IMPLEMENTATION OF FIR FILTERS IN
HARDWARE DESCRIPTION LANGUAGE (HDL)

By

TONG KIN WAH

FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulﬁﬂment of the Requirements
for the Degree
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri [skandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2006
by
Tong Kin Wah, 2006

ii

CERTIFICATION OF APPROVAL

IMPLEMENTATION OF FIR FILTERS IN
HARDWARE DESCRIPTION LANGUAGE (HDL)

by

Tong Kin Wah

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved by:

AL

Azrina Binti Abd. Aziz

" Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2006

it

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

e

=

Tong Kin Wah

iv

ABSTRACT

Digital filters are used in digital signal processing (DSP) to improve the quality of a
signal, to extract information from signals or to separate two or more signals previously
combined. The advancements in VLSI technology have seen the growing popularity of
digital filters rather than analog filters. Due to a surge in high performance portable
systems, there 1s a continuous drive for methodologies and approaches of low power and
high throughput FIR filter cores. The components of an FIR filter include adders,
multipliers, memory unit and control unit. This project intends to compare the
performances of different structures of adders and multipliers and integrate these
structures to yield a filter which displays the best performance in terms of area, speed
and power consumption. The hardware implementation of FIR filters is done using
Verilog.'Hardware Description Language (HDL). All the filter components are modeled
using HDL, in which they are then synthesized, implemented and simulated. The
simulated design that has been verified is downloaded into Field Programmable Gate
Array (FPGA), where Xilinx Virtex-II chip is used. Hardware verification is performed
by testing the filter output using a logic analyzer. Important considerations in this project
are the selection of appropriate number of bits for input samples and filter coefficients,
and also the number representation scheme. The choices made will affect the
performance of the filter. This project brings out the importance of exploring varies
structures of adders and multipliers that will improve filter performance. This area of
study is lacking although there exists innumerable research on advance techniques to
implemént fow power and high throughput filter. The designed FIR filter in this project
can be further improved by comparing more structures of adders and multipliers, and

incorporating some advance techniques.

ACKNOWLEDGEMENTS

This design project has equipped me with abundance knowledge and it would not
be a success without the help of a legidn of people. First and foremost, I would like to
express my heartfelt gratitude to my supervisor, Azrina, who has not failed to attend to
my needs. She is indeed very helpful in} attempting to provide solutions fo my problems
and lead me to the resources that are of greaf help. 1 would also want to thank her for
directing one of my problems to her friend, Weng Fook Lee, who has actually provided

me with suggestions that guide me through the design process.

I 'am also indebted to three lecturers, Mr. Lo, Mr. Patrick and Dr. Yap, who have
helped and guided me much in this project. I want to thank them for spending hours with
* me in debugging and for their precious piece of advice. Besides, they are patient with all
my inquiries and are always willing to lend a helping hand. Not forgetting also to give
my thanks to the lab technician, Kak Azira, for the eagerness to help in every way
regarding the lab equipment. It would be a tough time without her help in installing the

software and obtaining the lab equipment and manuals.

There 1s another person whom I owe my thanks to — Kuang Sun, who is one of
Mr. Lo’s FYP students. He is of tremendous help in my project since a part of his project
is rather similar to mine. With his help and advice in using the software and lab
equipment, a lot of time is saved and more focus can be put into the design. Lastly, I
want to take this opportunity to thank everyone who has directly or indirectly involved in
this project, be it offering technical information or giving other useful advice. Once
again, thank you so much for pfoviding me with a wonderful experience in completing

this project.

Vi

TABLE OF CONTENTS

10 SN) S VN £ =T ix
LIST OF FIGURES .ovveceoueeevvveoeeeeeee oo eeseeeesseeseseessesesesess e seoeeseeeeeseosiesseeeesseeseeeesssoseesren X
LIST OF ABBREVIATIONS ..o xiii
CHAPTER I INTRODUCTION ...ocieooeeeeseeeeeeeeeee oo eeeee e eeees e reesreeones 1
1.1 BACKGROUND OF STUDY ...oooovvoeeeoreeososoooreosemossessossesmssssssrosnaerones 1

1.2 PROBLEM STATEMENToo.coovovvoeoveieceorecreenens S 2

1.3 OBJECTIVES ...ooovooeeeeoseee e ereesss e 3

14 SCOPE OF STUDY oo 3

CHAPTER 2 LITERATURE REVIEW/THEORYoemmmnrererrooeesisesssessessssesssssssenessseee 5
| 2.1 DIGITAL FIR FILTERS ©..ovooooovvveesoeecessoe e ioseesoreereressesensoreesonses 5

2.2 TWO’s COMPLEMENT ...oooooivooenorcesseee oo eeseeesee e esses st 8

2.3 ADDERS .ot eee et 9

2.3.1 Cary-Look-Ahead Adder (CLA).....ooiiiiiieeeeeee e 9

232 Carry-Save Adder (CSA) o 11

24 MULTIPLIERS ©..ooooioeeoeeeeoeeeeeeeseere e eeeeeee e eveeesess e 13

2.4.1 Radix-4 Booth’s Multiplier (Booth’s Algorithm) 14

2.42 Baugh-Wooley Array Multiplier...........ocooovvniiiiinieiiie 17

CHAPTER 3 METHODOLOGY/PROJECT WORKoocireeerseeveoersonreeesseeseeesseneen 20
3.1 PROJECT FLOW w.ooooooooeeeeeeeseeeseeeeeeeee e seeeseeseeee s 20

3.2 BASIC DESIGN METHODOLOGY ...oooverienirsonsessisermiencrnnrnsreenens 23

3.3 BIT REPRESENTATION SCHEMEoooommoovierreeres R

34 IDENTIFICATION OF TOOLS ...ooovoe..... e S 24

3.5 TASKS ACCOMPLISHED.d............. e S 25

3.6 PROBLEMS ENCOUNTERED........cocccoovvommoveeoeemeonseeesersereoereeans 25

3.7 TESTING & TROUBLESHOOTINGorovverioeeemreeeereerer e 26

CHAPTER 4 RESULTS & DISCUSSION w....covveoreioeesioeeseseeieneseesevesssseeseseomess e 27
4.1 FIR FILTER SPECIFICATIONSovovveiorvereeerrenenrnas S 27

4.1.1 Analysis of Designed FIR Filter.......c..cocooioiiniiiniiinnnn, 27

42 VERILOG CODESovoooreeeeseeereeeeeeeeeeeeseeseesessseeeseseesiesse e 30

vii

4.2.1 Baugh-Wooley Array Multiplier............ccovvveereveeoe e, 30

422 Carry-Look-Ahead Adder (CLA).........o.ooovveeeceeeeoee, 32

4.2.3 Shift Register (Delay Units).......c.ococevivveeivneereeoeseeesr s, 33

4.2.4 Filter Implementationc.coevvniiiecreeee e eeees s, 34

4.3 SOFTWARE SIMULATIONSco.oviimiitreeeeereeseerees e, 37

4.3.1 Performance COmMPAariSOnScocovevriveeireeeerineeereeeessreseess oo, 38

4.3.2 Complete fIlter. ..o, 39

44 HARDWARE SYNTHESIScc.coooiiiiieeoeeeeeee oo, 42

4.5 DISCUSSION.......ccooennn.. e e s 43

CHAPTER 5 CONCLUSION & RECOMMENDATIONS ..o 46
REFERENCES ..ottt ettt e 47
APPENDICES ...t 49
APPENDIX Aot 49

APPENDIX B ...t 65

yili

LIST OF TABLES

Table 1 Advantages and disadvantages of digital filterscocoovveeerineen., e 6
Table 2 Comparison between FIR and ITR fIlters...........ocooveerroverreerceeeeoes oo, 7
Table 3 Radix-4 Booth’s recoding.......; .. 14
Table 4 Selection of multiplier based on fewer transitions in 0°S or 178 wv.vvvevvveveveoenn, 15
Table 5 Filter SPecifiCations..........oov.eeevueruevieeeeeeree oo eee oo 27
Table 6 ;Performance comparison between multiplierso.cocvevveveer e 38
Table 7 SPerformance comparison between adders with one input port..........coevovvvernn.n. 38
Table 8 Performance comparison between adders with eight input ports..............o......... 38
Table 9 %C.omplete filter PErfOrmMAanCE.....cocoovvviviviieecs et ee e 40

ix

LIST OF FIGURES

Figure 1 A sirhpliﬁed block diagram of a real-time digital filter with analog input and

OUIPUL SIZNALS ...t ettt et 5
Figure 2 A conceptual representation of a digital fIer.........ooooveeveereroeeee oo, 6
Figure 3 Gate-level circuits and equations for (a) half adder and (b) full adder 9
Figure 4 A 4-bit CLA showing carry-out circuitry..... e 10
Figure 5 General block diagram layout for a CSA using full adderscocoerivinn. 12
Figure 6 Sequential multiplication of 2’s-complement numbers with right shifts 13
Figure 7 Radix-4 multiplication with modified Booth’s 1eCOdINg ovveviiviiiiceiees e 15
Figure 8 Hardware realization of radix-4 multiplier based on Booth’s recoding............. 16
Figure 9 Recoding logic and multiplexer to generate partial products..............oo.oovo.... 17
Figure 10 A 5-bit Baugh-Wooley multiplieroccv.veevoveeir oo, 19
Figure 11 (a) DF FIR filter architecture (b) TDI FIR filter architecturec.coco.n...... 20
Figure 12 Etire Project flOW.o iveeeeeeeereeeereoeeeosceeseosses e oo 22
Figure 13 Steps in designing small modules of a filterooocovoeeovvoseoveeoeeeoerr, 23
Figure 14 Codes to test the filter performancec.coooooovorereoeecoreeoeeoeeoeoeoe 28
Figure 15 Original signal and generated random NOISEcccovovevieeeeeererceeeeeeens 29
Figure 16 Noisy signal and filtered SIgnal..........coocorrooreeeeeeseroeeees oo 29
Figure 17 Partial codes of Baugh-Wooley multiplier............c.ooovvoviiviiiieiecccs e 30
Figure 18 Tesfn-bench for Baugh-Wooley array multiplier..........ooooooivveeoeeeeeer, 31
Figure 19 Fuli BAART ..o, 31
Figure 20 Half adder.......ooooiii e oo oo, 31
Figure 21 16-bit CLA oot ee e ee e 32
Figure 22 17-bit CLA ..ottt e e 32
Figure 23 Shifi register acts as delay units by flip-flop instantiationsevee...... 33
Figure 24 Verilog codes of & D flip-flopc.oveeeiceioeciiecoeeeoee e, 33
Figure 25 Verilog description for the complete ﬁlter.: ... 35
Figure 26 Test-bench for the complete filtercooveveveeiiiereeccee oo, 36
Figure 27 Partial results for the functional simulation of the filter test-bench............... 39

Figure 28 Partial results for the timing simulation of the filter test-bench...................... 40

X

Figure 29 Partial waveforms for the functional simulation of filter test-bench 41

Figure 30 Partial waveforms for the timing simulation of filter test-bench 41
Figure 31 Signal generator module providing INputs to flter .o 42
Figure 32 Top-level OUIE ... 42
Figure 33 Verilog codes of signal generator module..........ooeeveoeoeeeooreseseeeeeesenen)
Figure 34 Baugh-Wooley multiplier with instantiations of full adders...........co.cocvvvoov..... 51
Figure 35 Radix-4 Booth’s multiplier with 8-bit Iputsoovvvieeeeerereerioreseeesesees, 52
Figure 36 Recoding logic and multiplexer to generate partial products..........vvvveronn.... 52
Figure 37 CSA for Booth’s multiplier to sum all partial productsocooeeeeevrvrvvvrnon.. 54
Figure 38 Test-bench for radix-4 Booth’s multiplierocovvovvvvoereees oo, 54
Figure 39 16-bit CSA adding four Operands.............coccovoreereeeroeercoseeseeeoseooes oo 56
Figure 40 16-bit CSA adding five 0perandso.o.ivooioeoieee oo, 58
Figure 41 19-bit CSA adding four operands...........ocoocvveveeereecver s ceees e cs oo, 60
Figure 42 4-bit CLA without $ign eXIensiono.covvverereresres oo oo, 61
Figure 43 4-bit CLA with Sign eXtensiono.oooverioe oo, 62
Figure 44 18-Dit CLA ..ot 63
Figure 45 19-bit CLA ...ttt see e 63
Figure 46 20-bit CLA oo et e s e 64
Figure 47 Results of functional simulation for the test-bench of Booth’s multiplier....... 65
Figure 48 Results of timing simulation for the test-bench of Booth’s multiplier............. 65

Figure 49 Results of functional simulation for the test-bench of Baugh-Wooley multiplier

Figure 50 Results of timing simulation for the test-bench of Baugh-Wooley multiplier. 66

Figure 51 Overall adder formed by CLA instantiations with only one input port 66
Figure 52 Test-bench for the overall adder with CLA instantiations and one input port. 67
Figure 53 Overall adder formed by CLA instantiations with eight input ports............... 67
Figure 54 Test-bench for the overall adder with CLA instantiations and eight input ports
.. 68
Figure 55 Results of functional simulation for CLA with one input port 68
Figure 36 Results of timing simulation for CL.A with one input port.................cccoooo..... 68
Figure 57 Results of functional simulation for CLA with eight input ports..................... 68
Figure 58 Results of timing simulation for CLA with eight input portscocccovvvun.n. 69

X1

Figure 59 Overall adder formed by CSA instantiations with only one input port............ 69
Figure 60 Test-bench for the overall adder with CSA instantiations and one input port.70

Figure 61 Overall adder formed by CSA instantiations with eight input ports................. 70
Figure 62 Test-bench for the overall adder with CSA instantiations and eight input ports
.. 71
Figure 63 Results of functional simulation for CSA with one input port...........cover...... 71
Figure 64 Results of timing simulation for CSA with one input portoev.oveovrveennn., 71
Figﬁre 65 Results of functional simulation for CSA with eight input ports...........o......... 71
Figure 66 Results of timing simulation for CSA With;eight input ports.........coocvvreeennn. 72

xii

ASIC
CLA
CSA.
DF
DSP
FIR
FPGA
HDL
IR
I0B
TDF
VHDL
VLSI

LIST OF ABBREVIATIONS

Application-Specific Integrated Circuit
Carry-Look-Ahead Adder
Carry-Save Adder

Direct Form

Digital Signal Processing

Finite Impulse Response |
Field Programmable Gate Array
Hardware Description Language
Infinite Impulse Response
Input/Output Block

Transpose Direct Form

Very high speed HDL

Very Large Scale [ntegration

Xiil

CHAPTER 1
INTRODUCTION

1.1 BACKGROUND OF STUDY

Digital filtering is one of the most important operations in digital signal
processing (DSP). Digital filters are widely used in any arca where information is
handled in digital form or controlled by a digital processor. The continuous growing
trend towards digital solutions can be seen in all areas — from electronic instrumentation,
contfol, data manipulation, signals processing, telecommunication to consumer
electronics. Due to the advancements in VLSI technology, digital filters are fabricated
with greater reliability, smaller size, lower cost, lower power consumption and higher

operation speed.

The objectives of using digital filters in DSP are to improve the quality of a
signal (for example, to remove or reduce noise), to exiract information from signals or to
separate two or more signals previously combined. The use of digital filters is especially
important to minimize the distortion of the in-band signal components. For instance,
digital filter is used in speech synthesis — the Speak and Spell is an example in which it is
an electronic learning aid for children and uses the LPC (linear predictive coding)
techniques, where the actual human speech to be reproduced later is modeled as the

response of a time-varying digital filter to a periodic or random excitation signal.

There is a continuous demand for low power and high throughput FIR filtering
cores in DSP architectures. Researches in the literature have developed a number of
techniques to implement digital filters in achieving the above purposes. These include
the following: use of differential coefficients, wordlength optimization, multirate
architectures and dynamic adjustment of filter order [1,2]. Other techniques introduced
by researches include coefficient segmentation, block processing and combined
segmentation and block processing algorithms, as demonstrated in [3,4,5]. The choice of

number representation scheme, investigated in [6,7), can affect the filter performance.

1

Digital filters are normally modeled using software simulation and then
synthesized into corresponding hardware circuit using field programmable gate arrays
(FPGAs) or application-specific integrated circuits (ASICs). A Hardware Description
Language (HDL) provides the framework for the complete logical design. Verilog and
VHDL are the two most commonly used HDLs today. Verilog as an HDL was
introduced by Cadence Design Systems; they placed it into the public domain in 1990, It
was established as a formal IEEE Standard in 1995. The revised version has been

brought out in 2001,

Software simulators offer flexible schemes to code the algorithm from a choice of
many languages but cannot always offer the speed that a hardware simulator can.
Unfortunately, building hardware prototypes to model different systems can be costly
and time consuming when constant changes have to be made. Therefore, a middle
ground might be found using custom computing platforms or programmable logic. Such
systems can offer similar flexibility as software and still retain some or all of the

hardware acceleration at the cost of a shorter implementation cycle.

FPGAs are becoming increasingly popular for rapid prototyping of designs with
the aid of software simulation and synthesis. Software synthesis tools translate high-level
language descriptions of the implementation into formats that may be loaded directly
into the FPGAs. An increasing number of design changes through software synthesis
become more cost effective than similar changes done for hardware prototypes. In
addition, the implementation may be constructed on existing hardware to help further

reduce the cost,

1.2 PROBLEM STATEMENT

The requirement of this project title is to implement FIR filters using suitable
Hardware Description Language (HDL). The design can then be synthesized into
hardware circuit using FPGA. In fact, there are innumerable methodologies and

techniques used to implement low power and high throughput FIR filtering cores, as

discussed in [1,2]. The components of a filter include adders, multipliers, memory unit
and control unit. Different structures of adders and multipliers will give different
performance. Hence, this project aims at modeling the components in HDL and
investigating the performance of different structures of adders and multipliers using a
simulation tool. The performance is to be viewed in terms of structure size, speed and

power consumption.

The adder and multiplier structures, that give the best performance, are to be used
in the filter design and the overall filter performance is analyzed. Once software
simulation is completed and successful, the final filter désign is downloaded into FPGA
and verified to ensure that the filter is functioning properly. Performance comparison
analyses among various structures of adder and multiplier are lacking since many
researches currently focus on the filter implementation techniques. Hence, this project

brings out the importance of investigating the structures of adders and multipliers.

1.3 OBJECTIVES

1. To develop software simulations for FIR filters using Verilog HDL.
2. To compare the performance of the different structures of adders and multiphers in

relation to area, speed and power consumption.

L8]

To select the structures of adder and mulﬁplier with the best performance and

integrate them with memory unit and control unit to build the overall filter.

4. To select a suitable computational arithmetic (unsigned, signed, fixed or floating
point) and the number of bits to represent filter coefficients and input data.

5. To synthesize the filter design into hardware using FPGA and verify its functionality

using appropriate equipment.

1.4 SCOPE OF STUDY

1. The concepts and theories of FIR filters are learnt.
2. The design methodology for FIR filters from specifications, coefficients calculation,

filter structure, finite wordlength effects to filter implementation are learnt.

- A suitable data processing style and computational arithmetic for representing the
input samples and filter coefficients are decided upon.

. BEach component of the ﬁlter..(adders, multipliers, memory unit and control unit) is
coded into Verilog and their functionalities are verified.

. Ditferent types of adders and multipliers are explored. The performance of different
structures of each component is compared in terms of area, speed and power
consumption.

. All components are integrated to form a complete filter. The final design is verified
functionally and a detail analysis is done.

. The debugged design in HDL is synthesized into corresponding hardware circuit
through FPGA.

CHAPTER 2
LITERATURE REVIEW/THEORY

2.1 DIGITAL FIR FILTERS

A filter is essentially a system or network that selectively changes the wave
shape, amplitude-frequency and/or phase-frequency characteristics of a signal in a
desired manner. A digital filter is a mathematical algorithm implemented in hardware
and/or software that operates on a digital :input signal to produce a digital output signal
for the purpose of achieving filtering objective. Digital filters often operate on digitized

analog signals or just numbers, representing some variable.

A simplified block diagram of a real-time digital filter, with analog input and
output signals, is given in Figure 1. The bandlimited analog signal is sampled
periodically and converted into a series of digital samples, x(#). The digital processor
implements the filtering operation, mapping the input sequence, x(x), into the output
sequence, y(n), in accordance with a computational algorithm for the filter. The DAC
converts the digitally filtered output into analog values which are then analog filtered to

smooth and remove unwanted high frequency components [8].

) _ ADC with) .) o
X Input » sample and X(H> Digital | ¥ n| DAC ,| Output y
Analog filter hold processor filter Analog
input output

Figure 1 A simplified block diagram of a real-time digital filter with analog input and
output signals [8]

Digital filters play important roles in DSP. Compared to analog filters, they are
preferred in a number of applications; for example, data compression, biomedical signal
processing, speech processing, image processing, data transmission, digital audio and
telephone echo cancellation. The advantages and disadvantages of digital filters

compared to analog filters are summarized in Table 1.

5

Table 1 Advantages and disadvantages of digital filters [8]

Advantages

Disadvantages

Can have truly linear phase response.

Performance of filters does not vary with
environmental changes — eliminates the need
to calibrate periodically.

Frequency response can be automatically
adjusted if it is implemented using a
programmable processor.

Speed limitation. Operating speed of
digital filters depend on speed of digital
processor used and the number of
arithmetic operations performed.

Several input signals or channels can be
filtered by one digital filter without
replicating the hardware.

Both filtered and unfiltered data can be saved
for further use.

Finite wordlength effects. Digital filters
are subjected to ADC noise resulting from
quantizing a continuous signal and to
roundoff noise incurred during
computation.

Can be fabricated small in size and consume
low power due to advancements in VLSI
technology.

More flexible in terms of precision — only
himited by the wordlength used.

Can be made to work over a wide range of
frequencies even at very low frequencies.

Long design and development times.
Hardware development for digital filters
can consume a longer time than for analog
filters.

Digital filters can be divided into two categories, namely infinite impulse

response (IIR) and finite impulse response (FIR) filters. Either type of filter, in its basic

form, can be represented by its impulse response sequence, k(%) as in Figure 2. The

choice between FIR and IIR filters depeﬁds largely on the relative advantages of the two

filter types (See Table 2).

Y

hk), k=0,1,...

v

x(n) (impulse response) V()

(input sequence)

(output sequence)

Figure 2 A conceptual representation of a digital filter

Table 2 Comparison between FIR and IIR filters [8]

FIR filter L IR filter

Nonlinear phél_se respo'ns'e," especially at

| Can have exactly linear phase response | band edges

Nonrecursive, always stable Stability problems

| Finite wordlength effects are much less

Finite wordlength effects are more severe
severe oo

? Requires more processing time and storage | Less coefficients leading to less processing
for a given amplitude response specification | time and storage

Analog filters are readily transformed into
equivalent IIR filters meeting similar
specifications

Filters with arbitrary frequency responses
are easier to be synthesized

The basic FIR filter is characterized by the following two equations:

N-1

ymy=> hkyx(n—k) ~ coeeeeeeee Equation 1
pary
N-1

H(z)=> h(k)z™" meemmeee Equation 2
k=0

where A(k) are the impulse response coefficients of the filter, H(z) is the transfer function
of the filter and NV is the filter length, which is the number of filter coefficients. The sole
objective of most FIR coefficient calculation (or approximation) methods is to obtain
values of :h(n) such that the resulting filter meets the design specifications. S.everal
~ methods are available to obtain s(n) and the most commonly used are window, optimal

(Parks-McClellan) and frequency sampling methods. All three lead to linear phase FIR
filters. '

The number of bits used to represent the input data to the filter and the filter
coefficients and in performing arithmetic operations must be small for efficiency and to
limit the cost of the digital filter. The problems caused by using a finite number of bits
are referred to as finite wordlength effects and can lead fo performance degradation of

the filter. Finite wordlength effects include [8]:

1) ADC noise. ADC quantization noise which results when the filter input is derived
from analog signals.

ity Coefficient quantization errors. These result from representing filter coefficients
with a limited number of bits,

11i) Roundoff errors from quantizing resulls of arithmetic operations. This may be
caused by the wordlength of the processor used.

iv) Arithmetic overflow. This occurs when partial sums or filter output exceeds the

permissible wordlength of the system.

The computation of output sequence, y(n) involves multiplications,
additions/subtractions and delays. Thus, filter implementation needs the following basic
components:

1) memory (RAM) to store the present and past input samples, x(rn} and x(n-k)
ii) memory (RAM or ROM) for storing the filter coefficients, the /(%)

1ii) multipliers to multiply input samples and filter coefficients

iv) adders to sum the outputs from multipliers

v) control unit to schedule the operations of all components in a filter

22 TWQO’s COMPLEMENT

Two’s complement number representation is used (o represent signed numbers.
This form of representation is also known as radix complement (RC) representation.
Two’s complement is selected over other representation schemes because it is able to
perform signed addition and multiplication using the same circuitry as in unsigned
addition and multiplication. To obtain the two’s complement of a number, first
complement (negate) all the bits in the number, including the sign bit and all magnitude
bits, then add one to the least significant bit of the number. In order to add or multiply
two 4-bit operands, signed extension needs to be carried out beforechand, so that the MSB
is the sign bit and all four bits are magnitude bits. For example, integer 5 is represented
by 00101, while integer -5 is represented by 11011,. Hence, addition of two 4-bit

operands requires a 5-bit adder.

2.3 ADDERS

The iterative design process is used to design adder and subtractor circuits at gate
level. Two’s complement representation of signed numbers is used so that subtraction
can be done using the same circuitry as in addition. The two basic adders are half adder
(IIA) and {ull adder (FA). A half adder is capable of adding two 1-bit operands while a
full adder can add two 1-bit operands and an input carry. Both adders result in two
outputs —a sum and an output carry. The gate-leve! circuits and equations for half adder

and full adder are shown in Figure 3.

Higher bits adders are formed by employing the full adders and half adders where
appropriate in an iterative modular design process. Examples of higher bit adders are
ripple-carry adders, carry-look-ahead adders, carry-save adders, carry-select adders and

carry-skip adders.

e PRI T o SRR

- ______Wj\u ,_.\ 'Sﬂ L i . Ji . . Ji_“
. .o . S ‘}._— . - RLI i -
‘ BO ‘r!'.’l o //}. o o [o [——
L - :
..... -

CGate-lvelciolt B A S
SR EGEaie-l:eveI'cirm;rii V
Equations: Equations:
S0 =A0® B0 S=CI®AS®B
CO1 =A0B0 CO=AB+CLA+CILB
(a) or
CO=(A®B).CI+AB
(b)

Figure 3 Gate-level circuits and equations for (a) half adder and (b) full adder

2.3.1 Carry-Look-Ahead Adder (CLA)

- The 4-bit CLA showing the carry-out circuitry is indicated in Figure 4. This
figure assumes that there is no input carry at bit position 0. The propagation delay times
shown in parentheses for the carry-out bits and the sum bits for the CLA are substantially

smaller than that of ripple-carry adder as the number of stages increases. The CLA

9

contains carry-'generate terms (G; = A;.B;) and carry—propag'a_té terms (P; = A;B;). From
full adder,r COw1 = AjB; + CIi.(Ai+Bi). The Ca’rry bit 'chtainé one carry-generate term
‘and one carry-propagate term. Wheﬁ the expression A;B; is 1, the carry-out bit becomes
| independent of the carry-iﬁ bit, CI; and so the expression A;B; is called the carry-

generate term. It generates the carry-out bit [9].

A # A &2 A1 B Al Ml
] [&5 I | 11 £ . ! L.
P a0k o LA B 4 m o | A &
£ OFA minusthn T it s F min the | A i ey
sl Gzcinl At Uyl gt LYol it Il g girgi
M ki 3
i I T
5 32 i 5 St
{er,) 1543 i 3.3
e it r e AT] Al)
» o SN : ar 3] ek
1] A E e 3 ¥ ! . 5
?:-'L-':v & o L3 - Cﬁmﬂ AL ' i s e L
LA Gt ' ‘ '
o HT 1l
)
G
el 1
[+ i)
. AT
4]
Carry-eond gifoui Canr-nuf sizont el ani) Canv-out crenit

lFigure 4 A 4-bit CLA showing carry-out circuitry [9]

When the carry-in bit CI; is 1 and the expression Ai+B; is also 1, the carry-out bit
- becomes 1 and so the expression A;+B; is called the carry-propagate term. It propagates
or moves the value CI to the carry-out bit [9]. The carry-out bit of the non-ripple

expandable CLA can be written as fbllc_iws for each bit position:

Bit position 0:
CO1 =G0+ CI0.PO-

Bit position 1:

C0O2=G1+CIL.P] S
=Gl + COL.P1 _ Cli=CO;
=G1+GO.PI + CI0.PO.P1

Bit position 2:
CO3=G2+CI2.P2
=G2 +CO2.P2
= (G2 +G1.P2 + GO.P1.P2 + CIO.PO.PL.P2

10

In general, CLA bit position organization scheme fori=0,1,2...:
COu =Gi + Gt Pi + Gio Pi . Py + Gy Py PP+ ..+ CIO.PO.PL.. PPy

----------- Equation 3

Since each carry-out bit is in SOP (sum of product) form, each function can be
implemented as a 2-level gate circuit that is dependent only on the carry-generate and
carry-propagate terms for the current bit position and all the previous (or less significant)
bit positions. Since each carry-generate carry-propagate term required only a single gate
level of logic, each carry-out function past bit position 0 can be implemented as a 3-level
gate circuit with settling time (propagation delay time) of just 3t,. This reduces the

settling time for the sum bits to only 61, for any CLA with three or more bits [9].

Three things limit the usefulness of CLA circuitry when it is applied over a large
number of stages:
1) The carry-generation term GO from first bit position must be capable of driving
each of the succeeding stages. |
ii) Each succeeding stage requires gates with an increasing number of inputs (gates
with a higher fan-in).
i) Gate count increases and thus, cost increases with each additional stage.
Due to these limiting factors, CLA is usually implemented over small groups of bits
(such as 4 bits). The carry-look-ahead technique can then be applied again over the

groups as they are cascaded [9].

2.3.2 Carry-Save Adder (CSA)

Carry-save adders are designed to add more than two operands. This technique
involves cascading full adders such that the carry output of each adder is shifted to the
left one bit position and added to an FA in the next row (referred to as carry save) except
for the last row. A single RCA (ripple-carry adder) or CLA may be used in the last row.
The concept is illustrated below for the addition of five 1-bit operands A0, BO, C0, D0
and EQ. The following relationship is used to determine the number of rows of adders

required [9].

11

Number of rows of adders = Number of operands to be added — 1

Al Operand 1
B0 Operand 2
+ CO0 Operand 3
S10 Sum, Row | _
CO11 Carry, Row 2 (carry save)
+ D0 - Operand 4 ,
S21 820 Sum, Row 2
CO21 Carry, Row 3 (carry save)
+ E0 Operand 5
S31 8530 Sum, Row 3
€032 CO31 Carry, Row 4 (carry save)
+ C043 C0O42 CO41 Carry, Row 4 (no carry save)
S43 S42 S41840 Sum, Row 4 (last row)

Extending the concept for more bits, a general block diagram layout for a CSA using FA
can be drawn. The diagram layout is illustrated in Figure 5. This type of circuit
configuration is also referred to as a Wallace-Tree Summing Network. HA can be used
in places where only two bits must be added and the least significant bit is not required

for the adder in the last row [9].

AL BRI .-\l.lFH 1 AN B0 CN
b il b4
A I OF ;
FA e 1 FA Roww |
X2 5
| | |1
| — o
: !’J?] D l l . r Avaenl
¥ . ; Y Iy
Fa A FA R 3
| T] T f
a‘ ;
% s-; & ' l By wL{;_ND
¥ X 4 T ¥ X
Fao . Fa I Rovie 3
* 3
l i | _im____i 1
| l I ! -.._;_i..,.,,.w.m
T : EREN
i GND
rors Fay A J Larst How
: .

¥i

Figure 5 General block diagram layo

12

Su

ut for a CSA using full adders {9]

24 MULTIPLIERS

Multiplication of signed numbers represented by two’s complement is not as
straightforward as multiplication of unsigned numbers. Multiplication of signed numbers
employs an algorithm, either right-shift or left-shift algorithm. In this section, right-shift
algorithm will be discussed as this involves less hardware realization. Multiplication

with right shifis uses top-to-bottom accumulation as governed by the following equation:

pUﬂ)' = (p(}') + xja 2k) -1 Wlth p(O) =0 and
‘"‘"’”’“‘add—-l p(k) =p = ax+ p(O}Z—f{
\—shift right—|

The example in Figure 6 shows a sequential multiplication of two’s complement
numbers with right shifts. The multiplicand is -10 and multiplier is 11, which yields
result -110. For two’s complement, arithmetic shift right (ASR) is used to preserve the
MSB in which the contents are shifted right by one bit. For example, 1101 becomes 1110
and 0101 becomes 0010. The carry-out is discarded for the addition of previous and

current partial products.

a 1011
X e 22 0
P 00000
Previous partial X 10110
product 2001} 110110
Current parti:«ll\‘,D'(Ql,l 11011 0
product T E 10110
2pid 110001 O
Lett-most bit isw 11 {J 00 10
NOT carry-out TXE D000O0
bit, it is the sign 2;%{-3} 111000 10
bit produced Pt 11100 010
during ASR *Xa8 10110
210 110010 0tTO
feind 11001 06010
g8 00000
285 1711001 0010
pt® 11100 10010

Figure 6 Sequential multiplication of 2°s-complement numbers with right shifts [10]

13

2.4.1 Radix-4 Booth’s Multiplier (Booth’s Algorithm)

Booth’s Algorithm is used to replace strings of 1’s in multiplier by +1 and -1.
This is the most basic form of Booth Algorithm called radix-2 Booth recoding. There are
two ways to speed up the multiplication process:
1) Reducing the number of operands td be added by handling more than one
multiplier bit at a time.

i) Adding the operands faster via parallel/pipelined multi-operand addition using
tree and array multipliers.

Radix-4 Booth’s recoding is a variation of modified Booth’s Algorithm. Table 3
shows the recoding techniques associated with radix-4 Booth’s Algorithm, Multiplier bit
position is denoted x; and the recoded version for multiplier is z;,. An example to recode
the multiplier is provided below the table. From the example, it can be seen that a 16-bit
multiplier 1s recoded to an 8-bit operand, thus reducing the number of partial products to

be added.

Table 3 Radix-4 Booth’s recoding {10]

Explanation

Kiwt X Xpq Yo Yoo Zipz

0 0 0 0 0 Q No string of 1s in sight

o 0 1 0 1 1 End of string of 1s

0 1 0 O 1 1 Isolated 1

0 1 1 1 0] 2 End of string of is

1 0 © 1 G 2 Beginning of string of 1s

1 0 1 "1 1 “1 End a string, begin new one
1 1 Q o 1 | Beginning of string of 1s

1 1 1 G 0 0 Continuation of string of 1s

Example: (21 31 22 3240,
1001118110101 10 OCparandx

(ty 2 2 1 2 T ¢ "2 Recoded
version z

14

-a=1010 0110

-2a= 10100 X 101G |
4 -4 "2 Recoded varsion of x
pid 00000

Shifted 2 bits to

the right and sign\gi”k‘1 10100
extended pt 111101 00
a1

+z.a 111 8]
4pi2} 1 1 11 00
Pl 1101t 1100

Figure 7 Radix-4 multiplication with modified Booth’s recoding [10]

The example in Figure 7 illustrates radix-4 multiplication with modified Booth’s
recoding of the two’s complement multiplier. The multiplicand is 6 whereas the
multiplier is -6, which gives -36 as the result. Since the multiplier is 4-bit long, only two
additions of partial products are required with radix-4 multiplicatibn. ‘The redundant sign

bits in front of the final result can be discarded. Note that right-shift algorithm is used.

An advantage of using modified Booth’s recoding technique is that the number of
partial products is reduced which in turn reduces the hardware and delay required to sum
the partial products. This is because when there is a string of 0 or a string of 1 in the
multiplier, only shifting operation is performed, which is faster than addition. Hence, it is
often wise to choose one of the two’s complement numbers that has fewer changes in 0’s
or 1’s as the multiplier. For instance, consider the two’s complement numbers 101001
and 111001 in Table 4. A disadvantage of Booth’s Algorithm is that it adds delay into

the formation of partial products.

Table 4 Selection of multiplier based on fewer transitions in 0°s or 1°s

101001 | 4 changes. From 1 to 0, from 0 back to 1, then back to 0, from 0
to 1 for the last bit,

111001 | 2 changes. The 1 in bit-3 changes to 0, then 0 in bit-1 changes
to 1. Selected as multiplier. :

15

The hardware implementation of radix-4 multiplier requires registers for
multiplicand, multiplier and partial product, recoding logic, multiplexer and adder. The
simplified block diagram for a radix-4 multiplier based on Booth’s recoding is

represented in Figure 8.

Maltiplier IR Rtultiplico sl

2-bir shift

Xl d [0 x)

Adddisublract ERER]
corrol To sidder input

Figure 8 Hardware realization of radix-4 multiplier based on Booth’s recoding [10]

Figure 9 shows the recoding logic and multiplexer to generate a partial product.
The multiplier group consists of 3 bits of the multiplier (x;.; x; xi.;). Output of the booth
decoder will select 0, M or 2M whete M is the multiplicand. The XOR gates are used to
generate one’s complement by inverting all the bits. If the MSB of the multiplier group is
0, then the partial product will be 0, M or 2M; if the MSB of the multiplier group is 1,
then all the bits of the partial product will be inverted. -M or -2M can be generated by
adding S=1 in which two’s complement of partial product is created. The resulted partial
product is then added to the previous partial product stored in a register that are shifted
two bits to the right. Normally, CSA will be used so that multiple operands can be added

simultaneously.

16

lAultizlizand
A

Hkly 13
fa N
__________________ 14
b) ya
| *
- :
‘ | e Br 1 . Muiplia
| [I T : :"f i Cifeds
< o I el LRtk Rt N - Ll .. o s Bl el R R] M L wm." '"""H._ . S |_
SO DOUO0 T
T E b P i Y i I f s
! LT b i E il Ei \I'_i‘_’_ i : ‘ Baadh Ieist ,: i
, I - iy o = ! M et .
! ! il i i ‘ i ;
3 ' i 12 more ! H " :: H
j N A R = = R A Jonl
1 | d . Cr hincks: vl ‘\(il E ! |
' ! 5 [' 0 Hl !
! i I H i rn !
A : A I : : v P =Tl = il |: o =11 ‘_7
: L 3 I T N
! : ol b i i }
.|1, j'g ‘/ll J' > | . J\. vk ('fI:L i ‘IL \ s JJI
e || A A A
ol
Fankal Prodel h s ¥

Figure 9 Recoding logic fand multiplexer to generate partial products [10]

2.42 Baugh-Wooley Array Multiplier

Baugh-Wooley array multiplier is used to multiply positive and negative numbers
in two’s complement. The princiiale of this multiplier is that the subtraction can be added
by complementing the subtraheﬁd and adding 1. This multiplier has a regular structure
and is governed by a final equatié)n derived as follows [11]:

Let us consider two numbers A and B:

n-2
A= (aml ...au:' = —an_l.z'ILI -+ E ai.21
1]
2
B = (b]l.dl---b{l::' — -bn_lzn_i + E})i.zl
1]

The product of A and B is given by the fdllowing equation:

nl n3 . n-2) n-2 .
AB= an-l-bm-?»h'z + 2 Zai~bi.21+] ; an-lzbiznﬂ"l . bn-123i-2n+1'1
g 0 v IJ

In order to use only adder cells, the negative terms are rewritten as:

n-2 na_
- an_IZbiA21+nFl — an_l_(_zén-E + 211—1 + Zbi.21+]l—l)
g ' {

17

Hence, the product of A and B becomes:
.]'I.-2 n-g PR
AB=a,,b, 2243 Sa;bj o
0 o

g
+ by | 282 4 ol S g b

0 J
n.Z]
| e e N Tt
a

The final equation is:

AB = _22]1'1 -+ (ﬁ?_l + hn-l -+ an_l'bn_l). 22]1'2

Ly ng

+.2 2 ai_bi.2i+i + (ﬂml + hn_I)_ 2]]"1
C 1]

ni

n.2
+3by T2 4 T, By g
]
____________ Equation 4

since

A and B are n-bit operands, so their produet is a 2n-bit number. Consequently,

the most significant weight is 2n-1, and the first term -2*""

is taken into account by
adding a 1 in the most significant cell of the multiplier. Figure 10 shows the structure of
a 5-bit Baugh-Wooley multiplier and can be verified using the final equation by
substituting n=5. The array comprises of (n-1)*(n-1)+1 full adders, multiplication units

(AND gates) and carry propagation adders.

18

W= ANDCX YY)
ii (I

. . W
W =8NDOK YD Wariy,, Wan w 20
i} :

Figure 10 A 5-bit Baugh-Wooley multiplier

19

CHAPTER3
METHODOLOGY/PROJECT WORK

3.1 PROJECT FLOW

‘The flow of the entire proj.ect is outlined as seen in Figure 12. The design
methodology for an FIR filter starts from filter speciﬁcétions, coefficients calculations,
filter stfucture,' study of finite wordlength effects and finally filter implementation.
Speciﬁcations of the filter are determined based on the type of filter designed. There are
four types of filters, namely low-pass, high—pass, bandpass and bandstop filter. Several
methods are available to obtain filter coefficients and the most commonly used are
window, optimal and {requency sampﬁng methods. Two most basic FIR filter
architectures are direct form (DF) and transpose direct form (TDF), given in Figure 11.
In this project, a low-pass FIR filter with DF architecture is designed using Kaiser

Window method.

. S e Ty ' “f““a il R
— e Hd”af;lj M2y LS 'ﬁh'lm 1

(0 \J7 B 1) Y W2y N/ o ?7 BN-1 |
g i

%1 . 1

hil¥ \7 R h h{NwE)%_’
o L D

PO POV} POV PUN el 1

e R st s SEA PR~ b cie L HE

(b)
Figure 11 (a) DF FIR filter architecture (b) TDF FIR filter architecture [12]

20

The different structures of adders and multipliers are explored and some of the |
structures have already.be'e.n discussed in the pr.eViou.s chapter. Design .description, which |
is to describe the circuit in'ferrhé of its behaviour, can Be done in a few levels of

“abstractions. The lowest level is circuit level with switches as the basic element,
followed by gate level, data flow level and lastly, the highest level, which is behavioural
level. In common practice, both gate. level and data flow level modeling (RTL level) are
used because many of the behavioural level constructs are not directly synthesizable.
Even if synthesizable, they are likely to yield relatively redundant or wrong hardware.
The number of bits used to represent input data and filter coefficients, and also the
number representation scheme are important considerations that can affect the filter

performance.

A basic FIR filter consists of multipliers, adders and delay units, as can be
deduced from Equation 1 (page 7). Depending on the architecture and performance
objectives, a filter can also have memory and control unit. Each of the filter components
is coded into Verilog and its functionality is verified. Performance comparison is done
for different structures of adders and multipliers in view of their propagation delay, area
and power consumption. Two different structures of adders and multipliers are compared
in this project. The better component structure based on performance is chosen to be
integrated into the complete filter design. Functionality of the complete filter 1s verified
through simulation and its' performance is tabulated. Once successtul, the design is
downloaded into FPGA and functionality verification is carried out by analyzing the

filter output using a logic analyzer.

21

Extensive research on

- FIR filters concepts &
design methods

- Adders and multipliers

Y

Familiarize with Verilog HDL
and design software

No

Pass?

(-
>

y

Decision-on number of bits used to

represent data and computational
arithmetic (unsigned, signed, fixed
floating, etc.)

2

v
Coding of each
components of filter

h A

Simulation

Select the best component
structure based on

h 4

performance

ol
-

Y

- Integrate all components

verify functionality

Area, speed and power

to form complete filter & | .

Debugging

No

consumption analysis

h 4

Download iinto FPGA

Figure 12 Entire project flow

22

3.2

BASIC DESIGN METHODOLOGY

Figure 13 indicates the crucial steps in designing small modules of a filter. Each

of the small modules is simulated and verified separately to ease debugging task.

Determine |:> Structure design to :> Capture design
specification register transfer level as Verilog
Verify results <:| Synthesize <:: Verify design

design

Place and :> Final

route verification

1.

Figure 13 Steps in designing small modules of a filter [13]

Determine specification. The specification details the behavior and interface of each
module in the design. At the module level, the specification includes the following:

1) A description of the top-level behavior of the module

i) A description of all inputs and outputs, their timing and constraints

iii) Performance requirements and constraints

Structure design to register transfer level (RTL). This is a logic design phase where a
block diagram for the design is determined, which includes registers and functions of

combinational logic.

. Capture design as Verilog. Design description can be done based on a few levels of

abstraction — the highest is behavioral level, followed by data flow level, gate level
and the lowest switch (circuit) level. Many of the behavioral level constructs are not
directly synthesizable; cven if synthesized they are likely to yield relatively
redundant or wrong hardware. The solution is to redo the behavioral modules at

lower levels,

23

=

33

Verify design. This is a pre-synthesis verification process to determine that the design

is 100% functionally correct. This process is known as functional simulation.

. Synthesize design. Synthesis tools are used to transform the Verilog design inio a

gate level design.

Verify results of symthesis. Gate-level simulation, timing analysis and other
techniques are used to verify that the design produced by the synthesis tool is correct
and consistent with the Verilog RTL design.

Place and route. This stage is referred to as physical design where the actual layout
of the chip is determined. The gates in the chip are assigned (placement) to positions
on the chip and then connected together with wires (routing). Post-place-and-route
simulation can then be performed to obtain area and timing information.

Final verification. A number of final checks are done to ensure that the chip is wired
up correctly and is manufacturable. The nature of these checks is beyond the scope of

this project.

BIT REPRESENTATION SCHEME

In this project, the number of bits used to represent input data and filter

coefficients is eight bits. Signed numbers will be used with two’s complement as the

representation scheme. Fixed-point numbers will be employed instead of floating-point

which needs a more complex number representation scheme. Area, speed and power

consumption analyses are performed by using ModelSim and Xilinx ISE simulation

tools.

3.4 IDENTIFICATION OF TOOLS

I. ModelSim and Xilinx ISE simulation tools

2. MATLAB

3. Virtex-II xc2v1000 reference board — an FPGA which enables the filter design to be
programmed into.

4. Agilent Technologies 1673G logic analyzer and probes

5. Xilinx JTAG cable

24

3.5 TASKS ACCOMPLISHED

l. Two structures of adders and multipliers are designed, simulated and their
performances are compared. The adders are CLA and CSA while multipliers are
radix-4 Booth’s multiplier and Baugh-Wooley array multiplier. CLA and Baugh-
Wooley multiplier are found to have better performance compared to their
counterparts,

2. A DF low-pass, 18" order FIR filter is designed by using adders, multipliers and
delay units. The filter is implemented using parallel approach, which eliminates the
need of memory and control unit,

The performance of the complete filter is analyzed. Its functionality is verified

G

through software simulation, as well as hardware verification.
4. The degree to which the filter can reduce or eliminate high-frequency noise is

analyzed using MATLAB.

3.6 PROBLEMS ENCOUNTERED

Throughout this project, some problems and challenges are encountered as
discussed briefly below:

1. Inexperience in employing the different levels of abstractions of Verilog coding. As
mentioned, some codes written in behavioural level may be non-synthesizable.
Considerable amount of time is used to debug the faulty codes when simulation fails
or gives incorrect output.

2. Limitation of Virtex-II device. This device has 172 bonded I0Bs. However, both
adders accept outputs from 19 multipliers simultaneously, which gives a total of 304
bits for all outputs of multipliers. Limitation of the target device causes simulations
to fail for both CLA and CSA. The solution is discussed in the next chapter.

3. Incapability of 1673 G logic analyzer to provide inputs. The available logic analyzer
in the lab is not able to provide inputs to the filter that is downloaded into the Virtex-
IT chip. Hence, inputs to the filter are provided manually by extending the codes to
account for a signal generator module.

4. Difficulty in predicting the output from the filter. It can be seen from the codes that

filter operation is controlled by the triggering of clock. During hardware testing of

25

the filter functionality, the onboard clock is utilized and is always running once the
board is powered-up. Therefore, it is very hard to compare the output from
simulations and output obtained from logic analyzer. A manual push button

(available on the board) is used to serve the function of a clock trigger.

3.7 TESTING & TROUBLESHOOTING

A lot of debugging is done on the codes when simulation fails or gives incorrect
output. This is often so when behavioural level modeling is used to model the filter
components. Behavioural level modeling is inevitable when conditional expressions are
employed in the process of designing. Examples of these type of constructs are ‘if, ‘if-
else’, *while’” and “for’. In this case, experience is vital to recognize the way of writing

that results in codes that are synthesizable.

All the filter components are simulated and verified to ensure that their intended
functionalities are correct before proceeding to the next step in designing. The complete
filter does not require much troubleshooting since all lower level modules are
functioning correctly. The simulated design is verified through hardware synthesis using

FPGA so as to be sure that the filter is working correctly in practical.

26

CHAPTER 4
RESULTS & DISCUSSION

4.1 FIR FILTER SPECIFICATIONS

A low-pass FIR filter is designed using Kaiser Window with MATLAB ‘sptool”.
A set of filter specifications is defined in Table 5.

Table 5 Filter specifications

Specifications . Values
Passband frequency, F, 1000 Hz
Stopband frequency, F 2000 Hz
‘Passband ripple, R, 0.4455 dB (5%)
Stopband ripple, Ry 40 dB (1%)
Sampling frequency, Famp 8000 Hz

This set of specifications yields an 18" order filter with 19 coefficients altogether.
The specifications are chosen such that the number of coefficients is not too big in order
to reduce the filter size. The multiplication and addition process carried out by the filter
is intended to be parallel so that the throughput and sample rate of the filter can be
maximized. Due to the parallelism, the number of coefficients has to be small in order to
reduce hardware. FIR filters can also be implemented in sequential in which this
approach aims to minimize area requirements through the reuse of as much hardware as
possible. However, its bottleneck is low throughput. Direct form (DF) FIR filter is

realized in this project.

4.1.1 Analysis of Designed FIR Filter

The defined filter specifications are analyzed to determine the level of filter
performance in removing or reducing high-frequency noise. It can be seen in Figure 14
that the generated signal has frequency of 500Hz and random noise has frequencies
ranging from 500Hz to 8000Hz. The two signals are combined to create a noisy signal, z,

which is then allowed to pass through to the designed filter that ultimately gives filtered

27

output y. The second plot in Figure 16 resembles the original signal in which the filtered
signal is relatively smooth without jagged edges caused by high-frequency noise. Since
the cutoff frequency of designed filter is 1500 Hz, any frequencies above this will be
significantly suppressed. These suppressed frequencies have negligible amplitudes owing
to the 40 dB stopband ripple. However, the filtered output displays a phase lag or termed
group delay of nine. The group delay of a filter is a measure of the average delay of the
filter as a function of frequency. It is the negative first derivative of the phase response of

the filter.

1 Hfreq of sigmal=IS00Hz with ssmpling Eregq=200G0Hz
2| - £=5000;
3- t=0:1/F:1;
4|~ H=gin (Z¥piv¥500*C) ;
g iy ocreate nolge with 1% different frsgquencies
B[- for k=1:186
HE nnik,:)=0.08%randn(l) *sin (2¥pi*k*500%t] ;
8- end
o8- sum=0;
105- faor k=1:16
i - sum=sun+nn (k,:) ;
12{— end
13- Z=X+sum;
14 (11wl consists of designed filter specs
18(- y=filtexr (filtl. . tf.num, 1l,=z);
16(- m=1:100;
17
18| - figureil]:
g = subplot(z2,1,1); plotix(m)i;:
20| - xlabel('Time index n'); ylabel{*inplituds'];
|- title{'Fignal, x = ain (S00\pint'j:
22 - subplot(2,1,2); plot{sumim)):
23]~ xlabel ('Time index n'); ylabel('dugiitade'):
241 - title('Fandon noise, aum');
28— ficure(2);
28— subplotiZ,1,1): ploti{z(m)):
AT - xlabel ('Time index n'); ylabel(‘dmplituds’);
28[- title{'Noisy signal, x + sum')
29| - subplot(2,1,2); plot(yim)):
301 - ¥xlabel ('Time index n'}; vlabel('huplitude'):
M- title('Filtarad giemal, v'):

Figure 14 Codes to test the filter performance

28

Amplitude

Amplitude

04

fan)

-0.2

04

- Signat, x= Blﬂ (EUDM)

- Time_index n -

| URandomndise, sum, -

| J 1 f |

f‘\/\f\ﬂ/‘\/\/\\“f\ﬂj\f\

1 | 1 | 1 | 1 ! |

J\/\/K J\f‘ﬂﬁ) JU‘J\M\J \f\Aﬂ .

i

% 40 &l BIFO700. 8D W0
: “Timg index n - '

100...

Figure 15 Original signal and generated random noise

© O Amglitude

Affplitude -

1.5

05|
0.5

05F

051+

T

Moisy signal, x + sum
T T

N
A

H:
- Titne |ndex n

FlJterad S|gnal y i

:\K‘// I ‘]‘l‘/f

40 &

u . |
: . Time indexn -

Figure 16 Noisy signal and filtered signal

29

42 VERILOG CODES

This section indicates the associated codes that are used in the filter design. These
include codes for Baugh-Wooley array multiplier, CLA, shift register and the complete
filter. Note that other Verilog codes associated with radix-4 Booth’s multiplier and carry-

save adder are included in Appendix A.

4.2.1 Baugh-Wooley Array Multiplier

Variable B (codes in Figure 17) represents the coefficient of the filter and is
declared as parameter so that its value can be changed in the complete filter design
during instantiation of this module. The following codes illustrate an example which
declares B as having the hexadecimal value 02. The test-bench for Baugh-Wooley array
multiplier instantiates the module “Wooley’ that declares B as an input port rather than
parameter in order to be used for simulation purpose. The complete codes for this

multiplier are shown in Figure 34 in Appendix A.

"wipdscals ingfles
nodule Mooleayid, B);

BT 0 A R H F
Py PLEIOIE;
paranecer {7:3)B = B'ROZ;

wvire [48:0]%;

wike [S:0(WL, WE;

wizre B3, C0;

wive stmi, sunl, sund, fund, sewd , SURs, sUDs , qusd? , sunl, sund, suell;

wive sunll sanl? sunld, sueld, sl sunld, suel?, sunlf, sunl S, ewe?l;

wire suBZl, sund? sunid sunld, sueZl sun?é, sund?, sun? 8, sund e, suedl;

wire i3l eawd?, awedd, s, ound b, sundE, sueld T, unds, 3T, sued

rive sundl,sumd?, sundd; :

UL e, coln L, COut I, COUT 3, cOgE £, 000 E, EBULE, coun T, cound, dout?, rouel0;
vire coutll eoutlZ coutll, coutld, poutlS, coutib, aoubl?, coubll, consld, cons2d;
Wire @QULT],eUUti?, cout23, coseid, oot EE, CoutEE, oo, cons2E, couc R, Soun30 ;
wire ooub3l, cout2l | cout33, coutdd coutds, coutdt, contd?, cout 90, cousdd, consdn;
TLER QOULG), Goutdd eoutad, oot dd cout 4, cout 48, coutd Y, cuuns B, counsd, countl ;
wire c@ipbl,couts2, coutsd, ooutid catES conn Sl , counsT i

assiga WOY = A(0) & Bi0l:

nosigem W{LY = R{Ll)] © BiD};
aEsige W[Z] = K{Z] & Bidls
as:igﬁ Wial = &[3] & B{D],
azsiga W41 = Ki4] 4 BiDl;
azzign W{E] -~ A(S] & B{D];

Esagn WG] ELGD & B0l

Figure 17 Partial codes of Baugh-Wooley multiplier

30

‘rimEscale Ingdips
mpdule ¥ooley cot:

reg [F:0] 4,8z
wire [15:101P:

Woolay woo (4, H,P)2

imitind

LRGN
L= 8 h00: B = BIRDO:
100 & = B'wOL: B = 8'wid;

FEO & = B*hll; 2 = giklay
50 & - BREL; B - 0'62b:
HEU & = B'RE1; B = B'h32:
HS0 & = g*h82: 5~ D'hil:
#50 K = B*haf; B = H'nva:
FSp K = 8 hes) B = g'bkhbes
#50 k& = B*WfF: § o~ 8'hEf:

and
initial fwoaitor{frealtime , ¥ k=th, B=%h, producc=wh®, L, B, 8):

sndmiditle

Figure 18 Test-bench for Baugh-Wooley array multiplier

module full adder (cin b, a,5um, coug) ;

tonput oin,h,a;
oucput gum, cout:

wirg S0

wire C0Gir

gire COZ;

half adder halie,b,301,C0L:
helf sdder liad (oin, 501, sww, CO3)
REZ1YL cout = CG1 | COZ;

endmodyle

Figure 19 Full adder

module half adder (&, B, sum,cout)

input L,B:
output sumw, cout:

assign cout = A & B;
assign swum = L * B

endmodule

Figure 20 Half adder

31

4.2.2 Carry-Look-Ahead Adder (CLA)

Figures 21 and 22 represent 16-bit CLA and 17-bit CLA respectively. As the
names imply, a 16-bit CLA is capable of adding two operands that have 16 bits. Note
that the Verilog codes for CLA nsx (4-bit CLA without sign extension), CLA (4-bit
CLA with sign extension), CLA 18 (18-bit CLA), CLA 19 and CLA 20 are attached to
Appendix A.

JF L6-hit CLA
apdule CLA IGIA B,)

Irpetn {LE:Q1A;
input [L5:91B:
cutput {1&:0]%:

wire CIO = Q;
wire CDL,.COZ, CO3;

CLA nsy elonl (A[2:4] Bl3:46) ,0I0,5(3:0] ,00L1);
CLa nex clenZ{&(7:4] B(7:4],001,8(7:4],C02);
CLA neEx olend(A011,8) BlLL:8], 002, 8818}, c03);
CLA clal (&{1E-LZ] B(158:12},063,8[15:12) 8161,

endmadizle

Figure 21 16-bit CLA

£ 1~biv CLA
motule CLA LT{A B, 3);

igpat [le:0)&:
inpat [le:03138;
sutaat [17F:015;

wrive coi, CoZ,Cco3,004;

Wi Ee AL7 . 219,039, BLY B1Q ,B1Y, 818, 919 B20;

wire CID = @;

CL&_neg elafndthl3:0),B12:01,0X0,5]3;:01.000) ;

CLA nsw clanZ A[7:4), B[7:4]1,00L,317:4]1,C02);

CLY nexw cland{A{il:8],Bill:-8] L0, 8S(1L:8),003);
CLi_nss clandid (315 18) 81502, 003, 81162180, 004 ;

gesign L17=A1L6) B1B=A[38) Al3=A13E]
asfhei B1T=RBLe] ,BLE=RB[L&] Blo=B[1i&]/

CLE clal ({415, A18, A1%, E4161}, (B15, 818 BT, B{Ls]s, 004, {519, 518, Sr17: 161}, 820 ¢

endoodul e

Figure 22 17-bit CLA

32

4.2.3 Shift Register (Delay Units)

Figure 23 shows the codes for a shift register which consists of instantiations of

eighteen flip-flops, The flip-flops serve as delay units for the filter.

"timescale 1ns/ips
wadule delayicli,reset,x, v, ¥, ¥4, v4,¥5, v6, 7,78, yo,
¥10,911,v12, vi13, v14, w15, wilé, vi7, viar;

ipput clk,reast;

input MG

output [Pr0)vi, w2, v, v, w5, vE, 97, v8, v9, v10:
output [7:0]ylz,v12,v13,.v14,¢1%, v1&, v, vig,;

flipflop ££1 s regeT, H, vll;
flipflop ££E ik, remer, v1,92);
flipflop ££%j0lk, reges, v, vid):
Elipflop ffd{oik, resec, pi, vi);
flipflop £25icik, reses, yi, v&81
rTlipflop ffé{cik,re=ac,y5,v5);
Llipflop £ {vik, reses, v8, 70

¢ v

i

£iipflop £18
£lipflop ££% k,tesec, ¥8, y9;3 ;
fiipflop $£10(clk, reset, v9,v10)
fiipZlop ££11{elk,reset,yv10, 511} ;
Zlipflop ££12 (clk,reaet,yil,viZ):
Elipflop ££13 (clk, reaet,y12,vy13):
Elipflop ££14 (clk, reaet, w13, yid):
Elipflop ££15(cli, reget, vil4, y18);
Zlipflop £L16(clk, reaet, v18,v16)
rlipflop £117({clk, veset,yils,yL 7}
Zlipflop TE18(vik, reaet,y17, yL18):

erdnicdule

Figure 23 Shift register acts as delay units by flip-flop instantiations

‘rimescale lps/lps
medule Llipflop{ell, reser, =, vl

inpus ¢lk, temer;
imput [7:0] x:
output [Tr03g;
reg [7:0]

alwaya 3 (posedge ¢lk or posedge reset)

hegin
if (resatl
v %= 0;
else
vo<= w2
=315
endmwodule

Figure 24 Verilog codes of a D flip-flop

33

4.2.4 Filter Implementation
The Verilog description for the complete filter and its associated test-bench can

be seen in Figures 25 and 26 respectively. During the instantiations of multipliers, the

filter coefficients are changed using the syntax found in Figure 25.

‘Eimestale Inedlns
whdele filteriolock, resnt, doba_dn, ot

inpur cloc, seget:

ioput [T:07data_ing

nubpiut [A00d]eul:

reg [7idimew;

ey [Felildota_oun:

wire [T01W], ¥2.93, 94,95, 98, ¥7, 48, vB w10, w2 L, w18, v10, v2 40, vi5, vi6, v1 7, v1a;
wire [15:0]PL,PZ,P3,74,P5,F6,P7,F0, P9, FLU,PL1, PLE, PLI, P14, PL5, P16, 717,016, 919,
wire [16:0¥a R, Bo, Bl Be E B, 5, 10

wive [17:87Ras, Bhi Feo Add, FBee;

wire (15 0}1RLE, Rogs

wire [18:8]Eh:

wine wis, clf, civs

A/reqisgcer 'wen' actz ad buffer for dato sterage S0y ohe ciock cycle
aluays 4iposedge slock o posedgs preset)

beigin
1L {reaet)
beoin
wey = Fhid;
dets out - B'R04;
enid
T
beglin
data_aut =~ mom:
ugn <= dubs_ing
L2
end

tlelayr shz:;wregﬂnlnckrteget,ﬁacawﬂﬂtw?lﬁyz,yﬁ;yﬂ,?ﬁ,ysggT,ge,yg,ylﬂ,yll,
¥LZ, 713wl el S, w1617, wlE) ;

Aeimgrantlations of niretesy weinipiiers
Epoley § 78 0007 meitl (deca_ont, PLlys
Woakty §{3°R00) eultd (vl,P8):

Woaley multIiyz, Fals

Wooley suluddyd, e

Wooley {8 bfe! nulodipd, PR :

Weoley B HLEL walol (S, P6)

Waaley §5"hEc) melty ive, B7y:

continue ...

34

Ugnley #{8 ' E0d) muleld (2,70
Vooley §{8°R235) mmlcd (yE, P9}
Hooley 1B RMI0) malciGiyy, PLOY:
Uooley FIE*RI5] mudcil{yl0, Pill;
Ugalew (B wOd] sulbiZiyli PLEs;
Uzaley §[B'REc)] mulel3{vl2, P13y
Usolew (B RE8) oloiSiyld, P1lds:
Uzoley #[6'hfe) mulciS{iyld,F15);
Uzglew multli(wis, PLoY: '
Umaley nulel?[is PLTY:

Ugaley # [87R00) walol3iylT, P16
Uooley F[5200) wulciziyld, i

Slingreantiarions of adders whet ads8 sperands vivh varying noreer of bivs
CLA L6 clelawniPi, P2 Ral.

CLA_1& cleidb (P3,24,F8]:

CLA L6 cloisoc (PS5, 16 Ra);

ELa 15 cla:fSd (027,79, PRd);

CLa_15 ¢laige [(PU,PI0,.8e):

CLa 16 claiaf (FLL,PLR.RE);

Ll I8 claleqrBil, pld4,Rm

CLA 16 elelél{Pi5, PL6,Fh);

CLA_LE cleli&d (FAF. 0L8,10)

azgiwn B1E ~ PLO[LE):

CLA_L7? cleiTa[Fy,Fh, Rzl ;

CLa L7 ocleldVh(Ro,Rd,Reh):

Cha 17 wleiTeRe RE,Boe):

CLa L7 cleiFd(Ry,Th,Bed) e

Elé_17 cleiTe (RE, (vl G, Fi90 , Reel;
CLa 18 claiSe(Ras,Pob,REE):
CLA_1D elal@b (Roc, Add, Rgny:

CLA 19 cleiSa[RIc Ry, Koy

aszign r1B = Hee[Lk7], z1% = Bea(L7];
CLa_20 clnzo{fhk {el%, vl0,Fee) s

ormimnduLe

Figure 25 Verilog description for the complete filter

35

‘timeacale lns/fipna
wodule Eilter thil;

res clook,veset,
eeg [T;07deka_in:
mite [R0:070uT:
integer 1:

porazeter offset = LOdr
padfannter cycle = 20;

filter fil:(.clnakiclackj;.rﬂaet{reset}g.dn;uﬁin(deta_in],.out[aut}];

imitial

begin
chkock = o reges = 0: gate_in = 'hil:
fofizat;
forever goyoie clock = «clogk;

S
imivial
begin
#{pEEsettoycic] reset = i)
goveles
reset - 0O
data in = 8'hDL:
foxr(ieD; ixZ0: iwitl}
alzTe bt o
gicyole®dy;
gary_in = date_in + 3'd5;
=]
end

inicial e¢moniter(ftime,” cleck=¥h, reaet=%b, imput=th, pucput=ih”, clack,resst, data_in,ouzj;

antkaduis

Figure 26 Test-bench for the complete filter

36

43 SOFTWARE SIMULATIONS

Functional and timing simulation results for radix-4 Booth’s multiplier and

Baugh-Wooley multiplier are included in Appendix B.

Simulations for CLA for performance comparison are done based on the overall
adder formed by multiple CLA instantiations. However, the large amount of [/Os of
overall adder has exceeded the amount of 1/Os that the selected device is capable of
handiing, which causes simulation to fail. Thus, some of the input ports are declared as
‘wire” and assigned values internally, To ensure the accuracy of the simulation results in
terms of performance criteria, two sets of the number of input ports are chosen, which
are one and eight input ports. It can be seen in Tables 7 and § that the percentage
difference follows a consistent trend for the three performance criteria. All three criteria
— path delay, area and power consumption decrease by half when input port increases
from one to eight. The respective Verilog codes are attached to Appendix B, shown in

Figures 51 and 53, together with the simulation results for both test-benches.

Similar to CLA, the simulations for CSA for performance comparison are done
based on the overall adder formed by multiple CSA instantiations. The CSA also
encounters the same problem as in the case of CLA. Similar method as in CLA is used to
perform simulations on CSA. The Verilog codes for overall adder with one input and
eight input ports are included in Appendix B, shown in Figures 59 and 61, together with

the simulation results for both test-benches.

37

4.3.1 Performance Comparisons

The following results are. obtained through functional and timing simulations

using Xilinx ISE synthesis tool.

Table 6 Performance comparison between multipliers

Baueh-Woole Percentage difference
Booth’s Multiplier gh-Wooley (Baugh-Wooley as
Multiplier
reference)
Maximum path
delay after place & 24.542 25.078 2.14%
~ route (ns)
Area (no. of slices .
out of 5120) 78 64 -21.88%
Power consumption 510.34 481.65 5.96%
(mW)

Table 7 Performance comparison between adders with one input port

One input Carry-look-ahead | Carry-save adder | Percentage difference
P adder (CLA) (CSA) (CLA as reference)
Maximum path
delay after place & 27.200 26.090 4.08%
route (ns)
Area (no. of slices 0
out of 5120) 31 51 -64.52%
Power consumption 570.49 510.34 10.54%
(mW)

Table 8 Performance comparison between adders with eight input ports

Eicht inputs Carry-look-ahead | Carry-save adder | Percentage difference
i P adder (CLA) (CSA) (CLA as reference)

Maximum path

delay after place & 37.115 36.205 2.45%
route (ns)

Area (no. of slices

- 0,
out of 5120) 183 245 33.88%
Power consumption 81712 75 55 5 09%
(mW)

38

4.3.2 Complete filter

Both the functional and timing simulation results for the complete filter are

displayed in Figures 27 and 28. Only part of the results is shown.

1z0
140
144Q
1&0
2o
2Z0
240
2Eq
2ga

710
dad
B3]
FH0
40
4z
440
A
440
500
20

5ED

BED
B
Bt
7id
740
2]
Fan
fon
BIT

BED
50
S0
B0

g

T

z]ark
clock=:,
clock=1,
Tlochk=%,
o ER=i,
e lork:
1 0ER=0,
<0 ki,
gluck=n,
clook=y,

1ogk=z,
clnek=1,
rlnck=1,
£1ack=0,
claock=%,
clack=,
clack=1,
Clack=0,
Cloth=2,
clock=i,
clockmt,
clock=0,
claghk=t,
ciarksO,
Cloghkms,
Chochkn,
=l ockmg,
clack=0,
Clockeat,
cloek-g,
clock=z,
clacks,
Clochay,

olocks=),
2lock=%,
el ochen,
el k=%,

reset=a,
reset-1,
ressr=0,
rEse=,
I"Esetsg,
FEs ek,
FESET

[g A
rege
ressi=g,
ratel=,

resel=l,
sTogeE=n, r

reset=q,
reset=,
FEEeT=,
rEg =y,
reset=0a,
reset=0,
reset=0,
reset=H,
reset=0,
resgr=l,
reset=0,
reret=0,
reset-Jd,
rEset=0,
resat-0,
FEEa -,
Fesetw,
resat=4a,
resetw=q,
reset=qa,
reset=o,

ingutwig,
TapU a0,
1 peu by,
i apuE=0%,
1 AU =0 ,
i ApuL=ng,
P rApUE=Ib ,
1l n=ih

ApuUE=10,

Inpug=1e,
TEpHIT=15,
Topue=1s,
Tepug=14,
input=1a,
iopur=1¥,
TrpL=1T,
TAPLL= 4,
HrpLE=Ed,
inpuT=21,

jap
iU T
1npUE-3E,
inpuE=3d,
inpuce3d,
TnpUT=SET
inpal=-az,
TORUT=ST,
TnpUE=AT,
inpuT«se,
input=dc,
iApLteS:
INpUE=EL,
TnpuE=EE,
EOgUE=EE,
Frputhls,
input=5h,
frpu k=R,
TRpLL=ED,

DUEDU T i

oUEPLT=00 003D
QUERUL~E0DDGRT
QUEDU =G0 DD GG
DUERUT=00 0050
Ol Epu =G 00060
0 EpE =00 0010
OUTEeUL=a00060
AUERUET=30 0G0
GUEEUL=00 0052
QUEBIL=GO R4
RUERIN=00 000
BUCALT=0 ke
GUCRIT=B0002 0
G REpLeT=C20 (817 0
GUGREEL=H0082
GUCPE =t 0
GUE B T=C008000
OUTPLT=00 0000
DutgUE=1 T dk
autpl o=t ek
QUTRUT=00 08T
QUCRUT=C0 08EY
GUERUE=G0DLGT
oUEPUT=T00107
GUERLUT-C002 8%
AUTBUT=GO0Zas4
oUEpUE~C00542
QUERLE=R00SE2
AU CREUT-00 0810
OULRUT=D0GEED
aUCpUT=-D0Taas
GUCpUtSE) 0aaE
GUEpL TG0 061 0
SUEPLT=GO0d14
aurput=contas
output=GonTag
outprt=001200
NUEHUE=G0LZE0

GRERUT=00 L7 Q0

Adat this wime, input data is stored in regisoer
AAinput 0L s awailable at data.out, yw[i]
AAnput 08 iy dveailable ar dass owt, v[2]
AAL3]

PR Y

Frylel

Fiwla]

FIvLFP]

AL}

FAple]

JAylaa]

A1)

Fivlan)

413

PR

Ayl

Fovlan]

AArlarl

JAvE1E]

Aot

Figure 27 Partial results for the functional simulation of the filter test-bench

39

0 clock=0, resegf=0, TnNput=00, OULPLE=XMKKXK
27 clock=0, reser=0, input=00, oUtput=000000
120 clock=1, reset=1, input=N0, -oUtput=00C000
160 clock=1, reset=0, 1npuUT=01, OULCpUt=003000
200 clock=1l, reset=0, input=0&, ouUtput=000000
240 clock=l, reset=d, input=0b, output=000000
280 clock=1, reset=0, input=1l0, output=00J000
293 clock=1, reset=0, input=1l0, outpUt=000002
300 clock=0, reset=0, input=lL, output=000002
320 clock=1, reset=0, inpur=15, output=000002
324 clock=1, reset=0, 1Hput=15, ouLputr=00000e
260 clock=1, reset=0, input=la, ouUCpUt=C0000e
286 clock=0, reset=0, input=1if, ouUtput=C000z0
400 clock=1, reset=0, input=LlTf, output=000020
422 clock=g, reset=0, jnput=z4, output=0000z2
440 clock=%, reset=0, input=24, DULpUL=000022
466 Clock=0, reset=0, input=29, ouUCpUT=000000
480 clock=1, reset=0, input=z9, output=0000C0
04 clock=0, reset=0, japut=ze, sutput=1fffdb
520 clock=1, reset=0, input=ze, output=1tffdb
£48 clock=0, reset=0, jnput=32, output=00000F
£E0 clock=l, reset=0, input=33, output=00000F
558 Clack=0, reset=0, inpUt=2%, OUtput=000C107
€00 clock=1l, reset=0, input=3&, OULpUTt=000107
625 Clock=0, reset=0, input=3d, OUtpUL=000Ze4
edi) clock=1, reset=0, input=3d, output=000ze+4
664 clock=0, resat=0, input=42, output=000562
680 Clock=1, reset=0, input=42, OUTPUL=DCOSEZ
705 clock=0, reset=0, input=47, oULpLUt=000210
720 clack=1, reset=3, input=47, OUECpUL=000S1C
743 Clock=0, reset=0, input=4c, output=0004a3é
760 clock=l, reset=0, 1input=4C, OUtpuUt=000aas
787 clock=0, reset=0, input=5l, output=000dla
§00 clock=1l, reset=0, finput=51l, cutput=000dia
425 clock=0, reset=0, nput=5¢&, oUtpuUt=000¥ES
%40 clock=l, reset=0, 1fAput=SE, oULpUt=000TFES
864 clock=0, reset=0, input=Sb, outpuT=001200
280 clock=1l, reset=0, input=Sb, -oUtput=001200
204 clock=D, reset=0, input=s0, OUtput=001450
920 clock=l, reset=0, input=60, olUtput=001450
944 clock=0, reset=0, input=£5, oUtpUt=001700

Figure 28 Partial results for the timing simulation of the filter test-bench

Table 9 Complete filter performance

Complete filter using Baugh-Wooley array
multipliers and carry-look-ahead adders
Maximum path delay after- R
place & route (ns) 32.133
Area (no. of slices out of - 414
5120) |
Power consumption (mW) 709.11

40

v

{ouaq-1s9} 1011 JO UOLIR[NLUIS FUTUT) 31} 10] SULIOJAALM. [RTHEJ ()€ 2In31]

Tdaiezr ozhno 3@ =
DL [eep @ @
‘ 0 a5 i

e — g

sun SU BOSL
LD

S

A

deiszt lpoEno @ m
JooL loduTeep 3@
0 sl

0 HI0PER

09z . Sunag - 0z ¥ sU.0a7 . 0¥l sUQ U 9Agl
. HAON

4.4 HARDWARE SYNTHESIS

The design is programmed into Virtex-II chip and it is tested using a logic
analyzer. It is supposed that the logic analyzer provides input to the filter and at the same
time, the filter output is observed. Unfortunately, the logic analyzer available is unable to
provide input. Thus, the codes are extended to account for the input generator module
that is used to provide inputs to the filter manually. This concept is illustrated in Figure

31.

Top-level
X[n]
Siomal or — yln]
1gnal generato ! Filter module >
module 5
—

Figure 31 Signal generator module providing inputs to filter

£*This progroe instantistes the signal generator woduie amgd
filter moduls,

#f

‘Timeacals 1na/lps

machile Zilter in{clock,reset, outl

inpet slock, paasl;
qubpuc [20:0] cuL}

wire [Ti0]daza_ing

inpuwr_gEn genielock, ceget, dake_in):
riiner Liltlclack, redet, dana in, oul}

enckpocdule

Figure 32 Top-level module

/¢fThiz progrem gencrates insut daca internmily to the filter.
‘rimescals ingl1pa
ool le in@mﬂ_gﬂn{aluc%,rasea,ﬂaxﬂ_in];

inpUT S losk, resst;
output [P:0]data_xm;

reg (7:0]dato_in - B'hOO:

aluays §iposedye clock or poesdos rasmenl

mogin
LE (rewel] dabs an <= 8'KaD;
elae
data_in <= dato_in + 335
wrard
cadinodule

Figure 33 Verilog codes of signal generator module

42

45 DISCUSSION

The module that describes the radix-4 Booth’s'm.ultiplier with 8-bit inputs (see
FigUre 35 in"Appendix A) instantiates four ‘Bbothpar’ modules which in tumn yield four
paﬁial products. All four partial products are summed using a 16-bit CSA. ‘Boothpar’
- module realizes the hardware implementation of recoding logic and multiplexer. In’
| ‘CSA_16_booth’ module, the 9-bit partial products are requifed to be shifted accordingly
based -on the weights of bits in each partial product. Functional and timing simulations

for Booth’s multiplier are verified and found to be 1dentical.

Baugh-Wooley array multiplier basically consists of AND gétes and full adders
as reflected by the structure in Figure 10. Functional and timing simulations for Baugh-
Wooley multiplier are also verified and found to-be identical. From the performance
comparison in Table 6, both multipliers have almost similar path delay with Booth’s
multiplier delay recorded at a slightly lower value. However, the area occupied by
Booth’s multiplier is 78 slices as compared to 64 slices for Baugh-Wooley multiplier.
Power consumption for Baugh-Wooley multiplier is about 30mW less than Booth’s
multiplier. By looking at the percentage difference, Baugh-Wooley multiplier displays a

better performance and hence, it is selected for the filter design.

Basically, for CLA modules, there are multiple instantiations of ‘CLA_nsx’
modules followed by an instantiation of ‘CLA” module. ‘CLA_nsx’ module performs
addition between two 4-bit operands that are not signed extended. On the contrary, -
CCLA? mo.dule'adds two 4-bit operands that are sign exte’ndfed, where these four bits are
the upper four bits of an operand. Sign extensioh is necessary for the upper four bits in.

order 1o obtdin the correct result.

Figures 42 and 43 (in Appendix A) show the IIDL descriptions for modules
‘CLA nsx’ and ‘CLA’ respectively. It can be seen that the codes are divided into four
stages since it is a 4-bit adder in the case of ‘CLA_nsx’. The Basis to this block of codes
is according to the formula given in Equation 3. In the case of *CLA’, there 1s an extra

stage owing to sign extension of operands. Output $4 is the sign bit, which corresponds

43

to S[16] of top-level module ‘CLA_16". The carry-out bit, CO5 can be discarded since
the output range requires only five bits for a 4-bit adder. Higher-order adders can: be
designed by cascading several ‘CLA nsx’ modules with one ‘CLA’ module for the

upper four bits.

The overall adder formed by several CLA instantiations accepts outputs from 19
multipliers simultaneously since the multiplication and addition process is carried out in
parallel. Each multiplier output consists of 16 bits, thus there are 304 bits for all outputs
of the 19 multipliers. However, the target device has only 172 bonded 10Bs. Tﬁérefore, a
method is used, which is mentioned in ‘Software Simulations’ section, in order to
perform simulations on the adder. Similar problem is encountered by overall adder with

several CSA instantiations and the same method is used to resolve it

The overall adder formed by multiple CSA instantiations (module ‘adder csa’ in
Figure 59 or 61 in Appendix B) instantiates three 16-bit adders capable of adding five
operands, one 16-bit and one 19-bit adder, in which both are capable of adding four
operands. This is the best combination of different sizes of adders due to two reasons:
1. [CSA was to add three operands, it will function like a ripple-carry adder, thus
the advantage of using CSA cannot be displayed.
2. The more operands that CSA adds, the more number of bits of sign extension is
required since adding two operands requires one sign extension. More sign

extensions increase hardware.

Functional and timing simulation results for CLA and CSA are done for overall
adders that have one and eight input ports. By looking at the performance comparison in
Tables 7 and 8, CLA has a significantly smaller area compared to CSA, which are
64.52% and 33.88% less for overall adder with one input port and eight input ports
respectively. The trade-offs for the decrease in area are the increase in path delay and
power consumption. CLA indicates an increase of 4.08% path delay and 10.54% power
consumption for adder with one input port while for adder with eight input ports, an

increase of 2.45% path delay and 5.09% power consumption can be observed. It can be

44

safely said that CLA portrays a better performance compared to CSA judging at the

much higher decrease in area. Hence, it is selected for the filter design,

Since the desi_gn is an 18" order filter, there are eighteen delay units for the input
samples to pass through. The delay units are implemented using D flip-flops where in
this design, the input data appears at the output at the positive edge of clock that triggers
the flip-flop. In the ‘delay’ module in Figure 23, it instantiates eighteen flip-flops which
are actually cascaded to form a shift register. The HDL description for the complete filter
in Figure 25 is rather straightforward. The ‘always’ construct defines a register that holds
an input sample temporarily for one clock cycle before going out to the shift register.

The functional and timing simulations for the filter are verified.

In this filter design, memory unit and control unit are omitted because the
arithmetic operations are performed in parallel. RAM which is used to store the input
samples is replaced by a single register. ROM which is initially suggested to be used to
store filter coefficients is not necessary because the coefficients are directly defined as
parameter in the multiplier module. Control unit is also not required as the processing of
data and output sample, y[n] are all carried out in one clock cycle. The omission of
memory unit and control unit introduces simplicity in this design and also the use of less

hardware, hence reducing cost.

The functionality of the filter is verified by implementing it into FPGA. During
hardware verification, there is a difficulty to predict the filter output because the onboard
24 MHz oscillator is used as clock, which starts running once the board is supplied with
power. This problem is highlighted in the preceding chapter. Hence, a manual push
button is used in order to test the output of the filter. When the button is pushed, it
signifies the triggering of clock and thus, starts the operation of the filter for one clock

cycle. The output can then be observed on the logic analyzer for each clock cycle.

45

CHAPTER 5
CONCLUSION & RECOMMENDATIONS

This project requires the implementation of FIR filter through HDL in which the
filter components can be divided into adders, multipliers, memory unit and control unit.
Two’s complement number representation and eight bits are used to represent input data
and filter coefficients. Fixed point numbers are used. In this project, carry-look-ahead
adder and carry-save adder are designed and compared. In the case of multiplier, radix-4
Booth’s multiplier and Baugh-Wooley array multiplier are designed and compared. Both
carry-look-ahead adder and Baugh-Wooley array multiplier display better performance
compared to their counterparts. Hence, they are selected to be used in the filter design.
The design is an eighteenth order filter and has nineteen filter coefficients. Therefore, the
shift register has eighteen D flip-flops cascaded. Memory unit and control unit are
omitted because arithmetic operations of the filter are carried out in parallel. The filter
employs DF architecture and its performance obtained via simulations is summarized.
The complete filter are synthesized, implemented using FPGA and overall functionality

is validated through hardware.

Improvements can be made to the current design, which include the following:

1) More structures of adders and multipliers can be compared for their performance.

1) Other factors that affect the filter performance can be incorporated into the design.
These factors include the use of different 1iu1nber representation schemes like sign
magnitude and advance techniques like differential coefficient method (DCM).

iii) A combination of sequential and parallel filter implementation approach can be
explored to determine the trade-off between consumed area and throughput.

iv) The versatility of this design enables the filter to be modified to other types besides
low-pass based on specific applications. However, one limitation is that the

verification of the design is rather cumbersome due to the lack of suitable equipment.

46

[11]

[12]

[13]

REFERENCES

A.T. Erdogan and T. Arslan, “High Throughput FIR Filter Design for .'Low Power
SOC Applications”, University of Edinburgh, 2000, pp. 374-378.

A.T. Erdogan and T. Arslan, “Low Power FIR Filter Implementations Based on
Coefficient Ordering Algorithm”, Proceedings of the IEEE Computer Society
Annual Symposium on VLSI Emerging Trends in VLSI Systems Design, 2004,
A.T. Erdogan, M. Hasan and T. Arslan, “Algorithmic Low Power FIR cores”, IEE
Proc.-Circuits Devices Syst., Vol. 150, No. 3, June 2003, pp. 155-160.

C.H. Wang, A.T. Erdogan, T. Arslan, “High Throughput and Low Power FIR
Filtering IP Cores”, University of Edinburgh, 2004, pp. 127-130.

A.T. Erdogan and T. Arslan, “Low Power Block Based FIR Filtering Cores”,
University of Edinburgh, 2003, pp. 341-344.

T. Arslan and A.T. Erdogan, “Low Power Implementation of High Throughput FIR

“Filters”, University of Edinburgh, 2002, pp. 373-376.

A.T. Erdogan, E. Zwyssig and T. Arslan, “Architectural Trade-offs in the Design of
Low Power FIR Filtering Cores”, IEE Proc.-Circuits Devices Syst., Vol. 151, No.

1, Feb. 2004, pp.10-17.

Emmanuel C. Ifeachor, Barrie W. Jervis, Digital Signal Processing, A Practical
Approach, 2" Ed., Prentice Hall, 2002.

Richard S. Sandige, Digital Design Essentials, Prentice Hall, 2002.

Prof. Vojin G. Oklobdzija, University of California, “Lecture 9: Multipliers”, 11
May 2004, htip:/lapwww.epfl.ch/courses/comparith/Lectures/VLSI-Arithmetic-
Lect-9-Multiplier.pdf

D. Mlynek, “Chapter 6 Arithmetic for Digital Systems”, 11 October 1998,

hitp://www.vlsi.wpi.edw'webcourse/ch(6/ch06.html

A.T. Erdogan, T. Arslan and D.H. Horrocks, “Low Power Multiplication Schemes
for Single Miltiplier CMOS Based FIR Digital Filter Implementations”, University
of Wales Cardiff, 1997, pp. 1940-1943.

David R. Smith, Paul D. Franzon, Verilog Styles for Synthesis of Digital Systems,
Prentice Hall, 2001.

47

[14]

[15]

[16]
[17]

[18]
[19]

T. Arslan, Chapter 4: VLSI Design, Institute for System Level Integration/
University of Edinburgh, 2001/2002.

1.R. Padmanabhan, B. Bala Tripura Sundari, Design Through Verilog HDL, Wiley
Inter-Science, 2004.

Weng Fook Lee, Verilog Coding for Logic Synthesis, Wiley Inter-Science, 2003.
Stephen Brown, Zvonko Vranesic, Fundamentals of Digital Logic with Verilog
Design, McGraw Hill, 2003,

Virtex-II XC2V40/XC2V1000 Reference Board User’s Guide.

Software manual for Xilinx, http://www xiling.com/support/sofiware_manuals.htm

48

APPENDICES

APPENDIX A

1. Baugh-Wooley Array Multiplier

‘vinexcale Instlpx
nodules Hoolay(h,P);

rrput [P:dlk;
: QETpue YL 0P
porapetor |[2:G18 = BYROE;

wize
wye
wire
Wi e
uige
wira
wire
wriga
ulre
vire
wlre
wire
Wira
wipe

woxdgn WIQ] » &(9)
assign ULLl]
wssign W(T)
axsign W[3)
assiin Wid) = A(d]
norige WL
ASSAm HIS] = A(5]

[48:01W;

(& 0Iw;,we;

M3 ER;

sund, suml, sond, sund, sumd , suml, sunk, sust, sunl, sund, sunli;

SUnll guteld, samld, sunld, sunls, sunlG, i 7, xunld, sinl¥, sunf;
ﬁunzi,sumEZtsunﬂﬂ,:unzd,sumzs,:unzﬁ,sumZ?,sumZQ,sun&?,sumGﬂ;

sndl, SuEdE, SUndd, sondd, SundS, SUBdS, sued?) sue®E, sunldd, swedd;
sunill , samd 2, sundd;

CHUTO, COGE L COues, COUnE, ¢oued, cowns Cont s, coun?, cound , coutd, counld:
coutll, coutlE counl?, coutkd, coutlE, codtll, cowel?, couclh, cons 1, cousdl;
ccutil,ﬁ@utzziccutas,cautﬁ%,cnuuﬂs,cauc25,cmmta?,cnucEE,cechE,cauzﬁU;
coxm%l,ﬂautSZ,:autBE,c@ubﬂ&,coutBs,caacﬂﬁ,cuuta?,cuucéﬂ,ccuzﬂﬂ,cauzﬂu:
cannﬂliggutdz,ncutuﬁ,cau;4ﬁ,aouz45,amut46,cnum%?,cnucéafcnucds,ﬁuucﬁn;
SeubEl, coubSE, sert 53, oot B4, cowk 55 couk B0, couk 57 ;

-

oialy
Bi0]
BiD1;
B{D):
BiQE:
Bid];
HiDI

A{1]
A(2]
Al3]

L]

il

4

&K[E]

I -

#

wEszies WP = R{O1 & Hil);

arsign WIR)] = k{1l

masiom W(F) = A[{2} ¢ BiL]:

mesign WILOP = A3 & BIl1):
4

Bil]:

o

nmysgn W19}
assign WIE0}

ossign W{ll! = A(4) & Bl1];
assigy W{LE! = Al5) 5 B{11;
wosign W(L3) = A(E) & B{1);
Wil4F ~ A[OY) & B2);

WELSL = ALY & RiZi;

U[LE] = A[Z] § U[E):

HILVE = AL%] & B{Z2):

18] = A[4] & D2}

= A[LY) & Brzy:

= A%} & B[Z);

49

continue...

Ftp B]
mEslgn
REEL Y

asstgn

anoiogy

BEEL 0L

a1

[L SN c Y
sl O
sSE1yn

L g

SEILyn
LEEL Oy

Ly
I it

hogn

3

Eeis)
=303

k-3
=
T
=

» B
e
Il

EREERE

©
iy
a

ezl

w W2E]

wrezl
W4l
weeky
WizE]
wizT

WEa)
Wz#]
rism
wiai]
wiIz]
w{az]
4]

W25}
{se]
WET]

v W{2E]
s W{35]
v W 40)

W[#1]

ire4)
W{4%]
Wa4]
Wi45)

v W{46]
. WE4T]

W4

wLio]
WLill
WLEZ)

s WL 3]
r WMLi4]

Lis)
wLie]

s WEIG]

WEgl]

L WMEFE]

wz{3]
NZi4])

it

LIUF & Bl2):
ALll & BI3);
EIE] & B[231:
LIZ1 & BIB):
L[2] & Bi{3y;
A[E] £ B3}
A€l 2 B3I
EfQ] & B[4}
ALL] € B[4);
AlZ] & Bl4);
(2] & Br41s
Al41 & B[4,

= &I5E & RI41:
= k(8] & B(4);
= A[D] 4 B[3);
= ALl & B(5);
= X|Z] & BIS}:
= R{Z] ¢ BL[EI;
= k4l & RIS}
= k[&] & B(3);
= k[&] ¢ B[Sy
= &{OF & B(8);
= A1} ¢ E[BY;
= k[2] ¢ BI6];
= k131 & B{BY1:
= L[4} & B{8);
w A[B} & B[81;
= &IG1 & BIS];

B

[

[~&[0] 1 &BETF];
[~a2[L1)aR{F);
R4 o BT R
(~A[B1V&B[7];
falfd]VaR(7];
(~BEE)IERL)
ten (B)ES7]

AIT]E{~B{QT0 7
ElF14e~B{LI);
E{Tlat~E[Z)y:

= E[7]Ef-R[32);

EANAES S AR

50

continue ...

aszigr: UZ[S] o AL[TFIL(~B[E]1;
BEgld WILE] = A1TI4S~BI61):

Wive greds
wiras high=wl;

assigr WI=A[TIaB[7};

aRsthaw PLOI=EIAL;

full zdder falfigné W{l) W{7],DIL],coucd};

Tubll _zdder faZignd, ML), WIS, swmd, counll

full adder faligqud W[(21,0(28],swml,cound);

finll edder fadiand W4] W{L0], sus?, causss)

Ll _scdder falignd, W(E], WILL], sun®, couzdl;

full sdder fab{gnd F[E] WilE],suwd, coust);
full_adder faTimnd, BELO) ,WIL2], sums, 00unEs ;

full sddor fa@{W[l4f cousl, munl, 2], cousTi:

Tull adgatr ra9irf15F . ooutl, skl , sumd, counds

full adder fal0{W[i&},cout?, muné , zue? coutd] ;
full sddee fail (B[177 cowed, sund, il couekd) ;
Full sddar Isi800(18]1, cound, sund, sumd coautil) ;.
full sdder fai3W[19],couts, sunf Stwldl, ook Lzl
Publ_sdder fold W01, couns, W2 £01, small, conn L3 2
full zdder falS{W{IL], cout?, suné, P2, ooutbd)
Till sdder Tai&(0ZE), cound, suuT, SUGid, counts))
full adder fal?(R[23],coutd, sun® suntd, contlil
full edder I&EE(WIZQI,cautlé,Humﬂwﬁunii,cuublTbJ
futb_sdder fab¥ (MIRE] , soucll, mmid, auuls, conz 1S ;
full sdder fnZO(w[Zél,coutl%,sunil,zunlﬁfcoutlﬁ?;
tTull_sdder FaZL(OIR7], coutlB N2 (2], sunl?, counits;
full _adder faZZ(W[Z28] ,coutld, sunl®, Mid], cousily;
Tull_adder IﬁZ3(W[E$i,couuLE,sunLS,sunLS,cochQ}:
full medder faEd(W[SDjrmauﬁlg,gunquzu&lﬁrcmﬂaﬁﬁé;
full adder fa8S(F[XL],contl? sualf, sunil, counldl;
Tull_sdder £5E8(W(22],00unls, sunls, sunil, couni ki ;
full adder faZf? TIWER3) , cout 19, sunl? suniE, cowse) g
Tkl _=sdder rahBtm|34l,uauT”ﬁ UZEE] L 2und s, coundts;
full =dder fnZ?tW[35] perutEl sunlE LPUE] oounEE) ;
Dull sdder Ia?ﬂ(ml3ﬁl,cuuLLL'bumiﬁ,aumni coundiy
tull adder £all(00]37] coutE?,:um&G sunit, couz 2 ;
full _adder fuﬁE(W[Bﬁi,ccwiﬁi,sun?l SUBES counZly
Lt seidar £A3RIM99), qourn & K
full =dder and{W[zU} LULth, WEE, sunmEE, qout
Iukl_stlder Ta3ufmlizl,tﬂut Zr+i,sumzq Coun
full adder £236(0[42] counfl mumzd T{E] , counib
Tull sifdse Ia3?iﬂ|¢3i,uﬁuﬁav S EE, Sl E0 . o
full addar £a32(W1ge] ﬁnunguﬂgunda,sun3l L CouT
full sdder fal33{W{4E]), coutldl,s u427,5um32,uau~393.
DALl _adder Lasd (0] 45), cout3E, Suis) Suwdd, course ;
full oddor fadl(W{47],cout®8, S0l sundd, cousdd) ;
Tull adder rass(Wid4s], cuubﬁ%,ﬁﬂ{&],sunﬂ SEOWEELh
full adder fad3(FL{40),coutds UJ?U,»unJS,uuuu 21 ;
full adder fadd({Wi[l], cwubﬂ& sumFl, s ?, counddl
ull_rddar fadSIWLL21, cmm:d"} qums.,‘,:umdﬁ TOuT 44 ;
full mdder Fadf (Wi[F], cmuda- @A, sundd, cousah)
fuli_eddar ted¥(BX[4],nounda, §uﬂ?w,5uhﬁﬂ conTdal;
full adder .E;:.‘EBI:E"’["-'T Er:iut.\‘tﬂ,,‘um.,& suedl zownd7) ;
full_mdder LadP(KI(8],coundl, wz:al Bt T @ CUTAET
ull adder faS0(ER, -417], ?B[r}¢aqm43,cuu:dg};

twll sAder T&5LU&371,B(7], sundb. B(7], counsirs

full _ndday inﬁﬂ(ﬁnutgﬁﬁcau:iﬂ;tﬁﬁE?,D[81,cuu:&l};
Tull_sddéer fe5dloouwssd, deundd) um3d P8, counsil ;
full_addsy 'aSqrcnucﬁz,:cutJalﬂuMEQ PlLAG] ,couc 83y
full wdder [alS{@ows5d, couLiursum~D PlAL], coaebd) ;
full_agdder fafs(oounss, oounds, sumdi, PLIRT qounss)
full wdder EﬂE?(cuu&EE,aqut:?, suwdf P 13] ,couns6);
2l _sdider (a5&(COMCSE, counds, sumsd, B 1141, coansil
inll adder an?(cuuu&?,ccutfﬂ,high,?{lS],Cﬂl;

endwodule

Figure 34 Baugh-Wooley multiplier with instantiations of full adders

51

2. Radix-4 Booth’s Multiplier

Fflé—hiy result.
module Booohk (L, B, H);

input [7:0] A;

irput [VF] B

cucpac [15:0)R:

wire [0:0]P1,PZ,.P3,P4;
vire [B:0)EBE1;

aszign 31 = B << 1

Boochpar parl (L, BLiz2:0],PL1):
Boochpar parz (4, BLlig:2],FP2) ;
Boochpar par3 (A, B1lio:4),F3)
Boothper pard (A, BL{8:8],P4)

CHBAL_16_booth csal(Pl, P2, rd,Pe, B

endmodnle

//Redix-4 Booth wmultiplier with 8-Bit input opersnds, genersting

Figure 35 Radix~4 Booth’s multiplier with 8-bit inputs

#*This progren implenanks the recoding legic and
multiplever for radix-4 foovh's algorichn no generate
partinl products.

>/

wodule Bacthpar (A,B, P},

inpus [F101A;
Inpur [2:G08;
autput [B:A1E;
wire KE_ P5;

wire [€:0]ouk;

and recoded verslon of I-birn muitiplier groap is LiM=Ll) snmd also
WEH of mulbiplier group iz 4.

arsign out (0] = (M & AXlOFy ~ B2y
sign out[l] (eHE & A{GIY | 425 & X[113F ~ B[Z2]:
& i & Afzlyy * ElE);
((HE & ALZI1Y | (M ¢ A[3182 ~ BIE]:
assign oawk(4) [(HE & AC317 0 {H & A{a])y » B[2):
sign cut[3] = (M2 ¢ R[41) | {8 £ AL&10Y ~ BIZ);

& | &

[| &

&] é

iod

arsign ouc (2] ({HE A(L]) i

dgpr out{3]

ioa

assign oub[8) = ((BF LLST) & Ar8])y * E(&);
azsign sue[?] & ((EE MR I & R[50 ™ BIZ2);
assign out[B) = (({H£ A1F] {1 ABYY ¢ BEET:
wszigm B o= ouk 4 BiZ]:

assign P9 = (MR 5 kg) ~ B2

ardmn dule

fedgm extension needsd for the caze when M8D of sultiplicand iz 1

o
i/
=ssign AS=A[7]; ' £f sign extension
asaign M = BIO]~B(1];
asslgn HE = ~(8 [{B{L]-*BIE1)): ff Z¥multiplicand

Figure 36 Recoding logic and multiplexer to generate partial products

52

F¥This progren sdds Eour lé-biit operands, creating s lé-bit CSA,
The A-bit inpuc eperonds are inbornally signod extended %o LG hits.
Input sperands gre shifted leftc cocordingiy hefere sddition ta
tnplomant the Ssoth’s wlgerithme.

/

nodate CRi_ 16 boosch{A B,0.D,8);

nput |8:0A: f4 0L

opun (@:00B; £4 Pl

LHput [BrO1g; i P3I<ed

inpur [BrG]D: £ P4x=n

sutpul [15:0]5;

W E e Ele BL7;

wrizo sunl, sunl |, sun?, Sued , Sund, s05S, sund, sunT , sund , shaed , sunll;

wire sumll, sunl?, sunld, sunld, suald, cunle , sunl?, cunl¥, sunid, sun?l;
wirg suweZl,sunll, sum?d, ouwZd, sunls, sundf, sunZ7, sunll, sung R, suwd0;

TLER cmutﬂ,cgmnl,auutE,cmugG,cquzd,cnutE,:nutﬁicnuc?,cnutﬂ,Eoutg,gaumlﬂ;

wire ot l) oronnkE, coue 12, coun ld, oout 5 oout)€, connl?, cout 1F, cout i, oouniil;
wirve ooutl.comcZi,counid, coucdd,oout?l,oounld, cownd?, qout e, cout B coundi;
Wire cauzﬁl,aﬂﬂtﬁz,cout33,cnuc34,QUUL3S,cau:Sé,cmuca?,cout3ﬂ,cﬂutﬁﬁ,couﬁ&ﬂ;

wire cotana L 2oun dd | contdd, coubdd , coutdl counds;
wiye Gred=0:

Lof: wdder Lok {ynd A[0) gud, suad, coab Q) ;

Eull wdder Eaflgnd A1) god, =unl coutl),;

il addcr Endignd &2[2] R[OT,5unf, ooukl} 7
fuil adder Endignd A[2] BIL] ,sund, coutd) ;
fuli_addar Eal{CIQl ,A[4] . B[2], sund , cound);
tuil addar EnG{CEIF A[E],B[2)], sunt, cout k) ;
futi_ndder Ea?{C{A),RI6],B[4), sunt . coute) ;
fuki_pdder EabiCI3] A7) ,8L8] .eun?, oout?y ;
tuil_adder Ea94Ci4) A8 ,8(8].,suul, coucsl ;
fuii_adder faiUICEE) AIS] BI7] sun9, couns) ;
uii sdder EAliiCIE] A[8) BIB], svuil, counll);
ful: sdder Eati2i{C{7) , A[2] BIA], sunil, coucll);
Euii mddog Eaf3{C[B] A(2], BIO], =mil, courl?)
£iiii mdder Eal4 {CIE] A[8],BID], v, couslld);
fnli méder EAES{C[&) A[2] B8], sunii, coucld);
EuEEuaddur EalB{C{g] A[2] ,B[0],sunil, coucls) ;

53

continue...

inkl sddex fal?ignd, sawd, gnd, S[G] ,counld) ;
iall_adder fal?{oounl, surl , ond, surlé coucl?);
fiall addey falftcousl, surld, gnd, Funl” ot L8] ;

Fuil sddew
ull szdder
full =ddex
full_adder
full adder

taZ0feour s, sl gad, s ld, couela)
fall{cousd, susd, gnd, 2auld, counii) ;
faZZdconed, surd, gud, Sun?0, coatd i) :
faZ3icount, sums DIOT, sumEl, couwt22) ;
fnZd{cous €, sun? DI1] ,sund?, counlal ¢

£i2ll =ddey fap B {ooun 7, s DI2] , suw?s ; counlzdl ;
Ikl sdder fafE{cound, sun® DS ,sumld, couvbr sy ;
tull sdder faZ?icous®, sunld B [4], sunlds counZe);

fakl_adder

fadfioousldl, sunll DIE) , sumds, couss7) ¢

Eull mddoy faf@{cousll, swnlf D[E] , suw27, coubls) ;
fuilu&aﬁer fu 80 foose 18 mumiE D7), sl B, conn i)
ftull addes faZl {mowcl3 sumla B8], sandd coundl ;
full adder fadZicoucld, sumls5,Di8) , san30 , covt®l) ;

Enall acdder

EaF3{gnd, paplé rourls Y1)) @oucdE] ;

full adde Lad4 {coueE2 suml 7 cownli? BEZ] coun3d);
bkl _adder tadf{oous 33 sumls, counds, 5§31, coucid) ;
tull sdder fadnlooue3d, sumlf coneld®, 5041, cous3s);
£kl _addey £a37 {mows 35 a0, souk i, B [5] . cous 36 ;
full_adder FAZE{coun B8, sunfl, cous 1, B8], cmam 7 ;
Fall addsy Tals {eous3? 2unis, coubl? E{7] coundd);
Ball sdder faéﬂ{cousBB(sumZS,cnuEEB,S[%l,Qqﬁt?ﬁ};
full addey fadliocousdd, sunid, coun®d, 05T counddl ;

k]l addex
211 addeder

EadZ {ooutd, swwiE, coub?8, F L1) contd 1) ;
fadd {oouedl zunl6, conb2E EL1L], ot dE] ;

fall sdder Ladd {ooundE sumd?, comn 2y E(127, connds) ;
bkl addey fagb {oouk 43, sundd, cow 28, 5113) , coutdd) ;
iull_sdder faééicﬁu£44,sum29,cmutEQ,SL14],cautéE);

fuall_adder
2ull pdder

sridwodiale

fad7 {counds, sund0, coutdl, BI18], goundi) ¢
FadB {oourdd cone Bl , cout 15 816,357 ;

Figure 37 CSA for Booth’s multiplief to sum all partial products

“timcacale lns/lps
wodule Booth_tsn:

redq 707 AR
wire [1E:0]R;

Bootk boothl (&,8,0):

IRLtiak

kegin
A= BRI B oS 3rnug;
#1060 4 = B'ROL; B = B'hi0;
50 A = §'bax: B = &' hila:
F53 4 = B'h2i: B = B hib;
Y50 A = B' k34 B = 9'haAz:
#50 AL = 8'RAY: B = & h3o:
450 A = @'hak; B = &'nla:r
BEC A = B'hder B o= 8 nwik;
FS0 A = B'Bth: B = B hcE:

el

ininiad

fmonitor (frealtime " &=%k, B-%b, produsc=%h', A4, E,R):

endwedule

Figure 38 Test-bench for radix-4 Booth’s multiplier

54

3. Carry-Save Adder (CSA)

fPThis progreaw sdds four 16-Bit operands, ersaving & LE-bit OSi.
Fach operarnd ig sigrn-edtended to gensrate ehe Lotk and 17tk bie.

{Gre bit =igm cetewsion for ndditiom of GHwo operonds)

':'f

nodule 84 1€(A B, 00,95

inpat [lE:O)Aj

Srpus [15:01EB;

irpus [15:0]C;

anpgat. 11501

dEnpue JI70| 5 J& BLB45L% 1ot viesded as sucpun hence declarzd a5 Wire
Hire Jal.&,..&l?,Bl@,Bl’?,Cl.G,Cl’;’,IilG,Dl?,SlE‘,SlSi,:

wire suml, sund, zund, sund, sund , sunt, suné, sun?, sued, susd, sunll;

wire surll, sunl?, sunid, sunld, sunl 8, supld, sunl?, sunlb . susld, sueiD;

"iLE suml, suell, sandd, suml4, sumef L, s1umf 6, sund 7, sun?f | s1med s, suw20;

wire SWR3L, SURFZ sun3ld, sued4.

UL c&umﬂ,auubl,ccutﬁ,cauﬂﬁ,uuub4,uuub5,caim6,caut?,cuubﬁ,sﬂubﬂ,ﬁoutlﬁ;
vire cuwtll,:uutlz,cuutlE,cuutl&,cautl&,cautiﬁ,cou:l?,coublagcautlﬂ,cuubtﬂ;
wire cnutEL,cnutZE,auut??,ﬂnutEq,cuutﬁ&,qgutZG,:uu:ET'coqmﬁ&,couuzg,cnutgﬁ;
wire cout3L,cuutBZ,coutSS,euutEq,cautaé,caux?ﬁ,ccuzBT,couc3ﬂ,cout39,cmuu49;
wire Conc4l, coub s, oouLdd cowtdd, cout S Cour s, cound?, cCoun el coundS, counSa;
LT [TV CR-R N ¥l A=

uire greE=0 ;

Assin ALE=R(LE] BIG=RILE], CLE=C | &] DAG=T[156] ;
essiqm ALT=A[LSE BIT7=BILS] CLYSU LS, BLY=B{18];
full adder Iel(Cl0} 2107 ,B{0], sumd), couc) ;

full sddes EaZIC[L} &[] ,Br2], suml, cousl) ;
full adder fa2{C[2F A[2] ,BIZ] , sun?, cour?) ;
fuwll)_maddey PR IO 3L ATI] B3], zawd, o035
full_adder fab(C{4] 4(4) . .8B1&), sund, cound) ;
il adder 1a6(CI3],415],818) , suns, conns) ;
fixll saddey E&TICI6] Al6] JBEIG] , 516, couwss) &
full sddex EmB(C[73 ,A[7],B:7],5ua7, coue?) ;
f1l)_addar fnB(CI8E,AIR] ,R{D]), sl , moweg) ;

tull_adder falOiC{8y A[9] , BI9], sund, gpadl ¢
full adder Tl (Cin] a0l0, B0, sunld, coutli) ;

fi:1]l adder fal2(CEEL3 AELLEY BI11],.suwsll), coutll);
fullwnddnr £l B(CLLET ATLZY B[12],=ulf, coutl?);
full addor fald(CLED) ALLIL,BI12], sunl3, coutll) ;
izl _adder falS{CCR4], A0L4} B L4Y . sukld, coutldl ;
full sdder TRl (CTLS), B(LE) B18] , suls, cout 18) &
!mll;adﬂer !&l?tﬂlﬁ,&lﬁ,ﬁ&ﬁ,ﬁumLE,cﬁuulEj;

full sdder felB{CL7 ALY, BLT, sl 7, cansl?) ;

continue ...

55

Pl sdder fai®{gnd, zua0,DIC] ,E[0], couslB) ,

full adder fad{eoucl, sunl | B(1), sunls counls) ;
full_addey fatl{gonel . sume ,DI2] ., sunl9, coun i) ;
£ull_ adder Laff {eoutd , sunl L[I], sunf0, couril);

full adday fai3{contd, sund Dld], sunll, coucdz) ;
tiali_addar fafdfcoutd, sad D(5), sun??, coutias
full odder faZb{oouts, suné D{B6] , symd?, caub24) ;
full_adder faZélooucsd, sume? D7), sumdd eowe2s)
full_adder fadVicous?, sund , BPI8) . sumls eouk2Ed 5

full mdder faZB(coutd, cun? ,D[9], sunfs, oout2?) ;

tull sdder tafffeoatd , suweld Bi10), sun? 7, coutd b} ;
full adder a3l icout 0, sumll DL1], sunfd, coun?s) ;
full_addar fadligoutll suml? DI1E], suniEd, cousdl)
full mdder a3 (eonel?, 2wl 3 D[L3], 30030 couwndl)
tull addsr tadZ(contld, sumlbd, D[L4) swwll, coundd)
full addar Faddicsontld, suml 5,0 [LE] . maml? onub33) 1
fell_addss £a38 {wouels, Sual €, D16, sund T, calnEa) ;
full _addsy fadficoutls, sumlt?, H1Y sumdc counds;;
Fulk addes £437 (gnd SunlB, golitl8, 8[1] ,causid6)
fuxlk addey fad8{coub36, sumty, cowt 19,512}, cous ¥7) ;
fuli_adder Ead9{cons??, sun?l, cont 20, 813, cous 38 ;
Full_ndder End0{couc20, sum?l, cottZl, $74] , cout 9] ;
tuli adder tatl {eout3d, sund S, cous 28, (5] ,couwsdn) ;
fnll_adder tasZ {ocoutdl, sunl¥, coucZ3, S16] counsl) ;
full_adder f242 (eout 41, Sunld, cout24,5i71 , cous i) ;
tull adder Ladd {coutds, sunfs, coungs, 3161 coundd) ;
full_addax £245{cout4 3, SUnS , cont2s, 512] , coundd) ;
full_sadder Eade {voutdd, sumi?, peut®? 2{10] , coutds);
full adder fat7{eout 4, sunf B, cone2H, 51117, coutds) ;
full adder fatl{coutds SuwiS, cont?Y E(12), courd?);
ﬁullmaddnx fa*?tcouth,ﬁumEB;cautﬁz'Sélﬁi,ﬂwutda}:
Full adder fab0icont4l, sumdl, coardl ,:5 fl4] doutdd; ;
full addey faSltcoutéﬂ,sumiz;cautﬁa;s;lSJ,cout&ﬂ);
full_sdder ta5Z (voatSl, sumd3, cout3d, 37157, nout §Li;
fiill amddes Fa53{caub5i, fumdd, conubdn, 312171, couts2) ;
Fuill sdder fafdicouts2, cown s, douclt, 518,819y ;
endzedul o

Figure 39 16-bit CSA adding four operands

56

FAThls prograi adds fiwe Lé-biv aparshds, creacing a Le-Bie O84.

Hach
(dne

xS

spesrad iF Sign-exténded Co generste the Loth, iPth and Lok bie.
bir sdge extension foy sddicicn of twoe operandsi

woduls CER_ 1€ Li&,B,C,0,E,5);

inpagt

[1E:0]1& B, C D, E;

Sudpge [18:0]12;

L&
Wi
wige
wige
iy
Wi
Fira
5
wrire
wire
niks
wirs
wira
wiys
wike
wlis
wiEe

dom AlEsd

&lﬁ,il?,AlB,BlE,Ei?,BLE,QlE,ClT,ClB,BlG,Dl?,BE&,?LE,EL?!EI
1%, 520,881

B, suzl , sund, sund ;o sund, Sans |, sund ST, Suid , sund, sumlf;
Zmd L, SUmd 2, sund vk d 2l S, sunle, suml, sunl B, sun Y sandi
sl sundz, sunid, sundd, sund b, sumd b, sl T, sunis, sun e suma0;
aamEl, suR2l, Aun3?, can2d, sondh, sun®e , sund?, sundl, sundd, somd
:umdl,zuguz,;uﬂﬂ?,zumﬂQXIquS,;umdé,sunévfznn@B,aunﬂ?,:umSO;

o

H

bl , auebl?, sunb3, sunsd, cunb s, sumbé
cquﬁﬁ,cﬂuti,cotmz,cuﬂh@,&ﬁubd,caub&,cﬁ&mé,cntmT,zpszK:Qu59,cmuﬂ10;
coubil,cuutlz,caumla,cdutl4,caubl£‘aoub16,coutl?,cnuﬁl@,qoutl?,taubi@;
co&bEl,c@ﬂEEE,EﬁﬂtZJ,cé“Ei,cﬁuﬁﬁE,cdubEE,u@MﬂS?,cuﬂﬂiﬁ,éuuﬂi?rﬁuuhﬁD;
CREEL, QOULIE, Cowe ET, Sonmedd, coun3E BOUETE , oL T, S0 3T, S0l 3, o0
caua%l,c&u&éz,coutéﬁ,ﬂqma%&,cﬁunQE,c@uu%ﬁ,couﬁ%?,cauﬁé%,cauu&?,cau&&&;
Qoinbl et b d, coun il , concbd, counts CCULEE, COUn BT nonn SR, ooand S cout el
co:tE},coutéz¢coun63,cuuté4,c@uc.«,qeutés,coumﬁ?,zouti%,aoucé?,ceﬁb?&;
aout Tl , cout 78, aeun T3, neus T, ooun PE, cont 76 ;

=0,

[1E] Ble=B{i5} ,CLE=C[15] ,Dlecl[1€] E16=E11EY;

aprign B1T9eR[1E] EB1TsB{LS] CL7~C(LE} , 17+ (18] ,E17~E{1E];
&&ﬁign,&lS~&[lEI,Blﬁiﬂilﬁl,clﬁht[lE],Dlﬁvb[lﬁ],ElG“EIEEE;

IGLlM&dd&r E&lﬂC[D],RID],B%DI¢Sumﬂ,C&uEO?;
Lall adder LTaZ (CIL] A111,BI2], smml, conel)
DAl)&y LaBICIE] AT, BIRY, avd , coun?)
full asdder fad (1%, B{2F B3, swa?, cone®) ;
fall_adder fab(nia) 54y, Bid), sumd , ooand) ¢
full_sdder Fap (CLE), RISY BEEL, sunt, eounk) ;
frall_adeder £ I0[6) , k6 Bikt suné, oot 7
fﬂll_ndé@r £2Z0EF) ALY L BETE s oo T ;
£ull addes £eB {08, 219],B18], cunl, cound) ;
fall sddor EolQOD[S], 5181, Bi9], #uad, moaes) ;
frall sdder £=ll{C[10] 21308, D{LD), 2l , conanla) ;
Eull adder LelE(C[11), 5038, BILY] satml], eciaell)
Tull amdder 1213 (C{I2),AAE0. B L) contul? coundE)
[Ull_aaddsr sl (C{13) R143F,BILR], saaml3, coun L) ;
tall_adder EalE(C14) Ailsl, B{L4] smld, counld;

continue...

57

full addar Fal QLR ESY ALLEY BELS) , sumts, couels) ;
full adder Eal7{CLE,ALG ,BLE, sunlb , coutlE) 2
£121), adder Eal8{C1l7? ALY Bl7, suwml? coutl7};
full adder f2l9{C1l8 Ai&8 BlE, sunld, counlipl;

Eull adder EAZ0 grnd , sumnl, D 10] , sunld, cen L)

full_adder feZlicontd, swuml ,D[L], sunil, coucZ0}
full adder fe2ficomtl, suw? D{2] ,sunZl, couc2i);
full_adder fe23{couc?, sumd O13)],sum? ¥, cour i) ;
Lzl sdedes LaZd {<onied, suwad D i4] , 9und3, dousidl
full addsr fafbhicoutd,sums D5, sunid,coucid)
f1z1l adder fezi{coutt, suwé D61, 5unkt, couczs) ;
fuill adder a2 loousd, sum? 0 [F] , sunié, coutZ8) ;
fgll addar Le28{ooue?, swall, DA] sws2 7, 20unZ?)
full adder 28 lcoutg, sund D[R], suni8 couc i) ;

full adder fRA0 teowe 9, sumll, Di10T, sundd, cous29) ;
full adder fedl{comuld, sumll D[12] sum30, cout3d) ;

full sdder tedE {eounll, suml? D[12], sve3l coucdt) ;
Fiell_addar 3B {courl?, suml 3, B[13] aindE, aoub B8] ;
fril adder fpIdicontld, samid B14) ,5awmd3, cout33; ;-
full_adder fe3bicdoutld, sumis D[15] , sum34, . cout 34y ;
fuzll sdder falf froukls, sunid D16, swad s, coutdb) ;
fuzll adder Ea37 {deubls , 2wnl? DL7, sun36, sout36)
full adder fafficontl?, suwnld , PLE, suni7, coukd?)

full addeyr fa3% {omad, sawmld B {0}, 5{0], cout38) ;

full adder FedO{counld, sumfd, Z[1] , sumBd , coundy) ;
full adder fatlicoueid, sunl E{2] , sundd coutd0] ;
frzll adder fedZicoutil, sun?Z E{31, suamdl, coucdl) ;
ful]l adder fad43{coun?? sunlfd 2{4}, sundl coucd?);
full addar fedd coueTd, sumzd, ¥[8], sundaZ, cour d3) ¢
full_addar fadbizoue?d, sumd5, R[5, sundd, coutdd) ;
£l _adder fadd {oout 25, sande 3[7], sunmgd, contdk) ;
ftuell adder fe47 {cout 28, sunf? , 3[5], sunds, counds) ;
ekl adder fes8icound?, sunZ8, B [9) , sungsd, cound?) ;
full addeyr Tod? {counZ8, sumdd , B[10] , sumd?, doukd8) |
full adder faillcoutZ® sun30, F111] , sumdl, coundS) ;
fzll adder frblicowt30, sum3l F{12] ,sumd? cout 50 -
full adder faf{zoundl sumdZ F[13],suns0, counsl ;
full_adder teS3lauutd, $undd E[14), sunsl, couns2)
full_adder faSd{coun®d, sundd, £115), sunsE, coun 53
full_adder faS5i{cont3d, san3s Ble, sun 5%, aoue 547 ;
full addey fafs {ocouns3s, sunds 217 sumbd, coun 58 ;
full adder L1287 {cour 38, sl E1E, suanll, coutis)
full_rddar eS8 lgad, covnl 8, ehut 37 sunbé souwe 57!
Iull oedder fauSH {grd, suwdB, cone B, B L), @suLig) g
full_addar faslioons b sundf, eounad®, $[e] , counsdh 2
full_edder fadl {oounS%, suned), courdad 53, coun sl 7
full adder g2 {ooun 60, sundl, cousdl 8 {4] countl)
full_sdder tas3icontsl pandZ wound® , S15] , oounEd) ;
firll sdder fafd foomn 82, sund, foucdd, S18| , cound) ;
Fall eddor EnfS {ooandd, saidd, toubdd S I7] oounEd) ;
full_addar 65 Loowhd, cundl, coutd5, 58], counBE) ;
full adder teg? i cows 68, sunsd, counds, 51 %], counie) ;
full_ edder £aEl{ coutB6, sund? coutd7?, 5 [10} , cout T ;
full_addaxr £a89tcous AT, sundS, ooutd8 B111}, couted) ;
idde 1a7l{conc R, suesS, coubdy S| 12 couves) 2
£i4l1_addox fn?licoqel T, suns0, couesSD, 8133, cous TO) &
full_sdder fa?iicons T8, sundl s ooutEL, $T14L , coutTl) 2
full sdder fa7I{ooac?l, sunsf , courS2, 5 [18) coas i) 2
fiill adder faPt {oows 7E, s d3, coue S, 516 , cout T3
full_adday fa?8{coan 7y, sansd . aounSd S L7t caun 790
tiall adder Ta?s{cone 74, sunds, coucEs5, S8, cane iy 2
full addeor fa?Picout?E , sunlié, 2outEs , 819, cout 76
full_sddex fa?8icoun 76, cout 87, ymad, S0 Fel:

codnodul o

Figure 40 16-bit CSA adding five operands

58

F7Thiz prograe odds fowr 19-bit opersveds, creating a L%-bit 0EX.
Baeh aperand 18 sign-ensehded te gensrate she L9k and £0ch biw,

=

wodila CEA 15(2,8,C.D.8);

inpuz

138 0 L, B, 2,0

cutpas [Z0:D]2;

BAYE
wire
ALY
wira

A&, A0 BED B0, UL, CR0,005 ,DE0, 500, 85

sl soml, sund, sun?, sund , s s, sowd | cuny, sus®, sund, suell;
5uuil,3uh12,5um13,5uml&,gumlE,5um16,sum1?,sumlﬁ,sﬁmlﬁ,sumzﬁ;

sunil sunil, sundd, sunid, el i, oanldd , sund T, famnd S, sand § L Eam

suell suedd, sued 3 saedt oswed B eandE , rand? |, mandl, sum®D, sand G
c&utﬂ,ceutL,coutE,cmch,t&ut4,cowc5,cguuﬁicﬁu$7,cauza,cuucﬁ,counln;
crutll counl?, connl¥, coutld concll, couslé, coukl? oout 38 cout LA, mout 20,
coutzl, oot 2, comn I, connid , coutlh eonnic, conk 2T, 2oub B0, meuk 29, cout 30 ;
cgut3L,cuuu3€,caui33,coum34,counES,ech3E,coucs?,cauuﬁ%,cnu;S?,c&uu%ﬂ;
¢out%1,cau£¢2,cnuﬁd%,aouadq,cuumd&,cnuaﬂs,cout&?,aautﬂ&,coutﬁg,ﬁoutﬁﬂs
coith Bl o monut5Z cout SR, vout i, coukEE, Soln b6, pagt 57, cout S0, souk 5D It ot
TOULGL

=i

asciogn REO=A[18F ,B20=B{L8],CE0=C118],D20=D[18) ;

fiil_addes Lal (D0} &[0) BLOT, 260l , Sl 5
inkl_addar £aZGI1Y AL TLBE LT sunl coout ki 2
fulkl adder fa2sC[2] ,M[Z] ,BL2] , auni ceukd] ;
Tuil acider LaeCI3] &[3], B3] 5w, soue3s 7
iwll_mcdday ER3U04] 8141 L Bi 4], sumd, cound ;
full sddex faf (C{E) ,AI(5] B8], cunl meukh &) 7
Tubl_sdder La¥iClE] JADS) Bi6], 5wt couedl 2
full _addey EABLCLTT AL, B0 punT, aoust) ;
full adder Lad{CIE],A08] ,B{E] ,oun®, conte B 5

Tuil mdder TA10C 5], 4021, B9, sunS, coued) g

fuil_mdder ERALOCILI0) JATLGE,BIL0) munll, cout 30} ;
fuil sddor £l (Q[IIL, 1YY, B[} . manll powtll);
mEL_sddey TEE3ICI1I0) ,AILEL,BI12}), sl 2, oasnley ;
full_smddar Fald 0138, A1), B3, munld ooge 18] 5
iukl adder £alS(C[1e] ATL4) B[4}, manld, courldlz '
Inii_addexr Taig{CIL5 ,AT15) 8118 sl 5, ook 155
intl amdder fa1P (0168 81160 816}, manld, cmuk 16 5
fuil adder FRifi 17} JATLTT 217, o3, mos 123 5
Tull_sdday Ladd (0118} L ATLISE,B118) , sl s, connls) -
fuil sdder £a204C1S, AL2 Bl1% samld, oout 29y ;

fuail adidey FaZL{CE0 AR, BEO, a0, cou 207 ;

39

confinue ...

Luall adder Eaf? {gnd, sl Di0] ,8i0]) oot 2l
L4l1]l adder faz3icoutd, sumd D{1), sunZl counill;
[zlll.__ma.ﬂéier faia oot sun? DiR],5uLl?, Couniss .
tall_addsr fafticout s, sund, D3} ﬁ%mr.i%,cmmzwf
Ll l_adder faZélooutd, sund, 14, sunds, counisy;
fall_afdar fag?icoutd, sumk UL, sunids counidy

full npdder taZBiecutl fund ,MI1E), sunfs, qour 2 ;
Eall_ndder faZffcontd, qun? D] ?] sund? coutgR) ;
full adder fodlf{cont?, 2un DI9Y sunlfd coutZa);
fall adder Eall{cout® =zus® D{S] sunld coutd0);
Fall adder .faﬂ’{cnut?,mmlﬁ,]} FA0) , zun3l coucdl;;
fuall adder fadd{contil, sunil DI13Y ., 8undl, coucdl)
fall adder FadEfooni il sumis T ji8), sunl3?, courds) ;
tall_adder fa3fieonti?, sumid, D113, sundy, cont34)
fall_addar faddicoutdd, sundd D{l4], sang4, cont 38
full_adder fa3T{onubia, sundl LIAE) . sundl, coutieh
Eall_sdder iad8tooutds, sunlé, {18, sund e, cout 37 ;
fall_addex 2239 {oout s, el 17], sun3?, cout 38t ;
fall addew fa=ﬁ0{cmutgi’?,slml:ﬂ,ﬂé.ll&},slmﬂﬂ,cﬂut!?:g&;
fall ndder ‘a."' I{ooutls, sunls IiE F,oundy, coubdly;
E'u.ll__mk'ter Eal {Gouti®, miul Iv I‘ZD,Jm_‘-D,cnut.-':l},
Lall_adder fasdfgnd, swnfl, coun 2l 8511 eout2i)
rall addar fasdicoutdd, sundy, ConMCEE, B 1), coungd)
full_ adder tadbicousd, sundd, cont 2%, 1) oot ss) .
fall_adder fadfiooutdd, sunly, eounds, 5141, coungbl;
fall_adder fasTioout 4, sumdh, connit, £ {5, coun gy ;
fall adder FadB{coutdé, punly, coutd€ B8], comtaT) s
ful.l_:r:l-:lnr fadB{cout4?, sunz? JoowtE BT, coutadl;
fall addesr EESD%cnutt‘zE,.,alm,_a,«_outf_g E18T, couk4®)
Eull adder Eabifgoutdd sunplfd «.om:._El,"lQJ,w:m;l:SG.\.:
full adders falEd n_mLLSEI,.Au.LEEI,Lm.LESIJ,..ni.'I.D;% ccoutBi)y
fall addar faf3ieouchl, suwsd, Coutdl, 51113 connEz);
Lutll_addar ias-‘zin_ow;u._,dmﬁ.; COoutIE ELIE) , coun i3y
fall_adder faSSeontiE, FunlE, coubdF, 81130, cout b
fall_addsy Fadg{nourts, sunis, cou.t:?-, 51143, mout 88
tall_mddsy a7 icout s, sunds, couk3h CELERY mourBey
Ball addes ..aSEHsmutSu,,.mf}é -.crutifin; 5|1u1,¢m,1t5?\;
full_ adder n.EB{cnutS"‘,an_{'? ccut'a? a7 coun BB,
full adder Fadlfcouthd sundB cautGQ SB11EY conn RO
Full sdder falbl fooutd 9,51.1:& 9, cmn:ﬁ‘ﬂ SEA8}, cousil}
Full wdider EabE{eoirdn, 51.m. 1} n:auhél.’l COEEDG oGl
fall addes ‘3634|.I:III.LL-1_,LnttﬂélrﬂﬁllL‘?U,‘323,5 Zh:
sndnodals

Figure 41 19-bit CSA adding four operands

60

4. Carry-Look-Ahead Adder (CLA)

FTihis

)
woidigle

Lt
impal
LR
L] o FL)
D

VEE &
wLEe
W

wEr

HEsign
azsiygn
G L
fim s bt
VEE R0

FFE BT

ass i
o R
azsiop
LEERE A
s Lym
Giss o
MR LT

LELENR-)0

azsim
s g
By
EEfH NG
SESL g
&AL O
Pt N2
-2 R
arsdlme

pragraz adds two d-biv cporends,
Wi sigh satensian e the aperands
sddition of unsigned muEbors.

CLA m=wid I, CI0.% C04%;

FEU R
ERCRa TN
C1n;
3.0
cod;

COL,C02,CDE;

(16 0 8 S g e I

M, P, PR TR

al,oZ, el of ok cb . o¥ of od, olib;
Eul,wwl, g5l sug

=al = AJE] < DG
gny = CID ™ sml:
0O o= A[O0) & BiQT:
Pd = (01 | =ro]:
cl m PO & CId;

COLl = [| al;
1oss@ - A11] " ML
ElLy = GaL ™ =z2:
EL o= ALY & B(A1;
Pl = H{il i =m[i]:

e = G0 & Pi:
gd = B0 o5 Pl o4 £T0:

LT = B | o + ooxg

FE3 % AIIZ] T OB(Z)

BI2F = COZ * wxd;:

C2 = #[2] 4 BL2):

g o= R(21 v B{Z21;

va = G148 PR

ch - ED o8 Pl s BE;

oh o= B0 o PL o8& PR o4 D@
Gz G2] =i] =B | ms:

=g = R[D] ~ Bl3]:

{3 = C0F » mwi;

T3 o= AFFE 4 B3I

¥3 = ATZ: | BIRLs

o o= LR ok PR

cB o5 B1 4L PR o4 opE;
oHo= FOOL Pl oL OBE & fiE:

kil = mh £ ML & BE & B3 & CIO
COg = 83 | % | =8 1 29 4 el10;

wrdndidn) «

» hanee

sreaving o d-bit adder.
snly wibabis for

A7 Inmpuz-ofaur bieo

PR ve Y b S REla 133 VD &

Figure 42 4-bit CLA without sign extension

61

SYIRLE progyae adds tuo t-biv opeyands, creasing a 3-biv sdder.
The o operands are siean~extonded to create S-bit opcrands
S ranANg CUE, which 2% insioniiant we the rosylr,

L

¥

il CLALA B CUTI0, & &4)

R 03 R A0 Inpgtstounr bacs
Ayt

EAPLLT

watpak {FJ 078,

oatput S4; F5 Carvy-out bin

wipe X N L
wira EOL,00F, CO% 806, C08; /2 (0L iz foxr svarilow dus to =zigw extension
vire B0, 0L, GE, G354
wire IO,DE B2 P2 PA;
wite ak,oR,c3,od,eb, 08,87, 08, 29,210, 08}, 0L, oL}

alg, nrE;

wire sxl wu? med gxd;
assign A4=RI3], BY=B (3]s fF gL LAt - S1gn sxnansloa

54 = &1D) - BlDI;
 BIR) = OO " wyls
Gilo= A[0] £ BLO);
PO o= AID] P EIOf:
cl = B & OEQ;
g Nl o= 4 | el

arTaemy 55 o= ML) O~ BIL);
assiams 3011 = C0F ™ =53
azoigqu GL o= ALY1] & B[1]:
assrey PL o= 111 | BLAF:
dsrign 2« G0 4 PE;
azgign o2 = PR oo PE g CIG;
assidn COZ = G1 | o2 1 o3,
sEssign 55 = RI1E1 ~ BIEL:
BeEiyn B[] = COZ "~ =84

£
f

arEt CE = A[Z) £ B[R)a
e

aszig P2 o= A2} | Bl21:

grmige 2t o~ Bl 4 FEz

aEsuHn 0% T ROo0 BL & PR
arsign @k « PO & FL 4 PZ 4 TI0;
agsiges COF = GF F ood) of | b

guwims =84 = R[3] ~ BI3l:

assige FL3T = Q0% s

aAsige 03 = AIZ: & B3)

agsicme P3 o= L1BF] RBIE):

sesiep ©F = GE 4 P

wrsirm < - GL oL DE o4 PE;

asgign < ~ B0 4 P1 & P2 5 BI;

assign k3 < PO & Bl 4 PE & P¥ 4 £I0

Asiian S04 = G2 | ¢F | B [gF 1 el

assigr 24 = 04 " gwd;

assign (il i

assige B4 7 o4t 1 B

arsign =ll = 03 4

dumign ki o« GF

anxign old = Gl
R
PG

Il
it
[
&

BL & PR & 23 4 P4;
FL & FR 4 23 4 P9 & CIG;
oLl] oclZ | @iE | oeld 3 oecl3;

A

£

4 FE & B3 & Pi.
wREi g oLd = &
armdige SLE = MRS

agsige C08 = G4 |

ondmodiEle

Figure 43 4-bit CLA with sign extension

62

Af iAebiv BLA
modula CLA_L8(A,B,5);

impur {17:014 H;

subpur [14:018;

TEE e AL, A19 . BIR,BLD, 519,520
wire COL,002,C03,C04:

Wire cIn = 0;

Cld_nsx clanl(A[2:01,BI13:01,.CI0,8(8;:0], Q0L

CLi nswx clanT (A[7:4),B[7:4] 003 5(7:4) 008 ;

CLA ngy cland(h(rL:e],B(LE:8],L02,5(11-8] ,C03);
CLA msy cland (h[15:18] BIEB22), 003,515,123, 0047 ;

asesim AI8=A(17] ,2L9=4T17);
assign Bl8=E[17?] B19=EI117};

Chd clal ({M19 ALR, A1L7:161}, (Bi9,BLE,BIL7:L6)),004 {515, 5[18:16]),820) ;

endroduel e

Figure 44 18-bit CLA

Ff L3-bit CLhh
wodule TLA_ 1214, B, 5);

inpur (15:0)JA B:

output [(12:0)8;

wire &13 ,B19 S5E0;

rire COL,. 232 £03,004;

wire CI0 = §;

CLA_msx clandiA[2:01,8[3:0),010,2(2:0],00L8);

CLA mex clanZld[?:41,8[7:4], 001, ST 4,008 ;

CLA nsy clan2dAlll:8) BILL:B],COZ, 3{LL:8), 002} ;
CLA psx cland {ALLS:12) ,B(LE; 171,003, 801552 ,004);

auEsign Al9=ALLE];
nusicgn HI19=R[LE];

CLA tlul((Ad%, hil9:16]},{Bi9,8(18:161),004, 5[0 15], 820 ;

et odul e

Figure 45 19-bit CLA

63

/7 Z20-bit CLA
module CL&_Z0(AL,B,S;;

input

[19:014,E;

outpuat [20:018;

wire
wire

CLL nex
CLA mex
CLA rmsx
CLA msx

CO1,COZ,C0O03,C04;
CIO = 0;

clanl{A[3:0],B[3:0],CI0,S[3:0],C01);

clan? (A[7:4],B{7:41,C01,8[7:4],002) ;
clen3d(A[lLl:-€] B[{il:2],.C02,3{11:8),002) ;
cland (A[15-12) B[15:12],C03,8[15:-12],004);

CLA clal(a[l9:16],B[19:16],C04,8[19:16],2[20]} ;

cadnodul e

Figure 46 20-bit CLA

64

APPENDIX B

1. Radix-4 Booth’s Malfiplier

0
100
150
200
259
00
350
400
450

A=00003000 .,
A=00000001

A=0001G001
A=00100001,
A=0011K001,
A=1000D011,
A=1RI0B00Y .,
&=1101311040,
A=11111011.,

Finished Plrcuwf initialization procsss.

B=GOOGO000,
B=w0010000,

B=0A0110L0.
B=00101011.
B=00110010.
H-0H110000,
B=00011010.
B=10011011.
B=11000010°

prodict ~0800
mroduci=G010
product=01lha

product=[58h

oroduct=0992
produet ei90
product=£55a
oroduct= a3l
produnt=013E

Figure 47 Results of functional simulation f(}r the test-bench of Booth’s multiplier

Figure 48 Results of timing simulation for :the test-bench of Booth’s multiplier

0

17 233

100
111,
150
169,
20
217 .
250
264 .
300
3189 .
350
387 .
400
417 .
458
486,

367
L3
258
7549
211
327
157
454

&=00000000,
A=(0000080,
&=00000%81 .
A=0GO0000GY,
4=C010B0L;
A=000L00,
A=0(01005001,
As(Q100001,
A=00110081,

A=001100601

4=10000011,
A=10000011,
he10100001,
A=10100001;
3=110111010
A=110171100,
A=11111011,
BR11111011,

8-00000003,
B=000000080,
g=00010008,
5=00010009.
B=00011010,
B«00011010.
B=00101011.
B=0010101%,
B=0011001D,
S B=06110010.
B=00110000]
B-00110008;
B=00011010
B=00511016,
D=10011011.
B=10011011.
‘B=1l1egoaig.
E=lio0001a,

proguct=mExE
product=0004
product=0000
prroduet s01015
product=0018
pradunt =0 iba
product=01ks
product=0s8b
product =058k
product=0992
producst=0992
Fraduct==8924
product =aiad
product={65a
rroduzt=£5ia
praduct=le3i
produci=0=34
produnt=03136

2. Baugh-Wooley Array Multiplier

Finished circuit lﬂlti@ll&@ti@ﬂ praceag

0 A=60. H=00.
100 A=01.
150 &
200 a=21,
250G A=

product=0000
H 10.

vrodunct=EEi0
a0 pradast =0 5
b, product=058h
_ . Droduct=09%92
200 A . product=£827
5D A=af, . product=d%66
401 A=ct, B=bb. product=0f=7?
450 A=ft. B=ff. product=00C01

Figure 49 Results of functional simulation for the test-bench of Baugh-Wooley multiplier

65

0 A=00, B=00. product=smws
1e.918 A=00, B=00., product=0000

~100 . A=01. B=10, product=0000
164 274 A=11, B=la, product=01ba
200 - 4=21, B=2b, product=01hka
214 .141 A=21., B=2b, product=056b
250 4=31, B=32., product=0hBhL
265.071 A=31, B=32, product=09§2
o0 A=87. B=10, product=09%2
312,018 A=8Z, B=1i0, product=£fB820
350 h=af, B=7a, product=£820

366. 985 A=af, B=7a, product=d49:46
4no A=c5, Hebb, product=dY66
419.848 A=c5, B=hbh. product=0fs?
450 a=ff, B=ff, product=0f=?
472,321 A=ff. B=ff, produst=0001

Figure 50 Results of timing simulation for the test-bench of Baugh-Wooley multiplier

3. Carry-Look-Ahead Adder (CLA)

SEThis prograsw adds Lhe resalts from che 19 maleiplicacions beoseen
input data and filser seefficients wsitg CLA.

*eimescale lns/lps

medule adder_ cloil, tsami:

dmpaats (LE:QVH;

spEpur [E0: 0] tsue; \

TLER [LE:D MY M2 B3 He HE Me K7 M3 N9, . H10;
wive [EEI0IMLE MLZ MIE Mi4,M1E,IELS M1V M1g, MLs;
WLYE [16:0}Bs, Bb, Ho, A3, Be, BE Ry Bh, Bi:

wire [37;:91Ran, Rbb,Bog, Réd, Raes

e [L&:0iRfs Bayy:

whee [18: D7 hh;

wire LG, riB, yl5;

sesign Miel HE=N N3N, M4 K5 H, MErd, EPnll, HOnl, 15 =5, 205L Gndl;
assiga HLI=M M1E=M, H13=1 Hig=M M15=M Ml&=N, H17=H _HI15=Y K19=H;

Chi L& clelda (ML B2 KRa);
ERA_LE clal&h (U3, M4, Bhi
CLE 16 oclelse (ME HE bej .
Chi_LE clalsd (7 M8, Bdi:
CLA_ 16 clule (M9 HLO,Rsb;
Cha 18 otelSf (ML MIZ Rf);
CRA_LE olalfg (HLE,HI4, g s
CLk 16 claleh(MLE ML6, 2kl
CLA_Le clelsi (MW, M38, 04

assign mEé = HIR{1EY .

CLA_ 17 clal7alRa,Bh Raa)

CLi 17 clal?b(Ro, Bd, Bbby;

Ch&_L7 glalcihe RE, Rest;

Chik L7 elal7d(Ry, R Reddd;

CRA_LT elal7e(Bi, [nis HMis} Rea);
Ch& 18 wlal@s(Bas, Bbb ALYy
CLE_18 cleldb tRoo, Rdd, Ryl -
CEA_LS elalfs(REL, Rey, Mk

azssign ¥18 =« Begil?i, z1% = Bae[l?]:
CLE Z0 olefla(Bhh, {£15, =18, Bes} bsum) 7

@1 e g1 e

Figure 51 Overall adder formed by CLA instantiations with only one input port

66

Crnimescals lusfipa
module adderclg_tat:

rey [15:5] B;
wire [20:50] céun:

addet_cla adder (¥, Lsum)

ruiniml

higin
M= 16'hOcdd;
HEO- M = 18ihiiii;
50 M o= 16'hOZap;
HE0 K = 16'LwinS1:
HS0 H = 16'h0O0Z3:

ead
inicial $monitoriitime, ¥ ¥=%h, totalsun=%hY, X, taum}:

endmodnals

Figure 52 Test-bench for the overall adder with CLA instantiations and one input port

‘pikescele Ins/lps
woials sdder els(¥i B2 W6, K701, H12 H18 B1T, coun) ;

iwpie o [LE:OIM1, M2 HB6,E7,811,N12 H1é M13;

suatpaas [29: D] o eums

wize [15:DIM3, M4, M5, ME M9, M10 L3, HKL4 M1LE M7 MLE;
wire [Le:01Ra, Bk, s Rd, Re,BE, Dy, Bk, Bi;

wire [L7:0%Baa, Fhh, Boo, Bdd, Bee;

wire [LEB:OIREE,Rgys

wire 119038k,

wire miG, riE, rlR;

asgigrn B3 = L& WOIG0; gEmitry H4 « 1&"131000;
aggiagn BE = L& hOOGz: assiewn HE = 18 'hWZQ0E;
segion BF = 16 hO700; T opssign H10 = LE'ROGE0:
mesdan BL3 = Le'LAGLE; assioz Hld = 16 'bRei0;
assign 15 = L6 hO230; aEsrgrn M1V s L& nlan;
assic H1B = Le'hAo0g;

CLE_1& claléaiMl,Hz, Bal;
CL& 15 mlalEb (M3 M4, Dbi;
CLA 18 elalée (B8, ME, Heb;
CLi_16 clal&di(N7, 48, 04);
CLA_ 16 vlalfe HS M10, Be) ;
GLA_L5 wlel6f (HLLMLZ,RE) ;-
ELa 15 clalgiHla, Nid, By,
CL&_1E wlai6hiHlE, HL16, B s
CLa_l6 ebaléd(M17,M18 Bi):

assign Bi6 = WIS[L5);

Chi_17 clai¥oila, o Ras) s

CLA_1% clal¥hb{Be, Bt Ruh);

CLA_l? clal?o(Be A% Hoo)

ChA_17 Elal?dife, Bh, Rdd) ;

Ch&_ 17 elaleiRi,{nlé HK18} Ree);
CLA_1% cleilailea,Pob,BEEY;

Chi 18 clalBbikeso, Rad, Boyl
CLA_1D clalB2a{REff, Do, Fhint

assign rl8 = Ree{i?l, rld® = Daell7?]):
Cha 20 claZUai{lhh, {rlf, rlé, Real, wsum) ;

endnodnle

Figure 53 Overall adder formed by CLA instantiations with cight input ports

67

‘Tamescnle lwd/ips
modude adderela tye;

ceq (1$:00 %1, W, 06,09, N1, M0, 616, M09;
wire [Z4:0% mow:

‘udder wle adder E1,H2 MG HT ALY M1T, HiE, HEG, exum) ¢

inicial

Bzgr i
Bl 16 RO HE = LE
BiZ=ig! WONGG: HEg=15" hOOOD; ¥19=1E' WODGD 5

Nizend: kOQL0: 1614 hETOE; WiGuif huffs;

HiZ=ig Rpfz0; Hioe 16 b9, B1d-16f hafid;
23154

endwacduin

AEDDD 2 Em 161 KEOOK: W= 164 ROGAN: 11w Rogn,
30 NE= 16 RO ¥E=16 nOZ00 U618 na3 il Wis 16 nlerc 1= 18 his7g:

H50 ME=16° BIEQ0:¥I=LE ROZE0:H6x L& Ri 530 Wi plalo: KI1i=16" kID0D:

Flehs srgurents within fomonicar syeben tesk should wll be in ope iine
mninial fmonicor (ER00, Mi=th, H2=th, #8=xh, BPSRh, Kl1Tih, HiZ=th, X1693k, HLB=th, conslIuesyhe,
froame, H1 HE, MG, 80 WL, Hi2 816, ¥, twum} ;

Figure 54 Test-bench for the overall adder with CLA instantiations and eight input ports

5 ¥=0cld,
53 K=11ll.
100 M=0Zaa,
150 HadDS1,
200 N=0023.

Zinulator is deing cdirouit initialisstion process
Finished cirowit inztizlizailion process.

totalsur=00sb 27
iptalsun=054443
totaizsun=0032%:
tobalsunelay 603
totalsur=00029%3

Figure 55 Results of functional simulation for CLA with one input port

0 m=0cld,
14 m=0cld,
G m=L111,
65 M=11171,

LoG M=02az%,

186 M=d(51,
200 Mal0ld,
244 M=002 5,

118 M=02az,
150 M=g0il,

TOTAFsUM=Hx xS
totatsum=Utet2 7
Totalsum=00a627
Totalsum=014443
TOtalsum=14443
totatsumr=0ra3es
totalsum=0032G8
totalsun=1Lc7a03
toatalsum-1lc7e03
totalsum=0Q02en

Figure 56 Results of tiining simulation for CLA with one input port

#0, M1=0000, M2=0000, M&=0000, M7=0000, M11=0000, Miz2=0000, M16=0000, M19=0000, totalsun=0061h4
#50, MI=1000, M2=0200, M&=0330, mM7=0afd, WM11=137%, M12=00f0, M16=6709, M19=afff, totalsun=00b252
#100, ML=1200, M2=02f0, M6=1530, m7=Dafd, M11=1009, M12=c510, Mi&=6009, Mi09=afl2, totalsum=Q07h05

Figure 57 Results of functional simulation for CLA with eight input ports

68

#0, M1=0000, M2=0000, MG=0000, M7=0000, M11=0000, M12=0000, M16=0000, M19=0000, totalsum=xixxxx

#20, ML=0000, M2=0000, MG6=0000, M7=0000, M11=0000, M12=0000, M16=0000, M19=C000, toralsum=00&61h4
#30, Mi=l000, MZ2=0200, MG=0330, m7=0efd, ML11=1579, ML2=00F0, M16=6705, M19=aFFf, totalsum=00&1hd
#70, ML=1000, M2=0200, MG=0330, m7=02fd, Mil=1570, M1Z=-00f0, M16=6709, M19=aFff, tatalsum=00b352
#100, mMl=1200, M2=0270, M6=1930, m7=Dafd, Wll=1009, ML12=c510, M16<6008, M19=afl2, totalsum=00h35;
#122, w1=1200, M2=02f0, M6=1530, M7=0afd, MI1=LD0O9, M12=C510, MLG&-6009, Ml9=afl?, totalsum=007h0S

Figure 58 Results of timing simulation for CLA with eight input ports

4. Carry-Save Adder (CSA)

JHThiz progrem adgs &1l 19 resulcs LEOm MUITIipLIicaninns Detueen
inputs and L£ilver coefficients uzing C3X,

wf

‘Timescals lngs ips

module adder ooall, tesu) ;

TAPUT [15:0) N

cacpa [20:0] teum:

vire [1E5:0]HL M2 N3, Hil,H5, ¥, K7, N6, M9, N10;

wire [15:D]HLL, M12, %13, H14, M18, ¥18, 17, N18, M10;
rire ELEI0] Ra, B, e

wire [17:0] Ee:

wire Rdig;

avsign A1~ H2<H, H3=M, H9~HA, H5=N, ¥é=H, H7=2, HO=N, H9=¥, N10«¥;
apsign H11=M, WiZ=p, H12=M, H1d=W, H15=8, B16=M, H17=4, N19=H, Hi4=H;

CHA 16 5 ceslf_Sa(Ni, N2, M1, H4, N5, Rel;
CHA_Le § woale _Gb (H6, M7, MO, HO, HL0, Ko »

CEA 16 8 ossI6 Se(H11,M12,M33,N149,H15, e ;
CHA_16 cealsa (16, L7, M1, 619,) &

aosigl RBEIR-RA[17]:

C34 19 msalBalRa,Bh,Re, (RA18, Rd), taws) ;

andmosdile

Figure 59 Overall adder formed by CSA instantiations with only one input port

69

‘timeseale ins/fipa
modunls addaress nst:

reg [LlEi0}M;
girs [20:0} Camm

Aadder cEn adder (8, cowo) ;

initisl

hegin
K e 16 hMOcld:
ES0 M = I6°hlill;
HEQ = 16'hiddaa;

H
5D M = 16° 051
#50 N = 16 nOD23:
e rd

inirisl fwonitow{feime, ¥ Meth, cotalswesih®, H/ vgam)

endnodnle

Figure 60 Test-bench for the overall adder with CSA instantiations and one input port

‘vimesesle inafipa
modole sdden oss (WL, HE 6, 07, N1, W12 L6, K19, caum)

input [15:07ME, B2, 06, BT, M11, K13, W16, MR
auTpus | J080) e

wins [35:0)H3, W%, WS, W 8, W10, i3, H14, 815, L7, B16;
vice [i5:0] %, o, e

wige [£7:0]1Rd4;

wire #A1g;

agsgagn K3 = lE'hO0180)
aonian {9 = 16" RIODO:
aEpian HE = 1B BO0GE
assign HE - 16" h2000;
aupign HE = 16 HO07E0;
agsign X100+« 16 RE3ea:
aszign K17 = 56 hi0Qiz:
agszgn Hld = 26 n0cEd:
a@sian W15 < 16 hiIaa:
v M1F = 28 HinOO:
sgssgn MG = L6’ WODOH:

CHA 16 5 cawle FalNi, KR, M3 M4,75. Ra):

£54 15 5 caals ZbiB&, K7, HE, K9, HID, R
TEA_ 15§ kaslé Se(¥il, MiZ, M13, W14, MIE, Re):
C85A_ 18 ceslfa{¥16, My, H28, NIT, Rd);

apgion BEL@=RA[37]:)

£54 19 csalfeibs, M, Pe, { A01E, Rd} , taum) #

andmadule

Figure 61 Overall adder formed by CSA instantiations with eight input ports

70

‘tipescele lusdios
wodulis aGGErC@a Lat:

TG (150, HE, 86, H7 W10, %12, Hi6, H19;
wire [20:0) tauen:

adder cse, adder (M1, %2, 06, M7, %11, 032, 18, W19, caum] ¢

inieial
begin
Hi= 16 BOQCH : K216 WOO00: HE=16 BODOG: HY =16 ROO00 1116 hOGan
H1Z71le ho0oo: ¥16=26"' HOCUO Had=15" hOGOO
FE0 M1=LE'WICOC:NE=15" nO200; HE=15 hO330: NP=16" hoerd s Ml i=16° B1ZTR
HiZ=18' nOONG; M1E= L6 HETIS: HLO=26 " hallfs:
BAl MW1-26' hi200; M2<36" BOZS0E WE=1 5" hiBI0; M7=15 hlsfd; ¥1i<26' RI1DOD;
Hi2~16 hobhi0: N16m161 heD s M10=36" hnf 12
ond

ffvhe argurents within Seonitor apgsem tesk should &bl he in one line
imivial Smepicar ("FE0d, Wi=hn, B2=th, ¥6=th, N7=th, Hii=sh, WiZ=th, MiS=th,

H1%«%h, tovelswmeth™, §$rims, 1,82, 06, N7, ¥11, Wi2, B1 4, B19, baum) 2

enciocdunle

Figure 62 Test-bench for the overall adder with CSA instantiations and eight input ports

Finished circuit initialization process,
0 M=0cld, totalsumn=00szE27
50 M=1111, totalsum=014443
100 M=02za, totalsun=0032%
150 M=d051, totalsun=1c7603
200 M=0023. totalsum=000299

Figure 63 Results of functional simulation for CSA with one input port

0 M=0cld, totalsum=xxxxxx
17 m=0cld, totalsum=00e827
67 m=1111, totalsum=014443

100 m=C2aa, totalsum=014443
114 M=02aa, totalsum=00329e
150 M=d05l, totalsum=00329%9e
167 M=d051, totalsum=1lc760%
200 M=0023, totalsum=1c7603
212 mM=0023, totalsum=0C00299

Figure 64 Results of timing simulation for CSA with one input port

#0, ML=0000, M2=0000, M§=0000, M7=0000, M11=0000, M12=0000, M16=0000, M19=0000, totzlsum=006104
#30, M1=1GG0, M2=0200, W5=0330, M7=0efd, Mi1=1579, M12=00f0, M16=6709, M19=afff, totzlsum=00h352
#100, ML=1200, W2=02f0, M6=1530, M7=0afd, M11=100%, M172=c510, ML16=5000, ML19=af12, totalsum=007H05

Figure 65 Results of functional simulation for CSA with eight input ports

71

#0, ML=0000, M2=0000, M&=0000, M7=0000, ML11=0000, M1Z=0000, M16=0000, M18=0000, totalsum=xxxxxx

#23, ML=0000, M2=0000, M&=0000, M7=0000, M11=0000, M12=0000, ML6=0000, M19=0000, totalsum=G061lbd
#30, M1=1000, MZ=0200, MA=0330, mM7=0efd, ML1=1579, M12=0010, ML6=6709, WM19=afff, totalsum=005]hs
#70, ML=1060, M2=0200, M&=0330, M7=0afd, M11=1579, M12=00fQ, M16=6709, ML19=afff, totalsum=000h352
#100, Ml=1200, M2=02f0, M6=1530, M7=0afd, P11=1009, ML2=C510, M16=6009, M19=afiz, totalsum=00b352
#1242, w1=1200, M2=02f0, ME=13530, M7=0afd, M11-1009, M1Z=c510, M16=6009, MI9=aflz, totalsum=007h0s

Figure 66 Results of timing simulation for CSA with eight input ports

72

