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ABSTRACT 

This project covers the research about the BCH error correcting codes and the 

performance of interleaved and non-interleaved BCH codes. Both long and short 

BCH codes for multimedia communication are examined in an A WGN channel. 

Algorithm for simulating the BCH codes was also being investigated, which includes 

generating the parity check matrix, generating the message code in Galois array 

matrix, encoding the message blocks, modulation and decoding the message blocks. 

Algorithm for interleaving that includes interleaving message, including burst errors 

and deinterleaving message is combined with the BCH codes algorithm for 

simulating the interleaved BCH codes. The performance and feasibility of the coding 

structure are tested. The performance comparison between interleaved and non­

interleaved BCH codes is studied in terms of error performance, channel performance 

and effect of data rates on the bit error rate (BER). The Berlekamp-Massey Algorithm 

decoding scheme was implemented. Random integers are generated and encoded with 

BCH encoder. Burst errors are added before the message is interleaved, then enter 

modulation and channel simulation. Interleaved message is then compared with non­

interleaved message and the error statistics are compared. Initially, certain amount of 

burst errors is used. "ft is found that the graph does not agree with the theoretical bit 

error rate (BER) versus signal-to-noise ratio (SNR). When compared between each 

BCH codeword (i.e. n = 31, n = 63 and n = 127), n = 31 shows the highest BER while 

n = 127 shows the lowest BER. This happened because of the occurrence of error 

bursts and also due to error frequency. A reduced size or errors from previous is used 

in the algorithm. A graph similar to the theoretical BER vs SNR is obtained for both 

interleaved and non-interleaved BCH codes. It is found that BER of non-interleaved 

is higher than interleaved BCH codes as SNR increases. These observations show that 

size of errors influence the effect of interleaving. Simulation time is also studied in 

terms of block length. It is found that interleaved BCH codes consume longer 

simulation time compared to non-interleaved BCH codes due to additional algorithm 

for the interleaved BCH codes. 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

The information revolution is vigorously proceeding over the last thirty or so 

years. Lots of web pages on computers are connected to the Internet [3]. More data 

are coming in and out of the networks, thus, the reliability of the systems is at risk. It 

made people wonder of a solution for good data to get through poor networks intact. 

The BCH abbreviation stands for the inventors, Hocquenghem in 1959, then 

later by Bose and Chaudhuri in 1960 independently. The BCH codes form a large 

class of cyclic codes which is the generalization of the Hamming codes for multiple 

error correction [2]. BCH codes were generalized to code in pm symbols by 

Gorenstein and Zierler in 1961 [4]. The first decoding algorithm for BCH codes were 

devised by Peterson in 1960 and was then generalized and refmed by Gorenstein and 

Zierler, Chien, Forney, Berlekamp, Massey, Burton and others. Among all the 

decoding algorithms for BCH codes, Berlekamp's iterative algorithm and Chien's 

search algorithm are the most efficient ones. 

The Noisy Channel Coding Theorem which was discovered by C. E. Shannon 

in 1948 claims that it is possible to communicate error-free digital data or information 

up to a given maximum rate through the channel regardless of how contaminated with 

noise interference a communication channel may be [4]. The theoretical maximum 

information transfer rate of the channel is with respect to Shannon limit. 

Interleaving is a key component of many digital communication systems 

involving forward error correction (FEC) coding [11]. Burst errors overwrite a lot of 

bits in a row, but they seldom occur. Thus, interleaving the encoded symbols provides 

a form of time diversity to protect the transmission against these errors. All data is 

transmitted with some control bits (independently from the interleaving), such as 

error correction bits, that enable the channel decoder to correct a certain number of 
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altered bits. The codeword cannot be correctly decoded if a burst error occurs, and 

more than this number of bits is altered. So the bits of a number of codeword are 

interleaved and then transmitted. Thus, a burst error affects only a correctable number 

of bits in each codeword, so the decoder can decode the codeword correctly [12]. 

Recently, interleavers have become an even more integral part of the code 

design itsel£ In the past, the interleaving strategy was weakly linked to selected FEC 

scheme with the exceptions to concatenated FEC schemes such as concatenated 

convolutional and RS codes. Parameters are carefully selected to match the error 

correcting capabilities of the codes involved [II]. As for error control code, block 

code and convolutional code are most widely used in a variety of applications [ 1]. 

For convolutional codes, error correcting capacity increases with the 

constraint length and the trellis dimension with the coding increase exponentially [I]. 

The time delay of decoding and deinterleaving is sometimes very large for interleaved 

convolutional codes. This is not permitted in time-sensitive applications. In block 

codes, algebraic decoding algorithm and regular structure reduce coding delay and 

complexity. Furthermore, since the data errors can be controlled to reasonable range, 

the complexity which also required cost and effort for error correction mechanism can 

be reduced by utilizing interleaving method. 

The use of interleaved convolutional code for image transmission over fading 

channel has been observed in "Research on error-correcting scheme of image 

transmission" by D. F. Yuan and J. J. Luo. They found that the image quality with 

this error control scheme is not satisfactory. Furthermore, questions arise on the 

complexity and the time delay. In [32], the performance of interleaved BCH codes 

was estimated using the parameters of Binary-symmetric Channel (BSC). The 

simulation results show that it is very practical and efficient to estimate the 

performance of interleaved BCH codes applied to the mobile channel by using BSC 

when the degree of interleaving is large enough. The use of convolutional code with 

a novel interleaving scheme to improve image quality has been studied in [33] and it 

was proven that the scheme proposed is more suitable to image transmission in 

mobile fading channels compared to interleaved BCH codes. 
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1.2 PROBLEM STATEMENT 

The International Standard Book Number (ISBN) system identifies every 

book with a ten-digit number, such as 0-226-53420-0. The frrst nine digits are the 

actual number but the tenth is added according to a mathematical formula based on 

the first nine. Any single change in the digit can be verified by a simple check. Some 

high-end computer memory chips, "ECC RAM," use extended nine-bit bytes. The 

ninth bit, or "check bit," is always set so that the total number of ones in the extended 

byte is even. This is called a "checksum" where an error is detected if the sum of the 

nine bits is not even. 

All these processes can detect a single error in short notice but they cannot 

correct any error that is detected. Moreover, combinations of two or more errors 

occurring within the message will not be sensed. 

BCH codes are originally designed to fit random-error-correction, and not fit 

for fading channels. In order to reuse BCH codes, we must first disperse burst errors 

[1 ). Error control coding is combined with interleaving technique which is simple and 

effective to combat long burst errors. We study two encoding techniques using BCH 

codes; non-interleaved BCH codes and interleaved BCH codes. The comparison 

study is important in order to implement proper applications for error correction 

codes based on the projects' constraints such as time for decoding and codes' 

complexity. 

1.2.1 Importance of error correction codes 

The need for consistent and efficient digital data communication systems has 

been gradually increasing in recent years. Among the various reasons that have 

brought this need are the enhancement in automatic data processing equipment and 

the increased need for long range communication. Thus, the BCH codes were 

developed. The significant applications that require the error correction codes are 

Internet, deep space communications, and satellite broadcasting. 
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1.2.2 Applications of error correction codes 

Internet 

Error detection is performed at multiple levels in a typical TCPIIP stack. Each 

Ethernet frame carries a CRC-32 checksum. The receiver discards frames with 

unmatch checksums. Ethernet is a frame-based computer networking technology for 

local area networks (LANs). A checksum is a form of redundancy check, which is 

extra data added to a message for the purpose of error detection and error correction. 

A redundancy check is a very simple measure for protecting the reliability of data by 

detecting errors in data that is sent through space (telecommunications) or time 

(storage). [10] 

User Datagram Protocol (UDP) has an optional checksum. Packets found to 

have incorrect checksums are thrown out. [4, 10] Among common network 

applications are the Domain Name System (DNS), for example, 

http://elearning.utp.edu.my, streaming media applications, Voice over IP, Trivial File 

Transfer Protocol (TFTP), and online games. 

Transfer Control Protocol (TCP) has a checksum of the payload, TCP header 

and IP header source and destination addresses. Packets with wrong checksums are 

discarded and eventually get retransmitted when the sender receives a triple-ack or 

time-out occurs. [4, 10] By using TCP, networked hosts can swap information or 

packets, thus, create connections to one another. The protocol ensures that delivery 

from sender to receiver is reliable and in sequence. TCP also distinguishes data for 

multiple, concurrent applications such as Web server and email server that were 

conducted by the same host. TCP supports many internet's application protocols and 

resulting applications, for instance, World Wide Web, email and Secure Shell. 

Deep Space Telecommunication 

NASA has used many different error correcting codes. For missions between 

1969 and 1977 the Mariner spacecraft used a Reed-Muller code. The noise these 

spacecraft were subject to was well approximated by a "bell-curve" (normal 

distribution), so the Reed-Muller codes were well suited to the situation. [4] 
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Figure 1: Bell curve (13] 

The standard normal distribution is the normal distribution with a mean of 

zero and a standard deviation of one. It is often called the bell curve because the 

graph of its probability density resembles a bell. 

Satellite Broadcasting 

The demand for satellite transponder bandwidth continues to grow, fueled by 

the desire to deliver television, including new channels and High Defmition TV and 

IP data. An automatic device that receives, amplifies, and retransmits a signal on a 

different frequency. Transponder availability and bandwidth constraints have limited 

this growth, because transponder capacity is determined by the selected modulation 

scheme and Forward Error Correction (FEC) rate. FEC is a system of error control for 

data transmission. [4] 

1.2.3 Importance of interleaving 

The adverse environment of wireless channel causes long burst errors 

frequently and where bandwidth is limited, digital data must be greatly compressed 

before transmission. The multimedia data suffer from burst errors badly and the 

transmission quality is very poor [ l]. 

FEC coding provides a prevailing technique for transmitting information­

bearing data reliably from a source to a sink across the wireless channel. However, to 

achieve the maximum benefit from FEC coding in many wireless channels, an 
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additional technique known as interleaving is required. The need for this new 

technique is justified based on the fact that wireless channels have memory due to 

multipath fading which is described as the arrival of signals at the receiver via 

multiple propagation paths at different lengths [16]. The significant applications that 

require the interleaving are time-division multiplexing (TDM) in telecommunications, 

disk storage and data transmission. 

1.2.4 Applications of interleaving 

Time-division Multiplexing (TDM) in Telecommunication 

Synchronous time division multiplexing is possible when the achievable data 

rate (or bandwidth) of the medium exceeds the data rate of digital signals to be 

transmitted. Multiple digital signals (or analog signals carrying digital data) can be 

carried on a single transmission path by interleaving portions of each signal in time. 

The interleaving can be at the bit level or in blocks of bytes or larger quantities [10]. 

Disk Storage 

Historically, interleaving was used in ordering block storage on disk-based 

storage devices such as the floppy disk and the hard disk. The primary purpose of 

interleaving was to adjust the timing differences between when the computer was 

ready to transfer data, and when that data was actually arriving at the drive head to be 

read. Interleaving was very common prior to the 1990s, but faded from use as 

processing speeds increased. Modem disk storage is not interleaved [31 ]. 

Interleaving was used to arrange the sectors in the most efficient manner 

possible, so that after reading a sector, time would be permitted for processing, and 

then the next sector in sequence is ready to be read just as the computer is rea4y to do 

so. Matching the sector interleave to the processing speed therefore accelerates the 

data transfer, but an incorrect interleave can make the system perform markedly 

slower. 
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Figure 2: Low-level format utility performing interleave speed tests on a 1 O­
mega byte IBM PC XT hard drive [31] 

Information is commonly stored on disk storage in very small pieces referred 

to as sectors or blocks. These are arranged in concentric rings referred to as tracks or 

cylinders across the surface of each disk. While it may seem easiest to order these 

blocks in direct serial order in each trac~ such as 1 2 3 4 5 6 7 8 9, for early 

computing devices this ordering was not practical. 

Data to be written or read is put into a special region of reusable memory 

referred to as a buffer [1 0], [31 ]. When data needed to be written, it was moved into 

the buffer, and then written from the buffer to the disk. When data was read, the 

reverse took place, transferring fust into the buffer and then moved to where it was 

needed. Most early computers were not fast enough to read a sector, move the data 

from the buffer to somewhere else, and be ready to read the next sector by the time 

that next sector was appearing under the read head. 

When sectors were arranged in direct serial order, after the first sector was 

read the computer may spend the time it takes for three sectors to pass by before it is 

ready to receive data again. However with the sectors in direct order, sector two, 

three, and four have already passed by. The computer doesn't need sectors 4, 5, 6, 7, 

8, 9, or 1, and must wait for these to pass by, before reading sector two. This waiting 

for the disk spin around to the right spot slows the data transfer rate. 

To correct for the processing delays, the ideal interleave for this system would 

be 1:4, ordering the sectors like this: 1 8 6 4 2 9 7 5 3. It reads sector 1, processes for 

three sectors whereby 8 6 and 4 pass by, and just as the computer becomes ready 

again, sector two is arriving just as it is needed. 
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Modem disk storage does not need interleaving since the buffer space is now 

so much larger. Data is now more commonly stored as clusters which are groups of 

sectors, and the data buffer is sufficiently large to allow all sectors in a block to be 

read at once without any delay between sectors. 

Data Transmission 

Interleaving is used in digital data transmission technology to protect the 

transmission against burst errors. These errors overwrite a lot of bits in a row, so a 

typical error correction scheme that expects errors to be more uniformly distributed 

can be overwhelmed. Interleaving is used to help stop this from happening. 

Data is often transmitted with error control bits that enable the receiver to 

correct a certain number of errors that occur during transmission. If a burst error 

occurs, too many errors can be made in one code word, and that codeword carmot be 

correctly decoded. To reduce the effect of such burst errors, the bits of a number of 

codewords are interleaved before being transmitted. This way, a burst error affects 

only a correctable number of bits in each codeword, and the decoder can decode the 

codewords correct! y. 

This method is popular because it is a less complex and cheaper way to handle 

burst errors than directly increasing the power of the error correction scheme. 

Below is an example as an error correcting code is applied so that the charmel 

codeword has four bits and one-bit errors can be corrected. The charmel codewords 

are put into a block like this: aaaabbbbccccddddeeeeffffgggg. 

Consider transmission withont interleaving: 

Error-free message: 
aaaabbbbccccddddeeeeffffgggg 

Transmission with a burst error: 
aaaabbbbccc __ deeeeffffgggg 

The codeword dddd is altered in three bits, so either it carmot be decoded at .all 

(decoding failure) or it might be decoded into the wrong codeword (false decoding). 

Any of the two happens depends on the error correcting code applied. 

Now, let's do the same with interleaving: 

8 



Error-free code words: 
aaaabbbbccccddddeeeeffffgggg 

Interleaved: 
abcdefgabcdefgabcdefgabcdefg 

Transmission with a burst error: 
abcdefgabcd ____ bcdefgabcdefg 

Received code words after deinterleaving: 
aa_abbbbccccdddde_eef_ffg_gg 

In each of the codewords aaaa, eeee, ffif, gggg, only one bit is altered, so our one-bit­

error-correcting-code will decode everything correctly. 

Of course, latency is increased by interleaving because we cannot send the second bit 

of codeword aaaa before awaiting the first bit of codeword gggg. 

For a different example, consider a meaningful sentence like: 

ThislsAnExampleOflnterleaving, and suppose we get a burst error corrupting SIX 

letters. First, let us see what the sentence looks like without interleaving. 

Consider transmission without interleaving: 

Original transmitted sentence: 
ThisisAnExampleOfinterleaving 

Received sentence with a burst error: 
Thisls pleOfinterleaving 

We find that the term "AnExample" is lost or unintelligible. 

Now we repeat this example but interleave the sentence prior to transmission. The 

message is interleaved by transmitting every fourth letter starting at the first letter, 

then every fourth letter starting at the second, an so on. To make the message a 

multiple of four letters, three dots have been added to the end. (This is an example of 

block interleaving.) 

Consider transmission with interleaving: 

Transmitted sentence: 
ThisisAnExampleOfinterleaving ... 

Error-free transmission: 
TIEpfeaghsxlirv.iAaenli.snmOten. 

Received sentence with a burst error: 
TIEpfe Irv.iAaenli.snmOten. 

Received sentence after deinterleaving: 
T_isi_AnE_amp_eOfinterle_vin_ ... 
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No single word is completely lost and it is easy to recover them. 

1.2.5 Significant of the project 

The Bose-Chadhuri-Hocquenghem (BCH) code is an error correcting code 

which is a method of transmitting message over a noisy transmission channel. In 

computer science and information theory, the issue of error correction and detection 

has great practical importance. The error detection is the ability to detect errors that 

are made due to noise or other impairments during the transmission from the 

transmitter to the receiver. Error correction has the feature of enabling localization of 

the errors and correcting them. 

Interleaving technique is simple and effective in dispersing error clusters. It 

works by spreading the bits to be transmitted throughout the entire message and it 

mainly includes block interleaving and bit interleaving. The latter has slightly better 

performance than the former, but the former has lower complexity to implement [1 ]. 

In this project, the author prefers block interleaving in the system because of the fixed 

code length of block codes. 

This project will introduce the comparison study for non-interleaved and 

interleaved BCH codes. The encoding and decoding techniques of the BCH codes 

would be simulated by using MA TLAB simulation tool. The comparison study 

involved error performance, effect of noise variance, channels performance and effect 

of data rates on the bit error rate (BER). The comparison study is important so that 

proper applications could be implemented based on the projects' constraints such as 

time for decoding, cost and codes' complexity. 

1.3 OBJECTIVES 

• To investigate the effect of block interleaving technique in forward error 

correction. 

• To compare the performance of non-interleaved and interleaved BCH codes in 

various environment. 
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1.4 SCOPES OF STUDY 

This project covers the research on the utilization ofBCH codes in multimedia 

communication and the performance of BCH codes if combined with interleaving. 

The channel mode used is A WGN and BPSK modulation. However, we are also 

going to study other channel models such as binary symmetric channel and Rayleigh 

channel. Fast fading channel introduces errors which will degrade the quality of 

transmission. In this project, random integers are used as information to be 

transferred. The codes could minimize the probability of lost information transmitted. 

Interleaving and deinterleaving are applied to the encoded data The Matlab software 

is used for simulating the encoding/decoding and interleaving/deinterleaving for both 

the error correcting codes. 
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CHAPTER2 

LITERATURE REVIEW AND THEORY 

2.1 Supporting information 

After fifty years since the first coding engmes of error-correction and 

detection were introduced, almost all communication and processing systems went 

through developments with a variety of error control coding sub-systems [2]. 

Source Channel Modulator 
Encoder Encoder 

0~nn 

Source Channel Demodulator 
Decoder Decoder 

Figure 3: Block Diagram of a general communication system 

Coding is the conversion of information to another form. From Figure 3, 

source coding is conducted for lowering the redundancy in the information, for 

example; ZIP, JPEG and MPEG2. The purpose of channel coding is to defeat the 

channel noise. The application of redundant symbols to correct data errors could be 

implemented by channel encoding. Modulation is the conversion of symbols to a 

waveform for transmission. The conversion of the waveform back to symbols is done 

by demodulation. The decoding uses the redundant symbols to correct errors. Several 

parameters for code performance evaluations are code rate (R), Signal - to - noise 

ratio (Eb!No) and Bit Error Rate (BER). The coding gain is the saving in Eb!No 

required to achieve a given BER when coding is used compared to the other with no 

coding. Generally, the lower the code rate, the higher the coding gain. [4]. 
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2.2 Title Definition 

BCH code is an error correction code while interleaving is a technique for 

handling burst errors in the transmission path whereby data streams containing error 

correction functions are dispersed. Even if burst errors occur, the error correction 

function can be used effectively for decoding at the receiving equipment end. The 

operation performed at the receiving end to return the signal to its original state is 

called deinterleaving. 

Interleaved BCH codes are BCH codes combined with interleaving technique 

to disperse errors in data transmission [1] while non-interleaved BCH codes are BCH 

codes alone without combining with interleaving technique. 

Bursts (or clusters) of errors are defined as a group of successive error bits in 

the one-dimensional (1-D) case or linked error bits in multi-dimensional (M-D) cases 

[17]. 

BCH Block .I I 
Source I encoder interleaving -

Channel 

Sink BCH Block -decoder deinterleaving 

Figure 4: Model of the Project 

2.3 BCH Codes 

Bose - Chaudhuri - Hocquenghem (BCH) codes are an important subclass of 

cyclic codes, which have some efficient decoding algorithm due to the strict algebraic 

architecture [1]. The BCH codes which are a generalization of Hamming distance 

codes that allow multiple error correction provide a wide variety of block lengths and 

corresponding code rates. They are important because of their flexibility in the choice 

of their code parameters and at a block lengths of a few hundred, BCH codes could 
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outperform all other block codes with the same block length and code rate [3]. 

2.3.1 BCH Codes Parameters 

The BCH codes have the following parameters for any positive integers 'm' 

and 't', wherem~3 and t<2 m-I. 

Block Length: n = 2 m - 1 

Parity Check Bits: n - k :S mt 

Minimum Distance: d ~ 2t + 1 

This code is capable of correcting combinations of 't' or fewer errors in a 

block of n = 2 m - 1 digits. The generator polynomial of this code is specified in terms 

of its roots from the Galois field, GF(2m). The generator polynomial g(X) of the t -

error - correcting BCH code of length 2m- 1 is the lowest - degree polynomial over 

GF(2) that has: "a, i-, a3
, ••• , i-1

" as its roots. Let <l>(X) be the minimal polynomial of 

ai. Then, g(X) must be a least common multiple (LCM) of tA(X), ~(X), ... , ~t(X), 

which is g(A) = LCM{ tA (X), ~(X), ... , ~,(X)}. 

Hence, every even power of 'a' in the sequence of "a, a2
, a3

, ••• , a21
" has the 

same minimal polynomial as the preceding odd power of 'a' in the sequence. As a 

result, the generator polynomial g(X) of the binary t - error - correcting BCH code of 

length 2m- 1 can be reduced from g(X) = LCM{ tA(X), ~(X), ... , ~t(X)} to g(X) = 

LCM{lA(X), ~(X), ... , ~t-I(X)}. 

Due to the degree of each minimal polynomial is 'm' or less, the degree of 

g(X) is at most 'mt'; that is, the number of parity- check digits, n- k, of the code is 

at most equal to 'mt'. 'n' represents the block size, 'n - k' represents the parity -

check digits and 't' represents the number of errors that could be corrected with BCH 

codes. If the value of 't' is small, n - k is exactly equal to 'mt'. The BCH codes 

defined are usually called primitive BCH codes, where its parameters are code length 

of 2m- 1 with m :::_tO. 

The single - error - correcting BCH code of length 2m - 1 is generated by 

g(X) = <P1(X). Because 'a' is primitive element of GF(2m), tA(X) is a primitive 
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polynomial of degree 'm'. Therefore, the single - error - correcting BCH code of 

length 2m - 1 is a Hamming code. 

Let v(X) = V0 +VIa;+ ... + Vn -1a(n~ I)i = 0 be a code polynomial in at- error­

correcting BCH code of length n = 2m - 1. This equality can be written as a matrix 

product as follows: 

1 

ai 
(v0 , VI, ... , Vn~ I). a2i = 0 

a(n -l)i 

fori SIS 2t. The condition given as above shows that the inner product of (v0 , VI, ... , 

Vn~ I) and (1, d, r:l', ... , a<•~ I)i) is equal to zero. Therefore, as 'v' is the codeword in 

the BCH code, then 

23.2 Galois Array 

Galois Theory, named after Evariste Galois, is important in BCH codes 

encoding and decoding algorithms. In abstract algebra, certain Galois Theory 

problems in field theory can be reduced to group theory, which is simpler and 

straightforward. Abstract algebra is the field of mathematics that studies algebraic 

structures, such as groups, rings, fields, modules, vector spaces, and algebras. 

Group theory is a branch of mathematics concerned with the study of groups. 

Galois Theory uses groups to describe the symmetries of the equations satisfied by 

the solutions to a polynomial equation [7). 

A group G is a collection of objects with an operation · satisfYing the following 

rules: 

l) For any two elements x andy in the group G we also have x·y in the group G. 

2) There is an element, which is usually written I or e, but sometimes 0, called 

the identity in G such that for any x in the group G we have l·x = x = x·l. 
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3) For any elements x,y,z in G we have (x · y) · z = x · (y · z). This property is 

called associativity, which means, we can write x·y·z unambiguously. 

4) Every element x in G has a unique inverse y (sometimes weitten -x or x- 1) 

sothatx·y=y·x=l. 

Field theory is a branch of mathematics which studies the properties of fields. 

A field is a mathematical entity for which addition, subtraction, multiplication and 

division are well-defined [8]. 

Originally, Galois used permutation groups to describe how the various roots 

of a given polynomial equation are related to each other. The modem approach to 

Galois Theory, developed by Richard Dedekind, Leopold Kronecker and Emil Artin 

involves studying automorphisms of field extensions. The set of all automorphisms of 

an object forms a group called the automorphism group which is the symmetry group 

of the object [8]. 

Galois Theory is concerned with symmetries in the roots of polynomial p(x). 

Symmetry of the roots is a way of swapping the solutions around in a way which does 

not matter in some sense. Therefore, .Y2 and - ...f2 are the same because any 

polynomial expression involving ...f2 will be the same if ...f2 is replaced by - ...f2 [8]. 

2.3.3 Decoding of BCH Codes 

There are several decoding scheme available for BCH codes: 

i. Berlekamp- Massey algorithm (BMA) 

The BMA was invented by Berlekamp and Massey. This is a computationally 

efficient method to solve the syndrome equation, in terms of the number of 

operations in GF(2m). The BMA is important for BCH decoders' 

implementation in software. 

ii. Euclideon algorithm (EA) 

Euclidean algorithm involves determining the greatest common divisor 

(GCD) of two integers of elements of any Euclidean domain by repeatedly 

dividing the two numbers and the remainder in turns. Due to its regular 
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structure, the EA is widely used m hardware implementation for BCH 

decoders. 

iii. Direct method 

This method was proposed by Peterson. It directly finds the coefficients of 

error locator polynomial as a set of linear equations. The term Peterson -

Gorenstein - Zierler decodes was used in literature. As the complecity of 

inverting a matrix grows with the cube of the error- correcting capability, the 

direct solution method works for small values of 't'. 

For this project, the Berlekamp-Massey decoding scheme would be 

implemented for decoding the BCH codes. 

2.4 Berlekamp-Massey Algorithm (BMA) 

The Berlekamp-Massey algorithm is an algorithm for finding the minimal 

polynomial of a linearly recurrent sequence. The algorithm was invented by Elwyn 

Berlekamp in 1968 [5]. Its connection to linear codes was observed by James Massey 

the following year. It became the key to practical application of the now ubiquitous 

Reed-Solomon (RS) code. In 1967 E. Berlekamp demonstrated an extremely efficient 

decoding algorithm for both BCH and RS codes. In 1967, Massey showed that the 

BCH decoding problem is equivalent to the problem of synthesizing the shortest 

linear-feedback shift register which is capable of generating a given sequence [2]. 

2.5 Interleaving Technique 

Interleaving is a type of time diversity that lessens the effects of error bursts 

over the radio fading channel. Several diversity techniques aim at dropping channel 

effects either by providing the receiver with independent imitations of the transmitted 

sequence or by randomizing channel errors [18]. In the design of a reliable wireless 

communication system, we are confronted with two conflicting ·phenomena: a 

wireless channel that produces bursts of correlated errors and a convolutional decoder 

that cannot handle error bursts. 
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Interleaving is an effective technique to resolve this conflict by converting 

burst of errors into random-like errors [16], [17]. Interleaving has the net effect of 

breaking up error bursts that occur during the course of data transmission over the 

wireless channel and spreading them over the duration of operation of the interleaver. 

There are three types of interleaving which are block interleaving, convolutional 

interleaving and random interleaving [ 16]. 

2.5.1 Block interleaving 

Data 
read in 

columns 

1 
(a) 

Figure 5: Block interleaver sturucture [16] 
(a) Data "read in" 
(b) Data "read out" 

Data 
read out 

rows 

(b) 

Classical block interleaver functions as memory buffer, as shown in Figure 5, 

where data are written into this N x L rectangular array columnwise from the channel 

encoder and its substance are sent to the transmitter. At the receiver, the inverse 

operation is performed, which are, data are written into the contents of the array in the 

receiver in row manner. Once the array is filled, it is read out in column manner into 

the Viterbi decoder. 

The (N,L) interleaver and deinterleaver for block interleaver are both periodic 

with fundamental period T = NL. For the correlation time or error-burst-length time 

that corresponds to L received bits, the effect of an error burst would corrupt the 

equivalent of one row of the deinterleaver block at the receiver. 
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2.5.2 Convolutional interleaving 

Defining the period 

T=LN, 

we refer to the interleaver as an (L x N) convolutional interleaver, which has proper 

ties similar to those of the (L x N) block interleaver. 

The sequence of encoded bits to be interleaved in the transmitter is arranged 

in blocks of L bits. For each block, the encoded bits are sequentially shifted into and 

out of a bank of N registers by means of two synchronized input and output 

commutators. The interleaver is structured as follows: 

!. The zeroth shift register provides no storage; that is, the incoming encoded 

symbol is transmitted immediately. 

2. Each successive shift register provides a storage capacity of L symbols 

more than the preceding shift register. 

3. Each shift register is visited regularly on a periodic basis. 

With each new encoded symbol, the commutators switch to a new shift 

register. The new symbol is shifted into the register, and the oldest symbol stored in 

that register is shifted out. After finishing with the (N- I )th shift register (i.e., the last 

register), the commutators return to the zeroth shift register. Thus the switching -

shifting procedure is repeated periodically on a regular basis. 

The deinterleaver in the receiver also uses N shift registers and a pair of 

input/output commutators that are synchronized with those in the interleaver. The 

shift registers are stacked in reverse orde of those in the interleaver, resulting in the 

deinterleaver performs the inverse operation in the receiver. 

An advantage of convolutional over block interleaving is that in convolutional 

interleaving, the total end-to-end delay is L(N - I) symbols and the memory 

requirement is L(N- I )/2 in both the interleaver and deinterleaver, which are one-half 

of the correspondinf values in a block interleaver/deinter!eaver for a similar level of 

interleaving. 
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2.5.3 Random interleaving 

In a random interleaver, a block of N input bits is written into the interleaver 

in the order in which the bits are received, but they are reas out in a random manner. 

Typically, the permutation of the input bits is defined by a uniform distributuin. Let 

II(i) denote the permuted location of the ith input bit where i = 1,2, ... ,N. The set of 
N 

integers denoted by { II(z) h ~ " defining the order in which the stored input bits are 

read out of the interleaver, is generated according to the following two-step 

algorithm: 

1. Choose an integer i 1 from the uniformly distributed set A = { 1 ,2, ... ,N}, with 

the probability of choosing iJ being P(i1) = 1/N. the chosen integer iJ is set to 

II(1). 

2. for k > 1, choose an integer ik from the uniformly distributed set Ak = { i € A, i 

f. i~, iz, ... , ik-1 }, with the probability of choosing ik being P(ik) = li(N- k + 1). 

The chosen integer ik is set to II(k). Note that the size of the set Ak is 

progressively reduced fork> 1. When k = N, we are left with a single integer, 

iN, that is set to II(N). 

2.6 Finite-State Channel (FSC) Model 

Four-state simply partitioned Markov model is used to represent a typical fast 

fading channel. This kind of finite-state channel (FSC) model can run easily and 

resemble the real communication environment in effect. The selected channel has 

parameters below: FSK (modulation), 100 kmlh (vehicle velocity) and 300 bits/s 

(data rate). The Markov transition matrix related to the model is as follows [1]: 

0.974932 0 0 0.025068 
P= 0 0.515248 0 0.484752 

0 0 0.997782 0.002218 

0.039832 0.450840 0.052737 0.456590 
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CHAPTER3 

METHODOLOGY 

3.1 Procedure Identification 

The main objective of this project is to investigate the utilization of BCH 

codes in multimedia communication with performance comparison of non-interleaved 

and interleaved BCH codes. Input message used is random integers. For performance 

comparison, the encoded message is also decoded without interleaving and the rate of 

error will be compared. A WGN channel is used. 

Generating the 
parity-check matrix 

Encoding message blocks 

Block interleaving 

Modulation and 
channel simulation 

Block deinterleaving I 

Decoding received message 

I 

Figure 6: Step-by-step System Methodology 

21 

The decoded 
bits were being 
compared with 
the information 
bits 



3.1.1 Interleaved BCH Codes Algorithm 

The BCH codes algorithm was divided into several parts for more detailed 

explanations. Referring to the Matlab communication toolbox functions, the 

algorithm for BCH code is listed as follows: 

Step 1: Construct the codeword 

m=4; 

n=2"m-1; 

k=S; 

nwords=10; 

From the codes above, n represents the codeword length, k is the message length, 

and the nwords represents the nun1ber of words to encode for this progran1. 

Step 2: Create states for random number generator 

st1 = 27221; st2 = 4831; 

stl and st2 are states for random nun1ber generator. 

Step 3: Create Galois field array 

msg=gf(randint(nwords,k,stl)); 

From the code above, randint{10,5) generates a 10 by 5 matrix of random binary 

nun1bers. "0" and "1" occur with equal probability. 

'GF' function creates a Galois field array. The msg=randint(nwords,k,stl)) 

creates a Galois field array from the matrix randint(nwords,k). The Galois field 

has 2"m elements, where for this program, the value of m is set to default value 1. 

Each element of x must be 0 or 1. The output for msg is a variable that MA TLAB 

recognizes as a Galois field array, rather than an array of integers. [19) 

x = double(msg.x); 

The above code converts msg from Galois array to integer for error statistics 

because biterr (code in interleaving stage) codes integers. 

Step 4: Create generator polynomial 

[genpoly,t) = bchgenpoly(n,k) 

The function bchgenpoly gets generator polynomial and error-correction 
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capability. genpoly = bchgenpoly (n,k) returns the narrow-sense generator 

polynomial of a BCH code with code length n and message length k. The 

codeword length n must have the form 2/\m-1 for some integer m between 3 and 

16. The output genpoly is a Galois row vector that represents the coefficients of 

the generator polynomial in order of descending powers. The narrow-sense 

generator polynomial is (X-alpha)*(X-alpha"2)* ... *(X-alpha"(N-K)), where 

alpha is the root of the default primitive polynomial for the field OF (N+1). [20] 

Step 5: Encode the message 

code = bchenc(msg,n,k); 

code= bchenc(msg,n,k) encodes the message in msg using an [n,k] BCH encoder 

with the narrow-sense generator polynomial. msg is a Galois array of symbols 

over GF(2). Each k-element row of msg represents a message word, where the 

leftmost symbol is the most significant symbol. Parity symbols are at the end of 

each word in the output Galois array code. [21] 

y = double(code.x); 

The above code converts code from Galois array to integer (in complex double 

form) for interleaving. 

Step 6: Create burst errors 

errors= zeros(size(code)); errors(n-2:n+3) = [111111]; 

The above codes create burst error that will corrupt two adjacent codewords. 

Step 7: Interleave encoded message 

inter = randintrlv(y,st2);. 

intrlvd = randintrlv(data,state) rearranges the elements in data using a random 

permutation. The state parameter initializes the random number generator that the 

function uses to determine the permutation. The function is predictable and 

invertible for a given state, but different states produce different permutations. If 

data is a matrix with multiple rows and columns, then the function processes the 

columns independently. [25] 

inter_err = bitxor(inter,errors); 
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The code inter_err = bitxor(inter,errors) includes burst errors created earlier into 

the interleaved encoded message. 

C = bitxor(A, B) returns the bitwise XOR of the two arguments A and B. Both A 

and B must be unsigned integers. [26) 

Step 8: BPSK modulation 

mod= pskmod(code_err,2); 

The pskmod function represents phase shift keying modulation. 

y = pskmod(x,M) outputs the complex envelope y of the modulation of the 

message signal x using phase shift keying modulation. M is the alphabet size and 

must be an integer power of 2. The message signal must consist of integers 

between 0 and M-1. The initial phase of the modulation is zero. For two­

dimensional signals, the function treats each column as I channel. [22) 

Step 9: A WGN channel simulation 

channel = awgn(mod,snr); 

A WGN adds white Gaussian noise to a signal. 

y = awgn(x,snr) add white Gaussian noise to x. the snr is in dB. 

The power ofx is assumed to be 0 dBW. Ifx is complex, then awgn adds complex 

noise [30]. 

Step 10: BPSK demodulation 

r = pskdemod(ncode_dbl,2); 

Demodulation is basically the reverse of modulation. 

z = pskdemod(y,M) demodulates the complex envelope y of a PSK modulated 

signal. M is the alphabet size and must be an integer power of2. The demodulator, 

which is designed specifically for the symbol-set used by the modulator, 

determines the phase of the received signal and maps it back to the symbol it 

represents, thus recovering the original data. If y is a matrix with multiple rows 

and colunms, then the function processes the colunms independently. In this case, 

y3 is processed independently. [24) 
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Step 11: Deinterleave the interleaved message 

D = randdeintrlv(C,st2);% Deinterleave. 

deinter_gf = gf(D); 

deintrlvd = randdeintrlv( data,state) restores the original ordering of the elements 

in data by inverting a random permutation. To use this function as an inverse of 

the randintrlv function, the same state input is used in both functions. In that case, 

the two functions are inverses in the sense that applying randintrlv followed by 

randdeintrlv leaves data unchanged. [27] 

Step 12: Decode the received message 

[newmsgl,errl,ccodel] = bchdec(deinter_gf,n,k) 

The function bchdec represents the BCH decoder. 

decoded = bchdec( code,n,k) attempts to decode the received signal in code using 

an [n,k] BCH decoder with the narrow-sense generator polynomial. code is a 

Galois array of symbols over GF(2). Each n-element row of code represents a 

corrupted systematic codeword, where the parity symbols are at the end and the 

leftmost symbol is the most significant symbol. 

In the Galois array decoded, each row represents the attempt at decoding the 

corresponding row in code. A decoding failure occurs if bchdec detects more than 

t errors in a row of code, where t is the number of correctable errors as reported 

by bchgenpoly. In the case of a decoding failure, bchdec forms the corresponding 

row of decoded by merely removing n-k symbols from the end of the row of 

code. 

[decoded,cnumerr,ccode] = bchdec(deinter_gf,n,k) returns ccode, the corrected 

version of code. The Galois array ccode has the same format as code. If a 

decoding failure occurs in a certain row of code, then the corresponding row in 

ccode contains that row unchanged. [28] 

Step 13: Error Statistics 

zl = double(newmsgl.x); 

disp('Number of errors and error rate, with interleaving;'); 

[number_with,rate_with] = biterr(x,zl) 
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newmsgl is the decoded message that is converted to integer (in complex double 

form) from Galois array by double for use in error statistics. 

The biterr function compares unsigned binary representations of elements in x 

with those in zl. [29] 

BCH Matlab source could be referred in Appendix A. 

3.2 Tools and Software Identification 

This project requires Matlab simulation tool for producing results of encoding and 

decoding for the error correction codes as well as interleaved and non-interleaved 

BCHCodes. 
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CHAPTER4 

RESULTS AND DISCUSSION 

4.1 PERFORMANCE OF BCH CODES WITH VARYING SNR 

The author utilized random integer as message and applied all the BCH 

algorithms. Channel used is A WGN and the performances of bit error rate versus 

signal-to-noise ratio (SNR) of the BCH codes were observed. 

Signal-to-noise ratio is an engineering term for the ratio of power in a signal 

(significant information) to the power contained in a noise that is present during 

transmission [4], [10]. 

SNR = Psignal 
Pnoise 

SNR are usually expressed in terms of logarithmic decibel scale because many 

signals have a very wide dynamic range. In decibels, the SNR is 20 times the base 1 0 

logarithm of the amplitude ratio or 10 times the logarithm of the power ratio: 

SNR = I 0 logw ( Psirmal ) 
Pnoise 

For this project, the SNR was related to the noise variance (No), which is: 

I 
SNR = 10 logw ( -) 

No 
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An error ratio is the ratio of the number of bits, or blocks incorrectly received 

to the total number of bits, or blocks sent during a specified time interval [4] , [10]. 

The error ratio is usually expressed in scientific notation. For example, 2.5 erroneous 

bits out of 1 00,000 bits transmitted would be 2.5 out of I 05 or 2.5 x I o-s. 

Besides that, the bit error ratio for the transmission is the number of erroneous 

bits received divided by the total number of bits transmitted. For the information 

BER, the number of erroneous decoded bits is divided by the total number of decoded 

bits. 

Below are the results that show the error performances of both non­

interleaved and interleaved BCH codes and their performance comparison for a 

certain amount of burst errors which are different from each other. 
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Figure 7: BER vs Eb/No for non-interleaved BCH codes 
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Figure 9: Comparison of BER vs SNR for interleaved and non-interleaved BCH 
Codes 
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4.1.1 Discussions 

From Figure 7, bit error rate (BER) of each BCH codes increases as signal-to­

noise ratio (SNR) increases. It is different compared to the theoretical BER vs SNR 

shown in Figure 14 (Appendix C). This is because of the bursts of errors added in 

BCH codes simulation for non-interleaving. 

Comparing between BCH codes performances, codeword, n = 31 shows the 

highest bit error rate while n = 63 shows the lowest bit error rate. Figure 9 presents a 

clearer comparison of non-interleaved and interleaved BCH codes in terms of BER 

over SNR. This occurs due to the instability of burst errors included where each BCH 

code is provided with different amount of burst errors. Errors for n = 63 and n = 127 

are not that enough to be detected. 

Observing from these graphs, it could be seen that there are several limitations 

that influence the success of interleaving technique. Firstly, it is based on the size of 

burst of errors. For example, to combat bursts of errors of size t equal to a specific 

given burst error size 10 , one needs to implement an algorithm with a set of parameters 

to construct an interleaving code. When size t increases, that is, t > t0 , one needs to 

implement an algorithm with a new set of parameters to construct another 

interleaving code. This means, the interleaved array constructed for a specific t0 may 

not be able to correct a burst of errors of size I as I > 10 • 

Secondly, when the actual size of a burst, I, is less than t0 , with which the 

interleaving algorithm is applied, the technique is no longer optimal which means that 

the interleaving degree reaches its lower bound. 

4.2 PERFORMANCE OF BCH CODES WITH SMALL BURST OF ERRORS 

To prove that size of errors influence interleaving, another simulation is 

performed with reduced size of errors. Figures below show the error performances of 

both non-interleaved and interleaved BCH codes and their performance comparison 

as amount of burst errors included is reduced. For a given communication system, the 

bit error ratio which is the ratio of the number of bits incorrectly received to the total 

number of bits sent during a specified time interval, will be affected by both the data 

transmission rate and the signal power margin. 
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Figure 12: Comparison of BER vs SNR for interleaved and non-interleaved 
BCH Codes 

4.2.1 Discussions 

The result comparison analysis was performed. Figure 10 shows the error 

performances for non-interleaved BCH codes which indicate that the higher the value 

of Signal to Noise Ratio (SNR), the lower the Bit Error Rate (BER). This proves the 

theoretical BER vs SNR shown in Figure 14 (Appendix D). The same goes for 

interleaved BCH codes error performance shown in Figure 11. This is because, as 

SNR increases, the signal power becomes stronger compared to the noise power. 

Therefore, larger and clearer signal could be detected by the receiver. 

Comparing between BCH codes performances, codeword, n = 31 shows the 

highest bit error rate while n = 127 shows the lowest bit error rate, which once again 

match the theoretical BER vs SNR graph. 

From Figure 12, it could be seen that the BER for interleaved is lower than 

the BER for non-interleaved BCH codes. This shows that interleaved BCH codes is 

more efficient where no single data are missing at the receiver for a pack of data sent. 
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Instead, only a little part of a single data is missing as the data were interleaved 

before being sent through channel where burst of errors occurs. Thus, received 

message could be recovered easily. However, there are several points of SNR that 

shows a reverse of the BER performance of interleaved and non-interleaved BCH 

codes. This occurs due to the instability of burst errors included as each BCH code is 

provided with different amount of burst errors. 

4.3 BLOCK LENGTH VS. SIMULATION TIME 
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Figure 13: Block length versus simulation time 

4.3.1 Discussions 

Figure 13 shows that interleaved BCH codes took longer time for the 

additional interleaving/deinterleaving to the encoding/decoding compared to non­

interleaved BCH codes. This is due to the interleaving codes process which adds to 

the codes complexity. 
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Interleaving BCH codes have more codes algorithm to be performed, which 

takes times. Interleaving as mentioned in 1.2.4 is a way to protect data transmission 

from burst errors. Encoded data is frrst interleaved and then burst errors are included. 

Interleaved message with burst errors then enters modulation and channel simulation 

and is deinterleaved before being decoded to obtain transmitted data. 

From the graph, it could also be seen that non-interleaved BCH codes takes 

lesser time to complete. lbis is due to encoding/decoding was performed without 

interleaving, thus the codes algorithm is much simpler than interleaved BCH codes 

algorithm. 
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CHAPTERS 

CONCLUSION & RECOMMENDATION 

5.1 CONCLUSION 

Throughout this project, the author have learnt one of the powerful error 

correcting codes called BCH codes and affect with varying SNR and error size when 

combined with interleaving technique. BCH codes are used in data transmission over 

noisy transmission channel, while interleaving is a technique to protect transmission 

data from burst errors. This error detection would detect errors that are made due to 

noise during the transmission from the transmitter to the receiver and eliminate the 

noise. Interleaving helps improve the performance of error correcting process by 

rearranging encoded data randomly before being transmitted. Burst errors occurred 

during transmission where several data will be missing. When data was deinterleaved 

and decoded, received data can be recovered easily. 

All stages of system methodology are applied and channel used is A WGN. 

Based on the simulation results, it shows that practical BER vs. SNR does not agree 

with theoretical because of the addition of error bursts for the practical simulation. 

Due to frequency of error bursts and the occurrence of other errors caused by channel 

noise, the interleaver should ideally be made as large as possible. Nevertheless, 

interleaver introduces delay into the transmission of the message signal. Therefore, 

the nwords x k array must be filled before it can be transmitted [16]. This is an issue 

in real-time applications concerning voice because it limits the udable block size of 

the interleaver and requires a compromise solution. 

Simulation time increases as number of codewords processed increases. 

During simulation, long BCH codes consumes longer simulation period compared to 

short BCH codes due to number of codewords processed (nwords) i.e. nwords = n­

k. However, for any BCH codes, longer simulation period also occurred if nwords is 
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set to be very high for example nwords = 1000. The very long codeword length are 

producing good decoding efficiency, in other words, the longer the codeword that is 

sent through the channel modulation, the more accurate the decoded data received. 

The implementations of interleaved BCH codes and non-interleaved BCH 

codes in Matlab simulation software for this Final Year project were nearly 

successful. The codes enabled us to analyze the error correction codes and 

interleaving in further detail and research were conducted successfully. 

With interleaving, burst errors in forward error correction can be dispersed. 

Although, interleaving technique would be much more effective if applied in mobile 

fading channel instead of A WON. This is due to burst of errors usually occurs in 

mobile fading environment. 

5.2 RECOMMENDATIONS 

1. Use QPSK, FSK as modulation. 

2. Channel simulation with fast fading channel such as Binary Symmetric 

Channel, Rayleigh and Rician. 

3. Input used to be digital image and video. 
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APPENDIX A 

SOURCE CODE 

clear; clc; 
stl = rand('state'); st2=rand('state'); %States for random number 
generator 

% Codeword length and message length 
for n ~ 31 

k ~ 6; 
nwords = n-k; %number of words to process 

msg ~ gf(randint(nwords,k,2,st1)); 
x_in ~ double(msg.x); 
[genpoly,t] = bchgenpoly(n,k); %tis error-correction 
capability 
code~ bchenc(msg,n,k); % Encode the data 
A~ double(code.x); 

% Create a burst error that will corrupt two adjacent codewords. 
errors= zeros(size(code)); 

for snr ~ 1:10 
x(snr, 1) ~ snr; 
errors(1:100) ~ [1 1 1 1 1 1 1 1 ............ 1 1 1 1 1 1 1 1 
errors(101:174) ~ [1 1 1 1 1 1 1 ............ 1 1 1 1 1 1 1 1 

% With Interleaving 
%------------------
8 = randintrlv(A,st2); % Interleave. 
inter err= bitxor(B,errors); %Include burst error. 

% Enter modulation and channel simulation 
mod= pskmod(inter_err,2); 
channel= awgn(mod,snr); 
C pskdemod(channel,2); 

D = randdeintrlv{C,st2); % Deinterleave. 
deinter_gf = gf(D); 

1 1 
1 1 

[newmsgl,errl,ccodel] = bchdec(deinter_gf,n,k); %Decode 
x_out_with = double(newmsgl.x); 

%disp('Nurnber of errors and error rate, with 
interleaving:'); 

·] ; 

l ; 

[number_with,rate_with] biterr(x_in,x_out_with); %Error 
statistics 
zi1(snr,1) number_with; 
yi1 (snr, 1) rate with; 

% Without Interleaving 
%---------------------
code_err = bitxor(A,errors); %Include burst error. 

% Enter modulation and channel simulation 
mod~ pskmod(code_err,2); 
channel= awgn(mod,snr); 
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end 

n 
k 

end 

r ~ pskdemod(channel,2); 

r2 ~ gf (r); 
[newmsg2,err2,ccode2] ~ bchdec(r2,n,k); %Decode 
x_out_without ~ double(newmsg2.x); 
%disp('Number of errors and error rate, without 
interleaving:'); 
[number_without,rate_without] biterr(x_in,x_out_without); 
% Error statistics 
z1(snr,1) number_without; 
y1(snr,1) ~ rate_without; 

disp (' [x, y1, yi1] '); 
[x, y1, yi1] 

for n ~ 63 
k ~ 7; 
nwords = n-k; %number of words to process 

msg ~ gf(randint(nwords,k,2,st1) ); 
x_in ~ double(msg.x); 
[genpoly,t] ~ bchgenpoly(n,k); %tis error-correction 
capability 
code= bchenc(msg,n,k); %Encode the data 
A= double(code.x); 

% Create a burst error that will corrupt two adjacent codewords. 
errors= zeros(size(code)); 

for snr = 1:10 
x(snr,l) = snr; 
errors(10:399) [ 1 1 1 1 1 ......... 1 1 1 1 1 1 1 1 1 1 1 1 1 1] ; 

errors(700:784) = [1 1 1 1 1 ......... 1 1 1 1 1 1 1 1 1 1 1 1 1]; 

% With Interleaving 
%------------------
8 = randintrlv(A,st2); %Interleave. 
inter_err = bitxor(B,errors); %Include burst error. 

% Enter modulation and channel simulation 
mod~ pskmod(inter_err,2); 
channel= awgn(mod,snr); 
C pskdemod(channel,2); 

D = randdeintrlv(C,st2); % Deinterleave. 
deinter gf = gf(D); 
[newmsgl,errl,ccodel] = bchdec(deinter_gf,n,k); %Decode 
x_out_with ~ double(newmsgl.x); 

%disp('Number of errors and error rate, with 
interleaving:'); 
[number_with,rate_with] biterr(x_in,x_out with); %Error 
statistics 
zi2(snr,l) = number_with; 
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end 

n 
k 

end 

yi2(snr,l} = rate_with; 

% Without Interleaving 
%---------------------
code_err = bitxor{A,errors); %Include burst error. 

% Enter modulation and channel simulation 
mod~ pskmod(code_err,2); 
channel= awgn{mod,snr); 
r ~ pskdemod(channel,2); 

r2 ~ gf(r); 
[newmsg2,err2,ccode2] = bchdec(r2,n,k); %Decode 
x_out_without ~ double(newmsg2.x); 
%disp('Number of errors and error rate, without 
interleaving:'); 
[number_without,rate_without] biterr(x_in,x_out_without); 
% Error statistics 
z2(snr,l) number_without; 
y2(snr,1) ~ rate_without; 

disp(' [x,y2,yi2] '); 
[x,y2,yi2] 

for n ~ 127 
k = 8; 
nwords = n-k; %number of words to process 

msg ~ gf(randint(nwords,k,2,st1)); 
x_in ~ doub1e(msg.x); 
[genpo1y,t] ~ bchgenpoly(n,k); %tis error-correction 
capability 
code~ bchenc(msg,n,k); %Encode the data 
A~ double(code.x); 

% Create a burst error that will corrupt two adjacent codewords. 
errors= zeros(size(code)); 

for snr = 1:10 
x(snr,l) = snr; 
errors(10:399) [1111111 ......... 111111111111]; 

errors(3600:3299) [1 1111111 ...... 1 11111111 1]; 

% With Interleaving 
%------------------
8 = randintrlv(A,st2); %Interleave. 
inter_err = bitxor(B,errors); %Include burst error. 

% Enter modulation and channel simulation 
mod= pskmod(inter_err,2); 
channel= awgn(mod,snr); 
C pskdemod(channe1,2); 

D randdeintrlv(C,st2); % Deinterleave. 
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end 

n 
k 

end 

deinter_gf ~ gf(D); 
[newmsgl,errl,ccodel] = bchdec(deinter gf,n,k); %Decode 
x_out_with ~ double(newmsgl.x); 

%disp('Nurnber of errors and error rate, with 
interleaving:'}; 
[number_with,rate_with] 
statistics 
zi3(snr,l) 
yi3 (snr, 1) 

number_with; 
rate with; 

% Without Interleaving 
%---------------------

biterr(x_in,x_out_with); %Error 

code_err = bitxor(A,errors); %Include burst error. 

% Enter modulation and channel simulation 
mod~ pskmod(code_err,2); 
channel= awgn(mod,snr); 
r ~ pskdemod(channel,2); 

r2~gf(r); 

[newmsg2,err2,ccode2] = bchdec(r2,n,k); %Decode 
x_out_without ~ double(newmsg2.x); 
%disp('Number of errors and error rate, without 
interleaving:'); 
[number_without,rate_without] biterr(x_in,x_out_without); 
% Error statistics 
z3(snr,l) number_without; 
y3(snr,l) ~ rate_without; 

disp(' [x,y3,yi3] '); 
[x, y3, yi3] 

figure, semilogy(x,yl, '-xr', x,y2, '-ob', x,y3, '-+g') 
h = legend('n = 31,k = 6','n = 63,k = 7', 'n = 127,k 8',3); 
set(h, 'Interpreter', 'none') 
xlabel('Eb/No'); 
ylabel('Bit Error Rate (BER) '); 
title('BER versus Eb/No for non-Interleaved BCH Codes'); 

figure, semilogy(x,yil, '-xr', x,yi2, '-ob', x,yi3, '-+g') 
h = legend{'n = 31,k = 6', 'n = 63,k = 7', 'n = 127,k = 8',3); 
set(h, 'Interpreter', 'none') 
xlabel('Eb/No'); 
ylabel('Bit Error Rate (BER) '); 
title('BER versus Eb/No for interleaved BCH Codes'); 

figure, semilogy(x,yl, ':xr',x,yil, '-or', x,y2, ':xb', x,yi2, '-ob', 
X 1 y3 I I : Xg I f X 1 yiJ 1 I -og I ) 

h = legend('n = 31,k = 6(non-interleaved) ', 'n = 3l,k 
6(interleaved)' 'n ~ 63,k ~?(non-interleaved)', 'n ~ 63,k 
?(interleaved)', 'n ~ 127,k ~ 8(non-interleaved)' 'n ~ 127,k 
S(interleaved) ',6); 
set(h, 'Interpreter', 'none') 
xlabel('Eb/No'); 
ylabel('Bit Error Rate (BER) '); 
title('BER versus Eb/No'); 
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n ~ 

31 

k ~ 

6 

[x,y1,yil] 

ans 

1.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

9.0000 

10.0000 

n ~ 

63 

7 

[x,y2,yi2] 

ans 

0.6200 

0.6533 

0.3133 

0.2800 

0.1200 

0.0800 

0.0400 

0 

0 

0 

APPENDIXB 

RESULT 

0.4000 

0.4400 

0.4400 

0.3200 

0.0800 

0.0800 

0.0400 

0 

0 

0 
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1.0000 0.4668 0. 4 4 64 

2.0000 0.3903 0.3189 

3.0000 0.18 62 0.1964 

4.0000 0. 0714 0.1071 

5.0000 0.0179 0.0179 

6.0000 0.0179 0 

7.0000 0 0 

8.0000 0 0 

9.0000 0 0 

10.0000 0 0 

n ~ 

127 

k 

8 

[x, y3, yi3] 

ans 

1.0000 0.4548 0.5189 

2.0000 0.2458 0.2122 

3.0000 0.1208 0.1408 

4.0000 0.0252 0.0252 

5.0000 0.0084 0 

6.0000 0 0 

7.0000 0 0 

8.0000 0 0 

9.0000 0 0 

10.0000 0 0 
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APPENDIXC 

SUBROUTINE MATLAB SOURCE CODE 

1) bchgenpoly.m 

% Initial checks 
error(nargchk(2,3,nargin) ); 

t ~ bchnumerr(N,K); 
t2 ~ 2*t; 

prim _poly ~ 1; 

m ~ log2 (N+l); 

if -isernpty(varargin) 
prirn_poly ~ varargin{1}; 
% Check prirn_poly 
if isernpty(prim_poly) 

if -isnumeric(prirn_poly) 
error('To use the default PRIM_POLY, it must be marked 

by [J. 'I; 
end 

else 
if -isnumeric (prim_poly) I I -is scalar (prim _poly) I I 

(floor(prim_poly) -~ prirn_poly) 
error('PRIM_POLY must be a scalar integer.'); 

end 

if -isprimitive(prim_poly) 
error('PRIM_POLY must be a primitive polynomial.'}; 

end 
end 

end 

% Determine the cosets for this field 
if prim_poly ~~ 1 

coset cosets(rn, [], 'nodisplay'); 
else 

coset cosets(m,prim_poly, 'nodisplay'); 
end 

% For each coset that contains a power of alpha < 2t, add the 
corresponding 
% minimum polynomial to the list of minimum polynomials. Then 
convolve all the 
% minimum polynomials to make the generator polynomial. 
rninpol_list ~ []; 
for idx1 ~ 2 : numel(coset) 

if(any(find(log(coset{idx1})<t2))) %coset contains a power of 
alpha < 2t 

% Compute the minimum polynomial for this coset 
tempPoly ~ 1; 
thisCoset ~ coset{idx1}; 
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for idx2 ~ 1 
tempPoly 

length(thisCoset); 
conv(tempPoly, [1 thisCoset (idx2)]); 

end 

% Zero pad polynomial if necessary 
minPol ~ gf([zeros(1,m+l-length(tempPoly)) tempPoly.x],1); 

% add polynomial to list 
minpol_list [minpol list;minPol]; 

end 
end 

% Convolve all the rows of the rninpol list with each other. 
len= size(rninpol list,l); 
genpoly ~ 1; 
for i = l:len, 

genpoly ~ conv(genpoly,minpol list(i, :)); 
end 

% Strip any leading zeros 
% The size of the generator polynomial should be N-K+l 
genpoly ~ genpoly( end-(N-K) :end); 

2) bchenc.m 

% Initial checks 
error(nargchk(3,4,nargin)); 

% Number of optional input arguments 
nvarargin = nargin - 3; 

% % Fundamental checks on parameter data types 
if -isa(msg, 'gf') 

error('MSG must be a Galois array.'); 
end 

if(msg.m ~~1) 
error('MSG must be in GF(2). '); 

end 

%set and check the parity position 
if(nargin>3) 

parityPos varargin{1}; 
else 

pari tyPos 'end'; 
end 

if( -strcrnp(parityPos, 'beginning') && ~strcrnp{parityPos, 'end') ) 
error ( 'PARI TYPOS must be either ' 'beginning' ' or ' 'end' ' ' ) 

end 

[m_msg, n_msg] ~ size(msg); 

if (n_msg ~~ K) 
error('The message length must equal K. ') 

end 
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% get the generator polynomial 
genpoly ~ bchgenpoly(N,K}; 

% get the generator matrix 
[h, gen] ~ cyclgen(N, (double(genpoly.x} I}; 

% do the coding 
code = msg * gen; 

% rearrange parity if necessary 
%if(isempty(varargin) 11 strcmp(lower(varargin{l}}, 'beginning'}) 
if(strcmp(parityPos, 'end'}) 

code~ [code(:,N-K+1:end), code(:,1:N-K}]; 
end 

3) randintrlv.m 

% --- Usual error checks 
error(nargchk(2,2,nargin}}; 
error(nargoutchk(0,1,nargout}); 

data size 
orig_data 
dimState 

size (data); 
data; 
size(state); 

% Obtains size of DATA 

% Obtains dims of STATE 

% --- Checks if DATA is 1-D row vector 
if (data_size(1) ~~ 1) 

data= data(:); %Converts sequence in DATA to a 
column vector 

data size~ size(data); 
end 

% --- Error checking on input arguments 
if isempty(data) 

error('comm:randintrlv:DataisEmpty', 'DATA cannot be empty. 'I 
end 

if (-isnumeric(data) && -isa(data, 'gf')) 
error('cornm:randintrlv:DataisNotNumeric', 'DATA must be 

numeric. ' ) ; 
end 

if isempty(state) 
error{'cornm:randintrlv:StateisEmpty', 'STATE cannot be empty.') 

end 

if ~isnumeric(state) 
error('comm:randintrlv:StateisNotNumeric', 'STATE must be 

numeric.') 
end 

if -(all (dimState ~~ [1 1] I II all (dimState ~~ [35 1] I I 
error('cornm:randintrlv:InvalidState', 'STATE must be scalar or 

35-by-l. 'I 
end 

% Get the current state of rand, for restoral purposes later 
originalState = rand('state'); 
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rand('state',state); %Set the current state of 
the uniform generator 
int_vec ~ (randperm(data size(1111; %Return a random 
permutation of the integers 1:data size(21 

% Reset the state of rand to its original state 
rand{'state', originalState); 

% --- Reorder sequence of symbols 
intrlved = intrlv{orig_data,int_vec); 

4) pskmod.m 

% Error checks 
if(nargin<21 

error('comm:pskrnod:numarg', 'Too few input arguments.'); 
end 

if (nargin > 4 I 
error('comm:pskrnod:numarg', 'Too many input arguments. '); 

end 

% Check that x is a positive integer 
if (-isreal(xl I I any(any(ceil(xl -~ xll I I -isnumeric(xll 

error('comrn:pskrnod:xreal', 'Elements of input X must be integers 
in the range [0, M-1]. 'I; 
end 

% Check that M 
if (-isreal(MI 
-isnumeric (MI I 

is a positive integer 
I I -is scalar IMI I I M<~O I I (ceil(MI-~M) I I 

error('comm:pskmod:Mreal', 'M must be a scalar positive 
integer. ' ) ; 
end 

% Check that M is of the form 2'K 
if (-isnumeric (M) I I (ceil (log2 (MI I -~ log2 (MI I I 

error('comm:pskmod:Mpow2', 'M must be in the form of M 2AK, 
where K is an integer. '); 
end 

% Check that x is within range 
if ((min(min(xll < 01 II (max(max(xll > (M-1)11 

error('comm:pskrnod:xreal', 'Elements of input X must be integers 
in [ 0, M-1 l . ' I ; 
end 

% Determine initial phase. The 
if (nargin >~ 31 

ini_phase = varargin{l}; 
if (isempty(ini_phase)) 

ini_phase = 0; 

default value is 0 

elseif (-isreal(ini_phasel I I -isscalar(ini_phasel I 
error('comm:pskrnod:ini_phaseReal', 'INI PHASE must be a real 

scalar. '); 
end 

else 
ini _phase 0; 

end 
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% Check SYMBOL ORDER 
if(nargin~~2 I I nargin~~3) 

Symbol_Ordering ~'bin'; %default 
else 

Symbol_Ordering ~ varargin{2}; 
if (-ischar(Symbol_Ordering)) I I 

(-strcmpi(Symbol_Ordering, 'GRAY')) && 
(-strcmpi(Symbol_Ordering, 'BIN')) 

error('comm:pskmod:SymbolOrder', 'Invalid symbol set 
ordering. ') ; 

end 
end 

% --- Assure that X, if one dimensional, has the correct orientation 
--- % 
wid= size(x,l); 
if (wid ~~ 1) 

X ~ X (:); 

end 

% Gray encode if necessary 
if (strcmpi(Symbol_Ordering, 'GRAY')) 

[x_gray,gray_map] ~ bin2gray(x, 'psk',M); 
[tf,index]~ismember(x,gray_map); 

x=index-1; 
end 

% Gray encode 

% Evaluate the phase angle based on M and the input value. The phase 
angle 
% lies between 0 - 2*pi. 
theta ~ 2*pi*x/M; 

%The complex envelope is (cos(theta) + j*sin(theta)). This can be 
% expressed as exp(j*theta). If there is an initial phase, it is 
added 
% to the existing phase angle 
y ~ exp(j*(theta + ini_phase)); 

% --- modulator output must be complex 
if isreal(y) 

y ~ complex(y,O); 
end 

% --- restore the output signal to the original orientation --- % 
if(wid ~~ 1) 

y = Y• I; 
end 

5) awgn.m 

% --- Initial checks 
error(nargchk(2,5,nargin)); 

% --- Value set indicators (used for the string flags) 
pModeSet 0; 
rneasModeSet = 0; 

% --- Set default values 
reqSNR ~ []; 
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sig 
sigPower 
pMode 
measMode 
state 

[ J ; 
0; 
'db'; 
'specify'; 
[ J ; 

% --- Placeholder for the signature string 
sigStr = ' '; 

% --- Identify string and numeric arguments 
for n=l:nargin 

end 

if (n>l) 
sigStr(size(sigStr,2)+1) ~ '/'; 

end 
% --- Assign the string and numeric flags 
if(ischar(varargin{n))) 

sigStr(size(sigStr,2)+1) ~ 's'; 
elseif(isnumeric(varargin{n))) 

sigStr(size(sigStr,2)+1) ~ 'n'; 
else 

error('Only string and numeric arguments are allowed.'); 
end 

% --- Identify parameter signatures and assign values to variables 
switch sigStr 

% --- awgn(x, 
case 'n/n' 

sig 
reqSNR 

% awgn (x, 
case 'n/n/n' 

sig 
reqSNR 
sigPower 

snr) 

varargin{1); 
varargin{2); 

snr, sigPower) 

varargin{l); 
varargin{2); 
varargin{3); 

% awgn(x, snr, 'measured') 
case 'n/n/s' 

sig 
reqSNR 
measMode 

varargin { 1} ; 
varargin { 2}; 
lower(varargin{3}); 

measModeSet = 1; 

% --- awgn(x, snr, sigPower, state) 
case 'n/n/n/n' 

sig 
reqSNR 
sigPower 
state 

varargin{l}; 
varargin{2}; 
varargin{3}; 
varargin{4}; 

% --- awgn(x, snr, 'measured', state) 
case 'n/n/s/n' 

sig 
reqSNR 
measMode 
state 

measModeSet 

varargin{l}; 
varargin{2); 
lower(varargin{3)); 
varargin { 4} ; 

1; 
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% --- awgn(x, snr, sigPower, 'dbllinear') 
case 'n/n/n/s' 

end 

sig varargin{l}; 
reqSNR varargin{2}; 
sigPower varargin{3}; 
pMode lower(varargin{4}}; 

pModeSet = 1; 

% --- awgn(x, snr, 'measured', 'dbllinear') 
case 'n/n/s/s' 

sig varargin{l}; 
reqSNR varargin{2}; 
measMode lower(varargin{3}); 
pMode lower(varargin{4}); 

measModeSet 1; 
pModeSet 1; 

% --- awgn(x, snr, sigPower, state, 'db I linear') 
case 'n/n/n/n/s' 

sig 
reqSNR 
sigPower 
state 
pMode 

varargin{1}; 
varargin{2}; 
varargin{3}; 
varargin { 4}; 
lower(varargin{5}); 

pModeSet = 1; 

% --- awgn(x, snr, 'measured', state, 'db I linear') 
case 'n/n/s/n/s' 

sig 
reqSNR 
measMode 
state 
pMode 

measModeSet 
pModeSet 

otherwise 

varargin{l}; 
varargin{2}; 
lower(varargin{3}); 
varargin{4}; 
lower(varargin{5}); 

1; 
1; 

error('Syntax error.'); 

% --- Parameters have all been set, either to their defaults or by 
the values passed in, 
% so perform range and type checks 

% sig 
if(isempty(sig)) 

error('An input signal must be given.'); 
end 

if(ndims(sig)>2) 
error('The input signal must have 2 or fewer dimensions.'); 

end 

% --- measMode 
if(measModeSet) 
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if(~strcmp(measMode, 'measured'}} 
error('The signal power parameter must be numeric or 

''measured''.'); 
end 

end 

% --- pMode 
if(pModeSet) 

switch pMode 
case {'db' 'linear'} 
otherwise 

error('The signal power mode must be ''db'' or ''linear''.'); 
end 

end 

% -- reqSNR 
if(any([-isreal(reqSNR) (length(reqSNR)>l) (length(reqSNR)--0)])) 

error{'The signal-to-noise ratio must be a real scalar.'}; 
end 

if(strcmp(pMode, 'linear')) 
if(reqSNR<-0) 

error('In linear mode, the signal-to-noise ratio must be > 
0 • I) i 

end 
end 

% --- sigPower 
if(-strcmp(measMode, 'measured')) 

%---If measMode is not 'measured', then the signal power must 
be specified 

if (any ( [-isreal (sigPower) (length ( sigPower) >1) 
(length(sigPower)--0)])) 

end 

error('The signal power value must be a real scalar.'); 
end 

if(strcmp(pMode, 'linear')) 
if(sigPower<O) 

end 

error('In linear mode, the signal power must be>= 0. '); 
end 

% --- state 
if(-isempty(state)) 

if(any([-isreal(state) (length(state)>l) (length(state)--0) 
any((state-floor(state))--0)])) 

end 

error('The State must be a real, integer scalar.'); 
end 

% All parameters are valid, so no extra checking is required 

% --- Check the signal power. This needs to consider power 
measurements on matrices 
if{strcmp(measMode, 'measured')} 

sigPower- sum(abs(sig(:)) .A2)/length(sig(:)); 
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if(strcmp(pMode, 'db')) 
sigPower = lO*loglO(sigPower); 

end 
end 

% --- Compute the required noise power 
switch lower(pMode) 

case 'linear' 
noise Power sigPower/reqSNR; 

case 'db' 
noisePower sigPower-reqSNR; 
pMode = 'dbw'; 

end 

% --- Add the noise 
if (isreal ( sig) ) 

opType 'real'; 
else 

opType 
end 

'complex'; 

y = sig+wgn{size{sig,l), size(sig,2), noisePower, 1, state, pMode, 
opType); 

6) pskdemod.m 

% Error checks 
if(nargin<2) 

error('comm:pskdemod:numarg', 'Too few input arguments.'); 
end 

if (nargin > 4) 
error('comm:pskdemod:numarg', 'Too many input arguments. '); 

end 

%Check y, m 
if( ~isnumeric(y)) 

error{'comm:pskdemod:Ynum', 'Y must be numeric.'); 
end 

% Checks that M is positive integer 
if (~isreal (M) II ~isscalar (M) I I M<=O I I (ceil (M) ~=M) I I 
~isnumeric (M)) 

error('comm:pskdemod:Mreal', 'M must be a scalar positive 
integer. ' ) ; 
end 

% Checks that M is in of the form 2AK 
if (~isnumeric (M) II (ceil (log2 (M)) ~= log2 (M))) 

error('comm:pskdemod:Mpow2', 'M must be in the form of M 2AK, 
where K is an integer. '); 
end 

% Determine INI PHASE. The default value is 0 
if (nargin >= 3) 

ini_phase = varargin{l}; 
if (isempty(ini~phase)) 

ini_phase = 0; 
elseif (~isreal(ini~phase) I I ~isscalar(ini~phase)) 
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error('comm:pskdemod:Ini_phaseReal', 'INI PHASE must be a 
real scalar. 1 

) ; 

end 
else 

ini_phase 0; 
end 

% Check SYMBOL ORDER 
if(nargin~~2 I I nargin~~J 

Symbol_Ordering = 'bin'; %default 
else 

Symbol Ordering~ varargin(2}; 
if (-ischar(Symbol_Ordering}} II 

(-strcmpi(Symbol_Ordering, 'GRAY')) && 
(-strcmpi(Symbol_Ordering, 'BIN')) 

error('cornrn:pskdemod:SymbolOrder', 'Invalid symbol set 
ordering. 1

) ; 

end 
end 

% End error checks 

% Assure that Y, if one dimensional, has the correct orientation 
wid= size{y,l); 
if (wid~~l) 

y ~ y I:); 
end 

% De-rotate 
y ~ y .* exp(-i*ini_phase); 

% Demodulate 
normFactor 
domain to 

M/(2*pi); %normalization factor to convert from PI-

% linear domain 
% convert input signal angle to linear domain; round the value to 
get ideal 
% constellation points 
z ~ round((angle(y) * normFactor)); 
% move all the negative integers by M 
z(z < 0) ~ M + z(z < 0); 

% --- restore the output signal to the original orientation --- % 
if(wid ~~ 1) 

z = z'; 
end 

% Gray decode if necessary 
if (strcmpi(Symbol_Ordering, 'GRAY')) 

[z_degray,gray_map] ~ gray2bin(z, 'psk',M); %Gray decode 
% --- Assure that X, if one dimensional, has the correct 

orientation --- % 

end 

if(size(z,1) ~~ 1) 

else 

end 

temp~ zeros(size(y)); 
temp(:) ~ gray_map(z+1); 
z ( : ) ~ temp ( : ) ; 

z ~ gray_map(z+1); 
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7) randdeintrlv.m 

% --- Usual error checks 
error(nargchk(2,2,nargin)); 
error(nargoutchk(0,1,nargout)); 

data size size (data); 
orig_data data; 
dimState size (state); 

% 

% 

% Checks if DATA is 1-D column 
if (data size(l) -- 1) 

data = data (:) ; % 
column vector 

data size= size(data); 
end 

Obtains 

Obtains 

vector 

Converts 

% --- Error checking on input arguments 
if isempty(data) 

size of DATA 

dims of STATE 

sequence in DATA to a 

error('comm:randdeintrlv:DataisEmpty', 'DATA cannot be empty.') 
end 

if (-isnumeric(data) && -isa(data, 'gf')) 
error('comm:randdeintrlv:DataisNotNumeric', 'DATA must be 

numeric. ') ; 
end 

if isempty(state) 
error('comm:randdeintrlv:StateisEmpty', 'STATE cannot be empty.') 

end 

if -isnumeric(state) 
error('comm:randdeintrlv:Stateis~otNumeric', 'STATE must be 

numeric.') 
end 

if -(all (dimState == [1 1]) I I all (dimState == [35 1])) 
error('comm:randdeintrlv:InvalidState', 'STATE must be scalar or 

35-by-1..) 
end 

% Get the current state of rand, for restoral purposes later 
originalState = rand('state'); 

rand('state',state); %Set the current state of 
the uniform generator 
int_vec = (randperm(data_size(1))); %Return a random 
permutation of the integers 1:data_size(2) 

% Reset the state of rand to its original state 
rand('state', originalState); 

% --- Rearrange sequence of symbols 
deintrlved = deintrlv(orig_data,int_vec); 
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8) bchdec.m 

error(nargchk(3,4,nargin)); 

% Fundamental checks on parameter data types 
if ~isa(code, 'gf') 

error('CODE must be a Galois array.'}; 
end 

if (code.m~~l) 
error('Code must be in GF(2). '); 

end 

% Check mandatory parameters code, N, K, t 

% --- code 
if isempty(code.x) 

error('CODE must be a nonempty Galois array.'); 
end; 

% --- width of code 
[m_code, n_code] = size(code); 
if N ~= n code 

error('CODE must be either aN-element row vector or a matrix 
with N columns.'); 
end 

% Set and check the parity position 
if(nargin>3) 

parityPos varargin{l}; 
else 

parityPos 'end'; 
end 

if( ~strcmp(parityPos, 'beginning') && ~strcmp(parityPos, 'end') ) 
error('PARITYPOS must be either ''beginning'' or ''end'' ') 

end 

% Get the number of errors we can correct 
t = bchnumerr(N,K); 

% Bring the code word into the extension field 
M ~ log2(N+l); 
code~ gf(code.x,M); 

% Ensure that the code format into the berlekamp function is [msg 
parity], since 
% the function works only in that mode. The berlekamp function also 
takes care 
% of prepending zeros for shortened codes. 
if strcmp(parityPos, 'beginning') 

code= [code(:,N-K+l:n_code) code(:,l:N-K)]; 
end 

% Pre-allocate memory. Each element in this column vector holds the 
number of 
% errors in the corresponding row 
decoded gf(zeros(m_code, K)); 
cnumerr zeros(m_code,l); 
ccode gf(zeros(m_code, N)); 
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for j = 1 : m_code, 

% Call to core algorithm BERLEKAMP 
inputCode code(j,:); 
inputCodeVal inputCode.x; 
b 1; % narrow-sense codeword 
shortened 0; % no shortened codewords 
inWidth length(code(j, :)); 
[decodedint cnurnerr(j) ccodeint] = berlekarnp(inputCodeVal, 

N, 

end 

decoded(j,:) 
ccode (j,:) 

gf(decodedint); 
gf(ccodeint); 

K, 
M, 
t, 
b, 
shortened, 
inWidth); 

% If necessary, flip message and parity symbols in corrected 
codeword, undoing 
% the flip prior to decoding. 
if strcmp(parityPos, 'beginning') 

ccode = [ccode(:,K+l:n_code) ccode(:,l:K)]; %#ok 
end 

9) biterr.m 

% --- Typical error checking. 
error(nargchk(2,4,nargin)); 

% --- Placeholder for the signature string. 
sigStr = ''; 

flag = I I i 

K = []; 

% --- Identify string and numeric arguments 
for n=l:nargin 

end 

if(n>l) 
sigStr(size(sigStr,2)+1) = '/'; 

end 
% --- Assign the string and numeric flags 
if(ischar(varargin{n})) 

sigStr(size(sigStr,2)+1) = 's'; 
elseif(isnurneric(varargin{n})) 

sigStr(size(sigStr,2)+1) = 'n'; 
else 

error('Only string and numeric arguments are accepted.'); 
end 

% --- Identify parameter signitures and assign values to variables 
switch sigStr 

% --- biterr(a, b) 
case 'n/n' 

a 
b 

varargin{l}; 
varargin{2}; 
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% --- biterr(a, b, K) 
case 'n/n/n' 

a 
b 
K 

varargin(l); 
varargin{2}; 
varargin(3); 

% --- biterr(a, b, flag} 
case 'n/n/s' 

a 
b 
flag 

varargin{ 1}; 
varargin(2); 
varargin(3); 

% --- biterr(a, b, K, flag) 
case 'n/n/n/s' 

a varargin(l); 
b varargin(2); 
K varargin(3); 
flag varargin(4); 

% biterr(a, b, flag, K) 
case 'n/n/s/n' 

a 
b 
flag 
K 

varargin { 1} ; 

varargin(2); 
varargin(3); 
varargin(4); 

% --- If the parameter list does not match one of these 
signatures. 

otherwise 
error('Syntax error.'); 

end 

if (isempty(a)) II (isempty(b)) 
error('Required parameter empty.'}; 

end 

if -(min(min(isfinite(a))) && rnin(min(isfinite(b)))) I I -(isreal(a) 
& isreal(b)) II max(max(a<O)) II max(max(b<O)) II 
max(max(floor(a)-~a)) I I max(max(floor(b)-~b)) 

error('Inputs must be finite, real, positive integers.'); 
end 

% Determine the sizes of the input matrices. 
[am, an] size (a); 
[bm, bn] ~ size(b); 

% If one of the inputs is a vector, it can be either the first or 
second input. 
% This conditional swap ensures that the first input is the matrix 
and the second is the vector. 
if ((am~~l) && (bm>l)) II ((an 1) && (bn>l)) 

[a, b] ~ deal (b, a); 
[am, an] size(a); 
[bm, bn] ~ size(b); 

end 

% Check the sizes of the inputs to determine the default mode of 
operation. 
if ( (bm ~~ 1) && (am > 1) I 
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default mode= 'row-wise'; 
if (an -= bn) 

error ( 'Input row vector must contain 
there are columns in the input matrix.'); 

end 
elseif ( (bn == 1) && (an > 1)) 

default_mode ='column-wise'; 
if (am ~= bm) 

as many elements as 

error('Input column vector must contain as many elements as 
there are rows in the input matrix.'); 

else 

end 

end 

default mode= 'overall'; 
if (am ~= bm) I I (an ~= bn) 

error('Input matrices must be the same size.'); 
end 

% Check that the user specified mode of operation is valid. 
if isempty(flag) 

flag = default_mode; 
elseif - (strcmp(flag, 'column-wise') II strcmp(flag, 'row-wise') II 
strcmp(flag, 'overall')) 

error('Invalid string flag.'); 
elseif strcmp(default_mode, 'row-wise') && strcmp(flag, 'column-wise') 

error('A column-wise comparison is not possible with a row 
vector input.'); 
elseif strcrnp(default_mode, 'column-wise') && strcrnp(flag, 'row-wise'} 

error('A row-wise comparison is not possible with a column 
vector input.'); 
end 

% Determine the minimum number of bits needed to represent the 
matrices. 
tmp =max( max(max(a)), max(max(b)) ); 
if (tmp > 0) 

syrn_len floor( log(tmp) I log(2) ) + 1; 
else 

syrn_len 1· ' 
end 

% Check that the user specified 'symbol length' is valid. 
if ~isempty(K) 

if max(size(K)) > l 
error('Word length must be a scalar.'); 

elseif (-isfinite (K)) II (floor (K) ~=K) II (~isreal (K)) 
error('Word length must be a finite, real integer.'); 

elseif K < syrn_len 
error('The specified word length is too short for the matrix 

elements.'); 
else 

sym_len K; 
end 

end 

a2 toBinary(a, syrn_len); 
b2 toBinary(b, syrn_len); 

% Two separate flags are needed for the function to operate 
efficiently. 
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% 'default mode' specifices if one of the inputs is actually a 
vector while 
% the other is a matrix, meaning that the vector should be compared 
with each 
% individual row or column of the matrix. 'flag' (which the user 
specifies) 
% specifies how the results of this comparison are reported. 

if strcrnp(default~rnode, 'overall') 
if strcmp(flag, 'column-wise') 

for i = l:an 
num(1,i) ~ surn(surn(a2(:,((i-1)*sym len+1):(i*sym len)) 

b2 (:, ( (i-1) *sym~len+1): (i*sym~len)))); 
end 
rat~ nurn I (arn*sym~len); 

elseif strcmp(flag, 'row-wise') 
num surn(a2-~b2,2); 

rat nurn I (an*sym~len); 

else 
nurn surn(surn(a2-~b2)); 

rat num I (arn*an*syrn_len); 
end 
if (nargout > 2) 

loc = zeros(arn,an}; 
for i ~ 1:an 

loc (:, i) ~ sum( (a2 (:, ( (i-1) *sym~1en+1): (i*sym~len)) 
b2 (:, ( (i-1) *sym~len+l): (i*sym~len))), 2); 

end 
end 

elseif strcmp(default_mode, 'column-wise') 
if (nargout < 3) 

for i = 1: an, 
num(1,i) ~ sum(sum(a2(:,((i-

1)*sym~len+1): (i*sym~len))-~b2)); 

else 
end 

loc = zeros(am,an); 
for i = l:an, 

loc(:,i) sum( (a2(:, ( (i-1)*sym~len+1): (i*sym len)) 
b2) ' 2) ; 

else 

num(1,i) sum ( loc ( : , i) ) ; 
end 

end 
if strcmp(flag, 'overall') 

num sum (nurn); 

rat nurn I (am*an*syrn_len); 
else 

rat nurn I (arn*sym~len); 

end 

if (nargout < 3) 
for i = l:am, 

else 

num(i,1) ~ sum(a2(i,:)-~b2); 

end 

loc = zeros(am,an}; 
for i = 1: an 

for j ~ 1:arn 
loc(j,i) ~sum( (a2(j, ( (i-1)*sym len+l): (i*sym len)) 

b2 (1, ( (i-1) *sym~len+1): (i*sym~len))), 2); 
end 

end 
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num(:,l) ~ sum(loc,2); 
end 
if strcmp(flag, 'overall') 

num sum (num) ; 
rat num I (am*an*sym_len); 

else 
rat num I (an*sym_len); 

end 
end 

%%% 
function b = toBinary(a, sym_len) 
% Convert matrix to binary representation 

[am an] ~ size(a); 
b de2bi(a(:), sym_len); 

% block transpose 
b ~ reshape(permute(reshape(b', sym_len, am, an), [2 1 3]), am, 
sym _len*an); 
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APPENDIXD 

GRAPH OF THEORETICAL BER VS SNR 
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Figure 14: Theoretical BER vs Eb/No 
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