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ABSTRACT

This dissertation contains the study on modelling and advanced regulatory control f

two interacting tanks in a series. It covers the background of the study, some

literature reviews and related theories; methodology used for completion of the

project and finally, concludes the results obtained from this research. The main

objective of this study is to study on the flow characteristics and its effect to the

level characteristics to further understand the process and to compare the

experimental data with the modeling result. In order to achieve the best result, there

is certain parameter for the author to fully concentrating on such as on feedback

controller, PID controller design and also model-based design method, Internal

Model Control (IMC). Comparisons between the experimental data with modeling

result are not done yet. It is due to some problem that results lagging in the time

frame to cope with this project.
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CHAPTER 1

INTRODUCTION

1.1 Background of study

Until fairly recent time, most of the applications of industrial process control used simple

feedback loops which regulated flows, temperature, pressures, levels and the like.

Occasionally ratio and cascade control loops could be found; on even rare occasions one

might find a feedforward control loops. As long as most of the control system were

implemented with analogue hardware, either pneumatic or electronic, the cost of

hardware, the additional interconnection required, the burden maintaining additional

components, plus the vulnerability to failure too many devices in the control loop limited

most applications to simple regulatory control. With the advent of digital control systems,

first in the form of central computer control then distributed control systems and single-

loop controllers, more sophisticated control loops become feasible. Advanced regulatory

control loops, including ratio, cascade and feedforward which were previously

mentioned, plus additional forms such as constraint (selector) control and decoupling

could readily be implemented simply by configuring software function blocks.

There are many source of benefit for the use of advanced regulatory control. One of the

most important is simply closer control of the process. It will be made very clear that

with basic regulatory for example feedback control, before control action can occur, there

must be a deviation set point. This is called feedback penalty. The objective of advanced

regulatory control is to be able to take the control action without paying the feedback

penalty. The reduction in feedback penalty may be stated in a variety ways, such as

reduction of the maximum deviation from the set point, reduction of the standard



deviation, or simply as reduction in the amount of off-spec product produced. This can

provide several forms of economic benefit, such as improvement of product quality,

energy saving, increased throughput, longer equipment life and so on.

Process control is but one part of overall control hierarchy that extends downward to

safety controls and other directly connected process devices and upward to encompass

process optimization and even higher business levels of control such as scheduling,

inventory management and so on. Indeed, a greater contribution to the enhancement of

corporate profitability may come from these higher level activities than from improved

process control. However, since each layer of hierarchy depends upon the proper

functioning of lower layers, one of the primary benefits of advanced regulatory control is

that of enabling the higher level of controls such as optimization. An optimization

procedure normally calculates target operating points for key process variables which are

introduced to the regulatory control layers as set points. It does not good, however to

calculate an optimal set point if the underlying control strategies fail to maintain the key

process variable at that set point. Hence, an adequate control structure at the lower levels

is a prerequisite to a successful optimization procedure.

One of the example of advanced regulatory control is to research and study about the

interaction of flow and level by following some method. This project is all about

modeling and advanced regulatory control of a two interacting tank in a series. The

equipment was water as the process medium. The unit consists ofa tank whose discharge

can be either gravity or by pumped flow, thus demonstrating self-regulatory and non-self

regulatory control. The total system consists of the level tank together with liquid sump,

pumps and associated pipelines. The unit demonstrates the level control and flow control

by manipulating the valve opening. These can be studied independently before attempting

the level -flow cascade control system. After all, simulation of this process will be done

using MATLAB to look out for a different in the experimental dataandthe simulation of

the process.
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Figure 1.1: Overall Control Hierachy

Level and flow are important process parameter in industry. All inventory control process

schemes are based on level-flow control techniques. The type of level process and its

time constant playimportant roles in level-control. The main agenda of doing thisproject

is to understand more on control process of level and flow. It is also a requirement for
this project to make a comparison between the experimental data result and the

simulation using a MATLAB. In order to achieve the best result, there is certain

parameter for the author to fully concentrating on such as on feedback controller, PID

controller design and also model-based design method, Internal Model Control (IMC).



1.3 Objectives and Scope of Study

1.3.1 Objectives

This research project has been carried out to achieve several objectives as stated below:

1. To study on the flow characteristics and its effect to the level characteristics to

further understand the process.

2. To conduct experimental test to determine the effect of level and flow

characteristic based on SCADA selector switch

3. To understand the mechanisms of the level and flow controls

4. Select the best result between the experimental data and using MATLAB

1.3.2 Scope of Study

These research projects mainly involve the experimental work and also modeling. Two

different experiment, that is open loops and close loop have been done. There are few

stagesshouldbe faced before the objectivescan be accomplished.

First stage:

Experiment of open loop and close loop using equipment WLF 922 and WL 922. This

experiment will be focused on finding of the best result of controller gain, kc and time

integral time; tj for open loop experiment and then used that value to run the close loop

experiment. It can be achieve by finding the best value of change of process variable by

increase the manipulated variable value. All the experiments are carried out at Control

Laboratory of chemical Engineering Department, Universiti Teknologi PETRONAS.



Second stage:

Comparison with modeling results

Comparison of the results will be made, with the results from experiment are going to be

used as the main source for comparing.

1.4 Basic Concept of Modeling Fundamental

Models are an integral parts of any kind of human activity. However, we are mostly

unaware of this. Most models are quantitative in nature and are no formulated explicitly.

Such models are not reproducible and cannot easily be verified or proven to be false.

Models guide our activity and throughout our entire life we are constantly modifying

those models that affect our everyday behavior. The most scientific and technically useful

types of models are expressed in mathematical models in the field on the use of dynamic

mathematical models in the field ofengineering.

1.5 Chemical Modeling

the use of models in chemical engineering is well established, but the use of dynamics

models, as opposed to the more tradition use of steady state models for chemical plant

analysis, is much more recent. This is reflected in the development of new powerful

commercial software packages for dynamic simulation, which has arisen owing to the

increasing pressure for design validation, process integrity and operation studies for

which dynamic simulator is an essential tool. Indeed it is possible to envisage dynamic

simulation becoming a mandatory condition in the safety assessment of plant, with

consideration of such factors as start up, shutdown, abnormal operation, and relief

situation assuming an increasing importance. Dynamic simulation can thus be seen to be

an essential part of any hazard or operability study, both in assessing the consequences of

plant failure and in the mitigation of possible effect. Dynamic simulation is thus of equal

importance in large scale continuous process operations, as in other inherently dynamic



operations such as batch, semi-batch and cyclic manufacturing processes. Dynamic

simulation also aids in a very positive sense in enabling a better understanding ofprocess

performance and is a powerful tool for plant optimization, both at the operational and at

the design stage. Furthermore steady-state operational is then seen in its rightful place as

the end result ofa dynamic process for which rates of change have become eventually
zero.



CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Interacting Process

Most ofthe system considered so far has been simple process with single processes with
asingle input and single output that could be isolated and treated individually.
Unfortunately, for many common processes this cannot be done. Typically, process with
variables that interact with each other or that contain internal feedback ofmaterial or

energy will exhibit so-called interacting behavior.

When we considered this project includes two interacting tank in series, the process must
be affected by the level of the tank because h} depends on h2 (and vice versa) as aresult
ofthe interconnecting stream with a flow rate//;

fi=cvxi(AP,)l/2 where API =pjgh,

f2 =cv x2(A P2)I/2 where AP2 =p2gh2

ft - fp =A) dhi_ and fi - f2 =A2 dhj
dt dt



2.2 Dynamic Characteristic

Process dynamic characteristic can be classified into three broad categories ;

• Self-regulating processes

• Nonself-regulating processes

• Runaway processes

Self-regulating processes are those that, if all inputs are fixed, will seek their own

equilibrium for example if the flow into the vessel is fixed, the process will reach an

equilibrium when the tank level rises or falls into the vessel at which the hydrostatic

pressure at the base of the tank causes the outflow to exactly equal the inflow.

A nonself-regulating process can be depicted by the hydraulic analogy. Here, there is a

fixed flow rate out of the tank; it does not depend upon the level in the tank. Unless the

inflow is precisely the same as the outflow, the level will continue to rise or fall until

either the tank is empty or overflows.

A mathematical expression for a process of this type is given by the following integral

equation;

Ah = J(fin-f0Ut)dt

Where:

h - height (depth) of fluid in tank

A = cross-sectional area

fin , fout = volumetric flow rates

For this reason, there are often called integrating process. In actual practice, liquid level

control can often be represented as an integrating process. A few processes are unstable

in the open loop means without feedback control and this process is called runaway

process.



2.3 Characteristics of Types of Control Loops

2.3.1 Flow Control loops

Flow control loops are widely used in the process industries. About half of the control

loops in oil refinery are used for flow. Flow and pressure control are characterized by fast

responses (on the order of seconds), with essentially no time delay. The process dynamics

result from compressibility (in a gas stream) or inertial effects (in a liquid) plus control

valve dynamics for a large diameter pipeline. Disturbance in a flow systems tend to be

frequent but generally small. Most of the disturbances are high frequency noise (periodic

or randomly) due to upstream turbulence, valve change and pump vibration.

For flow control loops, PI control is generally used with intermediate values of controller

gain. Flow control loops usually have relatively small settling times (compared to other

loops), there is little incentive to use derivative action to make the loop respond even

faster.

2.3.2 Liquid level

Liquid storagevessel with a pump on its exit line act as an integratingprocess. Standard

P or PI controllers are widely used for level control. However, these level control

problems have an unusual characteristic; increasing the gain of a PI controller can

increase stability, while reducing the gaincan increase the degree of oscillation and this

reduce stability. Of course if Kc become too large, oscillation or even instability can

result. Integral control action is oftenused but can be omitted if small offset in the liquid

level can be tolerated. Derivative action is not normallyused for level controlbecausethe

level measurement is often noisy as a result of the splashing and turbulence of the liquid

entering the tank.

For some application, tight level control is desirable. Forexample, a constant liquid level

is desirable for some chemical reactor or bioreactor in order to keep theresidence time



constant. In this situation, the level controller setting can be specified using standard

tuning methods. If level control also involves heat transfer, such as for a vaporizer or a

evaporator, the controller design becomes much more complicated. In such situations

special control methods can be advantageous.

2.4 Development of Standard PID Control

2.4.1 Feedback Control

The principal of feedback controller is one ofthe most intuitive concept known. An

action taken, more than likely to correct a less-than-satisfactory situation, then the result

of the action are evaluated. If the situation is not corrected, then further action may be

warranted.

The corrective action and the necessity for evaluating the effect for possibly further

corrective action are intuitively obvious. Feedback control can be classified by the form

of the controller output.

Feedback controllers use one, two or three methods to determine the value of the

controlleroutput. These methodscalledthe modes of control include the following;

• Proportional (P)

• Integral (I)

• Derivative (D)

10



2.4.2 Modes of Control

2.4.2.1 Proportional Mode

With a controller containing only the proportional mode, the controller output is

proportional to the measurement value only. No history of measurement value only and

no consideration of its rate of change are utilized. Adjusting or tuning the controller for

the desired performance is simple, since there is essentially only one adjustment to be

made. The proportional controller suffers from a serious deficiency. However an offset

exists between the set point and measurement value under most load conditions.

The amount by which the process variable must change to cause 100% change in

controller output is called proportional band. There is a direct relationship between

controller gain, Kc and proportional band, given by the following;

PB = 100_ Kc-100

Kc PB

Among commercially available controllers, both proportional band and gain adjustment

knobs are found as a means of tuning ofproportional mode of the controller. Some

microprocessor-based system permitthe user to configure the system to display either

proportional band or gain.

The relationship between process input and output can be presented in the concept of the

process graph, as the steady-state relationship between the process input (signal to valve)

and output (measurement) for a particular loadcondition. An example was given by

figure 2.1.

If there are load change on the process thatresult in shifting of the process graph, a new

value of the controller variable will be required. It is the duty of control system to find

precisely the point of process graph that brings the measurement to the desired value.

11



100%

MEASUREMENT

100%

SIGNAL TO VALVE

Figure 2.1: The Process Graph Determines the Value Position Required to Bring the

Measurement to a Desired Value

Although for even combination ofdisturbance variable we will know aprecise process
graph, there are certain attributes thatweshould know. We must know whether the

process graph slopes upward ordownward that isequivalent to saying that we must know

whether our process is direct-acting or reverse-acting. Sloping upward represents adirect-
acting process (an increase in controller output causes an increase inmeasurement).

Sloping downward is reverse-acting. Recall that to avoid positive feedback, the controller

must be ofopposite action - reverse acting for a direct acting process and vice versa.

Either explicitly or implicitly, the amount ofslope ofthe process graph, at least in the

vicinity ofthe most probable operating point. The slope can be stated as the change in

measurement divided by the change in controller output. This is called process gain.

Specifically, process gain, Kp canbe define as;

12



2.4.1.3 Derivative Mode

Nowthat we haveprovided for the elimination of the steady-state offset, let's consider an

enhancement for our control loopperformance. By adding a component to the controller

output that isproportional to the rate of change of the measurement, we can anticipate the

effect of load changes, therebyreducingthe total amount of deviation. The contribution

of the derivative mode to the controller output is based upon the rateof change

(derivative) of the product of controller gain time's error. The tuning parameter, TD,

allows us to adjust the relative effect of this mode of control.

m= Kc(e +J_ Jedt +TDde)

Ti dt

The combination of P,PI and PID cover most of the actual feedback controller

application. This is a summary of feedback control modes ;

Mode Common name

'roportional Proportional

Tuning parameter

Gain, Kc or

proportional band

14

Application

Used when;

Simple form of control is

desired, load does not change

significantly or offset is

acceptable.

Also used when the control

loop dynamic permit setting a

relatively high gain without

causing excessive oscillation.

Then, even if there is only



minimal offset.

ntegral Reset

Auto reset

Min/repeat or

Repeats/min

Used almost always in

conjunction with proportional

mode to eliminate steady-state

offset.

Occasionally used alone;

known as integral controller.

For most application, I-only

controller would have inferior

performance when compared

with PI modes.

Derivative Rate action

Pre-act

Derivative time Used usually in combination

with P and I modes to improve

loop performance by

anticipating effect of load

change.

Used mainly on slow response

Table 2.1: Summary of feedback control modes

2.5 Open-loop Control

An open-loop control system is one in which the control input to the system is not

affected in any way by the output of the system. It is also necessary however that the

system itself is not varied in anyway in response to the system output.

Such a definition indicates that open-loop systems are in general relatively simple and

therefore often inexpensive. Clearly the response of an open-loop is dependent on the

characteristics of the system itselfin terms of the relationship between the system input

and output signals. It is apparent therefore that if the system characteristics change at

some time thenboth the response accuracy and repeatability canbe severely impaired. In

15



almost all cases however the open-loop system will present no problems insofar as

stability is concerned, for example if an input is applied the output will not shoot off to

infinity - it is not much use as an open-loop system if this is the case.

2.6 Close-loop Control

In a close-loop system the control input is affected by the system output. By using output

information to affect in some way the control input of the system, feedback is being

applied to that system.

It is often the case that the signal fed back from the system output is compared with a

reference input signal, the result of this comparison (the difference) then being used to

obtain the control or actuating system input.

The procedure for making a close-loop test is to test the integral action to a minimum,

remove all derivation action and set the gain to a low value. Then put the controller in

automatic, with the measurement near the normal operating point and make a small

change in set point. If the process does not oscillate or if the oscillation quickly decays,

increase the gain and repeat the test. The objective is ultimately to have the gain high

enough that a sustained oscillation will result.

Once sustained oscillation is attained, measure the period of oscillation and note the gain

that ultimately produced sustained oscillation. The ultimate proportional band, PB, may

be determined instead. If so, use the usual relationship

K=100

PB

16



2.7 Controller Tuning Relations

Analytical expression for PID controller setting has been derived from the other

perspective as well. This expression are referred to as controller tuning relations. The

most widely used tuning relations are ;

2.7.1 IMC tuning relations

The IMC method can be used to derive PID controller setting for a variety of transfer

function model. Different tuning relations can be derived on the type of lowpass filter/

and time-delay approximation that are selected. In this experiment, IMC-based PID

controller setting is used to calculate the controller gain, Kc and Integral time, value. We

used case M to get the best result. The equation used is;

Table 2.2 IMC-Based PID Controller Settings for Gc (s) (Chief and Fruehauf, 1990)

used for this experiment

Case Model KcK Xc XD

M Ke"63

S

2^ + 0

(xc + 6)2

2rc + 9
none

17



2.7.2 Miscellaneous tuning relations

Two early controller tuning relations published are Ziegler-Nichols and Coohen-Coon.

These well-known tuning relations were developing to provide closed-loop responses that

have a lA decay ratio.



CHAPTER 3

METHODOLOGY/ PROJECT WORK

3.1 Procedure Identification

The initial stage of the research project is to review the equipment manual given by the

supervisor. Since this is a final year project, a full understanding on what steps had been

done is essential. This stage of revision also important to get enough information to

conduct further research and experiment on advanced control and regulatory. The author

also uses the Internet to find information aboutthe information regarding to this project. B

After all the information gather, the next step is to get familiarize with the experiment ^
as

apparatus and also to get familiar with the term in the process control field of studies. §
o

Finally, the author has to come out with the experimental procedure to run the project p

work and collect all the dataneeded. The important value needed for further analysis is; J§

I. Change of process variable, APV

II. Time constant, tc

III. Time delay, Td

IV. Controller gain, kc

After done all the experiment and done some discussion base on the result, the author

must be prepared to do a simulation using MATLAB simulink. After all finish, the record

of the result will be compared each other and get prepare for final presentation and final

report.

19
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A simple diagram of the equipment used for the experiment is what as shown in

Figure 3.1:

LCV31(£)

Water supply (/})

FCV21(#>)

WL922 WLF 922

Figure3.1: Equipment Used for the Experiment

20



3.2 Equipment Description

3.2.1 WLF 922

The total system consists of the leveltank together with liquid sump, pumps and

associated pipelines. The unit demonstrates the flow-level control by manipulating the

valve opening. These can be studied independently before attempting the level -flow

cascade control system. The medium used is water. This equipment licensed by

Yokogawa Inc. It consist of two tanks, T31 and T32, threepumps, P31, P32 andP33 but

for this experiment we only used P32 caused it's already provide sufficient pressure

needed to flow the water to T31. This equipment use FCV 31 as our flow controller.

The equipment also comes with panel instrument, SCADA. For PID controller, LIC

31 /FIC31 is one unit of Yokogawa YS 170 Single loopProgrammable controller

configured with two PID controller that is LIC31 (PID1, loop 1) and FIC 31(PID2,

loop2). It can beswitch to 2 positions. Position 1for single level loop and switch to

position 2 for cascade LIC31-FIC31 or single loopFIC31.

Compressed air is required to operate the valve system LCY31/PP/ LCV 31 and to

pressurize tank31. Before runthis experiment, ensure the pressure is in accordance to the

pressure indicated at the airpressure regulator (IAS). It also hasa Positioner (PP) but

usually for this experiment, we just bypass the Positioner.

3.2.2 WL 922

This equipment is quite the same with the WLF 922. The total system consists of the

level tank together with liquid sump, pumps and associated pipelines. The unit

demonstrates the flow control bymanipulating thevalve opening. The medium used is

water. This equipment licensed by Yokogawa Inc. It consist of one tanks, T21, three

pumps, P20, P21 and P22 but for this experiment we only used P21 caused it's already

provide sufficient pressure needed to flow the water to T31.

21



This equipment also consist of two flow controller but refer to the experiment procedure,

we only use FCV 21 as our flow controller. This equipment is connected to WLF 922

using hose that being clipped above the T31. Compressed air is required to operate the

valve system LCY21/PP/ LCV 21. Before run this experiment, ensure the pressure is in

accordance to the pressure indicated at the air pressure regulator (IAS). It also has a

Positioner (PP) but usually for this experiment, we just bypass the Positioner.

3.3 Methodology

3.3.1 Open-loop Experiment

3.3.1.1 Start up procedure for model WF 922

1. Fill up T21 with water by allowing "water supply ext" to be opened which located

at the equipment itself.

2. Connected a pipe from T21 to T31.

3. Switch on P21 so that the water from T21 could be pumped to T32.

4. Set P22A/B and P20 on OFF mode. This action is taken to prevent the water

from circulating back into T21.

5. Fully shut "to WLF 922" valve and "from WT 922" valve.

6. Fully shut the discharge valve and if the water level is exceeding the limit, the

water will flows through the overflow route and then to the drain.

7. Check whether the pressure is accordance to the pressure indicated at the air

pressure regulator (IAS) and air regulator (AR31). It is a good practice to purge

the air regulator (IAS) to remove any condensed water.

3.3.1.2 Experiment Procedures

1. Switch on the main power supply at the front of the cubicle. (Note: if an

annuciator is activated, press the acknowledge button to silence the buzzer and

rationalize the cause of the alarm condition)

22



2. Pay attention to the following switches and push button but do not switch ON any

pump yet;

• PANEL,SCADA/DCS selector switch (switch to "PANEL,SCADA" position for

panel operation)

• Pump P20 (remain this pump in OFF mode)

• Pump 21 (pumping inflow from T21 to T32. To be switched ON during

operation)

• Pump P22A/B (remain this pump in OFF mode)

3. Switch to position 1 by using 1-2 position selector switch, display FIC 21 and

press M (manual) and leave in manual mode.

4. In manual mode manually stroke the control valve MCV 21 with MV = 30% and

wait until PV become steady.

5. When PV has reached its steady state, press the RCD button ON to start

recording.

6. Introduce a step change on MV by manually stroke the control valve MCV 21

with MV = 40%.

7. When the step response curve is obtained, switch OFF the recorder chart drive.

8. Repeat procedure (step 4-7) for different value of step change as listed in the table

after achieves a good result on the LIC 21.

3.3.1.3 Start up procedure for model WLF 922

1. Fill up T32 with water by allowing"water supply ext" to be openedwhich located

at the equipment itself.

2. Switch on P32 so that the water from T32 could be pumped to T31.

3. Set P31 and P33 on OFF mode. This action is taken to prevent the water from

circulating back into T32.

4. Fully shut "to WLF 922" valve.

5. Fully shut the discharge valve and if the water level is exceeding the limit, the

water will flows through the overflow route and then to the drain.
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6. Check whether thepressure is accordance to thepressure indicated at theair

pressure regulator (IAS) and air regulator (AR31). It is a good practice to purge

the air regulator (IAS) to remove any condensed water.

3.3.1.4 Experiment Procedures

1. Switch on the main power supply at the front of the cubicle. (Note: if an

annuciator is activated, press the acknowledge buttonto silence the buzzer and

rationalize the cause of the alarm condition)

2. Pay attention to the following switches and push burton but do not switch ON any

pump yet;

• PANEL,SCADA/DCS selector switch (switch to"PANEL,SCADA" position for

panel operation)

• Pump P31 (remain thispump in OFFmode)

• Pump 32 (pumping inflow from T32 to T31. To beswitched ON during

operation)

• Pump P33 (remain this pump in OFFmode)

3. Switch to position 1by using 1-2 position selector switch, display LIC 21 and

press M(manual) and leave inmanual mode. At the same time, open up the globe

valve in the bottom of T31.

4. In manual mode manually stroke the control valve MCV 21 with MV = 30% and

wait until PV become steady after flow from WL922 become steady.

5. When PV has reached its steady state, press the RCD buttonONto start

recording.

6. Introduce a stepchange on MV by manually stroke the control valve MCV 21

with MV-40%. * ...

7. When thestep response curve is obtained, switch OFF the recorder chart drive.,

8. Repeat procedure (step 4-7) for different value with increment of20%, 30% and

40% of step change as listed in the table.
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3.3.2 Closed-loop experiment

The start up procedure for both equipment, WL 922 and WLF 922 is same as the open-
loop experiment. Just repeat the point in 3.3.1.1 and 3.3.1.3

3.3.2.1 Experimental Procedure

1. Repeat step 1 until step 3 from 3.3.1.2

2. Key in the value of controllergain, Kc and integral time, ti obtained in the open-

loop experiment.

3. In manual mode manually set the set point (SV) value at 1.50 and wait until PV

reach that value of SV.

4. When PV has reached SV value, increase the SV 10% (about 1.65) andchange it

from manual to automatic mode.

5. Press the RCD button ON to start recording.

6. When the step response curve is obtained, switch OFF the recorder chart drive.

7. Repeat procedure (step 2-4) for different value of SV that increase 20% and 30%.

8. Assume at thispoint, the WLF 922 startup procedure already done.

9. Repeat step 1 to step 3 from 3.3.1.4

10. Key in the value of controller gain, Kc and integral time, ti obtained in the open-

loop experiment.

11. In manual mode manually set the set point (SV) value at 400 and wait until PV

reach that value of SV.

12. Ensure that in the WL 922the flow ratevalue of SV and PV already reach at the

same value.

13. When PV has reached SV value at WLF 922, increase the SV 10% (about 440)

and change it from manual to automatic mode.

14. Press the RCD button ON to start recording.

15. When the step response curve is obtained, switch OFF the recorder chart drive.

16. Repeat procedure (step 9-12) for different value of SV that increase 20% and

30%.
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3.4 General Modelling Procedure

One of the importantfeatures of modeling is the frequent need to reassess both the basic

theory and the mathematical equation, representing thephysical mode (mathematical

mode) inorder to achieve agreement, between the model prediction and actual process

behaviors (experimental data).

As shown in figure 3.2below, the following stages in the modeling procedure canbe

identified;

1. The first involves theproper definition of the problem and hence the goals and

objectives of the study.

2. All the available knowledge concerning the understanding of the problem must

beassessed in combination with any practical experience, and perhaps alternative

physical models may need to be developed and examined.

3. The problem description must then be formulated in mathematical terms and the

mathematical model solved by computer stimulation.

4. The validity ofthe computer prediction must be checked. After agreeing

sufficiently well with available knowledge, experiments must then be desi3ned to

further check itsvalidity and to estimate parameter values. Step 1to step 4 will

often need to be revised at frequent intervals.

5. The model may now be used at the defined depth ofdevelopment for design,

control and for other purposes.
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Figure 3.2: Steps in model building
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Tuning Open-loop Test Data

The graph for this experiment obtained shown in Figure 4.1. There are three curves for

flow control loops and each curve represents the change in the manipulated variable for
10%, 20% and 30 % increment.

0.5

-♦— 10S —•— 20% 30%
Linear (30%) Linear (20%) Linear (10&)

y = 0:0232x+ 1.3116

10 15

Time

20 25

Figure 4.1: Flow control loops Process Response to an Open-Loop Test
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Figure 4.2 represent the level control loop curve and same as the flow control loop, each

curve represent the change of manipulated variable by increase it 10%,20% and 30%.

10% ~«-20% 30% Linear(30%) Linear(20%) Linear(10%)

Figure 4.2: Level control loops Process Response to an Open-Loop Test

In the open-loop test, the controller is placed in manual and controller output adjusted
until the measurement is near the normal operating point. Then the controller output is
changed in astep fashion. From the process response to this step change, parameter
values for asimple process model are determined; theoretical step response ofthis simple
process should approximate the response oftheactual process.

Since for most response to a step change in process input (controller output) is in aS

shaped curve that initially rises very gradually then rises more rapidly, followed by a
gradual rise to equilibrium, this type process response can usually be approximated by a
first-order lag plus dead time (FOLPDT) model as shown in figure 4.3.
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Figure 4.3 Actual and Approximate Process Response to an Open-Loop Test

Three parameter values are required;

• Process gain, Kp

• Dead Time (delay), tq

Process time constant, ic

Once the parameter values are determined, use the equation from table .... To determine

controller tuning values for the modes of control P, PI or PID that will be used. The

values of parameter are included in table 4.1;
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FIC31 LIC 31

AMV 10 20 30 10 20 30

APV 0.63 1.7 2.2 470 350 250

?D 26.67 33.33 26.67 100.8 50.4 28.8

TC 13.22 13.07 13.97 61.52 28.02 15.46

k 0.232 0.322 0.325 37.424 36.979 30.478

kc
0.143867 0.085784 0.101738 0.000227 0.000468 0.001

ti

53.11 59.47 54.61 223.84 106.44 59.72

Table 4.1: Value of Parameter for Controller Tuning (open-loop)

The success open-loop test method depends upon several factors, including how well a

first-order lag plus dead time model actually matches the true process response and how

accurately the model parameter are determined. Based onthe graph form figure 4.1 and

4.2, both result did not give a good result and it is not matches the true process response.

That's mean the value are not anaccurate value. Very few process, however will exibit a

true FOLPDT response. For most process, anunknown number of lags in the system can

be arranged in a infinite variety ofways. The smaller lag produce an apparent dead time

even if no true dead time is present.
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4.2 Tuning From Close-Loop Test Data

Through the experiment, curve is being obtained for each of the equipment;

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00 1400.00 1600.00 1800.00

time (s)

Figure 4.4: Flow control loops Process Response to an Closed-Loop Test

700
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| 400

I 300
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100

10% -s— 20% 30%

0 500 1000 1500 2000 2500 3000 3500

time

Figure 4.5: Level control loops Process Response to an Open-Loop Test
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FIC31 LIC 31

initial

MV

45.5 45.8 46.2 15.5 15.8 15.8

Final

MV

47.7 50.3 52.5 13.4 9.8 7.4

AMV 2.2 4.5 6.3 2.1 6.0 8.4

APV 0.15 0.30 0.45 40 80 120

td 1686.67 1333.33 1053.33 2937.6 2124.0 1152.0

tc 481.43 747.00 563.5 - 203.57 572.86

k 0.0032 0.0044 0.0065 - 0.747 0.711

kc 0.175 0.149 0.128 - 0.00063 0.00109

ti 2649.53 2827.33 2180.33 - 2531.14 2297.72

Table 4.2: Value of Parameter for Controller Tuning (close-loop)

In this close-loop test, the mechanicsof performinga close-loop test are relatively easy to

describe. It may not be nearly so easy to actually implemented the test, however for

several reason;

1. It is difficult to control the amplitudeof oscillation. A large amplitude is not

requires in fact it need be only sufficiently large to distinguish control oscillation

from measurement noise band. Evenso, a small change in set pointmay yield a

larger than expected amplitude ofoscillation.

2. For many applications a sustained oscillation may not be tolerable.

3. Many supervisory and operations personnel may object to a sustained oscillation,

even thoughthe test is made in order to obtain better controller tuning.

4. Several test, requiringa long testing period and consequently a lengthyperiod of

off-spec production may be required to obtain sustained oscillation.

Despite the disadvantages, the close-loop test has the following advantages over the

open-loop test;

1. The close-loop method makes no priority assumption as to the form of theprocess

model. It is not force the process to looklike a first-order lagplus dead time.
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2. The data obtained from the close-loop test is much higher with the close loop

method that with the open-loop method. This is because frequency orperiod can

be measured very precisely, whereas dead time and time constant can only be

approximated.

In many field ofinformation, there are many thing discuss about self-regulating

processes, very little discuss about techniques for tuning loops for non-self regulating

processes such as liquid level control loops. There are perhaps several reasons;

1. In theory, anoise free, pure integrating process could be controlled by ahigh

gain, proportional-only mode controller with very little offset from set point. In
practice, howeverthis ideal may not be achievable.

2. For many applications, the control ofliquid level is not critical. Ifthe application
is for level control ina buffer storage tank between processing units, the outflow

is probably a feed rate to the downstream process unit. It is usually preferable to

tolerate fluctuation inthe level and maintain a relatively constant rate to the

downstream unit rather than tight level control with a fluctuating feed rate.

Al though there is no theoretical upper limit for the gain ofproportional-cnly controller
for an integrating process, in practice this will be limited by resonance that may occur
within the loop. Ifthe level sensor is an external cage type, there may be manometer
effect between the liquid in the tank and the liquid within the level sensor cage. This will
appear as an oscillation within the control loop, even though the total mass holdup may

be unchanging. Ifthere is alarge surface area on the liquid, aresonant sloshing may
occur, with aperiod that is proportional to the cross-sectional dimension. For apoint-
source measurement, this will also show up as an oscillation within the loop. Thus, there

will be apractical limit to the controller gain as high as 10 or 20 (proportional band of
5% - 10%). With ahigh gain, any measurement noise present will cause excessive valve

action. Therefore, the gain may be reduced in favor of utilizing some integral action
within the controller.
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If there is too much reliance onintegral action, the controller approaches anintegral-only

controller. With this, both the controller and theprocess actas integrators. A feedback

looparound two integrators in series will always produce an oscillating condition.

Therefore, it is good practice to set the gain as highas practical in order to limit the

fluctuation and rely to a lesser extent on reset to eliminate offset.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This research has been done to learn more about modelling and advanced regulatory

control of two interacting in a series. This project is done byusing theequipment in the

Chemical Engineering Control Laboratory, WL 922 and WLF 922. The researchhas not

yet been successfully conducted and theobjectives have notyet been achieved. Until this

time, the conclusions from thisresearch project are:

• For flow control loops, PI control is generally used with intermediate values of

the controller gain.

• For liquid level control loops, because the offset is not important in averaging

level control, it is reasonable to use a proportional-only controller.

Comparisons with modelling are notachieved yet because by some factors that is

beyond the author control. Thus, the objective tocompare between the experimental

data and modelling data is not achieved yet. This project will be proceeding after this

to achieve the objective stated.
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5.2 Recommendation

Up until this stage of this project, there are a few recommendations can be made togive a

better result and improvement to obtain a better view ofcurve inthe graph.

5.2.1 Flow Rate

Inthis experiment, value ofcontroller gain, Kc and integral time is too high. Fruehauf

recommend that the following controller setting is about 0.5<Kc<0.7 and 0.2<u <0.3. the

presence of recurring high-frequency noise discourage the use of derivative action

because it amplified the noise. Furthermore, because flow control loops usually have

relatively small settlingtimes, there is little incentive to use derivative action to make the

loop respond even faster.

5.2.2 Controller Tuning Relations

In this experiment, only IMC method is used to find out the controller gain and integral

time value. It is suggested to use others method as well such as Ziegler-Nichols or

Coohen-Coon so that we cancompare and find a better result.

5.2.3 Using a Bigger size of tank

It is good to have a bigger tankage so that the interacting process between the two

equipment can run smoothly and without any rushing.
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