IMPLEMENTATION OF NOISE CANCELLATION
WITH
HARDWARE DESCRIPTION LANGUAGE

By

LEE KUANG SUN

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan

© Copyright 2006
by

Lee Kuang Sun

il

CERTIFICATION OF APPROVAL

IMPLEMENTATION OF NOISE CANCELLATION
WITH
HARDWARE DESCRIPTION LANGUAGE

by

Lee Kuang Sun

A project dissertation submitted to the
Flectrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
{Electrical & Electronics Engineering)

Approved:

LA
—"Mr. Yo Hai Him;é\

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2006

iil

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements, and
that the original work contained herein have not been undertaken or done by unspecified

SOuUrces or persons.

Mpshy

Lee Kuang Sun

iv

ABSTRACT

The objective of this project is to implement noise cancellation technique on an FPGA
using Hardware Description Language. The performance of several adaptive algorithms is
compared to determine the desirable algorithm used for adaptive noise cancellation
system. The project will focus on the implementation of adaptive filter with least-mean-
squares (LMS) algorithm or normalized least-mean-squares (NLMS) algorithm to cancel
acoustic noises. This noise consists of extraneous or unwanted waveforms that can
interfere with communication. Due to the simplicity and effectiveness of adaptive noise
cancellation technique, it is used to remove the noise component from the desired signal.
The project is divided into four main parts: research, Matlab simulation, ModelSim
simulation and hardware implementation. The project starts with research on several noise
cancellation techniques, and then with Matlab code, Simulink and FDA tool, the adaptive
noise cancellation system is designed with the implementation of the LMS algorithm,
NLMS algorithm and recursive-least-square algorithm to remove the interference noise.
By using the Matlab code and Simulink, the noise that interfered with a sinusoidal signal
and a record of music can be removed. The original signal in turns can be retrieved from
the noise corrupted signal by changing the coefficient of the filter. Since filter is the
important component in adaptive filtering process, the filter is designed first before adding
adaptive algorithm. A Finite Impulse Response (FIR) filter is designed and the desired
result of functional simulation and timing simulation is obtained through ModelSim and
Integrated Software Environment (ISE) software and FPGA implementation. Finally the
adaptive algorithm is added to the filter, and implemented in the FPGA. The noise is
greatly reduced in Matlab simulation, functional simulation and timing simulation. Hence

the results of this project show that noise cancellation with adaptive filter is feasible.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude and appreciation to
several parties who have given me guidance, support and invaluable advice. Most
importantly, I would like to express my deepest gratitude to my family, especially my
mum and my dad. Their love, care and support have always been an encouragement for

me to move forward.,

Sincere gratitude also goes to my supervisor Mr. Lo Hai Hiung for allocate his time to
supervise and guide me throughout the project. It has been a pleasure working under the
direction of my supervisor, which introduce me to the advanced hardware design for
adaptive filter. Thanks for his patience, inspiration, contribution of precious ideas and
constant guidance. 1 would like to thanks Dr. Yap Vooi Voon and Mr. Patrick Sebastian

for their counsel, support and encouragement to complete my final year project.

Lastly, I would like to thank the lecturers and staffs of the Electrical and Electronic
Engineering Department of Universiti Teknologi PETRONAS for their support and
assistance in completing my final year project. Despite of their many responsibilities, they
have always cheerfully to accommodate our requests, especially Ms. Azirawati Aziz and
Ms. Siti Hawa who had giving untiring commitment to the project. Thanks to those who
had directly or indirectly help me in this project. Their willingness to cooperate and assist

had helped me to complete the project.

vi

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS

CHAPTER 1: INTRODUCTION

1.1
1.2
1.3
1.4
1.5

Background study
Problem statement
Objective

Scope of study

Organization of report

CHAPTER 2: LITERATURE REVIEW AND/OR THEORY

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2,16

Active noise control

Adaptive filtering

Principle of orthogonality

Adaptive algorithm

Least-Mean-Square algorithm
Normalized Least-Mean-Square algorithm

Recursive-Least-Squares algorithm

Feasibility of fixed-point transversal adaptive filter in FPGA

Comparison of DSP processor with FPGA
Other noise cancellation techniques

HDL

Verilog

I'PGA

Multiplier

Multiplication of signed binary number

Multiplication of fractions number

vii

x1

xii

ot

Ly L b

o oo b b b o

10
11
12
13
13
14
14
14
16
17

CHAPTER 3: METHODOLOGY/ PROJECT WORK

3.1
3.2
3.3
3.4

Research

Matlab simulation

ModelSim simulation

Hardware implementation

341 Tools required

3.4.2 Design flow

3.43 Design entry

3.4.4 Design simulation

3.4.5 Creating and Editing Timing and Area Constraints
3.4.6 Design Synthesis and Implementation
3.4.7 Verification of the Implemented Design
3.4.8 Creating Configuration Data

CHAPTER 4: RESULT AND DISCUSSION

4.1
4.2

4.3

Matlab simulation
ModelSim simulation
42.1 FIR filter
4.2.2 Adaptive filter

Hardware implementation

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1
5.2

Conclusion

Recommendations

REFERENCE

viii

18
18
19
21
26
26
27
28
28
29
29
30
31

32
32
35
35
38
40

42

42

44

46

APPENDICES

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G

Gantt chart of final year project activities

Matlab code for sound recording and noise generation
Matlab code of noise canceliation with adaptive filter
Verilog code for a 10 order direct-form FIR filter
Verilog code for a 10 order adaptive filter
Performance of Virtex-II

Simulation result of adaptive noise cancellation system

with simulink

ix

48

48
49
50
51
36
63

65

LIST OF FIGURES

Figure 2.1 Block diagram for the adaptive filteringcoocvivveveeeirsees s 5
Figure 2.2 Steps involved in computing the linear discrete-time form of convolution ... 6
Figure 2.3 Adaptive filtering on noise cancellation applicationcccceeivverersreerrenes 8
Figure 2.4 Block diagram of binary multiplierccooevevvvevercvceeiinesereeceere e 15
Figure 2.5 Representation of decimal value -0.02130126953125 in fractional number 17
Figure 3.1 Methodology of adaptive filter designc.ceeverrcieiivsiireeerrreeserene 18
Figure 3.2 Simulink for waveform observation with FIR filter and LMS algorithm 20
Figure 3.3 Simulink for sound observation with FIR filter and LMS algorithm........... 20
Figure 3.4 Filter design with FDA 100].....cccccceiiiieiiiiiiririice e, 21
Figure 3.5 Ten orders FIR filter SUUCIUIEccooveviivieiiireriee e 23
Figure 3.6 Flow chart of filter design in Verilogc.coeveivvivereeiieeseccee e 24
Figure 3.7 Extended flow chart of adaptive filter design..........cccoovevvvvvrivereiiieircen 25
Figure 3.8 Virtex-1I Development Kifc.cccooouiiivinneiinieiiicinsieeerss s 26
Figure 3.9 General FPGA Design Stagesc.oovevvieciviireisirerisieceeee et 27
Figure 3.10 FPGA Editor - Detailed view of filter design for an output pin................. 31
Figure 4.1 Adaptive filter TESPONSE.coovevrvriiieiieic ettt sns s 34
Figure 4.2 The original signal, noise, desired signal and the error signal 35
Figure 4.3 Result of functional simulation with ModelSimc..ccocoecveiviiniviirnrennn. 36
Figure 4.4 Input and output of the filter in Matlabccooovvviviviiniecre 36
Figure 4.5 The coetticients of filter in floating-point precisionocvevvvevververcenn, 37
Figure 4.6 The coetficients of filter in fixed-point precision.........ccoovvevivevesreceirennnn, 38
Figure 4.7 Output of filter with Zero errorc.evvevvvvieiverncce e 38
Figure 4.8 Output of adaptive filter With €111cocovvvevvreirie e e 39
Figure 4.9 Verilog coding for implementation of equation (5)ccccvvvvivverivvcivennenenn, 40
Figure 4.10 Timing simulation result for FIR filter.......cccovovevciiieeiecircseeene 41
Figure 4.11 Timing simulation result for adaptive filter.........ccooveericieiinecrie e 41

LIST OF TABLES

Table 2.1 Description of variables in LMS algorithm equations.............ccvevvververneennes. 9
Table 2.2 Description of variables in RLS algorithm equations.........c.c.oevevveevrervevnnne. 11
Table 2.3 Performance comparison between DSP processor and FPGAcoovee.... 12

Table 4.1 Summary of the observation from the adaptive noise cancellation system... 33

Xi

LIST OF ABBREVIATIONS

Application Specific Integrated Circuit
Configurable Logic Block

Complex Programmable Logic Device
Double Data Rate

Digital Signal Processing

Electronic Data Interchange File
Finite Impulse Responsed

Field Programmable Gate Array
Gillion of Multiply Accumulates per second
Hardware Description Language
Independent Component Analysis
Infinite Impulse Response
Input/output block

Integrated Software Environment
Joint Test Action Group

Logic Element

Leas-Mean-Square

Look-up Table

Low Voltage Differential Signaling
Million Instructions per Second
Netlist Constraint File

Programmable Read Only Memory
Radial Basis Function
Recursive-Least-Squares

Register Transfer Level

User Constraints File

Very Large Scale Integration

Xilinx Synthesis Technology

xit

CHAPTER 1
INTRODUCTION

1.1 Background Study

Noise means unwanted sound commonly interferes with normal hearing. But in
electronics, noise can refer to the electronic signal corresponding to acoustic noise
in an audio system or the electronic signal corresponding to the noise commonly
seen as 'snow' on a degraded television or video image. In signal processing or
computing it can be considered data without meaning; that is, data that is not
being used to transmit a signal, but is simply produced as an unwanted by-product

of other activities,

Noise cancellation is a method for reducing or cancelling out undesirable sound. It
is often called Active Noise Cancellation because the electronics involved actively
cause the noise reduction in real time. One of the popular methods used in noise
cancellation is adaptive noise cancellation. Adaptive noise canceling is an
approach to reduce noise based on reference noise signals. It is used in
communication systems that are contained on a single silicon chip, where real-

time processing is required.

This adaptive noise cancellation can be implemented in the Field Programmable
Gate Array (FPGA) with Hardware Description Language (HDL). HDL is a
textual description of a system or circuitry. It allows the expression of the
concepts that previously could not be expressed by manual notations, such as

Algorithm State Machine (ASM) notation and circuit diagram [1].

1.2 Problem Statement

Noise consists of extrancous or unwanted waveforms that can interfere with
communication. It is most often associated with irritating unwanted signals.
Another form of noise is electronic noise that can interfere with electromagnetic
communication. There are methods to suppress or reduce the noise. However the
conventional method such as wearing special earphone with simple filtering
process is not as effective as adaptive noise cancellation, which uses the adaptive
filter with least-mean-squares (LMS) algorithm to remove the noise component

from the desired signal [2].

Moreover the implementation of this noise cancellation can be done by using the
Hardware Description Langnage (Verilog or VHDL) to program into an FPGA as
demonstrated in [5]. The FPGA maintains the high specificity of the Application
Specific Integrated Circuit (ASIC) while avoiding its high development cost and
its inability to accommodate design modifications after production. Highly
adaptable and design-flexible, FPGAs provide optimal device utilization through
conservation of board space and system power-important advantages not available

with many stand-alone Digital Signal Processing (DSP) chips [22].
1.3 Objective

The objective of this project is to implement adaptive noise cancellation in FPGA
with the Hardware Description Language (Verilog). The performance of several
algorithms used in adaptive filter is compared to determine the suitable algorithm
used for real time application. These algorithms include least-mean-squares
(LMS), normalized least-mean-squares (NLMS) and recursive-least-squares
(RLS) [3]. The project may focus on the implementation of adaptive filter with
least-mean-squares (I.MS) algorithm to cancel noise, since it is theoretically less
involved in mathematics calculation. Besides that, the performance of finite
impulse response filter (FIR) and infinite impulse response filter (IIR) in
implementation of adaptive filter is compared to determine the suitable filter,

which can work well with the algorithms of adaptive filter.

1.4 Scope of Study

This noise cancellation technique can be used in hearing aids, telephones and
other communication devices. The algorithm of adaptive filter is commonly
implemented to cancel the noise of engine in the aeroplane or ship. In addition, the

adaptive filter is also utilized in image processing to produce a clearer image.

This project is started with the Matlab simulation to implement cancellation of
noise in a single sinusoidal signal, and cancellation of noise that is interfering with
a song or recorded sound. From the result of Matlab simulation, the suitable
algorithm and filter is selected to implement the adaptive filter used for the noise

cancellation.

The adaptive filter design in the Matlab is developed with the Verilog language.
This covers the design of basic FIR filter with limited number of input and output
pins. Then the algorithm of adaptive filter is implemented to the FIR filter, which
continuously updates the weight (coefficient) of the filter. The design is tested
with the functional simulation and timing simulation before implemented on an

FPGA.
1.5 Organization of Report

The report begins with the overview of the noise, noise cancellation techniques,
Hardware Description Language and project objectives and scope of study as
mentioned above. Next, the reader is introduced to the noise cancellation
techniques, algorithms of adaptive filter, Verilog, FPGA performance and method
of multiplication. The report is followed by two main themes, the methodology
section, and result and discussion section. The methodology covers research,
Matlab simulation, ModelSim simulation and hardware implementation. The
results of simulations are discussed subsequently. Finally, several
recommendations for adaptive filter implementation are given after the

conclusion.

CHAPTER 2
LITERATURE REVIEW AND THEORY

This chapter includes several noise cancellation techniques, adaptive filtering,

adaptive algorithm, and the comparison between DSP processor with FPGA.

2.1 Active Noise Control

Active noise control (ANC) destructs interference of propagating acoustic waves.
The acoustic wave interference can be controlled to produce zone of quictness by
using the DSP devices to design and implement digital ANC systems that operate
in real-time. The most practical ANC systems are using adaptive filtering

techniques, which allow the system to adaptively model the acoustic paths [2].

The inherent filter inside the active noise controller can either be a finite impulse
response filter (FIR) or an infinite impulse response filter (IIR). There are
advantages and disadvantages for each type of filter in this application. FIR filter
are stable and the filter coefficients are easier to handle compared with the IIR
filters as FIR {ilter uses the forward paths only. But the order of FIR filter required
is much higher compared to the IIR filter with similar spectra characteristics. On
the other hand, an IR filter involves both feedforward and feedback paths. The
presence of the feedback means that portion of the filter output and possibly other
internal variables in the filter are fed back to the input. This will cause it to be

unstable if the filter is not designed properly [3].

2.2 Adaptive Filtering

The goal of any filter is to extract useful information from noisy data. Whereas a
normal filter is designed in advance with knowledge of the statistics of both the
signal and the unwanted noise, the adaptive filter continuously adjusts to a

changing environment through the use of least-mean-squares (LMS) algorithm,

normalized-least-mean-squares (NLMS) algorithm or recursive recursive-least-
squares (RLS) algorithm. The filter weights are usually adapted or updated using
these algorithms. This type of algorithm basically attempts to minimize the mean
of the error signal squared. This is useful when the statistics of the signals are not

known beforehand.

According to S. Hakyin [3], adaptive filter design can be optimized by minimizing
a cost function by using Mean-square value of the estimation error. In particular,
the mean-square-error criterion results in second-order cost function dependence
on the unknown coefficients in the impulse response of the filter, Moreover, the
cost function has a distinct minimum that uniquely defines the optimum statistical

design of the filter.

The essence of the filtering problem is summarised with the following statement:

Design a linear discrete-time filter whose output, y (n), provides an estimate of a
desired response, d (n), given a set of input samples, u (0), u (1)...., such that the
mean-square value of the estimation error, e (n), defined as the difference between

the desired response, d (n), and the actual response, y (n), is minimized [3].

The mathematical solution is developed to this statistical optimization problem by

following the principle of orthogonality.

2.3 Principle of Orthogonality

Input Output Desired
u(0),u(l)..... v(n) Response
d(n)

Estimation Error

e(n)

Figure 2.1: Block diagram for the adaptive filtering [3].

As shown in figure 2.1 from S. Hakyin [3], the filter input is denoted by the time
series u (0), u (1), u (2),... , and the impulse response of the filter is denoted by wy,
W 1, Wa,..., both of which are assumed to have complex values and infinite
duration. The filter output at a discrete time n is defined by the linear convolution

sum
y(m) =Y opu(n-k), n=0,1,2,.. (1)
k=0

where the asterisk denotes complex conjugation. Note that, in complex
terminology, the term w,u(n— k) represents the scalar version of an inner product

of the filter coefficient wy and the filter input u(n - k). Figure 2.2 illustrates the
steps involved in computing the linear discrete-time form of convolution

described in equation (1) for real data,

W, u(k)
|
A
\ Pt
A -
N P
. P
] 1 2 3 4 5 Q i 2 3 4 5
{8} {b)
u(r-k) wi (k)
S
-~ Filter output y(n} equals
™~ N the sum of these samples
o~ -~
T~
T~
2 -1 0 1 2 3 o 1 2 3
© @

Figure 2.2: Steps involved in computing the linear discrete-time form of

convolution

(Source: S. Hakyin, 2002. Adaptive Filter Theory. Prentice Hall, Inc.)

From S. Hakyin [3], the purpose of the filter in figure 2.1 is to produce an estimate
of the desired response, d (n). It is assumed that the filter input and the desired
response are single realizations of jointly wide-sense stationary stochastic
processes, both with zero mean. If the means are nonzero, simply subtract them
from the input, u (n), and the desired response, d (n), before filtering. The
estimation of d (n) is naturally accompanied by an error, which is defined by the

difference

e () =d (n)-y (n) 2

The estimation error, e(n), is the sample value of a random variable. To optimize
the filter design, the mean-square value of e(n) should be minimized. Thus the

cost function as the mean-square error

J=E [e (n) e¥(n)] (3a)
J=E [le (m) ["] (3b)

where E denotes the statistical expectation operator. The requirement is therefore
to determine the operating conditions under which J attains its minimum value.
This error signal is used to incrementally adjust the filter’s weights for the next

time instant.

Several algorithms exist for the weight adjustment, such as the Least-Mean-
Sguare (LMS) and the Recursive-Least-Squares (RLS) algorithms. The choice of
training algorithm is dependent upon needed convergence time and the

computational complexity, as statistics of the operating environment.

There are four basic classes of applications for adaptive filters, which include
identification, inverse modeling, prediction, and interference cancellation. Figure

2.3 shows one of the adaptive filtering applications, which is noise cancellation.

Primary input +

)

d(n) '\‘/ * System output
Reference - S —» A‘:‘ailgtlve ol — .

input 1lter Error signal

u(n) ; ' e(n)

Figure 2.3: Adaptive filtering on noise cancellation application.
(Source: S. Hakyin, 2002. Adaptive Filter Theory. Prentice Hall, Inc.)

An example of adaptive noise cancellation from Matlab [4] is removing the engine
noise of airplane from the pilot voice signal. It is clearly shown that adaptive noise
cancellation generally does a better job than a classical filtering because the noise

is subtracted rather than filtered.
2.4 Adaptive Algorithms

There are numerous methods for performing weight update of an adaptive filter.
These include Wiener filter, method of steepest descent, least-mean-square
algorithm, recursive-least-squares algorithm and the Kalman filter [3]. The
operating environment, signals of interest, convergence time and computation
power are the factors considered in deciding the use of algorithm. However for
this project, the performance of adaptive algorithms used in adaptive filter is
compared before implemented in FPGA, this is to determine the suitable

algorithm used for real time application.
2.5 Least-Mean-Square Algorithm

The least-mean-square (LMS) algorithm is similar to the method of steepest-
descent in that it adapts the weights by iteratively approaching the Minimum
Square Error (MSE). Widrow and Hoff invented this technique in 1960 to train
neural networks. The key is that instead of calculating the gradient at every time

step, the LMS algorithm uses a rough approximation to the gradient.

The algorithm used to estimates the filter weights, or coefficients, minimize the
error, e(n), between the output signal, y(n) and the desired signal, d(n). The
algorithm is defined by [3] for the equations (4), (5) and (6).

e(n) = d(n) - w'(n)u(n) (4)
w(ntl) =w(n) + pulne*(n) (3)

The description of the variables is shown in table below

Variable Description

e(n) The estimation error at time n

d(n) Desired response at time n

un) M-by-1 tap-input vector at time n, [u(n), u(n-1),....,u(n-
M+1)]"

w(n) Tap-weight vector at time n

w(n+1) Estimate of tap-weight vector at time n+1

U The adaptation step size

Table 2.1: Description of variables in LMS algorithm equations.

As with the steepest-descent algorithm, it can be shown to converge for values of
u less than the reciprocal of Amax, but Amax may be time-varying, and to avoid

computing it another criterion can be used [3]. This is

2
O<u< 6
A (6)

max

where M is the number of filter taps and Smay is the maximum value of the power

spectral density of the tap inputs u.

The LMS algorithm is most widely implemented in practice due to its good
performance in real time applications. The number of operations involved for an

N-tap filter only are 2*N multiplications and N additions per coefficient update
[3].

2.6 Normalized Least-Mean-Square (NLMS) Algorithm

As mentioned in the LMS algorithm, the tap-weight of the filter is adjusted as
shown in equation (4) and (5). However the adjustment is proportional to the tap-
input vector, u (n). As stated by S. Hakyin [3], the LMS filter will suffers from a
gradient noise amplification problem when u (n) is large. Therefore the
normalized LMS filter is used to overcome this problem. The different between
the LMS and NLMS is the product vector u (n) e* (n) is normalized with respect

to the squared Euclidean norm of the tap-input vector, u (n) as shown in equation

(7).

whn+l) = wn) + %u(n)e*(n) (7)
L2 (n) ||

2.7 Recursive Least-Squares (RLS) Algorithm

The recursive-least-squares (RLS) algorithm is developed based on the least
squares method [3]. The least-squares method is a mathematical procedure for
finding the best fitting curve to a given set of data points. This is done by
minimizing the sum of the squares of the offsets of the points from the curve. The

summary of RLS algorithm is shown in the equation (8), (9), (10), (11) and table

22.

k=7 ui((z;;(): (—r?)u(n) | (8)
e(m) = ()~ " () ®
w(n) = w(n) + k(n)e* (n) (10)
P(n)= A" P(n—1) - A k(m)u” (m)P(n-1) (11)

10

The description of the variables is shown in table below

Variable Description

k(n) The gain vector at time n

Pn) The inverse correlation matrix at time n

A Exponential weighting factor

e(n) The estimation error at time n

d(n) Desired response at time n

u(n) M-by-1 tap-input vector at time n, [u(n), u(n-1),....,u(n-
M+

w(n) Tap-weight vector at time n

win+1) Estimate of tap-weight vector at time n+1

Table 2.2: Description of variables in RLS algorithm equations.

2.8 Feasibility of Fixed-Point Transversal Adaptive Filter in FPGA.

According to Andrew [5], the adaptive algorithm, namely the LMS algorithm, can
be implemented based on fixed-point arithmetic in FPGA. Transversal filters have
fixed weights and the output of the filters is the convolution of the taps and the
filter coefficients. Transversal adaptive filters need an appropriate algorithm to
update the filter coefficients and are widely used in the communication industry,
as well as in applications such as echo noise cancellation, adaptive beamforming,

and channel equalization.

The adaptive algorithm can be implemented in FPGA by using sufficient bit
length to represent tap-weights in adaptive filter. However without performing the
arithmetic in floating-points, stafling may arise in fixed-point adaptation process.
This cause the tap-weight stop updated in the arithmetic calculation. But it can be
avoided by choosing suitable bit length according to the filter coefficients and
study the nature of experiment carefully [3].

11

2.9 Comparison of DSP processor with FPGA

Nowadays FPGA is becoming a more popular choice for designer to implement
flexible and more cost-effective solution with shorter time. There are several
companies produce the high performance FPGAs, which have more advantages

over DSP processor.

According to Brian Jentz [6], FPGAs have evolved to better support DSP
applications, offering the flexibility to implement custom interfaces and
peripherals and the capability to scale algorithm complexity and channels as
feature requirements grow and change. It provides more than 180,000 Logic
Elements (LEs) and 384 18 x 18 multipliers. Enabling Altera FPGA devices to
provide 10x the DSP performance per dollar compared to the industry’s most
widely used DSP processor solutions. To ease comparison, the performance of
DSP processor and several FPGA devices [7], [8], [9] are compared in the table
2.3, Obviously Stratix Il FPGA from Altera provide the greatest performance with
clock speed 450 MHz and 346 Gillion of Multiply Accumulates per second
(GMAS).

Type of Device Device Name | Clock Speed (MHz) GMACGCs
DSP TIDSP 1000 4
FPGA ECP-DSP20 250 7

Virtex-45X55 500 256
Stratix II 450 346

Table 2.3: Performance comparison between DSP processor and FPGA.

For the current trends, manufacturers include complete microprocessors within the

FPGA fabric. This mix of hardware and embedded software on a single chip is

ideal for fast filter structures with arithmetic intensive adaptive algorithms.

12

2,10 Other noise cancellation techniques

Nonlinear blind source separation can be used as a technique for noise
cancellation also. Blind source separation aims to recover unobservable
independent sources (or signal) from multiple observed data masked by linear or
nonlinear mixing. It can be done by using a Radial Basis Function (RBF) network
with neural-network approach. Two algorithms are used to develop this RBF

network, sfochastic gradient descent method and unsupervised clustering method

[10].

In addition, adaptive noise cancelling can be implemented based on independent
component analysis (ICA). The ICA-based algorithm can utilize higher order
statistics than using least-mean-squares (LMS) algorithm. It is derived to improve

convergence rates [11].

2.11 HDL

Hardware description language (HDL) is similar to programming language, which
is used to describe digital hardware. The logic diagram, digital information and
operation of digital system are represented in textual forms [12]. Therefore it can
be read by the human and computer. The HDL processing is used for the
simulation and synthesis purpose. A test bench is used to perform the functionality
simulation and timing diagram. Hence the designer can correct the error and
predict how the designed hardware behave before it is fabricated. While synthesis
is the process of deriving a list of components and their interconnections (netlist)
from the model of a digital system described in HDL. The netlist can be used to

fabricate an integrated circuit or to layout a printed circuit board.

13

2.12 Verilog

Verilog 1s a general-purpose hardware description language (HDL) that is easy to
learn and easy to use. It is aimed at providing a functionally tested and a verified
design description for the target FPGA or ASIC. The functions of this laﬁguage
are fulfilling the need of a design description and the need to verify the
functionality and timing constraint of the design [13]. The syntax used in Verildg
is similar to the C programming language. It allows different levels of abstraction
to be mixed in the same model. Thus the hardware model can be defined in terms

of switches gates, Register Transfer Level (RTL), or behavioral code [14].

2.13 FPGA

Field programmable gate array (FPGA) is a VLSI circuit that can be programmed
by HDL. A typical FPGA consists of an array of thousands or millions of logic
blocks, surrounded by programmable input and output blocks and connected
together via programmable interconnections [12]. The logic block consists of
look-up tables, multiplexers, gates, and flip-flops. The look-up table is a truth
table stored in a SRAM and provides the combinational circuit function for the
logic block. The advanced FPGA can consist of 18 bits x 18 bits multiplexers and
Configurable Logic Blocks (CLBs).

2.14 Multiplier

The block diagram of common binary multiplier is redraw from [12] as shown in
figure 2.4. The multiplicand is stored in the register B and multiplier is stored in
the register Q, and the partial product is formed in register A and stored in A and
Q. The data in the register A is added with register B by parallel adder. The value
of carry bit after the summation is stored in the C flip-flop. The P counter holds

the number of bits in the multiplier initially.

14

Multiplicand Z=11ifP=0

Register B ' Check for zerg |
+ > .
C l P counter : logic
out - L

Q, o
1 Parallel adder PR
l Sum T Multiplier S (start)

0 ~p C P Register A P Register Q

A A

Product

Figure 2.4: Block diagram of binary multiplier
(Source: M. Motris Mano, 2002. Digital Design. Prentice Hall, Inc.)

It is decremented after the formation of each partial product. The product is
formed in the combination of register A and Q when the counter reaches zero, and
the process stops. When S=1, the control logic start performs the multiplication.
The sum of A and B is stored back into A, and the output carry from the addition
is transferred to C. This bit is shifted to the MSB of register A after the
summation, while the LSB of register A is shifted to the first bit of register Q, and
0 is shifted into C. After the shift right operation, the LSB of register Q (Qq) is
send to the control logic. This bit is used to determine whether to add or not.
However this type of multiplication architecture is not suitable for multiplication

of signed number in the filter design.

15

2.15 Multiplication of Signed Binary Number

Booth’s algorithm and Bit-Pair Encoding can be used for the multiplication of
signed value [15]. If the signed number for multiplication has a negative value, the
multiplication result is not the same as the normal calculation with calculator. For
example, -7 x 7 = -49 can be implemented step by step with serial multiplier [16]

as calculation below:

1001 (-7
0111 ¢77)

_ — % 1100
Sign extension 1001

T 1101011
11011

11001111 (-49)

Below are another two examples with multiplication of two 16 bits numbers, one
is involving negative value (f001 x 0005) and another one with positive value only

(100a x 0005).

f001 x 0005:

1111 0000 0000 0001 (fI01)
101 (0005)
111111 0000 0000 0001
+1111 0000 0006 0001
11111111 1111 1111 1011 0000 0000 0101 (FEEfbO0S)

100a x 0005:

0001 0000 0000 1010 (100a)
101 (0005}
00c001 000D DODO 1010
+000] 0000 0000 1010
0000 00CO0 0000 0000 0101 0000 0011 0010 (0D0OD5032)

16

2.16 Multiplication of Fractions Number

The fixed-point integer value is converted to the fixed-point fractional value by
normalization, which divides an N-bit 2s complement word with 2" The
normalize value for a 2s complement word B with N bits is N (B) = -bn 20 4
o 2714 L by (N2 be 270D, [15] For the filter design, the input and output
data are represented in fixed-point fractional number. The data is represented with
16 bits, with the first bit as the integer number and the following bits as fractional

number. Therefore it can represent number ranges from -1 to 1.

To ease understanding, figure 2.5 shows how to represent decimal value
-0.02130126953125 in fractional number. The decimal value can be determined
by adding up all the value according to equation shown in [15]. N (B) = 2+ 2+
22+ 2% + 2+ 2%+ 27 + 27 + 2P + 2 = 10.02130126953125. This value is
represented in hexadecimal format as fd46, which 1s one of the coefficients of FIR
filter. The method to perform multiplication of fraction number is same as
multiplication of signed number as discussed in section above. But it is important
to know that the number for the calculation is represented with how many integer

bits and fraction bits.

U S I = I S P T B I S S SIS L S LI S LA S L o

1 |.] 1 1 1 1 i 0 1 0 1 0 0 0 1 1 0
T —— —
integer fraction

Figure 2.5: Representation of decimal value -0.02130126953125 in fractional

number

17

CHAPTER 3

METHODOLOGY/PROJECT WORK

The methodology of the project can be divided into four main parts, which include
research, Matlab simulation, ModelSim simulation and hardware implementation

with FPGA as shown in figure 3.1.

; Research)
= algorithms of adaptive filter -
- hardware description language (HDL)
- ModelSim and Tntegrated Software Environment (ISE)
' - FPGA

¥

Matlab Simulation
- design noise cancellation system _
- compare the performance of FIR filter with IIR filter
- compare the performance of different algorithms for adaptive filter

ModelSim Simulation
- simulation for FIR filter design
- simulation for adaptive filter design

h 4

©*“Hakdware Implementation
- synthesis of the adaptive filter design ifito FPGA:

Figure 3.1: Methodology of adaptive filter design

3.1 Research:

The project starts with research on several noise cancellation techniques, which
cover the electrical noise, acoustic noise and other noises occur in the
communication system. The techniques used including shielding, grounding and
twisting of wire for electrical noise. While for the acoustic noise and other noises

in communication, the techniques used are active noise control and adaptive

18

filtering. Furthermore the research also includes the algorithms used in adaptive
filter, Hardware Description Language (HDL), simulation software of HDL,
FPGA program software and the advantages of using FPGA over DSP processor.
Most of the research was on adaptive filter that use the Least-Mean-Square

algorithm for noise cancellation.

3.2 Matlab Simulation:

This section will describes how Matlab Simulink and Filter Design Analysis
(FDA) tools are used to analysis the performance of the filter design and to
implement adaptive filter. These include performance comparison between the
direct form FIR filter and direct form IIR filter in designing adaptive filter with
different algorithms (LMS, NLMS and RLS). Furthermore adaptive noise

cancellation system is designed and simulated in the Simulink.

3.2.1 Filter and Algorithm Determination

In the adaptive noise cancellation system, the selection of the filter and algorithm
will affect the overall performance of the system. Therefore the combination of
the FIR filter or IIR filter with LMS, NLMS or RLS is tested in the Simulink.
However before starting design, it is necessary to select the proper input to test the
system, using the Filter Design Analysis (FDA) tool to design filter, and

implement the algorithms used in adaptive filter.

For better comparison, the output waveform and sound from the adaptive noise
cancellation system is observed. Figure 3.2 shows the Simulink example for
waveform observation and figure 3.3 for sound observation. The recorded music is
used as original signal to the system, with a sampling frequency of 8000 Hz. The
chirp signal is chosen as a noise to test this noise cancellation system because
chirp signal produces noise that cover large range of frequency, as time increase,
its frequency also increase, therefore it is suitable for the above purpose. The
Matlab code in APPENDIX B shows how to generate the input signal and chirp
noise. In Matlab code, WAVRECORD (N, FS, CH) records N audio samples at FS

19

Hertz from CH number of input channels from the windows WAVE audio device.

While y=CHIRP(T, 7O, T1,F1, 'quadratic',PHI, 'convex') generates samples of

a quadratic swept-frequency signal whose spectrogram is a parabola with its

convexity in the positive frequency axis.

From Wave File

Adaptive Noise Cancellation

music,waviuc

Input Signal
(8000Hz/1Ch/léb)
Husig
Fron Wave File) Input
chirp.waviur FOAToO] k Desized
i 8000Ez/1Ch/16b) > T e, ’6f> LMS
) Pl 2dapt
Noise
Noise Filter pifesee

—t—0
Reset

Output

Exzeor

Emor Signal

YYy

Time
Scops

Filter
Taps

LM2 Tiltex

Info

¥

User

S [T

FFT

Freq
Response

Figure 3.2: Simulink for waveform observation with FIR filter and LMS algorithm

Adaptive Noise Cancellation with LMS Algorithm

From Wave Fil

misic. waviut
(8000HzZ/LICh/16h)

e

Input Signal

Music

P Input

o

Random

Source

——0

Reset

Figure 3.3: Simulink for sound observation with FIR filter and LMS algorithm

——{Reset

FDAToo] Desixed
— !
I 2dape

Noise Filter

LM3

Sutput

Erxor

Tie=

Error signall

20

Info

LHE3 Filser

——-4}})

Te Wave
Davice

Filter
Tapa

of o]

User

of (il]

FFT

Freq
Response

The direct form FIR filter and direct form IIR filter can be easily designed with
FDA tool in Matlab as figure 3.4 shown. Both filters are of 25 orders with cut off
frequency approximate at 2000 Hz. Since IIR filter can use fewer orders to get the

similar spectra characteristics as FIR filter, the comparison also include the 10

orders IIR filter.

— Current Fiter Informstion

. — Magnituce Response (dB)

el A S S R B

Structure: Direct-Form FIR Lo

Orger. 25 8
- Slable: Yes LY
. S 80
Source: © Designed E
o
=

Rai5)]

0O (R N TN TN SR N R N N

(Store Filter ... _] 004 027 g3 oa 05 0B 07 . 080 08
(Fiter Managar] Normalized Frequency (%n rad/sample)
_Resporse Type..___ i FiterOrder— . Frequency Specifications " .. Magnitude Specificetions
@ |Lowpass =1 || & Seecify arder: [25 - Unts: |Normalized (@ to 13 -+
Highpass - : _—
g B gd s M mrder : Feo - {33008 <:The attenuation at cutatf
ahdpass : _ S :
1 © Banastop . _ Optians L : we: [0_5 """ o j frequencies is fixed &t 6 4B
O [pirerentistar M (] Scale Passband ' - (half the passband gainj
|_DesignMethod_____. || Window:

OR [Buterwort

Figure 3.4: Filter design with FDA tool

Besides that, the adaptive noise cancellation system can be implemented with the
Matlab code. It is assumed that two microphones are used, a primary microphone
picks up the noisy input signal, while a secondary microphone receives noise that
is uncorrelated to the information of an original signal (0.055Hz sine wave), but is
correlated to the noise picked up by the primary microphone. The Matlab code in
APPENDIX C shows how the Adaptive LMS filter extract useful information

from a noisy signal.
3.3 ModelSim Simulation
ModelSim XE-III is used for the Hardware Description Language (HDL)

simulation of adaptive filter design in this project. ModelSim is a complete IIDL

simulation environment that assists to verify the HDL source code and functional

21

and timing models of the designs. Each of the ModelSim tools includes a
complete HDL simulation and debugging environment providing full VHDL and
Verilog language coverage, a source code viewer and editor, waveform viewer,
design structure browser, list window, and a host of other features designed to

enhance productivity.

After the result of Matlab simulation is satisfied with the objective of the project,
the Verilog code for the design will be written and simulated with the ModelSim
before implemented with Xilinx Integrated Software Environment (ISE). The

general steps for ModelSim simulation are summarized as below.

1.) Collating design file and mapping libraries

2.) Compiling the design with vlog, which compiles Verilog source code into
a specified working library

3.) Loading the design for simulation, VSIM simulator is invoked.

4)) Simulating the design and viewing the waveform of the design.

Since the FIR filter is the most important part in implementing adaptive noise
cancellation, the HDL code for the filter should be completed before
implementing the LMS algorithm on it. Figure 3.5 is the FIR filter structure for a
10 order direct-form filter, which consists of 11 coefficients, 11 adder and 10
delays. Blackman window is chosen for the filter design. This is because it
provides more attenuation at the stopband frequency if compared with Hamming
window and Hann window. The Verilog code for a 10 order direct-form FIR filter

is shown in APPENDIX D.

22

Inpti'.t.

Figure 3.5: 10 orders FIR filter structure generated from Matlab

The flow of the filter design in Verilog coding is shown as figure 3.6. The first
step is defines the filter coefficients get from FDA tools and declares the required
scalars or vectors for input, output and arithmetic computation. If the reset is in
logic HIGH, the input and output data of filter is set to zero. Otherwise the input
data in the testbench is loaded to the filter. For every positive edge of the clock
signal, the input data is shifted one by one until the end of the data. This
constructs the delay part of the filter. After that, the output data from the delay is
multiplied with the coefficients of the filter. The multiplication results are
summed to produce an output data. In every summation, program examines the

overflow bit of data. If the data is overflow after summation, the data 1s saturated

23

to produce the data that is in the range of defined fixed-point value. Then it is

round to the 16 bits data before assign to the output port.

Define filter
coefficients

Clear.input and
Yes output of filter

No

Load input data,
“u(n)

v

Multiply data with filier
coefficients

L4

Summiation of multiplication
results

Overflow? Saturate-the data

' Ro’ﬁnd the data
to 16.bits

¥

Assign data to
filter-output

®

Figure 3.6: Flow chart of filter design in Verilog

24

The flow chart in figure 3.6 is extended for the implementation of the adaptive
algorithm. The adaptive filter design is illustrated in figure 3.7. The desired data in
the testbench is loaded and the error is calculated by using equation (4) that had
mentioned before. Then equation (5) is used to calculate and update the weight of
adaptive filter. The adaptive filter is continuously calculating the error and updates
the weight until end of data. Please refer to the APPENDIX E for the coding of
adaptive filter.

Lioad the desired
- data, d(n)

v

Calculate the error
Em)=d{n)-u(m)

3

Update the filter
weight

Figure 3.7: Extended flow chart of adaptive filter design

25

3.4 Hardware Implementation

3.4.1 Tools used

ISE software

The Integrated Software Environment (ISE) is the Xilinx design software for logic
design environment. It is an easy-to-use software that provides built-in tools and
wizards for making I/O assignment, power analysis, timing-driven design closure,
and high speed HDI. simulation. It supports all Xilinx leading FPGA and
Complex Programmable Logic Device (CPLD), including all Virtex-4 multi-
platform FPGAs.

Virtex-II FPGA

The Virtex-II family is a platform FPGA developed for high performance, low to
high-density designs utilizing IP cores and customized modules [17]. It delivers
complete solutions for telecommunication, wireless, networking, video, and DSP
applications. Virtex-1I devices are user-programmable gate arrays with various
configurable elements, which comprised of input/output blocks (IOBs) and
internal configurable logic blocks (CLBs). In addition, its dedicated 18-bit x 18-bit
multiplier blocks arithmetic functions, which assist the implementation of

adaptive filter with complex calculation.

Virtex-II Development Kit

Figure 3.8: Virtex-II Development Kit

26

The filter design is implemented with the Virtex-1I Development Kit shown in
figure 3.8. This reference board provides a development platform for prototyping
and verifying Virtex-II based designs [18]. With utilization of 1M gate Virtex-II
XC2V1000-4FG256C device along with its supporting I/O devices, it can be used
to prototype high-performance memory and I/0 interfaces such as complete high-
performance low voltage differential signaling (LVDS) and high speed DDR
memory interface. Therefore it is chosen for the implementation of the adaptive

filter.

Xilinx XC18V512 or XC18V04 ISP PROM is utilized in this board. It allows the
design downloaded and verified in order to meet the final system-level design
requirements. In addition, the Joint Test Action Group (JTAG) connector of the
board can be used for direct configuration of the Virtex-1I FPGA.

3.4.2 Design Flow
This section describes the procedures in hardware implementation of FIR filter
that had simulated successfully in the ModelSim. The general FPGA design stages

in [19] are used in FPGA implementation as shown in figure 3.9.

/ Design steps /Design veriﬁcatioﬁ

Design entry +
Design
simulation
| Creating & - -
[editing -
constraint
v
Design
synthesis v .
LG Verification of
¥ synthesis
k ~-view RTL schematic
_ Design
implémentation — Y
Verification of
implementation
- viewing placement
. —-viewing ultization in report
Xilinx device | I- Adiming closure

programming “yiew place & routed design -
k / Qng simulation /

Figure 3.9: General FPGA Design Stages.

27

In design specification stage, the design is transfer to HDL with Verilog. Then the
functionality of written code is simulated. A test bench 1s needed to provide the
necessary input or stimulus to the filter. The output of the filter will be shown as
digital waveform. After the design has been successfully analyzed, the next step is
to translate the design into gates and optimize it for the target architecture, which
called synthesis phase. The design will be implemented by using Virtex-Il1 FPGA
from Xilinc. The performance of the FPGA is shown in the APPENDIX F.

3.43 Design Entry
This is the first step in the hardware implementation. The source file is created

with Verilog language based on the design objective. Type of devices, package,

top-level module type, synthesis tool and simulator is specified as below:

Device Family : Virtex II

Device : xc2v1000

Package : 1256

Speed Grade : -4

Top-Level Module Type : HDL

Synthesis Tool : XST

Simulator : ISE Simulator (or ModelSim)

3.4.4 Design Simulation

A test bench is needed to provide the necessary input or stimulus to stimulate the
filter module. It is used with a simulator to verify that the filter design meets both
behavioral and timing design requirements. By using ISE foundation, the design
can be simulated with ISE simulator or ModelSim simulator. However ModelSim
simulator is prefer because it allows the user to view the waveform in analog form
with analog interpolated function in format menu. The test bench can be created

by using waveform editor in ISE foundation or wrote by ourselves.

28

3.4.5 Creating and Editing Timing and Area Constraints

.ISE software allow user to specify the constraints to improve the design
performance. Timing constraints is used to assure that physical and timing
requirements are met. Timing constraints include period constraints for each clock
(PERIOD), setup times for each input (OFFSET _IN), and clock-to-out constraints
for each output (OFFSET_OUT). The timing constraints can be entered using the

Create Timing Constraints process in Project Navigator.

In addition to timing constraints, physical constraints are added to filter
design, to associate certain pins on the device with specific inputs and outputs.
There are totally 16 input pins and 16 output pins for this filter design. Both
constraints processes have written into the User Constraints File (UCF) in the

project.
3.4.6 Design Synthesis and Implementation

After the design’s behavior is verified with simulation, and added constraints, the
design is synthesized and implemented. Acording to the ISE Quick Tutorial
Version 7.1i [19], with Xilinx Synthesis Technology (XST) in ISE software, the
Verilog code of filter design is synthésized to create Xilinx-specific netlist files
known as NGC files, which consisté of an Electronic Data Interchange File
(EDIF) with an associated Netlist Constraint File (NCF). The synthesized design
can be viewed as a schematic in the Register Transfer Level (RTL) Viewer. The
schematic view shows gates and elements independent of the targeted Xilinx

device.

The design implementation comprised of the following steps [19]:
1. Translate, which merges the incoming netlists and constraints into a Xilinx
design file
2. Map, which fits the design into the available resources on the target device
3. Place and Route, which places and routes the design to the timing

constraints

29

3.4.7 Verification of the Implemented Design

After implementation is completed, the filter design is verified before
downloading to an FPGA. The steps include viewing of pin placement, viewing of
resource utilization in reports, timing closure, viewing of placed and routed design

and timing simulation.

Viewing Placement and Resource Utilization in Reports

Floorplanner is used to verify pinouts and placement of the filter design [19]. The
connection from the gates to output pins can be view by clicking on the desired
pin. The filter design information is check through summary reports, which was

created by ISE after each process is run.

Timing Closure

Timing closure is the process of working on design to ensure that it meets
necessary timing requirements. Timing analysis is run on filter design to verify
that timing constraints were met [19]. There should be no error in the timing
summary after analysis. If there were error, the previous timing setting should be

adjusted until no error is shown in timing summary.
Viewing the Placed and Routed Design
FPGA Editor is used to view the filter design on the FPGA device, as well as edit

the placement and routing with the FPGA Editor [19]. Figure 3.10 is the

placement and routing of an output pin.

30

Figure 3.10: FPGA Editor - Detailed view of filter design for an output pin.

Timing Simulation (ISE Simulator)

Timing simulation is run to verify that the filter design meets the timing
requirement. This process generates a timing-annotated netlist from the
implemented design and simulates it [19]. The resulting simulation is displayed in
the Waveform Viewer. However these results look different from those saw in the

behavioral simulation. These results show timing delays.

3.4.8 Creating Configuration Data

The final phase in the software flow is to generate a bitstream and configure the
device. The bitstream is a binary encoded file that is the equivalent of the design

in a form that can be downloaded into the FPGA device. iIMPACT 1is used fo
configure the FPGA device [19].

31

CHAPTER 4
RESULTS AND DISCUSSION

The results and discussion is divided to 3 sections: Matlab Simulation, ModelSim

Simulation and Hardware Implementation.

41 Matlab Simulation

This section includes the result and discussion for comparison on the performance
of the FIR fiiter and IIR filter with different algorithms, the output of adaptive

noise cancellation with Matlab code and some discussion with the results.

Through the Simulink simulation (figure 3.2 and figure 3.3), the performance of
filter output can be compared with the graph and sound from the simulation. The
graph of filter output for the simulation in figure 3.2 is included in APPENDIX G,

and the results are summarized in table 4.1.

The results in table 4.1 show that RLS algorithm has better results than other two
algorithms when comparing the output of the filter in graphs, since it removes
most of the noises in shorter time. But for the output sound of the filter, NLMS
performs better. In contrast, RLS is a bit lagging in producing output sound, which
means the output sound cannot be heard clearly and smoothly. This is because

more complex calculations are required with RLS algorithm,

While for the filter analysis, 10 orders IIR filter produces similar result as 25
orders FIR filter. However 25 orders TIR filter produces less desirable results,
more noise is associated with the output signal. Hence the orders of the filter must

be well-adjusted when using the adaptive algorithm.

32

Algorithm | Filter | Order Filter output Audible outcome
NLMS FIR 25 output almost same with output sound heard
the input signal after similar to the input
delay time 0.15 sec sound after 0.15 sec
ITIR 25 even after delay time output signal still got
(0.2 sec), still got a little audible noise after delay
noise time
10 similar to FIR filter with similar to FIR filter with
NLMS NLMS
LMS FIR 25 output signal not same audible noise in the
as input signal, has little output signal
noise.
IIR 25 more noise than using can clearly hear the
FIR filter noise, louder than using
FIR filter
10 similar to FIR filter with similar to FIR filter with
LMS LMS
RLS FIR 25 output signal almost output signal a bit
' same as the input signal, lagging due to more
shorter delay time (0.1 complex calculation
sec) compared with the compared with the LMS
NLMS and NLMS.
audible noise in the
output signal
IR 25 more noise than using output signal a bit
FIR filter with RLS lagging due to more
complex calculation
compared with the LMS
and NLMS.
Loud noise in output
signal
10 similar to FIR filter with audible noise in the
RLS output signal

Table 4.1: Summary of the observation from the adaptive noise cancellation system

Therefore NLMS algorithm and 10 orders IIR filter is desirable used for adaptive

noise cancellation. This is because with NLMS algorithm, more noise is reduced

and there is no lagging at the output sound. Besides that, with 10 orders IIR filter,

33

there is less calculation compared with the 25 orders FIR filter for similar output

result.

On the other hand, an IIR filter may not be suitable for used in hardware
implementation. This is because the IR filter in Matlab simulation is using
floating point precision for the coefficients of filter and input output port. When
implement in FPGA, the number of output is limited to 16 bits only. This causes
the round off errors at the output signal. Since IIR filter involves both feedforward
and feedback. That means the error at the filter output is fed back to the input, and

the error is accumulated in the system [15].

Adaptive Noise Cancellation System with Matlab Code

As mentioned in the methodology, the adaptive noise cancellation system can be
implemented with Matlab code also. With the Matlab code in APPENDIX C,
several graphs are generated to show the filter response, original signal, noisy
signal and output signal from the system. Figure 4.1 shows the frequency response
of the filter. When running the Matlab code, the filter will keep on changing its

coefficient value to minimise the error at the output.

— Adaptive Filter Response
Required Filter Respohse

Figure 4.1: Adaptive filter response

34

" The information of an original signal

........ OO SR SR SO NN V1 O SR SRR o
0 JE EL L] _: _____ o II \1. ']l 1|'|Il 1||'|| |
S U S S AL
y S R B " S N B
0 &0 100 150 200 250 : 100 150 200 250

Desired input to the Aaéptive_ Filier = Signal +Filterad Noiss " -, _Original infﬁl;ﬁ;latjqn_ﬂf a signal and the arror signal '

4 7 T T T

: : : : : : Original Signal

) PR 1: _______ :_E, . ; ________ ‘E _____ I'"‘Error ISignaI

gl i] ; fal '

; 5 : H i 't.'.: ot Ef Y :

2p--tede- e feeeeaeaen RAEISLE SERREREE Pz L S :'L,: O PEDIIOCEEERR
-4 . : ’ i A L i i : _
0 50 100 150 200 250 0 50- 100 180 200 250

Figure 4.2: The original signal, noise, desired signal and the error signal

From figure 4.2, you can see the original signal is a sinusoidal signal with
frequency 0.055Hz. While the noise pick up by the secondary microphone is a
white noise, which interferes with the sinusoidal signal. After passing through the

adaptive filter, the noise is subtracted from the signal.

4.2 ModelSim Simulation
42,1 FIR Filter

ModelSim can perform the functional simulation and timing simulation. The result
of functional simulation is discussed in this section, while timing simulation is
discussed in hardware implementation section. Through the ModelSim simulation
on the Verilog code of filter in APPENDIX D, the desired result is obtained.
Figure 4.3 shows the resulf of functional simulation for FIR filter.

33

& 10t _v/ck iiianmihiibiinhphanahhhkai e npinn!
& /f_10_tb_v/clk_enable

& /i_10_th_v/reset

Ai_10_th_v/Data_in

] [[A I B L
fir 10_th_v/Data_out _I___,—r“_—l-l_L_ __,_I_I__L,..]_‘_ '—'_—L"I__

LN T T T T Y T T T T T T T T T T T T T T T B

1
28 4us B us
I [! [

. !

Figure 4.3: Result of functional simulation with ModelSim

From the figure 4.3, the input signal to the filter is a square wave. After the
filtering, the high frequency signal is removed and a sinusoidal signal is obtained.
However the output signal is not smooth due to quantization error and round off
error. This is because when the filter is designed in fixed-point precision, 16 bits

are not sufficient to generate a smooth sinusoidal wave.

To distinguish between the fixed-point precision with double precision, a similar
filter with double precision is used to test its effect on the output. Figure 4.4 shows
the input and output of the filter, which created with Matlab code. Obviously the
output from the double precision filter is smoother because 64 bits produce better

precision than fixed-point precision filter.

Figure 4.4: Input and output of the filter in Matlab

36

Fixed-point Precision Effects

The floating point precision can represents any number between +/- 9.223x 108
with a resolution of 1.08 x 10"°. However the fixed point precision can only
represents the number with smaller range, which depends on the number of bits
used to represent integer number and fraction number. The implementation of
floating point arithmetic in FPGA is possible [20]. However only a small number
of floating point units can be used in an entire design, and must be shared between
processes. This does not take full advantage of the parallelization that is possible
with FPGAs. Therefore it is not efficient or realistic for implementing adaptive
algorithm in FPGA.

As a result, all calculation is mapped to fixed point number. Sixteen bits number is
used to represents the coefficient number, input and output data. However it

introduces some errors into the design as discussed below. [15]

1. Coefficient quantization error
This is due to representation of filter coefficients by a finite number of bits.
The coefficients generated from the Matlab are in 64 bits representation. For
example the coefficients of Blackman Window FIR filter are shown as figure
4.5. However the smallest resolution for a 16 bits number with 15 bits
fractions is 27°. Therefore the coefficients are quantized to the decimal value

and hexadecimal value as shown in figure 4.6.

-0.00000000000000000088348741151764353
-0.00000000000000000078378323683281016
-0.021302373816999808
0.000000000000000009936189302595471
0.27031825904198076
0.49999999999999994
0.27031825904198076
0.000000000000000009936189302595471
-0.021302373816999808
-0.00000000000000000078378323683281016
-0.000000000000000000883487411517643353

Figure 4.5: The coefficients of filter in floating-point precision

37

0 0000
0 0000
-0.02130 fd46
0 0000
0.27033 22%9a
0.5000 menlp | 4000
0.27033 229a
0 0000
-0.02130 fd46
0 0000
\ 0000

Figure 4.6: The coefficients of filter in fixed-point precision

2. Overflow error
This is due to the addition of two large numbers of the same sign which

produces a result that exceeds permissible word length.

3. Round off error
This is caused when the result of a multiplication is rounded to the nearest
discrete value or permissible word length. The result of multiplication in the
filter in 32 bits data, however the output data is limited to 16 bits, by
discarding the least significant 16 bits, round off error is introduced into the

data.
4.2.2 Adaptive filter
For the testing of adaptive filter design in the APPENDIX E, a step input is feed to

the filter. If the desired signal is set such that it is the same as the expected output

signal, the calculated error is zero as shown in figure 4.7 when implemented with

equation (4).

UL L Uy Jugs
1367 i

N 1 20 A A e I T

R A 0 2 Y i L A Y0 (I

T G ¥ 6 o @ 18 [0 17 (2 {5704 15 136 117 §18 19

| Figure 4.7: Output of filter with zero error.

38

For the implementation of equation (4) and (5), a pulse signal labelled as
‘Dafa_in’ is noise. It is added to the step input to produce a ‘Desired’ signal as
shown in the figure 4.8. (Please refer back to figure 2.3 for clearer understanding)
The output of the filter is *Data_out’, which has the quantization error that is same
as the output of FIR filter in figure 4.3. Though the implementation of adaptive
filtering, the expected output of adaptive filter ‘Error’ is a step signal with noise
initially. After a few loops of weights update, the error should be reduced to
nearly zero. This means the pulse signal is subtracted from the ‘Desired’ signal.
As shown in figure 4.8, the error is large in ‘Error’ signal inttially. After nearly
300 ns, the error is greatly reduced after the tap-weights of adaptive filter are
updated for some loops. However the error in this design is not reduced to zero.
This is caused by the effects of fixed-point precision, which including the
quantization error, overflow error and round off error as mentioned before. As a
result, the small error is repeated in the ‘Error’ signal, which is highlighted by the

dotted box as shown in figure 4.8.

& fi_10m_tb/u fi 10m/ck

& /fi_10m_th/u_fir_10m/ck_enable

& M 10 A fi 10mAesel]

Jfir_10m_th/u_fir_10m/Data_in

Hfir_10m_tb/u_fi_10m/Data_out

Hir_10m_tau_fir_10m/Desired

fi_30m_tbre_fir_10mEror

| I
| A

Ipljinkinl NplinliEliy S piSglE iy
i Lo ot LT Lo L T L

i

Now

2uz 4

Il!lH!HIlllllllllllllllll[lll\llil\Ill\HIILIilliIEI!HH PEVURULLEZER I e i rp e e b eI reb g g iz nring

bus

Figure 4.8: Output of adaptive filter with error

A lot of round off errors is introduced to the adaptive filter when implement the
LMS algorithm with equation (5). This equation involves two multiplications and
a summation in mathematic calculation. These multiplications will generate a bit

stream with 48 bits if it is multiplied directly. In addition, Virtex II FPGA only

39

can provide 18 bits x 18 bits multiplications in hardware. Therefore the
multiplications are done in several stages before the summation.

Figure 4.9 shows part of the coding for implementation of equation (5) in the
algorithm of adaptive filter. The result of multiplication of equation (5) is stored in
the mumul. For updating the coefficients of adaptive filter, 16 MSB bits of
mumul is stored in the mumuZ2. Then mumu2 is used to update the weights of the

adaptive filter. This produces the result as shown in the figure 4.8.

multl = (Data in¥error mj;
templ = multl[31:16];
mumul = mu*templ;
mumu? = mumul [31:16];
cl0] = ¢[0]+ mumu?2;
c(l}] = ¢[l]+ mumuz;
c{2] = c[2]+ mumu2;
c[3] = c(3]1+ mumuz;
cld] = cld4]+ mumu2;
cl8] = ¢[5]+ mumu2;
ci6] = ¢gl[6]+ mumu2;
c[7] = c[7]+ mum:?;
c[B8] = c¢c[B]+ mumuZ;
c[9] = c[9]+ mumuZ2;
c[10] = c¢[10]+ mumuZ;

Figure 4.9: Verilog coding for implementation of equation (5)

43 Hardware Implementation

In this section, two important simulations performed are functional simulation and
timing simulation. Where functional simulation is done by running Simulate
Behaviour Model and timing simulation is by running Simulate Post-Place &
Route Verilog in the ModelSim Simulator of ISE. For the FIR filter and adaptive
filter design, the result of functional simulation is discussed previously in section
4.2 ModelSim Simulation, while the result of timing simulation is shown in figure

4.10 for FIR filter and in figure 4.11 for adaptive filter.

40

& 7 10_tb_vick I Egpigipagaynyt
& /i_10_th_v/ck_enable

B ffi_10_th_v/reset

Hir_10_tb_vw/Data_in

Ly
[E— I B D S i
—

m—@ A 10 th_v/Data_out |_r_l_)_ _lJ_F”_I_H_r_I_.;_L..’_L
|

Lo A N B | [T T IO I I L I O O I O 4 LI I A I I N 4 f I T T I I B [I B N B |)
P . 2us dus . Bu
h

Figure 4.10: Timing simulation result for FIR filter

[#a_ 100w, tb/ck I

fir_10m_tb/elk_era...
ffir_10m_tb/reset al

HMir_10m_Ib/Data_in

Mir_10m_tb/Data_out

bl

Hir_10m_th/Desired

Hir_10m_tb/Error

S 1 O

i I s i o (il o i e (il

L llllllll Choantt e e lervrr ey by oty I (I T T T T T T T B I 2) LI 2 B)
1us 2 Juz dus

Figure 4.11: Timing simulation result for adaptive filter

The resulting simulation is displayed in the Waveform Viewer. The timing
simulation result for FIR filter and adaptive filter looks similar with the result of
behavioral simulation, however short timing delays caused by the hardware is
introduced to the output. After simulations for the FIR filter and adaptive filter
design obtain the desirable result, the generated bitstream is downloaded into the

FPGA.

After supply the 10 MHz clock signal and input data to the FIR filter, the output of
filter is measured by using logic analyzer. For this testing few set of data is load
into the filter in FPGA. It is found that the output of filter from FPGA is same as
the filter output from functional simulation. For example, the hexadecimal value
*6000° is loaded into the FIR filter, the same filter output from simulation and
FPGA is *5£d0’.

41

CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

51 Conclusion

The simulation on the adaptive noise cancellation system with Matlab, give the
desired result as stated in the objective. The simulation results show that the noise
can be cancelled by using the adaptive noise cancellation system, regardless of
whether the input signal is a sine wave, music or a record of sound and the noise

used is either white noise or chirp noise.

The result of filter is greatly depending on the order of filter. FIR filter with higher
order will produce better result in Matlab simulation. The results indicate that the
IIR filter does not necessary produce better result with higher order. As shown in
table 4.1, the IIR filter with 25 orders introduces more noise to the output of

adaptive filter compared with that of 10 orders.

From the Matlab simulation, it can be seen that LMS algorithm or NLMS
algorithm with 10 orders TIR filter is suitable used for adaptive noise cancellation.
However IIR filter cannot be used to implement adaptive filter in FPGA [15]. This
is because the error at the IIR filter output is fed back to the input, hence error

could be accumulated in the system.

The LMS algorithms decorrelates system output signal from the reference noise
signal and removes noise components of the primary input signal based on
second-order statistics only. However, there may be many other components in the
primary input signal which depend on the noise reference signal through higher-

order statistics.

42

After get the desired results for FIR filter and adaptive filter in the functional
simulation and timing simulation, the filter design is downloaded into Virtex II
FPGA device for hardware testing. However the logic analyzer used is not
equipped with pattern generator function. Therefore the logic analyzer only can
used to examine the output value instead of generate a sequence of test input to
test the filter design. Hence the input data is supplied by connecting the input pins
to 5 volt or ground to create an input data, while the clock is supplied from the

function generator.

It is found that the FIR filter output from the FPGA is same as the simulation.
That means the FIR filter is successfully implemented in FPGA. For the adaptive
filter, the satisfied results is obtained for the Matlab simulation, functional
simulation and timing simulation. Even though there is some error introduced to
the filter design, such as quantization error, round off error and overflow error.
The error not contributes to significant effect at the filter output, because the

required precision of data is not as high as floating point precision.
In conclusion, the results of this project show that noise cancellation with adaptive

filter is feasible. The noise is greatly reduced in Matlab simulation, functional

simulation and timing simulation.

43

5.2 Recommendations

There are a few recommendations proposed to improve the performance of
adaptive filter and to ease the filter design. The better results with Matlab
simulation on adaptive noise cancellation system can be obtained by increasing
the sampling frequency. So that the sound can be heard clearer and the different

between the filter output with different algorithm is more obvious.

Use with different types of FIR filter for the design, which including equiripple,
window, least-square, constrained equiripple and so on. For more attenuation at
the stopband, window and constrained equiripple is feasible for this purpose.
Since the IIR filter is not suitable for the hardware implementation {15], the types

of IR filter is not recommend.

During the implementation of adaptive noise cancellation system, the recorded
noise signal should be purely noise only without mixing with the desired input
signal. Otherwise part of the origin signal will be cancelled at the output signal.
Therefore it is important to determine the source of noise is not too close with the

source of desired signal.

For those who interest to continue this project, low pass filter, high pass filter and
bandpass filter can be implemented in the adaptive filter. This is to determine
whether the algorithms used for the noise cancellation system can work well with
different types of filters. Instead of doing with the Least-Mean-Square algorithm
only, the noise cancellation system can be implemented with Normalised Least-
Mean-Square algorithm, Recursive-Least-Squares algorithm or Kalman filter and

Wiener filter.

Low power consumption and fast converging time are two essential factors need
to be considered in implementing the noise cancellation system. It is necessary to
find out which algorithms of adaptive filter consume less power and provide faster
converging time for real time application. From the Matlab simulation, NLMS

algorithm generate better result than the LMS algorithm, but it involve more

44

complex calculation, this may cause the converging time to be longer than LMS
algorithm. For lower power consumption, instead of using direct form filter
design, the transpose direct form filter should be used for the design [23]. The
study on hardware algorithms for adder and multiplier should be carried out also

to implement adaptive filter in hardware effectively.

Nowadays the software programming for the FPGA is not limited to the HDL
languages only. A high-level design language such as C language is developed to
ease the design flow of difficult algorithm application. Hardware designer can
benefit from tools that allow them to mix high-level and low-level descriptions as
needed to meet design goals as quickly as possible {21]. However it is still in early

stages and is not yet a practical replacement for current HDL languages.

In general, a test bench is written to test the functionality of the design. Beside
from this technique, the logic analyzer (option 3 from Agilent) with integrate
pattern generator function can be used to generate the input data to test the
functionality of the filter and adaptive noise cancellation system. The output can
be display in the logic analyzer. In addition, the noise cancellation system can be
designed with Xilinx System Generator. The testing on FPGA can be done by

using co-simulation between System Generator and Matlab.

45

10.

11.

12.

13.

14.

15.

16.

REFERENCES

M.G. Arnold, 1999.Verilog Digital Computer design, Algorithms to
Hardware. Pearson Education, by Prentice Hall, Inc.

E. Lai, 2004. Practical Digital Signal Processing for Engineers and
Technicians. Elsevier.

S. Hakyin, 2002. Adaptive Filter Theory. Prentice Hall, Inc.

“Example of adaptive noise cancellation”, August 2005,
http://www.mathworks.com.

AY. Lin & K.S. Gugel, 2003. “Feasibility of fixed-point transversal
adaptive filters in FPGA devices with embedded DSP blocks”. Applied
Digital Design Laboratory, University of Florida

B. Jentz, 2005. “FPGAs rise to meet increasing DSP system
requirements”. Altera.

G. Hands, July 2004. High-performance DSP capability within an
optimized FPGA, Lattice Semiconductor corporation

“Code: DSP”, August 2005, http:// www.altera.com/technology/dsp/dsp-
code dsp.html

“FPGAs for DSP applications”, August 2005, http:// www.xilinx.com

Y. Tan, J. Wang & JM. Zurada, 2001. “Nonlinear Blind Source
Separation Using a Radial Basic Function Network”. IEEE Transactions
on Neural Networks, Vol. 12, No. 1.

HM. Park, SH. Oh, & S.Y. Lee, 2001. “On Adaptive Noise Cancelling
Based on Independent Component Analysis”. Korea Advanced Institute of
Science and Technology.

M. Morris Mano, 2002. Digital Design, third edition. Prentice Hall

T.R. Padmanabhan, B. Bala Tripura Sundari, 2003. Design Through
Verilog HDL. John Wiley & Sons, Inc.

Samir Palnitkar, 1996. Verilog HDL, A Guide to Digital Design and
Synthesis. Sunsoft Press, A Prentice Hall Title.

Michael D. Ciletti, 2003. Advanced Digital Design with the Verilog HDL.
Prentice Hall, Inc.

xilinc University Program, DSP Design Flow, Prefessor Workshop, 2003.
Xilinx, Inc.

46

17.

18.

19.

20.

21.

22.

23.

Virtex™.-[] Platform FPGAs; Complete Data Sheet. Xilinx. 2003.

Virtex-II XC2V1000 Reference Board User’s Guide. Insight MEMEC,
2001.

“ISE 7.1i Quick Start Tutorial”, October 2005, http:// www.xilinx.com

I. Liang, R. Tessier, O. Mencer, “Floating point unit generation and
evaluation for FPGAs,” Anmnual IEEE Symposium on
Field - Programmable Custom Computing Machines, 2003.

D. Petlerin, S, Thibault, 2005. Practical FPGA Programming in C. Prentice
Hall

“DSP with FPGAs”, August 2005, hitp://www.andraka.com/dsp.htm.

A. T. Erdogan and T. Arslan, 2000. “High throughput FIR filter design for
low power SOC applications”. Department of Electronics & Electrical
Engineering, University of Edinburgh.

47

APPENDIX A

Gantt chart of final year project activities

Al. Planning activities for first semester

Planning Activities for First Sememier ot Final Year Project
No. |Detaill Week 1 2 3 4 5 [7

i2

13

14

—

Selection of Project Topic

b3

Preliminary Research on noise cancellation technique

3 Submission of Preliminary Report *

=

Project Work

- Understand the Least-Mean-Square (LMS3] algorithm

+ Use matiab Simulink to deslgn noise cancellation system

- Conyert Simulink Diagramto matlab ¢ode

5Submission of Progress Report L]

& |Praject work contirme

- Learnt the Yerltog or YHDL program

- Write HOL code For 2 single filter

- Write test bench for a single fllter

7| Subission of Interim Report Final Draft

8| Submission of Interimn Report

910ral Presentation

Table A.1: Gantt chart for activities of first semester

A2, Planning activities for second semester

Plarning Activities for second Semerntet of Firal Yesr Project
Detaill Week 1 2 3 4 h] [7

i1

12

18

20

Project Work Contimme

- Write HDL code for adaptive filter (LMS)

= White test bench for adaptive filter (LMS)

Subtuission of Progress Repont 1 L]

Praject Work

- Examines result of funstional simulation fo: adaptive filter

-Edit HDL code for adaptive filter [LMS)

-Learnt to use ISE software

Submission of Progruss Report 2 []

j Project work contimue
- Examines result of timing silulation for adaptive filter

- Edit HOL code fer adaptive filter EMS]

-Write new HDL code into FEGA

-Esamine the adaptive filter with logio analyzer

Submission of Dissertation Final Draft

Suhmission of Final Report (soft cover)

Subwission of Techuical Raport

Ora] Presentation

Submission of Project Dissertation (H.C)

‘Table A.2: Gantt chart for activities of second semester

48

APPENDIX B

Matlab code for sound recording and noise generation

To record sound in .wav format and save in ¢;

Fs = 8000;

y = wavrecord{50*¥Fs, Fs, 'double'}:
wavplay(y,Fs);
wavwrite(y, Fs, 'c:\music'};

Generate the chip signal in .wav file:

t=0:0.001:100;
y=chirp(t,0,1,100,'q',], "convex');
£5=8000;

wavwritel{y, fs, 'chat');

49

APPENDIX C

Matlab code of noise cancellation with adaptive filter (LMS)

a

% Original signal

signal = sin(2*pi*0.0535*(0:200-1)"); %signal with f£=0.055Hz, t:0 to 199
subplot{2,2,1),plot(0:199,5ignal (1:200));%plot signal with x: O to 199
grid; axis ([0 200 -2 2]): %set the axis setting in the graph

title('The information of an original signal');

% The noise picked up by the secondary microphcne is the input for the LMS
% adaptive filter.

nvar = 1.0; % Noise variance

noise = randn(200,1}*nvar; 2 White noise
subplot(2,2,2),plot(0:1929,noise);

title("Noise picked up by the secondary microphone');
grid; axis ([0 200 -4 47);

% The noise corrupting the information a signal is a filtered version of 'noise':
% 31st order Low pass FIR filter, with Normalised £=0.5
nfilt = firl1(31,0.5);

% Filtering the noise

fnoise = filter(nfilt,1,noise);
% "Desired signal" for the adaptive filter (sine wave + filtered noise):
d=signal+fnoise;

subplot(2,2,3),plot(0:199,d{(1:200})};

grid; axis{[0 200 -4 41);

title('Desired input to the Adaptive Filter = Signal + Filtered Noise');

% adaptive filter with LMS algorithm

mu = 0.008; % LMS step size

Hadapt = adaptfilt.lms(32,mu}; % filter order = 32
Hadapt.PersistentMemory = true; % for continuing updates the filter
weights

[yv,e] = filter(Hadapt,noise,d);

H = abs(freqz(Hadapt,1,64));

Hl = abs{freqz{nfilt,1,64)};

% Plot the frequency response of adaptive filter

wf = linspace(0,1,64);

ploti{wf,H,wf, H1);

xlakel ('Normalized Frequency {(\times\pi rad/sample}');

ylakel ('Magnitude');

legend{'Adaptive Filter Response’','Required Filter Response'};
grid;

axis([0 1 0 2]):

% As the adaptive filter converges, the filtered noise should be completly
% subtracted from the "signal + noise"” signal and the error signal 'e'
$should contains only the criginal signal.

subplot(2,2,4),plot(0:199,signal(1:200),0:199,e(1:200)); grid;
axis ([0 200 -4 41);

title('Original information of a signal and the error signal');
legend{'Criginal Signal', 'Error Signal'};

50

APPENDIX D

Verilog code for a 10 orders FIR filter

FIR filter

‘timescale 1 ns / 1 ps

module fir 10(clk, clk enable, reset, Data_in, Data_out);

inpu
inpu
inpu
inpu
ouktp

t clk;

t clk_enable;
t reset;
t signed [15:0) bata_in;

ut signed [15:0] Data out;

// FIR filter coefficient

parameter
parametex
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed

[15:0] coeffl = 16'b1111111100100010;
[15:0] coeff2 = '16'b1111111110110111;
[15:0] coeff3 = 16'b0000010001111100;
{15:0] coeffd4 = 16'b0000111001010100;
[15:0} coeffs = 16'b0001100100001010;
[15:0]) coeffé = 16'b0001110110111110;
[15:0] coeff? = 16'b0001100100001010;
[15:0] coeff§ = 16'Hh0000111001010100;
[15:0] coeff% = 1€'b0000010001111100;
[15:0] coeffl0 = 16'b11111111103110111;
[15:0] coeffll =

16'b1111111100100010;

// Declare vector used

reg

wire
wire

wire
wire

wire
wire
wire
wire
wire

wire
wire

wire
reg

signed

signed
signed

signed
signed

signed
signed
signed
signed
signed

signed
signed

signed
signed

[15

[31:
[31:

[31:
[31:

[31:
[31:
[31:
[31:
[31:

[32:
[32:

[15

[15:

10}

0]
0]

0]
0]

0]
0]
0]
0]
0]

03
0]

:0]
0]

delay {0:10] ;

productll, productlQ, product$, product8, product?;
producté, product5, product4, preoductl, product2, productl:

suml, sumZ2, sum3, sumd, sumb;
sumé, sum?7, sum8, sumd, sumll;

addsig, addsig_l, addsig_2, addsig_3;
addsig_4, addsig 5, addsig_6, addsig_7;
addsig_8, addsig 9, addsig 10, addsig _11;
addsig 12, addsig 13, addsig_l4, addsig_15;
addsig 16, addsig_17, addsig_18, addsig 19;

add_temp, add_temp_l, add _temp_2, add_temp_3, add temp_4;
add_temp 5, add_temp &, add_temp_7, add_temp 8, add_temp 9;

output_round;
output_registex;

always Q@(posedge clk or posedge reset)

// Reset, clear data
begin: Delay_process
if (reset == 1'bl) begin
delay(0Q] <= 0;
delay[l] <= 0;
delay{2] <= 0;
delay[3] <= 0;
delayl4] <= 0;
delay[5] <= 0:
delay[6) <= 0;
delayl[7] <= 0:
delay(8] <= 0;
delay{9) <= 0;

delay[10} <= 0O;

end

51

// Transfer input data through all delay

else begin
if (clk enable == 1'bl) begin
delay(0] <= Data_in:
delay(l] <= delay([0]:
delay[2] <= delay(l]:
delay[3] <= delay{2]:
delay[4] <= delay[3]:
delay[5] <= delay[4]:
delay[6] <= delay[5];
delay[7} <= delayl6]:
delay[8] <= delayl[7]:
delay[9] <= delay(8];
delay[10] <= delay([?];
end
end
end // Delay process

i Multiply the delay data with filter coefficients

assign productil = delay(l0] * coeffll;
assign productl(= delayf?] * coeffll;

assign product9 = delay[8) * coeff9;
assign productB = delay([7] * coeff8;
assign product? = delay([6] * coeff?;
assign producté = delay[5] * coeffs;
assign product5 = delay[4] * coeff5;
assign productd = delay([3] * coeff4;
assign product3 = delay([2] * coeff3;
assign product2 = delayl(l] * coeff2;
assign productl = delay[0] * coeffl;

// sum the result of multiplication

assign addsig = preductl:
assign addsig 1 = product2;
assign add_temp = addsig + addsig l;

assign suml = {add _temp[32] == 1'b0 & add_temp[31] != 1'b0O) ?

32'b011111111111212111112111111111111
(add temp[32] == 1'bl && add temp{31) != 1'bl}) *?
32'b100000000000C000C00C000000000000 + add_temp[31:0];

assign addsig 2 = suml;
assign addsig 3 = product3;
assign add_temp_l = addsig_2 + addsig 3;

assign sumZ = {add_temp 1[32] == 1'b0 & add_temp_1[31]
32'p011111111111111111213121111111111
{add temp 1[32]) == 1'bl && add temp_ 1[31] != 1'k1}

32'510000000000000000000000000000000 : add_temp_1[31:0];

assign addsig 4 = sum2;
assign addsig 5 = product4;
assign add_temp 2 = addsig_4 + addsig 5;

assign sum3 = tadd temp 2[32] == 1'b0 & add temp_ 2[31]
32'b0111111111111313111111311111111131
{add temp 2[32] == 1'bl && add temp 2[31] != 1'bl})

32'b100000000000000000000000000000600 ¢ add_temp 2(31:0];

assign addsig_6 = sum3;
assign addsig 7 = product5;
assign add_temp 3 = addsig_6 + addsig_7;

assign sumd = (add_temp_3[32] == 1'b0 & add_temp_3[31}
32'p011171111111111111111111131131111
(add_temp 3[32]) == 1'bl && add_temp 3[31l] != 1'bl}

32'h10000000000000000000000000000000 @ add_temp_3[31:0];
assign addsig B = sumé;

assign addsig 9 = producté;
assign add temp_4 = addsig 8 + addsig_29;

52

1= 1'b0)

?

I= 1'b0)

!= 1'b0)

?

assign sumS = (add_temp 4(32] == 1'b0 & add_temp_ 4[31] {= 1'b0O) ?
32'b011111118111122 38413131112 13112131
{add_temp 4[32) == 1'bl && add _temp_4([31] != 1'bl) =
32'b10000000000000000000000000000000 : add _temp_4131:0];

assign addsig 10 = sum5;
assign addsig 11 = product7;
assign add_temp 5 = addsig_10 + addsig 11;

assign sumé = (add temp 5[32] == 1'b0 & add_temp 5[31] != 1'bO) 7
32'pO11112111113131311112131111211221
(add_temp 5[32] == 1'bl && add_temp 5[31] != 1'bl) ?

32'b10000000000000000000000000000000 @ add_temp 5(31:0];

assign addsig_12 sumé;
assign addsig_13 = product8;
assign add_temp_6 = addsig_12 + addsig 13;

assign sum7 = (add_temp 6[32] == 1'b0 & add_temp_6[31] != 1'k0O} 2
32'b01111111111111111121111111111111 :
(add_temp 6[32] == 1'bl && add temp_6[31] != 1'bl} ?

32'10000000000000000000000000000000 ¢ add temp 6[31:0];

assign addsig 14 = sum7;
assign addsig 15 = product9;
assign add_temp 7 = addsig 14 + addsig 15;

assign sum8 = (add_temp 7[32] == 1'b0 & add_temp_7[31] != 1'b0) 7
32'b01112111111111112111111211112111111
{add_temp 7[32] == 1'bl && add_temp_7[31] != 1'bl) ?

32'H10006000000000000000000C00000000 ¢ add_temp_ 7[31:0];

assign addsig_16 = sum8;
assign addsig 17 = productlQ;
assign add temp 8 = addsig 16 + addsig 17;

assign sum% = (add temp 8[32] == 1'b0 & add_temp 8[31] != 1'b0) 7
32'p01111323111111121131312121211111111
{add temp 8(32] == 1'bl && add temp_8{31] != 1'k1) *?

32'510000C00006000000000000000000000 ¢ add_temp 8[31:0];

assign addsig 18 = sum9;
assign addsig 19 productll;
assign add_temp_ 9 = addsig_ 18 + addsig_19;
assign suml0 = {add_temp_9[32] == 1'b0 & add_temp_95[31) != 1'b0} ?
32'p01111111111131121111111111111111
(add temp 9[32] == 1'bl && add temp 9[31] != 1'bl) ?
32'b10000000000000000000000000000000 ¢ add_temp 9[31:0];:

assign output_rcound = (suml0[31] == 1'b0 & suml0[30:29] != 2'b00) ?
16'b01113111313133121 ¢
{suml0(31) == 1'bl && sumlQ[30:29] != 2'bIl) ? 16'bL10000000000C0O0CO

suml0{29:14];

always @ (posedge clk or posedge reset)
begin: Output_Register process
if (reset == 1'bl} Dbegin
output_register <= 0;

end
else begin
if (clk_enable == 1'bl) begin
output_register <= output_round;
end
end

end // Cutput_Register process

// Assignment Statements
assign Data out = output_register;

endmodule // fir 10

53

Testbench of 10 orders FIR filter

‘timescale L ns /1

module fir 10 _th v;

// Parameters

parameter clk_high
parameter clk_low
parameter clk_peri
parameter clk_hold

// Inputs
reg clk;

reg
reg reset;

Ps

od

clk_enable;

100;
100;
200;
10;

[

It

]

reg signed [15:0] Data_in;

// Outputs

wire signed [15:0]

integer n;

// Cocnstants

Data_out;

//loop variable

reg signed [15:0] Data_in_load[0:79};
reg signed [15:0] Data_out_expected
[0:79});
// Instantiate the Unit Under
Test (UUT}
fir 10 uut (
.clk{clk),
.clk_enable(clk_enable),
.reset (reset),
.Data_in(Data_in},
.Data_cut (Data_out}
)i
initial
begin

Data_in _load[0] <= 16'h4000;

Data_in_load[1}

Data_in _load[2]

Data_in_load[3]

bata in_load[4]

Data_in_load[5)

Data_in load[6]

Data_in load([7]

Data_in_lecad([8]

Data_in_load{9]

Data in_lecad[10]
Data_in_ load([ll]
Data_in load[12]
Data in_load[13]
Data in_load[14]
Data_in_load{15]
Data_in load[186]
Data_in load[17]
Data_in_load[l18]
Data_in load[19]
Data_in load(20]
Data_in_load[21]
Data_in load([22]
Data_in load([23]
Data_in load([24]
Data_in_load[25]
Data in_load(26]
bata in_load(27]
Data_in load[28]
Data_in leoad[28]
Data_in load[30]

<=

<=
<=

16'h4000;

= 16'h4000;

16'h4000;
16'h0000;

= 16'h0000;

16'h0000;
16'h0000;
16'h4000;
16'h4000;
16'h40090;

= 16"h4000;

16'h000G;
16'h0000;
16'h0000;
16'h0000;
16'h4000;

= 16'h4000;

16'h4000;
16'h4000;

= 16"h0000;
= 16'h0000;
= 16'h000C0;

16°h0000;
16'h4000;
16'h4000;
16'h4000;
16'h4000;
16'hC000;
16'h0000;

= 16'h0000;

54

Data_in_load[21]
Data_in_load([32]
Data_in_load([33]
Data_in_ load[34]
Data_in_load{35]
Data_in_load[36]
Data_in load[37]
Data_in load[38]
Data_in_leoad[39]
Data_in_load[40]
Data_in load[41]
Data in load[42]
Data_in load[43]
Data_in load(d4]
Data_in_load{45]
Data_in_locad[46]
Data_in_lecadf[47]
Data_in_loadf{48]
Data_in_ lecad[49]
Data_in load[50]
Data_in load[31]
Data_in_load[52]
Data_in leoad[53]
Data_in_leoad[54]
Data_in_load[55]
Data in_load[56]
Data_in_ load[57]
Data_in load[58]
Data_in load[59]
Data_in_load[&0]
Data_in load[él]
bata in_lecad{é2]
Data_in_lecad[63]
Data_in_leoad[64]
Data_in_lcad[65]
Data_in_load[&6]
Data_in_load[67]
Data_in_lcad[68]
Data_in load[69]
Data_in load(70]
Data_in_lead[71)
Data_in_leoad[72]
Data in _load[73]
Data_in_load[74]
Data_in_load[75]
Data_in_load[76]
Data_in_load(77]
Data_in_load[78]
Data_in load[79]

Data_ out_expected
Data_cut_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_out expected
Data_out_expected
Data_out_expected
Cata_out_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_out_expected
Data_ out_expscted
Data_out_expected
Data_out_expected

<= 16'h0000;
<= 16'h4000;
<= 16'h4000;

<= 16'h4000;
<= 16'h4000;
<= 16'h0000;
<= 16'h0000;
<= 16'h0000;
<= 16'h0000;
<= 16'h4000;
<= 16"h4000;
<= 16'h4000;
<= 16"h4000;
<= 16'h0000;
<= 16'h0000;
<= 16'h0000;
<= 16'h0000;
<= 16'h4000;
<= 16"h4000;
<= 16'h4000;

<= 16'h4000;
<= 16'h000G;

<= 16'h0000;
<= 16'h0000;
<= 16'h0000;
<= 16"h4000;
<= 16"h4000;
<= 16"h4000;
<= 16'h4000;
<= 16'h0000;
<= 16"h0000;
<= 16'h0000;
<= 16'h0000;
<= 16'h4000;
<= 16'h4000;
<= 16'h4000;
<= 16'h4000;
<= 16'h0000;
<= 16'h0000;
<= 16'h0000;

<= 16'R0000;
<= 16'h4000;

<= 16'h4000;
<= 16'h4000;
<= 16'h4000;
<= 16"h0000;
<= 16'h0000;
<= 16"h0000;

<= 16'h0000;

[0] <= 16'hff22;
[1] <= 1l&'hfed9;
[2] <= 16'h0355;
[3] <= 16'hlla$:
[4] <= 16"h2b91;

[5]1 <= 16'h4998;
{6] <= 16'h5e26;
(7] <= 16'h5e26;
[8] <= l1b6'"hd48ba;

[9] <= l6'hZa6a;

[10) <= 16'hl4fe;
[11) <= 16'hléfe;
[12] <= 1€¢'h2aba;
[13] <= 16'h4Bba;
[14] <= 16'h5e26;
[15] <= 16'h5e26;
[16] <= 16'h48ba;
[17] <= 16'hZa6a;

[1B] <= 1l6'hldfe;
[19] <= 1g'hldfe;
[20] <= 1i6'hZa6a;

Data out expected [21] <= l6&'hd8ba; Data out_expected [74] <= 16'hl4dfe;

Data_out_expected [22] <= 16'h5e2§; Data out_expected [75] <= 16'hldfe;
Data_ out expected {23} <= 16"h5e26; Data_out_expected [76] <= 1lé'h2aba;
Data_out_expected [24] <= 16"h48ba; Data_out_expected [77] <= 16'h48ba;
Data_out_expected [25] <= l6'hZaéa; Data_out_expected [78] <= 1é'hbe26;
Data out expected [26] <= 16'hléfe; Data_out_expected {79] <= 16'hbe2é;
Data_out_expected [27] <= 16'hlife;

Data_cut_expected [28] <= 16'hZaéa; end

Data_cut_expected [29] <= 1&'h48ba;
Data_out_expected [30] <= 16'h5e26;

Data out_expected [31] <= 16'h5e26; // Block Statements

Data_ocut_expected [32] <= 16'h48ba; always // clk generation

Data_out expected [33] <= 16'h2aéba; begin : c¢lk_gen

Data_out expected [34] <= 16'hlife; clk <= 1'b 1;

Data_out_expected [35] <= 16'hl4fe; # clk_high:

Data out_expected [36] <= l6'hZasa; clk <= 1'b 0;

Data_out expected [37] <= 16'h48ba; # clk_low;

Data_out_expected [38] <= 16'h5eZ26; end //clk_gen;

Cata_out_expected [39] <= 16'h5eZ6;

Data out expected [40] <= 16'h48ba; initial // reset block
Data_out_expected [41] <= 16'hZaé6a; begin : reset_gen
Data_out_expected [42] <= 16'hldfe; clk _enable <= 1'bl;
Data_out_expected [43] <= l&'hlife; reset <= 1'b 1;

Data out expected [44] <= l&§'h2a6a; # (clk_period*2 + clk_hold);
Data_out_expected [45] <= 16'h48ba; reset <= 1'b 0;

Data_out expected [46] <= 16'h5e26; end //reset_gen;

Data_out_expected [47] <= 16'hde2é&;

Data_out_expectad [48] <= 16'h48ba; initial //The main block

Data out_expected [49] <= 1l6’hZaba; begin

Data_out_expected [50] <= 16'hildfe; # clk_period;

Data_out_expected [51] <= 16€'hldfe; Data_in <= Data_in_lecad[0];
Data_ocut_expected [52] <= 1l€'h2aéa; # (clk period*2 + clk_hold):
Data_cut_expected [53] <= 16'hd8ba; Data in <= Data_in_load[l];
Data_cut_expected [54] <= 16'h5e26; # clk_period;

Data_out_expected [55] <= 16'hdelé; for (n=0; n<= 79; n=n + 1)
Data_out_expected [5&] <= 1l6'h48ba:; begin

Data_out expected [57] <= 16'h2abta; if (Data_out !==
Data_out_expected [38] <= 16'hlife; Data_cut_expectedin]}
Data_out_expected [39] <= 16'hldfe; $display ("ERROR in filter test at
Data_out_expected [60] <= 16'h2a6a; time %t : Expected '$h' Actual '%h'",
Data_out_expected [61] <= 16'h48ba; $time, Data_out_expected{n], Data_out};
Data out_expected [62] <= 16'hbdeZb; if (n+ 2 <= 79)

Data out_expected [63] <= 16'hdel6; Data_in <= Data_in load[n + 2];
Data out_expected [64] <= 16'hdB8ha; # (clk_period);

Data_out expected [€5] <= 1&'hZatca; end

Data_ocut_expected [66] <= 16'hl4fe; $display{ "**** Test Complete, *X**x"
Data ocut expected [67] <= l&'hldfe;)i

Data out_expected [6B] <= 1l6'hZasa; §stop;

Data_ocut_expected [68] <= 16'h48ba;

Data out expected [70] <= 16'h5eZ6; end //Data_in_gen;

Data_out_expected [71] <= 16'h5e26;
Data out_expected [72] <= 16'h4Bba;
Data out_expected [73] <= 16'hZ2aea; endmodule

55

APPENDIX E

Verilog code for a 10 order adaptive filter

Adaptive filter

‘timescale 1 ns / 1 ps

module. fir 10m {clk, clk enable, reset, Data_in, Data_out, Desired,
Error,mult, temp, mumy, mumus} ¢

input clk;

input clk_enable;

input reset;

input signed [15:0] Data_in;
output signed [15:0] Data_out;

input signed [15:0] Desired;
output signed [15:0] Error;
output signed ([31:0] mult;
output signed [15:01 temp;
output signed [31:0)] mumu;
output signed [15:0] mumus;

reg signed [15:0] <[0:101;//weight
reg signed [15:0] w[0:10];

reg signed [31:0] multl;

reg signed [15:0] templ;

reqg signed [31:0] mumul;

reg signed [15:0] mumu2;

wire signed [15:0] wl,wl,w2,w3,wd, wS, w6, w/,wB,wd,wll;
wire signed [15:0] ce0,cel,ce?,ce3,ced,ces,ceb,ce?,cel,ced, cell;

//parameter mu=0.05 (16'h0666);
reg signed [15:0] mu = 16'h0166;

reg signed [15:0] delay [0:10] ;

wire signed [31:0] productll, preductld, product9, product8, product?;
wire signed [31:0] producté, productd, productd, product3, product2, productl;

wire signed [31:0] suml, sum2, sum3, sumé, sum5;
wire signed [31:0] sum6, sum7, sum8, sum%, sumlQ;

wire signed [31:0) addsig, addsig_1, addsig_2,addsig_3;

wire signed [31:0]) addsig 4, addsig 5, addsig_6,addsig_7;
wire signed [31:0] addsig 8, addslg 9, addsig 10,addsig_11;
wire signed [31:0]) addsig 12, addsig_13, addsig_l14,addsig_15;
wire signed [31:0] addsig_16, addsig_17, addsig_18,addsig_19;

wire signed [32:0] add temp, add temp 1, add temp_2, add temp_3, add temp 4;
wire signed [32:0] add temp 5, add temp &, add_temp 7, add_temp_ 8, add_temp 9;

wire signed [15:0] output_round; // sfixlé Enls
reg signed [15:0] output_register; // sfixlé_Enl5
reg signed [15:0] error m;

// Load ilnput data
always @(posedge clk or posedge reset)
begin: Delay process
if {(reset == 1'bl) begin

delay{0] <= 0;
delayl[l} <= 0;
delay[2]) <= 0;
delay[3] <= 0;
delay[4]) <= 0;
delay[5]1 <= 0:
delay[6] <= 0:

56

delay[71 <= 0;
delay[8] <= 0;
delay[9] <= 0;
delay[l0]<= 0;

end
els

e begin

if (clk_enable == 1'bl) kegin

e
end
end /

//Loa
alway
begin

i

cll
e
end

delay(0]
delay[1]
delay[2]
delay[3]
delay[4]
delay[5]
delay[6]
delay[7]
delay[8]
delay[9]
delay[10

]

<= Data_in;

<= delay([0]:
<= delayil]:
<= delayi2];
<= delayl[3]:
<= delayl[4]):
<= delayl[5b]:
<= delayl[6];
<= delay[7]:
<= delay([B];

<= delay[9]

;

//$display ("delay([0]:%h, delay[l]:%h",delay([C],delay(1]}:

nd

/ Delay process

d ceoefficients
s @(posedge clk)

f {(reset==1'bl)begin

<= 16'h0000;//16'h0187;
<= 16'h0000;//16"'hfdcd;
<= 16'hfdde;//16'h0361;
<= 16'h0000;//16"'hfb90;

] <= 16'h22%a;//16'h0530;
] <= 16'h4000;//16"h7a8b;
] <= 16'h22%a;//16"'h0530;
} <= 16'h0000;//16"hfb90;
] <= 16'nfd46;//16"h0361;
] <= 16'h0000;//16"hfdc4;
0] <= 16'h0000;//16'n0187;

nd

//multiply input data with coefficients

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

productll
productll
product?
productg
product?
product6
productb
productd
product3
product2
productl

= delay[1l0] * c[10]);
= delay[9] * c[9]:
delay[8] * c(8];
delay[7] * c[7):
delay[6] * c[6];
delay[5] * c[5]1;
delay(4] * cl4]1:
delay[3] * c[3]:
delayl[2] * c[2];
delay(1l] * c[1]:
delay[0] * c[0]:

//8um all result of multiplication

assign addsig = productl;

assign addsig 1 = product2;

assign add_temp = addsig + addsig_l;

assign suml = (add_temp([32:31] == 2'b01) ? 32'h7fffffff
{add temp[32:31] == 2'L10) ? 32'h80000Q0C add_temp[31:0];

assign addsig 2 = suml;

assign addsig 3 = product3;

assign add temp 1 = addsig 2 + addsig_3;

assign sumZ = {add temp_ 1[32:31] == 2'b01) ? 32'h7ELfffFf
(add_temp_1([32:31] == 2'b10) ? 32'hBQ0000CO add_temp_ 1[31:0];

assign addsig 4 = sum2;

assign addsig 5 = productd;

assign add_temp_ 2 = addsig_4 + addsig 5;

assign sum3 = (add temp_2[32:31] == 2'b0l} ? 32'nT7LLfEfff :

{add_temp_2[32:31] == 2'b10} ? 32'h80000000

57

add_temp 2([31:0);

assign addsig_6 = sum3;
assign addsig_7 = product5;
assign add_temp 3 = addsig_6 + addsig 7;

assign sumd = (add_temp_ 3[32:31] == 2'b01) ? 32'h7TLffffff

(add_temp 3{32:31] == 2'bl0) 2 32'hB80000000 : add_temp_3[31:0];
assign addsig_8 = sumd;
assign addsig_9 = producté;

assign add_temp_4 = addsig 8 + addsig_9;

assign sumd = (add_temp 4[32:31] == 2'b01) ? 32'h7ELfffif :
(add_temp 4[32:31] == 2'b10}) ? 32'hB000O0CCO : add_temp 4[31:0];

assign addsig_ 10 = sum5;

assign addsig 11 = product?;

assign add_temp_5 = addsig 10 + addsig 11:

assign sum6 = {add_temp 5[32:31] == 2'b0Ll) ? 32'hTffLffff

(add_temp_5[32:31] == 2'b10) ? 32'h8000C00C : add_temp 5[31:0];

assign addsig 12 = sumé;
assign addsig 13 = product8;
assign add _temp & = addsig 12 + addsig 13;

assign sum7 = {add_temp €[32:31] == 2'b0L) ? 32'h7LLLfffff :
(add_temp_6{32:31] == 2'h10) 7 32'hBQ0O00000 : add temp 6{31:0];

assign addsig 14 = sum7;
assign addsig 15 = product9;
assign add temp 7 = addsig 14 + addsig 157

assign sum8 = (add_temp 7[32:31] == 2'b01) ? 32 h7EfFfffff
(add_temp_7[32:31] == 2'b10) ? 32'h80000000 : add temp 7([31:0];

assign addsig_16 = sum8;

assign addsig_17 = productlQ;

assign add_temp_8 = addsig_l6 + addsig_17;

assign sum® = (add_temp 8([32:31] == 2'b01) ? 32'h7Effffff

{add_temp_8[32:31] == 2'b10} ? 32'h80000000 : add_temp_8([31:0];

assign addsig_18 = sum@;

assign addsig 12 = productll;

asgign add_temp_ 9 = addsig_18 + addsig_19;

assign sumlC = (add temp 9[32:31] == 2'b01) ? 32'hTLffffff
{add_temp 9[32:31] == 2'b10) ? 32'h80000000 : add_temp

//take 16 bits data from the sum
assign output round = {(sumlQ[31] == 1'b0 & suml(Q([3C] != 1'b
{sumi0[31] == 1'bl && sumlQ[30] != 1'bl} ? 16'hB800C

always @ {posedge clk or posedge reset)
begin: Output Register process

if (reset == 1'bl) begin
cutput register <= 0;
end

else begin
if (clk_enable == 1'bl) begin
output_register = output_ round;
error_m = Desired-output_register;

//cin] <= ¢[n]+mu*Data_in*error_m;
multl = error_m*Data_in;

tenpl multl[31:16];
mumul = mu*templ;

i

mumuZ = mumul[31:16];
1/ for {(n=0; n<li; n=n+l)ibegin
/7 c[n]=cn]+mumu2;
17 end

c[Q] = cl[0]+mumu2;

cl[l] = c[l]+mumuz;

cl2] = cl[2]+mumu2;

c[3] = ci{3]+mumuz;

c[4] = c[4]+mumu2;

58

_9[31:0];

0) ? lée'h7fff
suml0[30:15];

e
end

end /
// Bssi

assign
assign
assign
assign
assign
assign

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

endmodule

c[5] = c[5]+mumuz;
c[6] = cl[6]+mumu2;
cl[7] = c[7]+mumu2;
c[8] = c[8]+mumu2;
cl9] c[9]+mumu2;
c{10] = ¢[10]+mumuZ;

nd //clk_enable

//else
/ Lutput_Registex_process
gnment Statements

Data_out = output register;
Error = error m;

mult multl;

temp templ;

mumu = mumul;

mumes= mumuz;

It

cel = c[0];
cel = c[l];

ce2 = ¢[2];
celd = c[3];
ced = c[4];
ce5 = ¢[5];
ce6 = c[6];
cel = c[7]};
ceB = c[8];
ce? = ¢c[9];
celd =c[10];
w0 = delay[0];
wl = delay(l];
w2 = delay(2];
w3 = delayi{3];
wd = delay{4];

w3 = delay[5];
wo = delayl[6];
w7l = delayl[7]:
w8 = delayl(8];
w9 = delay[9];
wl0 = delayl[l0];

// fir_10m

59

Testbench of adaptive filter

‘timescale 1 ns / 1 ps
medule fir 10m_tb;

// Parameters
parameter clk_high
parameter clk low
parameter clk period
parameter clk hold

10;
10;
20;
4;

1t

// Nets
reqg <lk;
reg clk_enable;
reg reset;

req signed
wire signed

[15:0]
[15:01

Data_in;
Data_out

reqg

wire
wire
wire
wire
wire

signed
signed
signed
signed
signed
signed

[15:0]
[15:0]
[31:0]
[15:0]
[31:0}
[15:0]

Desired;
Error;
mult;
temp;
T ;
mumus ;
integer n; variable
integer k;

//loop

reg
reg

signed [15:01]
signed (15:0]
req signed [15:0]
// Component Instances
fir 10m u_fir_10m
(
.clkiclk),
.clk_enable(clk_enable},
.reset{reset),
.Data_in(Data_in},
.Data_out{Data_out),
.Desired(Desired),
.Exror{Error),
.mult{mult},
.temp{temp),
Lmumu (mam)
.mumes {mamas)
)i

initial

begin

Data out expected [0] <=

Data:out:expected [1] <=

Data_out_expected [2] <=

Data_cut_expected [3] <=

Data_out_expected [4] <=

Data_out expected [5] <=

Data_out_eXpected [6] <=

Data out expected [7] <=

Data_out_expected [8] <=

Data_out_expected [3] <=

bData_out_expected [10] <=
Data_out_expected [1ll] <=
Data_out_expected [12] <=
Data out_expected [13] <=
Data_out_expected [14]) <=
Data out_expected [15] <=
Data_out_expected [16] <=
Data_outiexpected [17] <=
Data_out_expected [18] <=
Data_out expected [19] <=
Data_out expected [20] <=
Data out_expected [21] <=

I

Data_in_load[0:21];
Data_out_expected [0:21];

= 16'h0000;

16'h0000;
16'h0000;
16'hfd4e;
le'hfd46;
16'hlfdf;
16"h3fdf;
16'h7fff;
16'h7ffL;

= 16'h7fbf;
= 16'h7fbf;

16'h7fbf;
16 h'7EbE;
16'h7VEEE;

= 16'h7fff;

le'h5fdf;

= 16'hlfdf;

16'hid46;
16'hfddse;
16'h00Q00;
16'hC000;

= 16'h0000;

Desired_data [0:21]);

60

// Reference input u{n) as an impulse noise
Data_in_lecad[0] <= 16'h0050;
Data_in lead[l] <= 16'h0050;
Data_in lcad([2] <= 16'h0050;
Data_in load[3] <= 16'h0050;
Data_in load[4] <= 16'h0050;
Data_in_load{5] <= 16'h0050;
Data_in load[€] <= 16'h0050;
Data_in_load[7] <= 16'h0050;
Data_in_loadl8] <= 16'h0050;
Data_in_loadl9] <= 16'h0050;
Data_in_leoad[10] <= 16'h0050;
Data in lead[11l] <= 16'h0050;
Data_in_leoad[12] <= 1e6'h7fff;
Data in_lead[13] <= 16'h7£fff;
Data_in_lcad[14] <= 16'h7fff;
Data_in lead[15] <= 16'h00530;
Data_in lcad[l16] <= 16'h0050;
Data_in lead[17] <= 16'h0050;
Data_in load[18] <= 16'h0050;
Data_in_lead[19) <= 16'h0050;
Data_in_leoad[20] <= 16'h0050;
Data_in_locad[21] <= 16'h0050;

//Primary input d{n}), which is input{step signal) + noise
Desired data [0] <= 16'h0050;
Desired data [1] <= 16'h7fff;
Desired_data [2] <= 1&'h7fff;
Desired _data [3] <= 16'h7fff;
Desired data [4] <= 16'h7fff;
Desired data [5] <= 16'h7fff;
Desired data [6] <= 16'h7Lff;
Desired data [7] <= 16'h7fff;
Desired data [8] <= 16'h7Lff;
Desired_data (9] <= 16'h7fff;
Desired data [10] <= 16'h7fff;

Desired _data [11] <= 16'h0C50;
Desired_data [12] <= 16'h0050;
Desired_data [13] <= 16'h0C50;
Desired_data [14] <= 16'h0050;

]
]
]
]
]
Desired data [15] <= 16'h0050;
]
]
]
]
]
]

Desired_data [16] <= 16'h7fff;
Desired_data [17] <= 16'h7fff;
Desired data [18] <= 16'h7fff;
Desired data [19] <= 16'h0050;
Desired data [20] <= 16'h0050;
Desired data [21] <= 16'h0050;

end

always // clk generation
begin : clk_gen
clk <= 1'b 1;
<¢lk_high;
clk <= 1'b 0O;
clk_low;
end //clk _gen;

initial // reset block
begin : reset gen
clk_enable <= 1'bIl:
reset <= 1'b 1;
(clk_pericd*2 + clk_hold);
reset <= 1'b 0;
20;
reset <=1'bl;
20;
reset <= 1'b0;

end //reset_gen;

61

initial //The main block
begin
for (k=0;k<1000;k=k+1l) begin
clk_period;
Data_in <= Data_in load[0]:
{(clk_period*2 + clk_hold);
Data_in <= Data_in load[1];

clk_period;
for (n = 0; n<= 21; n=n + 1)
begin

if ((n + 2) <= 21)
Data_in <= Data_in_load[n + 2];
$display({"%5d=> Data_in: %5h ; error: %5h ; mult: %5h ; temp: %5h ; mumu:
%$5h ; mumus: %5h", n, Data_in,Error,mult, temp,mumu, mumus);
Desired <= Desired datain]:
(clk period):

end

end
S$display("**** Test Complete, *#*#*&" j.:
$stop;

end //Data_in_gen;

endmodule

62

Performance of Virtex-11

Tabfe 11 Pinto-Pin Performance

APPENDIX F

Deseription Dovice Used & Speed Grade | Pincto-Pin {with U0 delays) | Units
Basic Funetions
18-bit Address Decoder JCaooo -5 63 n
32-bit Addrass Decoder G200 -5 7 s
B4-bit Address Decoder XC2¥1000 -5 9.3 ng
411 MUK wERV1000 -5 6.7 na
8 MUK XC2Yi000 -6 8.5 ng
161 MUX XG2¥1000 -5 87 ns
824 MUX ¥G2¥1000 -6 a7 ™
Gombinatorial {pad to LUT to pad) XC2Y1000 -6 6.0 ng
Mamory
Block RAN
Pad 17 sstup 1.8 i
Glxck 1o Pad &5 T3
Distributad &M
Pad to zetup XC2V1006 -6 27
Clock 15 Pad ¥Cai000 -5 E1 (o olk skew) 8

Tabile 12 chows internal (reglater-to-reqister) performance. Values are reported in MHE.
Table 12 Register-to-Register Performance
Device Used & Speed Registerto-Heglster

Description Grade Farformance Unite
Basic Funetions
16-bit Address Decodar X2 -6 388 MHz
§2-it Addreas Decodar XGavioo -5 281 MHz
64-bit Addrass Decadsr XGz2hom -5 a4 MHz
411 MUK XCeWio00 -5 563 MHz.
61 MUK XCevio00 -6 454 MHz
189 MUX XCo¥ioog -6 4id WHz
3214 MUX XCav1om -5 323 MHz
Regigterto LUT 1o Ragiatar XCoVino -6 513 MHZ

63

Table 12: Register-So-Register Performance {Confmmed)

Device Used & Spesd Regieter-to-Register
Deacripticn Grade Performance Units
g-bit Adder XC2YH000 5 292 MHz
16-bit Adder ARV -5 2ag MHz
B it Adder XC2I0m) -5 114 WHz
gid-hit Gountar YRVD00-5 114 MHz
gid-bit Accurnulstor XCEV1000 5 110 MHz
Muttiplier 18x18 (with Black RAM inputs) V1000 5. 1| MHz
Multiplier 18x1& (with Register inputs) XC2VH000 5] MHz
Memory
Black AAM
Single-Part 4095 % 4 bita are MHz
Single-Fort 2048 x & bits &7 MHz
Sirgla-Port 1024 18 bits i Mhz
Bingls-Part 512 % 26 bils 23 KHE
Dugl-Port A4 066 x 4 bits & Bl 1024 x 18 hits BT MHz
Duel-Port A:1024 % 18 bits & Bii024 x 18 bits 258 MHz
| Dual-Port 422045 % 8 bita & B: 512 x 85 bits 250 MHz
Dletributed AAM
Singla-Part 32 x 8-hit XC2YI0m0 -5 =7 MHz
Sirgle-Port B4 x 8-bit RC2VA00G -5 85 KHz
Singla-Port 128 ¥ &hit XCEVI000 5 e MHz
Dual-Port 16 x 8 XOEVI000 5 408 MHz
Dual-Port 82« 8 YO0 -5 n Mhz
Cual-Port 64 x 8 XE2Y000 -5 <2t) WHZ
Sitt Reglsters
185%bit SAL Mia KHz
256-bit BRL M MHz
FIFCe (Aeyac. In Blotk RAN]
1024 % 18-bit Read 2ra MHzZ
104 x 18-bit Wriks 172 MHz
FIFQa (Gyna. In SRL)
128 % B-hiit Mia MHZ
158 % 16-bit Nia MHz

64

APPENDIX G

Simulation result of adaptive noise cancellation system with simulink

_ FIR filter (order: with NLMS

Figure G.1: Input signal, interfered signal and output signal of adaptive noise
cancellation system with NLMS algorithm and 25 orders FIR filter.
IIR filter (order: 25) with NLMS

Figure G.2; Iut ignal, interfered signal and outpt signal of adaptive noise
cancellation system with NLMS algorithm and 25 orders IIR filter.

65

Figure G.3: signal, interfered signal and output signal of adaptive noise
cancellation system with NLMS algorithm and 10 orders IIR filter.

FIR filter (order: 25) with LMS

2 S P

Figure G.4: Input signal, interfered signal and output signal of adaptive noise
cancellation system with LMS algorithm and 25 orders FIR filter.

66

IR filter (order: 25) with LMS

...

...

Figure G.5: Inpu sgnal, interfered signal and output signal of adaptive noise
cancellation system with LMS algorithm and 25 orders [IR filter.

IR filter (order: 10) with LMS

e

Figure G.6: Input signal, interfered signal and output “ ignal adaptive noise
cancellation system with LMS algorithm and 10 orders IR filter.

67

FIR filter (order: 25) with RLS

..

Figure G.7: signal, interfered signal and output signal of adaptive noise
cancellation system with RLS algorithm and 25 orders FIR filter.

IIR filter (order: 25) with RLS

...

Figure G.8: nput signal, interfered signal and output sigal of adaptive noise
cancellation system with RLS algorithm and 25 orders IIR filter.

68

IIR filter (order: 10) with RLS

Figure G.9:Input signal, interfered signal and output signal of adaptive noise
cancellation system with RLS algorithm and 10 orders IIR filter.

69

