SS,
fu49 |.cDXLt£S, buiiiZS,3 [10] , 3x_.*t7

faSO (cout29, su_30, 3 I .U] ,sui=48
feSl (cout3€,su_31,3{12] rsx_49
fa.S2'couc3i,su_32,S£13] ,su_-SQ
£tl.S3{ODUC32,SU_3.3,3 [14] ,.su_-51

£«S*J feou>-.33,sui'i34,3 [15] , sxusS*?

fa55£cout34,su_3£,31S,sx_.53,e
f_S6{coui-;35,suiiiSe,.317rsx_i£t,c
£sS7 {ccjuc3i3,suj_S7,_ie,sx_iSSlf c
f b561 omd, cci'Ut 1S, t?out37, sxxwSe, c

9);

30)

31)

33 5

34),

J;

>;

J;

J;

couii39)

Gout403

COXJC41)

c out 4 2)

CQUTl^S)

c out •! >3 J

cout4£3

c out; 4 £ J

caus4?)

,aout 4 8

.cauti 49

,coutSO

,cou-c£l

y^out£2

,cout£3

outS 4 J;

Qxit^ S J;

out.se; J;

•o-ut.S7 J :

fa-53 (gx'id, = _3S , cout 3 0 , S \ I
f sS-Q | coav S8, -5ujs39 »« out35,

laol icous- £S,,sun40,cout4a,
£a*a2 'tt3US60,»uu.-11,CDUt41 ,

f <a5'3 i cout S Ar *jy.»*l 2:, c out4 Z.,
laS4tcout62,s5,m43,cox!:t43,
f aS-S { couE, g 3 , sun44 , c out 4 •! ,

J:s5 S t cou*; 6 *3, sun.'i E, c ovit 4 5 ,

ls67 I couk 6S, sum4.6 , c ox;t4 6 r
f_GO | cci'Jt-Ge,st_.>i7,aDU-t'17,

iaS,9{cc«uc67,-5ua-3Si,.43 0Ut4S,
ia7 0 J cout.6 8,sun*59,cout4S,
f_7i icout.G3',^iLLi£0,£:Dufc-50,

fffl7K)cOU^70,3:WXi.S.l,CCiUtSl,

la73 jcouc*?l,sunJs.z,cDuc.sz,
f_74 !coufc72 , suii£3,cout'"D ,

fa7S lcou-.73',suii54, coxitS4,
la76 'coiaE.74,suu5S,<:ciuc.55,

£a77 {coxitis, j'.iuSG,aDut£S ,

fa78lcrou---7&,c-3Ut£7,rjr.d,5e

],ooufc£@)i

S13| ,coucS0);

E [4] y coutSJ.) f

SfSJ ,-iptjcSZ) ;

S L6|,couc63);

S[7] J,cou.tG'i J ;

S[81,GPUti5£);

S[Si'[,c:out66) ;
SHIS! ,coutS7) ,

S[li|,cout6S3 j

S'llZl ,cout6^3 ,
E[10| , cout, 70? „

&ri4i,cout71)j

S 1151 ,COux;72j ,
S[IS|,couf73)j

S [17! , coy*7<3j •

S [iSj. , COUX--7SJ ;

SI9, cout7i") ;

0.S21J;

Figure 40 16-bit CSA adding five operands

58

/T^his prG_rrs_. adds- ioviE 19-bit- opeE-SKids , cre_titi_t a 13-bit CSA.
laeji ^jseiBSid is si^it-e^-etided to q,e„._„_ii.& tshe 15th and ECth bit.

_adxxlc CSA 191 3,C,D,S)

input IJ 3;01&,„,£,&;
output [20:0]S;-

x.-i re

tii r a

wire

wire

Hi r e

T,-a;: o

wire

wru'e

wire

wi r &

•wire

wire

su_C,._u_J , 3u_2 ,sxx_3,au_4. r?x_..5, sum*;,sx_7, sxt_3,sxuiS ,_u_l
£iJjill,SUJ112,£i_13,5ij^liir£Uttl£,5^^16,Si^l7,£^_19,st._13,
!ruis.21,--ruK.2£,^ijiifi22y«ru„24,^uri:2£ ,suK2^,f-uni27 , f-uiii28 , sa_2 9 ,
•5u_3i,iL_3£,.si^3 3_.s^34,.su_3£,si^'J(", bu_:?7 , s *a_.30 , _u_S3 ,
c&utO,iri;'Utl,coiii:2,eoi.x3 rcone4,couc5 reouce, coutT-, couc3 r
oc-utll,coxml2,coxiT;13,ccixi-l<l, coyc.lt, cout 16, cout 17 , aoxst 1
_cut_l,_ax„2_,coxtt.2_,cous-_4,_oufc_5 , cout_C, cout £7, cout £
coiit3i,cciUi--3S,coux-3-3,.cou,!:S'3,i-:ciuc-3:.5,couc-36, coui;3 7,coui:-3
eoxrt 41, c.oxifc42 , c ou-o43, c oxic-<d 0 , c ouc-4S , c out •a £ , cout ••"7 , cout 4
ccx't31,coxitSi,izcixLt.53,coultE4,coufc£5,^out5i3,coutC?,cout:.5
COUt-SL ;

grid= 0 ;

0;

su_4 0 ;

C iJUt5,

8,cout

O.ccut

8,eouc-

S,cout

S,_o„t

assign &i9=*U 13S,3l$=Ei181 , Zt'3=QlIS I ,DI3=P [181 ;
assign A20=A[1&S ,320^33 US] ,C20^C[18i ,D20^B[IS] ;
fuil__ddei' f_l ;C[0j ,A[QJ ,3350] ,su_0,cout03 ;
lu.Ll_ad;des- is,&<<;i)] rX[ll ,'BU I ,sxjmJ.,-?Q«J,t£3 ;
£u£l___ddc- f_3<C[2J ,A[2] ,E *2J , au_.£ , cout £) ;
iulljaddes' la4(C[S] ,A[3] ,B|3] , sun3, com; 3 3 ;

tull^-Mes faS(C(4j11A£4] ,Bi4] ,sxoi4,coi,it43 ;
fuil__ddcr f-6(CE£],A[S],B|-S],sxuaE,.=out£] ;
iu£l__dder ra7(C[6] ,A[6] ,Ei6I ,suu6,couuS3 ;
fuH_Adas;r t«¥l(Cl'7]1,At7],ie|7t,cu)i-?<,c;putV] ;
fuil___ddQr £a9<C[S],A[3] ,J3Jg] ,sunS,eoufcS3 ;
iulijadkier I_10(C[SJ ,A(5] ,EC"9] ,sx!*a'r?,couii-?) ^
iuil_addPi: tail 0-f 10 i ^A[101 „3 IIC^euibIQ. cout 10'J
fxi.ll_._ddc:: f_I_(C[llE,A[lI| ,2 [11 j ,.su_li , coutii)
lxUl__dder lal3(C[l_i,Al.l2r,3[l_i,siu_lZ,coL!itl£3
iuil^ddar f~14<C[13'_A[13S,S[J.3^,sui_13„._oufcl3]
full,, adder £_iS (C [14 f ,A[14} .,33 [l-l 3,,j*w_14 , coutl'U
Juii__dder i&lSCC 115! ,A 115} ,3 115 3. suiU$,«out 151
iuil__ddor f_i7(CL16JJ,Atl_*.,3[16.^-3riji_16,_i.utlS3
iult^oddBr f-ia(C[17],A[17|,r[17j,3i^_17,=c.utl7]
*u_l_a_der tal&fCUBj ,A118I rB US J .sunilS r cout 183
iuil__ddoi: fa3Q (C1.9, .U9,E13,*ui_19 ,cout 19} ;
iu_l__ddcr f__i (C_0,A_0,B_0,_u__0,-cout203 ;

59

Utl 0 ;

, eaxi±20;

,coxit30j

, out; 40;

,coutSO;

„coutCO;

continue.

full_. adder S_££irjiid,sxiaO,rM01 , S i 0] Hc0xlt21i ;
£ul i_aa.de £ £a234coutQ ,sxml,I< 113 , s_Zl,eou-..£Z J;
.Cu.ll_-fl.ddsf £aZ4icouti,su_Z,D \Z} ,sxi_ZZ,eoutZ3 J;
fuil_addsc t&ZSIcout Z, su&3,t> I3 \, su&Z3, cout24 f;
.cuLl_arM*ar i!a£fc*(cout3, sui4*!,!:'! 4 i, sun24,coi4t35 J ;
1;uLl_a?ld?r fag?i<;out4,sxmSrri! S3, suugA, coxtttSSj ;
full n-ddor ifiZB taoxi-tB rp\-m$ tl> !6 J , sxiiL?-fi, t3i-.xi.t27 J ;
full adder ia£9 teoiite,sx_i7,t J7J , sxin2? , cout 28 J ;
full adder f_3Cl }caxxt7 , sxt_8 , DJ 3] , cxi_28 , coxitZS) ;
full odder £_3i lco\Lt0,sx_.9,H IS J ,sxi_£9,coxLt*30|! ;
full^addsr £a32(c-)ut9,sxtolO,D | J.0 3, sxw3 G, c exit 31 >;
fu.ll_adfl.ei: £a33feextl'20(,su_lI,B|i3 J ,3Ula.31,c<JUt3 2> ;
£y.ll_addet: £a34 5c-mtII,SX_12,I' [IE] ,su_3Z,coxit33J ;
fiii i_ad.de.t- Sa35Ccoi«lZrsual3,P!i3)rsu_3S,cout34J ;
Cuil_addeL" la3S{CQUtl3,suji34,l:MA4 5,sxm34, coxites J ;
cull _adrfst: :&37 ' cQUtiU , svxiXS ,l> ! AS3, sxmZB , c exit 3 6 5 ;
fu 1l_^dd*i r i*%33lcouti£if-XLalfi,3>ll£3,sx^36,ci-.ut3'?J ;
full adder ffl.33 tcoutiS,sxmi'7,t>S17 3,.axx_37 , cout 38 J ;
fia 11 addc r £a'iQi'cmifcI7,=xii»l8,3>ii£3 , =%m,3 8 , ccmt39 5;
full adder *a41^coxitl3,-:xmI3,I)19,3Xi_33,coxit4Q> ;
full adds s f _4 2 I c out13 , sxl-2.0 ,1' 2 0 , sx_4 0 , c exit 41) j

ful l__adde tr £a4 3ignd,suu£I,eoui;£l,S |13, cout423;
D.ui„_-id3r £a4 4 1cout4Z,sx_ZZ „coutZZ,S 121 ,cout43) ;
i!-Jll_add3r ia4 51cout43,suu2 3,cout23,:>!3!„ cout 44 31;
cull_addeE' ia4Sxcout44, su3*24,coutK4,£ i43 ,cout45 J;
i?uj.lmadd*s i*.47iQQvxA$fs\m?,5fQQ%it2&f$ \S) ^cout46; ;
full adder r &4S 'caxit4e>,£xm2.6, cout26,S it] , co\ifi7 J ;
full_addei- £&ti'HcGut47],£X_.2.7,coxit£7 ,3 !7 j , coxites J ;
full adder t a&0 i c out 48 , sxi_2 8 , c oxit £S , S | 8 1 , c oxit -i9 >;
full_„ddeL- £-5 i) c oxit 4 9 , 5xi_£ 3 , c exit Z0 , S 13] , c oxit 50 J ;
full _dd=r *&5Z jc exit 5 0 , sxuiSO ,c exit 3 0,8 i 10 J , cout 51J ;
full__dd-;L' fas 3 icoui-5i,Si_3I,couC-'31,S 111} , cout 52 i ;
.£ttll_add= f ^a54f cout5Z,su_3£,coxtt.3Z,S UZ.J ,cout53} ;
Cnll_ad.de s; Ea5Sicout5"3,su_,3S,coxit33,S (13 3 , cout.543 ;
feill_add5c: i a5 6 {c out 5 4, su_3 4, c out:3 4, S 114 3, c out 5S 3 ;
tull_add=ir £s£7 icoxxt5£,sunS5,coxi.t.'3.K,S 1J S3, c oxit 5-J) ;
£uL.L addtsr £a£S!eout5£, su-36 , cQiit|3iS, K'! 2£], c.oxxt£7 J ;
full adder iaS9 (cout 57, sim'37 , coxit3 7, SJ17} ,coxit£8J ;
full adder *ab0icoxit£8,,5T;LB|3S,coxiti:3S,S J18J ,cox;t£9 J ;
£ M-l 1 _ilde r £&Gli[ceixit£9(,isx_.'39rc,exitii3ii,SP3] , coufefiO) ;
full .-ddttsr f _GZlcaxitL>0,ssxin.4b,eoxib40,S 1Z0] , coxifciSl J ;
full__ddet" £ae3 4ctiuti5I,coulL.41,cexLt.Z0,SZl,3Z2>;

sndaioduie

Figure 41 19-bitCSA adding four operands

60

4. Carry-Look-Ahead Adder (CLA)

/rttM-s pracjrai adds too •i-brfc e-pe:e a&is-, creatiii? a fl-bit addos.
H'y si g -. «KteEis-tcir. i-.<i lite *3jii*sri8^cisi, haiv:^ ftftly s^il'-abi^ fmr
oddrtaen o.C ussaspri-d „u_bes'Ks.

*/

-cd^i-s CLA_ns h <A,B, C10, £, CO -1! ;

inpvifc i3:0)A; >>'/ lrjpij.i:~i»-!xu- bate
i ri.itst i 3 : Ci] 3-;

IXijaiit. C1.D:

<•AAkpi.it :3:tJj5;

O'LIEpiUG CO-'I • // carry-out: tut

wirs- CQ1,D3£,CDS,•

x'ir e G0,G-1,G2,C3;.
Vli,^ pa,pa,?3_P3;

viarc cl, c2,,. c3, cd, c& ,.cfc, c 7r c&, c"S, clS;
"«3, fs StsJ. .iSS^^sS, »>•%;•

ass i gn ssl - A101 •" Bltfl •
assign S[Dj- = CID * sail;

assign CO - A(0) 4 SCO]^
asstepft Pa = Ata] 1 3EQ];

assitni cl - £0 & CIS;

i-i-r.fi j. ij r3 CCU - GO 1 «i •

e^'sirjn. s-.£ - All! " Bill;

assign S|l| = CQ1 - sz2;

assi _rn Cl - A(1J 4 Bflli
asstesY, PI = All) i 3[l];

assign c2 - GO 5 PI;

ftS«^ gt*i cM - PD * PI js CID;

assign. CU2 - Ui | c2 l cS;

£53 i _fn 553 = AIZJ - Bl2\i

assign S\li - C02 ''• ss3;

assign C^ = A[Z] i 3£2]y"

assign P2 - A(21 i D(21;
fiSSiiJtX c<i - Gl 4 P2;

assign c-S - 50 £ J'1! 4 (?£;

rt^'S ;i yri fifi - PD A. PI. * "Pff 4. CJOi

assign CQ3 = E2 | «9 i el | c5;

assign -5-1 - A[3] * B.3J;

assi-jti. SS3? - COt '* ss4;

afesi.gsn G3 " Ai'Si: 4 E [33 j-

assiffi-'i P3 - M3» I El 33;
jSB.«iepi c-7 - £3 A P3;

a-5'fii gp. c8 = Cl ' ?2 i F3;

as-fii._pi c3 - CD i. I'l 4]!£ i *S;

assign ciCl - j'0 £ I'i £ J>2 _ $3 4 CID j

assi.gr. C04 - C3 | c? | c9 1 c9 i elO;

sindziiodulft

Figure 42 4-bit CLA without sign extension

61

/"•Thli ptroaisuR :a.ids cn-o 4-bii:. ij^eta/tds, exza^infj a 4-jjm atidec.
The two opcr_ad£ are sicix-caittr.dcd to create £-bit opcr_nli,
giiesTfltiin^ cos, vhaeh j.s ^-sagrrU&SG w t-he t-esxUc ,

HDiiUie CLA[A,B,€IO,S,S43 ;

xsvtniT, I5;0[.A; // ijipmr-^teur .irac.*;
input- |3;0 IB;
inp-xre CIO;

oucpxi£. i3:0i'S^

outptxfc £4; // Carry-out bit

vke A't,E4;j

xritQ C0.1,,C1D£,C03.(CCi'i .COS; /,' COS is tor oo-Q-fiow dxxs- to sigi-s fts!t aasion

vlre 00,17-1 ,££,03 rt^ ;

wire J'*3,ri,F£,.E'3,F"];

"ire C!i,OS,C3^C^^CS,C^,c7,GS,f;gl,clO,C!iJ,,cJ.,^,cJ.3(,<3i'i31,f'] 5;
xiire ssl, S52,s53,5s-t;

as-siOiTi i.4=A'31, 8*3=3131; if sicft'i i-'it- - sign ejiii-nsic'ci

a*KS3.fjw ss], = AID.! " BITii ;

assign S[0] - CIO * *»1;
asr-rags CO - A.[0| i. B.0| ,-

assign ?0 - A ro1 i B to I,

assign cl -* PO & CIOj
fl-.i*-jgK r:rn = f:n | ci.;

a-s-sigs ss2: = A |1] '• S|lj;

BSS-tm 3111 = coi "• *ss;

assign Cl -< Ml l s 2 [i| ,-

a^icjn 1U = ALU 1 SLil ;
asiigri c£ - :GQ 4 Vti

arsrsign c3 = P& 4 J>i -S CIO;

assaiyti COZ = Gl | cJ 1 o3;

fl^s^gs ss'S = A 1*1 " I3|,*J ;

&2Zr±yn 3[t] - COS **• af.33-:

assign C2 = A [2] 5 £[2.1,-

ass.£gia P2 = A.|£| 1 BrSU

assigsj ct - SI i 3>£;
S*S5,i3ri RS = .pp i'i ¥,£, i, Ji-J';

a».s-i grj c5 - PO i 11 <s ?2 4 CIO;

assign COS = £2 | c4 | c-S | e£;

ab.s.igci -.-^ - JJJ31 -A BL31 ;

assign $[3 j = CO3 *" ss-i;
assign C3 = Ais; a E[3;i;

assign. P3 = A|3;. I B|3?;
assign <:"? ~ £_ 4 j'3;

assign c§ - Gi 4 ?2 i K;

assign d - GO d ?1 ' ?2 s P3;

as-sign -trlO - PO fi H S P2 i ?3 4 CIO;

a-ssiOfc CO-I - £"5 1 c? 1 -.-9 1 e9 ! elO;

assign 54 = can - ss4;

acs.igsi G<L - A4 £ JS'ij

assign [--•L - M i Bl;
assign cil - CS i. JM"

assion ciS • C2 ' P3 i P-i;

ts.^igEi c-I3 - Gl & P£ a P3 5 ?,

4&siort CI4 = ©5 t. PI. fi P2 & i>3 4 P4;

ftSSigtx >3-i£ = PO i PL S PS 4 !P3 A P-3 4 CIO;

assigr. CDS = Gsi | ell 1 c!2 1 -Qls | c14 1 ell;

crjcktodulc

Figure 43 4-bit CLA with sign extension

62

/./ la-bit CLA

modules Qhh_iS (A^B,:

input U7:0]A,B;
[18:013;

wire- JUa,Al9,Bl&J,PI.9,Sig,S2Q;
wire C01,C02,C03fC04;
wire CIO = 0;

CW_jvsk clan! (A[3: 0] ,B[3rO] ,CJQ, S [3 ; 0] ,CG1! '

CLA^nsa cianZ(A[7:4),B[7:4],C0I,S[7:4],C0Z);
CLAjsisx cI__3(A(ll:e] ,B[li:8j ,C0£,S [11:8] ,C03) ;
ClAjriSx cI_n4(A[lS:lg],B [15:121„C€3,5[15:12 3,03'

assign A19=A[17],A19=A[17i;

assign B1B=BU?] ,B19=B U7| ;

endmodiile

(„B|i7; 1S|),C04r(S19,S[lB:A6]) ,£2Q>

Figure 44 18-bit CLA

// 19-bit CLA

to-kile CLA_1S*(A,B, S) f

input

outp-ut

nire

T^ire

wire

(lS:0]ArB;

[I9:0]S;

A13,B19,.S20

C01,C02rC03

CIO = 0;

,G04;

CLA_ivsx clsnl (A [3:

CLAjrssj' crLan2UE7:

CLAjnsx cl.on3<A(U

Cl.A_3i«x claMUUS

01

4]

;l

B[3:0]

3[7;4]

,BE,ll;

J1,BUS

,CI0,S[3

,C€U.,S[7

3] jCSS^S

XZ),CQ3

01

41

U

£[.

COI) ;

CQZ) ;

B],CQ3>;

S; J.2S ,CQ4) ;

assign,

assign

A19=A[18];

aiS^B [18] ;

CLA clal([AlS.A[ia ilS])„ {319,3[IS;1G]J CD*1,S[19:16],&ZQl;

i*ndaiadults

Figure 45 19-bit CLA

63

// 20-bit CLA

modulE CLA_Z0(A,B,S);

input: [19:0]A.,B;
output [20:0]S;

-wire C01,CQ2,C03„CG4

T.rire CIO = 0;

CLA nsj clanl(A_3:0]fB [3:0] ^CIO ,S[3 0} C01J -

CLA nsj clan2(A[7:4],E[7:4] FC01 ,S[7 4] C02) ;

CLA nsj cl_n3(A[ll:8],E[11: 8] ,C0Z,S[11 8] ,C03) ;

CLA risji clan4(A[15:12] ,B[1S = 12] ,C03 S[1S:12I,C04>;
CLA clalUM19: 16] ,E[19 16], C04, 3 [19 16 ,S [20] '} ;

endmodule

Figure 46 20-bit CLA

64

APPENDIX B

1. Radix-4 Booth's Multiplier

Finished circuit initialization process.

d A^oooooaoo, S*DOQOOOQ0, product-DD0D
10D A=0QQ0O00l, B=0OQ1OOOO. product=00IG
iso A=ooai&ooi, s=0'0oiioio. product-Olba
200 A*QQ1Q0QQ1, B=DQ1Q1Q11. prod«Qt=QS8b
250 A=0011tt00l, B=00ll00lQ, product=0992
300 A-iooaaoii, B<«GQli0DQ0.. product^-S90
350 A=10100001, 8=00011010, product3f&5s
400 A=41fllll00, B=10011011, praduct=0e34
450 A*11U1Q11, B=il0C0010. product-Dl36

Figure 47 Results of functional simulation for the test-bench of Booth's multiplier

200

217

2S0

264

300

318

35Q

367

400

41?

450
4S6

250

799

211

221

197

4E8

A=000

A-000

A =000
A-000

A =0QQ

A = 0f

A = 0?

11

11

A = 001
A = 001

A-lflQ
A = I00

A*1Q1
A = 101
A = 110

A = 1I0
A = lll
A*iii

Q00QQ, B=
oooao, s-
00001. B=
oooai, B*
10001, B=
10001, s*
Q0G01, B=
O'OOOl. B=
fDGOl, 3-
10001, B=
0'DQll, B'
00011, B=
oooai, 'b--
OtiOQl, B=
liiioo, s=
1:1100, B=
iian. :b=
ii on, s«

oooooooi
00000001

0001000!

00011010

QOOIIDIO

00101011

00101011
00110010

00110010
0D11000O

OOllODOQ.

ODOliOlll
00011010

10011011
10011011
11000010

noaooio

product
product
product
product-
product
product
product
product
product
product
product
product
product
product
product
product
product
product

='KKJvE

= 0000

= 0000
^0010

=0010

=Qlba
= 01ba

=058b

= ose_

= 0992

•=e390

=e890
= £65a

= f bba

= 0e34

= Oe34

"0136

Figure 48 Results of timing simulation for the test-bench of Booth's multiplier

2. Baugh-Wooley Array Multiplier

Finished circuit initialisation process'
0 A=QQ, B-QO, productsQQC0
100 A-01, 0=10, praduDt=0B10
ISO! A«ll, B^la, prdduct*
200 A=21, Bs2b, product3
250 A=31, S=32, product=
300 A=B2. B=10. products 820
3S0 A=si. B>7a. product=d966
400 4=c5. Q=bb. product=dfe7
450 k=tl, B=f£J pradLict =0001

Figure 49 Results of functional simulation for the test-bench of Baugh-Wooley multiplier

65

0 A=00, B=00, product=S*KKK
16 .910 A=00, B=00, product=000D
100 A=01, B-10, product=0000
164.274 A=ll, B=la, product=01ba
200 A=2i; B=2b, product=01ba
214.141 A=21, B=2b, product=058b
250 A=31, B=32, product=058b
265.071 A=31, B=32, product=0992
300 A=82, B=10, product=0992
319.016 A=B2, B=10, product=f82 0
350 A=af , B=7a. product=f820
366.985 A=af , B=7a, product=d966
400 A=c5, B=bb, productBd966
419.848 A=>c5, B=bb. product=0fe7
450 A=ff , B=ff, product=0fe7
472.321 A«f f. B=ff, product=0001

Figure 50 Results of timing simulation for the test-bench of Baugh-Wooley multiplier

3, Carry-Look-Ahead Adder (CLA)

isugra_ adds i;he result* Erom utm 13 -ulcipiica'tions ijetssjeen

ava and iii tear coefilcien-cs using CLA.

'cinaseals lns/lps
mod'ulE _ddor gIa fi*, ts\ra, J ;

•Rare

SilEe

wire

Mir®

wire

•Grijre

S:Q)Kf

IS;0JKl,W2,H3,S4,HS,H6,H'7,iMSPM9,M10;
I£:QJHlI,H12,iII3,HX4,H15yIElG,K17fHlS,HlS;

lS:Ci|jM,Ib,Rc,M,ae,RtrRg,fth,M;

i8:aiK£ifP^g;

.sis

assign Ml«M„HZ*l!tirIS3-(Hi,3I-S«?I,K5^E,3IG^H,K7"'H/HB^H/]'['>''H,HlC'™Hi;

assign Hll=H,tll2=K,M13=K,Jli4^1,H.l£=MrlllS=K,K17=H,MlS=llfIlig=H;

ChkJ.& clal6aCJMirrS2,Ka] ;
CLA_16 cls.l6fe(H3,K4,P-b! ;
CLJ_1S Ci_16e(MS,I5E,kCi '•
CLA_1S clalSdai7rM8,M3 ;
CLA_1S cl^l€^|M*3,lilO,EHJ ;

CLARIS cl_lSi£Mll,Hi2:,af.J;
CLARIS clalSgCK13,mi^^m_r) ;
CLARIS clal(5litni-J,jai6,JiJa3" ;

assign ml6 = HISrIS I;
CLA_L7 clal7a'Ra,J5b„31a.ciJ ;
CLA_1? cl_l?b'RcFReLBbbJ;
CLA_1"? cla!7c |ttD,ne,Mcc J ;•

CLAJ-'J? el_l?di;Rg,JAh,RddJ;
CI.&J.7 cial79{Ri,imlS^Hi9},ne«);
CLA_18 cl&1S®.i&B.iiLfmii,"&££) J.

CLA_1B clal8btflcc,ftdd,A0# ;
C1.A 1*3 cl &15! a EH £ £ , R&

assign rlS « 3te@ [17 | ,, el@ =

CLA_2D cl__0_ (tell, •(slS,KlS,:

e„d_ad.ul-6

I [17];

Figure 51 Overall adder formed by CLA instantiations with only one input port

66

' t; iKiesaa ,Ls» 1 »s/ 1 pg

randale ackjerrc 1 a tst;

rcg [15sO]K;

vire [20:0] c^fum;

acAdei:_cla adder [K„ csurai ;

j. :i i. c i a I.

3^ e cji n

M = 16'hOcld;

#50 H ^ 16'hllli;

#50 H - lS'h02aa;

#5Q K =* 16'hCiOSI;

#50 H = IE

end

initial "frrarjitpr £Stii

encbriDdule

H=%kf totaJ £f-', K.tgiutiS

Figure 52 Test-bench for the overall adder with CLA instantiations and one input port

uciisssc&le Ins/Ips
raoduLE adder cla'Hl, ;yH7,Hll,H12,HlSJ,iriS,U.5s?.m.J ;

liivj'Ut. [1.5;GjMl,JIE/B6,K7vHll,H12vK16,E19;

wtse [IS;Cim3.H4,HS,H8,I19rHlCi,r'l-3,K14rMlS,H17,m.B;

win* U&;0SSa,l^,Sc3&,l^,MvJlij, Rli.Ri;

wire (i?:05SaarKb3j,Kcc,M*i,fie6--
ain |iEl:Cliaf f ,Egg;

Tdre U9:ti|Hhli*

•aire- _iS,!:IS,rl9;

assa cm IS = 1*
assiqn KS » 1<

'jOIOO;

•4.0700;

assign His = 16'&Cl23Ci;

»?«*_-- me = le'hflOQQ;

CLA_1S el.al£a(Hl,H2,R«iJ;
CLARIS' clal6bm3,M4fBii!;
CLA_1£ cliiISGt;HS^MS,RcJ ;

CLARIS clal6d?M7,HS^P,d;;
CLA_1S _l_iSe(H9,HlD,ile) i

CIA__1$ clalS-efMU^KlZ^Bf),-
CLA_16 ciai6g(Hl3(.K14,B_i3 ;

CLA 16 clalSi'Hl?, i,M);

-asign. HTi * 16'hlOQG;

assicjn. HS = IS'heOOO;

essEcgs H10 - lS!i*iODBO.

pss-ssgw 311.4 = LS'bQsJO.

assign H17 a 16'i-aaDO,

assign nie - HIS US);
CLA__17 cla"t?a(P.a„JlbfRaa> ;
CLA_17 claJ.?b(jlc,M(.IU3b};
CLA_17 cl._17c(E.cv^f ,Rcc) ;

CLA^l? clal7d^,Sh,Md);
CLA_17 elaI7e^l, f_lSyK13| ,Re*iJ ;

CLA_1S cl.aJ.8a(P;aa,P.bb,»f'(:i;
CLA_18 claiSb (Kcc, Sdd, Bggl >r
ei,A_15 c.la^,9-a(Ji.ff,Sgvj,fch> ;

assign rll3 - an «s[i ?] , j:IS - a<ns[17];

CLA^SO cla20affchi]., jrl3,rie,fee},£su&3

encbsodule

Figure 53 Overall adder formed by CLA instantiations with eight input ports

67

" •CUfiE seal * lsWipa
K-odul £ -dd^rErli-i tst;

rsg us Ql%t,n2,m,w ,MllfHl2,J*1,6,lU9;
oira fSO Q'l&aum;

adder rltt todtizi: !,¥A> H2,J!:'S,ll7fMlI,Vi_.].i_]nie, „un.l ;

i n i c i al

begin

Ul- It1 hO<juO;JTC-J. ' hOOOO;(16-16 • h&UOCUM?-* A' hOOOft;Nil''K) JiOOriO,
HiS: -16' hOOO0,-[[l6- 15,hGQQO;K13^i£l hODGD;

B'5 0 .IU-16'ftlD-jO;?ss-n*-' Msocjne-i^'hoaSo^HV'ie sfiQ£ECJ HI ,-n€ hi si 9s

•|1i2"l6* ftOQfO HliS-15lb67Q9;Hi9"-iSlh.afff;

ii 50 J1i=16'3USOOj}

'Mli-lfi- r.cSlO

?Z =16' hli tO; Cl6~i^ ' 111530^7-16 'KOald Ml _=lfi h. oc-gj

end

//Ul* a:g jjtkiiL a »it ttin ^irranltar system task afeauld all be in csua i. iie

ml c ^ ii Jmcirjlcor ("^^Oi.1 cii=%^, m=%h, m-%h, .P^ii, kh^s. 112 = ••El, sie-%;t, His-^ji, Mt-aiauEi^h".,

$ t IE"* Kl^.Mf^M^Ml.Hia^ii^Eig, li^xm) ;

CTldifQfrJu i,K

Figure 54 Test-bench for the overall adder with CLA instantiations and eight input ports

Sijii'uiatQ'r' is d-inef eii'cuit initi&li__tioj-i
Finished circuit initialization process.

0 H=0cld. totalsu_=0Qe627
SQ 1-5=1111. tDta!suKi=0144l3

100]i=02aar totalsuB=00329e
150 M«dD51, t_t_isu_"le7603

200 11=0023. t_talsu»=0tt0299

Figure 55 Results of functional simulation for CLA with one input port

o M=0dd, totalsura=xxxxxx
16 M=0cld, total sum=0Ge627
^0 M=llll, totalsum=00e627
65 M-llll, total suri-014443

100 M=02aa, total suri=Q14443
118 M-02aa, totalsum=00329e
150 N-dO^a, taralsum=QG329e
166 M-d051, total sum-*lc76Q3
2GQ M-0023, totalsum«lc7603
214 M-QQ23, total sum>GGQ299

Figure 56 Results of timing simulation for CLA with one input port

#0, M1-0G0Q, M2=0000, M6=0000, M7-0000, Mll=0000, Ml2=0000, Ml6=0000, Ml9=0000, totalsum=0061b4
#50, Ml-1000, M2=0200, M6=0330, M7=0efd, Mll=1579, Ml2=00f0, M16=67Q9, Ml9=afff, tOtalsum=OOb352
#100, Ml=120G, M2=02f0, M6-1530, M7=0afd, Mll-1009, Ml2=cS10, Ml6=6009, Ml9=afl2, tOtalsiim=Q07bO5

Figure 57 Results of functional simulation for CLA with eight input ports

68

#0, M1=0000, M2=0000, M6=0000, M7=0000, Mll=0000, M12-0000, W.6-0000, H19=0QG0, totalsum-xxxxxx
#26, M1=0Q0G, M2=0000, M6*00G0, M7=00QG, M11=0000, M12=0000, Ml6=00Q0, Ml9=0000, tOtalsum=0Q61b4
#50, Ml=1000, M2=020O, M6=033Q, M7=0efd, Mll=1579, M12=QQfO, M16=67Q9, Ml9=afff, totalsum=0061b4
#70, Ml=1000, M2=020O, H6-033Q, M7-0efd, Mll=1579, M12=00f0, M16=6709, Ml9=afff, totalsum=OOb352
#100, Ml=120G, M2=Q2fO, M6-1530, M7=Gafdf M1U10Q9, Ml2=c510, Ml6=6009, Ml9=afl2, total SUI?l=G0b3 52
#122, M1=120Q, M2=02f0, M6=1530(M7=0afd, Mll=1009, Ml2=c510, Ml6=6009, Ml9=afl2, totalsuiti=007b05

Figure 58 Results of timing simulation for CLA with eight input ports

4. Carry-Save Adder (CSA)

/H'hts progeajfl adds all 19 results Erosn w«atlpllfiar,3.00-3 setae
inputs and filter coefficicnts using CSA,
'/

module adde;f_csa (H^tsuw) ;

inpui Ll^tOJH;

ulJXj-jm, [20:0] i:-i?Ulti;

wire [IS : 0] HL, H2 , H3 , H4, MS, KG, H7, KG, HE",KLO;

uire [lSiQ_Hll,m,Hl3,Hl4,MlS,Mlfi,HL7,llia,Ml9;
"ire [ia;0] Ra,Rfe, Re

wire [lTiOJRd;

nice PidlS;

aaaagn H1-H_K2**H, M3-M,)M-H,H5-H, H6-H,H7-H,He-K, H9-tt,Hia»M;
assign Mll»Mf H12=H, M13=H/Hi4»H/MlS=H,Hlfi-H,Mn =H,}Iia«H, M19 =M;

C3J_1(_5 esal6_5a(Hl,H2,H3,M,K5,Ra) ;
CSA_L6_S C3alS_5b(HS,H7,He,K9,HL0J.Rh) ;
CSA__16_S _sa3fi_Sc(HLl, 1112, Hl3yHiq, HIS, Be] ;
C3A_i6 csai6a(Hi6,Hi7,Hia,Hi9,na);
assign Rdl0-Rd[17];

CSA__L9 csal9a(Ra,Rb,Rc, {RdlS,Rd>,taurnt;

ejKtoiodule

Figure 59 Overall adder formed by CSA instantiations with only one input port

69

'tiBsescaie ins/lps

MDdule ad.deircaa__-cst:

reg [15:0]K;

wire [20:0|t3!mi;

mitiaj

begin

H - 16' siDclct;

#50 M = 16'hllll;

#50 " = 16!ftQ2sa;

#50 H - IS'hdOSl;

#50 H = I6'hOD23;

end

initial ^monitor

endniodule

" n^hh, ilSiSm^h" f 11, C3UJE1)

Figure 60 Test-bench for the overall adder with CSA instantiations and one input port

'cmicscalc Ins/lpa

titQdlllB atid^c^caaiKi^KS^ESyin^ni^nis^His^ ki9#lsu3ti| ;

input. 15:0] HI,$2, JSS, S7, Kit, K12, Jllfi, 1TIQ;

ouzpu.z [20:0) tsmi;

u'.iEs ii5:Q]V&tm,H%,mrix-3rv\iB/u-\3tii-iii.fy,i5fyiii,m-n;
wire [LS!0)fta,Bb,RB;
y i£es [L~:0]Rd,-

wire Ml 8;

assign K3 = 16'hOlOD;

assign K-3 - lS'hlOOO;

assign hs = is1hoaog;

assraisrEt KB - 16'h2000;

assigrj K9 = 16'^0700;

aosiga K10 - 16'MOeO;

assign H13 = la' 11.0012;

anai-jn K14 n I6')_0rf0j

ass i _fsi 'HIS s 16' 11Q230;

assies Hi? = ifi'hinOOj

assifa. H1B - 16' MOOD;;

CSA 1$ 5 Ea.tUS^&fKi, KB,!P,TC*3,Tf5rR«] ;
C5A__1£__S caalS Sti [&6,K7JKB,.ffi^fliO,.RhJ ;
CSA 1€ "5 csaLG Se[Hll,Hl2f"l^H14,N;i5,Re);
CSA™ IS" osalSafKlfi^Hn^Hia^HlS^itJ J
ttKSigffi MW"Pa[P];

CSA_19 csaiea|P.a,PIB,Re{ {RAIS,,]^} , caum);

erndeiatlu'le

Figure 61 Overall adder formed by CSA instantiations with eight input ports

70

'tiKieaeaie ins/ipa

Module aGtSeresa^i: =3 c:

reg [1S:Q)Hl(PK2J.KS,)|7(,Hil,Kl2,]i3.0,K19;
wire [20;0}tsumj

adderjasa adder |Ki, MS,116 ,.K7,*i lvlU2,K!Sf HlS^caujiiJ 2

iKiLial

end

«l"l6-hOOOCi;K2 =li;i]iOOOC;)56--ILiSlliGOOO;M-''-lS'hOOOO;C{ll"l6!)iOO(JO;
H12=15'liOUyQj}31&=!.61 tLQDDO;3119=15' ftDOOO;

lf5C Hl=15,taODD;JJ'il =lo,SD2 0D,'l[6=15']iO33ajK7=16,l3aei!»i;}51i=i6'h.l£79;
3T22-15lhDO-na,-HlS-16'he7.05;M19=S6l 1>.&Z£Z;

#50 Ml-ifi'h1.2P0;]T2-j;6(Js02£Cl;Hfi- 1£' hJ.S3Q; K7-1 fi ' hQaliri; KU-liS ' hi DOS;
»fl2-16,h<3SlO;Kl&-16ih6Q0E5;M19-itilhr.fl2;

//the arguirettts uiti^in StaDtiiCDr aysLBJii L&_k should ail Iqb in one line
initial jJjnDMiLOf {"j^Dt], Hl^h, H2^Ui, 36-%h, vn-'-zh, Hll^h, Hi2^h, HlS-^h,,

endisjadu 1 c

Figure 62 Test-bench for the overall adder with CSA instantiations and eight input ports

Finished circuit ini tializat ion process.
U M==0cld. totalsuui"=Q0e627

50 M==1111, totalsuijL==014443
100 M=-02aa, totalsuiii ==Q0329e
150 M= d051. totalsujn ==lc7603
200 M= 0023, totaisuiii==000299

Figure 63 Results of functional simulation for CSA with one input port

0 M=Qcld, totalsum=xxxxxx
17 M=Qcld, totalsum=00e627
67 M=llll, tota"Isum=Q14443

100 M=02aa, tota1sum=014443
114 M=Q2aa, totalsum=QQ329e
150 M=d051, totalsum=00329e
167 M=d051, totalsum=lc7603
200 M=QQ23, totalsum=lc7603
212 M=QQ23, totalsum=000299

Figure 64 Results of timingsimulation for CSAwith one input port

#0, Ml-0000, M2=0000, M6=0000, M7=Q000, Mll=0000, Ml2=00Q0, Ml6=0000, Ml9=0000J totalsum=0061b4
#50, ^1=1000, M2=0200, M6=0330, M7=0efd, Mll=1579, Ml2=00f0, M16=67Q9, Ml9=afff, tOtalsuiTl=GGb352
#100, Ml=1200, M2=02f0, M6=1530, M7=0afd, Mll=1009, Ml2=c510, M16=6009, Ml9=afl2, totalsum=OO7b05

Figure 65 Results of functional simulation for CSA with eight input ports

71

#0, M1=0000, M2=0000, M6=0000J M7=0000, Mll-OOQO, M12-0000, Ml6=0000, M19=000Q totalsum=xxxxxx
#23, Ml=0OQG, M2=0000, M6=0000, M7=000Q, [€11=0000, H12=0000, M16=QQ0Q, Ml9=0000, totalsum=0061b4
#50, Ml=1000, M2-02QG, M6=0330, M7=0efd, Mll=1579, M12=00f0, M16=6709, M19=afff, tOtalsum=Q063 b4
#70, Ml-1000, M2=O2O0, M6=0330, M7-0efd, Mll=1579, Ml2=00f0, Ml6=6709, Ml9=afff, tOtalsuill=00b352
#100, Ml=1200, M2=02fO, M6=1530, M7=0afd, KL1=1QQ9, Ml2=c51G, 1416=6009, Ml9=afl2, tOtalsum=Q0b352
#122, Ml-1200, M2=02fO, M6-1530, M7=0afd, Mll-1009, M12=c51Q, M16=6009, M19=afl2, totalsum=GQ7bQ5

Figure 66 Results oftiming simulation for CSA with eight input ports

72

