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ABSTRACT

The need for transmission and archive of mammograms and ultrasound images has
dramatically increased in tele-healthcare applications. Such images require large
amount of storage space which affect transmission speed. Therefore an effective
compression scheme is essential. Compression of these images. in general, faces a
great challenge to compromise between the higher compression ratio and the relevant
diagnostic information. Out of the many studied compression schemes, lossless JPEG-
LS and lossy SPIHT are found to be the most efficient ones. JPEG-LS and SPIHT are
chosen based on a comprehensive experimental study carried on a large number of
mammograms and ultrasound images of different sizes and texture. The lossless
schemes are evaluated based on the compression ratio and compression speed. The
distortion in the image quality which is introduced by lossy methods evaluated based
on objective criteria using Mean Square Error (MSE) and Peak signal to Noise Ratio
(PSNR). It is found that lossless compression can achieve a modest compression ratio
2:1 — 4:1. Lossy compression schemes can achieve higher compression ratios than
lossless ones but at the price of the image quality which may impede diagnostic

conclusions.

In this work, a new compression approach called Hybrid Region-based Image
Compression Scheme (HYRICS) has been proposed for the mammograms and
ultrasound images to achieve higher compression ratios without compromising the
diagnostic quality. In HYRICS, a modification for JPEG-LS is introduced to encode
the arbitrary shaped disease affected regions. Then Shape adaptive SPIHT is applied
on the remaining non region of interest. The results clearly show that this hybrid
strategy can yield high compression ratios with perfect reconstruction of diagnostic
relevant regions, achieving high speed transmission and less storage requirement. For
the sample images considered in our experiment, the compression ratio increases
approximately ten times. However, this increase depends upon the size of the region
of interest chosen. It is also found that the pre-processing (contrast stretching) of

region of interest improves compression ratios on mammograms but not on ultrasound

images.
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ABSTRAK

Keperluan dalam pemindahan mammograms dan imej ultrabunyi telah meningkat
secara mendadak di dalam aplikasi tele-kesihatan. Imej-imej tersebut memerlukan
ruang simpanan yang besar dan ini mempengaruhi kelajuan pemindahan. Justeru,
skema pemampatan yang berkesan adalah penting. Secara amnya, pemampatan imej
tersebut mengalami cabaran yang besar dalam mengimbangi nisbah pemampatan
yang lebih tinggi dan kerelevanan diagnostik. Lossless JPEG-LS dan lossy SPHIT
telah dikenalpasti antara kaedah-kaedah yang paling berkesan dalam skema
pemampatan. JPEG-LS dan SPHIT dipilih berdasarkan eksperimen terperinci yang
dilakukan ke atas sejumlah besar mammogram dan imej ultrabunyi. Kaedah lossless
dinilai berdasarkan nisbah dan kelajuan pemampatan. Kaedah /ossy pula dinilai
berdasarkan kriteria objektif menggunakan Mean Square Error (MSE) dan Peak
Signal to Noise Ratio (PSNR). Walau bagaimanapun, pemampatan /ossless hanya
boleh mencapai nisbah pemampatan sederhana sekitar 2:1 — 4:1. Skema /ossy bolch
mencapai pemampatan yang lebih tinggi berbanding skema /lossless tetapi
menjejaskan kualiti imej yang menjadi penghalang dalam membuat kesimpulan

diagnostik.

Dalam penyelidikan ini, ‘Hybrid Region-based Image Compression Scheme
(HYRICS)® telah dicadangkan bagi mencapai nisbah pemampatan tertinggi tanpa
menjejaskan kualiti diagnostik. Dalam HYRICS, JPEG-LS telah digubah untuk
mengekod setiap bahagian berbentuk rawak yang dilanda penyakit. SPIHT yang
boleh disesuaikan mengikut bentuk pula diaplikasikan ke atas bahagian sclebihnya

yang bukan dalam pemerhatian.

Keputusan yang diperolehi menunjukkan hybrid ini boleh menghasilkan kadar nisbah
pemampatan tinggi, pembinaan semula bahagian diagnostik yang relevan dengan
sempurna, mencapai pemindahan dalam kelajuan yang tinggi dan mengurangkan
keperluan storan. Bagi sampel imej yang digunakan dalam eksperimen, kadar
pemampatan telah meningkat lebih kurang sepuluh kali ganda. Bagaimanapun,
peningkatan ini bergantung kepada saiz bahagian yang dipilih. Ia juga telah didapati
bahawa pra-pemprosesan (contrast stretching) pada bahagian yang dipilih telah

meningkatkan kadar pemampatan dalam mammograms sahaja.
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CHAPTER 1

INTRODUCTION

1.1 General Background

The interior structures and the functions of the living human body can be visualized to
diagnose abnormal conditions and guided therapeutic procedures using various
medical modalities such as X-ray, Ultrasound (US), Mammography. Magnetic
Resonance Imaging (MRI), Nuclear Medicine (NM) and Computed Tomography

(CT).

These medical images in general can be categorized according to the interaction of
energy with the tissue into either external energy source where the energy is
penetrating the target organ from outside such as X-ray. Mammography, US and MRI
or internal source of radioactive energy such as NM in which radioactive substances

are injected into the body to interact with the selected tissue.

The abdominal and breast related diseases are dominating over other diseases all over
the world. Breast cancer which is often detected using periodic screening of
mammography is the most serious disease affecting women. About one in 19 women
in Malaysia are at risk, compared to one in 8 in Europe and the United States[1].
Ultrasonography is being used to examine abdominal disorders in liver. kidney,
gallbladder and spleen that are responsible for a considerable burden of suffering and
death in all age groups worldwide. In the United Kingdom. almost 2700 people are
diagnosed liver cancer, 6700 are diagnosed with kidney cancer and bladder cancer is
affecting more than 10000 individuals each year. Besides, ultrasound is also well-

known for its applications in obstetrics, where it is used to examine the different

stages of fetus during pregnancy 2]

In view of the increased complexity of the breast and abdominal discases worldwide
there is a necessity to have tele-consultation with medical experts at distance placeless
within and outside the country. For this purpose there is a necessity to transmit and

store large amount of image data.
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In this work the research is concentrated on finding out efficient compression

techniques for transmission and archiving of mammograms and ultrasound images.

Mammography is a low-dose x-ray system that provides images of the breast's inner
structure and is used as a screening tool to detect breast cancer and other diseascs.
Studies have shown that early detection of breast cancer using periodical screening by

mammography decreases the mortality rate [3].

Ultrasonography is a technique that uses reflected ultrasonic waves to display visual
images of structures within the body. The images generated are stored in digital form,
and accessed and transmitted as archival records of physical examination for

diagnostic and surgical usage in hospitals or health-care centers.

Recently, the need for transmission/archive of mammograms and ultrasound images
has dramatically increased due to the growing need to deliver healthcare to patients in
remote arcas (tele-healthcare), sharing medical knowledge over distance (tele-

consultation) and long-term medical image storage (archive) for future interpretation

and research.

The massive number of above medical images generated per patient and the high
resolution needed to represent an image require large amount of storage. As a result,
the transmission of these images over a network to a remote place may be time
consuming. For example, a typical mammogram digitized at a resolution of about
5000 x 4000 pixels and 12 bits, results in approximately 40Mb of digital data. Such
high resolution is required in order to detect isolated clusters of micro-calcifications
that herald an early stage cancer. Similarly, in a single medical ultrasound
examination there are on the average 10 to 20 still images of 640x480 pixels
generated equaling to approximately 24.6 to 49.2Mb of grayscale image data. Due to

the increasing numbers of patients and elongated case histories, ultrasound images

require large space and transmission time[4].

1.2 Motivation

It is clear that advances in technologies for transmission or storage are not sufficient

to solve transmission/storage problem of medical images. Therefore, an effective
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compression scheme is essential to reduce the unnecessary data as much as possible

for fast transmission and efficient storage.

There are many approaches to image compression which can be used. These can be
categorized into two fundamental groups: lossless and lossy. In recent years, there has
been a long-standing debate over which compression schemes are appropriate for the
medical images. While lossless compression can retain the important information in
the image, it can achieve only modest compression ratio (2:1 — 4:1) which is
inadequate for the growing need for medical images transmission and archive[5]. On
the other hand, lossy compression schemes can achieve very high compression ratios
but at the price of image quality. Medical image which holds important diagnostic
values (i.e. micro-calcifications in mammograms and speckle texture in ultrasound),
cannot afford much degradation which may negatively affect radiological

diagnosis|6].

The aim of this work is to design an ideal compression method to encode ultrasound
and mammogram images by removing unnecessary data without affecting the
sensitive details which give vital diagnostic information. In medical images, normally
there are few small selected disease intensive regions that are diagnostically relevant,
while the remaining regions are much less important for diagnosis but may be
necessary to give some spatial information. The approach is to select the best among
the well known lossless and lossy compression scheme. Then combine them in a
hybrid manner that allows perfect reconstruction of the diagnostically relevant regions
and permits some degradation in non-relevant arcas yielding a higher compression

ratio while still maintaining the diagnostic values.

1.3 Organization of Thesis

Chapter 2 introduces various medical imaging modalities and their necessity in tele-
healthcare application giving special focus on mammography and ultrasonography.
The features of telemedicine and significance of medical image compression are
introduced. A review of compression categories with some terminology and concepts
are also discussed in this chapter. An overview of the literature survey is carried out
on the evaluation of some efficient image compression schemes on medical images is

presented.
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Chapter 3 provides a detailed description of a comparative study to pinpoint efficient
and well suited lossless and lossy compression methods for mammograms and
ultrasound images. A brief overview of all the compression methods used in this
study is presented along with their libraries and software implementation. The

methodology of evaluating the compression methods is described in detail.

[n Chapter 4, cight frequently used lossless and four lossy compression schemes are
applied on set of mammograms and ultrasound images of different sizes and texture.
The results obtained are analyzed and thence JPEG-LS and SPIHT are found to be

better schemes among lossless and lossy respectively.

In Chapter 5, a new hybrid compression technique called Region-based Image
Compression Scheme (HYRICS) that combines modified JPEG-LS for arbitrary
shaped regions of interest and shape adaptive SPIHT for non-region of interest
yielding a high overall compression ratio while still retaining diagnostic values is
presented. The algorithms that are involved in this approach with the proposed

modifications are reviewed.

In Chapter 6, the results of compression ratios and compression/decompression time
of JPEG-LS applied on whole image, the modified JPEG-LS on the regions of
interest, shape adaptive SPIHT on the non-regions of interest and the overall
compression ratio of the proposed HYRICS on the selected set of mammograms and
ultrasound images for various breast and abdomen diseases are presented. The results
of compression efficiency by applying modified JPEG-LS on preprocessed (contrast

stretched) mammograms and ultrasound images are also discussed.

Chapter 7 presents the overall conclusion of the research work and the

recommendations for further improvements.
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CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

In this chapter a brief description of various medical imaging modalities for
telemedicine is presented. Basic theory of image compression in general and lossless
and lossy compression in particular is discussed. Previous comparative studics on
various compression techniques used in medical imaging and evaluation of their
performance are given. The background information regarding region-based image

compression is also discussed.
2.1.1 Medical Imaging

The interior structures and the functions of the living human body are not generally
visible to the human observer. However, by various medical imaging methods, these
internal aspects can be visualized through which the medical professional can look
into the body to diagnose abnormal conditions and guide therapeutic procedures|7].
Image of human body in general can be derived from the interaction of energy with
the tissue. The energy source can be categorized either as external or internall8].
Different electromagnetic waves that are used in clinical imaging are presented in
Figure 2.1[9]. External energy source like ionized radiation is used in some imaging
methods such as X-ray radiography and Computed Tomography which are associated
with health hazards that require methodology that guarantees high level diagnosis
while limiting the possible harm to the patient. Ultrasound (US) and Magnetic
Resonance Imaging (MRI) - which use ultrasonic waves and radiofrequency
respectively - are other examples of external energy sources using non-ionizing
radiations. Therefore there are no risks for long term effects of exposure. However in
MRI. there is an identified impact associated with tissue heating from exposure to the
radiofrequency field and the presence of implanted devices in the body. Nuclear
Medicine (NM) imaging modalities use an internal energy source through an emission

process to generate images of the human organs. In emission imaging, radioactive
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substances are injected into the body to interact with the selected tissue to form an

internal source of radioactive energy.
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Figure 2.1: Different electromagnetic spectrum that are used in medical imaging
2.1.2 Telemedicine

The reality of geographic and socio-economic barriers to health-care access in rural
communities has been recognized for many years. Health-care services in rural arcas
face professional isolation, and must also deal with additional expenses for
transportation when sending patients for referral. These problems outside urban
centers increase the cost of health-care to the individual patient, and therefore the
entire system. These problems have inspired clinicians, health service researchers and
engineers to investigate and develop what’s called telemedicine systems to improve
the standard of health-care by providing quick medical intervention in a timely
manner. instead of sending rural patients to urban hospitals[10]. Therefore, the term
telemedicine refers to the use of communications technology and electronic
information to provide and support health-care and exchange medical information
remotely without regard to the distance that separates the participants[11]. The
concept of using communication technology for diagnosis and treatment of patient in
other locations is probably as old as the telephone. Telemedicine, however, is more

than simple voice communication over telephone lines; since it includes the
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transmission of still images, video, and other forms of medical data. Telemedicine
requires a multidisciplinary approach spanning various sectors like biology. medical
science, networks, communications and multimedia processing. The current computer
network and communication technologies enable us to create a virtual health-care
environment that will cover most areas that conventional health-care can not.
Specialized application software and medical devices capable of electronic data
collection, storage and transmission are the key components of the telemedicine
infrastructure. This infrastructure includes the physical facilities and equipment used

Lo capture, transmit, store, process, and display medical data and images|12].

2.2  Medical Imaging Modalities
2.2.1 X-ray Radiography

Conventional radiography, more commonly known as X-ray, is the oldest and the
most widespread technique of medical imaging[13]. In X-ray images are created by
passing small, highly controlled amounts of radiation through the body, capturing the
resulting shadows and reflections on a photographic films or radiation sensitive plates.
Due to their calcium content, bones are the most opaque and thus the most visible
tissue on X-ray images. Soft tissues are less opaque than bones, but more opaque than
adipose tissues. Air and gas are completely radio-transparent.  X-ray radiography is
the method of choice for the first line diagnostic of skeletal pathologies. It is also
currently used for imaging lungs and breasts (mammography). This most commonly
used clinical method has however, some drawbacks. As the depth information is lost.
the 2-dimensional X-ray image will be a complex superposition of all the structures of
the 3-dimensional body. Furthermore, the size on the image of an object is dependent
on its distance to the X-ray source resulting in a distorted scaling factor of the picture.
In addition, the contrast of the image suffers from limited dynamic range of the
attenuation coefficients that exist in the human body[14]. Besides, there are few

serious hazards associated with usage of ionizing radiation.
2.2.2 Computed Tomography

Conventional X-ray imaging has an inherent limitation in resolving overlying
structures as everything seen in the images are the result of a projection. However, by

using Computed Tomography (CT) scan, it is possible to reconstruct 3D distribution
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based on a large set of X-ray projections obtained at different angles covering a
complete circle around the patient[13]. Once the projected values are collected, they
can be digitally filtered and back-projected mathematically onto a matrix which
represents fine differentiation of tissue densities[14]. Naturally the 3D information
cannot easily be displayed as such; instead it is most often displayed as a series of
axial slices. Since the image is digital and represents a slice, multiple slices can be
obtained and a volume estimated and displayed as a three-dimensional structure on a
video display tube or film. This distinction is enough to discriminate most of the soft
tissue organs of the brain, abdomen and lungs. Computed tomography has the
advantage of rapid acquisition of images, but employs ionizing x-ray radiation which
must be used conservatively to avoid harmful cumulative biologic effect. But the cost

involve in this modality will be on the higher side.

2.2.3 Mammography

Breast imaging can be performed using different medical imaging techniques.
However the most effective and economical breast imaging modality so far has been
mammography because of its simplicity, portability and low cost. A Mammogram is
an X-ray picture of the breast acquired by low doses of ionizing radiation to reveal
tumor growths that are undetectable in a physical examination[15]. The abnormal
growths of tumors or micro-calcification clusters in mammograms are diagnostic
signs of breast cancer that may be malignant or benign. Figure 2.2 shown 3 different
mammograms: normal, benign and malignant taken from Digital Database for
Screening Mammography (DDSM)[16]. Malignant clusters appear as groups of small,

bright particles with arbitrary shapes embedded in a non-homogeneous background.

Therefore, carly detection of breast cancer using periodical screening program based

mammography is currently the most effective way to prevent the fatal stage.
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(A) (B) (©)

Figure 2.2: Mammograms :( A) Normal (B) Benign (C) cancerous malignant|16]

2.2.4 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging technique used primarily in
medical fields to produce high quality cross-sectional image of the human body. The
MRI technology is based on a spectroscopic technique used by scientists to obtain
microscopic chemical and physical information about molecules. In MRI, the
characteristics of nuclei of atoms of certain elements in the body tissues that can be
magnetized when placed in a strong magnetic field. These magnetized nuclei are then
energized by a radiofrequency pulse. The stored radio signals emitted by the protons
are used by highly specialized equipment to make sectional images of the body.
Contrast between the images of different types of tissues made by MRI is the result of
variation in their composition and concentration of protons. MRI is non-invasive and

does not use radiation, however it is costlier compared to X-ray and ultrasound [17].
2.2.5 Nuclear Medicine

Nuclear Medicine (NM) comprises the medical diagnosis and therapy use of
radioactive isotopes for imaging of organs, distribution of metabolism or
pathophysiological processes by the use of position sensitive detectors for detection of
penetrating ionizing radiation, most often gamma rays[18]. In diagnosis, radioactive

substances are administered to patients and the radiation emitted is measured. The
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majority of these diagnostic tests involve the formation of an image using a gamma
camera. In therapy, radionuclide is administered to treat the discase or provide
palliative pain relief. The topographic methods used in nuclear medicine are Single
Photon Emission Tomography (SPECT) and Positron Emission Tomography (PET).
SPECT is able to provide true 3D information by using a gamma camera to acquire 2-
D images from multiple angles. This information is typically presented as cross-
sectional slices through the patient, but can be freely reformatted or manipulated as
required|19]. Because SPECT permits accurate localization in 3D space. it can be
used to provide information about localized function in internal organs such as
functional cardiac or brain imaging. PET scan is a diagnostic examination that
involves the acquisition of physiologic images based on the detection of radiation
from the emission of positrons that administered to the patient[20]. The subsequent
images of the human body developed with this technique are used to evaluate a
varicty of diseases such as characterizing biochemical changes in the cancer to
examine the effects of cancer therapy. determining blood flow to the heart muscle and
help evaluate signs of coronary artery disease and PET scans of the brain are used to
evaluate patients who have memory disorders of an suspected or proven brain tumors
or seizure disorders. PET can give false results if a patient's chemical balances are not
normal. Specifically, test results of diabetic patients or blood sugar or blood insulin
levels. The radioactive substance may expose radiation to the fetus in patients who are

pregnant or the infants of women who are breast-feeding.

2.2.6 Ultrasonography

Medical ultrasonography refers to the use of echoes from ultrasonic waves to generate
visual images of abdominal organs (liver, kidney, and gallbladder)[21]. In Medical
profession, ultrasound is considered as the most widespread and versatile medical

imaging modality for diagnosis of various major diseases. While it may provide less

diagnostic information than more sophisticated techniques such as CT or MRI, it has
several advantages which make it ideal as a first line test to estimate the degree of
complexity. These advantages include safety, as the patient is not exposed to

radiation. The equipment is relatively small, easy to handle, quickly to perform and

more economical than other options. Furthermore. ultrasound is also well-known for
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its applications in obstetrics, where it is used to examine the different stages of fetus

during pregnancy.

Ultrasound images have some unique features that make them different from natural
images. A simple natural image consists of a few edges against a relatively uniform
background, but ultrasound images exhibit speckle texture over the entire ultrasound
scanned area. The oriented speckle texture, an ultrasonic scanning artifact caused by
scattered reflections, is typically concentrated in certain spectral regions due to the
orientation of the speckle pattern[22]. An example of an organ that produces a

-~

particularly speckle ultrasound image is the liver, as shown in Figure 2.3.
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Figure 2.3 :Typical ultrasound image of a normal liver [23]
Depending on the context and application, speckle in medical images can be viewed
as signal or noise. For example, speckle can be used to characterize tissue or it can

mask diagnostically relevant features [23].

Another characteristic of ultrasound images is the spatial variation in pixel statistics
across an individual image. A typical image consists of an ultrasound-scanned area,
which is often special conical shape, against a passive background, which may

contain text and limited graphics as shown in Figure 2.3.
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2.3 Images Compression

The aim is of image compression is to encode images to reduce the size as possible
with a decoding mechanism which reconstructs the original image with an acceptable
visual quality. Image compression is becoming more crucial and regarded as key
technology in the development of multimedia and telecommunication in general and

tele-healthcare application in particular.

2.3.1 Redundancy

Image compression takes advantage of the fact that there is a lot of redundant
information contained in the original image. Mostly there are three kinds of
redundancy: psycho-visual, inter-pixel and coding redundancy. In inter-pixel
redundancy, there are statistical dependencies between pixels especially between
neighboring pixels. Such dependencies can be suppressed by compression. Psycho-
visual redundancy is due to the fact that human eye does not respond with equal
sensitivity to all image signals since some are even not perceivable and certain
information simply has less relative importance than the other in human visual
processing. Therefore eliminating some information may be acceptable. In coding
redundancy, the uncompressed image usually has pixel of fixed length code which is
convenient for processing the image but uses unnecessary space. By using some
variable length coding saves requirement can be reduced. There are different methods
for dealing with the different kinds of redundancy. Image compression methods are
usually multi-step algorithms which are applied to reduce these redundancies. Image
compression schemes can be categorized as lossless and lossy. Application of these

schemes depends upon the required quality of the reconstructed image.
2.3.2 Lossless Image Compression

In lossless compression, the image reconstructed after decompression is numerically
identical to the original image. This is obviously most desirable since no information
is compromised. However, it can achieve only compression ratio of 2:1 — 4:1[5].
Lossless image compression is preferred in sensitive applications such as  medical

imaging, military and astronomy.
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To perfectly reconstruct the original image, lossless compression methods take
advantage of the statistical properties of the redundant data (inter-pixel and coding
redundancy). The goal of lossless compression is to find and eliminate this statistical
redundancy with a guarantee to generate an exact duplication of the input image after
a compress/decompress cycle. Modern lossless image compression algorithms employ
different techniques. Most of the lossless compression methods can be classified
under three fundamental paradigms namely: Predictive with statistical modeling,

Transform-based and Dictionary-based.
2.3.2.1 Predictive with statistical Modeling

There are two distinct and independent components for the predictive and statistical
modeling: Modeler and Coder [24]. As the modeler is gathering some information
about the image data by tracking some context and identifying a probability
distribution, the coder, after scanning the current pixel x; . uses this information to
encode the next pixel x;.;. The goal is to find an estimate (prediction) of x;.; that
maximizes the conditional probability: P (x;.; | x;, x2... x) while scanning image data
sample by sample in raster-scan. Because of the high correlation between neighboring
pixels, the prediction value usually is estimated by using a simple function of previous
neighboring samples. The difference between the actual pixel value and its predicted
value is expected to be relatively small in absolute terms and this is called as

differential or the error signal . The value of this error signal is always entropy coded.

After estimating the prediction value, the next step is the determination of context
(function of possible different casual template) in which a value x,.; occurs. Then a
probabilistic model for prediction error is estimated. Some examples of predictive and
statistical modeling are Lossless-JPEG, JPEG-LS, Context-based Adaptive Lossless
Image Compressor (CALIC), Fast and Efficient Lossless Image Compression
(FELICS) and Binary Tree Predictive Coding BTPC (BTPC). In Lossless-JPEG a
simple linear prediction combined with Huffman coding. JPEG-LS is based on LOw
COmplexity lossless compression (LOCO-I) method that employs nonlinear simple
edge detector prediction [25], in particular with Golomb-Rice coding and Run Length
Encoding (RLE). CALIC combines non-linear prediction with advanced statistical
error modeling techniques to improve compression efficiency but at the price of the

coder complexity. FELICS is able to achieve reasonable compression ratio in optimal
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time by coding each pixel in the context of two nearest neighbors. BTPC is a multi-
resolution technique designed to perform both lossy and lossless compression and
working efficiently for different types of images. The main idea behind BTPC is to

decompose the image into a binary tree.
2.3.2.2 Transform-based Schemes

In transform-based scheme, the image is transformed to a new domain in which they
are better organized and easier to compress than in the normal spatial domain. Natural
images have a lot of spatial correlation between pixel intensities, and these
correlations can be exploited by the transform. A transform operates on an image’s
pixel intensities and converts them into a set of transform coefficients. This
transformation concentrates the important image information into a more compact
form in which the redundancy can be removed. Transforms generally come in pairs
of forward and inverse forms. If both the forward and inverse transforms are applied
without compression, then the transform is either perfectly reconstructing (lossless),
or the image information is quantized and lost after the transform stage (lossy). A
lossless transform does not further complicate an image compressor since it makes no
decisions about which parts of the image data are useful. However a lossy transform
can often produce more compression and allow the transform algorithm to run faster.
The transform can cither be orthogonal, orthonormal or non-orthogonal. It is common
to use orthogonal/orthonormal transforms in image compression, because they are
efficient and the transform coefficients are highly de-correlated. The Discrete Cosine
Transform (DCT) and the Wavelet Transform are examples of orthonormal
transforms that are used in image compression. JPEG2000 and SPIHT are examples
of transform-based in wavelet domain[26, 27]. JPEG2000 is the latest standard for
still image coding that is based on the discrete wavelet transform (DWT). scalar
quantization, context modeling, arithmetic coding and post-compression rate
allocation.  Lossless mode of JPEG2000 is achieved through the use of a special
integer wavelet filter (biorthogonal 3/5 instead of Daubechies biorthogonal 7/9) and a
quantization step size of 1. Both lossless and lossy mode of JPEG2000 bitplanes have
to be encoded by the Embedded Block Coding with block Truncation EBCOT with no
drop of any bitplane [28]. SPIHT is achieving lossless mode by using reversible

wavelets (S+P). S+P is a reversible wavelet transform that allows for reversible
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image recovery by truncating the transform coefficients at some step in the
transformation and encoding all of the transform coefficients. The S+P transform
allows for either progressive fidelity or progressive resolution implementations and
utilizes the information from both the low and high-resolution bands for prediction
and then truncates the prediction value to an integer. This transformation reduces the
source entropy in the resulting image representation, which is then encoded using

either arithmetic or Huffman coding[29, 30].
2.3.2.3 Dictionary-based Schemes

The dictionary based compression algorithms substitute shorter codes for longer
patterns of strings within the image data. Pixel patterns (substrings) in the data stream
found in the dictionary are replaced with a single code[31]. If a substring is not found
in the dictionary. a new code is created and added to the dictionary. Some examples
of dictionary-based methods are Graphic Interchange Format (GIF) and Portable
Network Graphics (PNG) [32] which are widely used in the Internet. PNG was
created to improve upon and replace the GIF. It uses preprocessing to remove data

redundancy, that is followed by the deflate algorithm.
2.3.2.4 Entropy Coding

An entropy coding is a coding scheme that assigns codes to symbols so as to match
code lengths with the probabilities of the symbols and it usually the last stage in the
image compression. Typically, entropy encoders are used to compress data by
replacing symbols represented by equal-length codes with symbols represented by
codes proportional to the negative logarithm of the probability. Therefore. the most

common symbols use the shortest codes. According to Shannon's theorem|33], the

; : 1 ] .
optimal code length for a symbol is logB— . where b is the number of symbols used
P
to make output codes and p is the probability of the input symbol. Three of the most

common entropy encoding techniques are Huffman coding, Golomb -Rice coding and

arithmetic encoding.
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2.3.3 Lossy Image Compression

Lossy compression permits distortion over original image to obtain much higher
compression ratio than lossless methods. Theoretically, it can compress an image to
any ratio. However, as the compression ratio goes higher, the degradation of the
image will become serious. Lossy compression takes advantage of two factors to
achieve this goal: on one hand spatial image is highly correlated (i.e. neighboring
pixels tend to have similar value), and the limitation of human eye which cannot
perceive small errors in images especially the sensitivity which is lower in the high
frequency domain. The degree of degradation of the compressed image usually
depends on the compression algorithm and the targeted compression ratio. In most
lossy compression the original image is transformed from spatial domain to frequency
domain such as DCT and the DWT. The compressor then removes the redundancy in
the transformed image and stores it in a compressed format. JPEG is DCT-based
standard and has several modes: baseline, lossless, progressive and hicrarchical.
Baseline mode supports only lossy coding in which the image is divided into 8x8
pixels blocks and each of these is transformed with the DCT. The transformed blocks
are quantized with a uniform scalar quantizer, zigzag scanned and entropy coded with
Huffman code. Some of the well-known wavelets-based compression schemes are
JPEG2000 and SPIHT. JPEG2000 is a wavelet-based image compression standard in
which the pixel data is wavelet transformed. The wavelet transform coefficients are
then quantized and the indices of each sub-band are divided into code blocks (e.g.
32x32 pixels). Then the bit-plane coding is performed in each code block
independently. SPIHT is an image compression algorithm that exploits the inherent
similarities across subbands in a wavelet decomposition of an image. It implies
uniform quantization and bit allocation applied after wavelet decomposition. In some
systems the transformation is combined with predictive stage where previously and/or
subsequently decoded data are used to predict the current image sample. The error
between the predicted data and the real data, together with any extra information
needed to reproduce the prediction, is then quantized and coded. Lossy mode of
BTPC is not a transform-based scheme, but uses a binary pyramid, predictive and

Huffman coding.
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2.3.3.1 Scalar Quantization

Quantization is to reduce set of possible symbols S to much smaller set S’ by mapping
cach element of S to element in S'. An example of quantization is analog-to-digital
converter with a fixed number of bits. Another example is to take the set of all 8-bit
integers ( 2° = 256 clements) and divide by 4 (i.e., drop the lower two bits). That
means, each element is represented by 6-bit (2° = 64 elements). Since the mapping
used In quantization is many-to-one; it is irreversible (lossy) and therefore the
quantization is the main cause of loss in lossy compression. In general, quantization
proceeds by taking the interval of variation of the signal and decomposing it into
subintervals (quantization bins). The center of the quantization bin (midpoint of the
interval) can serve as a symbol representing all elements in this subinterval. In the
case that the set S comes from a total order and the total order is broken up into
regions that map onto the elements of S°, the mapping is called scalar quantization.
Application of scalar quantization includes reducing the number of color bits or gray-
scale levels in images. Figure 3 shows the input-output characteristic (the output with

respect to input) of the two types of scalar quantization|[34].

The term wniform scalar quantization is typically used in special case where the
domain of input values partitions into equally spaced intervals (bins of the same
length), except the possibly the outer intervals. The length of each interval is referred
to as the step size, denoted by the symbol A. Uniform scalar quantization has two
types as shown in Figure 2.4. Midrise quantizes have even number of output levels
and Midtread quantizers have odd number of output levels, including zero as one of
them. For special case where A =1, the output values for thesc quantizers can be

computed as:
Qmidrisc (X) = I_x—l— 05 (21 )

Qmidlrczu(x) = |_X + 0‘5_1 (2.2)

A non-uniform quantizer uses bins of different sizes. In practice it is often better to
use a nonuniform scalar quantization.

The result of quantization is serves as an input to ¢ntropy coding.
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Figure 2.4: Examples of (a) uniform and (b) non-uniform scalar quantization.

2.3.3.2 Vector Quantization

The general idea of mapping a multidimensional space into a smaller set of messages
S* called vector quantization[35]. Vector quantization is typically implemented by
selecting a set of representatives from the input space, and then mapping all other
points in the space to the closest representative. The representatives could be fixed for
all time and part of the compression protocol, or they could be determined for each
file (message sequence) and sent as part of the sequence. If one considers
quantization and entropy coding together, it is better to represent the signal with a
minimal number of components, and control the dynamic range and significance of
these components. The choice of the transformation is critical for the effective overall

lossy compression.
2.4 Performance Criteria of Image Compression Methods

Each compression scheme has some merits and demerits that manifest on showing
different performance on different types of images. Normally, such algorithms are
designed in a way that suite and give better performance. In order to have a
comparison between various images compression schemes, different performance
criteria should be measured. Three most important characteristics of image
compression algorithms are Compression Efficiency (CE), Compression Speed (CS)
and Distortion Measures (DM). While the first two are algorithm-dependant, the later

criterion is used to measure the distortion made by lossy compression.
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2.4.1 Compression Efficiency

Compression efficiency gives the measure of reduction in data volume achieved by a
given compression algorithm. The most common used unit to quantify compression
efficiency is Compression Ratio (CR). CR is simply the size of the original image
divided by the size of the compressed image as shown in Equation (2.3). This measure

accurately shows the effect of compression on the original data.

CR = - Size of original image

Size  of compressed image (2.3)
There are many other definitions used to express CR in a different way. Among them
the Compression Percentage (CP) is the compression ratio expressed as percentage
and Bit Rate (BR) refers to the average number of bit per pixel of the compressed
image. As the source entropy is the lower bound on the bit rate that lossless
compression can achieve, the efficiency of lossless compression methods can be
measured by determining how close its BR from the source entropy[33]. Suppose that
the pixel gray values range from (0 to M-1. Let p; be the probability of the gray value i.
the information content of the image is given by its entropy as given in Equation (2.4)

[36]. The unit of entropy is bits per pixel.

H= —Zp} log p, (2.4)

2.4.2 Computational Speed

Since users expect their images to be transmitted at the minimum time, it is important
to that computational speed of the compression algorithm is to be increased. The
computational ~ speed of  compression  algorithm is  measured by
compression/decompression time (CT/DT). CT/DT in seconds are calculated based on
the number of clock ticks spent to execute the coder/decoder, as number of ticks per
second is constant for given processor. If the combined time that is taken for
compression and decompression is small then we may define compression speed as
high. To compute the duration of CT or DT in seconds, the numbers of ticks at the
start (START) and at the finish (FINISH) of the process are used as shown in
Equation (2.5).
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FINISH -START
CPU speed ( ticks per second)

Duration (CT or DT) =

—_
[SS]
n

~—

The duration depends on the complexity of the algorithms and the speed of the
processor. Considering compression/decompression times, some compression
methods are symmetric, which means equal time for compression and decompression.

An asymmetric algorithm takes more time to compress than to decompress.
2.4.3 Distortion Measurements

The introduced distortion into the reconstructed image during lossy compression
process can be measured according to different image quality matrices. These metrics
can be broadly classified into two categories, subjective and objective. Subjective
quality metrics is a method of evaluation of images by the viewers and it emphatically
examines fidelity and image intelligibility. In objective measures, some statistical
indices are calculated to indicate the reconstructed image quality. The image quality
metrics provide some measures of the closeness between two digital images by
exploiting the differences in the statistical distribution of pixel values. The most
commonly used metrics for comparing compression are Mean Square Error (MSL)

and Peak Signal to Noise Ratio (PSNR)[37].

Mean Square Error

Mean Square Error (MSE) is the mean of square distance (difference) between pixels
in the original image and their respective values in the reconstructed image. MSE can

be expressed as Equation (2.6):

=3

1 N=l M-I =

MSE = ——Z z (Ncw , — Original ”) (2.6)

NxM < <

Where New; is the pixel intensity of the decompressed image at position ij and
Original; is the original pixel intensity at position i,j, N and M are the dimensions of

the image.
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Peak Signal to Noise Ratio

PSNR is a measure of the peak error. Because images may have wide dynamic range.

PSNR is usually expressed in decibel scale. PSNR (dB) is given by Equation (2.7):

PSNR =10 log ,, [%—} 2.7)
VIO LE

Where MAX is the maximum pixel value of the image and can be found form the

number of bits per pixel (B) as follows:

MAX=2% -1 (2.8)

It is quit clear from Equation 2.7 that the lower MSE value the higher is the PSNR

and the better the compression ratio is.
2.5 Medical Image Compression

Due to increased necessity for telemedicine applications, there is desperate demand to
store and hold medical images in digital form for transmission and archive in order to
efficiently use these two limited resources. The transmission or exchange of medical
image is to help deliver healthcare to patients in remote areas (tele-healthcare) and
share medical knowledge over distance for better medical services (tele-consultation).
Telemedicine is primarily concerned with the transmission of medical data between
rural and urban areas. So it is important that the technology takes advantage of
existing cost-effective communication infrastructure. The time for image transfer
must be minimized in a remote telemedicine consultation. It is not acceptable for
medical experts to spend a significant amount of time simply waiting for image data

to arrive.

The need for archive grows due to the fact that medical images need long-term
storage for future interpretation or research to study and combat certain diseases. The
transmission/storage problem of medical images is noticeably increasing due to the
fact that such images occupy large amount of storage space. The dimensions of
medical image vary from one modality to another while the grey level can reach 12

bits. Table 2.1 shows typical image sizes for some medical image modalities.
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For example, a typical mammogram must be digitized at a resolution of about 4000 x
000 pixels and 12 bits, resulting in approximately 40Mb of digital data. Such high
resolution is required in order to detect isolated clusters of micro-calcifications that
herald an early stage cancer. In a single medical ultrasound examination there are on
the average 10 to 20 still images generated equaling to approximately 24.6 to 49.2Mb
of grayscale image data, which means that a large volume of digital image data is
generated. Due to the rising numbers of patients and clongated case histories,
ultrasound images accumulate rapidly and filling limited storage space available in

hospitals.

Table 2.1: Sizes and brightness levels of various medical images|38]

Modality Spatial resolution(pixels) | Brightness Level(bits)
CT SCAN 512 x 512 8to12
MRI 256 x 256 12
Mammogram 4000 x 5000 12
Ultrasound 512 x 512 8
X-ray 2048 x 2048 12

Moreover, the large number of medical images that are produced in moderate hospital
escalating the problem by increasing the required storage. This massive amount of
data not only makes the storage and transmission expensive, but also affects the speed
of communication. Therefore, an effective compression is essential to reduce the file
size as much as possible, making storage access and transmission facilitics more

practical and efficient.

2.6 Survey of Medical Image Compression

2.6.1 Lossless Medical Image Compression

During the last few years there have been many research works on medical image
compression. Generally speaking, most of these works are based on the pre-exist
image compression methods. However, research on medical image compression
concentrates on methods that are used for continuous-tone and grayscale images. As
an initial step, the evaluation of compression method on medical images is essential.
For example as in [39], Clunie has evaluated a large set of lossless image compression
on multiple Modalities. Lossless JPEG[40], JPEG-LS[41], CALIC[42], S+P[43],
SZIP[44], PNG , PACKBITS, Unix pack, Unix compress, CREW [45] and GNU

gzip [46] are tested on sample set of digital radiography. computed tomography, MRI,
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mammography, US and NM . But there is no indication of how many images are
involved. The work concluded that the JPEG, JPEG-LS, and SZIP codecs were
noticeably faster than the others and CALIC was noticeably slower. JPEG-LS.
JPEG2000 and CALIC performed equally well and outperformed existing JPEG and
dictionary-based schemes which performed poorly. One of the major drawbacks of
this study is that the compression methods are evaluated on different type of images
despite the variation in the textures. The study used many general-purpose
compressions like SZIP, UNIX pack, COMPRESS and GZIP which are preferred for
non-image data. Compression method like PackBits is simple compression scheme for

run-length encoding of general data.

In another work by Kivijirvi [47], general-purpose and image compression methods
have been applied on medical images of various modalities, namely computed
radiography, computed tomography, MRI, NM, and US. It was observed that CALIC
and JPEG-LS performed well as compared to Lossless JPEG and PNG. This study
hadn’t the opportunity to examine the performance of latest JPEG2000 scheme. The
measurement of compression ratio was taken as the average of the results of all
modalities, regardless of the fact that different modalities may have different

redundancies.

In another research, Denecker [48] use five image-based compression schemes:
lossless JPEG , BTPC[49], FELICS[50], S+P and CALIC and two general-purpose
compression schemes GZIP and STAT on computed tomography, MRI, PET, US, X-
Ray and angiography images. It is indicated that CALIC performed best and S+P
achieved second best performance. The performances of lossless JPEG and GZIP are
not up to the mark. In the study the number of tested images was not specified. So it is

difficult to interpret their results.

From these studies it can be readily inferred that some compression methods such as
Lossless JPEG, JPEG-LS, CALIC, S+P, BTPC, FELICS, PNG and JPEG2000 are
performing efficiently and showing some variation on various medical modalities.

These methods are always dominating in the research work of many people.
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2.6.2 Lossy Medical Image Compression

In lossy compression, Erickson [5] reviews some previous work in medical image
compression and suggests that irreversible compression can be used for medical
image storage and transmission. However, the irreversible compression must be used
carefully without compromising diagnostic quality. He discussed compression of
images from a variety of medical imaging modalities, including computed
tomography, MRI, chest radiography, and US showing that some types of medical
images tolerate much higher levels of compression than others. Compression
tolerance is defined as the maximum compression in which the decompressed image
is acceptable for interpretation. Chest radiographs are very tolerant of compression (at
least 40:1 for SPIHT wavelet), bone x-rays are moderately tolerant (between 20:1 and
40:1), and computed tomography, MRI, and US images exhibit fairly low tolerance to
compression (less than 20:1). He found in his study that wavelet compression such as
JPEG2000 and SPIHT outperform JPEG due te the blocking artifacts produced by

JPEG. In this study all the conclusions are based only on literature survey.

Out of different lossy compression methods JPEG has been used for a long time for
medical images especially on DICOM [51]. Wavelet-based lossy image compression
in general (JPEG2000 and SPIHT in particular) are introduced recently as efficient
methods that give the best tradeoff between compression efficiency and image
quality. Robinson in 2003 has shown that lossy mode of BTPC is an cfficient method

that can generally compete with JPEG in different types of images [49].

Przelaskowski applied four effective lossless coders (Binary context-based
Arithmetic Coder (BAC), CALIC, JPEG-LS and JPEG2000) and two wavelet lossy
coders JPEG2000 and modified Basic Wavelet Technique (MBWT) on 22 selected
mammograms. It is found that BAC and CALIC are giving better bit rate values than
JPEG-LS and JPEG2000. This work mainly emphasizes on subjective quality
measurements to measure the distortion that is made by lossy methods. The study
concluded that the radiologists agreed that wavelet compression up to 1 bit per pixel is
safe to be used without loosing the diagnostic accuracy of compressed
mammograms[52]. They also reported that lossless compression schemes can only

achieve CR less than 2:1.
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The same author Przelaskowski [53] has updated his previous work by testing five
more lossless compression methods; namely Adaptive Predictive Tree (APT), SPIHT,
optimized JPEG2000, JPIG and JB2 on 131 mammograms. It was shown that CALIC,
JPEG-LS, and SPIHT have performed well. It can be clearly noticed that there is
inconsistency in the results of his two works on lossy compression. His results show
that the compression ratio 14:1 is the accepted limit for lossy wavelet compression on

mammograms without degrading quality.

In another work by Delgorge [54], six lossless compression techniques (Huffman
coding, arithmetic coding, Storer and Szymanski’s modified version of Lempel Ziv's
algorithms (LZSS), RLE [55] coding and Fano algorithms) are applied on 10
ultrasound images. Later he included JPEG-LS also. The study found that although
arithmetic coding gives the best compression rate, the adaptive Huffman method gives
the best compromise between compression rate and computing time. Because the
arithmetic coding associates with larger coding time and RLE is not suited to
ultrasound image images, as its compression rate is the largest. The study also
compares adaptive Huffman with the lossless mode of JPEG-LS to conclude that
JPEG-LS is the best for lossless compression of ultrasound images. All these
techniques are known as entropy coders normally used as a last step in compression
algorithms. Any practical comparison should use state of art schemes which combine
some preprocessing techniques such as context predictive or transforms prior to those
entropy coders. For lossy comparison the author has chosen Near-Lossless mode of
JPEG-LS, JPEG and JPEG2000 using MSE, PSNR and compression time as the
metrics. Near-Lossless mode of JPEG-LS has been reported as the best method when
the compression ratio is less than 5 (closer to lossless) and JPEG2000 becomes the

optimal method for higher compression ratio.
2.7 Region-based Image Compression

In recent years, much attention has been paid to region-based coding due to its
functionality that suite various applications in which certain parts of an image arc
more meaningful than the others parts of the image. Thus, these parts can be encoded
in such away to preserve image quality: one of these applications is the compression

of medical image data for archiving and transmission.
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2.7.1 Shape Adaptive DCT

Shape Adaptive DCT (SA-DCT) algorithm was adopted for coding arbitrary shaped
image segments in DCT-based compression [56]. The algorithm is to encode only the
Region of Interest (ROI) separately from the background employing DCT on 8 x 8
image blocks. The two dimensions DCT of the ROI block is computed in two steps,
cach involving only one dimension DCT. First, the vertical DCT is computed by
transforming each column of foreground pixels. This is followed by the horizontal
DCT which transforms each row of coefficients obtained [rom the vertical DCT. To
compute the vertical DCT of a block, each column which may contain different
number of ROI pixels is shifted upwards, so that all columns are justified to the top of
the block. The horizontal DCT is computed for each row of coefficients obtained
from the previous step, as follows. First, each row of different number of coefficients
is shifted left, so that all rows are left justified. After transformation, the number of
DCT coefficients obtained is the same as the number of pixels that form the ROI. The
DC coefficient is located in the upper left corner of the block, as occurs in the block
based DCT. SA-DCT algorithm is supported in MPEG-4 standard for its
computational efficiency, however, as all DCT-based methods, it suffers blocking

artifacts that limits its use for low bit rate coding the foreground.
2.7.2 ROl in JPEG2000

A better alternative which works on wavelet-based image compression is to scale up
the wavelet transformed coefficients of ROI so that the bits associated with ROI are
more significant than the bits associated with the non-Region of Interest (non-ROI).
Then during the embedded coding process, the most significant ROl bit-planes are
placed in the bit-stream before any non-ROI bit-planes of the image. Two kinds of
this scaling method are defined in JPEG2000 standard: the maximum shift
(MAXSHIFT) and the general scaling-based method as shown in Figure 2.5[57].
MAXSHIFT separates the ROI from non-ROI by scaling up the coefficient associated
with ROI through a number of bit shift. The scaling value is chosen to be sufficiently
large to ensure that all the significant bits associated with ROI will be in higher
bitplanes than all the significant bits associated with non-ROI. MAXSHIFT allows
arbitrary shaped coding without explicitly transmitting the shape information, as the

decoder can separate ROI and the non-ROI coefficient by looking at the coefficient
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magnitudes. The major limitation of MAXSHIFT is that it doesn’t have the flexibility
to control the relative quality between ROI and non-ROI. This limitation has been
solved in the general scaling based method in which the relative importance of the

ROI and non-ROI is controlled by scaling up certain number of bit-shifts.
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Figure 2.5: General Scaling and MAXSHIFT ROI method in JPEG2000[57]

2.7.3 Shape Adaptive DWT

Shape Adaptive Discrete Wavelet Transform (SA-DWT) [58] is studied as a new
region-based paradigm that decomposes arbitrarily-shaped objects and offers superior
rate-distortion performance and better visual quality than the previous techniques.
SA-DWT can retain most of the features of conventional DWT while working strictly
on the ROI and never computed outside its boundaries. SA-DWT preserves the spatial
correlation and self-similarity property of wavelet transforms. The 2-dimension SA-
DWT for an arbitrarily shaped visual object can be done through number of steps of
1-dimension wavelet transform. In each row that corresponding to the shape
information provided by the mask and with a proper subsampling strategy. a length-
adaptive 1-dimension wavelet transform is applied to each segment of consecutive
pixels. The lowpass wavelet coefficients are placed into the corresponding row in the
lowpass band and the highpass wavelet coefficients are placed into the corresponding
row in the highpass band. The above operations are performed for each column of the
lowpass and highpass objects. These operations are repeated to the lowpass-lowpass

band object until the level of wavelet decomposition is reached.

As the conventional wavelet transform is only performed on rectangular image region
and cannot be done on arbitrary shape region, SA-DWT is identical to the

conventional wavelet transform when applying it in a rectangular region (Figure 2.6).
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Figure 2.6: Multi-resolution decomposition of ultrasound image scanned area using
SA-DWT

2.8 Summary

Various medical imaging modalities are frequently used to acquire interior structures
and the functions of the living human body. Mammography and ultrasound imaging
are the most common in tele-healthcare for their cost-effective and providing
sufficient and reliable diagnostic information. Due to the large size of these images
compression is essential. Image compression methods are categorized as lossless and
lossy. The former perfectly reconstructs the original image. However, it can achieve
low compression ratio. Lossy compression degrades the image to obtain much higher
compression ratio than lossless methods. To have a comparison between various
images compression schemes, different performance criteria such as compression
ratio, compression speed and distortion Measures (i.e. MSE and PSNR) are generally
used. In an effort to optimally compress medical images various methods are used,
out which lossless compression like LJPEG, JPEG-LS, CALIC, FELICS, BTPC,
JPEG2000, S+P and PNG in addition to lossy compression such as JPEG, BTPC,
JPEG2000 and SPIHT are used in the literature. Region-based coding such as ROl in
JPEG2000, SA-DCT and SA-SWT suites various applications in which certain parts
of an image are more important and need to be preserved more than the other parts of

the image.
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CHAPTER 3

EVALUATION OF IMAGE COMPRESSION SCHEMES

3.1. Introduction

It is noticeable in the literature that mammograms and ultrasound images dominate in
tele-consultations among the experts worldwide. Accordingly, the most efficient
image compression techniques are needed to be studied in order to choose the best
compression which will increase transmission speed and reduce storage space. The
first half of this research work is concentrating on evaluation different compression
algorithms to decide which ones are more suitable for mammograms and ultrasound
images. Importance of mammograms and ultrasound images in tele-healthcare is
described. A brief overview of all compression methods that used in this work is
presented. It is followed by a review of some software implementation and
compression libraries. Finally the methodology of evaluating the compression

methods for the above images is described in detail.
3.2. Mammograms and Ultrasound Image Compression

Medical Imaging methods such as mammography and ultrasonography are cost-
effective screening tools that provide sufficient and reliable diagnostic information to

estimate the degree of complexity in telemedicine applications.

Because of its simplicity, low radiation, portability and low cost, periodical screening
by mammography is currently considered as the most effective way to prevent the

fatal stage of breast cancer [16].

Ultrasound image of abdominal organs is considered as the most widespread and
versatile medical imaging modality for diagnosis of various major diseases|21].
Unlike other medical imaging modalities, ultrasound is the safest imaging modality as
the patient is not exposed to any kind of radiation. Furthermore, Ultrasound
equipment is relatively small, easy to handle, quickly to perform and more

economical.
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Using an optimal image compression scheme for mammograms and ultrasound is
essential to reduce the storage requirement and transmission facilities more efficient.
However, medical image which holds important diagnostic values (i.e. micro-
calcifications in mammograms and speckle texture in ultrasound), cannot afford too much
degradation. Thus an ideal compression method must be designed in order to give the best

compromise between the higher compression ratio and the vital diagnostic quality.

There are numerous image compression techniques (lossless and lossy) proposed and
found in the literature. However, In this work, based on the literature survey, cight
efficient lossless compression schemes namely Lossless mode of JPEG (LIPEG),
JPEG-LS, CALIC, FELICS, BTPC, JPEG200, Reversible Wavelets (S+P) and PNG
and four lossy compression methods namely, BTPC, JPEG2000, JPEG and SPIHT are
studied to investigate the limitation of lossless and lossy compression schemes and to
determine the optimum trade-off between the distortion and compression efficiency

for mammograms and ultrasound images.
3.3. Efficient Lossless Image Compression Schemes

Eight efficient lossless image compression methods have selected according to their
performance on medical images in general and mammograms and ultrasound images
in particular. Out of these eight methods LIPEG, JPEG-LS, CALIC, FELICS and
BTPC are predictive-based schemes, JPEG200 and S+P are transform-based methods

and PNG represents the dictionary-based scheme.

3.3.1 LJPEG

LIPEG is a commonly used lossless method to compress 8 and 16-bit grayscale
images in medical applications. It is a totally independent algorithm from the well
known baseline JPEG that uses DCT for lossy compression. LIPEG algorithm
employs simple linear prediction followed by Huffman coding. In LIPEG prediction
scheme, up to three previously observed neighboring samples I, , I,, and [, can be
combined to calculate the prediction value X of the current sample x among seven
possible predictors:

I,,1 1. ,d,+1,-1),d, +d,-1.,)2), d,+{, -1,,)2), and (d, +1,)2)

The user must specify which prediction value should be wused for the
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compression/decompression process. /, denotes the intensity value at location a with
respect to the current sample. Therefore, a generic position « is the different direction

from the current sample x (w is left pixel, n is above pixel, nw is upper pixel to the

left). The prediction error (¥ ~%) always has much smaller entropy than the original
intensity values, which implies that the prediction process removes a great deal of
inter-pixel redundancy. Therefore, these prediction errors are then encoded instead of

the actual density values by Huffman coding.

3.3.2 JPEG-LS

JPEG-LS is a standard for lossless compression based on LOCO-I compression
algorithm  which combines good performance with  fast and efficient
implementation[25]. JPEG-LS allows a near-lossless mode which refers to a lossy
algorithm for which each reconstructed image sample differs from the corresponding
original image sample by not more than a pre-specified value which can be controlled
by the encoder. The algorithm employs nonlinear simple edge detector predictors on
causal neighborhoods, as defined by gradient information. Context modeling is
designed to reduce the number of free parameters by defining the coding distributions
at cach context. For a given context, the encoder adapts to the best encoding method
chosen from a fixed set that is matched to single parameter, exponentially decaying
distributions. Efficient implementation is achieved through adaptive Golomb-Rice

coding or RLE [41].

3.3.3 CALIC

Context-based Adaptive Lossless Image Coding (CALIC) is a compression method
that puts heavy emphasis on image data modeling which make it relatively complex
especially when arithmetic coding is used. A unique feature of CALIC is the use of a
large number of modeling contexts to condition a non-linear predictor and make it
adaptive to varying source statistics. In this adaptation process, CALIC only estimates
the expectation of prediction errors conditioned on a large number of contexts rather
than estimating a large number of conditional error probabilities. CALIC operates in
cither binary or continuous-tone modes, depending on the context of the current pixel.
In the continuous-tone mode, gradient adjusted prediction takes place and is further

improved by error feedback, where prediction errors are modeled under different
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contexts, leading to reduced conditional entropies. The coding step may involve either

arithmetic or Huffman coding [42].

3.3.4 FELICS

Fast, Efficient, Lossless Image Compression System (FELICS) is a simple-to-
implement method that combines the prediction and error modeling steps by utilizing
the two nearest neighbors of a pixel in a raster scan order to estimate the probability
distribution of the pixel intensity. Based on a parameter estimation method, the most
suitable error model is chosen from a set, and the intensity is encoded using the Rice
code of the model. The method uses prefix coding, and codes pixel values relative to
the range described by the values in location w(lefi pixel) and n (above pixel). A 1-bit
code describes if the pixel is in this center range, if not a 1-bit code describes which
side (above and below) the value lies. The code for the center range is a function of
the number of values lying in the range, and the code for the above and below ranges

is symmetrical with respect from the distance to the center range [30].

3.3.5 BIEC

Binary Tree Predictive Coding (BTPC) is multi-resolution general-purpose image
compression method which decomposes the image into a binary tree. It is designed to
perform both lossless and lossy compression, and to be effective for different types of
images. It is well suited for coding multimedia images which combine text, graphics
and photographs, and is also appropriate as a general-purpose method when the image
type is not known in advance. BTPC uses a binary pyramid, predictive coding and
Huffman coding. BTPC is inherently progressive and a straightforward modification
of the decoder to write directly to an on-screen picture buffer which allows simple

progressive image recovery [49].

3.3.6 JPEG2000

JPEG2000 is an efficient coding standard for lossy and lossless multi-component still
images and it is based on the discrete wavelet transform (DWT). scalar quantization,
context modeling, arithmetic coding and post-compression rate allocation. The
encoding process consists of the following four stages. First, for each component, the

pixel data is transformed using reversible filter (for lossless mode) or irreversible
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filter (for lossy) wavelet transformation and an orientation tree sub-band structure 1s
generated. Secondly in lossy mode, the wavelet transform coefficients are quantized
into integer indices. In the third stage, the indices of each sub-band are divided into
small code blocks (e.g. 32x32 pixels) and bit-plane coding is performed in each code
block independently. The coded data constructs several quality layers. Finally, the
code blocks are also grouped into precincts with a nominal size for each subband. The
code coming from each precinct layer, resolution level and component will be
wrapped into a packet and all the packets are organized to form the final bitstream in a

certain progressive order[26].

3.3.7 S+P

The Said-Pearlman (S+P) transform is a reversible wavelet transform that allows for
reversible image recovery by truncating the transform coefficients at some steps in the
transformation and encoding all of the transform coefficients. The S+P is similar to
the Haar wavelet image representation and allows for either progressive fidelity or
progressive resolution implementations. The S+P transform utilizes information from
both the low and high-resolution bands for prediction and truncates the prediction
value to an integer for efficient implementation. This transformation reduces the
entropy in the resulting image representation, which is then encoded using either

arithmetic or Huffman coding [43].

3.3.8 PNG

The Portable Network Graphics (PNG) is an image file format that is recommended
as a web standard by the Word Wide Web Consortium (W3C). Its dictionary-based
compression method that uses preprocessing (predictive) to remove data redundancy,
that is followed by LZ77 and the deflate algorithm. Huffman coding is used in PNG

as entropy coder [32].
3.4. Efficient Lossy Image Compression Schemes

As an outcome of the literature survey, four frequently used lossy schemes namely
JPEG2000, BTPC, JPEG and SPIHT are discussed. BTPC and JPEG2000 that are

described in the sections 3.3.5 and 3.3.6 under lossless schemes can also operate in
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lossy mode. In the lossy mode of these compression methods additional quantization

step is involved (see section 2.3.3.1).

3.4.1 JPEG

JPEG is an international standard for compression of continuous-tone images
developed by Join Photographic Expert Group (JPEG). in a collaboration of three
international standard organizations (ISO, CCITT, and IEC).The resulting IPEG
standard includes four basic modes: sequential, progressive, hierarchical encoding
and lossless. The group of the first three is known as baseline JPEG which is most
popular and commonly used lossy compression. In the baseline. the image is divided
in 8x8 blocks. Each block is transformed with the DCT. The transformed blocks are
quantized with a uniform scalar quantizer, zigzag scanned and entropy coded with
Huffman code. The quantization step size for each of the 64 DCT coefficients is
specified in a quantization table. The DC coefficients of all blocks are coded

separately, using a predictive scheme.

3.4.2 SPIHT

Set Partition in Hierarchical Trees (SPIHT) is an image compression algorithm that
exploits the inherent similarities across subbands in a wavelet decomposition of an
image. It implies uniform quantization and bit allocation applied after wavelet
decomposition. The algorithm codes the most important wavelet transforms
coefficients in priority and transmits the bits so that an increasingly refined copy of
the original image is obtained. The order in which coefficients are transmitted is
recovered on the decoder using some information obtained from sets being examined
for significance during the sort. These sets are created using hierarchical tree data
structure. One of the advantages with SPIHT is that it produces an optimal embedded
bitstream. This means that the bitstream can be truncated at any instant, and is then

guaranteed to yield the best possible reconstruction [27].
3.5. Image compression Software Implementations and Libraries

A typical software implementation of image compression consists of two separate
components, encoder and decoder (codec) as shown in Figure 3.1. The former

compresses the original image into a more compact format suitable for transmission
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and storage. The decoder decompresses the received image and reconstructs it to the
exact or approximate original form. The process of reconstructing the image is always

determined by the particular needs of the application.

Data Storage |

:nmp:te +| Encode p» Or E Output
g Transmission Image

Figure 3.1: A typical data compression system (codec)

Instead of implementing each algorithm from scratch: there are some optimized
reusable compression libraries that can be incorporated in any application that
transmits or archives collection of images. In accordance to this, some attention is
given to the libraries that incorporate most of the above mention compression
algorithms.  These libraries are open source packages. Some commonly used
compression schemes with their respective programming libraries are presented in
Table 3.1. All the source codes of these libraries are in C/C++ language and they are
arranged in a way to be used in MS Visual C++. One of the prominent obstacles that
face the implementation of these libraries in MS Visual C++ under WINDOWS
operation system is that most of them have been developed under Linux-like
operation systems which need many changes when adapted to WINDOWS, such as
changing some header files. The essential component of any compression software 1s
the library written to provide general implementations of procedures commonly used
in coding and compression applications such as entropy coding, scalar quantization,
vector quantization and wavelets. These compression libraries are useful in the

development of compression systems and in academic research.
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Table 3.1: Lossless/Lossy compression schemes with their respective libraries
[Lossless Lossy Libraries Descriptions
LIPEG | JPEG 1JG JPEG library Lossless JPEG
FELICS Managing Gigabyte( MG) Fast Efficient Lossless Image compression
System
CALIC X. Wu & N.D. Memon Context-based Adaptive Lossless Image Coder
implementation
JPEG-LS HP JPEG-LS Lossless/Near Lossless based on LOCO-I
JPEG2000 JasPer JPEG2000 wavelet-based standard
BTPC BTPC 5.0/ ZLIB Binary Tree Predictive Coding
PNG LIBPNG/ ZLIB Portable Network Graphics
5 ST Set Partitioning in Hierarchical Tree
i e -E QeePack Reversible Wavelets (S+P)

Any library will provide a set of functions for reading and writing the respective
image file format, and supporting conversion to some other popular image file
formats and color space conversion. Any application programs may make use of the
library routines or easily add support for a new feature or image format by linking the
application against the library during compilation without having to modify the
library in any way. All the source codes of the programming libraries that are used in
this study are highly optimized C/C++ code. Each library function is very general in

its implementation in order to be useful in a large variety of applications.
3.6. Experiment

3.6.1 Sample Images Database

The test images that are used in the study of performance evaluation are initially
obtained in the form of the conventional mammograms and ultrasound films from
local hospitals. These images were collected from different patients and covering a
wide verity of abdominal and breast diseases. Sample of these images is shown in
Figure 1 and Figure 2 in Appendix A. The dimensions of each image , their sizes and
entropy are shown in table 1 and table 2 for mammograms and ultrasound images
respectively. The images were digitized by using a high resolution scanner to obtain
Portable any Map (PNM) image format where “N” can be one of three forms: Bit,
Grey and Pixel. It is a convenient simple method of saving raw image data (with no
compression) and easy to use in any applications. These formats are used to store
black and white images PBM (Portable BitMap), greyscale images PGM (Portable
GreyMap), as well as RGB color images PPM (Portable PixMap). For cach of the
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three formats there is either a binary or an ASCII version. All PNM file format consist
of two parts, a header and the image data. The header consists of at least three parts
normally delimited by carriage returns and/or linefeeds. The first "line" is a magic
PNM identifier: P1, P2, P3, P4, P5 or P6. The first three (P1, P2, P3) are for ASCII
version while (P4, PS5, P6) are for binary version. Therefore, P1 or P4 are used in
PBM, P2 or P5 are used in PGM, and P3 or P6 are used in PPM .The next line
consists of the width and height of the image as ASCII numbers. The last part of the
header gives the maximum value of the color components for the pixels. This allows
the format to describe more than single byte color values. In addition to the above
required lines, a comment can be placed anywhere with a "#" character, the comment

extends to the end of the line.

3.6.2 System setup

All the compression software’s explained above are implemented and the performance
measurements are carried in the Telemedicine and Intelligent Imaging Laboratory of

PETRONAS University of Technology using the system setup shown in the Table 3.2.

Table 3.2: System setup for the experiment

Computer Pentium IV 2.8 MHz
Memory 256 Megabytes
Operating System Microsoft Windows XP
Programming Development Environment | Microsoft Visual C++

The programming language C/C++ is chosen primarily due to the availability of
similar development environments for most of today’s computing platforms. Besides,

all the source codes are reusable and simple to modify.

3.6.3 Evaluation Procedure

After acquiring mammograms and ultrasound films from local hospitals and digitizing
them in uncompressed grayscale format (PGM), the entropy of each image is measure
as shown in equation 2.4. The performances of the different lossless and lossy schemes
are measured. The steps of the procedure are shown in the flow diagram in Figure 3.2.
The performance evaluation of lossless is presented to determine the best among the

eight compression methods on mammogram and ultrasound images in terms of
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compression ratio and computational speed. Next the evaluation of lossy compression
schemes is carried to determine the optimum trade-off between the distortion and
compression efficiency. The results of the above evaluation will be used in our

proposed hybrid compression scheme.
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Figure 3.2: A comparative study of compression schemes

Hybrid Region-based Approach

3.6.3.1 Evaluation of lossless Compression schemes

To investigate the compression efficiency and the maximum achievable compression
ratio for mammograms and ultrasound images, performances of the eight lossless
methods have been studied. The major focus of this study is on the compression
efficiency and compression/decompression time of each compression scheme. Large
number of mammograms and ultrasound images which are different in texture and

size are used.

After compressing and decompressing all the sample test images using the above
methods, the compression ratios are calculated up to 3 floating points. All the
commands that used to call the coders for compressing and decompressing are
arranged in batch files to collectively process all the sample images. Example of these
batch files are shown in Appendix B. For each image, compression ratio, compression

and decompression time are calculated.



Chapter 3: Evaluation of Image Compression Schemes 39

3.6.3.2 Evaluation of lossy Compression schemes

The same set of sample images are coded and decoded using the four selected lossy
compression algorithms to determine the optimum trade-off between the distortion
and compression efficiency. For each test image, nine different compression ratios
were selected: 5:1. 15:1, 25:1 35:1, 45:1, 55:1, 65:1, 75:1 and 80:1. Since lossless
compression may give a compression ratio less than 5, the lower limit of CR 1s chosen
as 5:1. In order to  keep the distortion within the limit the highest value for CR has

been chosen 80:1.

The results of average measure of the PSNR and MSE for the four methods at

different compression ratios are also calculated.

The best scheme is selected according to one of these distortion metrics (MSE or
PSNR) for a given compression ratio. A lower value for MSE means lesser error
(better quality), and as seen from the inverse relation between the MSE and PSNR,
this translates to a high value of PSNR. Logically, a higher value of PSNR is
preferable. Also compression and decompression time is measured. All the related

batch file commands are shown in Appendix B.
3.7. Summary

Mammograms and ultrasound images have great significance for diagnostic and
therapeutic applications. Compression of these images faces a great challenge to
compromise between the higher compression ratio and the relevant diagnostic
information. Therefore, selecting a suitable method is critical for medical image
coding. There is numerous image compression techniques (lossless and lossy)
proposed and found in the literature. In this work, a comprehensive comparative
survey is needed to compare different compression techniques. Eight efficient lossless
compression methods and four lossy compression methods have been studied. This
comparative study uses compression ratio, compression speed and distortion made by
lossy compression to pinpoint efficient and well suited compression methods for
mammograms and ultrasound images. The source codes of the programming libraries

that are used in study are implemented in Visual C++ under Windows XP operating

System.
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CHAPTER 4
EFFICIENT COMPRESSION SCHEMES FOR MAMMOGRAMS

AND ULTRASOUND IMAGES

4.1 Introduction

In the previous chapter, the eight lossless schemes, namely CALIC, JPEG2000,
JPEG-LS, FELICS, Lossless mode of JPEG, S+P, PNG and BTPC and the four lossy
methods namely JPEG, BTPC, JPEG2000 and SPIHT are discussed. In order to
determine the best among the above schemes, large number of mammograms and
ultrasound images obtained from local hospitals are processed and analyzed.
However, only the results of a set of 21 test images which are of different sizes and

texture in each modality have been included.
4.2 Performance of the lossless schemes on mammograms

For each of the sample images, the eight lossless compression methods are applied

and the compression ratio and the compression/decompression time are calculated.

4.2.1 Compression Efficiency

The results of compression efficiency obtained for the 21 samples of different
entropies mammograms are plotted in Figure 4.1. The numerical values of the
entropies are given in Table 1 in Appendix A and the compression ratios are given in
Table 1 in Appendix C.

25 - - - - - - r - . — |
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Figure 4.1: Compression efficiency on mammograms
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[t may be seen from the results that CALIC and JPEG-LS are equally efficient
regardless of texture and size of the images. Although the two wavelet-based schemes
JPEG2000 and S+P are using different integer wavelet filter and different embedded
coding, they are found to perform equally and to be next best to CALIC and JPEG-
LS. JPEG2000 uses bi-orthogonal 3/5 and Embedded Block Coding with block
Truncation (EBCOT) whereas S+P uses the spatial orientation tree of SPIHT for
coding the coefficients. LJIPEG and PNG are found to be lagging behind all the other
schemes in terms of efficiency even though LIPEG outperforms PNG. To ensure the
best of LJIPEG performance, all the seven possible prediction values are tried (section
3.3.1), among which the best prediction value that gives higher compression ratio is
selected. BTPC and FELICS are found to perform well but slightly lower in efficiency
than the wavelet schemes (JPEG200 and S+P).

4.2.2 Compression Speed

Figure 4.2 and Table 2 in Appendix C show the results of the compression and
decompression times obtained for the above samples using the eight lossless schemes.
CALIC seems to be extremely slow compared to all other methods. FELICS is the
fastest algorithm because of its simple prediction with a two-neighboring pixel
context (section 3.3.4). LIPEG and JPEG-LS are somewhat much closer to FELICS.
It is seen that PNG and BTPC take more time for compression but less time for
decompression and they have less compression speed compared to the two wavelet-
based algorithms. But S+P is faster than JPEG2000. The compression/decompression
time taken by CALIC is estimated to be around 10 times that of JPEG-LS and 3 to 3.5
times that of JPEG2000.
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Figure 4.2: Compression/decompression time in seconds on mammograms
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Except CALIC all other methods show closer compression speed. In Figure 4.3 the
compression/decompression time of these seven methods are re-plotted after

excluding CALIC in order to make the difference clear.
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Figure 4.3: Compression/decompression time without CALIC on mammograms

4.3 Performance of the lossless schemes on ultrasound images

4.3.1 Compression Efficiency

The results obtained for compression efficiency on the test samples of 21 ultrasound
images of different entropies applying the eight lossless schemes are shown in Figure
4.4. The numerical values of the entropies are given in Table 2 in Appendix A and the
compression ratios are given in Table 3 in Appendix C. It is found that CALIC is
outperforming JPEG-LS and they are the two best schemes for ultrasound images

regardless of texture and size.
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Figure 4.4: Compression efficiency on ultrasound images
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LIPEG is found to be lagging behind all the schemes in terms of efficiency. PNG is
slightly outperforming LJPEG. FELICS, BTPC, JPEG2000 and S+P are showing

close performance and found to lie in the middle range.

4.3.2 Compression Speed

Figure 4.5 (a) and (b) and Table 3 in Appendix C show the compression and
decompression times respectively for the above eight lossless schemes. It can be seen
that FELICS is the fastest and the CALIC is the slowest. LIPEG and JPEG-LS are
somewhat much closer to FELICS. It may be noted that the above four algorithms
(FELICS, CALIC, LJPEG and JPEG-LS) are symmetric. PNG and BTPC have less
compression speed in comparison to the two wavelet-based algorithms. S+P is faster

than JPEG2000.
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Figure 4.5: Compression/decompression time in seconds on ultrasound images

4.4  Comparison of lossless schemes on both modalities

From the earlier results, it can be clearly stated that CALIC and JPEG-LS give best
performance for both modalities. Their performances are very close for mammograms
but for ultrasound images CALIC is leading. PNG and LJPEG are lagging behind all
the other schemes on both modalities. However, LIPEG outperforms PNG on
mammograms whereas PNG performs significantly better than LJPEG on ultrasound
images. JPEG200 and S+P are showing close performance on both modalities. Their
performances are more close to CALIC and JPEG-LS on mammograms but not so on
ultrasound images. FELICS and BTPC are outperformed by JPEG200 and S+P on
mammograms. However, all the four methods (FELICS, BTPC, JPEG2000 and S+P)

show closer performance on ultrasound images.
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The compression/decompression time of the eight lossless compression methods on
mammograms show that FELICS is the fastest algorithm followed by JPEG-LS,

LJPEG and PNG which are slightly outperform BTPC. Due to the complexity of

wavelet transform, both JPEG2000 and S+P. CALIC is extremely slow.

Based on both the compression efficiency and speed, it is found that JPEG-LS is well

suited for lossless compression of mammograms and ultrasound images.

4.5 Performance of Lossy schemes on mammograms

For performance evaluation of the four lossy methods (JPEG, JPEG200, BTPC and

SPIHT) on mammograms, the quality of the recovered images based on PSNR and

MSE and compression/decompression time are measured.

4.5.1 Image Quality

Figures 4.6 and 4.7 and Table 4.1 show the results of average measure of the PSNR
and MSE on 21 mammogram for the four lossy methods at different compression
ratio (from 5:1, 15:1, 25:1 35:1, 45:1, 55:1, 65:1, 75:1 and 80:1). The highest values
of PSNR and the lowest value MSE present the best quality of the test images. It is
inferred that quality of the test images drop very fast in JPEG compared to the other

schemes when compression ratio is increased. This drop is due to the artifacts

resulting from the block-based DCT (section 3.4.1).

8 15 25 35 45 55 65 75
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Figure 4.6: Comparison between PSNR and CR on mammograms
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Figure 4.7: Comparison between MSE and CR on mammograms

For both the criteria PSNR and MSE, SPIHT provides better image quality than the
other methods for all test images and for all compression ratios. It may be noted that
the SPIHT shows slow degradation in quality compared to the others. BTPC exhibit
the second best quality after SPIHT. At low compression ratios (less than 15: 1) JPEG
shows better performance than JPEG2000. For higher values of CR JPEG2000 is

better than JPEG.

Table 4.1: Average distortion measurement (PSNR and MSE) vs. different CR on

mammograms

SPIHT BTPC JPEGO000 JPEG
PSNR MSE PSNR MSE PSNR MSE PSNR MSE
5 53.77 0.28 51.37 0.47 51.21 0.50 51.40 0.48
15 49.32 0.77 48.19 1.02 47.35 1.21 48.00 1.056
25 48.03 1.05 46.97 1.34 46.30 1.54 46.35 1.57
35 47.15 1.29 46.20 1.61 45.39 1.91 44.55 2.42
45 46.35 1.56 45.43 1.93 44.77 2.20 42.59 3.80
55 45.61 1.87 44.71 2.29 44.21 2.51 40.06 6.94
65 44.95 2.19 44.12 2.64 43.69 2.84 37.04 13.36
75 44.32 2.53 43.72 2.88 43.25 3.14 31.06 56.33
80 44.00 2.73 43.22 3.25 43.01 3.32 20.99 | 536.52

CR

4.5.2 Compression Speed

The average compression/decompression time in seconds are calculated for the above

four methods and the results are shown in Figure 4.8 and Table 4.2.
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JPEG takes less time but its distortion rate is very high. SPIHT takes more

compression/decompression time than JPEG but less distortion. Hence, SPIHT gives

the best trade-off between the distortion and compression efficiency.
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Figure 4.8: Average compression/decompression time in seconds for the four lossy

methods on mammograms

Table 4.2: Average of Compression/decompression time for the four lossy methods

applied on mammograms

JPEG BTPC JPEG2000 SPIHT
Images
CT DT CT DT CT DT CT DT
Mammo1 0.078 0.031 0.421 0.171 1.265 0.609 0.286 0.356
Mammo2 0.078 0.015 0.39 0.125 1625 0.578 0.357 0.395
Mammo3 0.078 0.031 0.5631 0.156 1.328 0.593 0.427 0.359
Mammo4 0.078 0.031 0.406 0.296 1.437 0.578 0.483 0.391
Mammo5 0.078 0.031 0.515 0.14 1.375 0.562 0.482 0.401
Mammo6 0.093 0.031 0.671 0.14 1.593 0.625 0.545 0.414
Mammo7 0.078 0.031 0.671 0.281 1.453 0.578 0.552 0.386
Mammo8 0.015 0.031 0.546 0.14 1.234 0.75 0.634 0.362
Mammo9 0.046 0.015 0.343 0.062 0.765 0.343 0.453 0.248
Mammo10 0.078 0.031 0.64 0.265 1.593 0.593 0.331 0.643
Mammo11 0.046 0.015 0.234 0.281 0.859 0.5 0.158 0.512
Mammo12 0.046 0.015 0.234 0.203 0.625 0.453 0.195 0.235
Mammo13 0.046 0.015 0.203 0.328 0.593 0.5 0.187 0.315
Mammo14 0.046 0.015 0.218 0.203 0.875 0.312 0.189 0.215
Mammo15 0.046 0.015 0.218 0.343 0.796 0.328 0.187 0.23
Mammo16 0.046 0.031 0.234 0.187 0.812 0.328 0.172 0.546
Mammo17 0.046 0.015 0.484 0.078 0.843 0.515 0.189 0.23
Mammo18 0.046 0.015 0.234 0.078 0.656 0.531 0.179 0.238
Mammo19 0.046 0.015 0.25 0.328 0.859 0.328 0.19 0.234
Mammo20 0.046 0.015 0.234 0.093 0.828 0.328 0.196 0.687
Mammo21 0.031 0.015 0.578 0.078 0.859 0.515 0.201 0.251
Average | 0.056714 | 0.02186 | 0.393095238 | 0.1893 | 1.042762 | 0.497476 | 0.31395 | 0.3641905
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4.6 Performance of Lossy schemes on ultrasound images

4.6.1 Image Quality

The 21 test images are coded and decoded using the four lossy compression
algorithms. FFor each test image, nine different compression ratios were selected: 5:1,

15:1, 25:1 35:1, 45:1, 55:1,:65:1, 75:1 and 80:1(section 3.6.3.2).

Figure 4.9 and 4.10 show the results of average measure of PSNR and MSE for the
four methods at different compression ratios. Table 4.3 shows the detailed numerical
values of the results of PSNR and MSE for nine different compression ratios. It seems
that the results on ultrasound images and mammograms are similar for the four
methods except that at compression ratios more than 15:1, BTPC showed better
quality than JPEG2000 on mammograms and JPEG2000 provided better quality on

ultrasound images.

PSNR (dB)

Figure 4.9: Comparison between PSNR and CR on ultrasound images
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Figure 4.10: Comparison between PSNR and CR on ultrasound images

Table 4.3: Average distortion measurement (PSNR and MSE) vs. different CR on

ultrasound images

CR SPIHT BTPC JPEG000 JPEG
PSNR MSE PSNR MSE PSNR MSE PSNR MSE
5 44.80 2.20 44.27 2.41 43.28 3.06 43.18 3.13
15 39.88 6.68 38.85 8.48 39.26 7.718 38.83 8.52
25. 38.77 8.64 37.60 14.31 38.30 9.62 37.52 11.51
35 37.10 10.37 36.73 13.8 37.60 11.31 36.23 15.49
45 37.30 12.23 36.16 15.76 36.94 13.16 34.61 22.51
55 36.60 14.20 35.57 18.03 36.37 14.99 32.78 34.27
65 36.01 15.97 35.03 20.41 35.89 16.74 30.30 60.62
75 35.67 17.61 34.87 21.18 35.47 18.45 26.82 135.18
80 35.44 18.59 34.47 23.25 35.30 19:21 21.57 453.17

4.6.2 Compression Speed

Table 4.4 shows numerical values of CT/DT of 21 ultrasound images using the four
lossy methods. The above data is represented as bar chart in Figure 4.11 showing the
average values of the compression/decompression times for each method. It can be
clearly seen that JPEG is the fastest and JPEG2000 is slowest. SPIHT is the second

fastest.
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JPEG takes less time but its distortion rate is very high. SPIHT is takes

more

compression/decompression time than JPEG but less distortion. Hence, SPIHT gives

the best trade-off between the distortion and compression efficiency.
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Figure 4.11: Average compression/decompression time in seconds for the four lossy

methods on ultrasound images

Table 4.4: Average of Compression/decompression time for the four lossy methods

applied on ultrasound images

images JPEG BTPC JPEG2000 SPIHT
CcT DT CT DT CT DT CT DT
Ultrasound1 0.085 0.058 0.376 0.159 1.154 0.482 0.185 0.245
Ultrasound2 0.099 0.06 0.466 0.165 1.242 0.449 0.183 0.313
Ultrasound3 0.087 0.061 0.385 0.166 1.156 0.528 0.218 0.269
Ultrasound4 0.104 0.061 0.389 0.159 22 0.561 0.211 0.388
Ultrasound5 0.099 0.061 0.595 0.164 1.228 0.455 0.215 0.252
Ultrasound6 0.102 0.061 0.539 0.167 1.34 0.45 0.215 0.263
Ultrasound? 0.1 0.06 0.383 0.159 1.264 0.641 0.213 0.281
Ultrasound8 0.104 0.061 0.588 0.162 1.273 0.611 0.227 0.617
Ultrasound9 0.101 0.058 0.632 0.153 1.265 0618 0.247 0.266
Ultrasound10 0.104 0.061 0.64 0.17 1.32 0.612 0.223 0.281
Ultrasound11 0.098 0.062 0.395 0.17 1.222 0.593 0.188 0.26
Ultrasound12 01 0.062 0.392 0.416 1.245 0.644 0.182 0.545
Ultrasound13 0.675 0.065 0.404 0.17 1.237 0.45 0.217 0.27
Ultrasound14 0.101 0.063 0.687 0.167 1.382 0.452 0.218 0.271
Ultrasound15 0.099 0.062 0.7 0.17 1.35 0.482 0.215 0.349
Ultrasound16 0.098 0.095 0.658 0.153 1.156 0.555 0.215 0.568
Ultrasound17 0.095 0.058 0.645 0.164 1.199 0.579 0.196 0.283
Ultrasound18 0.096 0.095 0.644 0.164 1.279 0.448 0.218 0.265
Ultrasound19 0.104 0.063 0.375 0.164 1.438 0.487 0.223 0.437
Ultrasound20 0.102 0.095 0.404 0.16 1.347 0.493 0.233 0.526
Ultrasound21 0.096 0.059 0.679 0.149 1.168 0.579 0.22 0.28
Average 0.127095 | 0.065762 | 0.522666667 | 0.17481 | 1.260952381 | 0.531857 | 0.21247619 | 0.344238
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4.7 Summary

A comparative study of lossless compression schemes applied on large number of

mammogram and ultrasound images has been carried out. The results for a set of 21

test cases of different sizes and texture of each modality have been included.

To evaluate the lossless compression methods, three criteria namely, compression
ratio, compression time and decompression time were used. JPEG-LS shows high
compression ratio through different  entropies and much less
compression/decompression. Based on these two features, the results of the analysis

indicate JPEG-LS is found to be well suited for compressing mammograms and

ultrasound images.

The lossy methods are evaluated using MSE and PSNR as criteria to quantify the

distortion.

[t is found that SPIHT is an efficient method that shows the better compromise

between compression ratio and image quality than other lossy schemes with a

reasonable compression speed.
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CHAPTER 5

HYBRID REGION-BASED IMAGE COMPRESSION SCHEME

5.1 Introduction

In mammograms and ultrasound images there are only small regions of interest (ROI)
which are diagnostically relevant while the remaining regions are much less
important. The proposed approach is to retain the quality by using efficient lossless
compression on ROI and optimal lossy compression on non-regions of interest (non-
ROI), thus yielding a high overall compression ratio while still being diagnostically
lossless. The approach described in this work 1s a hybrid technique of applying a
modified lossless JPEG-LS algorithm which is found to be the best approach among
the cight lossless algorithms on the ROI (sections 4.2 an 4.3) and Shape Adaptive
SPIHT algorithm which is found to be best among the four efficient lossy
compression methods on non-ROI (sections 4.5 and 4.6). First JPEG-LS with the
proposed modification is described. This is followed by detailed description of SPIHT
algorithm with shape adaptive approach. The above two algorithms are combined to
yield a Hybrid Region-based Image Compression Scheme (HYRICS) which is applied

on the selected mammograms and ultrasound images with and without preprocessing.
5.2 JPEG-LS

JPEG-LS is designed to achieve high compression efficiency at very low
computational complexity and memory requirement. This method has lossless and
near lossless modes. Here only lossless mode is described. For an input image, a
prediction scheme is first operated to decide whether the run-length compression
mode or the predictive coding mode should be selected to encode the current pixel,
depending on the values of previously encoded pixels in a surrounding neighborhood.
The prediction scheme and context modeling are the core features of the JPEG-LS
modeler as seen in Figure 5.1. The idea of prediction is to guess the current pixel
value based on the previous neighboring pixels and to output the difference between
the actual and the guessed values. It is expected that the differences are low so that the

image can be effectively compressed.
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Figure 5.1: JPEG-LS lossless simple coder diagram [41]

The algorithm will scan the image in raster order (from left to right and top to bottom)
when estimating the prediction values. Let the values of the pixels at locations W.
NW, N and NE shown in Figure 5.2 (a) are X,, X, X, and X, respectively with
respect to pixel value X; at the current location L. The initial prediction values X are

obtained by applying the formula in Figure 5.2(b).

If X,w>max (X,, X,) then
x=max(X,.X,);

else if X, <min (X,, X,) then

x=min(X,,X,):
NW | N [ NE else
W | L 1__ Current pixel location X=X, + X, ~X,,.
(a) (b)

Figure 5.2: (a) Four neighboring pixels (b) formula to obtain the initial prediction

This formula is based on the idea of taking an average of nearby pixel while taking
into account the edge to capture the horizontal, vertical and diagonal edges. If
horizontal edge detected, X, will be taken as prediction value. X, will be taken for
vertical edge otherwise, X, + X, — X,y will be taken as a prediction of diagonal edge.
The initial prediction is then refined using an average value of the prediction in that
particular context. The context in JPEG-LS also reflects the local variation in pixel

values. However, they are computed differently from CALIC.

First measure of differences D1, D2 and D3 are computed as followed:
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D 1 = X ne - X n
D2=X, -X,, (5.1)
D3=X,, -X,

The values of these differences define a three-component context vector Q. The

components of Q (Q1, Q2 and Q3) are defined by the following mapping:

DT =0=-4
-L<D =<-T,=0 =-3
-, <D =s-T1=0 =-2
~L <D< =0 =-1
D=0=0=0

0<D <T=0 =1
heD <1 = 0.=2
L<D<sT,=0=3
<D =0 =4

—_—
wh
(3

S

In equation 5.2, T1, T, and T3 are positive coefficients that can be specified by the
user. However, JPEG-LS define default values calculated from the pixel depth of the
original image (i.e. 3, 7, and 21 are optimal values of T1, T2 and T3 respectively for 8
bit grayscale images). Given nine possible values for each component of the context
vector, this result in 9x9x9 = 729 possible contexts. In order to simplify the coding
process, the number of contexts is reduced by replacing any context vector Q whose
first nonzero element is negative by —Q. Whenever this happens. a variable SIGN is
also set to -1; otherwise, it is set to +1.this reduce the number of contexts to 365. The

vector Q is then mapped into a number between 0 and 364.

The variable SIGN is used in the prediction refinement step[41]. The correction is

first multiplied by SIGN and then added to the initial prediction.

The prediction error r,, is mapped into an interval that is the same as the range

occupied by the original pixel values M. The mapping used in JPEG-LS is as follows:

M
l‘”<—7-:2.f'"<—i‘n+M
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Finally, the prediction errors are encoded using adaptively selected codes on Golomb
codes, which have also been shown to be optimal for sequences with a geometric
distribution. Golomb code encodes an integer in two parts: a unary representation and
a modified binary representation (using bits if and bits otherwise). Golomb codes are

optimal [41] for one-sided geometric distributions of nonnegative integers.
5.2.1 Modification on JPEG-LS

The current JPEG-LS algorithm is not supporting shape adapting coding. So in this
work the existing JPEG-LS is modified such that the compression can operate only in
a predefined arbitrary area specified by the mask. In this modified prediction scheme
the entire region outside ROI regions will be discarded. In this modified JPEG-LS
algorithm, when estimating the prediction values, the four previous neighboring pixels
that involved as a context for the prediction are dynamically changed for every pixel
that is within the ROI area. If the current pixel is in the first row of ROI then both X,

and X, will be assigned to zeros otherwise if the previous X, is part of ROI then it

will be assigned to X, otherwise X, is zero (Equation 5.4).

IfX; € ROI FIRST ROW

Xn=0;
X=0;
else if previous( X,,,) € ROI
X, =Xnw:
else
X, =0. (5.4)

If the current pixel is ROI left edge then X, will be assigned to zero otherwise X, is

previous ROI pixel X7, (Equation 5.5).

If X; € ROI LEFT EDGE

K=
else
X, = previous(X;); (5.5)

X, will be taken as prediction value when horizontal edge is detected. If vertical edge
is detected X, will be taken as a prediction value. Otherwise (X, + X, - Xpy) will be

taken as a prediction value for the diagonal edge.
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The prediction value is calculated as shown above only if X is within the ROI
determined by the mask. When the next related horizontal pixel is processed, the
previously encoded pixel will be assigned as X, and accordingly previous pixel at X,
will be assigned as Xp,. X, and X,. will be given new values according to their
respective locations in ROL If any of X, or X,. is located in non-ROI it will be

assigned to zero.

The same procedure will be followed for other related pixels of the region. The
compression process can operate only in a predefined area specified by the mask. In

this modification all the region outside ROI will be discarded.
5.3 Characteristics of Wavelet Decomposition in SPTHT

Set Partitioning in Hierarchical Trees (SPIHT) is an improved version of Embedded
Zerotree Wavelet (EZW) algorithm [59]to encode the wavelet coefficients. In next
subsection some important characteristics of wavelet is described. Then a Detailed

description of SPIHT algorithm is presented.
5.3.1 Spatial Orientation Trees

In SPIHT a wavelet transform is performed on the image to reduce the correlation
between neighboring pixels. In wavelet transform, subband decomposition is
produced by an analysis filter bank followed by downsampling; this constitutes one
stage of the two dimension subband decomposition of an image as depicted in Figure
5.3 in which the energy of the original image is concentrated in the lowest frequency
band (LL) of the transformed image. In a two channel separable system, the initial
high-pass and low pass filters and downsampling are applied horizontally to the rows
of an image. The subsequence filters and downsampling are then applied vertically to

the resulting columns.



Chapter 5: Hybrid Region-based Image Compression 56

Horizontal Vertical

- ‘2 = LI
- | ‘2 ==

| H ;3 = |H

Image data —

— L 42 —= L
— 0 §2

=] H *2 F—= HH

Figure 5.3: Two dimensional subband analysis

Consequently, the image is split into four bands that show a strong self-similarity
denoted LI, HH, HL, and LL, according to whether the rows and columns received
the low-frequency or high-frequency filtering. Only the low band LL is input once
more to analysis filter bank decomposed and downsampling operation, this is referred
to octave-band decomposition. The reconstructing operation is an inverse process
consists of an upsampling operation followed by a synthesis filter bank. One of the
most important characteristics of wavelet transformed is the spatial orientation of the
coefficients. A spatial orientation tree is defined as a set of coefficients from different
bands that represent the same spatial region in the image. As an example, two-level
wavelet decomposition of ultrasound image with spatial orientation tree is shown in
Figure 5.4. For simplicity, only two levels of the transform are shown here. The first
transform level results in sub-bands LH1, HHI, HL1, and LL1. Only sub-band LLI is
passed on for further wavelet decomposition, generating the next transform level and
creating sub-bands LH2, HH2, HL2, and LL2. As it seen, these octave-bands have
similarities with each other that represent the same spatial location of the original
image and the same orientation, but at different scales. The different scales of the
subbands imply that a region in the sub-bands is representing the same region in the
original image. SPIHT defines spatial parent-children relationships in the
decomposition structure to exploit the self similarities properties of DWT images. To
explain the balanced tree structures used in SPIHT, a portion of the parent-child
relationships is depicted in Figure 5.4(c). The arrows in the figure identify the parent-
children dependencies in a tree. The start of arrow line is parent coefficient, and end

of arrow indicates four children coefficients.
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Figure 5.4: 2-level wavelet decomposition of US image with spatial orientation tree

(a) Original image (b) Transformed image (c) Part of parent-child relationships

In transformed image, cach coefficient X; (except the coefficient in the top-left corner
in the lowest band and the three highest bands) is related to exactly four coefficients
in the next highest band. Those four coefficients correspond to the same orientation
and spatial location as X; does in the original image. Each of these four is in turn
related to four in the next band, and so on. These coefficients are collectively called
the descendants of .X;. The spatial self-similarity between the parent and a child pixel
suggests that an encoding scheme that moves from the parent to the child will exhibit
decreasing coefficient magnitudes. In another words, it is often true of image data
that when a coefficient X, has magnitude less than some threshold T, all of its

descendants will also be less than T.
5.3.2 SPIHT Algorithm

The characteristics of wavelets decomposition are exploited by the SPIHT algorithm.
It begins at the top of the tree and encodes higher-order bits before lower-order bits
decomposing cach sub-tree whenever it finds a coefficient in a sub-tree which exceeds

the current threshold.

FFor easy understanding of SPIHT algorithm Khalid Sayood [59] defines the following
functions and notation:
e (,, is the coefficient at location (i, /).
e (O, ,is the set of coordinates of the four offspring’s of the coefficient at location (i
J)-
O, = {C:.,z,~C::+|,21ﬂ(":,,zm-(—‘:m_zm} (5.6)
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e D is the set of descendants of the coefficient at location (i.j).descendants include
the offspring’s , the offspring’s of the offspring’s. and so on.

e [1is sct of all root nodes, essentially all the coefficients on the low frequency band
of the octave-band decomposition.

e [, ,this is the set of coordinates of all the descendants of the coefficient at location
(1)) Except for the immediate offspring’s of the coefficient at location (i.j).

L,,=D,-0, (5.7)

Any set ( D;; or L;; ) is said to be significant if any coefficient in the set has a
magnitude greater than the certain threshold. Finally, thresholds used for checking
significance are power of 2. So in essence, the algorithm sends the binary
representation of the integer value of the coefficients. The bits are numbered with the
least significant bit being the zeroth bit, the next bit being the first significant bit, and
the Zast bit (k-1 ) being referred to as most significant bit. The magnitude sorting
algorithm in SPIHT achieves embedded coding by using three lists of coefficients:
List of Significant Pixels (LSP), List of Insignificant Pixels (LIP) and List of
Insignificant Sets (LIS). LSP will contain the coordinates of coefficients that are
significant with respect to the current threshold r. opposing LSP, LIP contains
coordinates of coefficients that are insignificant with respect to #. LIS contains the

coordinates of the roots of insignificant set of type D or L.
The algorithm starts by determining the initial value of the threshold 7 from equation.

{ = 21.’“3 )] (5 8)
where Cpax is the maximum magnitude of the coefficients to be encoded. The initial
state of SPIHT algorithm is shown in Figure 5.5. The LSP is initially empty. LIS is
initialized with the set H. LIS with elements of H that have descendants are also

placed as type D entries.
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Insignificant pixels (LIP) Insignificant sets type D (LIS)

Figure 5.5: Initial state of SPIHT algorithm [60]

All the steps of SPIHT algorithms are shown in the flowchart given in figure 5.6. In
cach iteration, there are three steps: the sorting pass, the refinement pass, and the
updating quantization step. The purpose of the sorting pass is to manipulate the three
lists so that they are correct with respect to the current value of the magnitude
threshold T. In the sorting pass. the member of LIP is processed first and then the
members of LIS. This is essentially the significance map encoding step. The element
of LSP in the refinement step is then processed. Each coordinate contained in LIP is
then examined. If the coefficient at that coordinate is significant (that is greater than
2Y), transmit a 1 followed by a bit representing the sign of the coefficient (1 for
positive. 0 for negative). Then the coefficient will be moved to the LSP list. If the

coefficient at that coordinate is not significant, a 0 is transmitted.

After examining each coordinate contained in LIP, the set in LIS will be examined. If
the set at coordinate (i, j) is not significant, a 0 will be transmitted otherwise a 1 will

be transmitted. What comes after that depends on whether the set is of type D or L.

If the set is of type D, each of the off-springs of the coefficient at that coordinate will
be checked. In other words. the four coefficients whose coordinates at in O(ij) will
be checked. For each coefficient that is significant, transmit 1 and the sign of the
coefficient. Then move the coefficient to LIP. For the rest, transmit a 0 and then add
their coordinates to the LIP. Now that the coordinate of O (ij) has been removed from
the set, what is left is simply the set L(ij). If this set is not empty, it will be removed to
the end of LIS and mark it to be type L. Note that this new entry into the LIS has to

be examined during this pass. If the set is empty; the coordinate (ij) will be removed

from the list.
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[f the set is of type L, then each coordinate will be added in O(ij) to the end of the LIS
as the root of a set of type D. again note that these new entries are the LIS have to be

examined during this pass . Then the coordinate (if) will be removed from the LIS.

The refinement pass follows the sorting pass and outputs the bit corresponding to the
current magnitude threshold for each of pixels in the LSP which were not added in the
immediately previous sorting pass. The quantization for each significant coefficient is
refined in a successive manner. A quantization threshold is used in coefficient
magnitude test and then successively decreased by a factor of two in each pass of the
algorithm. When the bit budget is reached, the algorithm will stop. The algorithm can
be halted at any time needed, such as if the compressed data stream has reached the

size we desire.,
5.3.3 Shape Adaptive SPIHT Encoding

The conventional DWT is not supporting an arbitrary shaped ROI of an image, but it
supports only a rectangular shaped regions. The SPIHT algorithm can be made to
encode arbitrary shaped objects by incorporating a Shape Adaptive-Discrete Wavelet
Transform (SA-DWT) (section 2.7.3). SA-DWT is identical to the conventional
wavelet transform when applying it in a rectangular region and preserves the spatial
correlation and self-similarity property of wavelet transforms. In a SA-DWT, the
number of coefficients is exactly equal to the number of pixels in the object, which is
achicved by using a mask that is opaque for object pixels and transparent everywhere
else. In Shape Adaptive SPIHT (SA-SPIHT) encoding, each time a coefficient is to be
encoded; its position with respect to the mask is taken into consideration. If a
coeflicient is within the opaque region of the mask, it is encoded. All transparent
coefficients are considered to be insignificant at all times, and thus encoding is
avoided. Similarly, shape information is also used to determine which coefficients are
to be decoded and which are not during the decoding process. The coding algorithm
needs to keep track of the locations of wavelet coefficients according to the shape of
the object. To obtain the information about object coefficients, a mask image which
specifies the object is decomposed by the same SA-DWT used in the wavelet
decomposition of the image. In each decomposition stage, each subband of the
decomposed mask contains information for specifying the object in that subband. By

successively decomposing the approximation coefficients (LL subband) for a number
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of decomposition levels, information about object coefficients is obtained. Once the
object coefficients are identified, SPIHT coding algorithm will be applied on these
cocfficients to create the embedded bit stream. In order to efficiently code object
coefficients by taking advantage of the ROI information in the transform domain, a
region-based extension of SPIHT algorithm is used. When the spatial orientation trees
are established in the initialization step of SPIHT, the object information obtained
from decomposition of the object mask is used to mark the spatial orientation tree. If
all coefficients or some coefficients in a spatial orientation tree belong to the object.
the corresponding tree is marked as an object tree. If all coefficients in a tree are
outside the object, this tree is identified as a background tree. The background tree is
skipped at the initialization stage. Also when a node and all its descendants in a
spatial orientation tree are outside the object, the tree is pruned from that node. By
doing so, no information about coefficients outside the object needs to be coded.
Figure 5.7 gives an example of the parent-children relationship after SA-DWT
decomposition of an image containing an object. Shaded blocks represent object
coeflicients, and striped blocks are the background coefficients that have descendants

inside the object.

Figure 5.7: Parent-children relationship in SA-DWT subbands [60]

Solid arrows represent the parent-children relationship in the coefficient tree that
should be kept. Dashed arrows specify the sub-branches in the coefficient tree that can

be pruned.
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5.4 Hybrid Region-based Compression Schemes

In the proposed Hybrid Region-based Image Compression Scheme (HYRICS).
modified JPEG-LS is applied on ROI to preserve the significant diagnostic quality
and SA-SPIHT is used to encode the remaining non-ROI in a lossy manner. Figure
5.8 shows the steps that describe HYRICS. After acquiring mammograms and
ultrasound films from local hospitals and digitizing them, the disease affected regions
of interest are roughly marked by expert radiologist. Based on these markings an
Arbitrary Shaped Mask (ASM) is generated to differentiate the pixels that belong to
the ROI and non-ROI. This shape information is needed by compression scheme
before starting the real compression process. Figure 1 and 2 in Appendix D shows all
the generated masks for all the mammograms and ultrasound images that are used as
test cases. Each mask is represented as a binary image, where zeros correspond to
ROI and ones correspond to the non-ROIL. Figure 5.9 shows an example of
mammogram image on which HYRICS is applied. In the figure (a) is the original
image; (b) shows the region marked by the expert radiologist; (¢) is the resulting

generated mask that identifies the ROL
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Figure 5.8: HYRICS Steps

(d) shows the decompressed image of ROI by the modified JPEG-LS. (¢) shows the
reconstructed image of non-ROI by SA-SPIHT. By combining images of (d) and (e)

the resultant decompressed image is obtained as in (f).



Chapter 5: Hybrid Region-based Image Compression 64

For evaluating the compression efficiency of HYRICS, the compressed sizes of both
ROT and the non-ROI are to be taken into account. The compression ratio achieved by
SA-SPIHT is always very high because it is operating on larger area not containing
discase affected regions where more degradation in the quality is acceptable. This

factor contributes for higher compression efficiency of HYRICS.

Lets Syiig be the size of the original image. S, and S, are the sizes of the ROI and
non-ROI respectively. C,,; and Cy are the sizes of the compressed ROI and the
compressed non-ROI respectively. The compression ratios of JPEG-LS, SPIHT and

HYRICS can be calculated as follows:

4 &

S 3 - ‘S‘“n g -
CR =28 CRyur = =2 and CRypes = ——% (5.9)

JPLG-1LS SPIHT v v
roil ~ nori (' ro: + C nrin
I'rom these formulas, a relation between the three compression ratios (CRyyrics-
CRypegas and CRspyyr) with respect to the original image size can be given as

follows:

SU”' S
CR s = 3 S S5 (5.10)

~ rot nroi

C R.H'I;’f A C R.\'."IH;"

The percentage of the ROI region is also affecting the overall compression ratio of
HYRICS. The percentage of both ROI and non-ROI can be expressed in the following

equations:

P =iﬂ4x100 e :hx]OOcmd:” =100- 1P, (5.11)

ron nroi ror nrol

ong “org

Therefore, CRyyrics can be denoted on respect to CRyppg.rs, CRspiyr and Py, as

follows:

P 100-P
CRHRJ('.\' i IO(/[CR Stk E,TM J (5- 12)
JPEG-LS

SPIHT
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The compression ratio achieved by SA-SPIHT (CRgpyr) is always very high because
it is operating on larger arca not containing discase affected regions where more
degradation in the quality is acceptable. Therefore, CRgpyyr contributes more for

higher compression efficiency of HYRICS.

(a) (b) (c)

(d) (e) (H

Figure 5.9: Sequences of the Hybrid Compression- mammogram ‘2
(a) Original image; (b) ROI marked by radiologist; (¢) Generated Mask for
ROI;
(d) Modified JPEG-LS operated ROI; (¢) SA-SPIHT operated non-ROI:
(f) Decoded image by combining (d) and (e) by HYRICS

5.5 HYRICS on pre-processed mammograms and ultrasound images

In the example shown in Figure 5.9, HYRICS applied on an image without any pre-
processing. The effect on compression efficiency by applying HYRICS on contrast
stretched mammograms and ultrasound images have also been studied. One of the
benefits of HYRICS besides the high compression efficiency is that itcan be achieved
the possibility to contrast stretch only very small areca (ROI) for diagnostic proposes
and the larger non-ROI will not be processed thus saving a lot of processing time.
There are two possibilities for contrast stretching of ROI: (i) contrast stretching before
applying compression and (ii) contrast stretching after decompression. Contrast

stretching before compression to enhance the diagnostic quality is an irreversible step.
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5.6 Summary

JPEG-LS and SPIHT algorithms are reviewed in details. A new modification is
introduced to JPEG-LS to allow the algorithm strictly operate on arbitrary shape ROI.
SA-DWT is used in SPIHT for coding of non-ROI. All the characteristics of the
conventional two dimension wavelet decomposition are well preserved by SA-DWT.
Then, the modified approaches are combined in a Hybrid Region-based Image
Compression (HYRICS) to be applied on selected mammograms and ultrasound

images with and without preprocessing.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 Introduction

The algorithm developed in this work uses the regions of interest that are roughly
marked by the expert radiologist to generate appropriate masks. The masked ROI will
be compressed using modified JPEG-LS. The remaining non-ROI will be compressed
by SA-SPIHT. Then the resultant images after above hybrid compression will be
transmitted for tele-consultation. HYRICS was applied on many mammograms and
ultrasound images obtained from local hospitals. The results obtained for 21 selected
mammograms and 21 selected ultrasound images of different sizes and textures are

presented.
6.2 Compression Efficiency

Table 6.1 and Table 6.3 show the results on mammograms and ultrasound images
respectively. In each table, column-2 represents the compression ratios obtained by
applying normal JPEG-LS on the whole image. Column-3 represents compression
ratios obtained using the proposed new modified JPEG-LS applied on ROIL. Column-4
shows the compression ratios obtained applying SA-SPIHT on non-ROI. The last
column shows the compression ratios obtained by applying the proposed HYRICS. It
is noted that the new scheme shows considerable increase in the compression ratio
comparing to normal JPEG-LS. For certain mammograms and ultrasound images, 1t is
found that the compression ratios are very high. For certain cases the ratios are found
to be low. The reason for such difference is due to the variation in sizes and textures

of the sample images and the size of the ROI considered in each sample image.
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Table 6.1: Comparison of compression ratios of JPEG-LS and HYRICS on 21

mammograms
Images | JPEG-LS | Modified JPEG-LS | 52 | nyrics
SPIHT

Mt_ll‘l]lﬂ() ] 3.340472 2.92304075 79.99842 | 39.99875
~Mammo?2 | 3.571366 2.67827694 79.99541 | 8.505339
Mammo3 | 3.446099 2.6068174 79.99698 | 11.38211
‘Mammod4 | 3.295752 2.8735243 79.99622 | 9.226224
MammoS5 | 3.286945 2.66980104 79.99543 | 8.245254
~Mammo6 | 3.272122 2.78747544 79.9986 | 9.285734
‘Mammo7 | 3.326101 2.73854452 79.99904 | 10.68953
~Mammo8 | 3.697268 2.81259095 79.99448 | 9.268267
Mammo9 | 3.514702 2.98663139 79.99797 | 34.48077
Mammol0 | 3.677672 2.75819969 79.99935 | 9.645393
Mammoll | 3.57951 2.74638145 80.00012 | 27.33239
Mammol2 | 3.666685 3.07486003 79.99792 | 45.02136
Mammol3 | 3.868008 2.81857985 80.00151 | 13.61226
Mummo 14 | 3.502873 2.90763692 79.99727 | 7.049566
‘Mammol5 | 3.83271 2.77706811 79.99597 | 14.86792
‘Mammol6 | 3.512044 2.87775927 79.99279 | 7.521334
Mammol7 | 3.719228 2.83601867 79.99541 | 19.46018
Mammol8 | 3.549872 3.13787159 79.99873 | 37.85266
‘Mammol9 | 3.515244 2.85179189 79.993 | 8.289259
Mammo20 | 3.629403 2.5211459 79.99786 | 56.85634
Mammo21 | 3.676769 2.33864254 79.99419 | 62.13938

[t may be seen from Table 6.1 the compression ratios obtained by applying JPEG-LS
only on the whole image range from 3.2 to 3.8. However, when HYRICS is applied.
the compression ratios vary from 7 to 62. It is noted that the lowest compression ratio
for HYRICS is observed on mammol4 where the ROI area is very large (39% of the
image). The highest compression ratio is observed on mammo2! where ROI is very
small (0.87 %). The effect of the size of ROI on compression ratios can be clearly
seen for the 21 images in Table 6.2. Figure 6.1 shows the plot of the compression
ratio obtained by HYRICS on mammograms arranged in descending order of
percentage of ROl areas. It can be clearly secen that HYRICS gives higher
compression efficiency and for low areas of ROI high compression ratios are

obtained.
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Table 6.2: Effect of ROI area on compression ratio of HYRICS for mammograms

Images ROI area % | Non-ROIl arca % | Compression ratio
Mammol 3.79 96.21 39.99875
Mammo?2 29.12 70.88 8.505339
Mammo3 20.31 79.69 11.38211
Mammod4 28.58 7142 9.226224
Mammo5 30.05 69.95 8.245254
Mammo6 27.49 72.51 0.285734
Mammo?7 22.98 77.02 10.68953
Mammo8 27.81 72.19 9.268267
Mammo9 5:12 94.88 34.6
Mammol0 26.05 73.95 9.645393
Mammol | 6.85 93.15 27.33239
Mammol2 3.11 96.89 45.02136
Mammol3 17.81 82.19 13.61226
Mammol4 39.03 60.97 7.049566
Mammol5 15.75 84.25 14.86792
Mammol6 35.96 64.04 7.521334
Mammol7 11.43 88.57 19.46018
Mammol8 4.55 95.45 37.85266
Mammol9 31.98 68.02 8.289259
MammoZ20 1.32 98.68 56.85634
Mammo21 0.87 99.13 62.13938
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Figure 6.1: Plot of Compression ratios on mammograms arranged in a descending
order according to the size of ROI areas
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[t may be seen from Table 6.3, the compression ratios obtained by applying JPEG-LS
only on the whole image range from 1.9 to 2.5 for the 21 ultrasound images. When
using HYRICS the ratios vary from 6.3 to 41.9. The lowest compression ratio for
HYRICS is observed on ultrasound13 where the ROI area is very large (31.85%). The
highest compression ratio is observed on ultrasound7 where ROI is very small (2.77

%).

Table 6.4 shows the effect of ROI area and non-ROI area on compression ratios
obtained by HYRICS on ultrasound images. Figure 6.2 shows the plot of percentage
of ROI area and the compression ratio obtained by HYRICS on ultrasound images. It

can be clearly seen that for low areas of ROI high compression ratios are obtained.

Table 6.3: Compression ratio of the JPEG-LS and the proposed method
on 21 ultrasound images

Images | JPEG-LS | ROI-JPEG-LS sﬁﬁi'r HYRICS
~ Ultrasound] 2.302702 2.34030752 | 79.99669 23.93241
_ Ultrasound2 | 2.071661 2.20804442 | 79.99748 23.40062
~ Ultrasound3 2.191392 2.14484384 | 79.99702 22.34103
~ Ultrasound4 2.064791 2.12415376 | 79.9977 10.12332
_ Ultrasound5 2.191715 2.14142581 | 79.99895 20.61741
Ultrasound6 2.025028 220947476 | 79.99155 6.686664
~ Ultrasound? 2.332065 2.36544768 | 79.99838 41.91202
Ultrasound8 2.302778 2.39102729 79.9965 21.04574
Ultrasound9 2.302341 2.34930521 | 79.99752 31.5881
Ultrasound10 | 1.912019 1.97913031 |  79.9955 32.25395
Ultrasound11 2.206399 2.22219878 | 79.99999 8.461627
Ultrasound12 | 2.010044 21418692 | 79.99679 8.459908
“Ultrasound13 2.177968 2.14480995 | 79.99671 6.369004
Ultrasound14 | 2.043088 214776341 | 79.99571 8.622432
Ultrasound15 | 2.181235 217774518 | 79.99647 8.725956
Ultrasound 16 2.499123 2.40108917 | 79.99154 9.170192
Ultrasound17 2.381912 3.46763123 | 79.99806 13.85824
~Ultrasound 18 1.931095 1.89464654 | 80.00008 12.03507
Ultrasound 19 2.447848 2.35337307 | 79.99921 29.84179
Ultrasound?20 2.444333 243562814 | 79.99563 23.67005
Ultrasound?21 2.505162 2.2887515 79.9983 13.49546
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Table 6.4: Effect of ROl area on compression ratio of the proposed method for
ultrasound images

Images ROI arca % | Non-ROI area % | Compression ratio
Ultrasound | 7.06 92.94 23.9324]
Ultrasound?2 6.87 93.13 23.40062
Ultrasound3 7.11 92.89 22.34103
Ultrasound4 18.83 81.17 10.12332
Ultrasound3s 7.92 92.08 20.61741
Ultrasound6 31.14 68.86 6.686664
Ultrasound? 290 97.23 4191202
Ultrasound$8 8.63 91.37 21.04574
Ultrasound9 4.64 95.36 31.5881
Ultrasound 1 0 3.95 96.25 32,25395
Ultrasound 1 1 24.16 75.84 8.461627
Ultrasound 12 23.26 76.74 8.459908
Ultrasound 13 31.85 68.15 6.369004
Ultrasound 14 22.84 77.16 8.622432
Ultrasound15 22.86 77.14 8.725956
Ultrasound 16 23.90 76.10 9.170192
Ultrasound 1 7 21.62 78.38 13.85824
Ultrasound 1 8 13.70 86.30 12.03507
Ultrasound 19 5.09 94,91 29.84179
Ultrasound20 7.47 92.53 23.67005
Ultrasound?2 | 14.51 85.49 13.49546
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Figure 6.2: Plot of Compression ratios on ultrasound images arranged in a descending
order according to the size of ROI areas
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6.3  Computational time

Table 6.5 and Table 6.6 show compression/decompression time of JPEG-LS, modified
JPEG-LS, SA-SPIHT and HYRICS on mammograms and ultrasound images
respectively. For both modalities, computational time (CT + DT) of SA-SPIHT is
slightly greater than that of SPIHT. This is mainly because DWT is applied twice on both
the original image and the mask. On other hand computational time of modified JPEGI.-
LS is less than that of JPEG-LS. This shows that HYRICS is fast enough even if the ROI

area is larger if the time that spent to mark the ROI is excluded.

Table 6.5: Compression/ Decompression time for JPEG-LS, ROI-
JPEG-LS, SA-SPIHT and HYRICS on mammograms

Images JPEG-LS | ROILJPEG-LS | SA-SPIHT | HYRICS
cr [pr [ecr [pr ler (DT l.cT [DT

Mammol  [0.359 [ 0328 [ 0.046 [ 0.046 |3.295|2.279 | 3.341 [ 2.325
Mammo2 | 0.296 | 0.281 | 0.109 | 0.125 |3.047 | 2.168 | 3.156 | 2.293
Mammo?3 0.296 | 0.297 1 0.078 | 0.125 | 3.12 | 2.191 | 3.198 | 2.316
Mammo4 0.206 | 0.28210.109 | 0.125 }2.957 | 2.299 ] 3.066 | 2.424
‘Mammo5 | 0.296 | 0.297 | 0.109 [ 0.125 | 2.935 | 2.389 | 3.044 | 2.514
Mammo6 | 0.296 | 0328 ] 0.125 | 0.125 | 3.559 | 2.436 | 3.684 | 2.561
Mammo?7 | 0.328 | 0.297 | 0.094 | 0.094 |3.103 | 2.296 | 3.197 | 2.39
‘Mammo8 | 0.296 | 0266 | 0.11 | 0.11 | 2.929 | 2.468 | 3.039 | 2.578
‘Mammo9 | 0.375 | 0.156 | 0.016 | 0.062 | 1.805 | 1.196 | 1.821 [ 1.258
‘Mammol0 [ 0312|0344 | 0.109 [ 0.109 | 3.166 | 2.643 | 3.275 | 2.752
Mammoll | 0.171]0.156 | 0.015 [0.015 | 1.79 | 1.289 | 1.805 | 1.304
Mammol2 [ 0375|0281 0.031 [0.031 |1.817] 1.406 | 1.848 | 1.437

Mammol3 | 0.171 | 0.157 ] 0.047 | 0.047 | 1.8 1.236 | 1.847 | 1.283

‘Mammol4 ]0.171 | 0.344 ] 0.078 | 0.078 | 1.505 | 1.169 | 1.583 | 1.247
Mammol5 | 0.156 | 0.172 ] 0.047 | 0.047 11.902 | 1.5 1.949 | 1.547

Mammol6 | 0.296 | 0.282 ] 0.078 [ 0.078 | 1.508 | 1.232] 1.586 | 1.31

Mammol7 J0.171 | 0.172 1 0.031 | 0.032 | 1.795 | 1.275] 1.826 | 1.307
Mammol8 ] 0.171 | 0.188 | 0.031 | 0.031 1.756 | 1.335 ) 1.787 | 1.366
Mammol9 ]0.171 | 0.172 1 0.063 | 0.063 | 1.625 | 1.165] 1.688 | 1
Mammo20 |0.171 | 0.172 | 0.015 | 0.031 1.826 | 1.207 ] 1.841 | 1.238
Mammo21 ]0.171]0.17210.016 | 0.016 | 1.705 | 1.223 ] 1.721 | 1
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Table 6.6: Compression/ Decompression time for JPEG-LS, ROI-
JPEG-LS, SA-SPIHT and HYRICS on ultrasound images

Images JPEG-LS ROI-JPEG-LS | SA-SPIHT HYRICS

CT DT CT DT CT DT CT DT

Ultrasound! | 0.234 | 0.234 | 0.031 | 0.031]2.081 [ 1.365 | 2.112 | 1.396
Ultrasound2 | 0.203 | 0.203 | 0.031 | 0.031]1.786 | 1.316 | 1.817 | 1.347
Ultrasound3 | 0.187 | 0.187 | 0.031 | 0.046 | 1.838 | 1.418 | 1.869 | 1.464
Ultrasound4 | 0.203 | 0.344 | 0.062 | 0.078 | 1.688 | 1.347 175 1.425
Ultrasound5 | 0.203 | 0.25| 0.031 | 0.032 | 1.856 | 1.478 | 1.887 1.51
Ultrasound6 | 0.296 | 0.203 | 0.078 | 0.094] 1.61 | 1.378 | 1.688 | 1.472
Ultrasound7 | 0.203 | 0.203 | 0.016 | 0.031]2.171 | 1.621|2.187 | 1.652
Ultrasound8 ] 0.218 | 0.219 | 0032 | 0.078]2.101 | 1.48|2.133| 1558
Ultrasound9 | 0.218 | 0.219 | 0.031 | 0.031]2233 | 1.744 | 2.264 | 1.775
Ultrasound10 | 0.421 | 0.218 | 0.031 | 0.031 1.89 | 1.636 | 1.921 1.667
Ultrasound 11 | 0.203 | 0.485 | 0.062 | 0.063 | 1.674 | 1.382 | 1.736 | 1.445
Ultrasound12 0.203 | 0.203 | 0.062 | 0.063 ] 1.694 | 1.527 | 1.756 1.59
Ultrasound13 | 0.421 | 0.672 | 0.125 0.14 | 1.587 | 1.384 | 1.712 | 1.524
Ultrasound14 | 0.203 | 0.219 ] 0.063 | 0.063 | 1.656 | 1.583 | 1.719 | 1.646
Ultrasound15 | 0.203 | 0.219 | 0.062 | 0.063 | 1.679 | 1.393 | 1.741 | 1.456
Ultrasound16 | 0.421 | 0.453 | 0.062 | 0.109 | 1.651 | 1.587 | 1.713 | 1.696
Ultrasound 17 | 0.171 | 0.203 | 0.046 | 0.046 | 1.645 | 1.415 ]| 1.691 | 1.461
Ultrasound18 | 0.203 | 0.218 ] 0.093 | 0.093 | 1.815 | 1.625] 1.908 | 1.718
Ultrasound 19 | 0.484 | 0.219 | 0.031 | 0.0471 | 2.129 | 1.718 | 2.16 | 1.7651
Ultrasound20 ] 0.218 | 0.703 | 0.046 | 0.046 | 2.109 | 1.494 ] 2.155 1.54
Ultrasound21 | 0.203 | 0.203 | 0.047 | 0.062 | 1.878 | 1.601 ] 1.925 | 1.663

6.4  HYRICS on preprocessed images

An additional study has also been carried out to find out the effect of the
preprocessing (contrast stretching) of only ROI before applying modified JPEG-LS.
Contrast stretching enhances the diagnostic value of medical image; however the
resulting image is no longer reversible. The results of compression efficiency by
applying modified JPEG-LS on contrast stretched mammograms and ultrasound
images are shown in Table 6.7 and Table 6.8 respectively. It is quit clear that
preprocessing the image before compression improves compression ratios in

mammograms only.

FFor ultrasound images, preprocessing before applying the modified JPEG-LS on ROI
decreases the compression ratios on most of the images. However, in few images

there are slight improvements in compression ratios due to the speckle texture.
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Table 6.7: Compression ratio applying modified JPEG-LS once after contrast
stretch compare when preprocessing the mammogram before compression
ROI-JPEG-LS (raw) ROLJFREG-LS

Images (Preprocessing)

L Size CR Size CR
Mammo 16156 | 2.92304075 14736 3.2047127
Mammo?2 128244 | 2.67827694 85896 | 3.99870714
Mammo3 91890 | 2.6068174 87398 | 2.74080014
Mammod 117328 | 2.8735243 56811 | 5.93449965
Mammo3 132756 | 2.66980104 80708 | 4.39153624
Mammo6 129276 | 2.78747544 82130 | 4.38760106
Mammo7 99000 | 2.73854452 47529 | 5.70422073
Mammo8§ 116634 | 2.81259095 90708 | 3.61648071
Mammo9 11234 | 2.98663139 3857 | 8.69894141 |
Mammo 10 117587 | 2.75819969 72166 | 4.49419986
Mammol | 16347 | 2.74638145 3215 | 13.9642605
Mammol2 6619 | 3.07486003 6093 | 3.34030831

Mammol3 41413 | 2.81857985 5555 | 21.0127538
Mammo 14 87972 | 2.90763692 41556 | 6.15532378
Mammol5 37178 | 2.77706811 4309 | 23.9605102
Mammol6 81889 | 2.87775927 7104 33.172414
Mammol7 26422 | 2.83601867 5983 | 12.5243666

Mammo | 8 9494 | 3.13787159 5471 | 5.44524819
Mammol9 73491 | 2.85179189 28905 | 7.25068459
Mammo20 3443 | 2.5211459 1957 | 4.43551627
Mammo?2 | 2425 | 2.33864254 1580 | 3.58937225

Table 6.8: Compression ratio applying the modified JPEG-LS once after contrast
stretch compare when preprocessing the ultrasound image before compression

ROI-JPEG-LS ROI-JPEG-LS
Images (Raw) (Preprocessing)
Size CR Size CR

Ultrasound | 25207 | 2.34030752 | 33285 | 1.67187563
Ultrasound?2 24452 | 2.20804442 | 21752 | 2.48212129
Ultrasound3 26070 | 2.14484884 | 25046 | 2.2325405
Ultrasound4 69707 | 2.12415376 | 73462 | 2.01557793
Ultrasounds 29093 | 2.14142581 28568 | 2.18077924
Ultrasound6 | 110845 | 2.20947476 | 123060 | 1.99016114
Ultrasound? 9781 | 2.36544768 8518 | 2.71618264
Ultrasound§ 30160 | 2.39102729 | 418068 | 1.72239856
Ultrasound9 16492 | 2.34930521 | 20289 | 1.90964274
Ultrasound10 | 14921 | 1.97913031 18831 | 1.56819093
Ultrasound1 1 85487 | 2.22219878 | 114590 | 1.65348688
Ultrasound12 | 85418 | 2.1418692 | 110450 | 1.65644349
Ultrasound13 | 116781 | 2.14480995 | 146809 | 1.7061151
Ultrasound14 | 83624 | 2.14776341 | 76575 | 2.34547264
Ultrasound15 | 82544 | 2.17774518 | 94991 | 1.89238768 |
Ultrasound16 | 78280 | 2.40108917 | 73715 | 2.54978309
Ultrasound17 | 49045 | 3.46763123 | 32833 | 3.21767049
Ultrasound18 | 56863 | 1.89464654 | 57370 | 1.87790284
Ultrasound19 | 18088 | 2.35337307 | 24547 | 1.73413501
Ultrasound20 | 25637 | 2.43562814 | 37075 | 1.68421305 |
Ultrasound2 1 49871 2.2887515 | 34720 | 2.08593432
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6.5 Case studies on sample Mammograms

6.5.1 Sample mammogram |

Figure 6.3 and figure 6.4 show an example of right breast image on which the
proposed hybrid method is applied. The original image, the arbitrary shaped region
that is marked by the radiologist and the resulting generated mask are shown in Figure
6.3. The decompressed image of ROI by the modified JPEG-LS, SA-SPIHT operated
reconstructed image of non-ROI and the combining image are shown in figure 6.4. In
this sample image, the micro-calcification region is very small compare to the entire
image 3.79%. When JPEG-LS is applied only compression ratio 3.340472 can be
achieved. However, HYRICS is achieving compression ratio of 39.99875. This high
compression is achieved by degrading the quality in non-ROI with compression ratio
of 80. It can be seen in Figure 6.4, the micro-calcification in the recovered image is

well preserved.

Figure 6.3: Sample mammogram 1
Left is the Original images; Top right is the ROI marked by radiologist;
Bottom right is the generated Mask
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Figure 6.4: HYRICS on sample mammogram 1
Top left is modified JPEG-LS operated ROI:
Bottom left is SA-SPIHT operated non-ROI; Right is Recovered image afier
combining the above two images

6.5.2 Sample mammogram 2

As it is shown in Figure 6.5 and figure 6.6, the steps of applying the proposed hybrid
method in a breast image is presented. In this sample image, JPEG-LS on the entire
image is achieving compression ratio of 3.446099. However, as the disease affected
region is bigger than the previous sample 20.31%, HYRICS is achieving
comparatively less compression ratio 11.38211 but yet far better than JPEG-LS. The
quality degradation in non-ROI is remaining the same as the previous sample but a

larger area is preserved.
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Figure 6.5: Sample mammogram 2
Left is the Original images; Top right is the ROI marked by radiologist;
Bottom right is the generated Mask
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Figure 6.6: HYRICS on sample mammogram 2
Top left is modified JPEG-LS operated ROI;
Bottom left is SA-SPIHT operated non-ROI; Right is recovered image after
combining the above two images
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6.5.3 Sample mammogram 3

In sample 3 the arbitrary shaped region that is marked by the radiologist is including
the entire breast area and equivalent to 30.05% of the image size. JPEG-LS achieving
compression ratio 3.286945. Figure 6.7 and figure 6.8 show HYRICS performance
on this large ROI sample mammogram in which HYRICS is achieving compression

ratio of 8.245254.

Figure 6.7: Sample mammogram 3
Left is the Original images; Top right is the ROI marked by radiologist:
Bottom right is the generated Mask
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Figure 6.8: HYRICS on sample mammogram 3
Top left is modified JPEG-LS operated ROI;
Bottom left is SA-SPIHT operated non-ROI; Right is recovered image after
combining the left two images

6.6  Case studies on sample ultrasound images

6.6.1 Sample ultrasound 1

An example of ultrasound scan of kidney in which the proposed hybrid method is
operated is shown in Figure 6.9 and figure 6.10. In this sample, the kidney region is
very small 5.09% compare to the entire image. JPEG-LS is achieved 2.45 compression
ratio on the entire image. By degrading the quality in non-ROI with compression ratio
of 80, HYRICS is achieving compression ratio of 29.84 while reserving the kidney

part in the recovered image.
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Figure 6.9: Sample ultrasound 1
(a) Original image; (b) ROI marked by radiologist;
(¢) Generated Mask
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(¢)

Figure 6.10: HYRICS on sample ultrasound 1
(a) Modified JPEG-LS operated ROI;
(b) SA-SPIHT operated non-ROI; (¢) Recovered image after
combining the two images in (a) and (b)

6.6.2 Sample ultrasound 2

As it is shown in Figure 6.11 and figure 6.12, the steps of applying the proposed

hybrid method in a breast image is presented. In this sample image, there is two scan
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arcas for two different abdominal organs (spleen and liver). JPEG-LS on the entire
image is achieving compression ratio of 2.181235. However. as the disease affected
region is relatively large 22.86%, HYRICS is achieving comparatively less
compression ratio 8.725956 but yet far better than JPEG-LS. The quality degradation
in non-ROI is remaining the same as the previous sample but a larger area is

preserved.
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Figure 6.11: Sample ultrasound 2
(a) Original image; (b) ROI marked by radiologist;
(c¢) Generated Mask
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Figure 6.12: HYRICS on sample ultrasound 2
(a) Modified JPEG-LS operated ROI;
(b) SA-SPIHT operated non-ROI: (¢) Recovered image after
combining the two images in (a) and (b)

6.6.3 Sample ultrasound 3
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In sample 3 the arbitrary shaped region that is marked by the radiologist is including

two scan areas for kidney equivalent to 18.83% of the image size. JPEG-LS achieving

compression ratio 2.064791. Figure 6.13 and figure 6.14 show HYRICS performance
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on this relatively large ROI ultrasound in which HYRICS is achieving compression

ratio of 10.12332.
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Figure 6.13: Sample ultrasound 3
(a) Original image: (b) ROI marked by radiologist:

(¢) Generated Mask
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Figure 6.14: HYRICS on sample ultrasound 3
(a) Modified JPEG-LS operated ROI;
(b) SA-SPIHT operated non-ROI; (c¢) Recovered image after
combining the two images in (a) and (b)



Chapter 6: Results and Discussion 86

6.7 Summary

The scheme developed in this work is tested on sample set of 21 selected
mammograms and 21 selected ultrasound images of different sizes and textures. The
relevant diagnostic regions are roughly marked by the expert radiologist and
appropriate masks are generated. The results obtained show that the proposed hybrid
scheme yields high compression ratios. The compression ratios obtained reach
maximum of 41.9 and 62.1 under certain constraints such as size of ROI, specified

quality, etc.

[t is noticed that the compression/decompression time of the hybrid technique is also

depends upon the relative sizes of ROI.

The results of compression efficiency by applying modified JPEG-LS on
preprocessed (contrast stretched) images show an increase in compression ratios on
mammograms and decline on some of the ultrasound images due to the speckle

texture.
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CHAPTER 7

CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

A new approach called Hybrid Region-based Image Compression Scheme (HYRICS)
has been proposed for efficient coding of mammograms and ultrasound images for
tele-healthcare applications. The proposed method could achieve higher compression
ratio possible without compromising the diagnostic quality on the disease affected

regions.

In an effort to optimally compress medical images, various techniques have been
studied. Out of which frequently used lossless compression schemes like LIPEG,
JPEG-LS. CALIC, FELICS, BTPC, JPEG2000, S+P and PNG and lossy compression
methods such as JPEG, BTPC, JPEG2000 and SPIHT have been analyzed to highlight
their efficiency and suitability for compressing number of mammograms and
ultrasound images of different sizes and texture the denoted by their respective

entropies.

Three criteria namely, compression ratio, compression time and decompression time
are used to evaluate the above eight lossless methods. JPEG-LS is found to give high

compression ratio and much less compression/decompression time.

The four lossy methods are evaluated using MSE and PSNR as criteria to quantify the
distortion on a range of compression ratios. It is found that SPIHT is the efficient
method that shows the better compromise between compression ratio and image

quality than other lossy schemes with a reasonable compression speed.

The efficient performances of lossless JPEG-LS and lossy SPIHT are advantageously
utilized in HYRICS by applying JPEG-LS on the disease concentrated regions and
SPIHT algorithm on the remaining area of the images. A new modification has been
introduced for JPEG-LS. The modified JPEG-LS is applied on discase affected
arbitrary regions marked by the expert radiologist on the raw images discarding the

remaining area on which SA-SPIHT is used.
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The results obtained show that the proposed hybrid scheme vields considerable
increase in compression ratios. The compression ratios obtained reach maximum of
41.9 and 62.1 for the selected mammograms and ultrasound images respectively

under certain constraints such as size of ROI, specified quality, etc.

It is noticed that the compression/decompression time of the hybrid technique is also

improved and this improvement depends upon the relative sizes of ROL

The results of compression efficiency by applying modified JPEG-LS on
preprocessed (contrast stretched) images show an increase in compression ratios on

mammograms and decline on some of the ultrasound images.

The outcome of the research is that there will be an appreciable increase in
compression efficiency for speedy transmission and reduce storage requirement

without affecting the diagnostic quality.

7.2  Recommendations

Some segmentation algorithm like region growing technique can be incorporated to
automatically select the ROI area that need to be preserved as an alternative to the

manual one.

The capability of encoding arbitrary shaped objects by the modified JPEG-LS can be
added as an additional feature to the current standard to encode other medical image
modalities. For instance, the proposed technique can be used to encode efficiently the

brain area in both MRI and CT scan.

HYRICS coders can be optimized more to be faster and memory efficient. For
example the modified JPEG-LS and SA-SPIHT can operate concurrently instead of

operating sequentially on the two areas.
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APPENDIX A

The Sample Images

Figure 1 : Sample mammograms that used in the study
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Figure 2: Sample ultrasound images that used in the study
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Table 1: Mammograms spatial resolution and sizes

FILE NAME WIDTH HIGHT HEADER TOTAL SIZE (Bytes) | Entropy (bpp)
mammo | 1000 1222 17 1222017 5.226669
mammo?2 1000 1157 17 1157017 5.146805
mammo3 1000 1157 17 1157017 5.452936
mammod 1000 1171 17 1171017 5.874880
mammos 1000 1160 17 1160017 5.963056
mammo6 1000 1272 17 1272017 5.558123
mammo?7 1000 1156 17 1156017 5.824625
mammo8 1000 1160 17 1160017 4.821750
mammo9 1000 637 16 637016 5.521531
mammo 0 1000 1204 17 1204017 4.705745
mammol | 1000 645 16 645016 5.456376
mammol 2 1000 647 16 647016 5.164129

mammol3 1000 635 16 635016 4.487730
mammo |4 1000 640 16 640016 5.542088
mammol 5 1000 643 16 643016 4.487462
mammo | 6 1000 661 16 661016 5.704017
mammol7 1000 645 16 645016 5.144111
mammo | § 1000 659 16 659016 5.269176
mammol9 1000 658 16 658016 5.249721
mammo20 1000 657 16 657016 4.923096
mammo2 | 1000 648 16 648016 4.932889

Table 2: ultrasound organs, spatial resolution and size

FILE NAME Organ WIDTH | HIGHT | HEADER | (7O (FI;‘V‘[‘CS) *("I:;‘[’,'; }
Obdmen| Urinary/Bladder 1112 822 16 914080 4.902170
Obdmen2 Gallbladder 1050 790 16 829516 5.397674
Obdmen3 Spleen/Pancreas 1060 786 16 833176 5.168990
Obdmend Kidney 1054 782 16 824244 5.259995
Obdmen5 Spleen/Pancreas 1058 796 16 842184 5.143429
Obdmen6 Liver 1054 790 16 832676 4.929101
Obdmen7 Urinary/Bladder 1108 822 16 910792 4.745320
Obdmen8 Urinary/Bladder 1112 822 16 914080 4.902170
Obdmen9 Spleen/Pancreas 1112 830 16 922976 4.469665
Obdmen10 Liver/Portal vein 1050 794 16 833716 5.030231
Obdmenl | Lobe of Liver 1054 794 16 836892 5.444924
Obdmenl?2 Lobe of Liver 1036 816 16 845392 5.217798
Obdmenl3 Lobe of Liver 1048 798 16 836320 5.773829
Obdmenl4 Vein in Liver 1050 794 16 833716 5.262360
Obdmen|5 Spleen/Liver 1048 800 16 838416 5.501622
Obdmenl6 Mass in Liver 1048 776 16 813264 5.064322
Obdmenl7 Cyst in Breast 1058 786 16 831604 4.402898
Obdmenl 8 Cyst in Breast 1044 788 16 822688 4.525226
Obdmen19 Kidney 1110 826 16 916876 5.038101
Obdmen20 Kidney 1108 834 16 924088 5217100
Obdmen21 Liver 1056 784 16 827920 4.851647
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APPENDIX B

Batch Files

| Lossless Methods

CALIC

encode -in .\Images\mammogram\PGM\mammogram1.pgm -out

.\Compressed\mammogram\CALIC\mammogram1.clc

decode -in .\Compressedimammo\CALIC\mammol .clc -out

.\Recovered\mammo\CALIC\mammol.pgm
JPEG-LS

cipegls  .\Images\mammogram\PGM\mammogramI.pgm -0..\Compressed\

mammogram\JPEGLS\mammogram1 jls

djpegls ..\Compressed\mammo\JPEGLS\mammol.jls -0..\Recovered\mammo\

JPEGLS\mammol.pgm

Lossless JPEG

cipeg -lossless 7 -outfile ..\Compressed\mammogram\LJPEG\mammogram].ljg

-AImages\mammogram\PGM\mammogram1.pgm

djpeg -pnm .\Compressed\mammo\LJPEG\mammol.ljg

.\Recovered\mammo\LJPEG\mammol.pgm

FELICS

felics -e .\Images\mammogram\PGM\mammogram1.pgm

.\Compressed\mammogram\FELICS\mammogram|.flc

felics -d .\Compressed\mammo\FELICS\mammol .flc

.\Recovered\mammo\FELICS\mammol.pgm
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BTPC

cBTPC -\Images\mammogram\PGM\mammogram1.pgm

.\Compressed\mammogram\BTPC\mammogram1.btp 100

dBTPC -\Compressed\mammo\BTPC\mammo1.btp

.\Recovered\mammo\BTPCimammol.pgm
PNG

pnm2png ~Almagesimammogram\PGM\mammogram I .pgm

.\Compressed\mammogram\PNG\mammogram1.png

png2pnm .A\Compressed\mammo\PNG\mammol.png

~ARecovered\mammo\PNG\mammol.pgm
JPEG2000

jasper -f ~Almages\mammogram\PGM\mammogram1.pgm -F

~\Compressed\mammogram\JPEG2000\mammogram1.jp2 -t pnm -T jp2

jasper -f .\Compressed\mammo\JPEG2000\mammol.jp2 -F

.\Recovered\mammo\JPEG2000\mammol.pgm -t jp2 -T pnm
S+p

PROGCODE .\Images\mammo\PGM\mammol.pgm
ACompressed\mammo\SPIHT\mammol1.SP 1222 1000 1 0

PROGDECD -S .\Compressed\mammo\SPIHT\mammo1.SP

.\Recovered\mammo\SPIHT\mammol.pgm 0
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2. Lossy Methods
JPEG
cjpeg -quality %2  -outfile .\Compressed\Obdmen\LJIPEG\Obdmen%]1.ljg

-AImages\Obdmen\PGM\Obdmen%]1 .pgm

djpeg -pnm .\Compressed\Obdmen\LIPEG\Obdmen%l.ljg
-\Recovered\Obdmen\LJPEG\Obdmen%]1 .pgm

imgemp -f .\Images\Obdmen\PGM\Obdmen%1.pgm -F
-\Recovered\Obdmen\LJPEG\Obdmen%]1.pgm -m psnr

BTPC

chipe .\Images\Obdmen\PGM\Obdmen%]1 .pgm
-\Compressed\Obdmen\BTPC\Obdmen%]1.btp %2

dBTPC .\Compressed\Obdmen\BTPC\Obdmen%]1.btp
.\Recovered\Obdmen\BTPC\Obdmen%1.pgm

imgemp -f .AImages\Obdmen\PGM\Obdmen%1.pgm -F
-\Recovered\Obdmen\BTPC\Obdmen%1.pgm -m psnr

JPEG2000

jasper -f .AImages\Obdmen\PGM\Obdmen%]1.pgm -F
-A\Compressed\Obdmen\JPEG2000\0bdmen%]1.jpc -t pnm =T jpc -O rate=%?2

jasper -f .\Compressed\Obdmen\JPEG2000\0Obdmen%1.jpc -F
-\Recovered\Obdmen\JIPEG2000\0bdmen%]1.pgm -t jpc -T pnm

imgemp -f -\Images\Obdmen\PGM\Obdmen%]1.pgm -F
-\Recovered\Obdmen\JPEG2000\Obdmen%]1.pgm -m psnr
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SPIHT
CODETREE .AImages\Obdmen\PGM\Obdmen1.pgm
A\Compressed\Obdmen\SPIHT\Obdmenl.sp 822 1112 14.6

DECDTREE

ACompressed\ Obdmen\SPIHT\ Obdmenl.sp
y

.AImages\ Obdmen\PGM\ Obdmen!.pgm

1.6

n

n

3. ROI

JPEG-LS

@BECHO OFF

IF "%2" == "¢" GOTO COMPRESSED

IF "%2" =="d" GOTO DECOMPRESSED
GOTO END

:COMPRESSED

encoder -1../abdmen/PGM/abdmen%].pgm -0../abdmen/Compressed/JPEG-
[.S/Non SA/abdmen%].jls

ECHO ~—nmemmmm e T

GOTO END

:DECOMPRESSED
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_decoder  -i../abdmen/Compressed/JPEG-LS/Non_SA/abdmen%l.jls  -o../abdmen/

Recovered/JPEG-LS/Non SA/abdmen%]1.pgm

ECHO ------ i e i i e R S

GOTO END

:END

Modified JPEG-LS

@ECHO OFF

IF "%2" =="c" GOTO COMPRESSED

IF "%2" =="d" GOTO DECOMPRESSED
GOTO END

:COMPRESSED

sa_encoder  -i../abdmen/PGM/abdmen%].pgm

-0../abdmen/Compressed/JPEG-

LS/Shape Adaptive/abdmen%] .jls -k../abdmen/MASK/mask%]1.pgm

ECHO =-mmmmmmmemmmme e

GOTO END

:DECOMPRESSED

sa decoder -i../abdmen/Compressed/JPEG-LS/Shape Adaptive/abdmen®%] .jls -o0../
abdmen/Recovered/JPEG-LS/Shape Adaptive/abdmen%l.pgm

ECHO -

GOTO END

:END
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SPIHT

@FECHO OFF

IFF "%2" =="c" GOTO COMPRESSED

[F "%2" =="d" GOTO DECOMPRESSED

GOTO END

:COMPRESSED

ptime  spihtencode  -w ./Milters/CohenDaubechiesFeauveau.5-3.1ft 0.1
..Jabdmen/PGM/abdmen%]1.pgm
../abdmen/Compressed/SPIHT/Non_SA/abdmen%].sp

DIR . \abdmen\Compressed\SPIHT\Non_SA\abdmen%]1.sp

ECHO -------- - e - —

GOTO END

:DECOMPRESSED

ptime spihtdecode -w ./filters/CohenDaubechiesFeauveau.5-3.1t - 0.1

../abdmen/Compressed/SPIHT/Non SA/abdmen%]l.sp
./abdmen/Recovered/SPIHT/Non SA/abdmen%1.pgm

BRI e i e

GOTO END

:END

SA-SPIHT

@ECHO OFF

[FF"%2" =="¢" GOTO COMPRESSED
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[F "%2" =="d" GOTO DECOMPRESSED
GOTO END
:COMPRESSED

ptime  spihtencode  -w ./filters/CohenDaubechiesFeauveau.5-3.1ft  -m
.Jabdmen/MASK/mask%1.pgm 0.1 ../abdmen/PGM/abdmen%]1.pgm
..Jabdmen/Compressed/SPIHT/Shape Adaptive/abdmen%]1.sp

DIR .\abdmen\Compressed\SPIHT\Shape Adaptive\abdmen%]1.sp

0] (o (oL S SR — - — =

GOTO END
:DECOMPRESSED

ptime  spihtdecode  -w ../filters/CohenDaubechiesFeauveau.5-3.1ft  -m
./Jabdmen/MASK/mask%]1.pgm -r 0.1
../abdmen/Compressed/SPIHT/Shape Adaptive/abdmen%]1.sp
../abdmen/Recovered/SPIHT/Shape Adaptive/abdmen®%]1.pgm

EITHO) e e o S o s

GOTO END

END

Loop all sample images in batch file

FOR %fIN(1234567891011121314151617 18 192021 ) DO Non-SA-
JPEGLS-Mammo %f ¢

FOR%fIN(1234567891011121314151617 18192021 ) DO Non-SA-
JPEGLS-Abdomen %f d
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FOR %FIN(1234567891011121314151617 18192021 ) DO SA-

JPEGLS- Mammo %[ ¢

FOR %F IN (1234567891011 1213 14151617 18 19 20 21 ) DO SA-
JPEGLS-Abdomen %I ¢

FOR%fIN(12345678910111213 14151617 18 1920 21 ) DO Non-SA-
SPIHT- Mammo %f ¢

FOR %fIN(1234567891011121314151617 18 1920 21 ) DO Non-SA-
SPIHT-Abdomen %f d

FOR%IIN(123456789101112131415161718192021) DO SA-SPIHT-

Mammo %f ¢

FOR%FIN(123456789101112131415161718192021) DO SA-SPIHT-
Abdomen %f d
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APPENDIX C (Comparative Study detailed Results)
Table 1: Compression ratio for 21 mammogram images
Compression
Scheme - RUTROT iheec -
MI M2 M3 M4 M3 M6 M7 M8 M9 M0 | M1l MI2 MI3 MI4__ [ MIS__ [ MI6__| MI7_[ MIS__[ MI9 M0 | M2
LJPEG 2.84 3 28| 276 | 269 | 276 | 274 | 295| 297 3.04 298 3.03 312 | 289 Th 3.05 298 | 296 3.08 2.99
JPEG-LS 329 | 3s2| 33s| 325| 323 32| 327 | 363| 345 359 3.52 361 378 3.45 378 3.46 367 35 3.47 358 363
CALIC 3.31 35| 338 | 325| 325| 323| 329 | 359 | 348 355 3.54 3.62 375 | 347 375 352 367 35| 347 3.59 361
FELICS 298| 315 301 | 204 291! 202| 295| 317 | 306 | 319| 308| 316 | 327 | 303| 326 | 308| 318 31 300 | 317 | 315
JPEG2000 319 | 335 | 2323 | 313 | 311 | 342| 315| 342 | 332 34| 335| 341 | ass 33| 354 | 333| 348 333 33| 341 | 343
PNG 269 | 283 | 269 | 263 | 261 265 | 264 | 282 28 2.85 2.88 2.88 2.95 278 205 289 291 287 28 2.95 2.88
BTPC 308 | 322| 307 | 298| 294 | 301 | 298| 328| 323| 320| 325| 33 348 | 317 | 344 32| 33| 322| 319| 334 333
S+P 322 | 335 321|183 31| 314 312 | 341 | 337 | 330| 330| 343| 358| 335| 357 | 336| 349| 336| 331 | 348 | 345
Table 2: Compression/Decompression time on 21 mammograms
Compression |
Scheme £ Mammogram images
MI M2 M3 M3 Ms M6 M7 M8 M9 | MIO [ MU | MI2 | MI3 | Mi4 | M5 | M6 | MI17 | MI8 [ M19 | M2 | M2l
“T| 0281 | 0265 0265 | 0265 | 0265 | v.206 | 0.265 | 0265 | 0.4 | 0265 | 014 | 014 | o044 o014 014 | 014 | o044 014| o014 o0414| o014
e PT| 0281 | 0265 | 0281 | 0281 | 0281 | 0312 | 0265 | 0206 | 0.156 | 0281 | o014 | 0471 | o044 | 04a1| o014 | 0156 | 044 | o014 | o014 | o014 | o044
CT| 0206 | 0281 | 0281 | 0281 | 0281 | 0312 | 0281 | 0281 | 0.156 | 0281 | 0.156 | 0.156 | 0.156 | 0.156 | 0.156 | 0.471 | 0458 | 0471 | 0471 | 0471 | 0471
oo PT| 0281 | 0265 | 0281 | 0281 | 0281 | 0312 | 0265 | 0.296 | 0.456 | 0281 | o044 | 0471 | 044 | 0141 | o044 | 0156 | 014 | o044| o014 | 044! o014
“T'| 3515 | 3046 | 3062 | 3234 | 3.456 | 3887 | 3.08 | 2884 | 1795 | 3.487 | 2015 | 1734 | 1656 | 1765 | 1687 | 1.828 | 1718 | 1796 | 1828 | 1781 | 1734
Ll PT | 3578 | 3471 | 303 | 3265 | 3471 | 3718 | 3425 | 3015 | 1812 | 3218 | 1781 | 1734 | 1734 | 1781 | 1718 | 1843 | 175 | 1812 | 1828 | 1796 | 175
“T'| 0206 | 0491 | 0194 | 0202 | 0.193 | 0209 | 0.199 | 0.183 | 0.147 | 0185 | 0142 | 0151 | 0441 | 0152 | 0.148 | 0455 | 0147 | 0157 | 0152 | 0146 | 0.155
HER ISR PT | 9434 | 0124 | 0126 | 043 | 0429 | 0.439 | 049 | 0124 | 0088 | 0.126 | 0.087 | 0.088 | 0085  0.088 | 0.082 | 0088 | 0.086 | 0089 | 0099 | 0088 | 0.087
T 083 1| 1015 | 1.046 | 1.046 | 1.156 | 1.031 | 0984 | 0.562 | 1.031 | 0.562 | 0.578 | 0.546 | 0.562 | 0.546 | 0.578 | 0.562 | 0578 | 0593 | 0562 | 0.562
JPEG2000  |"oT 089 | 0828 | 0843 | 0875 | 0.859 | 0.937 | 0.859 | 0.828 | 0.453 | 0.859 | 0.468 | 0.4B4 | 0.453 | 0.468 | 0.453 | 0468 | 0.468 | 0484 | 05 | 0468 | 0.468
"1 4016 | o086 | 084a | 0906 | 0875 | 1.063 | 0.875 | 0844 | 0515 | o0.891 05 05| 0485 | 0516 | 0.485 | 0516 0.5 | 0485 | 0516 | 0.485 0.5
PNG DT | 0254 | 0227 | 0243 | 0244 | 025 | 0263 | 0254 | 0242 | 0444 | 0238 | 0143 | 0149 | 0143 | 0.451 | 0.443 | 0.158 | 0.146 | 0144 | 0445 | 0143 | 0149
“T'| osss | o048a| o796 | 0812 | 0796 | o089 | 0812 | 075 | 0437 | 0765 | 0.437 | 0.437 | 0408 | 0.421 | 0421 | 0453 | 0421 | 0437 | 0437 0437 | 0.421
BTPC DT | 0781 | 0453 | 0437 | 0453 | 0468 | 0.515 | 0453 | 0421 | 0234 | 0453 | o025 o025 025| o025| o025] 0265 | 0312 | 0296 | 025 0265 | 0.25
i “U| o528 | 0a4sa | 0511 | 0516 | 0524 | 0545 | 0519 05 | 0313 | 0508 | 0314 | 032 | 0297 | 0322 | 0302 | 0334 | 0307 032 | 0321 | 0312 | 0318
i DT 0471 | 0435 | o04s2 | o046 | 0463 | 0489 | 046 | 0.441 | 0253 | 0.444 | 0258 | 0258 | 0.244 1 0.258 | 0.249 | 0.266 | 0.252 | 0.27 | 0.265 0258  0.255
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Table 3: Compression ratios, compression/decompression time on 21 ultrasound image

Images LJPEG JPEG-LS | JPEG2000 & CALIC | FELICS PNG BTPC S+P
tisasoundt CR 2.078 2.302 2.194 i 2.381 ‘ 2.250 2133 2.216128805 2.208
cr | oT | 0.203 | 0.094 | 0.234 | 0.235 | 1.156 | 0.937 | 2703 | 2.703 | 0.127 | 0.113 | 0.64 | 0.263 | 0.718 | 0.406 1 0.858 | 0.612
Uitrasoand? | - CF 1.828 2.074 1.952 2.128 1.980 1923 1.930 1.945
cr | or | 0188 | 0.078 | 0.203 | 0.203 | 1.125 | 0921 | 25 | 25 | 0.141 | 0.122 | 0.546 | 0.256 | 0.75 | 0.375 | 0.936 | 0.723
iratoinds CR 1.897 2.188 ' 2.028 2.242 2.087 1.992 2.033 2.005
cr | bT | 0.25 | 0.078 | 0.265 | 0.203 | 1.109 | 0.937 | 2.468 | 2.468 | 0.126 | 0.109 | 0.5 | 0.371 | 0.75 | 0.453 | 0.889 | 0.583
Ultrasoundd CR 1.816 2.072 1.946 2133 1.978 1.912 1.932 1.950
cr | or | 0.187 | 0.078 | 0.234 | 0.203 | 1.14 | 0.968 | 25 | 25 | 0127 | 0.112 | 0.515 | 0.252 | 0.796 | 0.375 | 0.917 | 0.706
Ultrasounds CR 1.904 2.190 2.028 2.244 2.093 1.999 2.033 2.0127
cr | or | 0.187 | 0.078 | 0.203 | 0.203 | 1.14 | 1.015 | 2.484 | 2.468 | 0.126 | 0.111 | 0.609 | 0.253 | 0.703 | 0.5 0.91 | 0.711
Ultrasounde CR 1.815 2.032 1.934 2.100 1.964 1.904 1.918 1.938
cr | or | 0.203 | 0.078 | 0.218 | 0.406 | 1.171 | 1.015 | 2531 | 2.531 | 0.13 | 0.116 | 05 | 025 | 0.796 | 0.375 | 0.945 | 0.801
s CR 2.075 2.326 2172 2.412 2.263 2133 2.230 2183
cr | br | 0.375 | 0.078 | 0.375 | 0.219 | 1.312 | 1.109 | 2.718 | 2.718 | 0.128 | 0.12 | 0.765 | 0.294 | 0.812 | 0.39 | 0.999 | 0.584
Ultrasounds CR 2.078 2.302 2194 2.381 2.250 2133 2.216 2.208
cr | DT | 0.203 | 0.14 | 0.234 | 0235 | 1.187 | 0.906 | 2.781 | 2.765 | 0.127 | 0.116 | 0.765 | 0.287 | 0.843 | 0.64 | 0.962 | 0.864
Ultrasound9 CR 2.045 2.297 2.166 2.380 2.234 2113 2198 2185
cT | bT | 0.203 | 0.093 | 0.234 | 0.235 | 1.234 | 1.14 | 2.775 | 2.765 | 0.139 | 0.127 | 0.625 | 0.27 | 0.875 | 0.625 | 1.002 | 0.84
iracoundtd CR 1.670 1.931 1.840 1.991 1.821 1.816 1.780 1.838
cr | DT | 0.203 | 0.078 | 0.235 | 0.235 | 1.25 | 1.046 | 2.625 | 2.562 | 0.147 | 0.121 | 0.625 | 0.274 | 0.859 | 0.39 | 1.074 | 0.917
Ultrascundty CR 1.893 2217 2.063 2.254 2.094 2.016 2.042 2.057
cr | br | 0.203 | 0.078 | 0.234 | 0.235 | 1.312 | 1.046 | 2.515 | 2.515 | 0.124 | 0.114 | 0.656 | 0.553 | 0.703 | 0.703 | 0.972 | 0.836
Ultrasoundi2 CR 1.788 2.015 1.924 2.069 1.927 1.898 1.879 1,922
cr | or | 0.203 | 0.078 | 0.219 | 0.265 | 1.187 | 1.156 | 2.609 | 2.593 | 0.136 | 0.117 | 0.484 | 0.252 | 0.859 | 0.39 | 1.034 | 0.65
Ultrasound i3 CR 1.867 2.193 2.043 2.223 2.034 2.000 1,993 2.026
cT | br | 0.203 | 0.078 | 0.218 | 0.218 | 1.156 | 1.14 | 2.562 | 2.515 | 0.124 | 0.111 | 0.671 | 0.253 | 0.828 | 0.406 | 0.99 | 0.885
Ul-asoinilie CR 1.794 2.054 1.929 2.096 1.952 1.902 1.900 1.919
cT | br | 0.203 | 0.078 | 0.203 | 0.219 | 1.234 | 1.171 | 2.546 | 2.546 | 0.127 | 0.116 | 05 | 0.251 | 0.859 | 0.375 | 1.01 | 0.904
Ul acouna1s CR 1.879 2.195 2.039 2.232 2.070 2.002 2.019 2.032
cr | or | 0187 | 0.078 | 0.218 | 0.219 | 1.328 | 1.125 | 2.531 | 2.531 | 0.143 | 0.113 | 0.671 | 0.25 | 0.843 | 0.359 | 0.997 | 0.849
Ui asondie CR 2139 2.507 2.375 2.575 2324 2.188 2.326 2.390
cr | or | 0.187 | 0.063 | 0.203 | 0.203 | 1.078 | 0.906 | 2.375 | 2.375 | 0.116 | 0.106 | 0.609 | 0.244 | 0.656 | 0.609 | 0.836 | 0.721
CR 2.024 2.382 2117 2.433 2.274 2.120 2213 2.0886
Ultrasound17 | or ' pr | 0.25 | 0.078 | 0187 | 0487 | 1425 | 1 | 2.359 | 2.328 | 0.119 | 0.106 | 0.515 | 0.25 | 0.812 | 0.359 | 0.976 | 0.574
CR 1.748 1.937 1.877 2.012 1.864 1.865 1.824 1.866
Ultrasound18 | ' hr | 0203 | 0.078 | 0.234 | 0.234 | 1471 | 144 | 2593 | 2.546 | 0.133 | 0.122 | 0.593 | 0.248 | 0.859 | 0.39 | 1.037 | 0.954
CR 2.197 2.455 2.374 2.519 2.359 2.247 2.349 2.397
Uttrasound19 | o1 pr | 0203 | 0.093 | 0.234 | 025 | 1.187 | 1.109 | 2.812 | 2.812 | 0.128 | 0.115 | 0.765 | 0.266 | 0.843 | 0.375 | 0917 | 0.79
CR 2.175 2.447 2.377 2.525 2.336 2.248 2.325 ' 2.383
Ultrasound20 | ~r'| pr | 0218 | 0.078 | 0.234 | 0.234 | 1.234 | 1.14 | 2.843 | 2.843 | 0.133 | 0125 | 0.75 | 0.267 | 0.875 | 0.406 | 0.942 | 0.778—,
CR 2.167 2.516 2.389 2.582 2.349 2.201 2.348 2.429
Uitrasound21 | 1" | g4g7 | 0.062 | 0.219 | 0218 | 1.203 | 1.031 | 2.421 | 2563 | 0.118 | 0.109 | 0.765 | 0.243 | 0.843 | 0.343 | 0.801 | 0.73
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APPENDIX D

Generated Masks
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Figure 1: Generated masks for mammograms in Fig.1(Appendix A)
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Figure 2: Generated masks for Ultrasound images in Fig. 2 (Appendix A)




