Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.


Dung, Tran Minh (2006) IMPROVEMENT STUDY ON SOFT-SWITCHED QUASI-RESONANT DC/DC BOOST CONVERTER. Universiti Teknologi Petronas. (Unpublished)

[img] PDF
Download (2527Kb)


This report describes a novel soft-switched quasi-resonant DC/DC boost converter. Recently, remarkable efforts have been made in soft-switched quasi-resonant DC/DC converters to reduce losses and improve power efficiency. This project presents a new technique and it had improved the performance of the most recent study on soft-switched quasi-resonant DC/DC boost converter, which is presented in Ba-Thunya and Prasad's study [1]. The proposed converter employs an active snubber circuit with an auxiliary switch in series with a clamp capacitor to reduce powerlosses in Ba-Thunya and Prasad's original an active snubber circuit with an auxiliary switch and a clamp diode to reduce power losses in Ba-Thunya and Prasad's original converter. The energy from the snubber inductor after the auxiliary switch turn-off is returned to the input or delivered to the output via the active snubber circuit, thus the voltage stress onthe main switch is reduced and switching losses are minimized. Furthermore, the proposed converter reduces the reverse-recovery-related losses of the boost rectifier by controlling the di/dt rate of the rectifier current with the snubber inductor. This report describes the principle of operation of the new soft-switched quasi-resonant DC/DC boost converter. The feasibility study of the proposed converter is investigated using PSPICE program.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - VLSI Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 27 Sep 2013 11:06
Last Modified: 25 Jan 2017 09:45
URI: http://utpedia.utp.edu.my/id/eprint/7011

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...