
IMPLEMENTATION OF NOISE CANCELLATION

WITH

HARDWARE DESCRIPTION LANGUAGE

By

LEE KUANG SUN

FINAL PROJECT REPORT

Submittedto the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2006

by

Lee Kuang Sun

n



Approved:

Mr. Lo

Project Supervisor

CERTIFICATION OF APPROVAL

IMPLEMENTATION OF NOISE CANCELLATION

WITH

HARDWARE DESCRIPTION LANGUAGE

by

Lee Kuans Sun

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2006

in



CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements, and

that the original work contained herein have not been undertaken or done by unspecified

sources or persons.

^Jfljm^M .
Lee Kuang Sun

IV



ABSTRACT

The objective of this project is to implement noise cancellation technique on an FPGA

using Hardware Description Language. The performance of several adaptive algorithms is

compared to determine the desirable algorithm used for adaptive noise cancellation

system. The project will focus on the implementation of adaptive filter with least-mean-

squares (LMS) algorithm or normalized least-mean-squares (NLMS) algorithm to cancel

acoustic noises. This noise consists of extraneous or unwanted waveforms that can

interfere with communication. Due to the simplicity and effectiveness of adaptive noise

cancellation technique, it is used to remove the noise component from the desired signal.

The project is divided into four main parts: research, Matlab simulation, ModelSim

simulation and hardware implementation. The project starts with research on several noise

cancellation techniques, and then with Matlab code, Simulink and FDA tool, the adaptive

noise cancellation system is designed with the implementation of the LMS algorithm,

NLMS algorithm and recursive-least-square algorithm to remove the interference noise.

By using the Matlab code and Simulink, the noise that interfered with a sinusoidal signal

and a record of music can be removed. The original signal in turns can be retrieved from

the noise corrupted signal by changing the coefficient of the filter. Since filter is the

important component in adaptive filtering process, the filter is designed first before adding

adaptive algorithm. A Finite Impulse Response (FIR) filter is designed and the desired

result of functional simulation and timing simulation is obtained through ModelSim and

Integrated Software Environment (ISE) software and FPGA implementation. Finally the

adaptive algorithm is added to the filter, and implemented in the FPGA. The noise is

greatly reduced in Matlab simulation, functional simulation and timing simulation. Hence

the results of this project show that noise cancellation with adaptive filter is feasible.
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CHAPTER 1

INTRODUCTION

1.1 Background Study

Noise means unwanted sound commonly interferes with normal hearing. But in

electronics, noise can refer to the electronic signal corresponding to acoustic noise

in an audio system or the electronic signal corresponding to the noise commonly

seen as 'snow' on a degraded television or video image. In signal processing or

computing it can be considered data without meaning; that is, data that is not

being used to transmit a signal, but is simplyproduced as an unwanted by-product

of other activities.

Noise cancellation is a method for reducing or cancelling out undesirable sound. It

is often called Active Noise Cancellation because the electronics involved actively

cause the noise reduction in real time. One of the popular methods used in noise

cancellation is adaptive noise cancellation. Adaptive noise canceling is an

approach to reduce noise based on reference noise signals. It is used in

communication systems that are contained on a single silicon chip, where real

time processing is required.

This adaptive noise cancellation can be implemented in the Field Programmable

Gate Array (FPGA) with Hardware Description Language (HDL). HDL is a

textual description of a system or circuitry. It allows the expression of the

concepts that previously could not be expressed by manual notations, such as

Algorithm State Machine (ASM) notation and circuit diagram [1].



1.2 Problem Statement

Noise consists of extraneous or unwanted waveforms that can interfere with

communication. It is most often associated with irritating unwanted signals.

Another form of noise is electronic noise that can interfere with electromagnetic

communication. There are methods to suppress or reduce the noise. However the

conventional method such as wearing special earphone with simple filtering

process is not as effective as adaptive noise cancellation, which uses the adaptive

filter with least-mean-squares (LMS) algorithm to remove the noise component

from the desired signal [2].

Moreover the implementation of this noise cancellation can be done by using the

Hardware Description Language (Verilog or VHDL) to program into an FPGA as

demonstrated in [5]. The FPGA maintains the high specificity of the Application

Specific Integrated Circuit (ASIC) while avoiding its high development cost and

its inability to accommodate design modifications after production. Highly

adaptable and design-flexible, FPGAs provide optimal device utilization through

conservation of board space and system power-important advantages not available

with many stand-alone Digital Signal Processing (DSP) chips [22].

1.3 Objective

The objective of this project is to implement adaptive noise cancellation in FPGA

with the Hardware Description Language (Verilog). The performance of several

algorithms used in adaptive filter is compared to determine the suitable algorithm

used for real time application. These algorithms include least-mean-squares

(LMS), normalized least-mean-squares (NLMS) and recursive-least-squares

(RLS) [3]. The project may focus on the implementation of adaptive filter with

least-mean-squares (LMS) algorithm to cancel noise, since it is theoretically less

involved in mathematics calculation. Besides that, the performance of finite

impulse response filter (FIR) and infinite impulse response filter (IIR) in

implementation of adaptive filter is compared to determine the suitable filter,

which can work well with the algorithms of adaptive filter.



1.4 Scope of Study

This noise cancellation technique can be used in hearing aids, telephones and

other communication devices. The algorithm of adaptive filter is commonly

implemented to cancel the noise of engine in the aeroplane or ship. In addition, the

adaptive filter is also utilized in image processing to produce a clearer image.

This project is started with the Matlab simulation to implement cancellation of

noise in a single sinusoidal signal, and cancellation of noise that is interfering with

a song or recorded sound. From the result of Matlab simulation, the suitable

algorithm and filter is selected to implement the adaptive filter used for the noise

cancellation.

The adaptive filter design in the Matlab is developed with the Verilog language.

This covers the design of basic FIR filter with limited number of input and output

pins. Then the algorithm of adaptive filter is implemented to the FIR filter, which

continuously updates the weight (coefficient) of the filter. The design is tested

with the functional simulation and timing simulation before implemented on an

FPGA.

1.5 Organization of Report

The report begins with the overview of the noise, noise cancellation techniques,

Hardware Description Language and project objectives and scope of study as

mentioned above. Next, the reader is introduced to the noise cancellation

techniques, algorithms of adaptive filter, Verilog, FPGA performance and method

of multiplication. The report is followed by two main themes, the methodology

section, and result and discussion section. The methodology covers research,

Matlab simulation, ModelSim simulation and hardware implementation. The

results of simulations are discussed subsequently. Finally, several

recommendations for adaptive filter implementation are given after the

conclusion.



CHAPTER 2

LITERATURE REVIEW AND THEORY

This chapter includes several noise cancellation techniques, adaptive filtering,

adaptive algorithm, and the comparison betweenDSP processorwith FPGA.

2.1 Active Noise Control

Active noise control (ANC) destructs interference of propagating acoustic waves.

The acoustic wave interference can be controlled to produce zone of quietness by

using the DSP devices to design and implement digital ANC systems that operate

in real-time. The most practical ANC systems are using adaptive filtering

techniques, which allow the systemto adaptively model the acoustic paths [2].

The inherent filter inside the active noise controller can either be a finite impulse

response filter (FIR) or an infinite impulse response filter (IIR). There are

advantages and disadvantages for each type of filter in this application. FIR filter

are stable and the filter coefficients are easier to handle compared with the IIR

filters as FIR filter uses the forward paths only. But the order of FIR filter required

is much higher compared to the IIR filter with similar spectra characteristics. On

the other hand, an IIR filter involves both feedforward and feedback paths. The

presence of the feedback means that portion of the filter output and possibly other

internal variables in the filter are fed back to the input. This will cause it to be

unstable if the filter is not designed properly [3].

2.2 Adaptive Filtering

The goal of any filter is to extract useful information from noisy data. Whereas a

normal filter is designed in advance with knowledge of the statistics of both the

signal and the unwanted noise, the adaptive filter continuously adjusts to a

changing environment through the use of least-mean-squares (LMS) algorithm,



normalized-least-mean-squares (NLMS) algorithm or recursive recursive-least-

squares (RLS) algorithm. The filter weights are usually adapted or updated using

these algorithms. This type of algorithm basically attempts to minimize the mean

of the error signal squared. This is useful when the statistics of the signals are not

known beforehand.

According to S. Hakyin [3], adaptive filter design can be optimized by minimizing

a cost function by using Mean-square value of the estimation error. In particular,

the mean-square-error criterion results in second-order cost function dependence

on the unknown coefficients in the impulse response of the filter. Moreover, the

cost function has a distinct minimum that uniquely defines the optimum statistical

design of the filter.

The essence of the filtering problem is summarised with the following statement:

Design a linear discrete-time filter whose output, y (n), provides an estimate of a

desired response, d (n), given a set of input samples, u (0), u (1),..., such that the

mean-square value of the estimation error, e (n), defined as the difference between

the desired response, d (n), and the actual response, y (n), is minimized [3].

The mathematical solution is developed to this statistical optimization problem by

following the principle of orthogonality.

2.3 Principle of Orthogonality

Input

«(0),«(1).

Linear discrete-time Filter

G)o,G)^C02

Output

£

Desired

Response
d(n)

t

+

Estimation Error

e(n)

Figure 2.1: Block diagram for the adaptive filtering [3].



As shown in figure 2.1 from S. Hakyin [3], the filter input is denoted by the time

series u (0), u (1), u (2),..., and the impulse response of the filter is denoted by w0,

w i, W2,..., both of which are assumed to have complex values and infinite

duration. The filter output at a discrete time n is defined by the linear convolution

sum

y{n) =^G)*ki((n-k), n= 0, 1, 2,... (1)
k=0

where the asterisk denotes complex conjugation. Note that, in complex

terminology, the term m\u{n- k)represents the scalar version of an inner product

of the filter coefficient wk and the filter input u(n - k). Figure 2.2 illustrates the

steps involved in computing the linear discrete-time form of convolution

described in equation (1) for real data.

Wl

\
fx

\
\

L SE-

0 1

W

u(n-k)

_L
-2-1012 3

^L. L

wku(n-k)

s.

(b)

Filter output y(n) equals
the sum of these samples

1 2 3

Figure 2.2: Steps involved in computing the linear discrete-time form of

convolution

(Source: S. Hakyin, 2002. Adaptive Filter Theory. PrenticeHall, Inc.)



From S. Hakyin [3], the purpose of the filter in figure 2.1 is to produce an estimate

of the desired response, d (n). It is assumed that the filter input and the desired

response are single realizations of jointly wide-sense stationary stochastic

processes, both with zero mean. If the means are nonzero, simply subtract them

from the input, u (n), and the desired response, d (n), before filtering. The

estimation of d (n) is naturally accompanied by an error, which is defined by the

difference

e (n) = d (n)-y (n) (2)

The estimation error, e(n), is the sample value of a random variable. To optimize

the filter design, the mean-square value of e(n) should be minimized. Thus the

cost function as the mean-square error

J = E[e(n)e*(n)] (3a)

J = E[|e(n)|2] (3b)

where E denotes the statistical expectation operator. The requirement is therefore

to determine the operating conditions under which J attains its minimum value.

This error signal is used to incrementally adjust the filter's weights for the next

time instant.

Several algorithms exist for the weight adjustment, such as the Least-Mean-

Square (LMS) and the Recursive-Least-Squares (RLS) algorithms. The choice of

training algorithm is dependent upon needed convergence time and the

computational complexity, as statistics of the operating environment.

There are four basic classes of applications for adaptive filters, which include

identification, inverse modeling, prediction, and interference cancellation. Figure

2.3 shows one of the adaptive filtering applications, which is noise cancellation.
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d(n)

Reference

input
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/
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/_
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System output

Figure 2.3: Adaptive filtering on noise cancellation application.
(Source: S. Hakyin, 2002. Adaptive Filter Theory. Prentice Hall, Inc.)

An example of adaptive noise cancellation from Matlab [4] is removing the engine

noise of airplane from the pilot voice signal. It is clearly shown that adaptive noise

cancellation generally does a better job than a classical filtering because the noise

is subtracted rather than filtered.

2.4 Adaptive Algorithms

There are numerous methods for performing weight update of an adaptive filter.

These include Wiener filter, method of steepest descent, least-mean-square

algorithm, recursive-least-squares algorithm and the Kalman filter [3]. The

operating environment, signals of interest, convergence time and computation

power are the factors considered in deciding the use of algorithm. However for

this project, the performance of adaptive algorithms used in adaptive filter is

compared before implemented in FPGA, this is to determine the suitable

algorithm used for real time application.

2.5 Least-Mean-Square Algorithm

The least-mean-square (LMS) algorithm is similar to the method of steepest-

descent in that it adapts the weights by iteratively approaching the Minimum

Square Error (MSE). Widrow and Hoff invented this technique in 1960 to train

neural networks. The key is that instead of calculating the gradient at every time

step, the LMS algorithm uses a rough approximation to the gradient.



The algorithm used to estimates the filter weights, or coefficients, minimize the

error, e(n), between the output signal, y(n) and the desired signal, d(n). The

algorithm is defined by [3] for the equations (4), (5) and (6).

e(n) = d(n) - w (n)u(n)

w(n+l) = w(n) + juu(n)e*(n)

The description of the variables is shown in table below

(4)

(5)

Variable Description

e(n) The estimation error at time n

d(n) Desired response at time n

u(n) M-by-1 tap-input vector at time n, [u(n), u(n-l),....,u(n-

M+1)]T

w(n) Tap-weight vector at time n

w(n+l) Estimate of tap-weight vector at time n+1

M The adaptation step size

Table 2.1: Description of variables in LMS algorithm equations.

As with the steepest-descent algorithm, it can be shown to converge for values of

jo, less than the reciprocal of Amax, but Xmax may be time-varying, and to avoid

computing it another criterion can be used [3]. This is

0<ju<
MS.

(6)

where M is the number of filter taps and Smax is the maximum value of the power

spectral density of the tap inputs u.

The LMS algorithm is most widely implemented in practice due to its good

performance in real time applications. The number of operations involved for an

N-tap filter only are 2*N multiplications and N additions per coefficient update

[3].



2.6 Normalized Least-Mean-Square (NLMS) Algorithm

As mentioned in the LMS algorithm, the tap-weight of the filter is adjusted as

shown in equation (4) and (5). However the adjustment is proportional to the tap-

input vector, u (n). As stated by S. Hakyin [3], the LMS filter will suffers from a

gradient noise amplification problem when u (n) is large. Therefore the

normalized LMS filter is used to overcome this problem. The different between

the LMS and NLMS is the product vector u (n) e* (n) is normalized with respect

to the squared Euclidean norm of the tap-input vector, u (n) as shown in equation

(7).

w(n +l) = w(n) + ^—Tu(n)e*(n) (7)
|| u (n) ||

2.7 Recursive Least-Squares (RLS) Algorithm

The recursive-least-squares (RLS) algorithm is developed based on the least

squares method [3]. The least-squares method is a mathematical procedure for

finding the best fitting curve to a given set of data points. This is done by

minimizing the sum of the squares of the offsets of the points from the curve. The

summary of RLS algorithm is shown in the equation (8), (9), (10), (11) and table

2.2.

m=_ nn-mn)
A+ uH(n)P(n-\)u(n) (8)

e(n) =d(n)-wT(n)u(n) ^

w(n) = w(n) +k(n)e *(n) H0)

P(n) = X-xP(n-\)-lAk{n)uT (n)P(n -1) (11)

10



The description of the variables is shown in table below

Variable Description

k(n) The gain vector at time n

P(n) The inverse correlation matrix at time n

X Exponential weighting factor

e(n) The estimation error at time n

d(n) Desired response at time n

u(n) M-by-1 tap-input vector at time n, [u(n), u(n-1),....,u(n-

M+1)]T

w(n) Tap-weight vector at time n

w(n+l) Estimate of tap-weight vector at time n+1

Table 2.2: Description of variables in RLS algorithm equations.

2.8 Feasibility of Fixed-Point Transversal Adaptive Filter in FPGA.

According to Andrew [5], the adaptive algorithm, namely the LMS algorithm, can

be implemented based on fixed-point arithmetic in FPGA. Transversal filters have

fixed weights and the output of the filters is the convolution of the taps and the

filter coefficients. Transversal adaptive filters need an appropriate algorithm to

update the filter coefficients and are widely used in the communication industry,

as well as in applications such as echo noise cancellation, adaptive beamforming,

and channel equalization.

The adaptive algorithm can be implemented in FPGA by using sufficient bit

lengthto represent tap-weights in adaptive filter. However without performing the

arithmetic in floating-points, stalling may arise in fixed-point adaptation process.

This cause the tap-weight stop updated in the arithmetic calculation. But it can be

avoided by choosing suitable bit length according to the filter coefficients and

study the nature of experiment carefully [3].

11



2.9 Comparison of DSP processor with FPGA

Nowadays FPGA is becoming a more popular choice for designer to implement

flexible and more cost-effective solution with shorter time. There are several

companies produce the high performance FPGAs, which have more advantages

over DSP processor.

According to Brian Jentz [6], FPGAs have evolved to better support DSP

applications, offering the flexibility to implement custom interfaces and

peripherals and the capability to scale algorithm complexity and channels as

feature requirements grow and change. It provides more than 180,000 Logic

Elements (LEs) and 384 18 x 18 multipliers. Enabling Altera FPGA devices to

provide lOx the DSP performance per dollar compared to the industry's most

widely used DSP processor solutions. To ease comparison, the performance of

DSP processor and several FPGA devices [7], [8], [9] are compared in the table

2.3. Obviously Stratix II FPGA from Altera provide the greatest performance with

clock speed 450 MHz and 346 Gillion of Multiply Accumulates per second

(GMAs).

Type of Device Device Name Clock Speed (MHz) GMACs

DSP TIDSP 1000 4

FPGA ECP-DSP20 250 7

Virtex-4SX55 500 256

Stratix II 450 346

Table 2.3: Performanee comparison betiveen DSP processor anc1 FPGA.

For the current trends, manufacturers include complete microprocessors within the

FPGA fabric. This mix of hardware and embedded software on a single chip is

ideal for fast filter structures with arithmetic intensive adaptive algorithms.

12



2.10 Other noise cancellation techniques

Nonlinear blind source separation can be used as a technique for noise

cancellation also. Blind source separation aims to recover unobservable

independent sources (or signal) from multiple observed data masked by linear or

nonlinear mixing. It can be done by using a Radial Basis Function (RBF) network

with neural-network approach. Two algorithms are used to develop this RBF

network, stochastic gradient descent method and unsupervised clustering method

[10].

In addition, adaptive noise cancelling can be implemented based on independent

component analysis (ICA). The ICA-based algorithm can utilize higher order

statistics than using least-mean-squares (LMS) algorithm. It is derived to improve

convergence rates [11].

2.11 HDL

Hardware description language (HDL) is similar to programming language, which

is used to describe digital hardware. The logic diagram, digital information and

operation of digital system are represented in textual forms [12]. Therefore it can

be read by the human and computer. The HDL processing is used for the

simulation and synthesis purpose. A test bench is used to perform the functionality

simulation and timing diagram. Hence the designer can correct the error and

predict how the designed hardware behave before it is fabricated. While synthesis

is the process of deriving a list of components and their interconnections (netlist)

from the model of a digital system described in HDL. The netlist can be used to

fabricate an integrated circuit or to layout a printed circuit board.

13



2.12 Verilog

Verilog is a general-purpose hardware description language (HDL) that is easy to

learn and easy to use. It is aimed at providing a functionally tested and a verified

design description for the target FPGA or ASIC. The functions of this language

are fulfilling the need of a design description and the need to verify the

functionality and timing constraint of the design [13]. The syntax used in Verilog

is similar to the C programming language. It allows different levels of abstraction

to be mixed in the same model. Thus the hardware model can be defined in terms

of switches gates, Register Transfer Level (RTL), or behavioral code [14].

2.13 FPGA

Field programmable gate array (FPGA) is a VLSI circuit that can be programmed

by HDL. A typical FPGA consists of an array of thousands or millions of logic

blocks, surrounded by programmable input and output blocks and connected

together via programmable interconnections [12]. The logic block consists of

look-up tables, multiplexers, gates, and flip-flops. The look-up table is a truth

table stored in a SRAM and provides the combinational circuit function for the

logic block. The advanced FPGA can consist of 18 bits x 18 bits multiplexers and

Configurable Logic Blocks (CLBs).

2.14 Multiplier

The block diagram of common binary multiplier is redraw from [12] as shown in

figure 2.4. The multiplicand is stored in the register B and multiplier is stored in

the register Q, and the partial product is formed in register A and stored in A and

Q. The data in the register A is added with register B by parallel adder. The value

of carry bit after the summation is stored in the C flip-flop. The P counter holds

the number of bits in the multiplier initially.
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Multiplicand Z=I if P=0

Register B Check for zero
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Control

logic\r

i
P counter

•

c out

Parallel adder
%

n *
Multiplier

1

,r Sura S (start)

o _• c
-+

Register A Register Q

4- A

Product

Figure 2.4; Block diagram of binary multiplier

(Source: M. Morris Mano, 2002. DigitalDesign. Prentice Hall, Inc.)

It is decremented after the formation of each partial product. The product is

formed in the combination of register A and Q when the counter reaches zero, and

the process stops. When S=l, the control logic start performs the multiplication.

The sum of A and B is stored back into A, and the output carry from the addition

is transferred to C. This bit is shifted to the MSB of register A after the

summation, while the LSB of register A is shifted to the first bit of register Q, and

0 is shifted into C. After the shift right operation, the LSB of register Q (Q0) is

send to the control logic. This bit is used to determine whether to add or not.

However this type of multiplication architecture is not suitable for multiplication

of signed number in the filter design.
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2.15 Multiplication of Signed Binary Number

Booth's algorithm and Bit-Pair Encoding can be used for the multiplication of

signed value [15]. If the signed number for multiplication has a negative value, the

multiplication result is not the same as the normal calculation with calculator. For

example, -7x7 = -49 can be implemented step by step with serial multiplier [16]

as calculation below:

1001 (-7)

0111 (7)

• 11001
Sign extension lQQl

1101011

11011

11001111 (-49)

Below are another two examples with multiplication of two 16 bits numbers, one

is involving negative value (fOOl x 0005) and another one with positive value only

(100a x 0005).

f001x0005:

1111 0000 0000 0001 (fOOl)

loi (m5)

nun oooooooooooi

+ 1111 oooooooooooi

mi mi nn nil ion 000000000101 (ffffboos)

100ax0005:

0001 0000 0000 1010 (100a)

101 (0005)

000001 0000 0000 1010

+0001 0000 0000 1010

0000 0000 0000 0000 0101 0000 0011 0010 (00005032)
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2.16 Multiplication of Fractions Number

The fixed-point integer value is converted to the fixed-point fractional value by

normalization, which divides an N-bit 2s complement word with 2N-1. The

normalize value for a 2s complement word B with N bits is N (B) = -t>N-i 2° +

bN-2 2'1 + ... + bi 2"(N"2) + b0 2"(N"1). [15] For the filter design, the input and output

data are represented in fixed-point fractional number. The data is represented with

16 bits, with the first bit as the integer number and the following bits as fractional

number. Therefore it can represent number ranges from -1 to 1.

To ease understanding, figure 2.5 shows how to represent decimal value

-0.02130126953125 in fractional number. The decimal value can be determined

by adding up all the value according to equation shown in [15]. N (B) = -2° +2"1 +

2"2 + 2"3 + 2"4 + 2"5 + T7 + 2"9 + 2"13 + 2'14 = -0.02130126953125. This value is

represented in hexadecimal format as fd46, which is one of the coefficients of FIR

filter. The method to perform multiplication of fraction number is same as

multiplication of signed number as discussed in section above. But it is important

to know that the number for the calculation is represented with how many integer

bits and fraction bits.

-2° . 2"

1

L-rJ *

integer

T2 J3 2-4 T5 T6 T1 2"8 T9 2"10 2"11 2"12 2"13 2"14 2"15

1 1 1 0 1 10 0 0 11

fraction

Figure 2.5: Representation of decimal value -0.02130126953125 in fractional

number
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CHAPTER 3

METHODOLOGY/PROJECT WORK

The methodology of the project can be divided into four main parts, which include

research, Matlab simulation, ModelSim simulation and hardware implementation

with FPGA as shown in figure 3.1.

Research

- algorithms of adaptive filter
- hardware description language (HDL)

- ModelSim and Integrated Software Environment (ISE)
-FPGA

Matlab Simulation

- design noise cancellation system
- compare the performanceof FIR filter with IIR filter

compare the performance of different algorithms for adaptive filter

ModelSim Simulation

- simulation for FIR filter design
- simulation for adaptive filter design

Hardware Implementation
synthesis of the adaptive filter design into FPGA

Figure 3.1: Methodology of adaptive filter design

3.1 Research:

The project starts with research on several noise cancellation techniques, which

cover the electrical noise, acoustic noise and other noises occur in the

communication system. The techniques used including shielding, grounding and

twisting of wire for electrical noise. While for the acoustic noise and other noises

in communication, the techniques used are active noise control and adaptive
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filtering. Furthermore the research also includes the algorithms used in adaptive

filter, Hardware Description Language (HDL), simulation software of HDL,

FPGA program software and the advantages of using FPGA over DSP processor.

Most of the research was on adaptive filter that use the Least-Mean-Square

algorithm for noise cancellation.

3.2 Matlab Simulation:

This section will describes how Matlab Simulink and Filter Design Analysis

(FDA) tools are used to analysis the performance of the filter design and to

implement adaptive filter. These include performance comparison between the

direct form FIR filter and direct form IIR filter in designing adaptive filter with

different algorithms (LMS, NLMS and RLS). Furthermore adaptive noise

cancellation system is designed and simulated in the Simulink.

3.2.1 Filter and Algorithm Determination

In the adaptive noise cancellation system, the selection of the filter and algorithm

will affect the overall performance of the system. Therefore the combination of

the FIR filter or IIR filter with LMS, NLMS or RLS is tested in the Simulink.

Howeverbefore starting design, it is necessary to select the proper input to test the

system, using the Filter Design Analysis (FDA) tool to design filter, and

implement the algorithms used in adaptive filter.

For better comparison, the output waveform and sound from the adaptive noise

cancellation system is observed. Figure 3.2 shows the Simulink example for

waveform observation and figure 3.3 for sound observation. The recorded music is

used as original signal to the system, with a sampling frequency of 8000 Hz. The

chirp signal is chosen as a noise to test this noise cancellation system because

chirp signal produces noise that cover large range of frequency, as time increase,

its frequency also increase, therefore it is suitable for the above purpose. The

Matlab code in APPENDIX B shows how to generate the input signal and chirp

noise. In Matlab code, WAVRECORD (N, FS, CH) records N audio samples at FS
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Hertz from CH number of input channels from the windows WAVE audio device.

While y=chirp(t,fo/ti,fi, 'quadratic', phi, ' convex') generates samples of

a quadratic swept-frequency signal whose spectrogram is a parabola with its

convexity in the positive frequency axis.

Adaptive Noise Cancellation

From Wave File

music.wawOuc

8000Hz/lCh/16b)
Input Signal

Music

From Wave File

chirp.wavQut

8000Hz/lCh/i6b)

Noise

Enable

FDATool T

Hoise Filter

•*-Q

^

1 ^V
+~Q

Reset

Ilipirt

Des iced

Ada.p'b

Reset

LHS Tilter

Info

Output

Error Signal

Time

Scop*

Filter

Taps

User

lilni..
FFT

Freq
Response

Figure 3.2: Simulink for waveform observation with FIR filter and LMS algorithm

From Have File

music.uavOut

(8000Hs/lCh/16b)

Husic

Input Signal

AM FDATool

-*€>Random

Source

Enable

Noise Filter

•*-o

*~

1—^V
-**-©

Reset

Adaptive Noise Cancellation with LMS Algorithm

Input

Desired

Adapt

Rtstt

LHS Filter

Info

Oticput;

Bror signall

We=

I)
To XOavt

Device

Filter

Taps

User

iImI.

FFT

Freq

Response

Figure 3.3: Simulink for sound observation with FIR filter and LMS algorithm
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The direct form FIR filter and direct form IIR filter can be easily designed with

FDA tool in Matlab as figure 3.4 shown. Both filters are of 25 orders with cut off

frequency approximate at 2000 Hz. Since IIR filter can use fewer orders to get the

similar spectra characteristics as FIR filter, the comparison also include the 10

orders IIR filter.

,— Current Filter Information-

Structure: Direct-Form FIR

Order: 25

Stable: Yes

Source: Designed

Store niter

Fitter Manager,

,_ MagnitudeResponse (dB)

SO

0

B

3

I -SO
I

S -100 h

-ISO
0.2 0.3 0.4 • 0.5 0.6 0.7 0.1

Normalized Frequency (xn rad/sample)

: The attenuation at cutoff

frequencies is fixed at 6 dB

(half the passband gain)

®

o

Of

Lowpass zl 0 Specifyorder: 25

Minimum orde-r

Units: |Normallzed(0to1) ' |
Highpass

andpass

:3

Fs: J4S000 |

wc: 0.5 |
Q ScalePassband

o Differentiator

Window: [Hamming
function Nans; 1

Parameter. JO

J
Oi ? Butterworth zl
<i>FIR Window :i |' View t

Figure 3.4: Filter design with FDA tool

Besides that, the adaptive noise cancellation system can be implemented with the

Matlab code. It is assumed that two microphones are used, a primary microphone

picks up the noisy input signal, while a secondary microphone receives noise that

is uncorrected to the information of an original signal (0.055Hz sine wave), but is

correlated to the noise picked up by the primary microphone. The Matlab code in

APPENDIX C shows how the Adaptive LMS filter extract useful information

from a noisy signal.

3.3 ModelSim Simulation

ModelSim XE-III is used for the Hardware Description Language (HDL)

simulation of adaptive filter design in this project. ModelSim is a complete HDL

simulation environment that assists to verify the HDL source code and functional
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and timing models of the designs. Each of the ModelSim tools includes a

complete HDL simulation and debugging environment providing full VHDL and

Verilog language coverage, a source code viewer and editor, waveform viewer,

design structure browser, list window, and a host of other features designed to

enhance productivity.

After the result of Matlab simulation is satisfied with the objective of the project,

the Verilog code for the design will be written and simulated with the ModelSim

before implemented with Xilinx Integrated Software Environment (ISE). The

general steps for ModelSim simulation are summarized as below.

1.) Collating design file and mapping libraries

2.) Compiling the design with vlog, which compiles Verilog source code into

a specified working library

3.) Loading the design for simulation, VSIM simulator is invoked.

4.) Simulating the design and viewing the waveform of the design.

Since the FIR filter is the most important part in implementing adaptive noise

cancellation, the HDL code for the filter should be completed before

implementing the LMS algorithm on it. Figure 3.5 is the FIR filter structure for a

10 order direct-form filter, which consists of 11 coefficients, 11 adder and 10

delays. Blackman window is chosen for the filter design. This is because it

provides more attenuation at the stopband frequency if compared with Hamming

window and Hann window. The Verilog code for a 10 order direct-form FIR filter

is shown in APPENDIX D.
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Input o-*^.Output

Figure 3.5: 10 orders FIR filter structure generated from Matlab

The flow of the filter design in Verilog coding is shown as figure 3.6. The first

step is defines the filter coefficients get from FDA tools and declares the required

scalars or vectors for input, output and arithmetic computation. If the reset is in

logic HIGH, the input and output data of filter is set to zero. Otherwise the input

data in the testbench is loaded to the filter. For every positive edge of the clock

signal, the input data is shifted one by one until the end of the data. This

constructs the delay part of the filter. After that, the output data from the delay is

multiplied with the coefficients of the filter. The multiplication results are

summed to produce an output data. In every summation, program examines the

overflow bit of data. If the data is overflow after summation, the data is saturated
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to produce the data that is in the range of defined fixed-point value. Then it is

round to the 16 bits data before assign to the output port.

start

Define filter

coefficients

Load input data,
u(n)

Yes

Multiply data with filter
coefficients

Summation of multiplication
results

Round the data

to 16 bits

Assign data to
filter output

£

Yes

Clear input and
output of filter

Saturate the data

Figure 3.6: Flow chart of filter design in Verilog
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The flow chart in figure 3.6 is extended for the implementation of the adaptive

algorithm. The adaptive filter design is illustrated in figure 3.7. The desired data in

the testbench is loaded and the error is calculated by using equation (4) that had

mentioned before. Then equation (5) is used to calculate and update the weight of

adaptive filter. The adaptive filter is continuously calculating the error and updates

the weight until end of data. Please refer to the APPENDIX E for the coding of

adaptive filter.

Load the desired

data, d(n)

1 '

Calculate the error

E(n)=d(n)-u(n)

1

Update the filter
weight

/'Endo "uipuK^ 1So

data

Yes

Finish

Figure 3.7: Extended flow chart of adaptive filter design
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3.4 Hardware Implementation

3.4.1 Tools used

ISE software

The Integrated Software Environment (ISE) is the Xilinx design software for logic

design environment. It is an easy-to-use software that provides built-in tools and

wizards for making I/O assignment, power analysis, timing-driven design closure,

and high speed HDL simulation. It supports all Xilinx leading FPGA and

Complex Programmable Logic Device (CPLD), including all Virtex-4 multi-

platform FPGAs.

Virtex-II FPGA

The Virtex-II family is a platform FPGA developed for high performance, low to

high-density designs utilizing IP cores and customized modules [17]. It delivers

complete solutions for telecommunication, wireless, networking, video, and DSP

applications. Virtex-II devices are user-programmable gate arrays with various

configurable elements, which comprised of input/output blocks (IOBs) and

internalconfigurable logic blocks (CLBs). In addition, its dedicated 18-bitx 18-bit

multiplier blocks arithmetic functions, which assist the implementation of

adaptive filter with complex calculation.

Virtex-II Development Kit

Figure 3.8: Virtex-II Development Kit
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The filter design is implemented with the Virtex-II Development Kit shown in

figure 3.8. This reference board provides a development platform for prototyping

and verifying Virtex-II based designs [18]. With utilization of 1M gate Virtex-II

XC2V1000-4FG256C device along with its supporting I/O devices, it can be used

to prototype high-performance memory and I/O interfaces such as complete high-

performance low voltage differential signaling (LVDS) and high speed DDR

memory interface. Therefore it is chosen for the implementation of the adaptive

filter.

Xilinx XC18V512 or XC18V04 ISP PROM is utilized in this board. It allows the

design downloaded and verified in order to meet the final system-level design

requirements. In addition, the Joint Test Action Group (JTAG) connector of the

board can be used for direct configuration of the Virtex-II FPGA.

3.4.2 Design Flow

This section describes the procedures in hardware implementation of FIR filter

that had simulated successfully in the ModelSim. The general FPGA design stages

in [19] are used in FPGA implementation as shown in figure 3.9.

Design steps

Design entry

Creating &
editing

constraint

Design
synthesis

Design
implementation

Xilinx device

programming

Design verification

Design
simulation

Verification of

synthesis
-view RTL schematic

Verification of

implementation
- viewing placement
-viewing ultization in report
-timing closure
-view place & routed design
-timing simulation

Figure 3.9: General FPGA Design Stages.
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In design specification stage, the design is transfer to HDL with Verilog. Then the

functionality of written code is simulated. A test bench is needed to provide the

necessary input or stimulus to the filter. The output of the filter will be shown as

digital waveform. After the design has been successfully analyzed, the next step is

to translate the design into gates and optimize it for the target architecture, which

called synthesis phase. The design will be implemented by using Virtex-II FPGA

from Xilinc. The performance of the FPGA is shown in the APPENDIX F.

3.4.3 Design Entry

This is the first step in the hardware implementation. The source file is created

with Verilog language based on the design objective. Type of devices, package,

top-level module type, synthesis tool and simulator is specified as below:

Device Family

Device

Package

Speed Grade

Top-Level Module Type

Synthesis Tool

Simulator

3.4.4 Design Simulation

Virtex II

xc2vl000

ft256

-4

HDL

XST

ISE Simulator (or ModelSim)

A test bench is needed to provide the necessary input or stimulus to stimulate the

filter module. It is used with a simulator to verify that the filter design meets both

behavioral and timing design requirements. By using ISE foundation, the design

can be simulated with ISE simulator or ModelSim simulator. However ModelSim

simulator is prefer because it allows the user to view the waveform in analog form

with analog interpolated function in format menu. The test bench can be created

by using waveform editor in ISE foundation or wrote by ourselves.
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3.4.5 Creating and Editing Timing and Area Constraints

ISE software allow user to specify the constraints to improve the design

performance. Timing constraints is used to assure that physical and timing

requirements are met. Timing constraints include period constraints for each clock

(PERIOD), setup times for each input (OFFSETJN), and clock-to-out constraints

for each output (OFFSET_OUT). The timing constraints can be entered using the

Create Timing Constraints process in Project Navigator.

In addition to timing constraints, physical constraints are added to filter

design, to associate certain pins on the device with specific inputs and outputs.

There are totally 16 input pins and 16 output pins for this filter design. Both

constraints processes have written into the User Constraints File (UCF) in the

project.

3.4.6 Design Synthesis and Implementation

After the design's behavior is verified with simulation, and added constraints, the

design is synthesized and implemented. Acording to the ISE Quick Tutorial

Version 7.1i [19], with Xilinx Synthesis Technology (XST) in ISE software, the

Verilog code of filter design is synthesized to create Xilinx-specific netlist files

known as NGC files, which consists of an Electronic Data Interchange File

(EDIF) with an associated Netlist Constraint File (NCF). The synthesized design

can be viewed as a schematic in the Register Transfer Level (RTL) Viewer. The

schematic view shows gates and elements independent of the targeted Xilinx

device.

The design implementation comprised of the following steps [19]:

1. Translate, which merges the incoming netlists and constraints into a Xilinx

design file

2. Map, which fits the design into the available resources on the target device

3. Place and Route, which places and routes the design to the timing

constraints
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3.4.7 Verification of the Implemented Design

After implementation is completed, the filter design is verified before

downloading to an FPGA. The steps include viewing of pin placement, viewing of

resource utilization in reports, timing closure, viewing of placed and routed design

and timing simulation.

Viewing Placement and Resource Utilization in Reports

Floorplanner is used to verify pinouts and placement of the filter design [19]. The

connection from the gates to output pins can be view by clicking on the desired

pin. The filter design information is check through summary reports, which was

created by ISE after each process is run.

Timing Closure

Timing closure is the process of working on design to ensure that it meets

necessary timing requirements. Timing analysis is run on filter design to verify

that timing constraints were met [19]. There should be no error in the timing

summary after analysis. If there were error, the previous timing setting should be

adjusted until no error is shown in timing summary.

Viewing the Placed and Routed Design

FPGA Editor is used to view the filter design on the FPGA device, as well as edit

the placement and routing with the FPGA Editor [19]. Figure 3.10 is the

placement and routing of an output pin.
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Figure 3.10: FPGA Editor - Detailed view of filter design for an output pin.

Timing Simulation (ISE Simulator)

Timing simulation is run to verify that the filter design meets the timing

requirement. This process generates a timing-annotated netlist from the

implemented design and simulates it [19]. The resulting simulation is displayed in

the Waveform Viewer. However these results look different from those saw in the

behavioral simulation. These results show timing delays.

3.4.8 Creating Configuration Data

The final phase in the software flow is to generate a bitstream and configure the

device. The bitstream is a binary encoded file that is the equivalent of the design

in a form that can be downloaded into the FPGA device. iMPACT is used to

configure the FPGA device [19].
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CHAPTER 4

RESULTS AND DISCUSSION

The results and discussion is divided to 3 sections: Matlab Simulation, ModelSim

Simulation and Hardware Implementation.

4.1 Matlab Simulation

This section includes the result and discussion for comparison on the performance

of the FIR filter and IIR filter with different algorithms, the output of adaptive

noise cancellation with Matlab code and some discussion with the results.

Through the Simulink simulation (figure 3.2 and figure 3.3), the performance of

filter output canbe compared with the graph and sound from the simulation. The

graph of filter output for the simulation in figure 3.2 is included in APPENDIX G,

and the results are summarized in table 4.1.

The results in table 4.1 show that RLS algorithm has better results than other two

algorithms when comparing the output of the filter in graphs, since it removes

most of the noises in shorter time. But for the output sound of the filter, NLMS

performs better. Incontrast, RLS isa bit lagging in producing output sound, which

means the output sound cannot be heard clearly and smoothly. This is because

more complex calculations are required withRLS algorithm.

While for the filter analysis, 10 orders IIR filter produces similar result as 25

orders FIR filter. However 25 orders IIR filter produces less desirable results,

more noise is associated with the output signal. Hence the orders of the filter must

be well-adjusted when using the adaptive algorithm.
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Algorithm Filter Order Filter output Audible outcome

NLMS FIR 25 • output almost same with
the input signal after
delay time 0.15 sec

• output sound heard
similar to the input
sound after 0.15 sec

IIR 25 • even after delay time
(0.2 sec), still got a little
noise

• output signal still got
audible noise after delay
time

10 • similar to FIR filter with

NLMS

* similar to FIR filter with

NLMS

LMS FIR 25 • output signal not same
as input signal, has little
noise.

• audible noise in the

output signal

IIR 25 • more noise than using
FIR filter

• can clearly hear the
noise, louder than using
FIR filter

10 • similar to FIR filter with

LMS

• similar to FIR filter with

LMS

RLS FIR 25 ♦ output signal almost
same as the input signal,
shorter delay time (0.1
sec) compared with the
NLMS

• output signal a bit
lagging due to more
complex calculation
compared with the LMS
and NLMS.

• audible noise in the

output signal
IIR 25 ♦ more noise than using

FIR filter with RLS

• output signal a bit
lagging due to more
complex calculation
compared with the LMS
and NLMS.

• Loud noise in output
signal

10 • similar to FIR filter with

RLS

• audible noise in the

output signal

Table 4.1: Summary of the observation from the adaptive noise cancellation system

Therefore NLMS algorithm and 10 orders IIR filter is desirable used for adaptive

noise cancellation. This is because with NLMS algorithm, more noise is reduced

and there is no lagging at the output sound. Besides that, with 10 orders IIR filter,
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there is less calculation compared with the 25 orders FIR filter for similar output

result.

On the other hand, an IIR filter may not be suitable for used in hardware

implementation. This is because the IIR filter in Matlab simulation is using

floating point precision for the coefficients of filter and input output port. When

implement in FPGA, the number of output is limited to 16 bits only. This causes

the round off errors at the output signal. Since IIR filter involves both feedforward

and feedback. That means the error at the filter output is fed back to the input, and

the error is accumulated in the system [15].

Adaptive Noise Cancellation System with Matlab Code

As mentioned in the methodology, the adaptive noise cancellation system can be

implemented with Matlab code also. With the Matlab code in APPENDIX C,

several graphs are generated to show the filter response, original signal, noisy

signal and output signal from the system. Figure 4.1 shows the frequency response

of the filter. When running the Matlab code, the filter will keep on changing its

coefficient value to minimise the error at the output.

1.5

-a
=s

'1 1
131

CO

0.5

Adaptive Filter Response

Required Filter Response

v:

0.2. .(..,.,0.4 .0-6;% ^ 0.8
Normalizp_!Ff8guericy (^rad/sa'mple)

Figure 4.1: Adaptive filter response
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Figure 4.2: The original signal, noise, desired signal and the error signal

From figure 4.2, you can see the original signal is a sinusoidal signal with

frequency 0.055Hz. While the noise pick up by the secondary microphone is a

white noise, which interferes with the sinusoidal signal. After passing through the

adaptive filter, the noise is subtracted from the signal.

4.2 ModelSim Simulation

4.2.1 FIR Filter

ModelSim can perform the functional simulation and timing simulation. The result

of functional simulation is discussed in this section, while timing simulation is

discussed in hardware implementation section. Through the ModelSim simulation

on the Verilog code of filter in APPENDIX D, the desired result is obtained.

Figure 4.3 shows the result of functional simulation for FIR filter.
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Figure 4,3: Result of functional simulation with ModelSim

From the figure 4.3, the input signal to the filter is a square wave. After the

filtering, the high frequency signal is removed and a sinusoidal signal is obtained.

However the output signal is not smooth due to quantization error and round off

enor. This is because when the filter is designed in fixed-point precision, 16 bits

are not sufficient to generate a smooth sinusoidal wave.

To distinguish between the fixed-point precision with double precision, a similar

filter with double precision is used to test its effect on the output. Figure 4.4 shows

the input and output of the filter, which created with Matlab code. Obviously the

output from the double precision filter is smootherbecause 64 bits produce better

precision than fixed-point precision filter.

0 . 10 , 20 - 30,w 40-, 50 J\ ,60 70

Figure 4.4: Input and output of the filter in Matlab
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Fixed-point Precision Effects

1 ft

The floating point precision can represents any number between +/- 9.223x 10

with a resolution of 1.08 x 10"19. However the fixed point precision can only

represents the number with smaller range, which depends on the number of bits

used to represent integer number and fraction number. The implementation of

floating point arithmetic in FPGA is possible [20], However only a small number

of floating point units can be used in an entire design, and must be shared between

processes. This does not take full advantage of the parallelization that is possible

with FPGAs. Therefore it is not efficient or realistic for implementing adaptive

algorithm in FPGA.

As a result, all calculation is mapped to fixed point number. Sixteen bits number is

used to represents the coefficient number, input and output data. However it

introduces some errors into the design as discussed below. [15]

1. Coefficient quantization error

This is due to representation of filter coefficients by a finite number of bits.

The coefficients generated from the Matlab are in 64 bits representation. For

example the coefficients of Blackman Window FIR filter are shown as figure

4.5. However the smallest resolution for a 16 bits number with 15 bits

fractions is 2"15. Therefore the coefficients are quantized to the decimal value

and hexadecimal value as shown in figure 4.6.

-0.00000000000000000088348741151764353

-0.00000000000000000078378323683281016

-0.021302373816999808

0.000000000000000009936189302595471

0.27031825904198076

0.49999999999999994

0.27031825904198076

0.000000000000000009936189302595471

-0.021302373816999808

-0.00000000000000000078378323683281016

-0.00000000000000000088348741151764353

Figure 4.5: The coefficients of filter in floating-point precision
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0 0000

0 0000

-0.02130 fd46

0 0000

0.27033 229a

0.5000 mmmm^ 4000

0.27033 229a

0 0000

-0.02130 fd46

0 0000

0 0000

Figure 4.6: The coefficients of filter in fixed-point precision

2. Overflow error

This is due to the addition of two large numbers of the same sign which

produces a result that exceeds permissible word length.

3. Round offerror

This is caused when the result of a multiplication is rounded to the nearest

discrete value or permissible word length. The result of multiplication in the

filter in 32 bits data, however the output data is limited to 16 bits, by

discarding the least significant 16 bits, round off error is introduced into the

data.

4.2.2 Adaptive filter

For the testing of adaptive filter designin the APPENDIX E, a step input is feed to

the filter. If the desired signal is set such that it is the same as the expected output

signal, the calculated error is zero as shown in figure 4.7 when implemented with

equation (4).

•^n_.nxLTTLTJi_ixL^^i_rL_LrLT_rL"LrL~LrLiJ

JM D2Z1IZM M3HM
M W20MT~WS3 1327S7 124. m

Figure 4.7: Output of filter with zero error.

38



For the implementation of equation (4) and (5), a pulse signal labelled as

iData_inf is noise. It is added to the step input to produce a 'Desired' signal as

shown in the figure 4.8. (Please refer back to figure 2.3 for clearer understanding)

The output of the filter is 'Data-out', which has the quantization error that is same

as the output of FIR filter in figure 4.3. Though the implementation of adaptive

filtering, the expected output of adaptive filter 'Error' is a step signal with noise

initially. After a few loops of weights update, the error should be reduced to

nearly zero. This means the pulse signal is subtracted from the 'Desired' signal.

As shown in figure 4.8, the error is large in 'Error' signal initially. After nearly

300 ns, the error is greatly reduced after the tap-weights of adaptive filter are

updated for some loops. However the error in this design is not reduced to zero.

This is caused by the effects of fixed-point precision, which including the

quantization error, overflow error and round off error as mentioned before. As a

result, the small error is repeated in the 'Error' signal, which is highlighted by the

dotted box as shown in figure 4.8.

^/IU0mJb/u_fiLlOm/clk unmiiiuiiininiiHiiniiiiiiiiiiniiiiiinii
$ /(if_1 Qm_tb/u_fir_1 Om/clk_enable

ii^ /fOGmJb/uJirJCWieset

0-£ yfiLlOmJb/uJrJOm/Datajn
n n _JL n _n n r r 1 1 i n

rj-^ /(irJOrnJb/uJirJOm/Data.oLJt
a j

_rui_ru

\ \

LTUin

a

*- L
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LTl
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run

A

JLT

-iTTi—'
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JLT

A

JLT

A

ULT1
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Mii 11111niii:1111
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111 f 1 1 ] i 111 11 1 n 11 i in il in Hi nil i II Ii

Bus

Figure 4.8: Output of adaptive filter with error

A lot of round off errors is introduced to the adaptive filter when implement the

LMS algorithm with equation (5). This equation involves two multiplications and

a summation in mathematic calculation. These multiplications will generate a bit

stream with 48 bits if it is multiplied directly. In addition, Virtex II FPGA only
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can provide 18 bits x 18 bits multiplications in hardware. Therefore the

multiplications are done in several stages before the summation.

Figure 4.9 shows part of the coding for implementation of equation (5) in the

algorithm of adaptive filter. The result of multiplication of equation (5) is stored in

the mumul. For updating the coefficients of adaptive filter, 16 MSB bits of

mumul is stored in the mumu2. Then mumul is used to update the weights of the

adaptive filter. This produces the result as shown in the figure 4.8.

multl = (Data in*error m);

tempi = multl"[31:16] ;
mumul = mu*tempi;
mumu2 = mumu1[31:16];

c[0] = c[0]+ mumu2;

c[l] = c[l]+ mumu2;

c[2] = c[2] + mumu2;

c[3] = c[3] + mumu2;

c[4] = c[4]+ mumu2;

c[5] = c[5] + mumu2;

c[6] = c[6]+ mumu2;

c[7] - c[7] + mumu2;

c[8] = c[8]+ mumu2;

c[9] = c[9]+ mumu2;

c[10] = c[10 + mumu2;

Figure 4.9: Verilog coding for implementation of equation (5)

4.3 Hardware Implementation

In this section, two important simulations performed are functional simulation and

timing simulation. Where functional simulation is done by running Simulate

Behaviour Model and timing simulation is by running Simulate Post-Place &

Route Verilog in the ModelSim Simulator of ISE. For the FIR filter and adaptive

filter design, the result of functional simulation is discussed previously in section

4.2 ModelSim Simulation, while the result of timing simulation is shown in figure

4.10 for FIR filter and in figure 4.11 for adaptive filter.
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Figure 4.10: Timing simulation result for FIR filter
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Figure 4.11: Timing simulation result for adaptive filter

The resulting simulation is displayed in the Waveform Viewer. The timing

simulation result for FIR filter and adaptive filter looks similar with the result of

behavioral simulation, however short timing delays caused by the hardware is

introduced to the output. After simulations for the FIR filter and adaptive filter

design obtain the desirable result, the generated bitstream is downloaded into the

FPGA.

After supply the 10MHz clock signal and input data to the FIR filter, the output of

filter is measured by using logic analyzer. For this testing few set of data is load

into the filter in FPGA. It is found that the output of filter from FPGA is same as

the filter output from functional simulation. For example, the hexadecimal value

'6000' is loaded into the FIR filter, the same filter output from simulation and

FPGAis'5fd0\
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The simulation on the adaptive noise cancellation system with Matlab, give the

desired result as stated in the objective. The simulation results show that the noise

can be cancelled by using the adaptive noise cancellation system, regardless of

whether the input signal is a sine wave, music or a record of sound and the noise

used is either white noise or chirp noise.

The result of filter is greatly depending on the order of filter. FIR filter with higher

order will produce better result in Matlab simulation. The results indicate that the

IIR filter does not necessary produce better result with higher order. As shown in

table 4.1, the IIR filter with 25 orders introduces more noise to the output of

adaptive filter compared with that of 10 orders.

From the Matlab simulation, it can be seen that LMS algorithm or NLMS

algorithm with 10 orders IIR filter is suitable used for adaptive noise cancellation.

However IIR filter cannot be used to implement adaptive filter in FPGA [15]. This

is because the error at the IIR filter output is fed back to the input, hence error

could be accumulated in the system.

The LMS algorithms decorrelates system output signal from the reference noise

signal and removes noise components of the primary input signal based on

second-order statistics only. However, there may be many other components in the

primary input signal which depend on the noise reference signal through higher-

order statistics.
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After get the desired results for FIR filter and adaptive filter in the functional

simulation and timing simulation, the filter design is downloaded into Virtex II

FPGA device for hardware testing. However the logic analyzer used is not

equipped with pattern generator function. Therefore the logic analyzer only can

used to examine the output value instead of generate a sequence of test input to

test the filter design. Hence the input data is supplied by connecting the input pins

to 5 volt or ground to create an input data, while the clock is supplied from the

function generator.

It is found that the FIR filter output from the FPGA is same as the simulation.

That means the FIR filter is successfully implemented in FPGA. For the adaptive

filter, the satisfied results is obtained for the Matlab simulation, functional

simulation and timing simulation. Even though there is some error introduced to

the filter design, such as quantization error, round off error and overflow error.

The error not contributes to significant effect at the filter output, because the

required precision of data is not as high as floating point precision.

In conclusion, the results of this project show that noise cancellation with adaptive

filter is feasible. The noise is greatly reduced in Matlab simulation, functional

simulation and timing simulation.
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5.2 Recommendations

There are a few recommendations proposed to improve the performance of

adaptive filter and to ease the filter design. The better results with Matlab

simulation on adaptive noise cancellation system can be obtained by increasing

the sampling frequency. So that the sound can be heard clearer and the different

between the filter output with different algorithm is more obvious.

Use with different types of FIR filter for the design, which including equiripple,

window, least-square, constrained equiripple and so on. For more attenuation at

the stopband, window and constrained equiripple is feasible for this purpose.

Since the IIR filter is not suitable for the hardware implementation [15], the types

of IIR filter is not recommend.

During the implementation of adaptive noise cancellation system, the recorded

noise signal should be purely noise only without mixing with the desired input

signal. Otherwise part of the origin signal will be cancelled at the output signal.

Therefore it is important to determine the source of noise is not too close with the

source of desired signal.

For those who interest to continue this project, low pass filter, high pass filter and

bandpass filter can be implemented in the adaptive filter. This is to determine

whether the algorithms used for the noise cancellation system can work well with

different types of filters. Instead of doing with the Least-Mean-Square algorithm

only, the noise cancellation system can be implemented with Normalised Least-

Mean-Square algorithm, Recursive-Least-Squares algorithm or Kalman filter and

Wiener filter.

Low power consumption and fast converging time are two essential factors need

to be considered in implementing the noise cancellation system. It is necessary to

find out which algorithms of adaptive filter consume less power and provide faster

converging time for real time application. From the Matlab simulation, NLMS

algorithm generate better result than the LMS algorithm, but it involve more
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complex calculation, this may cause the converging time to be longer than LMS

algorithm. For lower power consumption, instead of using direct form filter

design, the transpose direct form filter should be used for the design [23]. The

study on hardware algorithms for adder and multiplier should be carried out also

to implement adaptive filter in hardware effectively.

Nowadays the software programming for the FPGA is not limited to the HDL

languages only. A high-level design language such as C language is developed to

ease the design flow of difficult algorithm application. Hardware designer can

benefit from tools that allow them to mix high-level and low-level descriptions as

needed to meet design goals as quickly as possible [21]. However it is still in early

stages and is not yet a practical replacement for current HDL languages.

In general, a test bench is written to test the functionality of the design. Beside

from this technique, the logic analyzer (option 3 from Agilent) with integrate

pattern generator function can be used to generate the input data to test the

functionality of the filter and adaptive noise cancellation system. The output can

be display in the logic analyzer. In addition, the noise cancellation system can be

designed with Xilinx System Generator. The testing on FPGA can be done by

using co-simulation between System Generator and Matlab.
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APPENDIX A

Gantt chart of final year project activities

Al. Planning activities for first semester

Planning Activities tor First Sememter of Final Year Proiect

No. Detail/Week i 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Selection ofProject Topic

1 Preliminary Research on noise cancellation technique

3 Submission ofPreliminary Report •

4 Project Work

- Understand theLeast-Mean-Sqijare (LMS)algorithm

• Use matlab Simulinkto design noise cancellation system

' Convert SimulinkDiagramto matlab code

' S Submission of Progress Report •

' 6 Project work continue

- Learnt the Verilogoi VHDLprogram

- Write HDL code Fora single Filter

- Vrite test bench lor a single Hirer

' 7 Submission ofInterim Report Final Draft •

' 8 Submission of Interim Report •

' 9 Oral Presentation •

Tat)le A. 1: Gantt chart for activities of Irst serrlestt;r

A2. Planning activities for second semester

Planninq Activities forsecondSememter ofFinal YearProiect ',
Detail/Week i 2 1 3 4 5 6 7 8 9 10 11 12 13 14 18 20

Pioiect Work Continue

- WriteHDL code foradaptive filter(LMS)
• Write test bench for adaptive filter (IMS)

Submission ofProasss Resort 1 *

- Examines result of functional simulation lor adaptive Filter

- Edit HDL code lor adaptive filter ILMS1

- Learnt to use ISE software

Submission ofProKress Report 2 •

• Examines result of timinq silulation for adaptive Filter

- Edit HDL code for adaptive filter flMSl

•Vrite new HDL code into FPGA

- Examine the adaptive filter with loqio analyzer

Submission ofDissertation Final Draft •

Submission ofFinal Report fsoft cover) •

Submission of Technical Report •

Oral Presentation •

SubmissionofProject Dissertation (H.Q f

Table A.2: Gantt chart for activiti 2S 0 *se :on(i se tnester
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APPENDIX B

Matlab code for sound recording and noise generation

To record sound in .wav format and save in c:

Fs = 800 0;

y = wavrecord(50*Fs, Fs, 'double');
wavplay(y,Fs) ;
wavwrite(y,Fs,'c:\music');

Generate the chip signal in .wav file:

t=0:0.001:100;

y=chirp(t,0,l,100,'q\[], 'convex');
fs-8000;

wavwrite(y,fs,'chat');
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APPENDIX C

Matlab code of noise cancellation with adaptive filter (LMS)

% Original signal

signal = sin (2*pi*0.055*(0:200-l) ') ; %signal with f=0.055Hz, t:0 to 199
subplot(2,2,1),plot(0:199,signal(1:200));%plot signal with x: 0 to 199
grid; axis([0 200 -2 2]); %set the axis setting in the graph
title('The information of an original signal');

% The noise picked up by the secondary microphone is the input for the LMS
% adaptive filter.

nvar = 1.0; % Noise variance

noise = randn(200,1)*nvar; % White noise

subplot(2,2,2),plot(0:199,noise);

title('Noise picked up by the secondary microphone');

grid; axis([0 200 -4 4]);

% The noise corrupting the information a signal is a filtered version of 'noise'
% 31st order Low pass FIR filter, with Normalised f=0.5

nfilt = firl(31,0.5);

% Filtering the noise

fnoise = filter(nfilt,1,noise);

% "Desired signal" for the adaptive filter (sine wave + filtered noise):
d=signal+fnoise;

subplot(2,2,3),plot(0:199,d(1:200));
grid; axis([0 200 -4 4]);

title('Desired input to the Adaptive Filter = Signal + Filtered Noise');

% adaptive filter with LMS algorithm

mu = 0.008; % LMS step size

Hadapt = adaptfilt.lms(32,mu); % filter order - 32
Hadapt.PersistentMemory = true; % for continuing updates the filter
weights
[y,e] = filter(Hadapt,noise,d) ;
H - abs(freqz(Hadapt,1,64));

Hi - abs(freqz(nfilt,1,64));

% Plot the frequency response of adaptive filter

wf = linspace(0,1,64);

plot (wf,H,wf,Hl) ;
xlabel('Normalized Frequency (\times\pi rad/sample) ') ;
ylabel('Magnitude*);
legend('Adaptive Filter Response','Required Filter Response');
grid;

axis([0 1 0 2]);

%As the adaptive filter converges, the filtered noise should be completly
% subtracted from the "signal + noise" signal and the error signal re'
%should contains only the original signal.

subplot(2,2,4),plot(0:199,signal(1:200),0:199,e(1:200)); grid;
axis([0 200 -4 4]);
title('Original information of a signal and the error signal');
legend('Original Signal','Error Signal');
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APPENDIX D

Verilog code for a 10 orders FIR filter

FIR filter

'timescale 1 ns / 1 ps

module fir 10(elk, clk_enable, reset, Data_in, Data_out);

input elk;

input elk enable;

input reset;

input signed [15:0] Data in;
output signed [15:0] Data_out;

// FIR filter coefficient

parameter signed [15 0] coeffl = 16'bllllllllOOlOOOlO;

parameter signed [15 0] coeff2 = 16'blllllllllOllOlll;

parameter signed [15 0] coeff3 = 16'b0000010001111100;

parameter signed [15 0] coeff4 = 16'b00001110010101QO;

parameter signed [15 0] coeff5 = 16'bOOOl100100001010;

parameter signed [15 0] coeff6 = 16'bOOOlllOllOlllllO;

parameter signed [15 0] coeff7 = 16'bOOOllOOlOOOOlOlO;

parameter signed [15 0] coeff8 = 16'bOOOOlllOOlOlOlOO;

parameter signed [15 0] coeff9 = 16'bOOOOOlOOOlllllOO;

parameter signed [15 0] coefflO = 16'blllllllll0110111

parameter signed [15 0] coeffll - 16'bllllllllOOlOOOlO

// Declare vector used

reg signed [15:0] delay [0:10] ;

wire signed [31:0] productll, productlO, product9, product8, product7;
wire signed [31:0] products, products, product4, product3, product2, productl;

wire signed [31:0] suml, sum2, sum3, sura4, sum5;
wire signed [31:0] sum6, sum7, sura8, sum9, sumlO;

wire signed [31:0] addsig, addsig_l, addsig_2, addsig_3;
wire signed [31:0] addsig_4, addsig_5, addsig_6, addsig_7;
wire signed [31:0] addsig_8, addsig_9, addsig_10, addsig_ll;
wire signed [31:0] addsig_12, addsig_13, addsig_14, addsig_15;
wire signed [31:0] addsig_16, addsig_17, addsig_18, addsig_19;

wire signed [32:0] add_temp, add_temp_l, add_temp_2, add_temp_3, add_temp_4;
wire signed [32:0] add_temp_5, add_temp_6, add_temp_7, add_temp__8, add_temp_9j

wire signed [15:0] output_round;
reg signed [15:0] output_register;

always @( posedge elk or posedge reset)

// Reset, clear data

begin: Delay_process
if (reset == l'bl) begin

delay[0] <= 0;
delayfl] <= 0,

delay[2] <= Oj
delay[3] <= Oj
delay[4] <= 0;

delay[5] <= 0,
delay[6] <= Oj
delay[7] <= Oj
delay[8] <= 0

delay[9] <= Oj
delay[10] <= 0;

end
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// Transfer input data through all delay

else begin

if (clk_enable == l'bl) begin
delay[0] <= Data_in;
delay[1] <= delay[0];
delay[2] <= delay[l];
delay[3] <= delay[2];
delay[4] <= delay[3];
delay[5] <= delay[4];
delay[6] <= delay[5];
delay[7] <= delay[6];
delay[8] <= delay[7];
delay[9] <= delay[8];
delay[10] <= delay[9];

end

end

end // Delay_process

// Multiply the delay data with filter coefficients

assign productll = delay[10] * coeffll;
assign productlO = delay[9] * coefflO;
assign product9 = delay[8] * coeff9;
assign product8 = delay[7] * coeffS;

assign product7 = delay[6] * coeff7;
assign products = delay[5] * coeff6;
assign product5 = delay[4] * coeff5;
assign product4 = delay[3] * coeff4;
assign product3 = delay[2] * coeff3;
assign product2 = delay[l] * coeff2;
assign productl = delay[0] * coeffl;

// sum the result of multiplication

assign addsig = productl;
assign addsig_l = product2;
assign add_temp = addsig + addsig_l;
assign sural = (add_temp[32] -= 1'bO & add_temp[31] !- 1'bO) ?

32'bOlllllllllllllllllllllllllllllll :

(add_temp[32] == l'bl &S add_temp[31] != l'bl) ?
32'bl0000000000000000000000000000000 : add_temp[31:0];

assign addsig_2 = suml;
assign addsig_3 = product3;
assign add_temp_l = addsig_2 + addsig_3;
assign sum2 = (add_temp_l[32] — 1'bO & add_temp_l[31] 1= 1'bO) ?

32'b01111111111111111111111111111111 :

(add_temp__l[32] == l'bl &s add_temp_l [31] !- l'bl) ?
32'bl0000000000000000000000000000000 : add_temp_l[31:0];

assign addsig_4 = sum2;
assign addsig_5 = product4;
assign add_temp_2 = addsig_4 + addsig_5;
assign sum3 = (add_temp_2[32] == 1'bO & add_temp_2[31] != 1'bO) ?

32'b01111111111111111111111111111111 :

(add_temp_2[32] == l'bl && add_temp_2[31] != l'bl) ?
32'bl0000000000000000000000000000000 : add_temp__2[31:0];

assign addsig_6 = sum3;
assign addsig_7 = product5;
assign add_temp_3 = addsig_6 + addsig_7;
assign sum4 - (add_temp_3[32] == 1'bO S add_temp_3[31] != 1'bO) ?

32^01111111111111111111111111111111 :

(add_temp_3[32] — l'bl && add_temp_3[31] != l'bl) ?
32'bl0000000000000000000000000000000 : add_temp_3[31:0];

assign addsig_8 = sum4;
assign addsig_9 = products;
assign add_temp_4 = addsig_8 + addsig_9;
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assign sum5 = (add_temp_4[32] == 1'bO & add_temp_4[31] != 1'bO) ?
32'bOlllllllllllllllllllllllllllllll :

(add_temp_4[32] == l'bl && add_temp_4[31] != l'bl) ?
32'bl0O0O0000O0O0OO000O000O0O00O00O0 : add_temp_4[31:0];

assign addsig_10 = sum5;
assign addsig^ll = product7;
assign add_temp__5 = addsig_10 + addsig_ll;
assign sum6 = (add_temp_5[32] == 1'bO & add_temp_5[31] != 1'bO) ?

32'bOlllllllllllllllllllllllllllllll :

(add_temp_5[32] = l'bl && add_temp_5[31] != l'bl) ?
32'blO0O0O0O0O0O0O00O0O0O00O0O00O000 : add_temp_5[31:0];

assign addsig_12 = sum6;
assign addsig_13 = product8;
assign add_temp_6 = addsig_12 + addsig_13;
assign sum7 = (add_temp_6[32] == 1'bO & add_temp_6[31] !- 1'bO) ?

32'b01111111111111111111111111111111 :

(add_temp_6[32] == l'bl SS add_temp__6 [31] != l'bl) ?
32'blOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO : add_temp_6[31:0];

assign addsig_14 = sum7;
assign addsig_15 = product9;
assign add_temp_7 = addsig_14 + addsig_15;
assign sum8 - (add_temp_7[32] == 1'bO S add_temp_7[31] != 1'bO) ?

32'b01111111111111111111111111111111 :

(add_temp_7[32] == l'bl && add_temp_7[31] != l'bl) ?
32'bl0000000000000000000000000000000 : add_temp_7[31:0];

assign addsig_16 = surnS;
assign addsig_17 = productlO;
assign add_temp_8 = addsig_16 + addsig_17;
assign sum9 - (add_terap_8[32] == 1'bO & add_temp_8[31] != 1'bO) ?

32'bOlllllllllllllllllllllllllllllll :

(add_temp_8[32] == l'bl && add_temp_8[31] !- l'bl) ?
32'bl0000000000000000000000000000000 : add_temp_8[31:0];

assign addsig_18 = sum9;
assign addsig_19 = productll;
assign add_temp_9 = addsig_18 + addsig_19;
assign suralO = (add_temp_9[32] == 1'bO & add_temp_9[31] != 1'bO) ?

32'bOlllllllllllllllllllllllllllllll :

{add_temp_9[32] == l'bl && add_temp_9[31] != l'bl) ?
32'bl0000000000000000000000000000000 : add_temp_9[31:0];

assign output_round = (suml0[31] == 1'bO & sumlO[30:29] != 2'bOO) ?
16'b0111111111111111 :

(suml0[31] == l'bl && suml0[30:29] != 2'bll) ? IS'blOOOOOOOOOOOOOOO

suml0[29:14];

always @ (posedge elk or posedge reset)
begin: Output_Register_process

if (reset == l'bl) begin
output_register <= 0;

end

else begin
if (clk_enable == l'bl) begin

output_register <= output_round;
end

end

end // Output_Register_process

// Assignment Statements
assign Data_out = output_register;

endmodule // fir 10
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Testbench of 10 orders FIR filter

"timescale 1 ns / 1 ps

module fir__l0__tb__y;

// Parameters

parameter clk_high = 100
parameter clk_low = 100
parameter clk_period = 200
parameter clk__hold = 10;

// Inputs
reg elk;
reg clk_enable;
reg reset;

reg signed [15:0] Data_in;

// Outputs
wire signed [15:0] Data_outj

integer n; //loop variable

reg signed [15:0|

reg signed [15:0;
:0:79];

Data_in__load[0:79]
Data out expected

// Instantiate the Unit Under

Test (OUT)

fir_10 uut (
.clk(clk),

'. clk_enable(clk_enable)
.reset(reset),

.Data_in(Data_in),

.Data out(Data out)

initial

begin

// Constants

Data_in_load[0'
Data_in__load[1]
Data_in_load[2]
Data_in_load[3]
Data_in_load[4]
Data_in_load[5]
Data_in_load[6]
Data_in_load[7]
Data_in_load[8]
Data_in_load[9]
Data_in__load[10
Data_in_load[11
Data_in_load[12
Data_in__load[13
Data_in__load[14
Data_in_load[15
Data_in__load[16
Data_in_load[17
Data_in_load[18
Data_in_load[19
Data_in_load[20
Data_in_load[21
Data__in_load[22
Data_in_load[23
Data_in_load[24
Data_in_load[25
Data_in__load[26
Data_in_load[27
Data_in_load[28
Data_in_load[29
Data in load[30

<= 15'h4000

<= 16'h4000

<= 16'h4000

<= 16'h4000

<= 16'hOOOO

<= 16'hOOOO

<= 16'hOOOO

<= 16'hOOOO

<= 16'h4000

<= 16'h4000

<= 16'h4000

<= 16'h4000

<= 16'hOOOO

<= 16'hOOOO

<= lS'hOOOO

<= 16'hOOOO

<= 16'h4000

<= 16'h4000

<= 16'h4000

<= 16'h4000

<= 16'h0000

<= 16'hOOOO

<= 16'hOOOO

<= 16'hOOOO

<= 16'h400O

<= 16'h4000

<= 16'h4000

<= 16'h4000

<= 16'hOOOO

<= 16'hOOOO

<= 16'hOOOO
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Data in load[3i; <= 16'hOOOO,

Data in load[32; <= I6'h4000,

Data in load[33; <= 16'h4000,

Data in load[34; <= 16'h4000,

Data in load[35] <= 16'h4000,

Data in load[36; <= 16'hOOOO,

Data in load[37; <- 16'hOOOO,

Data in_load[38; <= 16'hOOOO

Data_in_load[39; <= 16'hOOOO

Data in load[40; <= 16'h4000

Data in load[4i; <= 16'h4000

Data in load[42; <= 16'h4000

Data in load[43; <= 16'h4000

Data in load[44; <= 16'hOOOO

Data in load[45; <= 16'hOOOO

Data in load[46; <= 16'hOOOO

Data in load[47; <= 16'hOOOO

Data in load[48; <= 16'h4000

Data_in_load[49; <= 16'h4000

Data in load[50; <= 16'h4000

Data in load[5i; <= 16'h4000

Data in load[52; <= 16'hOOOO

Data in load[53; <= 16'hOOOO

Data in load[54 <= 16'hOOOO

Data in load[55 <= 16'hOOOO

Data in load[56 <= 16'h4000

Data in load[57 <= 16'h4000

Data in load[58 <= 16'h4000

Data in load[59 <= 16'h4000

Data_in_load[60 <= 16'h0000

Data in load[61 <= 16'hOOOO

Data in load[62 <= 16'hOOOO

Data in load[63 <= 16'hOOOO

Data in load[64 <= 16'h4000

Data in load[65 <= 16'h4000

Data in load[66 <= 16'h4000

Data in load[67 <= 16'h4000

Data in load[68 <= 16'hOOOO

Data in load[69 <= 16'hOOOO

Data_in_load[70 <= 16'hOOOO

Data in load[71 <= 16'hOOOO

Data in load[72 <= 16'h4000

Data in load[73 <= 16'h4000

Data in load[74 <= 16'h4000

Data in load[75 <= 16'h4000

Data in load[76 <= 16'h0000

Data in load[77 <= 16'hOOOO

Data in load[78 <= 16'hOOOO

Data in load[79 <= 16'hOOOO

Data out expect 3d [0] <= 16'hff22;

Data out expect =d [1] <= 16'hfed9;

Data out expect 3d [2] <= 16'h0355;

Data out expect 3d [3] <= 16'hlla9;

Data out expect 3d [4] <= 16'h2b91;

Data out expect 3d [5] <= 16'h4998;

Data out expect 2d [6] <= 16'h5e26;

Data out expect ed [7] <= 16'h5e26;

Data out expect 2d [8] <= 16'h48ba;

Data out expect 2d [9] <= 16'h2a6a;

Data out expect sd [10] <= 16'hl4fe

Data out expect 2d [11] <= 16'hl4fe

Data out expect ed [12] <= 16'h2a6a

Data out expect sd [13] <= 16'h48ba

Data out expect ed [14] <= 16'h5e26

Data out expect sd [15] <= 16'h5e26

Data out expect ed [16] <= 16'h48ba

Data out expected [17] <= 16'h2a6a

Data out expected [18] <= 16'hl4fe

Data out expected [19] <= 16'hl4fe

Data out expected [20] <= 16 'h2a6a



Data out expected I21] <= 16 h48ba

Data_ out expected i22; <= 16 h5e26

Data out expected i23; <= 16 h5e26

Data out expected 24. <= 16 h48ba

Data out expected 25] <= 16 h2a6a

Data out expected 26 <= 16 hl4fe

Data out expected 27 <= 16 hl4fe

Data out expected 28 <= 16 h2a6a

Data_ out expected 29 <= 16 h48ba

Data out expected 30 <= 16 h5e26

Data_ out expected 31 <= 16 h5e26

Data_ out expected 32 <= 16 h48ba

Data_ out expected 33 <= 16 h2a6a

Data_ out expected 34 <= 16 hl4fe

Data out expected 35 <= 16 hl4fe

Data out expected 36 <= 16 h2a6a

Data out expected 37 <= 16 h48ba

Data out expected 38 <= 16 h5e26

Data out expected 39 <= 16 h5e26

Data out expected 40 <= 16 h48ba

Data_ out expected 41 <= 16 h2a6a

Data_ out expected 42 <= 16 hl4fe

Data out expected 43 <= 16 hl4fe

Data out expected 44 <= 16 h2a6a

Data_ out expected 45 <= 16 h48ba

Data^ Out expected 46 <= 16 h5e26

Data_ out expected 47 <= 16 h5e26

Data out expected 48 <= 16 h48ba

Data out expected 49 <= 16 h2a6a

Data out expected 50 <= 16 hl4fe

Data out expected 51 <= 16 hl4fe

Data out expected 52 <= 16 h2a6a

Data out expected 53 <= 16 h48ba

Data out expected 54 <= 16 h5e26

Data out expected 55 <= 16 h5e26

Data out expected 56 <= 16 h4 8ba

Data out expected 57 <= 16 h2a6a

Data out expected 58 <= 16 hI4fe

Data out expected 59 <= 16 hl4fe

Data_ out expected 60 <= 16 h2a6a

Data out expected 61 <= 16 h48ba

Data out expected 62 <= 16 h5e26

Data out expected 63 <= 16 h5e26

Data out expected 64 <= 16 h48ba

Data_ out expected 65 <= 16 h2a6a

Data out expected [66 <= 16 'hl4fe

Data out expected [67 <= 16 'hl4fe

Data out expected [68 i <= 16 'h2a6a

Data out expected [69 1 <= 16 'h48ba

Data out expected [70 1 <= 16 'h5e26

Data out expected [71 ] <= 16 'h5e26

Data out expected 72 ] <= 16 'h48ba

Data out expected ;73] <= 16 'h2a6a
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Data_out_expected [74] <= 16'hl4fe;
Data_out_expected [75] <= 16'hl4fe;
Data_out_expected [76] <= 16'h2a6a;
Data_out_expected [77] <= 16'h48ba;
Data_out_expected [78] <= 16'h5e26;
Data_out_expected [79] <= 16'h5e26;

end

// Block Statements

always // elk generation
begin : clk_gen
elk <= 1'b 1;

# clk_high;
elk <= l'b 0;

# clkJLow;
end //clk_gen;

initial // reset block

begin : reset__gen
clk_enable <= l'bl;
reset <= l'b 1;

# (clk_period*2 + clk_hold);
reset <= 1'b 0;

end //reset_gen;

initial //The main block

begin
# elkjperiod;
Data_in <- Data_in_load[0];
# (clkjperiod*2 + clkjhold);
Data_in <= Data_in_load[1] ;
# elkjperiod;
for (n = 0; n<= 79; n = n + 1)

begin
if (Data__out !==

Data_out_expected[n])
Sdisplay("ERROR in filter test at

time %t : Expected '%h' Actual '%h'",
$time, Data__out_expected[n] , Data_out) ;

if (n + 2 <= 79)
Data_in <= Data_in_load[n + 2];

# (clk_period);
end

$display( "**** Test Complete. ****"

);

5stop;

end //Data in gen;

endmodule



APPENDIX E

Verilog code for a 10 order adaptive filter

Adaptive filter

'timescale 1 ns / 1 ps

module fir_10m (elk, clk_enable, reset, Data_in, Data_out, Desired,
Error,mult,temp,mumu,mumus);

input elk;

input elk enable;

input reset;

input signed [15:0] Data in;

output signed [15:0] Data out;

input signed [15:0] Desired;

output signed [15:0] Error;

output signed [31:0] mult;

output signed [15:0] temp;

output signed [31:0] mumu;

output signed [15:0] mumus;

reg signed [15:0] c [0:10];//wei ght
reg signed [15:0] w [0:10];

reg signed [31:0] multl;
reg signed [15:0] tempi;
reg signed [31:0] mumul;
reg signed [15:0] mumu2;

wire signed [15:0] wO, wl, w2, w3, w4, w5, w6, w7, w8, w9, wlO;
wire signed [15:0] ceO,eel,ce2,ce3,ce4,ce5,ce6,ce7,ce8,ce9,cel0;

//parameter mu=0.05 (16'h0666);
reg signed [15:0] mu = 16'h0166;

reg signed [15:0] delay [0:10] ;

wire signed [31:0] productll, productlO, product9, product8, product7;
wire signed [31:0] product6, product5, product4, product3, product2, productl;

wire signed [31:0] suml, sum2, sum3, sum4, sum5;
wire signed [31:0] sum6, sum7, sura8, sum9, sumlO;

wire signed [31:0] addsig, addsig__l, addsig__2, addsig_3;
wire signed [31:0] addsig_4, addsig_5, addsig_6,addsig_7;
wire signed [31:0] addsig_8, addsig_9, addsig_10,addsig_ll;
wire signed [31:0] addsig_12, addsig_13, addsig_14,addsig_15;
wire signed [31:0] addsig_16, addsig_17, addsig__18, addsig_19;

wire signed [32:0] add_temp, add_temp_l, add_temp_2, add_temp_3, add_temp__4;
wire signed [32:0] add_temp_5, add_temp_6, add_temp_7, add_temp_8, add_terap_9,

wire signed [15:0] output_round; // sfix!6_Enl5
reg signed [15:0] output__register; // sfixl6_Enl5
reg signed [15:0] error_m;

// Load input data
always @( posedge elk or posedge reset)

begin: Delay_process
if (reset == l'bl) begin

delay[0] <= 0;
delay[l] <= 0
delay[2] <= 0
delay[3] <= 0
delay[4] <= 0
delay[5] <= 0

delay[6] <= 0
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delay[7] <= 0,

delay[8] <= 0,

delay[9] <= Oj
delay[10]<= Oj

end

else begin
if (elk enable == l'bl) begin

delay[0]
delay[1]

delay[2]

delay[3]
delay[4]

delay[5]
delay[6]
delay[7]

delay[8]
delay[9]

delay[10
//Sdisplay

end

end

end // Delayjprocess

<= Data___in;
<= delay[0]

<= delay[l]
<= delay[2]

<- delay[3]
<= delay[4]

<= delay[5]
<= delay[6]
<= delay[7]
<= delay[8]

<= delay[9
"delay[0 %h, delay[1]:%h",delay[0],delay[1]

//Load

always
begin

if

c[0]

c[l]

c[2]

c[3]

c[4]
c[5]

c[6]

c[7]
c[8]

c[9]
c[10]

end

end

coefficients

i(posedge elk)

reset==l'b

16'hOOOO

16'hOOOO

16'hfd46

1)begin
;//16'h0187

;//16'hfdc4

;//16'h0361

;//16'hfb90

;//16'h0530

;//16'h7a8b

;//16'h0530

;//16'hfb90

;//16'h0361

;//16'hfdc4

0;//16'h0187

= 1 hOOOO

16'h229a

16'h4000

16'h229a

16'hOOOO

16'hfd46

16'hOOOO

16'h000

//multiply input data with coefficients
assign productll = delay[10] * c[10];
assign productlO = delay[9;
assign product9 = delay[8]
assign products = delay[7]
assign product7 = delay[6]
assign product6 = delay[5]
assign product5 = delay[4]
assign product4 = delay[3]
assign product3 = delay[2]
assign product2 = delay[l]
assign productl = delay[0]

' c[9

c[8]

c[7]

c[6]

c[5]

c[4]

c[3]

c[2]

c[l]

c[0]

//Sum all result of multiplication
assign addsig = productl;

assign addsig_l = product2;
assign add_temp = addsig + addsig_l;
assign suml - (add_temp[32:31] == 2'b01) ? 32'h7fffffff :

(add_temp[32:31] == 2'bl0) ? 32'h80000000 : add_temp[31:0];

assign addsig_2 = suml;
assign addsig_3 = product3;
assign add_temp_l = addsig__2 + addsig_3;
assign sum2 = (add_temp_l[32:31] == 2'b01) ? 32'h7fffffff :

(add_temp_l[32:31] == 2'blO) ? 32'h80000000 : add_temp_l[31:0]

assign addsig_4 = sum2;
assign addsig_5 = product4;
assign add_temp_2 = addsig_4 + addsig_5;
assign sum3 = (add_temp_2[32:31] = 2'b01) ? 32'h7fffffff :

(add temp 2[32:31] == 2'bl0) ? 32'h80000000 : add_temp_2[31:0]
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assign addsig_6 = sum3;
assign addsig_7 = product5;
assign add_temp_3 = addsig_6 + addsig_7;
assign sum4 = (add_temp_3[32:31] == 2'bOl) ? 32'h7fffffff :

(add_temp__3[32:31] == 2'blO) ? 32'h80000000 : add_temp_3 [31:0] ;

assign addsig_8 = sum4;
assign addsig_9 = product6;
assign add_temp_4 = addsig_8 + addsig_9;
assign sum5 = (add_temp_4[32:31] == 2'bOl) ? 32'h7fffffff :

(add_temp_4[32:31] == 2'blO) ? 32'h80000000 : add_temp_4[31:0];

assign addsig_10 = sum5;
assign addsig_ll = product7;
assign add_temp_5 = addsig_10 + addsig__ll;
assign sura6 = (add_temp_5[32:31] = 2'bOl) ? 32'h7fffffff :

(add_temp_5[32:31] == 2'blO) ? 32'h80000000 : add_temp_5[31:0];

assign addsig_12 = sum6;
assign addsig_13 = product8;
assign add_temp_6 = addsig_l2 + addsig_13;
assign sum7 = (add_temp_6[32:31] == 2'bOl) ? 32'h7fffffff :

(add_temp_6[32:31] == 2'blO) ? 32'h80O0000O : add_temp_6[31:0];

assign addsig_14 = sum7;
assign addsig_15 = product9;
assign add_temp_7 = addsig_14 + addsig_15;
assign sum8 = (add_temp_7[32:31] == 2'bOl) ? 32'h7fffffff :

(add_temp_7[32:31] ==2*bl0) ? 32'h80000000 : add_temp_7[31:0];

assign addsig_16 = sum8;
assign addsig_17 = productlO;
assign add_temp_8 = addsig_16 + addsig_17;
assign sum9 - (add_temp_8[32:31] = 2'bOl) ? 32'h7fffffff :

(add_temp_8[32:31] == 2'blO) ? 32'h80000000 : add_temp_8[31:0];

assign addsig__18 = sum9;
assign addsig_19 = productll;
assign add_temp__9 = addsig_18 + addsig_19;
assign sumlO = (add_temp_9[32:31] == 2'bOl) ? 32'h7fffffff :

fadd_temp_9[32:31] ==2'bl0) ? 32'h80000000 : add_temp_9[31:0];

//take 16 bits data from the sum

assign output_round = (suml0[31] == I'bO S suml0[30] != I'bO) ? 16'h7fff
(suml0[31] = l'bl S& suml0[30] != l'bl) ? 16'h8000 : sumlO[30:15];

always @ (posedge elk or posedge reset)
begin: Output_Registerjprocess

if (reset == l'bl) begin
output_register <= 0;

end

else begin

if (clk_enable == l'bl) begin
output_register = output_round;
errorjn = Desired-output_register;

//c [n] <= c [n] +mu*Data_in'terror_m;

multl = error_m*Data_in;
tempi = multl[31:16] ;
mumul = mu*tempi;
murau2 = mumul[31:16] ;

// for (n=0; n<ll; n=n+l)begin
// c[n]=c[n]+mumu2;

// end

c[0] = c[0]+mumu2;

c[l] - c[l]+mumu2;
c[2] - c[2]+mumu2;

c[3] = c[3]+mumu2;

c[4] = c[4]+mumu2;
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c[5]

c[6]

c[7]

c[8]

c[9]

c[io;

;5]+mumu2;

;6]+mumu2;

;7]+mumu2;

;8]+mumu2;

[9]+mumu2;

= c[10]+mumu2;

end //clk_enable
end //else

end // Output_Registerj?rocess
// Assignment Statements

assign Data_out = output__register;
assign Error = errorjn;
assign mult = multl;
assign temp = tempi;
assign mumu — mumul;
assign mumus= mumu2;

assign ceO = c[0];

assign eel = c[l];

assign ce2 = c[2];

assign ce3 - c[3];
assign ce4 = c [4 ] ;

assign ce5 = c[5];

assign ce6 = c[6];

assign ce7 - c[7];

assign ce8 - c[8];

assign ce9 = c[9];

assign celO =c[10];

assign wO = delay[0];

assign wl = delay[1];
assign w2 = delay[2];
assign w3 = delay[3],•
assign w4 = delay[4],•

assign w5 = delay[5];

assign w6 = delay[6];
assign w7 = delay[7];

assign w8 - delay[8];
assign w9 = delay[9];
assign wlO = delay[10

endmodule // fir 10m
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Testbench of adaptive filter

'timescale 1 ns / 1 ps

module fir_10m_tb;

// Parameters

parameter clk_high = 10
parameter clk_low = 10
parameter elkjperiod = 20
parameter elk hold = 4;

// Nets

reg elk;

reg clk_enable;
reg reset;

reg signed [15:0] Data-in;
wire signed [15:0] Data_outj

reg signed [15:0] Desired;
wire signed [15:0] Error;
wire signed [31:0] mult;
wire signed [15:0] temp;
wire signed [31:0] mumu;

wire signed [15:0] mumus;

integer n;
integer k;

//loop variable

reg signed [15:0] Data_in_load[0:21] ;
reg signed [15:0] Data_out_expected [0:2i;

reg signed [15:0]- Desired_data [0:21];

// Component Instances

fir 10m u fir 10m

.clk(clk),

.elk enable(clkjsnable ,

.reset(reset),

.Data in(Data__in) ,

.Data out(Data_out),

.Desired(Desired),

.Error(Error),

.mult(mult),

.temp(temp),

.mumu(mumu),

.mumus(mumus)

) ;

initial

begin
Data out expected [0] **= 16'h0000;

Data out expected [1] 16'hOOOO;

Data out expected [2] 16'h0000;

Data out expected [3] <= 16' ifd4 6;

Data out expected [4] <= 16' ifd4 6;

Data out expected [5] <= 16' ilfdf;

Data out expected [6] <= 16' i5fdf;

Data out__expected [7] <= 16' i7fff;

Data out expected [8] <= 16' i7fff;

Data out expected [9] <= 16' i7fbf;

Data out_expected [10] <=- 16 h7fbf

Data out expected [11] <== 16 'h7fbf

Data out expected [12] <== 16 'h7fbf

Data out expected [13] <== 16 'h7fff

Data out expected [14] <== 16 'h7fff

Data out expected [15] <=- 16 'h5fdf

Data out expected [16] <=- 16 •hlfdf

Data out expected [17] <=- 16 'hfd46

Data out expected [18] <-= 16 'hfd4 6

Data out expected [19] < - 16 'h0000

Data out expected [20] < = 16 'h0000

Data out expected [21] < - 16 'hOOOO
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// Reference input u(n) as an impulse noise
Data_in_load[0] <= 16'h0050;
Data_in_load[l] <= 16'h0050
Data__in_load[2] <= 16'h0050
Data_in_load[3] <= 16'h0050
Data_in_load[4] <= 16'h0050
Data_in_load[5] <= 16'h0050
Data_in_load[6] <= 16'h0050
Data_in_load[7] <= 16'h0050
Data_in_load[8] <= 16'h0050
Data__in_load[9] <= 16'h0050
Data_in_load[10] <= 16'h0050
Data_in_load[ll] <= 16'h0050
Data_in_load[12] <= 16'h7fff
Data_in_load[13] <= 16'h7fff
Data_in_load[14] <= 16'h7fff
Data_in_load[15] <= 16'h0050
Data_in_load[16] <= 16'h0050
Data_in_load[17] <= 16'h0050
Data_in_load[18] <= 16'h0050
Data_in_load[19] <= 16'h0050
Data_in_load[20] <= 16'h0050
Data in load[21] <= 16'h0050

imary input d(n)//Pr

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

Desi

end

red_data
red_data
redjdata
red_data
redjiata
red_data
red_data
redjdata
red_data
redjdata
red_data
red_data
redjdata
red_data
red_data
red_data
red_data
red_data
redjiata
redjiata
red_data
red data

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

, which is

16'h0050

h7fff

h7fff

h7fff

h7fff

16'h7fff

16'h7fff

16'h7fff

16'h7fff

16'h7fff

16'h7fff

16'h0050

16'h0050

16'h0050

16'h0050

16'h0050

16'h7fff

16'h7fff

16'h7fff

16'h0050

16'h0050

16'h0050

always // elk generation
begin : clk_gen
elk <= l'b 1;

# clk_high;
elk <= l'b 0;

# clk_low;
end //clk_gen;

initial // reset block

begin : reset_gen
clk_enable <= l'bl;
reset <= l'b 1;

# (clk_period*2 + clkjiold)
reset <= l'b 0;

# 20;

reset <=l'bl;

# 20;

reset <= I'bO;

end //reset gen;

input(step signal) + noise
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initial //The main block

begin

for (k=0;k<1000;k=k+l) begin
# elkjperiod;
Data_jn <= Data_in_load [0] ;
# {clk_period*2 + clkjiold) ;
Data_in <= Data_in_load[1];

# elkjperiod;
for (n = 0; n<= 21; n = n + 1)

begin

if ((n + 2) <= 21)

Data_in <= Data_in__load[n + 2];
Sdisplay("%5d=> Data_in: %5h ; error: %5h ; mult: %5h ; temp: %5h ; mumu:

%5h ; mumus: %5h", n, Data_in,Error,mult,temp,mumu,mumus);
Desired <= Desired_data[n];

# (elkjperiod);

end

end

$display( "**** Test Complete. ****" );
$stop;

end //Data_in_gen;

endmodule
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APPENDIX F

Performance of Virtex-II

Tafcfe t i: Pfrvto-Pin Performance

Description DeviseUsed &Speed Grade Pirvto-Pin (with tfD delays) Units

Basic Functions

16-bit Address Decoder XC2VIQOQ-5 6.3 ns

32-bit Address Decoder XC2V1Q0O-5 7.7 ns

64-bit Address Decoder XC2V1000-5 9.3 ns

4:1 MUX XC2V1000-5 5.7 ns

811 MUX XC2V190Q-5 6.6 ns

1&1 mux XC2V1000-6 6.7 ns

32:1 MUX XG2V1000-6 8.7 ns

Combinatorial (padto LUT to pad) XC2V100G-6 8.0 ns

Memory

Block RAM

Pad to setup 1.6 ns

Cbek to Pad 9.6 ns

Distributed BAM

Pad to setup XC2V1000-5 2.7 ns

Clock to Pad XC2V1000-5 5,1 (noelkskev*) ns

Table 12shows internal (register-to-register) performance. Values are reported in MHz.

Taibfa 12: Register-to-Regieter Performance

Description
DeviceUsed &Spsed

Grade

Register-to*Register
Performance Units

Basic Functions

16-bit Address Decoder XC2V10QG-6 39a MHz

32-bit Address Decoder XC2V1000-6 381 MHz

64-bit Address Decoder XC2V10QO-6 274 MHz

4:1 MUX XC2V100Q-5 5S3 MHz

6:1 MUX XC2V1000-5 454 MHz

16:1 MUX XC2V1000-6 414 MHz

32:1 MUX XC2V1000-6 323 MHz

Register to LUT to Register XC2V1000-6 613 MHz]
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Jaflfe 12: Register-to-Register Performance (Cmtinwd)

Description
Device Uwd!& Speed

Grade

Register-to-Ri?gist&r
Performance Unite

9-bit Adder XC2V1QfJ0-5 292 MHz

16-bit Adder XG2V1000-5 239 MHZ

84-bit Adder XC2V1000 -S 114 MHZ

64-bit Counter XC2V10C0-S 114 MHZ

84-bit Accumulator XC2V1000 -5 110 MHZ

Multiplier 18x16 i>ith Block RAM inputs) XG2V10Q0-5 9S MHZ

Multiplier 18x18 (with Raster inputs) XG2V1Q0O-5 10E MHZ

Memory

Block RAM

Single-Port40&ex4bife £7& MHZ

Single-Port 2048x9 bits £77 MHZ

Single-Port 1024x18tits 270 MHZ

Single-Port 5l2x56 bits 253 MHZ

Dual-Port AM96 x 4 bite a B:1024 x 18 bita 257 MHZ

Dual-Port A;1024X18 bits & B1024 x 18 bits £59 MHZ

Dual-Port a:sms x 9 bits & B; 512 x as bits 250 MHZ

Distributed RAM

Single-Port 3£x 8-bit XC2V1000 -5 387 MHZ

Single-Port 64x 8-bit xcavioeo-s 835 MHZ

8ir$le-Porti£8xS-bit XC2V1000 -5 £66 MHZ

Dual-Port 16 x a XC2Y1000 -S 409 MHZ

Dual-Port 32x8 XC2V1000 -5 S11 MHZ

Dual-Port 64x3 XC2V100Q -5 294 MHZ

shirt Registers

128-bit SRL WA MHZ

256-bit SRL m MHZ

FIFOs (Aeync. in BlockRAH}

1024x18-bit Read 279 MHZ

1024 xl 8-bit Write 17£ MHZ

FIFOs (Sync. InSRL)

"imfrhit WA MHZ

126x16-bit m MHZ
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APPENDIX G

Simulation result of adaptive noise cancellation system with simulink

FIR filter (order: 25) with NLMS

Figure G.l: Input signal, interfered signal and output signal of adaptive noise
cancellation system with NLMS algorithm and 25 orders FIR filter.

IIR filter (order: 25) with NLMS

Figure G.2: Input signal, interfered signal and output signal of adaptive noise
cancellation system with NLMS algorithm and 25 orders IIR filter.

65



IIR filter (order: 10) with NLMS

Figure G.3: Input signal, interfered signal and output signal of adaptive noise
cancellation system with NLMS algorithm and 10 orders IIR filter.

FIR filter (order: 25) with LMS

Figure G.4: Input signal, interfered signal and output signal of adaptive noise
cancellation system with LMS algorithm and 25 orders FIR filter.
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IIR filter (order: 25) with LMS

Figure G.5: Input signal, interfered signal and output signal of adaptive noise
cancellation system with LMS algorithm and 25 orders IIR filter.

IIR filter (order: 10) with LMS

Figure G.6: Input signal, interfered signal and output signal of adaptive noise
cancellation system with LMS algorithm and 10 orders IIR filter.
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FIR filter (order: 25) with RLS

Figure G.7: Input signal, interfered signal and output signal of adaptive noise
cancellation system with RLS algorithm and 25 orders FIR filter.

IIR filter (order: 25) with RLS

Figure G.8: Input signal, interfered signal and output signal of adaptive noise
cancellation system with RLS algorithm and 25 orders IIR filter.
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IIR filter (order: 10) with RLS

Figure G.9: Input signal, interfered signal and output signal of adaptive noise
cancellation system with RLS algorithm and 10 orders IIR filter.
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