
UNIVERSITI
TEKNOLOGI
PETRONAS

Peer to Peer Video Streaming Application

By:
Muhammad llham Faez b. Shafri

3758

Information Technology

2008

Abstract

This final year project is entitled Peer-to-peer video streaming. Peer-to-peer video

streaming is an alternative method of video streaming besides the client-server video

streaming. The program will allow the client to share the network resources such as

bandwidth in order to stream the video. Each user, while downloading, is also uploading,

thus contributing to the overall available bandwidth. The video quality of the charmels

typically depends on how many users are watching; the video quality is better if there are

more users. This project will use a multi sender method in a peer-to-peer network

enviromnent. We are going to use a multicast method on the top of an arbitrary multi­

sender method so that all requesting peers receive almost the same expected bit-rate. The

program will be done using Java enviromnent and its algorithms.

The principle used in doing the project is sharing the computer resources and the idea

increasing the scalability according to the number of receivers.

I

Table of Contents

1. Chapter 1 : Introduction

1.1.1 Background study

1.1.2 Problem Statement

1.1.3 Objective and Scope of Study

2. Chapter 2: Literature Review and theory

2.1.1 Protocol Used

2.1.2 System Architecture

2.1.3 Comparison between Peer-to-peer and client server

architecture

3. Chapter 3: Methodology

4. Chapter 4: Result and discussion

5. Chapter 5: Conclusion

6. Chapter 6 : References

II

• Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

1. Introduction

1.1 Background Study

PEIRONAS~

Increasing penetration of high-speed Internet access (e.g., ADSL) among the users of

peer-to-peer (P2P) networks enables deployment of real-time multimedia delivery

schemes over them, in addition to file sharing - their traditional application. The

differences between peer-to-peer video streaming with traditional client server

application is that peer-to-peer network are ordinary nodes with limited bandwidth.

By employing a multi-sender method, the limited bandwidths of the sender peers do not

impose a serious restriction on streaming quality. In fact, MSMC can be integrated into

any existing multi-sender scheme to provide a scalable multicast solution. Also, by

considering the availability of senders, the quality of the streamed media is improved.[!]

Another advantage of being receiver-driven is that the multicast trees are made in a

distributed manner. Each receiver makes its multicast tree itself. Also in the proposed

method, the joining operation is managed by previously joined receivers except for the

first receiver which is managed by the senders. By being a multicast scheme, a large

number of receivers can receive multimedia from a limited number of senders without

stressing the P2P substrate or the senders.

From a distribution point of view, Peer-to-Peer technologies facilitate better and more

targeted distribution because sharing can take place within communities having common

interests, communities that would typically already exist to take advantage of the content.

When used as a method of distributing video using files (downloads), it can greatly

enhance distribution because files are downloaded more quickly

1

• Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

Pf.TRONAS~

Time-sensitive applications, such as streaming media, gain popularity and real-time data

is expected to compose a considerable portion of the overall data traffic traversing the

Internet. These applications generally prefer timeliness to reliability. Real-time video

streaming, in particular, calls for strict requirements on end-to-end delay and delay

variation. Furthermore, reliability parameters, such as packet loss and bit errors, usually

compose an impairment factor, since they cause perceptible degradation on video

quality .Unlike bulk-data transfers, video streaming seeks to achieve smooth playback

quality rather than simply transmit at the highest attainable bandwidth.

Such stringent requirements necessitate explicit management techniques in order to

preserve the fundamental Quality of Service (QoS) guarantees or video traffic. In this

context, Internet Engineering Task Force (IETF) attempted to facilitate true end-to-end

QoS on IP networks by defining Integrated (IntServ) and Differentiated Services

(DiffServ) models. IntServ follows the signaled- QoS model, where the end-hosts signal

their QoS need to the network, while DiffServ works on the provisioned QoS model,

where network elements are setup to service multiple classes of traffic with varying QoS

requirements. However, both models are associated with high implementation costs and

limited applicability; hence, they have not yet received wide appeal from the majority of

users. Essentially, most end- users still rely on the best-effort services of the Internet

which strives to meet the high demands of the merging multimedia applications.

2

• Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

1.2 Problem Statement

PITRONAS~

Time dependent requirements are generally express as Quality of Service (QoS)

requirements. These requirements describe what is needed from the underlying

distributed system and network to ensure that, for example, the temporary relationship in

a stream can be presenrved. QoS concern for the data stream mainly concern timeliness,

volume and reliability.[3)

Over 40% extra data overhead compared to unicasting. To bypass the QoS issue, P2P

networks have multiple peers send multiple traffic to other peers, introducing extra data

overhead for retransmits communication and redundancy. Dutch ISP's have calculated the

traffic needed to send a P2P stream to a number of users, and measured 40% additional

traffic usage compared to unicasting an RTSP stream to a similar audience. Alternately,

Multicasting (although not a widespread internet technology) is even more efficient than

unicasting, allowing one stream to feed a virtually unlimited number of viewers.

Synchronization and buffering will also produce a challenge in developing the system.

3

• F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

1.3 Objective and Scope of Study

K1RONAS~

The primary objective of this project is to create a java coded program that could steam

video using peer-to-peer technology. Hence the project target is to make the file

distribution faster and guarantee a reliable stream.

In order to achieve those goals, knowledge about network topology and data transfer

through out the network is necessary (link bandwidths or physical proximities of the

neighbors of each node). This approach decreases the initial streaming delay.

We also need to be able to design an algorithm using Java in order to fulfill the

requirement of the project.

We also need to understand the basic architecture of the Peer-to-peer networking and

how the data is transferred in the networking topology. Through the understanding of the

Peer-to-peer network then we would be able to manage the file transfer throughout the

system to all the users and the server. With further understanding also we would be able

to optimize the data transfer of the system and also minimize the resource usage of the

system so that it would run properly.

4

F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

2.0 LITERATURE REVIEW AND THEORY

PETRONAS~

The main objective of creating a peer-to-peer video streaming is that to demonstrate that

Peer-to-Peer downloading can save substantial amounts of bandwidth costs because many

peers are likely to be within a single ISP (Internet Service Provider) and hence

"interconnection" costs are reduced.

If a receiver R requests a certain multimedia, a set of candidate senders (determined by a

location protocol) having the desired media, signal their readiness to transmit data to R.

The receiver can simply connect directly to the senders and start downloading. However,

as the download bandwidth of a typical node is considerably larger than its upload

bandwidth (e.g., for ADSL the ratio is 8 to I), the simple scheme of direct connection

leads to selfish usage of the network resources: no other nodes can use the senders from

which R is receiving the media. Also R cannot provide the media to any other receiver at

the same bit-rate it is receiving the media.[!]

5

•

Users

Virtual router

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

R

NIRONAS~

Fig. 1. A sample multi-sender structure. Virtual routers (a.k.a. "forwarders") route

data to the receiver over the P2P substrate.[!]

The proposed multicast method is illustrated in Fig. 1. Nodes users are active senders (i.e.,

have the media and are transmitting data to a receiver) toR. Nodes virtual which are

routing the stream in this topology, have a partial content of the streamed media. Our idea

is to use these routers as temporary senders to forward copies of packets destined for R to

another requesting node such as R. Intuitively; one can observe that using this approach

the EBR of R can be increased without pressuring the bandwidths of the primary senders.

Moreover, by addition of each receiver to this topology, a number of new temporary

senders appear that can serve even more new receivers. Thus, the proposed method is

scalable with the number ofreceivers.[l]

6

•
2.1 Protocol Used

F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

2.1.1 RTSP (real time streaming protocol)

PETRONAS~

The real time streaming protocol (RTSP) is developed by the IETF and is a protocol

used for streaming media system which allow client to remotely control the streaming

media, issuing commands such as "play" or "pause" and also allowing time-based

access file on a host computer.

Most ofthe RTSP host uses the standard-based RTP (real time transport protocol) as

the transport protocol for the actual audio/video data acting somewhat as a metadata

charmel. The set of standards that include RTSP and RTP are unfortunately not

sufficiently complete or specific to ensure the interoperability and each client/server

implementation tends to be a little different.

2.1.2 RTP (real-time transport protocol)

The real-time transport protocol (RTP) defines a standardized packet format for

delivering audio and video through the internet. RTP does not have a standard TCP or

UDP port on which it communicates, the only standard that it obeys is that UDP

communications are done via even port and the next higher odd port is used for RTP

control Protocol (RTCP) communications. Although there are no standard are assigned,

RTP is generally configured using ports 16384-32767. The fact that RTP uses a

dynamic port range makes it difficult for it to traverse firewalls.

The RPT was originally designed as a multicast protocol, but has since been applied in

many unicast applications. It is frequently used in streaming media systems as well as

video conferencing and push to talk system and the latest is the development of VoiP.

7

F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

The services provided by the RTP protocol include:

)> Payload-type identification which indicate what kind of content is being

carried by the system

)> Sequence numbering which allow PDU sequence numbering

)> Time stamping which allow synchronization and jitter the calculations.

The position ofRTP in the protocol stack is somewhat strange. It was decided to put RTP

in user space and have it (normally) run over UDP. It operates as follows. The

multimedia application consists of multiple audio, video, text, and possibly other streams.

These are fed into the RTP library, which is in user space along with the application. This

library then multiplexes the streams and encodes them in RTP packets, which it then

stuffs into a socket. At the other end of the socket (in the operating system kernel), UDP

packets are generated and embedded in IP packets. If the computer is on an Ethernet, the

IP packets are then put in Ethernet frames for transmission.As a consequence of this

design, it is a little hard to say which layer RTP is in. Since it runs in user space and is

linked to the application program, it certainly looks like an application protocol. On the

other hand, it is a generic, application-independent protocol that just provides transport

facilities, so it also looks like a transport protocol. Probably the best description is that it

is a transport protocol that is implemented in the application layer.

8

F ina! Report • FINAL YEAR PROJECT II
UNIVERSITI TEKNOLOGI PETRONAS

2.2System architecture

2.2.1 Peer-to-peer (P2P)

PEIRONASI

A peer-to-peer (or "P2P") computer network exploits diverse connectivity between

participants in a network and the cumulative bandwidth of network participants rather

than conventional centralized resources where a relatively low number of servers provide

the core value to a service or application. Peer-to-peer networks are typically used for

connecting nodes via largely ad hoc connections. Such networks are useful for many

purposes. Sharing content files (see file sharing) containing audio, video, data or anything

in digital format is very common, and realtime data, such as telephony traffic, is also

passed using P2P technology.

A pure peer-to-peer network does not have the notion of clients or servers, but only equal

peer nodes that simultaneously function as both "clients" and "servers" to the other nodes

on the network. This model of network arrangement differs from the client -server model

where communication is usually to and from a central server. A typical example for a non

peer-to-peer file transfer is an FTP server where the client and server programs are quite

distinct, and the clients initiate the download/uploads and the servers react to and satisfy

these requests.

An important goal in peer-to-peer networks is that all clients provide resources, including

bandwidth, storage space, and computing power. Thus, as nodes arrive and demand on

the system increases, the total capacity of the system also increases. This is not true of a

client-server architecture with a fixed set of servers, in which adding more clients could

mean slower data transfer for all users.

The distributed nature of peer-to-peer networks also increases robustness in case of

failures by replicating data over multiple peers, and -- in pure P2P systems -- by enabling

peers to find the data without relying on a centralized index server. In the latter case,

there is no single point of failure in the system.

9

• Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PETROHAS~

When the term peer-to-peer was used to describe the Napster network, it implied that the

peer protocol was important, but, in reality, the great achievement ofNapster was the

empowerment of the peers (i.e., the fringes ofthe network) in association with a central

index, which made it fast and efficient to locate available content. The peer protocol was

just a common way to achieve this.

-· •-.. -.--• ,_,., ' ?.;<1

/ ' .; ··--.... -+--Yft~--t- ·-

' /
·~ ·~

Figure 2.2.1a the network architecture of a peer to peer environment

2.2.2 Client Server Architecture

The most commonly used architecture used in the networking environment is the client

server architecture. It consist of network connected computers and server. Computing

architecture which separates a client from a server, and is almost always implemented

over a computer network. Each client or server connected to a network can also be

referred to as a node. The most basic type of client-server architecture employs only two

types of nodes: clients and servers. This type of architecture is sometimes referred to as

two-tier. It allows devices to share files and resources.

10

F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PETRONAS (j;

Each instance of the client software can send data requests to one or more connected

servers. In turn, the servers can accept these requests, process them, and return the

requested information to the client. Although this concept can be applied for a variety of

reasons to many different kinds of applications, the architecture remains fundamentally

the same.

These days, clients are most often web browsers, although that has not always been the

case. Servers typically include web servers, database servers and mail servers. Online

gaming is usually client-server too. In the specific case ofMMORPG, the servers are

typically operated by the company selling the game; for other games one of the players

will act as the host by setting his game in server mode.

1l-~,

.r-·- " /
--li-

~.->l :a;,.ij;

Figure 2.2.2 the network architecture of a client server environment

11

• F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PITROMAS~

2.2.3 Comparison between Peer-to-peer architecture and client-server architecture

The main difference between peer-to-peer architecture and the client server architecture

is that each computer in a peer-to-peer network environment acts as a client and a server

at the same time. This means that each individual personal computer can host and share a

file with other personal computer via network. Where else in a client server environment

a server is hosting all the file sharing and storage in the network.

An important goal in peer-to-peer networks is that all clients provide resources, including

bandwidth, storage space, and computing power. Thus, as nodes arrive and demand on

the system increases, the total capacity of the system also increases. This is not true of a

client-server architecture with a fixed set of servers, in which adding more clients could

mean slower data transfer for all users.

The distributed nature of peer-to-peer networks also increases robustness in case of

failures by replicating data over multiple peers, and -- in pure P2P systems -- by enabling

peers to find the data without relying on a centralized index server. In the latter case,

there is no single point of failure in the system.

When the term peer-to-peer was used to describe the Napster network, it implied that the

peer protocol was important, but, in reality, the great achievement ofNapster was the

empowerment of the peers (i.e., the fringes of the network) in association with a central

index, which made it fast and efficient to locate available content. The peer protocol was

just a common way to achieve this.

While the original Napster network was a P2P network the newest version ofNapster has

no connection to P2P networking at all. The modem day version ofNapster is a

subscription based service which allows you to download music files legally.

12

• Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PEIRONAS~

Where else in client server architecture in most cases, client-server architecture enables

the roles and responsibilities of a computing system to be distributed among several

independent computers that are known to each other only through a network. This creates

an additional advantage to this architecture: greater ease of maintenance. For example, it

is possible to replace, repair, upgrade, or even relocate a server while its clients remain

both unaware and unaffected by that change. This independence from change is also

referred to as encapsulation.

All the data are stored on the servers, which generally have far greater security controls

than most clients. Servers can better control access and resources, to guarantee that only

those clients with the appropriate permissions may access and change data. Since data

storage is centralized, updates to those data are far easier to administer than would be

possible under a P2P paradigm. Under a P2P architecture, data updates may need to be

distributed and applied to each "peer" in the network, which is both time-consuming and

error-prone, as there can be thousands or even millions of peers.

13

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

3.0 METHODOLOGY

The project will start with intensive research and studies of techniques of video streaming.

Then the most feasible and best method will be selected as basis for this project. The

information is obtained by researching and reading of papers, journals, websites and

books.

A thorough understanding and knowledge of the Java software commands is needed to

develop the algorithm to be used for the selected method. The theories and functions will

be constructed in Java environment and will be tested and enhanced should the need

occur.

The design phase of the Java algorithm would require much learning and supervision. A

complete understanding of the method of face recognition chosen is needed. Much

troubleshooting would be done to connect the different commands of the Java into a

working program.

After the development of the program, the interfacing of the the program is done. Further

research is needed to add commands to the program so further enhancement regarding the

file transfer and video stream will be applicable.

14

• F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PEIRONAS!i

The figure below shows the project flowchart.

Conduct research and literature
review on video streaming

Select most feasible technique of
video streaming

Learn java algorithm for p2p
video streaming

Develop Java program with
database.

Troubleshooting and testing.

Error
Modify and justify program.

Testing with actual client

Finalize.

PROJECT COMPLETE

15

I

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

The figure shows the methodology used in designing the system

16

• F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

4.0 RESULTS AND DISCUSSION

4.1 Below is the Prototype of unicast streaming coding

package streaming.server.manager.transport.unicast;

import streaming.helper.error.ErrorLog;

import javax.media.N otRealizedError;
import javax.media.MediaLocator;
import javax.media.RealizeCompleteEvent;
import javax.media.ControllerListener;
import javax.media.ControllerEvent;
import javax.media.Format;
import javax.media.NoProcessorException;
import javax.media.Processor;
import javax.media.Manager;
import javax.media.ConfigureCompleteEvent;
import javax.media.EndOfMediaEvent;
importjavax.media.protocol.PushBufferDataSource;
import javax.media.protocol.PushBufferStream;
import javax.media.protocol.ContentDescriptor;
import javax.media.protocol.DataSource;

import javax.media.control.FormatControl;
import j avax.media.control. T rackControl;

import javax.media.format.AudioFormat;
import javax.media.format.VideoF ormat;
import javax.media.rtp.RTPManager;
import javax.media.rtp.SessionAddress;
import javax.media.rtp.SendStreamListener;
import javax.media.rtp.SendStream;

import j ava.io .I 0 Exception;
import java.net.InetAddress;
importjavax.media.rtp.event.NewSendStreamEvent;
import j avax.media.rtp.event. Stream ClosedEvent;
import javax.media.rtp.event.SendStreamEvent;

17

PITRONAS~

• F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PETRONAS~

public final class Unicast_ rtp implements ControllerListener, SendStreamListener
{
private Processor processor;
private String uri;
private DataSource ds =null;
private SendStream mySendStream =null;
private int prepare_ track;

private int local_ rtp;
private InetAddress destiP;
private int dest_ rtp;

private RTPManager[] mgr;

private boolean endofMedia = false;

public Unicast_rtp(String file, InetAddress d_IP, int l_rtp, int d_rtp, int track)
{

}

uri= file;
local_ rtp = I_ rtp;
destiP = d_IP;
dest_rtp = d_rtp;
prepare_ track = track;

private void myEx(Exception ex, String f)
{

}

f +=II:";
f += ex.getMessage();
new Error Log(f);

public boolean createMyProcessor()
{
final String e = "RTP _Stream createMyProcessor";

try
{
processor= Manager.createProcessor(new MediaLocator(url));
processor.addControllerListener(this);

18

• F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PETRONAS~

}

processor. configure();
}
catch(IOException ex)
{ myEx((Exception) ex, e); return false;}
catch(NoProcessorException ex)
{ myEx((Exception) ex, e); return false;}
return true;

public void controllerUpdate(ControllerEvent pO)
{
if(pO instanceof ConfigureCompleteEvent)
{
Format format;
boolean encodingOK = false;

TrackControl track[] = processor.getTrackControls();
ContentDescriptor cd =new ContentDescriptor(ContentDescriptor.RA W _ RTP);
processor.setContentDescriptor(cd);
format = track[prepare _track]. getF ormat();

if(format instanceof VideoFormat)
{

}

VideoFormat v = (VideoFormat)track[prepare_track].getFormat();
encodingOK = setMyVideoFormat(v, track[prepare_track]);

if(format instanceof AudioFormat)
{

}

AudioFormat a= (AudioFormat)track[prepare_track].getFormat();
encodingOK = setMyAudioFormat(a, track[prepare_track]);

if(encodingOK)
{

}

for(int i=O; i<track.length; i++)
{
if(i != prepare_track)
{ track[i].setEnabled(false); }

}
processor .realize();

19

}

}

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

if(pO instanceof RealizeCompleteEvent)
{

}

try
{

}

ds = processor.getDataOutput();
createMyRTPManager();

catch(NotRealizedError ex)
{ my Ex(null, ex.getMessage()); }

if(pO instanceofEndOfMediaEvent)
{ closeMyStream(); endotMedia =true; }

Pf.TRONAS~

public void update(SendStreamEvent pO)
{

}

if(pO instanceofNewSendStreamEvent)
{ startMyStream(); }
if(pO instanceof StreamClosedEvent)
{ closeMyStream(); }

private boolean setMyVideoFormat(VideoFormat v, TrackControl track)
{
boolean found = false;
if(v.isSameEncoding(VideoFormat.MPEG))
{
((FormatControl)track).setFormat(new VideoFormat(VideoF ormat.MPEG _ RTP));
found = true;

}
if(v.isSameEncoding(VideoFormat.JPEG))
{

}

((FormatControl)track).setFormat(new VideoFormat(VideoF ormat.JPEG _ RTP));
found = true;

if(v.isSameEncoding(VideoFormat.MJPG))
{
((FormatControl)track).setF ormat(new VideoFormat(VideoFormat.JPEG _ RTP));

20

• F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PETRONAS~
.... , .. ,. ,,

}

found = true;
}
track.setEnabled(found);
return found;

private boolean setMyAudioFormat(AudioFormat a, TrackControl track)
{

}

boolean found = false;

if(a.isSarneEncoding(AudioFormat.MPEG))
{

}

((FormatControl)track).setFormat(new AudioFormat(AudioF ormat.MPEG _RTP));
found = true;

if(a.isSameEncoding(AudioF ormat.MPEGLA YER3))
{

}

((FormatControl)track).setFormat(new AudioFormat(AudioFormat.MPEG _ RTP));
found = true;

if(a.isSarneEncoding(AudioF ormat.LINEAR))
{

}

((FormatControl)track).setFormat(new AudioFormat(AudioFormat.DVI_RTP));
found = true;

if(a.isSarneEncoding(AudioFormat. ULA W))
{

}

((FormatControl)track).setFormat(new AudioFormat(AudioFormat.ULAW _RTP));
found = true;

track.setEnabled(found);

return found;

private boolean createMyRTPManager()
{
PushBufferDataSource pbds = (PushBufferDataSource)ds;

21

• ~,-.,

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PITRONAS~

PushBufferStream pbss[] = pbds.getStreams();

mgr =new RTPManager[pbss.length];

for(int i=O; i<pbss.length; i++)
{
try
{
mgr[i] = RTPManager.newlnstance();
mgr[i].addSendStreamListener(this);
SessionAddress localAddr =new SessionAddress(InetAddress.getLocalHost(),

local_ rtp);

ss destAddr = new SessionAddress(destiP, dest_ rtp);
mgr[i].initialize(localAddr);

get(destAddr);

}

}

mySendStream = mgr[i].createSendStream(ds, i);
}
catch (Exception e)
{ my Ex(e, "RTP _Stream createMyRTPManager"); return false; }

return true;

private boolean startMyStream()
{

}

try
{

}

mySendStream.start();
processor. start();

catch(IOException ex)
{ myEx((Exception) ex, "RTP Stream startMyStream"); return false; }
return true;

private void closeMyStream()

22

SessionAddre

mgr[i].addTar

Final Report • FINAL YEAR PROJECT II
UNIVERSITI TEKNOLOGI PETRONAS

{

}

processor.close();
processor.deallocate();
mySendStream.close();
for(int i=O; i<mgr.length; i++)
{ mgr[i].dispose(); }

public void startStreamAgain()
{
try
{ mySendStream.start(); }
catch(IOException ex)
{ myEx((Exception) ex, "RTP _Stream startStreamAgain"); }

}

public void pauseStream()
{
try
{ mySendStream.stop(); }
catch(IOException ex)
{ myEx((Exception)ex, "RTP _Stream pauseStream"); }

}

public void teardownStream()
{
if(!endofMedia)
{

}

pause Stream();
closeMyStream();

}

public boolean getMediaState()
{
return endofMedia;

}

public void run()
{
createMyProcessor();

23

PITROMAS~

•
}

}

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

4.2 Below is the prototype of the multicast streaming

*I
package streaming.server.manager.transport.multicast;

import org.w3c.dom.Document;

/**
*I
public final class MulticastStream extends Thread {

}

private Document doc;

public MulticastStream(Document d) {
doc= d;

}

public void run() {
super. run();

}

24

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

4.3 Below is the prototype for RTSP manager

package streaming.server.manager.rtsp;

import streaming.helper.error.ErrorLog;
import streaming. protoco l.rtsp. Server Rtsp;
import streaming.protocol.rtsp.RTP _ports;

import java.io.IOException;
import java.net.Socket;
import j avanet. ServerSocket;

public class RTSP _Manager
{

private int serverport;
private int base_ rtp _port;
private ServerSocket server;
private RTP _ports rtp _ports;
private int port;

public RTSP _Manager(int port, int base_port,int max)
{
serverport = port;
base_ rtp _port = base _port;
rtp _ports = new RTP _ports(max, base _port);

}

public final void startRtspServer()
{
try
{
server= new ServerSocket(serverport);
while(true)
{

Socket client = server.accept();
port= rtp _ports.getPort(false,O);
ServerRtsp rtsp =new ServerRtsp(client, port, rtp_ports);
rtsp.start();

25

HI ROMAS~

}
}

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

catch(IOException ex)
{ myEx((Exception)ex, "MyRTSP startRtspServer"); }

}

private final void myEx(Exception ex, String f)
{

}
}

f+= 11 :";

f += ex.getMessage();
new ErrorLog(f);

26

PETRONAS~

•
4.4 Simulations

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

1200
- MSMC

- Plltl MS

200

0~--~----~----r---~----4
0 200 400 1m 1000

Tlmt(l)

Figure 4.4.1 shows the Offered bit rate to the second receiver using multicast
method and multi sender alone with 16 senders.

1:!00

1000

-- 800
~
.a
~ Ill()
a:
Ul
w

- MSMC

- PureMS

0 ~--~----~----~--~----~
0 400 eoo 1000

Time {a)

Figure 4.4.2 shows the offered bit rate to second receiver when senders are 32.

27

• Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

8 012

0 .1

0011

i 0 .06

0 .04

0.02

0
0

-let ReceMtr
--2nd~

• • • 31d Recetver

,•
'. ,.

.
(

/
-1

· ...
~~

,~ "'
· J \ .

'f; '. ..
" ...

200 <400 SJO

EBR (Kbltls)

"'-~

Figure 4.4.3 Histogram shows bit rate provided to first 3 receivers using the
multicast method.

In this simulation a P2P network is simulated on a single 3.2GHz Intel Pc using JVM

(Java Virtual Machine) technology. Each node has and uploads bandwidth of300 kbps

while the download bandwidth is also 300 kbps. This simulation shows the availability of

nodes in short period oftime (e.g 5 hours) is uniformly distributed between.

In Fig.4.4.1, the bit-rate provided to the second receiver overtime using the proposed

method is compared to that provided using the pure unicast algorithm of run twice when

16 senders are contributing. It is observed that MSMC improves EBR ofthe second

Receiver by 30%, rendering the same service quality as that given to the first receiver.

The effect of increasing the number of senders is shown in Fig.4.4.2 offered EBR to the

second receiver in both algorithms is increased with the increased number of senders.

Multicast out performs unicast again.

28

•
4.5 Discussion

4.5.1 Multicast

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

Multicast is the delivery of information to a group of destinations simultaneously using

the most efficient strategy to deliver the messages over each link of the network only

once, creating copies only when the links to the destinations split.

The word "Multicast" is typically used to refer to IP Multicast, the implementation of the

multicast concept on the IP routing level, where routers create optimal distribution paths

for datagrarns sent to a multicast destination address spanning tree in realtime. But there

are also other implementations of the multicast distribution strategy listed below.

0
0

0

Figure 4.5.1a Figure is show the optimal distribution path for multicasting

29

•
4.5.2 Unicast

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

In computer networks, unicast is the sending of information packets to a single

destination. "Unicast" is derived from the word broadcast, as unicast is the extreme

opposite of broadcasting. In computer networking, multicasting is used to regain some

of the efficiencies of broadcasting.

These terms are also synonymous with streaming content providers' services. Unicast

servers provide a stream to a single user at a time, while multicast servers can support

a larger audience by serving content simultaneously to multiple users.

0

0
0

0

Figure 4.5.2a Figures shows the optimal distribution path for unicast

30

0

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

4.6 Measuring Performance

PETRONAS~

Good output was used to measure the overall efficiency of the system in bandwidth

utilization. Good output is defined as:

Good output = original data/ connection time

Where original data is the number of byte delivered to the high level protocol at the

receiver (excluding retransmitted data and overhead). The connection time is defined as

the time taken for the data to be completely delivered.

The task of specifying the effect of network QoS parameters on video quality was

challenging. Transmission fluctuations, increased delay, jitter and packet loss commonly

deteriorate the perceptual quality or fidelity ofthe received video content. However, these

parameters do not affect the quality in independent manner; they act in combination or

cumulatively and ultimately only this joint effect is detected by the end user.

31

• ····I'

5.0 CONCLUSION

Final Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

PETRONAS~

From this interim we can conclude that P2P architecture can help to minimize the usage

of network resources. It also reduces the cost of hardware and software in

implementation of the video streaming in network enviromnent.

All existing multi-sender methods maximize the bit-rate provided to the first requesting

node. When another node requests the media from the same senders, the algorithm must

be run again. Since the limited senders' bandwidths are already committed to the first

receiver, the bit-rates offered to the next receivers are likely to be unacceptably low. A

multi-sender algorithm tries to maximize the quality for a single receiver, and to that

end, it uses up all good sources.

In this paper, I proposed a method that overcomes this problem by using temporary

senders-the peers between the senders and the receivers that inevitably have parts of

the streamed media. The simulation results demonstrate that, using the proposed

method, the bit-rate offered to the second peer is almost the same as that offered to the

first receiver that is maximized by the underlying multi-sender.

32

F ina! Report
FINAL YEAR PROJECT II

UNIVERSITI TEKNOLOGI PETRONAS

6.0 REFERENCES

PETROMAS~

1- http://www.sciencedirect.com/science? ob=ArticleURL& udi=B6TYP-4NVH7WM­
A multi-sender multicast algorithm for media streaming on peer-to-peer networks.

2. - http://www.sciencedirect.com/science? ob=Mhug& imagekey=B6WMK-

4P2M71K -Special issue: Resource-aware adaptive video streaming

3. Distributed system Principle and Paradigms, Andrew S.Tanenbaum

4. http://www.sciencedirect.com/science? ob=ArticleURL& udi=B6WJ0-4NJWPOV-

Performance analysis of multimedia based web traffic with QoS constraints

5. J.Gross,J.Klaue,H.Karl,A.Wolisz,Cross-layer optimization ofOFDM transmission
systems for MPEG-4video streaming, Computer Communications27(11)(2004)1044-
1055.

6. S.Kulkami,J.Markham,Splite and merge multicast: live media streaming with
application level multicast, IEEE International Conference on Communication
2(2005) 1292-1298,16-20.

33

