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ABSTRACT 

The need for transmission and archive of mammograms and ultrasound Images has 

dramatically increased in tele-healthcare applications. Such images require large 

amount of' storage space which affect transmission speed. Therefore an effective 

compression scheme is essential. Compression of these images. in general. laces a 

great challenge to compromise between the higher compression ratio and the relevant 

diagnostic information. Out of the many studied compression schemes. lossless 
. IPl. (i- 

LS and lossy SPII IT are found to he the most efficient ones. JPEG-LS and SI'll IT are 

chosen based on a comprehensive experimental study carried on a large number of 

mammograms and ultrasound images of different sizes and texture. The lossless 

schemes are evaluated based on the compression ratio and compression speed. The 

distortion in the image quality which is introduced by lossy methods evaluated based 

on objective criteria using Mean Square Error (MSE) and Peak signal to Noise Ratio 

(PSNR). It is found that lossless compression can achieve a modest compression ratio 

2: 1 - 4: 1. bossy compression schemes can achieve higher compression ratios than 

lossless ones but at the price of the image quality which may impede diagnostic 

conclusions. 

In this work, a new compression approach called Ilvbrid Region-based Image 

Compression Scheme (IIYRICS) has been proposed for the mammograms and 

ultrasound images to achieve higher compression ratios without compromising the 

diagnostic quality. In I LYRICS, a modification for JPI; G-LS is introduced to encode 

the arbitrary shaped disease affected regions. Then Shape adaptive SPIT IT is applied 

on the remaining non region of interest. The results clearly show that this hybrid 

strategy can yield high compression ratios with perfect reconstruction of diagnostic 

relevant regions, achieving high speed transmission and less storage requirement. For 

the sample images considered in our experiment, the compression ratio increases 

approximately ten times. However, this increase depends upon the size of the region 

of interest chosen. It is also föund that the pre-processing (contrast stretching) of 

region of interest improves compression ratios on mammograms but not on ultrasound 

images. 
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A13STRAK 

Keperluan dalam pcnlindahan mammograms dan imej ultrahunyi tclah nlcnin. zkat 

secara nlendadak di dalam aplikasi tele-kesihatan. lmej-imej tersebut nlcnlerlukan 

ruang simpanan yang hcsar dan ini nlempengaruhi kelajuan pcmindahan. . 
lusteru. 

skema pemampatan yang herkesan adalah penting, Secara anlnya. peniampatan imej 

tersebut nlengalanli cabaran yang besar dalam nlcnginlbangi nisbah peniampatan 

yang lebill tinggi dan kcrelevanan diagnostik. i, ossless . IPEG-LS dan los., }, . S'P111"1' 

telah dikenalpasti antara kaedah-kaedah yang paling bcrkesan dalam skema 

penlampatan. , IPEG-LS dan SPHIT dipilih berdasarkan ekspcrinlen terperinci yang 

dilakukan ke atas sejumlah besar mammogram dan imej ultrabunyi. Kacdah lussless 

dinilai berdasarkan nisbah dan kelajuan penlanlpatan. Kacdah loss. ), pula dinilai 

berdasarkan kritcria objektil' mcnggunakan Alean Square Error (AISL) dan Peak 

Signal to Noise Ratio (PSAT). Walau bagainlanapun. pemanlpatan lossless hanya 

holch nuncapai nisbah peniampatan sederhana sekitar 2: 1 - =1: 1. Skema lossv boleh 

nlencapai pcmampatan yang lebih tinggi berbanding skcnla lossless tetapi 

menjejaskan kualiti Inlet yang mcnjadi penghalang dalam membuat kesinlpulan 

diagnostik. 

Dalam penyelidikan ini. 'Hybrid Region-based Image CollIpressioll Scheine 

(Itl'RI('. S)' telah dicadangkan ha, gi mencapai nisbah pemampatan tertinggi tanpa 

menjcjaskan kualiti diagnostik. Dalam H3'RIC : S. JI'L'L-LS telah digubah untuk 

mcngekod setiap bahagian berbentuk rawak yang dilanda penyakit. SPIIIT yang 

bolch disesuaikan mengikut bcntuk pula diaplikasikan ke atas bahagian sclebihnva 

yang bukan dalam pemcrhatian. 

Keputusan yang diperolchi mcnunjukkan hybrid ini boleh menghasilkan kadar nisbah 

penlanlpatan tinggi, pcnlbinaan semula bahagian diagnostik yang rclcvan dcngan 

sempurna, mencapai penllndahan dalam kelajuan 
yang 

tingý. ti dan nlen!! urangkan 

kepcrluan storan. Bagi sanlpcl inlej yang digunakan dalam cksperimen, kadar 

peniampatan telah meningkat lehih kurang sepulull kali ganda. Bagaimanapun. 

pcningkatan ini bergantung kepada saiz bahagian yang dipilih. la jua telah didapati 

hahawa pra-pemprosesan (contrast stretching) pada bahagian yang dipilih telah 

mcningkatkan kadar pernampatan dalam ATClA11NOgrunrs sahaja. 
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Chapter 1: Introduction 1 

CHAPTER 1 

INTRODUCTION 

1.1 General Background 

The interior structures and the lünctions ot-the living human body can be visualised to 
diagnose abnormal conditions and guided therapeutic procedures using various 

medical modalities such as X-ray. Ultrasound (US). Mammography. Magnetic 

Resonance Imaging (MRI). Nuclear Medicine (NM) and Computed Tomography 

(CT). 

These medical images in general can he categorized according to the interaction of 

energy with the tissue into either external energy source where the energy is 

penetrating the target organ from outside such as X-ray. Mammography. I IS and MRI 

or internal source of radioactive energy such as NM in 1\hich radioactive substances 

are injected into the body to interact with the selected tissue. 

The abdominal and breast related diseases are dominating over other diseases all over 

the world. Breast cancer which is often detected using periodic screening of 

mammography is the most serious disease affecting women. About one in 11) women 

in Malaysia are at risk, compared to one in K in Europe and the United Statcsl 11. 

Ultrasonography is being used to examine abdominal disorders in liver. kidney. 

gallbladder and spleen that arc responsible for a considerable burden of suffering and 

death in all age groups worldwide. In the United Kingdom. almost 2700 people are 

diagnosed liver cancer, 6700 are diagnosed with kidney cancer and bladder cancer is 

afecting more than 10000 individuals each year. Besides. ultrasound is also well- 

known for its applications in obstetrics, where it is used to examine the different 

stages of fetus during pregnancy 121. 

In view of the increased complexity of the breast and abdominal diseases worldwide 

there is a necessity to have tele-consultation with medical experts at distance placeless 

within and outside the country. For this purpose there is a necessity to transmit and 

store large amount ol'image data. 
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In this work the research is concentrated on findin, out efficient compression 

techniques fir transmission and archiving of mammograms and ultrasound images. 

Afammograpkl' is a low-dose x-ray system that provides images of the breast's inner 

structure and is used as a screening tool to detect breast cancer and other diseases. 

Studies have shown that early detection of breast cancer using periodical screening by 

mammography decreases the mortality rate [31. 

Ultrasonography is a technique that uses reflected ultrasonic waves to display visual 

images of structures within the body. The images generated are stored in digital form. 

and accessed and transmitted as archival records of physical eXamination for 

diagnostic and surgical usage in hospitals or health-care centers. 

Recently, the need for transmission/archive of' manimogranis and ultrasound images 

has dramatically increased due to the growing need to deliver healthcare to patients in 

remote areas (tele-healthcare). sharing medical knowledge over distance (tele- 

consultation) and long-term medical image storage (archive) fir future interpretation 

and research. 

The massive number of above medical images generated per patient and the high 

resolution needed to represent an image require large amount of storage. As a result. 

the transmission of these images over a network to a remote place may be time 

consuming. For example. a typical mammogram digitized at a resolution of about 

5000 x 4000 pixels and 12 bits, results in approximately 40Mb of digital data. Such 

high resolution is required in order to detect isolated clusters of micro-calcifications 

that herald an early stage cancer. Similarly, in a single medical ultrasound 

examination there arc on the average 10 to 20 still images of 640x480 pixels 

generated equaling to approximately 24.6 to 49.2Mb of grayscale image data. Due to 

the increasing numbers of' patients and elongated case histories, ultrasound images 

require large space and transmission timc[4]. 

1.2 Motivation 

It is clear that advances in technologies for transmission or storage are not sufficient 

to solve transmission/storage problem of medical images. i'hcrcfore. an effective 
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compression scheme is essential to reduce the unnecessary data as much as possible 
for fist transmission and efficient storage. 

There are many approaches to image compression which can he used. These can he 

categorized into two fundamental groups: lossless and Iossv. In recent years. there has 

been a long-standing debate over which compression schemes are appropriate for the 

medical images. While lossless compression can retain the important information in 

the image, it can achieve only modest compression ratio (2: 1 - 4: 1) which is 

inadequate for the growing need for medical images transmission and archive 5 J. On 

the other hand, lossy compression schemes can achieve very high compression ratios 

but at the price of image quality. Medical image which holds important diagnostic 

values (i. e. micro-calcifications in mammograms and speckle texture in ultrasound). 

cannot afford much degradation which may negatively affect radiological 

diagnosisJ61. 

The aim of this work is to design an ideal compression method to encode ultrasound 

and mammogram images by removing unnecessary data without af7ccting the 

sensitive details which give vital diagnostic information. In medical images. normally 

there are fcw small selected disease intensive regions that arc diagnostically relevant. 

while the remaining regions are much less important for diagnosis but may he 

necessary to give some spatial information. The approach is to select the best among 

the well known lossless and lossy compression scheme. Then combine them in a 

hybrid manner that al lows perfect reconstruction of the diagnostically relevant regions 

and permits some degradation in non-relevant areas yielding a higher compression 

ratio while still maintaining the diagnostic values. 

1.3 Organization of Thesis 

Chapter 2 introduces various medical imaging modalities and their neccssity in tele- 

healthcare application giving special locus on mammography and ultrasonography. 

The features of' tclemedicine and significance of medical image compression are 

introduced. A review of compression categories with some terminology and concepts 

are also discussed in this chapter. An overview of the literature survey is carried out 

on the evaluation of some efficient image compression schemes on medical images is 

presented. 
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Chapter ä provides a detailed description of a comparative study to pinpoint efficient 

and well suited lossless and loss), compression methods ibr mammograms and 

ultrasound images. A brief' overview of' all the compression methods used in this 

study is presented along with their libraries and software implementation. The 

methodology ol'cvaluating the compression methods is described in detail. 

In Chapter 4, eight frequently used lossless and four lossy compression schemes are 

applied on set of' mammograms and ultrasound images of dif Brent sizes and texture. 

The results obtained are analyzed and thence . 1PFG-I, S and SPIIIT are found to he 

better schemes among lossless and lossy respectively. 

In Chapter 5, a new hybrid compression technique called Region-based Image 

Compression Scheme (IIYRICS) that combines modified JPFG-LS for arbitrary 
shaped regions of interest and shape adaptive SPIT IT for non-region of interest 

yielding a high overall compression ratio while still retaining diagnostic values IS 

presented. The algorithms that are involved in this approach with the proposed 

modifications are reviewed. 

In Chapter 6. the results of compression ratios and compression/decompression time 

of , 
111F(i-LS applied on whole image, the modified . IPI: G-LS on the regions of 

interest, shape adaptive SPIT UI on the non-regions of' interest and the overall 

compression ratio of the proposed I IYRICS on the selected set of mammograms and 

ultrasound images for various breast and abdomen diseases are presented. The results 

of compression efficiency by applying modified . 
IPEG-I. S on preprocessed (contrast 

stretched) mammograms and ultrasound images are also discussed. 

Chapter 7 presents the overall conclusion of the research work and the 

recommendations for further improvements. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

In this chapter a brief description ol' various medical imaging modalities toor 

telemedicine is presented. Basic theory of image compression in general and losslcss 

and lossy compression in particular is discussed. Previous comparative studies on 

various compression techniques used in medical imaging and evaluation of their 

pcrtbrmance are given. The background information regarding region-based image 

compression is also discussed. 

2.1.1 Medical Imaging 

The interior structures and the functions of' the living human body are not generally 

visible to the human observer. l-Iowever, by various medical imaging methods. these 

internal aspects can be visualized through which the medical professional can look 

into the body to diagnose abnormal conditions and guide therapeutic procedures171. 

Image of human body in general can he derived from the interaction of energy with 

the tissue. The energy source can be categorized either as external or internall8I. 

l)ilTerent electromagnetic waves that are used in clinical imaging are presented in 

Figure 2.1[9]. External energy source like ionized radiation is used in some imaging 

methods such as X-ray radiography and Computed Tomography which are associated 

with health hazards that require methodology that guarantees high level diagnosis 

while limiting the possible harm to the patient. Ultrasound (US) and Magnetic 

Resonance Imaging (MRI) - which use ultrasonic waves and radiofrcquency 

respectively - arc other examples of external energy sources using non-ionizing 

radiations. Therefore there are no risks Ior long term effects of" exposure. I low ever in 

MRI, there is an identified impact associated with tissue heating from exposure to the 

radiofrequency field and the presence of' implanted devices in the body. Nuclear 

Medicine (NM) imaging modalities use an internal energy source through an emission 

process to generate images of the human organs. In emission imaging, radioactive 
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substances arc injected into the body to interact with the selected tissue to form an 
internal source of radioactive energy. 
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l igurc 2.1: I)illerent electromagnetic spectrum that arc used in medical ima`gin- 

2.1.2 'I'clcmcdicinc 

The reality of geographic and soclo-economic barriers to health-care access in rural 

communities has been recognized for many years. I lealth-care services in rural areas 

lace professional isolation, and must also deal with additional expenses for 

transportation when sending patients for referral. These problems outside urban 

centers increase the cost of health-care to the individual patient. and therefore the 

entire system. These problems have inspired clinicians, health service researchers and 

engineers to investigate and develop what's called telemedicine systems to improve 

the standard of health-care by providing quick medical intervention in a timely 

manner, instead of sending rural patients to urban hospitals[ 10]. 'therefore. the term 

telemccticinc refers to the use of communications technology and electronic 

information to provide and support health-care and exchange medical information 

remotely without regard to the distance that separates the participantsl 11 J. The 

concept of using communication technology for diagnosis and treatment of patient in 

other locations is probably as old as the telephone. 'lelemedicine. however, is more 

than simple voice communication over telephone lines. since it includes the 
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transmission of still images, video, and other forms of medical data. lelemedicinc 

requires a multidisciplinary approach spanning various sectors like biology. medical 

science, networks. communications and multimedia processing. The current computer 

network and communication technologies enable us to create a virtual health-care 

environment that will cover most areas that conventional health-care can not. 

Specialized application software and medical devices capable of electronic data 

collection, storage and transmission are the key components of the telemedicine 

infrastructure. This infrastructure includes the physical facilities and equipment used 

to capture, transmit. store, process. and display medical data and imagesI 121. 

2.2 Medical Imaging Modalities 

2.2.1 X-ray Radiography 

Conventional radiography. more commonly known as X-ray. is the oldest and the 

most widespread technique of medical imaging[ 13 J. In X-ray images are created by 

passing small, highly controlled amounts of radiation through the body, capturing the 

resulting shadows and reflections on a photographic films or radiation sensitive plates. 
I)ue to their calcium content, bones are the most opaque and thus the most visible 

tissue on X-ray images. Soft tissues are less opaque than bones, but more opaque than 

adipose tissues. Air and gas are completely radio-transparent. X-ray radiography is 

the method of choice for the first line diagnostic of skeletal pathologies. It is also 

currently used för imaging lungs and breasts (mammography). This most commonly 

used clinical method has however, some drawbacks. As the depth information is lost. 

the 2-dimensional X-ray image will be a complex superposition of all the structures of 

the 3-dimensional body. Furthermore, the size on the image of an object is dependent 

on its distance to the X-ray source resulting in a distorted scaling factor of the picture. 

In addition, the contrast of the image suffers from limited dynamic range of the 

attenuation coeflicients that exist in the human body[ 14J. Besides. there are IeN\ 

serious hazards associated with usage of ionizing radiation. 

2.2.2 Computed Tomography 

Conventional X-ray imaging has an inherent limitation in resolving overlying 

structures as everything seen in the images are the result of a projection. I lowever. by 

using Computed Tomography (CT) scan. it is possible to reconstruct 3D distribution 
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hased on a laree set of X-ray projections obtained at different angles covcring, a 

complete circle around the patientl 131. Once the projected values are collected, they 

can he digitally filtered and hack-projected in-, thematically onto a matrix which 

represents line differentiation of tissue densities 141. Naturally the 31) information 

cannot easily be displayed as such, instead it is most often displayed as a series of 

axial slices. Since the image is digital and represents a slice, multiple slices can he 

obtained and a volume estimated and displayed as a three-dimensional structure on a 

video display tube or film. This distinction is enough to discriminate most of the sole 

tissue organs of the brain, abdomen and lungs. Computed tomography has the 

advantage of rapid acquisition of images. but employs ionizing x-ray radiation which 

must be used conservatively to avoid harmful cumulative biologic el'fcct. But the cost 

involve in this modality will be on the higher side. 

2.2.3 Mammography. 

Breast imaging can be performed using different medical imaging techniques. 

I lowever the most effective and economical breast imaging modality so far has been 

mammography because of' its simplicity, portability and low cost. A Mammogram is 

an X-ray picture of the breast acquired by low doses of ionizing radiation to reveal 

tumor growths that are undetectable in a physical examination[ 15 j. The abnormal 

growths of tumors or micro-calcification clusters in mammograms are diagnostic 

signs of breast cancer that may be malignant or benign. Figure 2.2 sho\\n 3 different 

mammograms: normal, benign and malignant taken from Digital Database I'm 

Screening Mammography (I)I)SM)[ 161. Malignant clusters appear as groups of'small. 

bright particles with arbitrary shapes embedded in a non-homogeneous background. 

Therefore, early detection of breast cancer using periodical screening program based 

mammography is currently the most effective way to prevent the fatal stage. 
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(n) (C) (13) 
Figure 2.2: Mammograms :( A) Normal (B) Benign (C) cancerous malignant) 161 

2.2.4 Magnetic Resonance Imaging 

9 

Magnetic resonance imaging (MRI) is an imaging technique used primarily in 

medical fields to produce high quality cross-sectional image of the human body. The 

MRI technology is based on a spectroscopic technique used by scientists to obtain 

microscopic chemical and physical information about molecules. In MRI, the 

characteristics of nuclei of atoms of certain elements in the body tissues that can be 

magnetized when placed in a strong magnetic field. "These magnetized nuclei are then 

energized by a radio frequency pulse. The stored radio signals emitted by the protons 

are used by highly specialized equipment to make sectional images of the body. 

Contrast between the images of different types of tissues made by MRI is the result of 

variation in their composition and concentration of protons. MRI is non-invasive and 

does not use radiation, however it is costlier compared to X-ray and ultrasound 1171. 

2.2.5 Nuclear Medicine 

Nuclear Medicine (NM) comprises the medical diagnosis and therapy use of 

radioactive isotopes for imaging of organs, distribution of metabolism or 

pathophysiological processes by the use of position sensitive detectors för detection of 

penetrating ionizing radiation, most often gamma rays[ 18]. In diagnosis. radioactive 

substances are administered to patients and the radiation emitted is measured. The 
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majority of these diagnostic tests involve the formation of an image using a gamma 

camera. In therapy, radionuclide is administered to treat the disease or provide 

palliative pain relief'. The topographic methods used in nuclear medicine are Single 

Photon [mission Tomography (SPECT) and Positron Emission Tomography (PET). 

SP[CT is able to provide true 31) information by using a gamma camera to acquire 2- 

1) images from multiple angles. This Information is typically presented as cross- 

sectional slices through the patient, but can be freely reformatted or manipulated as 

required1 191. Because SPEC I' permits accurate localization in 31) space. it can he 

used to provide information about localized function in internal organs such as 

Junctional cardiac or brain imaging. PET scan is a diagnostic examination that 

involves the acquisition of physiologic images based on the detection of radiation 

from the emission of positrons that administered to the patient1201. The subsequent 

images of the human body developed with this technique are used to evaluate a 

variety of diseases such as characterizing biochemical changes in the cancer to 

examine the effects of cancer therapy, determining blood flow to the heart muscle and 

help evaluate signs of coronary artery disease and PET scans of the brain are used to 

evaluate patients who have memory disorders of an suspected or proven brain tumors 

or seizure disorders. PET can give false results ifa patient's chemical balances are not 

normal. Specifically, test results of diabetic patients or blood sugar or blood insulin 

levels. The radioactive substance may expose radiation to the fetus in patients who arc 

pregnant or the infants of women who are breast-feeding. 

2.2.6 Ultrasonography 

Medical ultrasonography refers to the use of echoes from ultrasonic waves to generate 

visual images of' abdominal organs (liver, kidney. and gallbladder)] 21 1. In Medical 

profession, ultrasound is considered as the most widespread and versatile medical 

imaging modality for diagnosis of various major diseases. While it may provide less 

diagnostic information than more sophisticated techniques such as CT or MR1. it has 

several advantages which make it ideal as a first line test to estimate the degree of' 

complexity. These advantages include safety, as the patient is not exposed to 

radiation. The equipment is relatively small. easy to handle, quickly to perform and 

more economical than other options. Furthermore, ultrasound is also well-known for 
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its applications in obstetrics, where it is used to examine the different stages of fetus 
during pregnancy. 

Ultrasound images have some unique features that make them different from natural 

images. A simple natural image consists of a few edges against a relatively uniform 
background, but ultrasound images exhibit speckle texture over the entire ultrasound 

scanned area. The oriented speckle texture, an ultrasonic scanning artifact caused by 

scattered reflections, is typically concentrated in certain spectral regions due to the 

orientation of the speckle pattern122]. An example of an organ that produces a 

particularly speckle ultrasound image is the liver, as shown in Figure 2.3. 

Figurc 2.3 : Typical ultrasound imagc of a normal Iiv Cl- ýýý ý 

Depending on the context and application, speckle in medical images can be viewed 

as signal or noise. For example, speckle can be used to characterize tissue or it can 

mask diagnostically relevant features [23]. 

Another characteristic of ultrasound images is the spatial variation in pixel statistics 

across an individual image. A typical image consists of an ultrasound-scanned area. 

which is often special conical shape, against a passive background, which may 

contain text and limited graphics as shown in Figure 2.3. 
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2.3 Images Compression 

The aim is of image compression is to encode images to reduce the sire as possible 

with a decoding mechanism which reconstructs the original image with an acceptable 

visual quality. Image compression is becoming more crucial and regarded as key 

technology in the development of multimedia and telecommunication in general and 

tcle-healthcare application in particular. 

2.3.1 Redundancy 

Image compression takes advantage of the läct that there is a lot of' redundant 
information contained in the original image. Mostly there are three kinds of 

redundancy: psycho-visual, inter-pixel and coding redundancy. In inter-pixel 

redundancy, there are statistical dependencies between pixels especially bete een 

neighboring pixels. Such dependencies can be suppressed by compression. Psycho- 

visual redundancy is due to the fact that human eye does not respond with equal 

sensitivity to all image signals since some are even not perceivable and certain 

information simply has less relative importance than the other in human visual 

processing. Therefore eliminating some information may be acceptable. In coding 

redundancy, the uncompressed image usually has pixel of' fixed length code which is 

convenient for processing the image but uses annccessary space. 13y using some 

variable length coding saves requirement can be reduced. 'T'here are diffl rent methods 

for dealing with the different kinds of' redundancy. Image compression methods are 

usually multi-step algorithms which are applied to reduce these redundancies. Image 

compression schemes can be categorized as lossless and lossy. Application of' these 

schemes depends upon the required quality of the reconstructed image. 

2.3.2 Lossless image Compression 

In Iossless compression. the image reconstructed after decompression is numerically 

identical to the original image. This is obviously most desirable since no intormation 

is compromised. However, it can achieve only compression ratio of 2: 1 - 4: 1151. 

Lossless image compression is preferred in sensitive applications such as medical 

imaging, military and astronomy. 
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To perfectly reconstruct the original image. lossless compression methods take 

advantage of the statistical properties of the redundant data (inter-pixel and coding 

redundancy). The goal of lossless compression is to find and eliminate this statistical 

redundancy with a guarantee to generate an exact duplication of the input image after 

a compress/decompress cycle. Modern lossless image compression algorithms employ 

different techniques. Most of the lossless compression methods can he classified 

under three fundamental paradigms namely: Predictive with statistical modeling. 

Trans lorm-based and Dictionary-based. 

2.3.2.1 Predictive with statistical Modeling 

There are two distinct and independent components for the predictive and statistical 

modeling: Modeler and Coder 1241. As the modeler is gathering some information 

about the image data by tracking some context and identifying a probability 

distribution, the coder, after scanning the current pixel x, . uses this information to 

encode the next pixel x,. 1. The goal is to find an estimate (prediction) of x,. / that 

maximizes the conditional probability: P (x,. /' X. x,... x, ) while scanning image data 

sample by sample in raster-scan. Because of the high correlation between neighboring 

pixels, the prediction value usually is estimated by using a simple function of previous 

neighboring samples. The difference between the actual pixel value and its predicted 

value is expected to be relatively small in absolute terms and this is called as 

differential or the error signal The value of this error signal is always entropy coded. 

After estimating the prediction value, the next step is the determination of context 

(function of possible different casual template) in which a value x,. I occurs. Then a 

probabilistic model for prediction error is estimated. Some examples of predictive and 

statistical modeling are Lossless-JPEG. JPI G-I, S. Context-based Adaptive Lossless 

Image Compressor (CALIC), Fast and Efficient Lossless Image Compression 

(RELICS) and Binary Tree Predictive Coding BTPC (BTPC). In Lossless-. 1PEG it 

simple linear prediction combined with I luffman coding. JPEG-LS is based on 1. Ow 

COmplexity lossless compression (LOCO-1) method that employs nonlinear simple 

edge detector prediction [251. in particular with Golomb-Rice coding and Run Length 

Encoding (RI. E). CALIC combines non-linear prediction with advanced statistical 

error modeling techniques to improve compression efficiency but at the price of' the 

coder complexity. RELICS is able to achieve reasonable compression ratio in optimal 
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time by coding each pixel in the context of two nearest neighbors. [3TPC is a multi- 

resolution technique designed to pcrlorm both lossy and lossless compression and 

working efficiently for different types of images. The main idea behind 13TPC is to 

decompose the image into a binary tree. 

2.3.2.2 Transform-hased Schemes 

In transform-based scheme, the image is transformed to a new domain in which they 

are better organized and easier to compress than in the normal spatial domain. Natural 

images have a lot of spatial correlation between pixel intensities, and these 

correlations can be exploited by the transform. A transform operates on an image's 

pixel intensities and converts them into a set of transform coefficients. This 

transformation concentrates the important image information into a more compact 

form in which the redundancy can be removed. Transforms generally come in pairs 

of forward and inverse forms. If' both the forward and inverse transforms are applied 

without compression, then the transform is either perfectly reconstructing (lossless), 

or the image information is quantized and lost after the transform stage (lossy). A 

lossless translorm does not further complicate an image compressor since it makes no 

decisions about which parts of the image data are useful. I lowevcr a lossy transform 

can often produce more compression and allow the transform algorithm to run lister. 

"Ihe translorm can either be orthogonal, orthonormal or non-orthogonal. It is common 

to use orthogonal/orthonormal transforms in image compression. because they are 

efficient and the transform coefficients are highly de-correlated. The Discrete Cosine 

Transform (I)C'l') and the Wavelet Transform are examples of' orthonormal 

transforms that are used in image compression. . 
IPI: (; 2000 and SPIIII' are examples 

of' transform-based in wavelet domainl26.271. JPI; G2000 is the latest standard for 

still image coding that is based on the discrete wavelet transform (DWT). scalar 

quantization. context modeling, arithmetic coding and post-compression rate 

allocation. I, ossless mode of JPT. G2000 is achieved through the use of' a special 

integer wavelet filter (biorthogonal 3/5 instead of Daubechics biorthogonal 7/9) and a 

quantization step size of' 1. Both lossless and lossy mode of', 1PI 62000 bitplanes have 

to be encoded by the Embedded Block Coding with block Truncation FBCOT with no 

drop of' any bitplane [281. SPIT 1T is achieving lossless mode by using reversible 

wavelets (S+P). SIT is a reversible wavelet transform that allows for reversible 
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image recovery by truncating the transform coefficients at some step in the 

transformation and encoding all of the transform coefficients. The S+P transform 

allows for either progressive fidelity or progressive resolution implementations and 

utilizes the information from both the low and high-resolution bands for prediction 

and then truncates the prediction value to an integer. This transformation reduces the 

source entropy in the resulting image representation, which is then encoded using; 

either arithmetic or Huffman coding [29.301. 

2.3.2.3 Dictionary-based Schemes 

The dictionary based compression algorithms substitute shorter codes fin- longer 

patterns of strings within the image data. Pixel patterns (substrings) in the data stream 

found in the dictionary are replaced with a single codcl31 1. If a substring is not found 

in the dictionary. a new code is created and added to the dictionary. Some examples 

of dictionary-based methods are Graphic Interchange Format (Oll') and Portable 

Network Graphics (PNG) [32] which are widely used in the Internet. PNG was 

created to improve upon and replace the GIF. It uses preprocessing to remove data 

redundancy. that is followed by the deflate algorithm. 

2.3.2.4 Entropy Coding 

An entropy coding is a coding scheme that assigns codes to symbols so as to match 

code lengths with the probabilities of the symbols and it usually the last stage in the 

image compression. Typically, entropy encoders are used to compress data by 

replacing symbols represented by equal-length codes with symbols represented by 

codes proportional to the negative logarithm of the probability. Therefore. the most 

common symbols use the shortest codes. According to Shannon's thcorcmI131. tile 

optimal code length lbr a symbol is log 
1. 

where b is the number of symbols used hp 

to make output codes and p is the probability of the input symbol. Three of the most 

common entropy encoding techniques are 1-lufl'man coding. Golomb -Rice coding and 

arithmetic encoding. 
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2.3.3 Lossy Image Compression 

Loss), compression permits distortion over original image to obtain much higher 

compression ratio than lossless methods. Theoretically, it can compress an image to 

any ratio. Ilowever, as the compression ratio goes higher. the degradation of the 

image will become serious. Lossy compression takes advantage of two factors to 

achieve this goal: on one hand spatial image is highly correlated (i. e. neighboring 

pixels tend to have similar value), and the limitation of human eye which cannot 

perceive small errors in images especially the sensitivity which is lower in the high 

frequency domain. The degree of degradation of the compressed image usually 

depends on the compression algorithm and the targeted compression ratio. In most 

loss), compression the original image is transformed from spatial domain to frequency 

domain such as DCT and the Dw, r. The compressor then removes the redundancy in 

the transformed image and stores it in a compressed format. JPI; (i is DC I -based 

standard and has several modes: baseline, lossless. progressive and hierarchical. 

Baseline mode supports only loss), coding in which the image is divided into 8x8 

pixels blocks and each of these is transformed with the DCT. The transformed blocks 

are quantized with a uniform scalar quantizer. zigzag scanned and entropy coded with 

I luHn an code. Some of' the well-known wavelets-based compression schemes are 

JPlG2000 and SPIT-IT. JPEG2000 is a wavelet-based image compression standard in 

which the pixel data is wavelet transformed. The wavelet transform coefficients are 

then quantized and the indices of each sub-band are divided into code blocks (e. g. 

32x32 pixels). Then the hit-plane coding is performed in each code block 

independently. S1111 IT is an image compression algorithm that exploits the inherent 

similarities across subbands in a wavelet decomposition of an image. It implies 

uniform quantization and bit allocation applied after wavelet decomposition. In some 

systems the transformation is combined with predictive stage where previously and/or 

subsequently decoded data are used to predict the current image sample. The error 

between the predicted data and the real data, together with any extra information 

needed to reproduce the prediction. is then quantized and coded. Loss), mode of 

B'I'PC is not a transform-based scheme, but uses a binary pyramid. predictive and 

I luffinan coding. 
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2.3.3.1 Scalar Quantization 

Quantization is to reduce set of possible symbols S to much smaller set S' by mapping 

each element of S to element in S'. An example of quantization is analog-to-digital 

converter with a fixed number of bits. Another example is to take the set of all 8-bit 

integers ( 2x = 256 elements) and divide by 4 (i. e., drop the lower two bits). That 

means, each element is represented by 6-hit (26 = 64 elements). Since the mapping 

used in quantization is many-to-one; it is irreversible (lossy) and therefore the 

quantization is the main cause of loss in lossy compression. In general. quantization 

proceeds by taking the interval of variation of the signal and decomposing it into 

subintervals (quantization bins). The center of the quantization bin (midpoint of the 

interval) can serve as a symbol representing all elements in this subinterval. In the 

case that the set S comes from a total order and the total order is broken up into 

regions that map onto the elements of S', the mapping is called . scalar quantization. 

Application of scalar quantization includes reducing the number of color bits or gray- 

scale levels in images. Figure 3 shows the input-output characteristic (the output With 

respect to input) of the two types of scalar quantization1341. 

The term uniform . scalar quantization is typically used in special case where the 

domain of input values partitions into equally spaced intervals (bins of the same 

length), except the possibly the outer intervals. The length of each interval is referred 

to as the step size, denoted by the symbol A. Uniform scalar quantization has two 

types as shown in Figure 2.4. Midrise quantizes have even number of output levels 

and Midtread quantizers have odd number of output levels, including zero as one of 

them. For special case where A =1. the output values for these quantizers can he 

computed as: 

Omidrise 
\X/ = 

[x] 
- 

0.5 

Q, 
nidtreaýX) - 

ýx+0'51 

(2.1) 

(2.2) 

A non-unifbrm quantizer uses bins of different sizes. In practice it is often better to 
use a nonuniform scalar quanti alion. 

The result of'quantization is serves as an input to entropy coding. 
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Figure 2.4: Fxamples of (a) uniform and (b) non-uniform scalar quantization. 

2.3.3.2 Vector Quantization 

In 

The general idea of mapping a multidimensional space into a smaller set of messages 

S' called vector quami.: atiuº1I35I. Vector quantization is typically implemented by 

selecting a set of representatives from the input space, and then mapping all other 

points in the space to the closest representative. 'l'he representatives could be fixed for 

all time and part of the compression protocol, or they could be determined for each 

file (message sequence) and sent as part o1' the sequence. If one considers 

quantization and entropy coding together, it is better to represent the signal with a 

minimal number of* components, and control the dynamic range and significance of' 

these components. The choice of the transformation is critical for the effective overall 

lossy compression. 

2.4 Performance Criteria of Image Compression Methods 

Each compression scheme has some merits and demerits that manifest on showing 

different performance on different types of images. Normally, such algorithms are 

designed in a way that suite and give better performance. In order to have a 

comparison between various images compression schemes, different performance 

criteria should be measured. Three most important characteristics of image 

compression algorithms are Compression Efficiency (CE), Compression Speed (CS) 

and Distortion Measures (DM). While the first two are algorithm-dependant. the later 

criterion is used to measure the distortion made by lossy compression. 

( )I 

4 i 
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2.4.1 Compression Efficiency 

Compression efficiency gives the measure of reduction in data volume achieved by a 

given compression algorithm. The most common used unit to quantify compression 

efficiency is Compression Ratio (CR). CR is simply the size of the original image 

divided by the size of the compressed image as shown in Equation (2.3). This measure 

accurately shows the effect of compression on the original data. 

Si--e of original inxrýc 
(R = Sce of compres"secl image (2.3) 

There are many other definitions used to express CR in a different way. Among them 

the Compression Percentage (CP) is the compression ratio expressed as percentage 

and lilt Rate (BR) refers to the average number of hit per pixel of the compressed 

image. As the source entropy is the lower bound on the bit rate that lossless 

compression can achieve, the efficiency of lossless compression methods can he 

measured by determining how close its ßR from the source entropyl331. Suppose that 

the pixel gray values range from U to , 11-1. Let 1), be the probability of'the gray value i. 

the information content of the image is given by its entropy as given in Fquation (2.4) 

1361. The unit of entropy is bits per pixel. 

"f i 
II P, log l', (2"4) 

, -0 
2.4.2 Computational Speed 

Since users expect their images to be transmitted at the minimum time, it is important 

to that computational speed of the compression algorithm is to he increased. The 

computational speed of' compression algorithm is measured by 

compression/decompression time (CT/DT). CT/DT in seconds are calculated based on 

the number of clock ticks spent to execute the coder/decoder, as number of ticks per 

second is constant for given processor. If the combined time that is taken for 

compression and decompression is small then we may define compression speed as 

high. To compute the duration of CT or DT in seconds. the numbers of ticks at the 

start (S"I'ART) and at the finish (FINISH) of' the process are used as shown in 

Equation (2.5). 
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IýINISII - START Duration (CT or DT) = -- CPU speed ( ticks per second) 
('. 5) 

The duration depends on the complexity of' the algorithms and the speed of' the 

processor. Considering compression/decompression times. some compression 

methods are symmetric, which means equal time for compression and decompression. 

An asymmetric algorithm takes more time to compress than to decompress. 

2.4.3 Distortion Measurements 

The introduced distortion into the reconstructed image during lossy compression 

process can be measured according to different image quality matrices. These metrics 

can be broadly classified into two categories. subjective and objective. Subjective 

quality metrics is a method of evaluation of Images by the viewers and it emphatically 

examines fidelity and image intelligibility. In objective measures, some statistical 

indices are calculated to indicate the reconstructed image quality. The image quality 

metrics provide sonic measures of the closeness between two digital images by 

exploiting the differences in the statistical distribution of pixel values. The most 

commonly used metrics for comparing compression are Mean Square Error (MSE) 

and Peak Signal to Noise Ratio (PSNR)1371. 

Mean Squarc [; rror 

Mean Square Error (MSE) is the mean of'square distance (difTerence) between pixels 

in the original image and their respective values in the reconstructed image. MSF can 

he expressed as I.: quation (2.6): 

AISE =I-Iýý. ýVeti+- 
"- 

Original (2"6) 
A' x Al 

, o, u 

Where New,, is the pixel intensity of the decompressed image at position i, 
.i 

and 

Original,, is the original pixel intensity at position i. j, N and M are the dimensions of 

the image. 
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Peak Signal to Noise Ratio 

PSNR is a measure of the peak error. Because images may have wide dynamic range, 
PSNR is usually expressed in decibel scale. PSNR (dB) is given by l; quation (2.7): 

PSNR = 10 log , 
M,, 1 X 
A1 SE 

(2.7) 

Where MAX is the maximum pixel value of the image and can be found torm the 

number orbits per pixel (13) as follows: 

MAX= 2'3 -1 (2. S) 

It is quit clear from Equation 2.7 that the lower MSE. value the higher is the PSNR 

and the better the compression ratio is. 

2.5 Medical Image Compression 

l)ue to increased necessity for tclcmedicine applications, there is desperate demand to 

store and hold medical images in digital form for transmission and archive in order to 

efficiently use these two limited resources. The transmission or exchange of' medical 
image is to help deliver healthcare to patients in remote areas (tole-healthcare) and 

share medical knowledge over distance for better medical services (WIC-consultation). 

Telemedicine is primarily concerned with the transmission of medical data between 

rural and urban areas. So it is important that the technology takes advantage of 

existing cost-effective communication infrastructure. The time for image transfer 

must be minimized in a remote telemedicine consultation. It is not acceptable for 

medical experts to spend a significant amount of' time simply waiting for image data 

to arrive. 

The need for archive grows due to the fact that medical images need long-term 

storage for future interpretation or research to study and combat certain diseases. The 

transmission/storage problem of medical images is noticeably increasing due to the 

fact that such images occupy large amount of storage space. The dimensions of 

medical image vary from one modality to another while the grey level can reach 12 

bits. Table 2.1 shows typical image sizes for some medical image modalities. 
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For example. a typical mammogram must he digitized at a resolution of about4000 x 

5000 pixels and 12 bits, resulting in approximately 40Mb of digital data. Such high 

resolution is required in order to detect isolated clusters of micro-calcifications that 

herald an early stage cancer. In a single medical ultrasound examination there are on 

the average 10 to 20 still images generated equaling to approximately 24.6 to 49 2Mb 

of grayscale image data, which means that a large volume of digital image data is 

generated. I)ue to the rising numbers of patients and elongated case histories. 

ultrasound images accumulate rapidly and filling limited storage space available in 

hospitals. 

Table 2.1: Sizes and brightness levels of'various medical ima`gesl 1 
Modality Spatial resolution(pixcls) l3rightncss Le%, el(bit 
Cl' SCA V 512 x 512 8 to 12 

MRI ý 256 x 256 12 
Mammogram 4000 x 5000 12 
Ultrasound 512 x 512 8 

\-ra v 2048 x 2048 12 

Moreover, the large number of medical images that are produced in moderate hospital 

escalating the problem by increasing the required storage. This massive amount of 

data not only makes the storage and transmission expensive, but also affects the speed 

of communication. 'l'hereiore, an effective compression is essential to reduce the tile 

sire as much as possible, making storage access and transmission facilities more 

practical and efficient. 

2.6 Survey of Medical Image Compression 

2.6.1 Lossless Medical Image Compression 

During the last few years there have been many research works on medical image 

compression. Generally speaking. most of these works are based on the pre-exist 

image compression methods. Ilowever, research on medical image compression 

concentrates on methods that are used for continuous-tone and grayscale images. As 

an initial step, the evaluation of compression method on medical images is essential. 

For example as in 139]. Clunie has evaluated a large set of lossless image compression 

on multiple Modalities. Lossless JPEG[401, 
, 
I! 'EG-LS1411. CAI. IC142I. S-+-1'I4 1. 

S/IP[44J, PNG 
, 

PACKBITS. Unix pack, Unix compress. CREW 1451 and GNU 

gzip 1461 are tested on sample set of digital radiography. computed tomography. MRI. 
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mammography, US and NM 
. 

But there is no indication of how many images arc 
involved. The work concluded that the JPF: G, JPI; G-LS, and VIP codecs were 

noticeably faster than the others and CALIC was noticeably slower. JPI: G-1, S. 

JP[G2000 and CAI. IC performed equally well and outperformed existing . IPFG and 
dictionary-based schemes which performed poorly. One of' the major drawbacks of 

this study is that the compression methods are evaluated on different type of images 

despite the variation in the textures. The study used many general-purpose 

compressions like SLIP, UNIX pack, COMPRESS and G7. IP which are prelcrred for 

non-image data. Compression method like PackBits is simple compression scheme for 

run-length encoding of general data. 

In another work by Kivijarvi 147 I. general-purpose and image compression methods 

have been applied on medical images of various modalities. namely computed 

radiography, computed tomography, MRI, NM, and US. It was observed that CAI: IC 

and JPEG-LS performed well as compared to Lossless JPFG and ING. This study 

hadn't the opportunity to examine the performance of latest JPEG2000 scheme. The 

measurement of compression ratio was taken as the average of the results of all 

modalities, regardless of the fact that different modalities may have different 

redundancies. 

In another research, Denecker 1481 use five mage-based compression schemes: 

lossless JPI: G 
. 

IVI'PCF49I. FELICSI5O]. S+1 and CALIC and two general-purpose 

compression schemes GZIP and S"I'AT on computed tomography, MRI. PET. US. X- 

Ray and angiography images. It is indicated that CALIC performed best and S-i-P 

achieved second best performance. The performances of lossless JPEG and G/lP are 

not Lip to the mark. In the study the number of tested images was not specified. So it is 

difficult to interpret their results. 

From these studies it can be readily inferred that some compression methods such as 

Losslcss JPEG, JPEG-LS, CAI. IC, S+P, ITPC, FELICS, PNG and All-G2000 are 

performing efficiently and showing some variation on various medical modalities. 

These methods are always dominating in the research work of many people. 
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2.6.2 Lossy Medical Image Compression 

In lossy compression, Erickson 151 reviews some previous work in medical image 

compression and suggests that irreversible compression can be used for medical 

image storage and transmission. Ilowcvcr, the irreversible compression must he used 

carefully without compromising diagnostic quality. Ile discussed compression of 

images from a variety of medical imaging modalities. including computed 

tomography. MRI. chest radiography, and US showing that some types of medical 

images tolerate much higher levels of compression than others. Compression 

tolerance is defined as the maximum compression in which the decompressed image 

is acceptable for interpretation. Chest radiographs are very tolerant of compression (at 

least 40: 1 for SP11IT wavelet), bone x-rays are moderately tolerant (between 20: 1 and 

40: 1), and computed tomography. MRI. and US images exhibit fairly low tolerance to 

compression (less than 20: 1). Ile found in his study that wavelet compression such as 

, IPEG2000 and SPIIIT outperform . 
1PEG due to the blocking artifacts produced by 

JPEG. In this study all the conclusions are based only on literature survey. 

Out of different lossy compression methods JPEG has been used for a lone time for 

medical images especially on DICOM 151]. Wavelet-based lossy image compression 

in general (JPEG2000 and SP11IT in particular) are introduced recently as efficient 

methods that give the best tradeoff between compression efficiency and image 

quality. Robinson in 2003 has shown that lossy mode of '13'1-1'C is an efficient method 

that can generally compete with JPLG in different types of images 1491. 

Przelaskowski applied four effective lossless coders (Binary context-based 

Arithmetic Coder (BAC). CALIC. JPEG-LS and JPEG2000) and two wavelet lossy 

coders JPEG2000 and modified Basic Wavelet Technique (MBWT) on 22 selected 

mammograms. It is found that BAC and CALIC are giving better bit rate values than 

. 1PEG-I, S and JPEG2000. This work mainly emphasizes on subjective quality 

measurements to measure the distortion that is made by lossy methods. The study 

concluded that the radiologists agreed that wavelet compression up to I hit per pixel is 

sate to be used without loosing the diagnostic accuracy of compressed 

mammograms[52]. They also reported that lossless compression schemes can only 

achieve CR less than 2: 1. 
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The same author Przelaskowski [53)] has updated his previous work by testing five 

more lossless compression methods: namely Adaptive Predictive Tree (APT). SPIT IT. 

optimized JPEG2000. JPIG and J132 on 131 mammograms. It was shown that CALIC. 

. 
1PFG-LS. and SPIT-1'1' have performed well. It can he clearly noticed that there is 

inconsistency in the results of his two works on lossy compression. Ills results show 

that the compression ratio 14: 1 is the accepted limit for lossy wavelet compression on 

mammograms without degrading quality. 

In another work by Delgorge 1541, six lossless compression techniques (I luffman 

coding, arithmetic coding, Storer and Szymanski's modified version of Lempel Ziv's 

algorithms (LZSS), RLE [55] coding and Kano algorithms) are applied on 10 

ultrasound images. Later lie included JPEG-LS also. The study found that although 

arithmetic coding gives the best compression rate. the adaptive 1-Iuffman method gives 

the best compromise between compression rate and computing time. Because the 

arithmetic coding associates with larger coding time and RI. I: is not suited to 

ultrasound image images, as its compression rate is the largest. The study also 

compares adaptive Iluffman with the lossless mode of' JPEG-LS to conclude that 

_IPEG-I, 
S is the best for lossless compression of ultrasound images. All these 

techniques are known as entropy coders normally used as a last step in compression 

algorithms. Any practical comparison should use state of art schemes which combine 

some preprocessing techniques such as context predictive or transforms prior to those 

entropy coders. For lossy comparison the author has chosen Near-Lossless mode of 

JPEG-l, S. JPEG and JPEG2000 using MSE, PSNR and compression time as the 

metrics. Near-Lossless mode of JPEG-LS has been reported as the best method when 

the compression ratio is less than 5 (closer to lossless) and JPIG2000 becomes the 

optimal method for higher compression ratio. 

2.7 Region-based Image Compression 

In recent years, much attention has been paid to region-based coding due to its 

functionality that suite various applications in which certain parts of an image are 

more meaningful than the others parts of the image. Thus, these parts can be encoded 

in such away to preserve image quality; one of these applications is the compression 

of medical image data for archiving and transmission. 
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2.7.1 Shape Adaptive UCT 

Shape Adaptive DCT (SA-DCT) algorithm was adopted for coding arbitrary shaped 

image segments in DCT-based compression [56]. The algorithm is to encode only the 

Region of Interest (ROI) separately from the background employing DCT on 8x8 

image blocks. The two dimensions DCT of the ROI block is computed in two steps. 

each involving only one dimension DCT. First, the vertical DCT is computed by 

transforming each column of foreground pixels. This is followed by the horizontal 

DCT which transforms each row of coefficients obtained from the vertical DC'f. To 

compute the vertical DCT of' a block, each column which may contain different 

number of ROI pixels is shifted upwards, so that all columns arc justified to the top of 

the block. The horizontal DCT is computed for each row of coefficients obtained 

from the previous step, as follows. First, each row of different number of coefficients 

is shifted left, so that all rows are left justified. After transformation, the number of 

DCT coefficients obtained is the same as the number of pixels that form the ROI. The 

DC coefficient is located in the upper left corner ofthe block, as occurs in the block 

based DCT. SA-DCT algorithm is supported in MPEG-4 standard for its 

computational efficiency, however, as all DC'l'-based methods, it suffers blocking 

artifacts that limits its use for low bit rate coding the foreground. 

2.7.2 ROI in JPEG2000 

A better alternative which works on wavelet-based image compression is to scale up 

the wavelet transformed coefficients of ROI so that the bits associated with ROI are 

more significant than the bits associated with the non-Region of Interest (non-ROI). 

Then during the embedded coding process, the most significant ROl hit-planes are 

placed in the bit-stream before any non-ROI bit-planes of the imayge. Two kinds of' 

this scaling method arc defined in JPFG2000 standard: the maximum shift 

(MAXSIIIFT) and the general scaling-based method as shown in Figure 2.51571. 

MAXSI LIFT separates the ROl from non-ROI by scaling up the coefficient associated 

with ROI through a number of bit shift. The scaling value is chosen to be sufficiently 

large to ensure that all the significant bits associated with ROI will he in higher 

bitplanes than all the significant bits associated with non-ROI. MAXSIIIFT allows 

arbitrary shaped coding without explicitly transmitting the shape information. as the 

decoder can separate ROI and the non-ROI coefficient by looking at the coefficient 
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magnitudes. The major limitation of MAXSI IIFT is that it doesn't have the flexibility 

to control the relative quality between ROI and non-ROI. This limitation has been 

solved in the general scaling based method in which the relative importance of the 

ROI and non-ROI is controlled by scaling up certain number ol'hit-shills. 
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Figure 2.5: General Scaling and MAXSI IIFT ROI method in JPEG20001571 

2.7.3 Shape Adaptive I)WT 

Shape Adaptive Discrete Wavelet Transform (SA-DW1') 1581 is studied as a new 

region-based paradigm that decomposes arbitrarily-shaped objects and offers superior 

rate-distortion performance and better visual quality than the previous techniques. 

SA-DWT can retain most of the features of conventional DWT while working strictly 

on the ROl and never computed outside its boundaries. SA-DWI preserves the spatial 

correlation and self-similarity property of wavelet transforms. The 2-dimension SA- 

DWT for an arbitrarily shaped visual object can be done through number of steps of 

I -dimension wavelet transform. In each row that corresponding to the shape 

information provided by the mask and with a proper subsanlpling strategy. a length- 

adaptive 1-dimension wavelet transform is applied to each segment of consecutive 

pixels. The lowpass wavelet coefficients are placed into the corresponding row in the 

Iowpass band and the highpass wavelet coefficients are placed into the corresponding 

row in the highpass hand. The above operations are performed for each column of the 

lowpass and highpass objects. These operations are repeated to the lowpass-lowpass 

band object until the level of wavelet decomposition is reached. 

As the conventional wavelet transform is only performed on rectangular image region 

and cannot be done on arbitrary shape region, SA-DW'F is identical to the 

conventional wavelet transform when applying it in a rectangular region (Figure 2.6). 

Y, 
G 

.I 
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Figure 2.6: Multi-resolution decomposition of ultrasound image scanned area using 
SA-DWT 

2.8 Summary 

Various medical imaging modalities are frequently used to acquire interior structures 

and the functions of the living human body. Mammography and ultrasound imaging 

are the most common in tele-healthcare for their cost-effective and providing 

sufficient and reliable diagnostic information. Due to the large size of these images 

compression is essential. Image compression methods are categorized as lossless and 

lossy. The former perfectly reconstructs the original image. However. it can achieve 

low compression ratio. Lossy compression degrades the image to obtain much higher 

compression ratio than lossless methods. To have a comparison between various 

images compression schemes, different performance criteria such as compression 

ratio, compression speed and distortion Measures (i. e. MSE and PSNR) are generally 

used. In an effort to optimally compress medical images various methods arc used. 

out which lossless compression like LJPEG, JPFG-LS. CAI, IC. RELICS, B"I'PC, 

JPEG2000, S+P and PNG in addition to lossy compression such as JPFG. BTPC. 

JPEG2000 and SPII IT are used in the literature. Region-based coding such as ROI in 

JPFG2000. SA-DCT and SA-SWT suites various applications in which certain parts 

of an image are more important and need to he preserved more than the other parts of 

the image. 



Chapter 3: Evaluation of I»in'e Co, npressio, z Scheines 29 

CHAPTER 3 

EVALUATION OF IMAGE COMPRESSION SCHEMES 

3.1. Introduction 

It is noticeable in the literature that mammograms and ultrasound images dominate in 

tele-consultations among the experts worldwide. Accordingly, the most efficient 

image compression techniques are needed to be studied in order to choose the best 

compression which will increase transmission speed and reduce storage space. The 

first half of this research work is concentrating on evaluation different compression 

algorithms to decide which ones are more suitable för mammograms and ultrasound 

images. Importance of mammograms and ultrasound images in tele-healthcare is 

described. A brief overview of all compression methods that used in this work is 

presented. It is followed by a review of some software implementation and 

compression libraries. Finally the methodology of evaluating the compression 

methods for the above images is described in detail. 

3.2. Mammograms and Ultrasound Image Compression 

Medical Imaging methods such as mammography and ultrasonography are cost- 

effective screening tools that provide sufficient and reliable diagnostic information to 

estimate the degree of complexity in tclemcdicine applications. 

Because of its simplicity, low radiation. portability and low cost, periodical screening 

by mammography is currently considered as the most effective way to prevent the 

fatal stage o1'breast cancer 116]. 

Ultrasound image of abdominal organs is considered as the most widespread and 

versatile medical imaging modality for diagnosis of' various major diseasesl21 I. 

Unlike other medical imaging modalities, ultrasound is the safest imaging modality as 

the patient is not exposed to any kind of radiation. Furthermore. Ultrasound 

equipment is relatively small. easy to handle, quickly to perform and more 

economical. 
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Using an optimal image compression scheme lör mammograms and ultrasound is 

essential to reduce the storage requirement and transmission lacilities more efficient. 

However, medical image which holds important diagnostic values (i. e. micro- 

calcifications in mammograms and speckle texture in ultrasound), cannot afford too much 
degradation. Thus an ideal compression method must he designed in order to , I\ c the best 

compromise between the higher compression ratio and the vital diagnostic quality. 

There are numerous imat, e compression techniques (lossless and lossv) proposed and 

found in the literature. IIowever, In this work, based on the Iitcralurc survey, eight 

efficient lossless compression schemes namely Lossless mode of JPFG (LJPEG), 

REG-LS, CALIC. FELICS, BTPC, JPEG200. Reversible Wavelets (S 111) and PNG 

and four lossy compression methods namely, ßTPC, JPEG2000, JPl G and SPII IT are 

studied to investigate the limitation of'lossless and lossy compression schemes and to 

determine the optimum trade-off between the distortion and compression efficiency 

for mammograms and ultrasound images. 

3.3. Efficient Lossless Image Compression Schemes 

Light efficient lossless image compression methods have selected according to their 

performance on medical images in general and mammograms and ultrasound images 

in particular. Out of these eight methods LJPFG, JPEG-LS. CALIC. IýFLICS and 

B FPC are predictive-based schemes, JPEG200 and S+P are transform-based methods 

and PNG represents the dictionary-based scheme. 

3.3.1 I, JPEG 

I. JPEG is a commonly used lossless method to compress 8 and 16-bit grayscale 

images in medical applications. It is a totally independent algorithm from the well 

known baseline JPI G that uses DCT for lossv compression. I.. IP1: G algorithm 

employs simple linear prediction followed by Iluflinan coding. In I JPI; (i prediction 

scheme, up to three previously observed neighboring samples I. 
, 

1,,,, and 1,, can he 

combined to calculate the prediction value x of the current sample .v among seven 

possible predictors: 

I� " 
III 

"1�\, " (I� +IQ -I,,,, )" (I� +(I� -I,,,, )/2)" (I,, +((1� )/2). and ((I,, +1�)/2) 

The user must specil'y which prediction value should be used for the 
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compression/decompression process. 1, denotes the intensity value at location a with 

respect to the current sample. "Therefore, a generic position a is the diTlcrent direction 

from the current sample x (it, is left pixel, n is above pixel. nit' is upper pixel to the 

left). The prediction error (x-x) always has much smaller entropy than the original 

intensity values, which implies that the prediction process removes a great deal of 

inter-pixel redundancy. Therefore. these prediction errors are then encoded instead of 

the actual density values by I lul'tinan coding. 

3.3.2 . IPEG-Ls 

. 11)E(; -LS is a standard for lossless compression based on LOCO-1 compression 

algorithm which combines good performance with fast and efficient 

implementationI25J. , lI EG-LS allows a near-lossless mode which refers to a loss), 

algorithm for which each reconstructed image sample differs from the corresponding 

original image sample by not more than a pre-speciticd value which can be controlled 

by the encoder. The algorithm employs nonlinear simple edge detector predictors on 

causal neighborhoods, as defined by gradient information. Context modeling is 

designed to reduce the number of free parameters by defining the coding distributions 

at each context. For a given context, the encoder adapts to the best encoding method 

chosen from a fixed set that is matched to single parameter, exponentially decaying 

distributions. N. fficient implementation is achieved through adaptive Golomb-Rice 

coding or RI i 141 ]. 

3.3.3 CALIC 

Context-based Adaptive Lossless Image Coding (CALIC) is a compression method 

that puts heavy emphasis on image data modeling which make it relatively complex 

especially when arithmetic coding is used. A unique feature of CAI. IC is the use of a 

large number of modeling contexts to condition a non-linear predictor and make it 

adaptive to varying source statistics. In this adaptation process, CALIC only estimates 

the expectation of prediction errors conditioned on a large number of contexts rather 

than estimating a large number of conditional error probabilities. CALIC operates in 

either binary or continuous-tone modes, depending on the context of the current pixel. 

In the continuous-tone mode, gradient adjusted prediction takes place and is further 

improved by error feedback, %%-here prediction errors are modeled under different 
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contexts. leading to reduced conditional entropies. The coding step may involve either 

arithmetic or I Iullinan coding [421. 

3.3.4 F F. LICS 

Fast. Ffticient. Lossless Image Compression System (FELICS) is a simple-to- 

implenlent method that combines the prediction and error modeling steps by utilizing 

the two nearest neighbors of a pixel in a raster scan order to estimate the probability 

distribution of the pixel intensity. Based on a parameter estimation method. the most 

suitable error model is chosen from a set. and the intensity is encoded using the Rice 

code of'the model. The method uses prefix coding. and codes pixel values relative to 

the range described by the values in location w(lefI j, ixel) and n7 (above pixel). A 1-bit 

code describes if the pixel is in this center range. if not a 1-bit code describes which 

side (above and below) the value lies. The code for the center range is a function of 

the number of' values lying in the range, and the code for the above and below ranges 

is symmetrical with respect from the distance to the center range 1501. 

3.3.5 B'I'PC 

Binary Tree Predictive Coding (131'PC) is multi-resolution general-purpose image 

compression method which decomposes the image into a binary tree. It is designed to 

perform both lossless and lossy compression. and to be effective for different types of 

images. It is well suited for coding multimedia images which combine text. graphics 

and photographs. and is also appropriate as a general-purpose method when the image 

type is not known in advance. B'I'PC uses a binary pyramid. predictive coding and 

Ilufiinan coding. 13TPC is inherently progressive and a straightforward modification 

of the decoder to write directly to an on-screen picture buffer which allows simple 

progressive image recovery [491. 

3.3.6 JPEG2000 

JYEG2000 is an efficient coding standard for loss} and lossless multi-component still 

images and it is based on the discrete wavelet transform (DWT), scalar quantization, 

context modeling, arithmetic coding and post-compression rate allocation. The 

encoding process consists of the following four stages. First, for each component, the 

pixel data is transformed using reversible filter (for losslcss nude) or irreversible 
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filter (for lossy) wavelet transformation and an orientation tree sub-band structure is 

generated. Secondly in loss), mode, the wavelet transform coefficients are quantized 

into integer indices. In the third stage. the indices of each sub-band are divided into 

small code blocks (e. g. 32x32 pixels) and bit-plane coding is performed in each code 

block independently. The coded data constructs several quality layers. Finally. the 

code blocks are also grouped into precincts with a nominal size for each subband. The 

code coming from each precinct layer, resolution level and component will be 

wrapped into a packet and all the packets are organized to form the final bitstream in a 

certain progressive order[261. 

3.3.7 S+P 

The Said-Pearlman (S+P) transform is a reversible wavelet transform that allows for 

reversible image recovery by truncating the transform coefficients at some steps in the 

transformation and encoding all of' the transform coefficients. The S+P is similar to 

the I laar wavelet image representation and allows for either progressive fidelity or 

progressive resolution implementations. The S+P transform utilizes information from 

both the low and high-resolution bands for prediction and truncates the prediction 

value to an integer for efficient implementation. This transformation reduces the 

entropy in the resulting image representation, which is then encoded using, either 

arithmetic or I luflinan coding [43 I. 

3.3.8 PNG 

The Portable Network Graphics (PNG) is an image file format that is recommended 

as a weh standard by the Word Wide Web Consortium (W3C). Its dictionary-based 

compression method that uses preprocessing (predictive) to remove data redundancy. 

that is followed by LZ77 and the deflate algorithm. Iluffinan coding is used in PNG 

as entropy coder [32]. 

3.4. Efficient Lossy Image Compression Schemes 

As an outcome of the literature survey. four frequently used lossy schemes namely 

JPEG2000, I3TPC, JPEG and SPIIIT are discussed. BTPC and JPEG2000 that are 
described in the sections 3.3.5 and 3.3.6 under lossless schemes can also operate in 
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IossV mode. In the lossy mode ofthese compression methods additional quantization 

step is involved (see section 2.3.3.1). 

3.4.1 JPEG 

JPEG is an international standard for compression of co11tinuous-toile images 

developed by Join Photographic Expert Group (. 1PEG). in a collaboration of three 

international standard organizations (ISO. CCITT. and II; C). i'he resulting JPI: G 

standard includes four basic modes: sequential, progressive, hierarchical encoding 

and lossless. The group of the first three is known as baseline JPEG which is most 

popular and commonly used lossy compression. In the baseline, the image is divided 

in 8x8 blocks. Each block is transformed with the I)CT. The transformed blocks are 

quantized with a uniform scalar quantizer. zigzag scanned and entropy coded with 

Iluflnnan code. The quantization step size for each of the 64 I)C'l' coefficients is 

specified in a quantization table. The I)C coefficients of all blocks are coded 

separately, using a predictive scheme. 

3.4.2 SPIiIT 

Set Partition in I lierarchical Trees (SPIT IT) is an image compression algorithm that 

exploits the inherent similarities across subbands in a wavelet decomposition o1' an 

image. It implies uniform quantization and hit allocation applied after wavelet 

decomposition. The algorithm codes the most important wavelet transforms 

coefficients in priority and transmits the hits so that an increasingly refined copy of 

the original image is obtained. The order in which coefficients are transmitted is 

recovered on the decoder using some information obtained from sets being examined 

fir significance during the sort. These sets are created using hierarchical tree data 

structure. One of the advantages with SPIT-IT is that it produces an optimal embedded 

bitstream. This means that the bitstream can he truncated at an,,, instant, and is then 

guaranteed to yield the best possible reconstruction [27]. 

3.5. Image compression Software Implementations and Libraries 

A typical software implementation of image compression consists of two separate 

components, encoder and decoder (codec) as shown in Figure 3.1. The former 

compresses the original image into a more compact format suitable for transmission 
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and storage. The decoder decompresses the received image and reconstructs it to the 

exact or approximate original form. The process of reconstructing the image is always 
determined by the particular needs of the application. 

Input Data Storage 
-º Encode Or Decode Output 

Image 
Transmission 

Hj- 

Image 

Figure 3.1: A typical data compression system (codcc) 

Instead of implementing each algorithm from scratch; there are some optimized 

reusable compression libraries that can he incorporated in any application that 

transmits or archives collection of images. In accordance to this, sonic attention is 

given to the libraries that incorporate most of the above mention compression 

algorithms. These libraries are open source packages. Some commonly used 

compression schemes with their respective programming libraries are presented in 

Table 3.1. All the source codes of these libraries are in C/C++ language and they are 

arranged in a way to be used in MS Visual C++. One of the prominent obstacles that 

face the implementation of these libraries in MS Visual C++ under WINDOWS 

operation system is that most of them have been developed under Linux-like 

operation systems which need many changes when adapted to WINDOWS. such as 

changing some header files. The essential component of any compression software is 

the library written to provide general implementations of procedures commonly used 

in coding and compression applications such as entropy coding, scalar quantization, 

vector quantization and wavelets. These compression libraries are useful in the 

development of compression systems and in academic research. 
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Table ;. I :1 ossless/Lossy compression schemes with their respective libraries 

36 

Lossless Lossv Libraries Descriptions 
I. JPF(I JPIFG IJG JPLG library Lossless JPEG 
FFLICS Managing Gi(, abyte( MG) Fast Efficient Lossless Image compression 

System 

CALIC X. Wu & N. D. Memon 
implementation 

Context-based Adaptive Lossless Image Coder 

. 111F. 6-LS LIP JPFG-IS Lossless/Near Lossless based on LOCO-I 
JPF. (i2000 Jasper JPF. G2000 wavelet-based standard 

131'PC 13'FPC 5.0/ ZI, I13 Binary "Free Predictive Coding 
PNG LIBPNG/ ZL113 Portable Network Graphics 

ýý 11 lý it 
Set Partitioning' in I lierarchical Tree 

Reversible Wavelets (S-t-P) 

Any library will provide a set of functions for reading and writing the respective 

image file format, and supporting conversion to some other popular image file 

formats and color space conversion. Any application programs may make use of the 

library routines or easily add support for a new feature or image format by linking the 

application against the library during compilation without having to modify the 

library in any way. All the source codes of the programming libraries that are used in 

this study are highly optimized C/C++- code. Each library function is very general in 

its implementation in order to he useful in a large variety of applications. 

3.6. Experiment 

3.6.1 Sample Images Database 

The test images that are used in the study of performance evaluation arc initially 

obtained in the form of the conventional mammograms and ultrasound films from 

local hospitals. These images were collected from different patients and covering a 

wide verity of abdominal and breast diseases. Sample of these images is shown in 

Figure 1 and Figure 2 in Appendix A. The dimensions of each image , their sizes and 

entropy are shown in table I and table 2 for mammograms and ultrasound images 

respectively. The images were digitized by using a high resolution scanner to obtain 

Portable any Map (PNM) image format where "N" can be one of' three forms: Bit, 

Grey and Pixel. It is a convenient simple method of saving raw image data (with no 

compression) and easy to use in any applications. These formats are used to store 

black and white images PBM (Portable BitMap), greyscale images PGM (Portable 

GreyMap). as well as RG13 color images PPM (Portable PixMap). For each of the 
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three formats there is either a binary or an ASCII version. All PNM file format consist 

of two parts, a header and the image data. The header consists of at least three parts 

normally delimited by carriage returns and/or linefeeds. The first "line" is a magic 

PNM identifier: PI, P2, P3,134, P5 or P6. The first three (P1, P2. P3) are for ASCII 

version while (P4. P5, P6) are for binary version. Therefore. Pl or P4 are used in 

PI3M, P2 or PS arc used in PGM. and P3 or P6 are used in PPM The next line 

consists of the width and height of the image as ASCII numbers. The last part of the 

header gives the maximum value of the color components for the pixels. This allows 

the format to describe more than single byte color values. In addition to the above 

required lines, a comment can be placed anywhere with a "#" character. the comment 

extends to the end of the line. 

3.6.2 System setup 

All the compression software's explained above are implemented and the perlbrmance 

measurements are carried in the Telemedicine and Intelligent Imaging laboratory of 

PETRONAS University of Technology using the system setup shown in the Table 3.2. 

Tablc 3.2: System setup for the experiment 
Computer Pentium IV 2.8 MI Iv 

Memory 256 Megabytes 

operating System Microsoft ýVindo\\s lP 

Programming Iýcvclopmcnt Environment Microsoft Visual C-+--+ 

The programming language C/C++ is chosen primarily due to the availability of 

similar development environments for most of today's computing platforms. Besides. 

all the source codes are reusable and simple to modify. 

3.6.3 Evaluation Procedure 

After acquiring mammograms and ultrasound films from local hospitals and digitizing 

them in uncompressed grayscale format (PGM). the entropy of each image is measure 

as shown in equation 2.4. The performances of'the different lossless and lossy schemes 

are measured. The steps of the procedure are shown in the flow diagram in Figure 3.2. 

The performance evaluation of lossless is presented to determine the best among the 

eight compression methods on mammogram and ultrasound images in terms of 
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compression ratio and computational speed. Next the evaluation of lossy compression 

schemes is carried to determine the optimum trade-off between the distortion and 

compression efficiency. The results of the above evaluation will be used in our 

proposed hybrid compression scheme. 

Acquiring mammograms & ultrasound 
films from local hospitals 

Applying; well-known Lossless 

schemes on these images 

T 

Evaluation criteria for lossless (CR, CSI 

ý 
Determining the best losslcss 

scheme based on efficiency and 

'need 

i. _ 
i 
i 
i 

i 

ý 
Determining the best lossy 

scheme based on efficiency, 
Rnred and rniality 

Combining the best lossless and lossy compression methods 
in a Hybrid region-based Approach 

-- -- -------------------- ------- -- 

Figure 3.2: A comparative study of compression schemes 

3.6.3.1 Evaluation of lossless Compression schemes 

f 

To investigate the compression efficiency and the maximum achievable compression 

ratio I'm mammograms and ultrasound images, performances of the eight lossless 

methods have been studied. The major focus of this study is on the compression 

efficiency and compression/decompression time of each compression scheme. Large 

number of mammograms and ultrasound images which are different in texture and 

size are used. 

After compressing and decompressing all the sample test images using the above 

methods, the compression ratios are calculated up to 3 floating points. All the 

commands that used to call the coders for compressing and decompressing are 

arranged in batch files to collectively process all the sample images. Example of these 

batch files are shown in Appendix 13. For each image. compression ratio, compression 

Applving well-known Lo:;, y 
schcmcs on these image: r. 

i 
Evaluation criteria for lossy (Quality (RISE, 

PSNRI 'CR. CSI 

and decompression time are calculated. 
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3.6.3.2 Evaluation of Iossy Compression schemes 

The same set of sample images are coded and decoded using the rear selected rosy 

compression algorithms to determine the optimum trade-off between the distortion 

and compression efficiency. For each test image. nine different compression ratios 

were selected: 5: 1.15: 1.25: 1 35: 1,45: 1.55: 1,65: 1,75: 1 and 80: 1. Since lossless 

compression may give a compression ratio less than 5. the lower limit of CR is chosen 

as 5: 1. In order to keep the distortion within the limit the highest value fm CR has 

been chosen 80: 1. 

The results of average measure of the PSNR and MSE for the lour methods at 
different compression ratios are also calculated. 

The best scheme is selected according to one of these distortion metrics (MSF or 

PSNR) for a given compression ratio. A lower value for MSI: means lesser error 

(better quality), and as seen from the inverse relation between the MSI; and PSNR. 

this translates to a high value of PSNR. Logically, a higher value of PSNR is 

preferable. Also compression and decompression time is measured. All the related 

batch file commands are shown in Appendix 13. 

3.7. Summary 

Mammograms and ultrasound images have great significance for diagnostic and 

therapeutic applications. Compression of these images faces a great challenge to 

compromise between the higher compression ratio and the relevant diagnostic 

information. Therefore, selecting a suitable method is critical for medical image 

coding. There is numerous image compression techniques (lossless and lossy) 

proposed and found in the literature. In this work. a comprehensive comparative 

survey is needed to compare different compression techniques. Eight efficient lossless 

compression methods and four lossy compression methods have been studied. This 

comparative study uses compression ratio, compression speed and distortion made by 

lossy compression to pinpoint efficient and well suited compression methods for 

mammograms and ultrasound images. The source codes of the programming libraries 

that are used in study are implemented in Visual C++ under Windows XP operating 

System. 
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CHAPTER 4 

EFFICIENTCOMPRESSION SCHEMES FOR MAMMOGRAMS 

AND ULTRASOUND IMAGES 

4.1 Introduction 

In the previous chapter, the eight lossless schemes, namely CALIC, JPEG2000, 

JPEG-LS, FELICS, Lossless mode of JPEG, S+P, PNG and 13'l'PC and the four lossy 

methods namely JPEG, ITPC, JPEG2000 and SPIIIT are discussed. In order to 

determine the best among the above schemes, large number of mammograms and 

ultrasound images obtained from local hospitals are processed and analyzed. 

However, only the results of a set of 21 test images which are of different sizes and 

texture in each modality have been included. 

4.2 Performance of the lossless schemes on mammograms 

For each of' the sample images, the eight lossless compression methods are applied 

and the compression ratio and the compression/decompression time are calculated. 

4.2.1 Compression Efficiency 

The results of compression 

entropies mammograms are 

entropies are given in Table I 

Table 1 in Appendix C. 
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efficiency obtained for the 21 samples of different 

plotted in Figure 4.1. The numerical values of the 
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Figure 4.1: Compression efficiency on mammograms 
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It may be seen from the results that CALIC and JPEG-LS are equally efficient 

regardless of texture and size of the images. Although the two wavelet-based schemes 
JPEG2000 and S+P are using different integer wavelet filter and different embedded 

coding, they are found to perform equally and to be next best to CALIC and JPEG- 

i, S. JPEG2000 uses bi-orthogonal 3/5 and Embedded Block Coding with block 

Truncation (I? I3COT) whereas S+P uses the spatial orientation tree of SPIII'l' for 

coding the coefficients. LJPIG and PNG are found to be lagging behind all the other 

schemes in terms of efficiency even though I. JPEG outperforms PNG. To ensure the 
best of I, JPEG performance, all the seven possible prediction values are tried (section 

3.3.1), among which the best prediction value that gives higher compression ratio is 

selected. BTPC and FELICS are found to perform well but slightly lower in efficiency 

than the wavelet schemes (JPEG200 and S+P). 

4.2.2 Compression Speed 

Figure 4.2 and Table 2 in Appendix C show the results of the compression and 
decompression tinges obtained for the above samples using the eight lossless schemes. 
('n I. IC seems to be extremely slow compared to all other methods. FELICS is the 

fastest algorithm because of its simple prediction with a two-neighboring pixel 

context (section 3.3.4). LJPEG and JPEG-LS are somewhat much closer to FELICS. 

It is seen that PNG and I3TPC take more time for compression but less time for 

decompression and they have less compression speed compared to the two wavelet- 
based algorithms. But S+P is faster than JPEG2000. The compression/decompression 
time taken by CALK is estimated to be around 10 times that of JPEG-LS and 3 to 3.5 

times that ofJPEG2000. 

(a) Compression time in seconds 
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(b) Decompression time in seconds 

Figure 4.2: Compression/decompression time in seconds on mammograms 
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Except C'AI. IC all other methods show closer compression speed. In Figure 4.3 the 

compression/decompression time of these seven methods are re-plotted after 

excluding CALIC in order to make the difference clear. 
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Figure 4.3: Compression/decompression time without CAI, IC on mammograms 

4.3 Performance of the lossless schemes on ultrasound images 

4.3.1 Compression Efficiency 

The results obtained for compression efficiency on the test samples of 21 ultrasound 

images of different entropies applying the eight lossless schemes are shown in Figure 

4.4. The numerical values of the entropies are given in Table 2 in Appendix A and the 

compression ratios arc given in Table 3 in Appendix C. It is found that CALIC is 

outperforming JPEG-LS and they are the two best schemes for ultrasound images 

regardless of texture and size. 
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Figure 4.4: Compression efficiency on ultrasound images 
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l JPI? G is found to be lagging behind all the schemes in terms of efficiency. PNG is 

slightly outperforming I. JPEG. FFLICS, B'1'PC, JPEG2000 and S+P are showing 

close performance and found to lie in the middle range. 

4.3.2 Compression Speed 

Figure 4.5 (a) and (b) and Table 3 in Appendix C show the compression and 
decompression times respectively for the above eight lossless schemes. It can be seen 

that FELICS is the Fastest and the CALIC is the slowest. LJPEG and JPEG-LS are 

somewhat much closer to FELICS. It may be noted that the above four algorithms 
(FELICS, CAI. IC, I, JPEG and JPEG-LS) are symmetric. PNG and Ifl PC have less 

compression speed in comparison to the two wavelet-based algorithms. S+P is faster 

than JPEG2000. 
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Figure 4.5: Compression/decompression time in seconds on ultrasound images 

4.4 Comparison of lossless schemes on both modalities 

From the earlier results, it can be clearly stated that CALIC and JPEG-LS give best 

performance for both modalities. Their performances are very close for mammograms 
but for ultrasound images CALIC is leading. PNG and LJPEG are lagging behind all 

the other schemes on both modalities. Ilowever, LJPEG outperforms PNG on 

mammograms whereas PNG performs significantly better than LJPEG on ultrasound 
images. JPEG200 and S+P are showing close performance on both modalities. Their 

performances are more close to CALIC and JPEG-LS on mammograms but not so on 

ultrasound images. FELICS and BTPC are outperformed by JPEG200 and S+P on 

maninmograms. However, all the four methods (FELICS, BTPC, JPEG2000 and S+P) 

show closer performance on ultrasound images. 
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The compression/decompression time of' the eight lossless compression methods on 

mammograms show that FELICS is the fästesi algorithm followed by Jl'l: G-LS. 

I.. IPFG and PNG which are slightly outperform BTPC. Due to the complexity of 

wavelet transform, both JPEG2000 and S+P. CALIC is extremely slow. 

Based on both the compression efficiency and speed, it is found that JPEG-LS is well 

suited for lossless compression of mammograms and ultrasound images. 

4.5 Performance of Lossv schemes on mammograms 

For pcrlormancc evaluation of the tour lossy methods (. IPI: G, JPI, G2OO. 13TPC and 

SPIII"I') on mammograms, the quality of the recovered images based on PSNR and 

MSE and compression decompression time are measured. 

4.5.1 Image Quality 

Figures 4.6 and 4.7 and fable 4.1 show the resu! ts of average measure of the PSNR 

and MSF on 21 mammogram for the four lossy methods at different compression 

ratio (from 5: 1,15: 1,25: 1 35: 1,45: 1,55: 1,65: 1,75: 1 and 80: 1). The highest values 

of I'SNR and the lowest value MSI: present the best quality of' the test images. It is 

inferred that quality of the test images drop very fast in JPFG compared to the other 

schemes when compression ratio is increased. This drop is due to the artifacts 

resulting from the block-based I)CI' (section 3.4.1). 

55AO- 

m45A0 

40.00 

''CC ryryýý 

ý- 
- . -G 

. J. J. W'.. T B1PC 

30.00 

.. " . F'EC-2000 ý 

SPIF-fT- 
\ 

ý 

5 15 25 35 45 55 65 75 
Compression fbtio 

Figure 4.6: Comparison between PSNR and CR on mammograms 
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Figure 4.7: Comparison between MS1: and CR on mammograms 

For both the criteria PSNR and MSE, SPIIIT provides better image quality than the 

other methods for all test images and for all compression ratios. It may be noted that 

the SNIT 1'1' shows slow degradation in quality compared to the others. BTPC exhibit 

the second best quality after SPII IT. At low compression ratios (less than 15: 1) JPNG 

shows better performance than JPFG2000. For higher values of CR JPFG2000 is 

better than JPFG. 

Table 4.1: Average distortion measurement (PSNR and MSE) vs. different CR on 

mammograms 

CR 
SPIHT BTPC JPEG000 JPEG 

PSNR MSE PSNR MSE PSNR MSE PSNR MSE 
5 53.77 0.28 51.37 0.47 51.21 0.50 51.40 0.48 

15 49.32 0.77 48.19 1.02 47.35 1.21 48.00 1.05 
25 48.03 1.05 46.97 1.34 46.30 1.54 46.35 1.57 
35 47.15 1.29 46.20 1.61 45.39 1.91 44.55 2.42 

45 46.35 1.56 45.43 1.93 44.77 2.20 42.59 3.80 

55 45.61 1.87 44.71 2.29 44.21 2.51 40.06 6.94 
65 44.95 2.19 44.12 2.64 43.69 2.84 37.04 13.36 

75 44.32 2.53 43.72 2.88 43,25 3.14 31.06 56.33 
80 44.00 2.73 43.22 3.25 43.01 332 20.99 536.52 

4. ä. 2 Compression Speed 

The average compression/decompression time in seconds are calculated for the above 
ionir methods and the results are shown in Figure 4.8 and Table 4.2. 
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. JI'I, G takes less time but its distortion rate is very high. SI'IIIT takes more 

compression/decompression time than JPI; G but less distortion. I Ience. SPIT IT gives 

the best trade-off between the distortion and compression efficiency. 
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Figure 4.8: Average compression/decompression time in seconds for the lour lossy 

methods on mammograms 

Table 4.2: Average of Compression/decompression time for the Four lossy methods 

applied on mammograms 

Images 
JPEG BTPC JPEG2000 SPIRT 

CT DT CT DT CT DT CT DT 

Mammol 0.078 0.031 0.421 0.171 1.265 0.609 0.286 0.356 
Mammo2 0.078 0.015 0.39 0.125 1.25 0.578 0.357 0.395 
Mammo3 0.078 0.031 0.531 0.156 1.328 0.593 0 427 0.359 
Mammo4 0.078 0.031 0.406 0.296 1.437 0.578 0.483 0.391 

Mammo5 0.078 0.031 0.515 0.14 1.375 0.562 0.482 0.401 
Mammo6 0.093 0.031 0.671 0.14 1.593 0.625 0,545 0.414 

Mammo7 0.078 0.031 0.671 0.281 1.453 0.578 0.552 0.386 
MammoB 0.015 0.031 0.546 0.14 1.234 0.75 0.634 0.362 

Mammo9 0.046 0.015 0.343 0.062 0.765 0.343 0.453 0 248 
MammolO 0.078 0.031 0.64 0.265 1.593 0.593 0.331 0.643 
Mammoll 0.046 0.015 0.234 0.281 0.859 0.5 0.158 0.512 
Mammol2 0.046 0.015 0.234 0.203 0.625 0.453 0.195 0.235 
Mammol3 0.046 0.015 0.203 0.328 0.593 0.5 0.187 0.315 
Mammol4 0.046 0.015 0.218 0.203 0.875 0.312 0.189 0.215 
Mammol5 0.046 0.015 0.218 0.343 0.796 0.328 0.187 0.23 
Mammo16 0.046 0.031 0.234 0.187 0.812 0.328 0.172 0.546 
Mammol7 0.046 0.015 0.484 0.078 0.843 0.515 0.189 0.23 

Mammol8 0.046 0.015 0.234 0.078 0.656 0.531 0.179 0.238 
Mammol9 0.046 0.015 0.25 0.328 0.859 0.328 0.19 0.234 

Mammo20 0.046 0.015 0.234 0.093 0.828 0.328 0.196 0.687 
Mammo2l 0.031 0.015 0.578 0.078 0.859 0.515 0.201 0.251 
Average 0.056714 0.02186 0.393095238 0.1893 1.042762 0.497476 0.31395 0.3641905 
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4.6 Performance of Lossy schemes on ultrasound images 

4.6.1 Image Quality 

The 21 test images are coded and decoded using the four lossy compression 

algorithms. For each test image. nine different compression ratios were selected: 5: 1. 

15: 1,25 :1SO: 3.6.3 

Figure 4.9 and 4.10 show the results of average measure of PSNR and MSL for the 

four methods at different compression ratios. Table 4.3 shows the detailed numerical 

values of the results of PSNR and MSE for nine different compression ratios. It seems 

that the results on ultrasound images and mammograms are similar for the ['Our 

methods except that at compression ratios more than 15: 1.13'l'PC showed better 

quality than JPEG2000 on mammograms and . 
IPFG2000 provided better quality on 

ultrasound images. 
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Figure 4.9: Comparison between PSNR and CR on ultrasound images 
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Figure 4.10: Comparison between PSNR and CR on ultrasound images 

Table 4.3: Avcragc distortion mcasurcmcnt (PSNR and MSI; ) vs. dii'ICrcnt CR on 

ultrasound iniagcs 

CR SPIHT BTPC JPEG000 JPEG 

PSNR MSE PSNR MSE PSNR MSE PSNR MSE 

5 44 80 2.20 44.27 2.41 43,28 3.06 43.18 3.13 
15 39.88 6.68 38.85 8.48 39 26 7.718 38 83 8.52 

25. 38 77 8.64 37.60 11.31 38.30 9.62 37.52 11.51 

35 37 10 10 37 36.73 13.8 37 60 11.31 36.23 15.49 
45 37 30 12.23 36.16 15 76 36 94 13.16 34 61 22.51 
55 36.60 14.20 35.57 18.03 36.37 14.99 32.78 34.27 
65 36.01 15.97 35.03 20.41 35.89 16.74 30 30 60.62 
75 35.67 17.61 34.87 2118 35.47 18.45 26.82 13518 
80 35.44 18.59 34.47 23.25 35.30 19.21 21.57 453.17 

4.6.2 Compression Speed 

Table 4.4 shows numerical values of CT/DT of 2I ultrasound images using the I ur 

loss), methods. The above data is represented as bar chart in I- igure 4.11 showing the 

average values of the compression/decompression times for each method. It can be 

clearly seen that JPEG is the fastest and JPEG2000 is slowest. SPIRT is the second 

Fastest. 
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. 1PEG takes Tess time but its distortion rate is very high. SI11IIT is takes more 

compression/decompression time than JPEG but less distortion. I lence. SI'll IT gives 

the best trade-oil between the distortion and compression efficiency. 
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Figure 4.11: Average compression/decompression time in seconds for the four Iossv 

methods on ultrasound images 

Table 4.4: Average ol'Compression/decompression time for the four lossy methods 

applied on ultrasound images 

Images 
JPEG BTPC JPEG2000 SPIHT 

CT DT CT DT CT DT CT DT 

Ultrasoundl 0 095 0,058 0.376 0.159 1.154 0,482 0,185 0.245 

Ultrasound2 0 099 0.06 0.466 0.165 1.242 0.449 0.183 0.313 
Ultrasound3 0.097 0.061 0.385 0.166 1.156 0.528 0 218 0.269 

Ultrasound4 0.104 0.061 0.389 0159 1.221 0.561 0.211 0.388 
Ultrasound5 0.099 0.061 0.595 0,164 1.228 0 455 0,215 0.252 
Ultrasound6 0 102 0.061 0.539 0.167 1.34 0,45 0 215 0,263 

Ultrasound7 0.1 0.06 0.383 0.159 1.264 0.641 0.213 0.281 

Ultrasound8 0 104 0.061 0.588 0.162 1,273 0.611 0 227 0.617 

Ultrasound9 0.101 0.058 0.632 0.153 1 265 0.618 0.247 0.266 

Ultrasoundl0 0.104 0 061 0.64 0.17 1.32 0.612 0.223 0.281 

Ultrasoundll 0.098 0.062 0.395 0.17 1.222 0.593 0.188 0.26 

Ultrasoundll 01 0.062 0.392 0.416 1.245 0.644 0.182 0.545 

Ultrasoundl3 &675 0.065 0.404 0.17 1.237 0.45 0.217 0.27 
Ultrasoundl4 0 101 0.063 0.687 0.167 1.382 0.452 D 218 0 271 

Ultrasoundl5 0.099 0.062 03 0.17 1 35 0.482 0 215 0 349 

Ultrasoundl6 0.098 0 095 0.658 0.153 1.15 0.555 0.215 0.568 
Ultrasoundl7 0 095 0 058 0 645 0.164 1.199 0.579 0.196 0.283 

Ultrasoundl8 0.096 0.095 0.644 0.164 1 279 0.448 0.218 0-265 
Ultrasoundl9 0.104 0.063 0.375 0.164 1.438 0.487 0.223 0 437 

Ultrasound20 0.102 0.095 0.404 0.16 1.347 0.493 0.233 0.526 

Ultrasound2l 0 096 0 059 0.679 0.149 1.168 0.579 0.22 0 28 

Average 0.127095 0.065762 0.522666667 0.17481 1.260952381 0.531857 0.21247619 0.344238 

ýý 
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4.7 Summan, 

A comparative study of lossless compression schemes applied on large number of 

manimogram and ultrasound images has been carried out. The results for a set of 21 

test cases ofdiffcrent sires and texture ofcach modality have been included. 

To evaluate the losslcss compression methods, three criteria namely, compression 

ratio, compression time and decompression time were used. JPF, G-I, S shows high 

compression ratio through different entropies and much less 

conmpressionldeconmpression. Based on these two features, the results of the analysis 

indicate 
. 
1Pl: G-LS is found to be well suited för compressing mammograms and 

ultrasound images. 

The lossy methods are evaluated using MSE and PSNR as criteria to quantity the 

distortion. 

It is l'Ound that S1111-IT is an efficient method that shows the better compromise 

between compression ratio and image quality than other lossv schemes with a 

reasonable compression speed. 
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CHAPTER 5 

HYBRID REGION-BASED IMAGE COMPRESSION SCHEME 

5.1 Introduction 

In mammograms and ultrasound images there are only small regions of' interest (ROl) 

which are diagnostically relevant while the remaining regions are much less 

important. The proposed approach is to retain the quality by using efficient lossless 

compression on ROI and optimal lossy compression on non-regions of interest (non- 

ROI), thus yielding a high overall compression ratio while still being diagnostically 

lossless. The approach described in this work is a hybrid technique of applying a 

modified lossless JPI; (3-I. S algorithm which is found to be the best approach among 

the eight lossless algorithms on the ROl (sections 4.2 an 4.3) and Shape Adaptive 

SPIII'I' algorithm which is Found to be best among the four efficient lossy 

compression methods on non-ROI (sections 4.5 and 4.6). First JPI', G-I. S with the 

proposed modification is described. This is followed by detailed description of SPIT IT 

algorithm with shape adaptive approach. The above two algorithms are combined to 

yield aI lybrid Region-based Image Compression Scheme (I LYRICS) which is applied 

on the selected mammograms and ultrasound images with and without preprocessing. 

5.2 JI'EI(: -LS 

, 
1P1: '. G-LS is designed to achieve high compression efficiency at very low 

computational complexity and memory requirement. 't'his method has lossless and 

near lossless modes. Here only losslcss mode is described. For an input image. a 

prediction scheme is first operated to decide whether the run-length compression 

mode or the predictive coding mode should be selected to encode the current pixel, 

depending on the values of previously encoded pixels in a surrounding neighborhood. 

The prediction scheme and context modeling are the core features of the . 
lPFG-I. S 

modeler as seen in Figure 5.1. The idea of prediction is to guess the current pixel 

value based on the previous neighboring pixels and to output the difference between 

the actual and the guessed values. It is expected that the differences are low so that the 

image can be effectively compressed. 
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Figure 5.1:. 1PLG-LS lossless simple coder diagram 1411 

The algorithm will scan the image in raster order (from left to right and top to bottom) 

when estimating the prediction values. Let the values of the pixels at locations W. 

NW, N and NF shown in Figure 5.2 (a) are X. X. X. and X, respectively with 

respect to pixel value X/ at the current location L. The initial prediction values , 1' are 

obtained by applying the formula in Figure 5.2(h). 

if X,,,, > max (X,,, X�) then 

.ä= max(X - X, ) ; 

else if* X,,,, < min (X,,, X�) then 

NW IN 

W I, -t 

NE 

ý= min(X� ý , 
ý'� ): 

else 

- . Y' i=X,, +X,, Current pixel location 

(a) (b) 

Figure 5.2: (a) Four neighboring pixels (b) formula to obtain the initial prediction 

This lörmula is based on the idea of taking an average of nearby pixel while taking 

into account the edge to capture the horizontal, vertical and diagonal edges. If 

horizontal edge detected, X� will be taken as prediction value. X. will be taken fbr 

vertical edge otherwise. X� + X. X,,,, will he taken as a prediction of diagonal edge. 

'Ihe initial prediction is then relined using an average value of the prediction in that 

particular context. 'fhc context in JPEG-LS also reflects the local variation in pixel 

values. However, they are computed differently from CALIC. 

iiIrli I 

First measure of'differences D1, I)2 and D3 are computed as followed: 



Chanter 5: II), hrid Rcý: 'iott-hased Intatie Compression ý; 

=X� -X� DI 
D2=X� 
D3 =X�� -X� 

(5.1) 

The values of these differences define a three-component context vector Q. The 

components of 'Q (Q 1, Q2 and Q3) are defined by the following mapping: 

D, <--7; => Q, =-4 
-T, <D, -7; =: > Q, =-3 

-7', <D, -7; =>U, =-2 

-T, <D, 0ýQ, =-1 
D, =0 => Q, =0 
0<D, <T, =1 
T, <D, 7_2 

7; <D, 73 3 
7i < D, => Q, =4 

(52) 

In equation 5.2. T1, T2 and '13 are positive coefficients that can be specified by the 

user. I lowever. JPEG-LS define default values calculated from the pixel depth of the 

original image (i. e. 3,7, and 21 are optimal values of T1, 'I'2 and T3 respectively for 8 

hit grayscale images). Given nine possible values for each component of the context 

vector. this result in 9x9x9 729 possible contexts. In order to simplify the coding 

process, the number of contexts is reduced by replacing any context vector Q whose 

lust nonzero clement is negative by -Q. Whenever this happens, a variable SIGN is 

also set to -1; otherwise, it is set to +1. this reduce the number of contexts to 365. ']'he 

vector Q is then mapped into a number between 0 and 364. 

The variable SIGN is used in the prediction refinement stepl4l 1. The correction is 

first multiplied by SIGN and then added to the initial prediction. 

The prediction error r� is mapped into an interval that is the same as the range 

occupied by the original pixel values M. The mapping used in JPEG-LS is as follows: 

M 
r� <=>r; <--r�+ A1 

Al 
<--r�- >=>r� Al 

(5.3) 
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Finally. the prediction errors are encoded using adaptively selected codes on Golomb 

codes. which have also been shown to be optimal for sequences with a geometric 

distribution. Golomb code encodes an integer in two parts: a unary representation and 

a modified binary representation (using hits if and bits otherwise). Golomb codes are 

optimal 14 1] ('Or one-sided geometric distributions of nonnegative integers. 

x. 2.1 Modification on . 11"E(; -LS 

The current JPEG-LS algorithm is not supporting shape adapting coding. So in this 

work the existing JPF(i-I. S is modified such that the compression can operate only in 

a predefined arbitrary area specified by the mask. In this modified prediction scheme 

the entire region outside ROI regions will be discarded. In this modified JPEG-LS 

algorithm, when estimating the prediction values, the lour previous neighboring pixels 

that involved as a context for the prediction are dynamically changed for every pixel 

that is within the ROI area. Ifthe current pixel is in the first row of ROI then both X,,, 

and A', will he assigned to zeros otherwise if the previous X,,,, is part of ROI then it 

will he assigned to X� otherwise A'. is zero (Equation 5.4). 

1fX, c ROI I7RST_ ROl117 

. 1; ��-0: x, = 0; 

else if* E ROI 
1' =X - ý, 

else 
x� -0 (5.4) 

If the current pixel is ROl left edge then X, will be assigned to zero otherwise X. is 

previous ROI pixel a, 
_i 

(Equation 5.5). 

E ROI LUFT DGL 
X, 0 

else 
, 1',, = previous(X1); (5.5) 

X. vvil1 be taken as prediction value when horizontal edge is detected. II 'vertical edge 

is detected X,, will be taken as a prediction value. Otherwise (X,, + X, - X,,,, ) will be 

taken as a prediction value for the diagonal edge. 
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The prediction value is calculated as shown above only il' X is within the ROI 

determined by the mask. When the next related horizontal pixel is processed. the 

previously encoded pixel will he assigned as X, and accordingly previous pixel at . 
1'� 

will he assigned as X,,,,. X. and X will he given new values according to their 

respective locations in ROI. If any of X. or X,,; is located in non-ROl it will he 

assigned to zero. 

The same procedure will he followed for other related pixels of the region. The 

compression process can operate only in a predefined area specified by the mask. In 

this modification all the region outside ROI will he discarded. 

5.3 Characteristics of Wavelet Decomposition in SPIIIT 

Set Partitioning in I Iicrarchical Trees (SPII-IT) is an improved version of Embedded 

/erotrec Wavelet (I: ZW) algorithm 1591to encode the wavelet cocfticients. In next 

subsection some important characteristics of wavelet is described. Then a Detailed 

description of- SPII IT algorithm is presented. 

5.3.1 Spatial Orientation Trees 

In Sl'lI IT a wavelet transform is performed on the image to reduce the correlation 

between neighboring pixels. In wavelet transform. subband decomposition is 

produced by an analysis filter bank followed by downsampling; this constitutes one 

stage of the two dimension subband decomposition of an image as depicted in Figure 

5.3 in which the energy of the original image is concentrated in the lowest Frequency 

hand (LL) of the transformed image. In a two channel separable system. the initial 

high-pass and low pass filters and downsampling are applied horizontally to the rows 

of an image. The subsequence filters and downsampling are then applied vertically to 

the resulting columns. 
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Figure 5.3: Two dimensional suhhand analysis 

Consequently, the image is split into lour bands that show a strong sell-similarity 
denoted 1.11,1111,11L, and LL, according to whether the rows and columns received 

the low-frequency or high-frequency filtering. Only the low band L. I. is input once 

more to analysis filter bank decomposed and downsampling operation. this is referred 

to octave-hand decomposition. The reconstructing operation is an inverse process 

consists of an upsampling operation followed by a synthesis filter bank. One of the 

most important characteristics of' wavelet transformed is the spatial orientation of the 

coefficients. A spatial orientation tree is defined as a set of coefficients from different 

hands that represent the same spatial region in the image. As an example. two-level 

wavelet decomposition of ultrasound image with spatial orientation tree is shown in 

Figure 5.4. For simplicity, only two levels of the transform are shown here. The first 

transform level results in sub-bands 1.111, Ill]], IIL1, and 1,1,1. Only sub-band 1,1.1 is 

passed on for further wavelet decomposition, generating the next transform level and 

creating sub-hands 1112,111-12.1-1L2, and 1.1.2. As it seen. these octave-hands have 

similarities with each other that represent the same spatial location of the original 

image and the same orientation, but at different scales. The different scales of' the 

subbands imply that a region in the sub-hands is representing the same region in the 

original image. SPIT-IT defines spatial parent-children relationships in the 

decomposition structure to exploit the self similarities properties of l)WT images. To 

explain the balanced tree structures used in SPIiIT. a portion of' the parent-child 

relationships is depicted in Figure 5.4(c). The arrows in the figure identify the parent- 

children dependencies in a tree. The start of arrow line is parent coefficient, and end 

of arrow indicates four children coefficients. 
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(a) (b) (c) 

Figure 5.4: 2-level wavelet decomposition of US image with spatial orientation tree 

(a) Original image (b) Transformed image (c) Part of parent-child relationships 

In transformed image, each coefficient X, (except the coefficient in the top-left corner 

in the lowest hand and the three highest bands) is related to exactly four coefficients 

in the next highest hand. 't'hose lour coefficients correspond to the same orientation 

and spatial location as X, does in the original image. Each of these four is in turn 

related to four in the next hand, and so on. These coefficients are collectively called 

the descendants of X,. The spatial sell-similarity between the parent and a child pixel 

suggests that an encoding scheme that moves from the parent to the child will exhibit 

decreasing coefficient magnitudes. In another words, it is often true of' image data 

that when a coefficient X has magnitude less than some threshold T. all of' its 

descendants will also he less than T. 

5.3.2 SPI11'I' Alt; urithm 

The characteristics of 'wavelets decomposition are exploited by the SPIT IT algorithm. 

It begins at the top of the tree and encodes higher-order bits before lower-order bits 

decomposing each sub-tree whenever it finds a coefficient in a sub-tree which exceeds 

the current threshold. 

For easy understanding of SPIT IT algorithm Khalid Sayood 1591 defines the following 
functions and notation: 

" C',, is the coefficient at location (i,. j). 

" 0,, 
_, 

is the set of coordinates of the four offspring's of the coefficient at location (i 

.. j). 

O, _ IC2,2, 
" C'ý� 1. >. 1_ý > ýýý 

,21 +1 1 C12), l. _, 1 .I} (5-6) 
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" D;,, is the set ol'descendants of the coefficient at location (i. j). descendants include 

the offsprings , the offspring's of the offspring"s. and so on. 

" 11 is set of all root nodes, essentially all the coefficients on the low frequency band 

of the octave-band decomposition. 

" L,,, this is the set of coordinates of all the descendants of the coefficient at location 

(i, j) Except for the immediate offspring's of the coefficient at location (i, j). 

L,., = D,., - U,., (5.7) 

Any set ( D,, or L,,, ) is said to he significant if any coellicient in the set has a 

magnitude greater than the certain threshold. Finally, thresholds used for checking 

significance arc power of 2. So in essence, the algorithm sends the binary 

representation of' the integer value o1" the coefficients. The bits are numbered with the 

least significant bit being the zeroth hit, the next bit being the first significant bit, and 

the last bit (k-I ) being referred to as most significant bit. The magnitude sorting 

algorithm in SPIT IT achieves embedded coding by using three lists of coefficients: 

List of Si, iýnificant Pixels (I, SP). I. i. si of Insignificant Pixels (LIP) and List of 

Insignificant Sets (LIS). I, SP will contain the coordinates of' coefficients that are 

significant with respect to the current threshold 1. opposing LSP, I. IP contains 

coordinates of' coefficients that are insignificant with respect to 1. LIS contains the 

coordinates of the roots of insignificant set of type 1) or L. 

The algorithm starts by determining the initial value of the threshold t from equation. 

t=2 
Li,, g 2 (c, - )J (5.8) 

where is the maximum magnitude of the coefficients to be encoded. The initial 

state of SPIT IT algorithm is shown in Figure 5.5. The LSP is initially empty. LIS is 

initialized with the set If. LIS with elements of 11 that have descendants are also 

placed as type D entries. 
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Insignificant pixels (LIP) Insignificant sets type D (LIS) 

Figure 5.5: Initial state of'SPII IT algorithm 1601 

All the steps of SPII IT algorithms are shown in the flowchart given in figure 5.6. In 

each iteration, there are three steps: the sorting pass, the refinement pass. and the 

updating quantization step. The purpose of the sorting pass is to manipulate the three 

lists so that they are correct with respect to the current value of' the magnitude 

threshold T. In the sorting pass. the member of LIP is processed first and then the 

members of' LIS. This is essentially the significance map encoding step. The element 

of' I, SP in the refinement step is then processed. Each coordinate contained in 1,11) is 

then examined. If' the coefficient at that coordinate is significant (that is greater than 

2N), transmit aI f`6Ilowed by a hit representing the sign of' the coefficient (I for 

positive. 0 for negative). Then the coefficient will he moved to the L SP list. lf' the 

coefficient at that coordinate is not significant, a0 is transmitted. 

Alter examining each coordinate contained in I, IP, the set in LIS will he examined. II 

the set at coordinate (i, j) is not significant, a0 will he transmitted otherwise aI will 

be transmitted. What conies after that depends on whether the set is of type 1) or L. 

If the set is of type 1). each of the off-springs of the coefficient at that coordinate will 

be checked. In other words, the four coefficients whose coordinates at in O(ij) will 

be checked. For each coefficient that is significant, transmit 1 and the sign of the 

coefficient. Then move the coefficient to LIP. For the rest. transmit a0 and then add 

their coordinates to the LIP. Now that the coordinate of 'O (ij) has been removed from 

the set, what is left is simply the set L(ij). Ifthis set is not empty, it will be removed to 

the end of LIS and mark it to be type L. Note that this new entry into the I. IS has to 
he examined during this pass. Ifthe set is empty; the coordinate (ij) will he removed 
from the list. 
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If the set is of type I., then each coordinate will be added in O(ij) to the end of the I. IS 

as the root of a set of type I). again note that these new entries are the I. IS have to be 

examined during this pass . 
Then the coordinate (ij) will be removed from the I. IS. 

The refinement pass follows the sorting pass and outputs the bit corresponding to the 

current magnitude threshold for each of'pixels in the LSP which were not added in the 

immediately previous sorting pass. The quantization for each significant coefficient is 

refined in a successive manner. A quantization threshold is used in coefficient 

magnitude test and then successively decreased by a factor oftwo in each pass of' tile 

algorithm. When the hit budget is reached, the algorithm will stop. The algorithm can 

be halted at any time needed, such as if'the compressed data stream has reached the 

size we desire. 

5.3.3 Shahs Adaptive SPI11'I' l+, ncoding 

The conventional I)W'I' is not supporting an arbitrary shaped ROI of an image. but it 

supports only a rectangular shaped regions. The SPIIi I algorithm can he made to 

encode arbitrary shaped objects by incorporating a Shape Adaptive-Discrete Wavelet 

'I ransfornl (SA-DW'I') (section 2.7.3). SA-DWT is identical to the conventional 

wavelet transform when applying it in a rectangular region and preserves the spatial 

correlation and self-similarity property of wavelet transforms. In a SA-I)WT. the 

number of'coeff icients is exactly equal to the number of pixels in the object. which is 

achieved by using a mask that is opaque for object pixels and transparent everywhere 

else. In Shape Adaptive SPIT IT (SA-SPii If) encoding. each time it coefficient is to he 

encoded; its position with respect to the mask is taken into consideration. If a 

coefficient is within the opaque region of' the mask, it is encoded. All transparent 

coefficients are considered to be insignificant at all times, and thus encoding is 

avoided. Similarly, shape information is also used to determine which coefficients are 

to he decoded and which are not during the decoding process. The coding algorithm 

needs to keep track of the locations of wavelet coefficients according to the shape of' 

the object. To obtain the information about object coefficients, a mask image which 

specifies the object is decomposed by the same SA-DW'l' used in the wavelet 

decomposition of the image. In each decomposition stage, each subband of the 

decomposed mask contains information for specifying the object in that suhband. By 

successively decomposing the approximation coefficients (LL subhand) for a number 
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of decomposition levels. information about object coefficients is obtained. Once the 

object coefficients are identified, SPIII'! ' coding algorithm will be applied on these 

coefficients to create the embedded bit stream. In order to efficiently code object 

coefficients by taking advantage of the ROI Information in the translorm domain. a 

region-based extension of SPIT IT algorithm is used. When the spatial orientation trees 

are established in the initialization step of SPITIT, the object information obtained 

from decomposition of the object mask is used to mark the spatial orientation tree. If 

all coefficients or sonic coefficients in a spatial orientation tree belong to the object, 

the corresponding tree is marked as an object tree. If all coefficients in a tree are 

outside the object, this tree is identified as a background tree. The background tree is 

skipped at the initialization stage. Also when a node and all its descendants in a 

spatial orientation tree are outside the object, the tree is pruned from that node. By 

doing so, no information about coefficients outside the object needs to he coded. 

Figure 5.7 gives an example of the parent-children relationship after SA-UWT 

decomposition of' an image containing an object. Shaded blocks represent object 

coefficients, and striped blocks are the background coefficients that have descendants 

inside the object. 
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Figure 5.7: Parent-children relationship in SA-DWT subbands [60] 

Solid arrows represent the parent-children relationship in the coefficient tree that 

should be kept. Dashed arrows specify the sub-branches in the coefficient tree that can 
be pruned. 
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5.4 Il''hrid Region-based Compression Schemes 

In the proposed Ilybrid Region-based Image Compression Scheme (IIYRICS), 

modified , IPFG-LS is applied on ROI to preserve the significant diagnostic quality 

and SA-SPI l fl' is used to encode the remaining non-ROI in a lossy manner. Figure 

5.8 shows the steps that describe IIYRICS. After acquiring mammograms and 

ultrasound films Crom local hospitals and digitizing them, the disease affected regions 

of interest are roughly marked by expert radiologist. Based on these markings an 

Arbitrary Shaped Mask (ASM) is generated to differentiate the pixels that belong to 

the ROI and non-ROI. This shape information is needed by compression scheme 

before starting the real compression process. Figure 1 and 2 in Appendix 1) shows all 

the generated masks for all the mammograms and ultrasound images that are used as 

test cases. Fach mask is represented as a binary image. where zeros correspond to 

ROI and ones correspond to the non-ROI. Figure 5.9 shows an example of' 

mammogram image on which IIYRICS is applied. In the figure (a) is the original 

image; (b) shows the region marked by the expert radiologist; (c) is the resulting 

generated mask that identifies the ROI. 

Acquire & Digitize Mammograms & 
Ultrasound images 

ROl marked 
(by Radiologists 

Generate the mask 
and apply it on the 

-- 1 --- 
I ROI 1 
(Affected area(' 

I 

I Apply modified JPEG-LS 

on ROI 

non-ROI 
(Background) 

II 

-----3------- 
Apply SA-SPIHT on non- 

Combine & 
ii Evaluate the 

CR & CS 

I- -- -- -- -- 

Figure 5.8: IIYRICS Steps 

(d) shows the decompressed image of ROI by the modified JPI. G-LS. (e) shows the 

reconstructed image of non-ROI by SA-SPII IT. By combining images of (d) and (c) 

the resultant decompressed image is obtained as in (1). 
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For evaluating the compression efficiency of I LYRICS. the compressed sizes of both 

ROI and the non-ROl are to he taken into account. The compression ratio achieved by 

SA-SI'II IT is always very high because it is operating on larger area not containing 
disease affected regions where more degradation in the quality is acceptable. "l'his 

factor contributes for higher compression efficiency of I LYRICS. 

Lets S,,,;,, he the size o(' the original image. Sr,,; and S�,,,; are the sizes of the ROI and 

non-ROI respectively. and C�,,,, are the sizes of the compressed ROI and the 

compressed non-ROI respectively. The compression ratios of JPFG-LS, SPIT IT and 
I IYRICS can be calculated as 1ö11ows: 

CR 
rrrý; r.. ý - . ýrwn +C ,,,,, 

(5.9) 

From these lormulas, a relation between the three compression ratios (CRiivizics. 

CR, ii i.; (; _i. s and CR51 1111) with respect to the original image size can be given as 

follows: 

CX nun .ý- S I'll + 

Siirun 

C. 'R ýjy. r; - is 
CR. ýrrnr 

S 
,.. _ ,J /' 1) 

Cl/lU IL- /IjIW( S- 

Song 

(5.10) 

The percentage of the ROI region is also affecting the overall compression ratio of 

I IYRICS. The percentage of both ROI and non-ROI can he expressed in the k llowin`g 

equations: 

,S x100 uý S 

, ý, ýý, 
'ý ,,,,,, x 100 and I'., =100-P,. (x. 11) 

Slip 
IK 

Therefore, CRfiviiuýs can be denoted on respect to CRspiii r and P«,; 

follows: 

as 

Pl 00 - P. CRrnrrýs =100 + (5.12) 
C'It. uv: r; -r.. ý ý ýý. 

ýwrrr 
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The compression ratio achieved by SA-SP11I"I' (CRspiilr) is always very high because 

it is operating on larger area not containing disease affected regions where more 
degradation in the quality is acceptable. Therefore. CRspiirr contributes more lbr 

higher compression cfficiency oll IYRICS. 

(a) 

(d) 

(b) 

(c) (1) 

Ffigure 5.9: Sequences of the I lybrid Compression- mammogram 2 

(a) Original image; (b) ROI marked by radiologist: (c) Generated Mask for 
ROI; 

(d) Modified JPEG-LS operated ROI; (e) SA-SPITl'1' operated non-ROI: 
(1) Decoded image by combining (d) and (e) by I IYRICS 

5.5 IIYRICS on pre-processed mammograms and ultrasound images 

In the example shown in Figure 5.9,1IYRICS applied on an image without any pre- 

processing. The effect on compression efficiency by applying IIYRICS on contrast 

stretched mammograms and ultrasound images have also been studied. One of the 

benefits of l LYRICS besides the high compression efficiency is that itcan he achieved 

the possibility to contrast stretch only very small area (ROI) for diagnostic proposes 

and the larger non-ROI will not he processed thus saving a lot of processing time. 

']'here are two possibilities for contrast stretching of ROI: (i) contrast stretching before 

applying compression and (ii) contrast stretching after decompression. Contrast 

stretching before compression to enhance the diagnostic quality is an irreversible step. 

(c) 
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5.6 Summary 

JPI, (i-1, S and SI'III'I' algorithms are reviewed in details. A new modification is 

introduced to . 
II'FG-I. S to allow the algorithm strictly operate on arbitrary shape ROI. 

SA-I)W'l' is used in SNII'i' For coding of non-ROI. All the characteristics of the 

conventional two dimension wavelet decomposition are well preserved by SA-1)W'I'. 

't'hen, the modified approaches are combined in a Ilybrid Region-based Image 

Compression (IIYRICS) to he applied on selected mammograms and ultrasound 

images with and without preprocessing. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

6.1 Introduction 

The algorithm developed in this work uses the regions of interest that are roughly 

marked by the expert radiologist to generate appropriate masks. The masked ROI will 
be compressed using modified JPFG-LS. The remaining non-ROI will be compressed 

by SA-SPIIIT. Then the resultant images after above hybrid compression will be 

transmitted fir tclc-consultation. IIYRICS was applied on many mammograms and 

ultrasound images obtained from local hospitals. The results obtained for 21 selected 

m mlmograms and 2I selected ultrasound images of different sizes and textures are 

presented. 

6.2 Compression Efficiency 

Table 6.1 and "fable 6.3 show the results on mammograms and ultrasound images 

respectively. In each table, column-2 represents the compression ratios obtained by 

applying normal JPI, G-l S on the whole image. Column-3 represents compression 

ratios obtained using the proposed new modilied JPEG-LS applied on ROI. Column-4 

shows the compression ratios obtained applying SA-SPIIIT on non-ROI. The last 

column shows the compression ratio,, obtained by applying the proposed IIYRICS. It 

is noted that the new scheme shows considerable increase in the compression ratio 

comparing to normal ,I 
PI : G-l. S. For certain mammograms and ultrasound images. it is 

found that the compression ratios are very high. For certain cases the ratios arc found 

to he low. The reason for such difference is due to the variation in sizes and textures 

of the sample images and the size of the ROI considered in each sample image. 
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Table 6.1: Comparison of compression ratios olJ1'I; G-I. S and I LYRICS on 21 
nnammograms 

Images . IP1? (: -I, S Modified , 1P1,: (: -LS 
SA- 

S1,11111, IIYIZICS 

Maululull 
klamnul2 

3.340472 
3,571366 

2.92304075 
2.67827694 

79.99842 
79.99541 

39.99875 
8.50 5339 

IVlanunu3 3.446099 2.6068174 79.99698 11.38211 
Manlnlcl4 3.295752 2.8735243 79.99622 9.226224 
Mammcº5 3.286945 2.66980104 79.99543 8.245254 
IVlanlmcl6 
Manunu7 

33.2 72122 
3326101 

- 

2.78747544 
2.73854452 

- 

79.9986 
79.99904 

9.285734 
10.689-53 

Manun08 3.697268 - 2.81259095 79.99448 9.268267 

Manlnu09 3.514702 2.98663139 79.99797 34. -18077 
Manunu 10 
Manlnulll 
Manlnlu 12 

3.677672 
3.57951 

3.666685 

2.75819969 
2.74638145 
3.07486003 

79.99935 
80.00012 
79.99792 

9.645393 
27.33239 
45.02136 

Mallllllll I3 3.868008 2.81857985 80.00151 13.61226 
R-1anunu 144 3.502873 2.90763692 79.99727 7.049566 
Manlnlll 15 3.83271 2.77706811 79.99597 14.86792 
R-lannml16 3.512044 2.87775927 79.99279 7.521334 
Manunu 17 3.719228 2.83601867 79.99541 

--- ---- 
19.46018 

--- --- 
INtanmllu 18 
Manunu 19 
1\-lanunu20 
\lalnmu2l 

3.549872 
3.515244 
3.629403 
3.676769 

3.13787159 
2.85179189 
2.5211459-_-- 

2.33864254 

79.99873 
79.993 

79.99786 
79.99419 

37.85266 
8.289259_ 

56.85634 
62.13938 

It may he seen from Table 6.1 the compression ratios obtained by applying . 
111`G1 -LS 

only on the whole image range from 3.2 to 3.8.1 lowever. when I-IYRICS is applied. 

the compression ratios vary from 7 to 62. It is noted that the lowest compression ratio 

for I LYRICS is observed on mammol4 where the ROI area is very large (39% of'the 

image). The highest compression ratio is observed on mammo2l where ROI is very 

small (0.87 o). The effect of the size of' ROI on compression ratios can he clearly 

seen Ior the 21 images in Table 6.2. Figure 6.1 shows the plot of the compression 

ratio obtained by IIYRICS on mammograms arranged in descending order of' 

percentage of ROI areas. It can be clearly seen that I LYRICS gives higher 

compression cl'f iciency and for low areas of' ROI high compression ratios are 

obtained. 
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'1 ahlc 6.2: 1-: I'tcct of ROI area oil compression ratio of I IYRIC'S t01. mammograms 

Inui ges ROI arca'%, Nun-ROI area `%, Compression ratio 
%-lamnu, I 3.79 96.21 39.99875 
Manu»o2 29.12 70.88 8.505 33 9 
Manuno3 20.31 79.69 11.38211 
Manmm4 28.58 71.42 9.226224 
Manno5 30.05 69.95 8.245254 
Manuno6 27.49 72.51 9.285734 
Manuno7 22.98 77.02 10.68953 
Manulw8 27.81 72.19 9.268267 
ManuiuM 5.12 94.88 34.6 

Manuno 10 26.05 73.95 9.645393 
Manuno I1 6.85 93.15 27.33239 
Mammo 12 3.11 96.89 45.021 36 
Mammo I3 17.81 82.19 13.61226 
Mammo 14 39.03 60.97 7.049566 
R-lanimo1 5 15.75 84.25 14.86792 
Manuno16 35.96 64.04 7.521334 
Mammo 17 11.43 88.57 19.46018 
Mammo18 4.55 95.45 37.85266 

Maninio 19 31.98 68.02 8.289259 
Manuno20 1.32 98.68 56.85634 

Manmu, 21 0.87 99.13 62.13938 

, _L 

Y, 

ý 
. d -ý-' 
a .ý ý x.. 
.. 
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ROI area 
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9--o 4-- --I- 

I _°4 5r 11 12 17 u 15 1^ 1- 1_ lc, r21 

rv1d111110 J a1-6 

Figure 6.1: Not ofC ompression ratios on mammograms arranged in a descending 

order according to the size oC ROI areas 
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It may be seen from Table 6.3, the compression ratios obtained by applying JPI G-I. S 

only on the whole image range from 1.9 to 2.5 for the 21 ultrasound images. When 

using IIYRI('S the ratios vary from 6.3 to 41.9. The lowest compression ratio for 

I IYRI('S is observed on ultrasound 13 where the ROI area is very lark (31.85%). The 

highest compression ratio is observed on ultrasound7 where ROI is very small (2.77 

Table 6.4 shows the effect of ROI area and non-ROI area on compression ratios 

obtained by I IYRICS on ultrasound images. Figure 6.2 shows the plot of'percentage 

01, ROI area and the compression ratio obtained by I IYRICS on ultrasound images. It 

can be clearly seen that In- low areas ol'ROl high compression ratios are obtained. 

Table 6.3: Compression ratio of the JPFG-LS and the proposed method 
on 2l ultrasound images 

Images IPEG-LS ROI-. IPF, G-LS ; A- 
SI IHT IIYRICS 

Ulirasound 1 2.302702 2.34030752 79.99669 2-3.93241 

lllirasouncl2 2.071661 2.20804442 79.99748 
_ 

2340062 
ll lirasound 3 2.191392 2.14484884 79.99702 22.3410 3 

lJltrasounci4 2.064791 2.12415376 79.9977 10.12332 
llIlrasound5 2.191715 2.14142581 79.99895 20.61741 
1JItt'asound6 2.025028 _ 2.20947476 79.99155 6.686664 

[J Itrasounc[7 2.332065 2.36544768 79.99838 41.91202 
[lltrasound8 2.302778 2.39102729 79.9965 21.04574 

_ llltrasound9 _ 2.302341 2.34930521 79.99752 31.5881 
ll ltrasuund 10 1.912019 _ 1.97913031 79.9955 32.25395 
lJltrasotnd11 2.206399 2.22219878 79.99999 8.461627 
Ultrasoundl2 2.010044 2.1418692 79.99679 8.459908 
Ultrasound 13 2.177968 2.14480995 79.99671 6.369004 
llltrasoundl4 2.043088 2.14776341 79.99571 8.622432 

_ llItrasound 15 2.1812 35 2.17774518 79.99647 8.725956 
Ultrasound 16 2.499123 2.40108917 79.99154 9.170192 
Ultrasound 17 2.381912 3.46763123 79.99806 13.85824 
[Jltrasound 18 1.931095 1.89464654 80.00008 12.03507 
Ultrasound 19 2.447848 2.35337307 79.99921 29.84179 
[lllrasound20 2.444333 2.43562814 79.99563 23.67005 
U Itrasound21 2.505162 2.2887515 79.9983 13.49546 
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"fahle 6,4: I-: Iicct of 'Rol area oil compression ratio of the proposed method for 
ultrasound images 

Images 12OI srca '%o Non-IZOI area '%o Compression ratio 
l Itrasound I 7.06 92.94 2.932-11 
J Itrasuund2 6.87 9 3.13 2 3. -JI)O6? 

tJ Itrasound3 7.11 92.89 22.334 103 
Il ltrasound4 18.8 3 81.17 10.12 332 
tJltrasuund5 7.92 92.08 20.61741 
1 lIlrasuund6 31.14 68.86 6.686664 
Ultrasound7 2.77 97.23 41.91202 
1JIU'asound8 8.63 91.37 21.04574 
IJltrasound9 4.64 95.36 31.5881 

I lltraxxnul 10 3.75 96.25 32.25 395 
Itrasuuncl II 24.16 75.84 8.461627 

U Itrasound 12 23.26 76.74 8.459908 
U Itrasound 13 31.85 68.15 6.369004 
Ultrasound 14 22.84 77.16 8.622432 
lJItrasoundI5 22.86 77.14 8.725956 
Ultrasound 16 23.90 76.10 9.170192 
I lltrasuund 17 21.62 78.38 13.85824 
Ultrasound 18 13.70 86.30 12.03507 
IJ Itrasound 19 5.09 94.91 29.84179 
I'Itrasuund20 7.47 92.53 23.67005 

Ultrasound21 14.51 85.49 13.49546 
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Figure 6.2: I'lot ol'Conmpression ratios on ultrasound images arranged in a descending 

order according to the size of ROI areas 
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6.3 Computational time 

Table 6.5 and Table 6.6 show compression/decompression time of . 
IPF. G-I. S, modified 

JP[(i-I, S. SA-SPIIIT and IIYRICS on nlanlmogranls and ultrasound images 

respectively. For both modalities, computational time (C*I + I)T) of SA-SPIIIT is 

slightly greater than that of SPII IT. This is mainly because I)WT is applied twice on both 

the original image and the mask. On other hand computational time of modified JPF(il. - 
I. S is less than that oi'. ll'I. G-I, S. This shows that I LYRICS is last enough even if the ROI 

area is larger il 'the time that spent to mark the ROI is excluded. 

'I'ahIc 6.5: CclnlllrCssiOn/ I)rcOIl7presSlOII time Ior, IPI: G-LS, ROI- 

, IPI: (i-I. S, SA-SPII IT and I IY RIC S on nlaIll[n(1`ý', Canls 

Images 11'F. G-LS ROI-. I1'1_G-LS SA-SPIIIT iIYI2I('S 

CT DT CT 1)T cl, I)T CT 1)7' 

Man11110 l 0.359 0.328 0.016 0.0-16 32 95 2.279 3.3-1I 2. 
_3,25 

Mam1111o2 0.296 0.281 0.109 0.125 3.047 2.168 3.156 2.29-1 
>tlanumý3 0.296 0.297 0.078 0.125 3.12 2.191 3.198 

_2.316 Man11110-1 0.296 0.282 0.109 0.125 2.957 12.299 3.066 2. -12-3 
Malllmll5 

Ma1111m16 
0.296 
0.296 

0.297 
0.328 

0.109 
0.125 

0.125 
0.125 

2.935 1 2.389 
3.559 1 2.436 

3.044 
3.684 

2.5 14 
2.56I 

Manuno7 0.328 0.297 0.094 0.094 3.103 1 2.296 3.197 ?. 1) 
INlanunu8 0 ? 96 0.266 0.11 0.11 2.929 2.468 3.039 2.578 
Manmu09 0.375 0.156 0.016 0.062 1.805 1.196 1.821 1.2S 
Manunýý 10 0.312 0.344 0.109 0.109 3.166 2.6-43 3? 75 2.752 
Maninu0ll 0.171 0.156 0.015 0.015 1.79 1.289 1.805 1.303 

_ i4lanuno 12 0.375 0.281 0.031 0.031 1.817 1.406 1.848 1.437 
Man11110 13 0.171 0.157 0.047 0.047 1.8 1.236 1.847 1.283_ 
Manu»n 14 0.171 0.344 0.078 0.078 1.505 1.169 1.583 

_1.247 Manu»o 15 
Manunii 16 

0.156 
0.296 

0.172 
0.282 

0.047 
0.078 

0.047 
0.078 

1.902 I. 5 
1.508 1.232 

1.949 
1.586 

1.547 
1.31 

Malllml117 
Maninlo I8 

0.171 
0.171 

0.172 

_ 
0.188 

0.031 
0.031 

0.032 
0.031 

1.795 1.275 
1.756 1.335 

1.826 
1.787 _1_. 

307 
1.366 

Man11110 19 0.171 0.172 0.063 0.063 1.625 1.165 1.688 1.228 
Manunu20 0.171 0.172 0.015 0.031 1.826 1.207 1.841_ 1.238 
Manunu2l _ 0.171 0.172 0.016 0. (116 1.7(15 1.223 1.721 ý 1.239 
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Table 6.6: Compression/ Decompression time for 
. 
IPFG-1, S. ROI- 

. IPIe; G-I. S. SA-SPIT I'Fand I IYRICS on ultrasound imaucs 
Images 

. IPEG-LS R01-. IP1". G-LS SA-SI'III1' 11YRICS 
(°I' 1)'1' CT D1' CT D7' CT DT 

Ultrasound! 0.234 0.234 0.031 0.031 
-- 
?. 081 1.365 2.112 1.396 

tlltrascxuu12 0.203 0.203 0.031 0.031 1.786 1.316 _ 1.817 1.347 
llltrauound3 0.187 0.187 0.031 0.046 1.838 1.418 1.869 1.464 
Ultrasound-1 0.203 0.344 0.062 

_ 
0.078 1.688 1.347 1.75 1.425 

tlltrasound5 0.203 0.25 0.031 0.032 1.856 1.478 1.887 1 51 
tJltrasound6 0.296 0.203 0.078 0.094 1.61 1-378 1.688 1.472 
1 Jltrasound7 0.203 0.203 0.016 0.031 2.171 1.621 2.187 1.652 
t11trasoundR 0.218 0.219 0.032 0.078 2.101 1.48 2.133 1.558 
1 Jltrasound9 0.218 0.219 0.031 0.031 2.233 1.744 2.264 1.775 
UI trasound 10 0,421 0.218 0.031 0.031 1.89 1.636 1.921 1.667 
lI Itrasound I1 0.203 0.485 0.062 0.063 1.674 1.382 1.736 1.445 
1 Jltrasound12 0.203 0.203 0.062 0.063 1.694 1.527 1.756 1.59 
1 JlUrasound13 0.421 0.672 0.125 0.14 1.587 1.384 1.712 1.524 
tJltrasound14 0.203 0.219 0.063 0.063 1.656 1.583 1.719 1.646 
tl Itý'asound 15 

- 
0.203 0.219 0.062 

---- 
0.063 

-- -- 
1.679 

- 
1.393 _ 1.741 

- 
1.456 

tI Itrasound 16 0.421 0.453 0.062 -- 0.109 1.651 - 1.587 - 1.713 1.696 
tlitrasound17 0.171 0.203 0.046 0.046 1.645 1.415 1.691 1.461 
tl ltrasound 18 0.203 0.218 0.093 0.093 1.815 1.625 1.908 1.718 
Ultrasound 19 0.484 0.219 0.031 0.0471 2.129 1.718 2.16 1.7651 
tlltrasounc120 0.218 0.703 0.046 0.046 2.109 1.494 2.155 

_ 
1.54 

tJltrasound2l 0.203 0.203 0.047 0.062 1.878 1.601 1.925 1.663 

6.4 IIVRICS on preprocessed images 

7? ) 

An additional study has also been carried out to lind out the effect of the 

preprocessing (contrast stretching) of only ROI betöre applying modified . 
IPEG-LS. 

Contrast stretching enhances the diagnostic value of medical image. however the 

resulting image is no longer reversible. The results of compression efficiency by 

applying modified JPEG-I. S on contrast stretched mammograms and ultrasound 

images are shown in "fable 6.7 and Table 6.8 respectively. It is quit clear that 

preprocessing the image before compression improves compression ratios in 

mammograms only. 

For ultrasound images, preprocessing before applying the modified . 1111-,. G-1, S on ROI 

decreases the compression ratios on most of the images. I lowever, in few images 

there are slight improvements in compression ratios due to the speckle texture. 
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Table 6.7: Compression ratio applying modified AlF. (; -LS once after contrast 
stretch compare when preprocessing the mammogram bel'ore compression 

i 
ges 

111 01 

R01-. II'EG-LS (raw) 

Size CR 
16156 2.92304075 

RO1-. IPE(; -LS 
(Pre )rocessing) 

Size C11 
14736 3.2047127 

mo2 128244 2.67827694 85896_ 3.99870714 
mo3 91890 2.6068174 87398 2.74080014 
nw4 
mo5 

117328 
132756 

2.8735243 
2.66980104 

56811 
80708 

5.93449965 
4.39153624 

mob 
mo7 
11108 

129276 
99000 

116634 

2.78747544 
2.73854452 
2.81259095 

82130 

_ 
47529 
90708 

4.38760106 
5.70422073 
3.61648071 

11109 11234 2.98663139 3857 8.69894141 
nol0 117587 2.75819969 72166 4.49419986 

_ 
11011 16347 2.74638145 3215 13.9642605 

no 12 6619 3.07486003 6093 3.34030831 
no13 41413 2.81857985 5555 21.0127538 

no 14 

no 15 
87972 
37178 

2.90763692 
2.77706811 

41556_ 
4309 

6.15532378 
23.9605102 

no 16 _ 81889 2.87775927 7104 33.172414 
no 17 26422 2.83601867 5983 12.5243666 

___ 
11018 

__ 9494 _ 3.13787159 5471 5.44524819 

11019 73491 2.85179189 
_ 

28905 7.25068459 
no20 3443 2.5211459 1957 4.43551627 

_ 
no2l 2425 2.33864254 15803.58937225 

1ma 

Main 
Main 
Mam 

Mani 
Mani 
Main 
Mani 

Main 
Mani 
Mane 
Muni 
\i au ii 
Hams 

Mami 
Mann 
Mtuiu 
Mani 

Manii 
Mami 
Mann 
Mane 

7-1 

"fable 6.8: ('ompression ratio applying the modified JPEG-LS once after contrast 
stretch compare when preprocessing the Ultrasound image before compression 

Images 

Ultrasound l 
13ltrasound2 

Ültrasound3 
llltrasound4 

R01-. IPEC-LS Ro1-. II'r(; -Ls 
12a1% (1'rc roccssin) 

Size C11 Size C11 
25207 2.34030752 35'_` 1.67187563 
24452 2.20804442 21752 2.48212129 
26070 2.14484884 25046 2.2325405 
69707 2.12415376 -340' 2.01557793 

Ultrasounds 29093 2.14142581 28568 2.18077924 
Ultrasound6 
UIOrasound7 

110845 
9781 

2.20947476 
2.36544768 

I2 30o0 
8518 

1.99016114 
2.71618264 

Ultr, rsound8 30160 2.39102729 41868 1.72239856 
Ultrasound9 16492 2.34930521 202! tIr 1.90964274 

Ultrasound 10 _ 14921 1.97913031 1,14931 1.56819093 
Ultrasound II 85487 2.22219878 114SOO 1.65348688 
Ultrasound l2 85418 2.1418692 1104:, 0 1.65644349 
Ultrasound 13 116781 2.14480995 I 46s0l> 1.7061151 
Ultrasound 14 83624 2.14776341 76575 2.34547264 
Ultrasound 15 82544 2.17774518 Q4Q9l 1.89238768 
Ultrasound 16 78280 2.40108917 73715 2.54978309 
Ultrasound 17 49045 3.46763123 ý25 3.21767049 
Ultrasound l8 56863 1.89464654 5'3" 0 1.87790284 
Ultrasound 19 18088 2.35337307 2454' 1.73413501 
Ultrasound20 25637 2.43562814 3'0"'5 1.68421305 
Ultrasound2l 49871 2.2887515 54'20 2.08593432 
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6.5 Case studies on sample Mammograms 

6.5.1 Sample mammogram I 

Figure 6.3 and figure 6.4 show an example of right breast image on which the 

proposed hybrid method is applied. The original image, the arbitrary shaped region 

that is marked by the radiologist and the resulting generated mask are shown in Figure 

6.3. The decompressed image of ROI by the modified JPFG-I. S, SA-SPIT IT operated 

reconstructed image of non-ROI and the combining image are shown in figure 6.4. In 

this sample image, the micro-calcification region is very small compare to the entire 

image 3.71)'! When 
. 
II'I": (i-LS is applied only compression ratio 3.340472 can be 

achieved. I lowever, I LYRICS is achieving compression ratio of 39.9987. This high 

compression is achieved by degrading the quality in non-ROI with compression ratio 

of 80. It can he seen in Figure 6.4, the micro-calcification in the recovered image is 

well preserved. 

4101 

Figure 6.3: Sample mammogram I 
Left is the Original images: Top right is the ROI marked by radiologist: 

Bottom right is the generated Mask 
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Figure 6.4: IIYRICS on sample mammogram I 
Top left is modified . 

IPI-. G-1, S operated ROT, 
Bottom Iclt is SA-SPIT I"I operated non-ROT; Right is Recovered image after 

combining the above two images 

6.5.2 Sample mammogram 2 

76 

As it is shown in Figure 6.5 and figure 6.6, the steps of'applying the proposed hybrid 

method in a breast image is presented. In this sample image. JPEG-LS on the entire 

image is achieving compression ratio of 3.446099. llowever, as the disease affected 

region is bigger than the previous sample 20.31%, HYRICS is achieving 

comparatively less compression ratio 11.38211 but yet far better than JPEG-LS. The 

quality degradation in non-ROI is remaining the same as the previous sample but a 
larger area is preserved. 
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Figure 6.5: Sample mammogram 2 
Left is the Original images; Top right is the ROI marked by radiologist; 

Bottom right is the generated Mask 

Figure 6.6: I-IYRICS on sample mammogram 2 
Top left is modified JPEG-LS operated ROI; 

Bottom left is SA-SPIFIT operated non-ROI; Right is recovered image after 
combining the above two images 
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6.5.3 Sample mammogram 3 

In sample 3 the arbitrary shaped region that is marked by the radiologist is including 

the entire breast area and equivalent to 30.05% of the image size. JPEG-LS achieving 

compression ratio 3.286945. Figure 6.7 and figure 6.8 show IIYRICS performance 

on this large ROI sample mammogram in which HYRICS is achieving compression 

ratio of 8.245254. 

Figure 6.7: Sample mammogram 3 
Left is the Original images; Top right is the ROI marked by radiologist: 

Bottom right is the generated Mask 
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ý' 

Figure 6.8: I IYRICS on sample mammogram 3 
Top left is modified JPI: G-LS operated ROI: 

Roltom lelt is SA-SI'II IT operated non-ROI; Right is recovered image after 
combining the left two images 

6.6 Case studies on sample ultrasound images 

6.6.1 Sample ultrasound l 

79 

An example of ultrasound scan of kidney in which the proposed hybrid method is 

operated is shown in Figure 6.9 and figure 6.10. In this sample, the kidney region is 

very small 5.09% compare to the entire image. JPI; G-I. S is achieved 2.45 compression 

ratio on the entire image. By degrading the quality in non-ROl with compression ratio 

of 80, I LYRICS is achieving compression ratio of 29.84 while reserving the kidney 

part in the recovered image. 



Chapter 6: Results and I)isciccsinrl 

(a) 

(b) 

40 

(c) 

1figure 6.9: Sample ultrasound I 
(a) Original image; (h) ROI marked by radiologist; 

(c) Generated Mask 

SO 
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.. Yn 

(a) 

(c) 

(b) 

Figure 6.10: 1IYRICS on sample ultrasound I 
(a) Modified JPFG-LS operated ROl: 

(b) SA-SP111"I' operated non-R01; (c) Recovered image after 
combining the two images in (a) and (b) 

6.6.2 Sample ultrasound 2 

As it is shown in Figure 6.11 and figure 6.12, the steps of applying the proposed 
hybrid method in a breast image is presented. In this sample image, there is two scan 
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areas tier two diflcrent abdominal organs (spleen and liver). JPl-G-LS on the entire 

image is achieving compression ratio of 2.181235. I lowever. as the disease aftccted 

region is relatively large 22.86%. 1-IYRICS is achieving comparatively less 

compression ratio 8.725956 but yet far better than The quality degradation 

in non-RO1 is remaining the same as the previous sample but a larger area is 

preserved. 

(a) 

(h) 

4f ir 

(c) 
Figure 6.11: Sample ultrasound 2 

(a) Original image: (b) ROI marked by radiologist: 
(c) Generated Mask 
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(a) 

(a) 

(b) 

Figure 6.12: I IYRICS on sample ultrasound 2 
(a) Modified JPEG-LS operated ROI: 

(b) SA-SPIT IToperated non-ROI: (c) Recovered image after 
combining the two images in (a) and (h) 

6.6.3 Sample ultrasound 3 

In sample 3 the arbitrary shaped region that is marked by the radiologist is including 

two scan areas fir kidney equivalent to 18.83% of the image sire. JPEG-LS achieving 

compression ratio 2.064791. Figure 6.13 and figure 6.14 show 1lYRICS performance 
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on this relatively large ROI ultrasound in which IIYRICS is achieving compression 

ratio of 10.12332. 

(a) 

(b) (c) 

Figure 6.13: Sample ultrasound 3 
(a) Original image: (b) ROI marked by radiologist: 

(c) Generated Mask 
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(a) (b) 

(c) 

Figure 6.14: I-IYRICS on sample ultrasound 3 
(a) Modified JPEG-LS operated ROI; 

(b) SA-SPII IT operated non-ROI; (c) Recovered image after 
combining the two images in (a) and (b) 

95 



Chapter 6: Results and Discussion 86 

6.7 Summary 

The scheme developed in this work is tested on sample set of 21 selected 

mammograms and 21 selected ultrasound images of different sizes and textures. The 

relevant diagnostic regions are roughly marked by the expert radiologist and 

appropriate masks are generated. The results obtained show that the proposed hybrid 

scheme yields high compression ratios. The compression ratios obtained reach 

maximum of 41.9 and 62.1 under certain constraints such as size of R OL specified 

quality, etc. 

It is noticed that the compression/decompression time of' the hybrid technique is also 
depends upon the relative sizes of'ROI. 

The results of' compression efficiency by applying modified JPI; G-I. S on 

preprocessed (contrast stretched) images show an increase in compression ratios on 

mammograms and decline on some of the ultrasound images due to the speckle 

texture. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusion 

A new approach called I-lybrid Region-based Image Compression Scheme (I IYRICS) 

has been proposed for efficient coding of mammograms and ultrasound images for 

tole-healthcare applications. The proposed method could achieve higher compression 

ratio possible without compromising the diagnostic quality on the disease affected 

regions. 

In an effort to optimally compress medical images, various techniques have been 

studied. Out of which frequently used lossless compression schemes like I. 31T.. G. 

. IPF(I-I. S, CAI, IC. F FLICS, I3'I'PC, 
, 
IPI; G2000. S+P and PNG and lossy compression 

methods such as . 1PFG. 13'I'PC, 
, 
IPFG2000 and SPIT-IT have been analyzed to highlight 

their eflicicncy and suitability for compressing number of mammograms and 

ultrasound images of different sizes and texture the denoted by their respective 

entropies. 

Three criteria namely, compression ratio. compression time and decompression time 

are used to evaluate the above eight lossless methods. JPFG-LS is found to give high 

compression ratio and much Icss compression/decompression time. 

The four lossy methods are evaluated using MSE and PSNR as criteria to quantify the 

distortion on a range of compression ratios. It is found that SPIRT is the efficient 

method that shows the better compromise between compression ratio and image 

quality than other lossy schemes with a reasonable compression speed. 

The efficient performances of lossless . IPEG-LS and loss), SPIT IT are advantageously 

utilized in IIYRICS by applying JPEG-LS on the disease concentrated regions and 
SPIT IT algorithm on the remaining area of the images. A new modification has been 

introduced for . IPEG-LS. The modified JPEG-LS is applied on disease affected 

arbitrary regions marked by the expert radiologist on the raw images discarding the 

remaining area on which SA-SPII IT is used. 
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The results obtained show that the proposed hybrid scheme yields considerable 
increase in compression ratios. The compression ratios obtained reach maximum of 
41. o) and 62.1 fir the selected mammograms and ultrasound images respectively 

under certain constraints such as size of ROl, specified quality, etc. 

It is noticed that the compression/decompression time o1 the hybrid technique is also 
improved and this improvement depends upon the relative sizes o1' ROI. 

The results of' compression efficiency by applying nlodlfled JPI; G-I. S on 

preprocessed (contrast stretched) images show an increase in compression ratios on 

mammograms and decline on sonic of the ultrasound images. 

The outcome of' the research is that there will be an appreciable increase in 

compression efficiency for speedy transmission and reduce storage requirement 

without affecting the diagnostic quality. 

7.2 Itcconuncndations 

Some segmentation algorithm like region growing technique can he incorporated to 

automatically select the ROI area that need to be preserved as an alternative to the 

manual one. 

The capability of encoding arbitrary shaped objects by the modified JPEG-I. S can he 

added as an additional feature to the current standard to encode other medical image 

modalities. For instance, the proposed technique can be used to encode efficiently the 

brain area in both MRI and CT scan. 

IIYRICS coders can he optimized more to be taster and memor\ efficient. For 

example the modified JI'I? G-LS and SA-SPIIIT can operate concurrently instead of 

operating sequentially on the two areas. 
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APPENDIX A 

The Sample Images 

,M 

2': 

Figure 1: Sample mammograms that used in the study 
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Figure 2: Sample ultrasound images that used in the study 
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Table l: Mammograms spatial resolution and sizes 
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NILE NAN1E WII)'i'II III(: I1T IIEAI)E12 T(YI'AL tiIZI'. (13ýtcs) F. ntru py(b > >) 
tnanunu I 1000 1-12" 17 1222017 ;. 22600() 

manunu2 1000 1157 17 1157017 5.146805 

nr, unnui3 1000 1157 17 1157017 5.452936 

manunu"1 1000 1171 17 1171017 5.874880 

manuno5 1000 1160 17 1160017 5.965056 

nianimo6 1000 1272 17 1272017 5.558123 

manunu7 1000 1156 17 1156017 5.824625 

niam11108 1000 1 160 17 1 160017 4.821750 
nnunnxi9 1000 637 16 637016 5.5215 31 

nuunnu> l (1 1000 1204 17 1204017 4.705745 
II 1000 645 16 645016 5.456376 

nrunmu I2 1000 647 16 647016 5.164129 

mamma l3 1000 635 16 635016 4.487730 
nuunnui 14 1000 6-10 16 640016 5.542088 

ntamnw I5 100(1 643 16 6-43016 4-187463 

mamma 16 1000 661 16 661(116 5.704(117 

nianimul7 1000 645 16 645016 5.144111 

nunnmo18 1000 659 16 659016 5.269176 

ni, unm0 19 1000 658 16 658016 5.249721 

man1mu20 1000 657 16 657016 4.923096 
nianunu2 I I ()0() 648 16 648016 -1.93288ýý 

'fable 2: ultrasound organs, spatial resolution and size 

FI1J? NAMF. Organ WIDTH IIIIGII"1' IIF. ADI": R 
TOTAL 

517.1? (Bvtcs) 
Entrop 

(I)>>1 

Ohdmcn I Urinarv/Bladdcr 1112 822 16 914080 4.902170 

Ohdmen2 Gallbladder I05O 790 16 829516 5.397674 

( )hdmen3 Spleen Pancreas 1060 786 16 833176 5.168990 

Uhdnicn"I Kidnev 1054 782 16 824244 5.259995 

( )hdmcn5 S, Ieen11a11crcas 1058 796 16 842184 5.143429 

Ohdmcn6 Liver 1054 790 16 832676 4.929101 

Ohdmcn7 l11-inarv/Bladdcr 1108 822 16 910792 4.745320 
0hd111cn8 l)rinarv/Bladdcr 1112 822 16 914080 "1.902I70 
Uh<Inun9 Spleen/Pancreas 1112 830 16 922976 4.469665 

Ohdn, en I0 Livcrl'ortal vein 1050 794 16 833716 5.03023 I 

Ohdmen II Lohe of I. ivcr 1054 794 16 836892 5.444924 

Ohdnicn 12 Lohc of 1. iver 1036 816 16 845392 5.217798 

Ohdmen 13 Lohe of Liver 1048 798 16 836320 5.77 3829 

Ohdnun 14 Vein in I. ivcr 1050 794 16 833716 5.262360 

Ohdmcnl5 S, leen/l. iver 1048 800 16 838416 5.501622 
Ohdmen 16 Mass in I. ivcr 1048 776 16 813264 5.064322 
( )hdmen 17 ('vst in Breast 1058 786 16 83 1604 4.402898 
Ohdnlcn 18 ('N, st in Brcast 1044 788 16 822688 4.525226 
Ohdinen19 Kidnev 1110 826 16 916876 5.038101 
Ohýlinen2(t Kidnev 1108 834 16 924088 51 17100 
Oh<Ircn2l I I. iver 1056 784 16 827920 4.851647 
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APPENDIX 13 

Batch Files 

cýcý 

1. Lossless Methods 

CA. 1C 

cncodc -in .. \Imagcs\mammogram\PGM\mainmogramI. pum -out 

.. \Conlpresscd\IllanlnlOgram\C'AI, IC'\mammogram I. cIc 

decode -in .. 
\Compressed\mammo\CALIC\manunoI. cIc -out 

.. 
\Rccovcrcd\mammo\CALIC \mammo l 

. pgm 

1II'I1. (: -LS 

cjpegls .. 
\Images\mammogram\PGM\mammogram I 

. pgm -o.. \Compressed\ 

mammogram\. I PI :GI . S\mammogram I .j Is 

d. jpcgls 
.. 
\Compresscd\rnammo\. IPI: GLS\mammoI . 

jls -o.. \Rccovcrcd\manuno\ 

.f PI-, (jl. Slmammo I . pgm 

l. usslcss JPEI(: 

cjpcg -losslcss 7 -ou[lilc .. 
\Compresscd\mammOt, ram\L. IIII G\mammOg,. ran1I. Iif: 

.. 
\Imagcs\manmuogram\PGM\mammogram I. pgm 

(ij peg -rrllll .. 
\Compresscd\mammo\I.. I PI ; G\mammo I .Ijc 

.. 1ltccovcrcdlmamnx)1I .. I PI', Ghmammo I . pgln 

I I,: I. ICS 

teIics -c .. \Imagcs\manunogramlPGM\mammogram I. pgm 

.. \Compresscd\manunogram\I'I: I. IC S\mammogram I . 11c 

Iclics -d .. 
\C ompresscd\manuno\Iý I ;I 

. 
IC Slmammo 1. tic 

.. \Rccovcrcd\manuno\IýI; I. ICS\mammol 
. pt; m 



:1 pmeiräix ß 

K1,1'C 

100 

c1VITC .. 1IInagt'S`maInmogram, PGM\matnmoLraUll I 
. pgln 

.. \( 'ompresscdlmammograrnll3'I'PClmammogram I . btp 100 

d13TPC .. 
\COI11prCSscd\mallllllo\I3 I PC\[71ai11111o I 

. hlp 

.. 1[Zccovcrcd\maniurno\I3'1'PClmammo I 
. pgm 

I'N(: 

pnm2png .. 
1ImagcslmanvnogramlP(; Mlmanunogram I 

. pgm 

.. 1('ompresscdlmammogramlNN(; lmammogram l 
. png 

hng? hnm 

.. 
\ltcccwcrcd\manuno\PNG\mammo I hgm 

.. 
1CompresscdlmanuiuolPNGlmammo I. png 

. 11'1: (: 2000 

jasper -I' .. 
\Images\manmiogram\PGM\mammogram 1. pgm -Iý 

.. \('omhressed\mammogram\. IP1: (i2000\mammogram I 
. 
jp2 -t prim -'I' Ip2 

Jasper -f .. 
\Compressed\mmmnoUPI, G2000\mammo1. jp2 -I 

.. 
\IZccovvcred\mammo\. IPI 

, 
62000\nrinunol. pgm -t jp2 -I pllin 

4,, + 1), 

PROGCO1)Iý 
.. 

\Images\mammo\PGM\manumo 1.1igm 

.. 1('omhressedlmamnl0\SPII I'l \ºmmlmoI. SP 1222 1000 10 

I'ROGI)I.; CI) -s .. 1C omnresscdlmamnwlS ill I ITlmammo 1. S P 

.. 1ltccovcrcdlmamnuolS NI C1lmanuno 1. pgm 0 
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2. Lossy Methods 

"I''1 . 
(  

c. Ihct=' -duality '%, 2 -outlilc .. 
\Comhresscd\Obdmcn\1,. IP1=. (ilOlidmcn% l. llgo 

.. 
\l lllagCS\Obd lllcn\P( i N1\Obdnlcn`Yo 1. hgnl 

d_) pcg -plllll .. 
\COmpl'csscd\Obdmcn\L. i PLCi\Ohdillcll% 1. l j- 

.. \Itccclvcrcd\( )hdnlcn\I ,. I I'I? G\Ohdmcn'%I . pgnl 

Inlgcnlp -I .. \Inlagcs\Ohdnlcn\PGR4\Obdnlcn% I . pgm 

.. 
\IZccovcrcd\( )hdmcn\I .. l P F. G\Obdnlcn%, I . pgm -in psnr 

li'1'1'C 

-l: 

chtpc . 1Imagcs\Obdmcn\PGM\Obdmcn%I . pgm 

.. \('umpresscd\Obdmcn\Iß'I'PC\Obdmcn`%1. btp %2 

d13"I'I'C .. \Compresscd\Ohdmen\I31'PC\Ohdmen%I . htp 

.. \Itccovcrcd\Ohdmen\13'I1'C\Ohdmen%l . pgm 

1111gC111p -I . 
\Itllagcs\Obdllictl\PGM\ObdlllcnO/o l 

. pL! Ill 

.. \1Zcal\'crcd\Ohdnlcn\13'1'PC\Obdnlcn%l . pgnl -n1 psnr 

.1 I'1? (: 2000 

jasper -f .. \lmages\Ohdmen\PGM\Obdmcn% l . pgm 

.. \('ompresscd\Ohdmcn\. ll'I: G2000\Ohdmcn°/ý1. jpc -t pnm -TJPc -O rate==`%02 

-I: 

jaspcr 4 
. \Compresscd\Obdmcn\JPI: G2000\Obdmcn%l. jpc -I: 

.. \IZccovcrcd\Obdmcn\. 1PIý: G2UOO\Obdmcn%l. pgm -t , lpc -"I' pnm 

imgcmp -f .. 1Imagcs\Obdmcnll'GM1Ohdmcn%l. pgm 

.. Iltcccnrcrcd\( )bdmcn\. I I'I , G200010hdmcn%l 
. pgm -m psnr 
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CUI)I; 'I'R1: E .. AImas! cs\ObdmcnlPGM\Obdmen I . pgm 

.. ACompresscd\Obdmcn\SI'II fl'\Obdmcnl . sp 822 1112 1 4.6 

1)I: cýl) I (Z1: 1. 

ý.. 

1C'ompresscd\ Ohdmcn\S PII I"I'1 Ohdmcnl . sp 

y 
.. 
1lmagcsl(>bdnunlP(iM1ObdmcnI 

. pgm 
1.6 

11 

11 

3. I2()1 

. 1111? (: -I, S 

WT(' l 10 OFF 

IF "%2" ___ "c" GOTO COMPRESSED 

IF"'%o2" "d" GO"I'O DFCOMPRESSED 

GO"l'O I', ND 

: ('OMI'RESSI? I) 

encoder -i.. /abdmcn/P(YM/abdmcn%l. pgm -o. . 
/abdmcn/Compressed/JI'1ý. (t- 

I 
. 
S/Non 

_Sn/abdmcn% 
I. j Is 

I? C'II() ---------------------------------------------------------------------------------------------- 

GO'lY) l'. NI) 

: I)FI('OMPRI"SSIJ) 
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decoder -i.. /ahdmcn/CO171prCSSCCU, IPI: G-LS/NOI7 St1/ahCI1TlC11%l. jls -o.. /ahdmcn' 

Rccoý, crcd/. IPI: G-I, S/Non_ SA/ahdmcn%1. pgm 

EC IIO ---------------------------------------------------------------------------------------------- 

GOTO I: NI) 

: I; NI) 

Modiiicd. IPT; C-LS 

c F. CI10 OFF 

II' "%2" "c" GOTO COMPRESSED 

IF "`%2" "d" (iO1'O DL'COMPRI: SSI: D 

GOTO FIND 

: COMPRI: SSI; D 

sa_ encoder -i.. /abdmen/PGM/abdmen% I . pgm -o.. /abdmen/Compressed'. PI :( i- 

I. S/Shape_Adaptivve/abdmen%1 .j is -k.. /abdmen/MASK/masko/"I. pzm 

1C1 1() ---------------------------------------------------------------------------------------------- 

(; OTO FIND 

: 1)I: COMPRLSSLa 

sa decoder -i.. /abdmcn/Compressed/, IPI; G-LS/Shape_Adaptive/abdmcn%)I ,j 
Is 

abdmcn/ Recovered/J PEG-LS/Shape_Adaptivc/abdmcn%I . pgm 

LCi (O ---------------------------------------------------------------------------------------------- 

G(YfO I: NI) 

TNI) 



Appendix B 104 

SNIFF 

(a)I". C'I IO O1'F 

"c" GOTO COMPRESSED 

"d" GOTO DECOMPRESSED 

(; O'IY) I -NI) 

: ('OMPRI; SSI: D 

ptimc spihtcncodc -w .. 
/lilterslCohenDaubcchicsFcauveau. 5-3.11t 0.1 

.. /ahdmcn/PG M/ahdmcn% l 
. pgm 

.. /ahdmcn/Compresscd/SI'1I I'l'/Non_SA/abdmcn%1. sp 

DIR .. \ahdmcn\Compresscd\SP11I'1 \Non_SA\abdmcn%I. sp 

1: CI 1() ---------------------------------------------------------------------------------------------- 

(iO'fO END 

: 1F . C'OMPRESSI: I) 

ptitnc spihtdccodc -Nv .. 
/Iiltcrs/CohcnDauhcchicSFcauvcaU. 5-3. Ilt -r 0.1 

.. 
/ahdmcn/Compresscd/SPI1 l"1'/Non_SA/abdmen'%I 

. sp 

.. /ahdmcn/Recovered/SI'11 I"I'/Non_SA/abdmcn%1. pgm 

1: CI 1() ---------------------------------------------------------------------------------------------- 

GOTO I'. ND 

: lý: N I) 

SA- Sl'I I IT 

(al-ICI 10 OFF 

IF "'%o2" -- "c" GO'f0 COMPRI: SSED 
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IF"'! /o2" - "d" GOTO DECOMPRESSED 

GOTO 1', NI) 

: ('OA, IPRFSSI: I) 

ptime spihtencode -w .. 
/filters/CohenDaubechiesFeauveau. 5 -3.11t -m 

.. 
/abdmcn/MASK/mask%l. pým 0.1 

.. 
/abdmen/PGM/abdmcn°iöl. pgm 

.. 
/ah(hnen/('ompressed/S 1111 I'1'/Shape_Adaptive/abdmen% 1. sp 

DIR .. Aahdmen\Compressed\SIII I1'f\Shape_Adaptive\abdmcn%l. sp 

F. ('II() ---------------------------------------------------------------------------------------------- 

GOTO END 

: )I? ('OMPRESSI; D 

ptime spihtdecode -W .. 
/filtcrs/Cohenl)aubechiesFeauveau. '-ý-'). 1it -m 

.. 
/abdmcn/MASK/mask%I 

. pgm -r 

.. 
/abdmcn/Compressed/SP1I I'l'/Shape_Adaptive/abdmcn%I 

. sp 

.. 
/abdmcn/Recovered/SPI I I'I'/Shape__Adaptive/abdmen%I. pgm 

0.1 

I1"C'I1() ---------------------------------------------------------------------------------------------- 

(1010 FNI) 

: I; NI) 

Loop all sample images in hatch file 

l0R'%oI IN (1234567891011 12131415161718192021 )1)0Non-SA- 

JI'IXi I. S-Manuno 'Vol' c 

FOR`V, 1'IN(1234567891011 1213 1415161718192021 )1)0 Nrnn-SA- 

. 11'I; GI, S-Abdomen %t 'd 
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FO1Z%ol-' IN (1 234567891011 1213 14 15 16 17 18 19 20 21 )1)O Sn- 

JI'FGI, S- Mamnuo %, F c 

FOR '%lý IN (1 23456789 10 11 12 13 14 15 16 17 18 19 20 21 ) D0 Sn- 

JIT'. (; I. S-llhdomcn'%, F c 

10IZ')/of'IN(1 234567891011 1213 1415 16 17 18 192021 )1)0 Non-SA- 

SPI I I"I'- Mallimo %f'c 

FOIt'%of'IN(1234567591011 12131415161718192021 )1)0 Non-Sn- 

SPII IT-Abdomen %fd 

FOIZ'%of IN (1234567891011 12 13 14 15 16 17 18 19 20 21 ) 1)0 S/\-SPII IT- 

Manuno'%ofc 

FOR %ofIN(1 234567891011 12131415161718192021 )DOSA-SP[11T- 

Abdomcn %0l'd 
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Table 1: Compression ratio for 21 mammogram images 

107 

Compression 
h S 

Mammogram imav . 
c eme \11 M2 \i \14 \1ý \16 1 \17 \1S \19 MI0 , III \112 M13 

, 
\114 \115 ! M16 \117 MIS M19 M20 \121 

LJPEG 2.84 3 28 276 2.69 276 274 2.95 2.97 304 298 303 312 289 31 i3 305 298 296 3.08 2.99 

JPEG-LS 3.29 3.52 3.39 3 25 3 23 32 3.27 3 63 345 3 59 3 52 3 61 3 78 3 45 3 78 3.46 3 67 35 3 47 3.56 3 63 

CALIC 3.31 35 3.38 325 
, 

3.25 323 329 3.59 3.4B 355 354 362 375 3.47 375 352 367 3.5 347 3.59 361 

FELICS 2.98 3.15 3.01 2.94 2.91 2.92 2.95 3.17 3.06 3 19 3.08 3 16 3,27 3.03 3 26 3,08 3 18 31 3 09 3 17 3 15 

JPEG2000 319 3.35 3.23 313 3.11 3,12 3,15 3.42 3.32 3.4 3,35 341 3 55 3.3 3.54 3 33 348 3.33 33 3 41 3,4 L 
PNG 2.69 283 2.69 263 261 265 264 282 28 285 2 88 2,86 295 278 2.95 289 291 2 87 28 295 286 

BTPC 308 322 307 298 294 301 298 328 323 329 325 331 3.46 3.17 344 32 336 322 3.19 334 333 
S'P 3 22 3.35 3.2 3 13 31 3 14 312 341 3 37 3 39 3 39 3 43 3.58 3 35 3.57 3 36 349 3,36 3.31 3.48 3.45 

Table 2: Compression/Decompression time on 21 mammograms 
Compression 

Scheme Mammogram images 
\II \12 113 114 115 \16 117 118 \19 \1f0 \11I \112 1113 \114 NI 15 1116 1117 1118 1119 \120 M21 

CT 
0.281 0.265 0.265 0.265 0.265 0.296 0.265 0.265 0.14 0.265 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

LJPEG Df i 
0.281 0.265 0.281 0.281 0.281 0.312 0.265 0.296 0.156 0.281 0.14 0.171 0.14 0.141 0.14 0.156 0.14 0.14 0.14 0.14 0.14 

CT I 0.296 0.281 0.281 0.281 0.281 0.312 0.281 0.281 0.156 0.281 0.156 0.156 0.156 0.156 0.156 0.171 0,156 0.171 0.171 0.171 0.171 
JPEG-LS nr 0.281 0.265 0.281 0.281 0.281 0.312 0.265 0.296 0.156 0.281 0.14 0.171 0.14 0.141 0.14 0.156 0.14 0.14 0.14 0.14 0.14 

Cl 
3.515 3.046 3.062 3.234 3.156 3.687 3.109 2.984 1.796 3.187 2.015 1.734 1.656 1.765 1.687 1.828 1.718 1.796 1.828 1.781 1.734 

CALIC UT 
3.578 3.171 3.093 3.265 3.171 3.718 3.125 3.015 1.812 3.218 1.781 1.734 1.734 1.781 1.718 1.843 1.75 1.812 1-828 1.796 1.75 

Cr 
0.206 0.191 0.194 0.202 0.193 0.209 0.199 0.183 0.147 0.195 0.142 0.151 0.141 0.152 0.144 0.155 0.147 0.157 0.152 0.146 0.155 

FELICS DT 0.134 0,124 0.126 0.13 0.129 0.139 0.149 0.124 0.088 0.126 0.087 0.088 0.085 0.088 0.092 0.088 0.086 0.089 0.099 0.088 0.087 
CT 

1.093 1 1.015 1.046 1.046 1.156 1.031 0.984 0.562 1.031 0.562 0.578 0.546 0.562 0.546 0.578 0.562 0.578 0.593 0.562 0.562 
JPEG2000 UT 

0.89 0.828 0.843 0.875 0.859 0.937 0.859 0.828 0.453 0.859 0.468 0.484 0.453 0.468 0.453 0.468 0.468 0.484 0.5 0.468 0.468 
CT 

1.016 0.86 0.844 0.906 0.875 1.063 0.875 0.844 0.516 0.891 0.5 ý 0.5 0.485 1 0.516 0.485 0.516 0.5 0.485 0.516 0.485 0.5 
PNG Irr 0.254 0.227 0.243 0.244 0.25 0.263 0.254 0.242 0.144 0.238 0.143 0.149 0.143 0.151 

- 
0.143 0.158 0.146 0.144 0.145 0.143 0.149 

C,. 1, 
0.859 0.484 0.796 0.812 0.796 0.89 0.812 0.75 0.437 0.765 0.437 0.437 0.406 0.421 

i 
0.421 0.453 

_ 
0.421 0.437 0.437 0.437 0.421 

[3TPC DT 0.781 0.453 0.437 0.453 0.468 0.515 0.453 I 0.421 0.234 0.453 0.25 0.25 0.25 0.25 0.25 0.265 
ý 

0.312 0.296 
- 

0.25 0.265 0.25 
- c 494 0 511 0 524 516 0 0 545 0 0 519 0 313 50 297 0 0 508 0 314 0 32 0 322 0 302 0 334 0 307 

. 0.528 . - . . -" . . . . . . . . . . . . 0.32 
"- -- - -- 

0.321 0.312 0.318 
-- 5'P 

I)I ý 
0.471 0.435 0.452 0.46_i 0.463 0.489 0.46 0.441 0.253 0.444 0.258 0.258 0.244 0.258 0.249 0.266 0.252 0.27 

- 
0.265 0.258 0.255 
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'Table 3: Compression ratios. compression/decompression time on 21 ultrasound image 
ioGr__i c GGi irc Illlq a. 7 LNr Lv V. w-w - 1 lw La IrV JTr 

CR 2.078 2.302 2.194 2.381 2.250 2.133 2.216128805 2 208 Ultrasoundl CT DT 0.203 0.094 0.234 I 0.235 1.156 0.937 1 2.703 2.703 0.127 0.113 0.64 0.263 0.718 0.406 
. 

0.858 ý 0.612 
CR 1.828 2.074 1.952 2.128 1.980 1.923 1.930 1.945 U/trasound2 CT ', DT 0.188 . 0.078 0.203 ! 0.203 1.125 , 0.921 2.5 2.5 0.141 0.122 0.546 0.256 0.75 1 0.375 0.936 I 0.723 
CR 1.897 2.188 2.028 2.242 2.087 1.992 2.033 2.005 

Ultrasound3 CT i DT 0.25 1 0.078 0.265 1 0.203 1.109 0.937 2.468 2.468 0.126 i 0.109 0.5 1 0.371 0.75 1 0.453 0.889 0.583 
CR 1.816 2.072 1.946 2.133 1.978 1.912 1.932 1_950 

Ultrasound4 
CT I DT 0.187 1 0.078 0.234 1 0.203 1.14 1 0.968 2.5 1 2.5 0.127 1 0.112 0.515 0.252 0.796 i 0.375 0.917 0.706 

CR 1.904 2.190 2.028 2.244 2.093 ' 1.999 2.033 2.0127 
Ultrasound5 

CT DT 0.187 10.078 0.203 1 0.203 1.14 1 1.015 2.484 2.468 0.126 . 126 1 0.111 0.609 1 0.253 0.703 0.5 0.91 0.711 
CR 1.815 2.032 1.934 2.100 1.964 1.904 1.918 1.938 

Ultrasound6 CT I DT 0.203 1 0.078 0.218 1 0.406 1.171 1 1.015 2.531 2.531 0.13 1 0.116 0.5 1 0.25 0.796 ; 0.375 0.945 1 0.801 
CR 2.075 2.326 2.172 2.412 2.263 2.133 2.230 2.183 

Ultrasound7 CT DT 0.375 1 0.078 i 0.375 0.219 1.312 1.109 , 2.718 1 2.718 0.128 I 0.12 . 
0.765 0.294 ' 0.812 i 0.39 0.999 0.584 

CR 2.078 2.302 2.194 2.381 ' 2.250 2.133 2.216 2.208 
Ultrasound8 

CT 1 DT 0.203 0.14 0.234 0.235 1.187 1 0.906 . 
781 2.765 2.781 0.127 0.116 0.765 0.287 0.843 1 0.64 0.962 0.864 

CR 2.045 2.297 2.166 2.380 2.234 2.113 2.198 2.185 
Ultrasound9 

CT 1 DT 0.203 0.093 0.234 0.235 1.234 1 1.14 2.775 1 2.765 0.139 1 0.127 0.625 0.27 0.875 0.625 1.002 0.84 
CR 1.670 1.931 1.840 1.991 1.821 1.816 1.780 1.838 

UltrasoundlO CT DT 0.203 1 0.078 0.235 0.235 1.25 1 1.046 2.625 1 2.562 0.147 0.121 0.625 0.274 0.859 0.39 1.074 0.917 
CR 1.893 2.217 2.063 2.254 2.094 2.016 2.042 2.057 

Ultrasoundll CT 1 DT 0.203 0.078 0.234 0.235 1.312 1 1.046 2.515 I 2.515 0.124 1 0.114 0.656 1 0.553 0.703 1 0.703 0.972 1 0.836 
CR 1.788 2.015 1.924 2.069 1.927 1.898 1.879 1.922 

Ultrasound12 CT DT 0.203 0.078 0.219 I 0.265 1.187 1.156 2.609 2.593 0.136 1 0.117 0.484 1 0.252 0.859 1 0.39 1.034 0.65 

dl3 lt 
CR 1.867 2.193 2.043 2.223 2.034 2.000 1.993 2.026 

rasoun U CT DT 0.203 0.078 0.218 1 0.218 1.156 ! 1.14 2.562 1 2.515 0.124 i 0.111 0.671 I 0.253 0.828 0.406 0.99 1 0.885 
CR 1.794 2.054 1.929 2.096 1.952 1.902 1.900 1.919 

Ultrasoundl4 CT DT 9.203 j 0.078 0.203 1 0.219 1.234 j 1.171 2.546 2.546 0.127 1 0.116 0.5 1 0.251 0.859 0.375 1.01 0.904 
CR _ 1.879 2.195 2.039 2.232 2.070 2.002 2.019 2.032 

Ultrasound15 
CT DT 0.187 0.078 0.218 1 0.219 1.328 1 1.125 2.531 2.531 0.143 1 0.113 0.671 0.25 0.843 0.359 0.997 0.849 

CR 2.139 2.507 2.375 2.575 2.324 2.188 2.326 2.390 
Ultrasound16 CT I DT 0.187 1 0.063 0.203 0.203 1.078 1 0.906 2.375 2.375 0.116 I 0.106 0.609 1 0.244 0.656 0.609 0.836 0.721 

CR _ 2.024 _ 2.382 2.117 2.433 2.274 2.120 2.213 2.0886 
Ultrasound17 CT DT 1 0.25 0.078 0.187 1 0.187 0.187 1.125 1 2.359 2.328 

ý 
0.119 1 0.106 0.515 0.25 0.812 ' 0.359 

- 
0.976 0.574 

_- - CR 1.748 1.937 1.877 2.012 1.864 1.865 1 1.824 I 1.866 
Ultrasoundl8 CT DT 0.203 0.078 0.234 0.234 1.171 11 1.14 2.593 1 2.546 0.133 0.122 0.593 1 0.248 0.859 I 0.39 1.037 1 0.954 

CR 2.197 2.455 2.374 2.519 2.359 2.247 2.349 2.397 
Ultrasoundl9 CT DT 

, 
0.203 10.093 0.234 I 0.25 1.187 1.109 2.812 1 2.812 0.128 , 0.115 0.765 1 0.266 0.843 1 0.375 0.917 j 0.79 

CR 2.175 2.447 2.377 2.525 2.336 2.248 2.325 2.383 * Ultrasound20 
; CT DT 0.218 i_ 0.0_78 0.234 0.234 1.234 1.14 2.84ý 2.843 0.133 0.125 0.75 0.267 1 0.875 0.406 0.942 . 942 0.778 

-- - CR 2.167 2.516 2.389 2.582 2.349 2.201 2.348 ý 2.429 
Ultrasound2l CT DT 0.187 , 0.062 0.219 1 0.219 1.203 1.031 2.421 2.593 0.118 0.109 0.765 ' 0.243 1 0.843 0.343 0.801 1 0.73 

108 



Appendix D 109 

*I 

APPENDIX D 

Generated Masks 
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Figure I: Generated masks for mammograms in Fig. 1(Appendix A) 
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Figure 2: Generated masks for Ultrasound images in Fig. 2 (Appendix A) 


