
PERFORMANCE COMPARISON OF NON-INTERLEAVED BCH CODES
AND INTERLEAVED BCH CODES

By

NUR DIANA BINTI MOHD. NUR1

FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2008

by

Nur Diana binti Mohd. Nuri, 2008

1

CERTIFICATION OF APPROVAL

PERFORMANCE COMPARISON OF NON-INTERLEAVED BCH CODES
AND INTERLEAVED BCH CODES

Approved:

by

Nur Diana binti Mohd. Nuri

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Mr. Azizuddin bin Abdul Aziz

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2008

11

CERTIFICATION OF ORIGINALITY

This is to certifY that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

iii

ABSTRACT

This project covers the research about the BCH error correcting codes and the

performance of interleaved and non-interleaved BCH codes. Both long and short

BCH codes for multimedia communication are examined in an A WGN channel.

Algorithm for simulating the BCH codes was also being investigated, which includes

generating the parity check matrix, generating the message code in Galois array

matrix, encoding the message blocks, modulation and decoding the message blocks.

Algorithm for interleaving that includes interleaving message, including burst errors

and deinterleaving message is combined with the BCH codes algorithm for

simulating the interleaved BCH codes. The performance and feasibility of the coding

structure are tested. The performance comparison between interleaved and non­

interleaved BCH codes is studied in terms of error performance, channel performance

and effect of data rates on the bit error rate (BER). The Berlekamp-Massey Algorithm

decoding scheme was implemented. Random integers are generated and encoded with

BCH encoder. Burst errors are added before the message is interleaved, then enter

modulation and channel simulation. Interleaved message is then compared with non­

interleaved message and the error statistics are compared. Initially, certain amount of

burst errors is used. "ft is found that the graph does not agree with the theoretical bit

error rate (BER) versus signal-to-noise ratio (SNR). When compared between each

BCH codeword (i.e. n = 31, n = 63 and n = 127), n = 31 shows the highest BER while

n = 127 shows the lowest BER. This happened because of the occurrence of error

bursts and also due to error frequency. A reduced size or errors from previous is used

in the algorithm. A graph similar to the theoretical BER vs SNR is obtained for both

interleaved and non-interleaved BCH codes. It is found that BER of non-interleaved

is higher than interleaved BCH codes as SNR increases. These observations show that

size of errors influence the effect of interleaving. Simulation time is also studied in

terms of block length. It is found that interleaved BCH codes consume longer

simulation time compared to non-interleaved BCH codes due to additional algorithm

for the interleaved BCH codes.

IV

ACKNOWLEDGEMENTS

Completion of this final year project would not have been possible without the

assistance and guidance of certain individuals. Their contribution both technically and

mentally is highly appreciated. I would like to thank the FYP committees of EE

Department for their effort and commitment in ensuring smooth planning and

scheduling of FYP lectures, seminars and presentations.

In particular, I would like to express my sincere and utmost appreciation to my

supervisor, Mr. Azizuddin Abdul Aziz for his guidance, advice and commitment

throughout the process of conducting the final year project. His concerns toward the

project have helped me tremendously in achieving the objectives.

I would also like to express my gratitude towards Ms. Siti Hawa Tahir who is an FYP

committee for her cooperation in guiding me on the project reports and stuff

throughout the period of project's accomplishment.

Thanks are extended to my housemates-cum-coursemates, Nurul 'Atikah Mahzan,

Najwa Ayub, Siti Anis Iylia Zainal, Ainol Hayati Mustafa and several others for their

support and contribution in this project specifically regarding MATLAB

programming.

Last but not least, I would like to thank both my parents En. Mohd. Nuri Bakar and

Puan Puteri Nazirah Megat Hussain and several university mates, especially

Mohammad Raziswady Salim for their moral supports and for being there whenever I

need them.

v

TABLE OF CONTENTS

ABSTRACT .. .iv

ACKNOWLEDGEMENT .. v

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS .. ix

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND OF STUDY ... !

1.2 PROBLEM STATEMENT ... 3

1.2.1 Importance of error correction codes 3

1.2.2 Applications of error correction codes4

1.2.3 Importance of interleaving ... 5

1.2.4 Applications of interleaving ... 6

1.2.5 Significant of the project .. tO

1.3 OBJECTlVES ... 10

1.4 SCOPES OF STUDY ... 11

CHAPTER 2 LITERATURE REVIEW AND THEORY ... l2

2.1 Supporting information .. 12

2.2 Title Definition ... 13

2.3 BCH Codes ... l3

2.3.1 BCH Codes Parameters .. l4

2.3 .2 Galois Array ... 15

2.3.3 Decoding ofBCH Codes ... I6

2.4 Berlekamp-Massey Algorithm (BMA) ... 17

2.5 Interleaving Technique ... 17

2.5 .1 Block interleaving .. I 8

2.5.2 Convolutional interleaving ... l9

2.5.3 Random interleaving .. 20

2.6 Finite-State Channel (FSC) Model ... 20

CHAPTER 3 METHODOLOGY .. 21

3.1 Procedure Identification ... 21

3.1.1 Interleaved BCH Codes Algorithm .. 22

vi

3.2 Tools and Software Identification .. 26

CHAPTER4 RESULTS AND DISCUSSION ... 27

4.1 PERFORMANCE OF BCH CODES WITH VARYING SNR. 27

4.1.1 Discussions .. 30

4.2 PERFORMANCE OF BCH CODES WITH SMALL BURST
OF ERRORS ... 30

4.2.1 Discussions .. 32

4.3 BLOCK LENGTH VS. SIMULATION TIME 33

4.3.1 Discussions .. 33

CHAPTER 5 CONCLUSION & RECOMMENDATION ... 35

5.1 CONCLUSION , .. 35

5.2 RECOMMENDATIONS ... 36

REFERENCES .. 37

APPENDICES ... 40

Appendix A SOURCE CODE.. .. 41

Appendix B RESULT ... 45

Appendix C SUBROUTINE MATLAB SOURCE CODE 47

Appendix D GRAPH OF THEORETICAL BER VS SNR 64

Vll

LIST OF FIGURES

Figure 1: Bell curve [13] ... 5

Figure 2: Low-level format utility performing interleave speed tests on a 10-megabyte
IBM PC XT hard drive [31] ... 7

Figure 3: Block Diagram of a general communication system 12

Figure 4: Model of the Project .. 13

Figure 5: Block interleaver sturucture [16] ... 18

Figure 6: Step-by-step System Methodology .. 21

Figure 7: BER vs Eb/No for non-interleaved BCH codes ... 28

Figure 8: BER vs Eb/No for interleaved BCH codes .. 29

Figure 9: Comparison of BER vs SNR for interleaved and non-interleaved BCH
Codes .. 29

Figure I 0: BER vs Eb/No for non-interleaved BCH codes for smaller error burst 31

Figure II: BER vs Eb/No for interleaved BCH codes for smaller error burst... 31

Figure 12: Comparison of BER vs SNR for interleaved and non-interleaved BCH
Codes .. 32

Figure 13: Block length versus simulation time .. 33

Figure 14: Theoretical BER vs Eb/No .. 64

Vlll

AWGN

BCH

BMA

BPSK

BSC

DNS

EA

ECC

FEC

FSK

IP

JPEG

MPEG

RS

TCP

TFTP

UDP

LIST OF ABBREVIATIONS

Additive White Gaussian Noise

Bose Chaudhuri Hocquenghem

Berlekamp - Massey algorithm

Binary Phase-Shift Keying

Binary-symmetric Channel

Domain Name System

Euclidean algorithm

Error Correction Code

Forward Error Correction

Frequency Shift Keying

Internet Protocol

Joint Photographic Experts Group

Moving Picture Experts Group

Reed-Solomon

Transfer Control Protocol

Trivial File Transfer Protocol

User Datagram Protocol

IX

CHAPTER I

INTRODUCTION

1.1 BACKGROUND OF STUDY

The information revolution is vigorously proceeding over the last thirty or so

years. Lots of web pages on computers are connected to the Internet [3]. More data

are coming in and out of the networks, thus, the reliability of the systems is at risk. It

made people wonder of a solution for good data to get through poor networks intact.

The BCH abbreviation stands for the inventors, Hocquenghem in 1959, then

later by Bose and Chaudhuri in 1960 independently. The BCH codes form a large

class of cyclic codes which is the generalization of the Hamming codes for multiple

error correction [2]. BCH codes were generalized to code in pm symbols by

Gorenstein and Zierler in 1961 [4]. The first decoding algorithm for BCH codes were

devised by Peterson in 1960 and was then generalized and refmed by Gorenstein and

Zierler, Chien, Forney, Berlekamp, Massey, Burton and others. Among all the

decoding algorithms for BCH codes, Berlekamp's iterative algorithm and Chien's

search algorithm are the most efficient ones.

The Noisy Channel Coding Theorem which was discovered by C. E. Shannon

in 1948 claims that it is possible to communicate error-free digital data or information

up to a given maximum rate through the channel regardless of how contaminated with

noise interference a communication channel may be [4]. The theoretical maximum

information transfer rate of the channel is with respect to Shannon limit.

Interleaving is a key component of many digital communication systems

involving forward error correction (FEC) coding [11]. Burst errors overwrite a lot of

bits in a row, but they seldom occur. Thus, interleaving the encoded symbols provides

a form of time diversity to protect the transmission against these errors. All data is

transmitted with some control bits (independently from the interleaving), such as

error correction bits, that enable the channel decoder to correct a certain number of

1

altered bits. The codeword cannot be correctly decoded if a burst error occurs, and

more than this number of bits is altered. So the bits of a number of codeword are

interleaved and then transmitted. Thus, a burst error affects only a correctable number

of bits in each codeword, so the decoder can decode the codeword correctly [12].

Recently, interleavers have become an even more integral part of the code

design itsel£ In the past, the interleaving strategy was weakly linked to selected FEC

scheme with the exceptions to concatenated FEC schemes such as concatenated

convolutional and RS codes. Parameters are carefully selected to match the error

correcting capabilities of the codes involved [II]. As for error control code, block

code and convolutional code are most widely used in a variety of applications [1].

For convolutional codes, error correcting capacity increases with the

constraint length and the trellis dimension with the coding increase exponentially [I].

The time delay of decoding and deinterleaving is sometimes very large for interleaved

convolutional codes. This is not permitted in time-sensitive applications. In block

codes, algebraic decoding algorithm and regular structure reduce coding delay and

complexity. Furthermore, since the data errors can be controlled to reasonable range,

the complexity which also required cost and effort for error correction mechanism can

be reduced by utilizing interleaving method.

The use of interleaved convolutional code for image transmission over fading

channel has been observed in "Research on error-correcting scheme of image

transmission" by D. F. Yuan and J. J. Luo. They found that the image quality with

this error control scheme is not satisfactory. Furthermore, questions arise on the

complexity and the time delay. In [32], the performance of interleaved BCH codes

was estimated using the parameters of Binary-symmetric Channel (BSC). The

simulation results show that it is very practical and efficient to estimate the

performance of interleaved BCH codes applied to the mobile channel by using BSC

when the degree of interleaving is large enough. The use of convolutional code with

a novel interleaving scheme to improve image quality has been studied in [33] and it

was proven that the scheme proposed is more suitable to image transmission in

mobile fading channels compared to interleaved BCH codes.

2

1.2 PROBLEM STATEMENT

The International Standard Book Number (ISBN) system identifies every

book with a ten-digit number, such as 0-226-53420-0. The frrst nine digits are the

actual number but the tenth is added according to a mathematical formula based on

the first nine. Any single change in the digit can be verified by a simple check. Some

high-end computer memory chips, "ECC RAM," use extended nine-bit bytes. The

ninth bit, or "check bit," is always set so that the total number of ones in the extended

byte is even. This is called a "checksum" where an error is detected if the sum of the

nine bits is not even.

All these processes can detect a single error in short notice but they cannot

correct any error that is detected. Moreover, combinations of two or more errors

occurring within the message will not be sensed.

BCH codes are originally designed to fit random-error-correction, and not fit

for fading channels. In order to reuse BCH codes, we must first disperse burst errors

[1). Error control coding is combined with interleaving technique which is simple and

effective to combat long burst errors. We study two encoding techniques using BCH

codes; non-interleaved BCH codes and interleaved BCH codes. The comparison

study is important in order to implement proper applications for error correction

codes based on the projects' constraints such as time for decoding and codes'

complexity.

1.2.1 Importance of error correction codes

The need for consistent and efficient digital data communication systems has

been gradually increasing in recent years. Among the various reasons that have

brought this need are the enhancement in automatic data processing equipment and

the increased need for long range communication. Thus, the BCH codes were

developed. The significant applications that require the error correction codes are

Internet, deep space communications, and satellite broadcasting.

3

1.2.2 Applications of error correction codes

Internet

Error detection is performed at multiple levels in a typical TCPIIP stack. Each

Ethernet frame carries a CRC-32 checksum. The receiver discards frames with

unmatch checksums. Ethernet is a frame-based computer networking technology for

local area networks (LANs). A checksum is a form of redundancy check, which is

extra data added to a message for the purpose of error detection and error correction.

A redundancy check is a very simple measure for protecting the reliability of data by

detecting errors in data that is sent through space (telecommunications) or time

(storage). [10]

User Datagram Protocol (UDP) has an optional checksum. Packets found to

have incorrect checksums are thrown out. [4, 10] Among common network

applications are the Domain Name System (DNS), for example,

http://elearning.utp.edu.my, streaming media applications, Voice over IP, Trivial File

Transfer Protocol (TFTP), and online games.

Transfer Control Protocol (TCP) has a checksum of the payload, TCP header

and IP header source and destination addresses. Packets with wrong checksums are

discarded and eventually get retransmitted when the sender receives a triple-ack or

time-out occurs. [4, 10] By using TCP, networked hosts can swap information or

packets, thus, create connections to one another. The protocol ensures that delivery

from sender to receiver is reliable and in sequence. TCP also distinguishes data for

multiple, concurrent applications such as Web server and email server that were

conducted by the same host. TCP supports many internet's application protocols and

resulting applications, for instance, World Wide Web, email and Secure Shell.

Deep Space Telecommunication

NASA has used many different error correcting codes. For missions between

1969 and 1977 the Mariner spacecraft used a Reed-Muller code. The noise these

spacecraft were subject to was well approximated by a "bell-curve" (normal

distribution), so the Reed-Muller codes were well suited to the situation. [4]

4

0.9

o.s

o:;

0.6

05

/

0.2

(\
' '

·.' ,,
' ; .
'.

' '

~= 0 O)=H""' --
~= o:~= l:o
~I "' 0, 0'~ -.: 5.0 -~~--·'"

J!t::.<!.d"-..,fL'i ~-

' ' \ .'__?----l. .
/ ~-"T ·,~

__ --:i-·""_...,..-- -. / \ \ ·-. -------'-- ------~-0.1

0 ~---- / '--
u 2 J J

Figure 1: Bell curve (13]

The standard normal distribution is the normal distribution with a mean of

zero and a standard deviation of one. It is often called the bell curve because the

graph of its probability density resembles a bell.

Satellite Broadcasting

The demand for satellite transponder bandwidth continues to grow, fueled by

the desire to deliver television, including new channels and High Defmition TV and

IP data. An automatic device that receives, amplifies, and retransmits a signal on a

different frequency. Transponder availability and bandwidth constraints have limited

this growth, because transponder capacity is determined by the selected modulation

scheme and Forward Error Correction (FEC) rate. FEC is a system of error control for

data transmission. [4]

1.2.3 Importance of interleaving

The adverse environment of wireless channel causes long burst errors

frequently and where bandwidth is limited, digital data must be greatly compressed

before transmission. The multimedia data suffer from burst errors badly and the

transmission quality is very poor [l].

FEC coding provides a prevailing technique for transmitting information­

bearing data reliably from a source to a sink across the wireless channel. However, to

achieve the maximum benefit from FEC coding in many wireless channels, an

5

additional technique known as interleaving is required. The need for this new

technique is justified based on the fact that wireless channels have memory due to

multipath fading which is described as the arrival of signals at the receiver via

multiple propagation paths at different lengths [16]. The significant applications that

require the interleaving are time-division multiplexing (TDM) in telecommunications,

disk storage and data transmission.

1.2.4 Applications of interleaving

Time-division Multiplexing (TDM) in Telecommunication

Synchronous time division multiplexing is possible when the achievable data

rate (or bandwidth) of the medium exceeds the data rate of digital signals to be

transmitted. Multiple digital signals (or analog signals carrying digital data) can be

carried on a single transmission path by interleaving portions of each signal in time.

The interleaving can be at the bit level or in blocks of bytes or larger quantities [10].

Disk Storage

Historically, interleaving was used in ordering block storage on disk-based

storage devices such as the floppy disk and the hard disk. The primary purpose of

interleaving was to adjust the timing differences between when the computer was

ready to transfer data, and when that data was actually arriving at the drive head to be

read. Interleaving was very common prior to the 1990s, but faded from use as

processing speeds increased. Modem disk storage is not interleaved [31].

Interleaving was used to arrange the sectors in the most efficient manner

possible, so that after reading a sector, time would be permitted for processing, and

then the next sector in sequence is ready to be read just as the computer is rea4y to do

so. Matching the sector interleave to the processing speed therefore accelerates the

data transfer, but an incorrect interleave can make the system perform markedly

slower.

6

Figure 2: Low-level format utility performing interleave speed tests on a 1 O­
mega byte IBM PC XT hard drive [31]

Information is commonly stored on disk storage in very small pieces referred

to as sectors or blocks. These are arranged in concentric rings referred to as tracks or

cylinders across the surface of each disk. While it may seem easiest to order these

blocks in direct serial order in each trac~ such as 1 2 3 4 5 6 7 8 9, for early

computing devices this ordering was not practical.

Data to be written or read is put into a special region of reusable memory

referred to as a buffer [1 0], [31]. When data needed to be written, it was moved into

the buffer, and then written from the buffer to the disk. When data was read, the

reverse took place, transferring fust into the buffer and then moved to where it was

needed. Most early computers were not fast enough to read a sector, move the data

from the buffer to somewhere else, and be ready to read the next sector by the time

that next sector was appearing under the read head.

When sectors were arranged in direct serial order, after the first sector was

read the computer may spend the time it takes for three sectors to pass by before it is

ready to receive data again. However with the sectors in direct order, sector two,

three, and four have already passed by. The computer doesn't need sectors 4, 5, 6, 7,

8, 9, or 1, and must wait for these to pass by, before reading sector two. This waiting

for the disk spin around to the right spot slows the data transfer rate.

To correct for the processing delays, the ideal interleave for this system would

be 1:4, ordering the sectors like this: 1 8 6 4 2 9 7 5 3. It reads sector 1, processes for

three sectors whereby 8 6 and 4 pass by, and just as the computer becomes ready

again, sector two is arriving just as it is needed.

7

Modem disk storage does not need interleaving since the buffer space is now

so much larger. Data is now more commonly stored as clusters which are groups of

sectors, and the data buffer is sufficiently large to allow all sectors in a block to be

read at once without any delay between sectors.

Data Transmission

Interleaving is used in digital data transmission technology to protect the

transmission against burst errors. These errors overwrite a lot of bits in a row, so a

typical error correction scheme that expects errors to be more uniformly distributed

can be overwhelmed. Interleaving is used to help stop this from happening.

Data is often transmitted with error control bits that enable the receiver to

correct a certain number of errors that occur during transmission. If a burst error

occurs, too many errors can be made in one code word, and that codeword carmot be

correctly decoded. To reduce the effect of such burst errors, the bits of a number of

codewords are interleaved before being transmitted. This way, a burst error affects

only a correctable number of bits in each codeword, and the decoder can decode the

codewords correct! y.

This method is popular because it is a less complex and cheaper way to handle

burst errors than directly increasing the power of the error correction scheme.

Below is an example as an error correcting code is applied so that the charmel

codeword has four bits and one-bit errors can be corrected. The charmel codewords

are put into a block like this: aaaabbbbccccddddeeeeffffgggg.

Consider transmission withont interleaving:

Error-free message:
aaaabbbbccccddddeeeeffffgggg

Transmission with a burst error:
aaaabbbbccc __ deeeeffffgggg

The codeword dddd is altered in three bits, so either it carmot be decoded at .all

(decoding failure) or it might be decoded into the wrong codeword (false decoding).

Any of the two happens depends on the error correcting code applied.

Now, let's do the same with interleaving:

8

Error-free code words:
aaaabbbbccccddddeeeeffffgggg

Interleaved:
abcdefgabcdefgabcdefgabcdefg

Transmission with a burst error:
abcdefgabcd ____ bcdefgabcdefg

Received code words after deinterleaving:
aa_abbbbccccdddde_eef_ffg_gg

In each of the codewords aaaa, eeee, ffif, gggg, only one bit is altered, so our one-bit­

error-correcting-code will decode everything correctly.

Of course, latency is increased by interleaving because we cannot send the second bit

of codeword aaaa before awaiting the first bit of codeword gggg.

For a different example, consider a meaningful sentence like:

ThislsAnExampleOflnterleaving, and suppose we get a burst error corrupting SIX

letters. First, let us see what the sentence looks like without interleaving.

Consider transmission without interleaving:

Original transmitted sentence:
ThisisAnExampleOfinterleaving

Received sentence with a burst error:
Thisls pleOfinterleaving

We find that the term "AnExample" is lost or unintelligible.

Now we repeat this example but interleave the sentence prior to transmission. The

message is interleaved by transmitting every fourth letter starting at the first letter,

then every fourth letter starting at the second, an so on. To make the message a

multiple of four letters, three dots have been added to the end. (This is an example of

block interleaving.)

Consider transmission with interleaving:

Transmitted sentence:
ThisisAnExampleOfinterleaving ...

Error-free transmission:
TIEpfeaghsxlirv.iAaenli.snmOten.

Received sentence with a burst error:
TIEpfe Irv.iAaenli.snmOten.

Received sentence after deinterleaving:
T_isi_AnE_amp_eOfinterle_vin_ ...

9

No single word is completely lost and it is easy to recover them.

1.2.5 Significant of the project

The Bose-Chadhuri-Hocquenghem (BCH) code is an error correcting code

which is a method of transmitting message over a noisy transmission channel. In

computer science and information theory, the issue of error correction and detection

has great practical importance. The error detection is the ability to detect errors that

are made due to noise or other impairments during the transmission from the

transmitter to the receiver. Error correction has the feature of enabling localization of

the errors and correcting them.

Interleaving technique is simple and effective in dispersing error clusters. It

works by spreading the bits to be transmitted throughout the entire message and it

mainly includes block interleaving and bit interleaving. The latter has slightly better

performance than the former, but the former has lower complexity to implement [1].

In this project, the author prefers block interleaving in the system because of the fixed

code length of block codes.

This project will introduce the comparison study for non-interleaved and

interleaved BCH codes. The encoding and decoding techniques of the BCH codes

would be simulated by using MA TLAB simulation tool. The comparison study

involved error performance, effect of noise variance, channels performance and effect

of data rates on the bit error rate (BER). The comparison study is important so that

proper applications could be implemented based on the projects' constraints such as

time for decoding, cost and codes' complexity.

1.3 OBJECTIVES

• To investigate the effect of block interleaving technique in forward error

correction.

• To compare the performance of non-interleaved and interleaved BCH codes in

various environment.

10

1.4 SCOPES OF STUDY

This project covers the research on the utilization ofBCH codes in multimedia

communication and the performance of BCH codes if combined with interleaving.

The channel mode used is A WGN and BPSK modulation. However, we are also

going to study other channel models such as binary symmetric channel and Rayleigh

channel. Fast fading channel introduces errors which will degrade the quality of

transmission. In this project, random integers are used as information to be

transferred. The codes could minimize the probability of lost information transmitted.

Interleaving and deinterleaving are applied to the encoded data The Matlab software

is used for simulating the encoding/decoding and interleaving/deinterleaving for both

the error correcting codes.

11

CHAPTER2

LITERATURE REVIEW AND THEORY

2.1 Supporting information

After fifty years since the first coding engmes of error-correction and

detection were introduced, almost all communication and processing systems went

through developments with a variety of error control coding sub-systems [2].

Source Channel Modulator
Encoder Encoder

0~nn

Source Channel Demodulator
Decoder Decoder

Figure 3: Block Diagram of a general communication system

Coding is the conversion of information to another form. From Figure 3,

source coding is conducted for lowering the redundancy in the information, for

example; ZIP, JPEG and MPEG2. The purpose of channel coding is to defeat the

channel noise. The application of redundant symbols to correct data errors could be

implemented by channel encoding. Modulation is the conversion of symbols to a

waveform for transmission. The conversion of the waveform back to symbols is done

by demodulation. The decoding uses the redundant symbols to correct errors. Several

parameters for code performance evaluations are code rate (R), Signal - to - noise

ratio (Eb!No) and Bit Error Rate (BER). The coding gain is the saving in Eb!No

required to achieve a given BER when coding is used compared to the other with no

coding. Generally, the lower the code rate, the higher the coding gain. [4].

12

2.2 Title Definition

BCH code is an error correction code while interleaving is a technique for

handling burst errors in the transmission path whereby data streams containing error

correction functions are dispersed. Even if burst errors occur, the error correction

function can be used effectively for decoding at the receiving equipment end. The

operation performed at the receiving end to return the signal to its original state is

called deinterleaving.

Interleaved BCH codes are BCH codes combined with interleaving technique

to disperse errors in data transmission [1] while non-interleaved BCH codes are BCH

codes alone without combining with interleaving technique.

Bursts (or clusters) of errors are defined as a group of successive error bits in

the one-dimensional (1-D) case or linked error bits in multi-dimensional (M-D) cases

[17].

BCH Block .I I
Source I encoder interleaving -

Channel

Sink BCH Block -decoder deinterleaving

Figure 4: Model of the Project

2.3 BCH Codes

Bose - Chaudhuri - Hocquenghem (BCH) codes are an important subclass of

cyclic codes, which have some efficient decoding algorithm due to the strict algebraic

architecture [1]. The BCH codes which are a generalization of Hamming distance

codes that allow multiple error correction provide a wide variety of block lengths and

corresponding code rates. They are important because of their flexibility in the choice

of their code parameters and at a block lengths of a few hundred, BCH codes could

13

outperform all other block codes with the same block length and code rate [3].

2.3.1 BCH Codes Parameters

The BCH codes have the following parameters for any positive integers 'm'

and 't', wherem~3 and t<2 m-I.

Block Length: n = 2 m - 1

Parity Check Bits: n - k :S mt

Minimum Distance: d ~ 2t + 1

This code is capable of correcting combinations of 't' or fewer errors in a

block of n = 2 m - 1 digits. The generator polynomial of this code is specified in terms

of its roots from the Galois field, GF(2m). The generator polynomial g(X) of the t -

error - correcting BCH code of length 2m- 1 is the lowest - degree polynomial over

GF(2) that has: "a, i-, a3
, ••• , i-1

" as its roots. Let <l>(X) be the minimal polynomial of

ai. Then, g(X) must be a least common multiple (LCM) of tA(X), ~(X), ... , ~t(X),

which is g(A) = LCM{ tA (X), ~(X), ... , ~,(X)}.

Hence, every even power of 'a' in the sequence of "a, a2
, a3

, ••• , a21
" has the

same minimal polynomial as the preceding odd power of 'a' in the sequence. As a

result, the generator polynomial g(X) of the binary t - error - correcting BCH code of

length 2m- 1 can be reduced from g(X) = LCM{ tA(X), ~(X), ... , ~t(X)} to g(X) =

LCM{lA(X), ~(X), ... , ~t-I(X)}.

Due to the degree of each minimal polynomial is 'm' or less, the degree of

g(X) is at most 'mt'; that is, the number of parity- check digits, n- k, of the code is

at most equal to 'mt'. 'n' represents the block size, 'n - k' represents the parity -

check digits and 't' represents the number of errors that could be corrected with BCH

codes. If the value of 't' is small, n - k is exactly equal to 'mt'. The BCH codes

defined are usually called primitive BCH codes, where its parameters are code length

of 2m- 1 with m :::_tO.

The single - error - correcting BCH code of length 2m - 1 is generated by

g(X) = <P1(X). Because 'a' is primitive element of GF(2m), tA(X) is a primitive

14

polynomial of degree 'm'. Therefore, the single - error - correcting BCH code of

length 2m - 1 is a Hamming code.

Let v(X) = V0 +VIa;+ ... + Vn -1a(n~ I)i = 0 be a code polynomial in at- error­

correcting BCH code of length n = 2m - 1. This equality can be written as a matrix

product as follows:

1

ai
(v0 , VI, ... , Vn~ I). a2i = 0

a(n -l)i

fori SIS 2t. The condition given as above shows that the inner product of (v0 , VI, ... ,

Vn~ I) and (1, d, r:l', ... , a<•~ I)i) is equal to zero. Therefore, as 'v' is the codeword in

the BCH code, then

23.2 Galois Array

Galois Theory, named after Evariste Galois, is important in BCH codes

encoding and decoding algorithms. In abstract algebra, certain Galois Theory

problems in field theory can be reduced to group theory, which is simpler and

straightforward. Abstract algebra is the field of mathematics that studies algebraic

structures, such as groups, rings, fields, modules, vector spaces, and algebras.

Group theory is a branch of mathematics concerned with the study of groups.

Galois Theory uses groups to describe the symmetries of the equations satisfied by

the solutions to a polynomial equation [7).

A group G is a collection of objects with an operation · satisfYing the following

rules:

l) For any two elements x andy in the group G we also have x·y in the group G.

2) There is an element, which is usually written I or e, but sometimes 0, called

the identity in G such that for any x in the group G we have l·x = x = x·l.

15

3) For any elements x,y,z in G we have (x · y) · z = x · (y · z). This property is

called associativity, which means, we can write x·y·z unambiguously.

4) Every element x in G has a unique inverse y (sometimes weitten -x or x- 1)

sothatx·y=y·x=l.

Field theory is a branch of mathematics which studies the properties of fields.

A field is a mathematical entity for which addition, subtraction, multiplication and

division are well-defined [8].

Originally, Galois used permutation groups to describe how the various roots

of a given polynomial equation are related to each other. The modem approach to

Galois Theory, developed by Richard Dedekind, Leopold Kronecker and Emil Artin

involves studying automorphisms of field extensions. The set of all automorphisms of

an object forms a group called the automorphism group which is the symmetry group

of the object [8].

Galois Theory is concerned with symmetries in the roots of polynomial p(x).

Symmetry of the roots is a way of swapping the solutions around in a way which does

not matter in some sense. Therefore, .Y2 and - ...f2 are the same because any

polynomial expression involving ...f2 will be the same if ...f2 is replaced by - ...f2 [8].

2.3.3 Decoding of BCH Codes

There are several decoding scheme available for BCH codes:

i. Berlekamp- Massey algorithm (BMA)

The BMA was invented by Berlekamp and Massey. This is a computationally

efficient method to solve the syndrome equation, in terms of the number of

operations in GF(2m). The BMA is important for BCH decoders'

implementation in software.

ii. Euclideon algorithm (EA)

Euclidean algorithm involves determining the greatest common divisor

(GCD) of two integers of elements of any Euclidean domain by repeatedly

dividing the two numbers and the remainder in turns. Due to its regular

16

structure, the EA is widely used m hardware implementation for BCH

decoders.

iii. Direct method

This method was proposed by Peterson. It directly finds the coefficients of

error locator polynomial as a set of linear equations. The term Peterson -

Gorenstein - Zierler decodes was used in literature. As the complecity of

inverting a matrix grows with the cube of the error- correcting capability, the

direct solution method works for small values of 't'.

For this project, the Berlekamp-Massey decoding scheme would be

implemented for decoding the BCH codes.

2.4 Berlekamp-Massey Algorithm (BMA)

The Berlekamp-Massey algorithm is an algorithm for finding the minimal

polynomial of a linearly recurrent sequence. The algorithm was invented by Elwyn

Berlekamp in 1968 [5]. Its connection to linear codes was observed by James Massey

the following year. It became the key to practical application of the now ubiquitous

Reed-Solomon (RS) code. In 1967 E. Berlekamp demonstrated an extremely efficient

decoding algorithm for both BCH and RS codes. In 1967, Massey showed that the

BCH decoding problem is equivalent to the problem of synthesizing the shortest

linear-feedback shift register which is capable of generating a given sequence [2].

2.5 Interleaving Technique

Interleaving is a type of time diversity that lessens the effects of error bursts

over the radio fading channel. Several diversity techniques aim at dropping channel

effects either by providing the receiver with independent imitations of the transmitted

sequence or by randomizing channel errors [18]. In the design of a reliable wireless

communication system, we are confronted with two conflicting ·phenomena: a

wireless channel that produces bursts of correlated errors and a convolutional decoder

that cannot handle error bursts.

17

Interleaving is an effective technique to resolve this conflict by converting

burst of errors into random-like errors [16], [17]. Interleaving has the net effect of

breaking up error bursts that occur during the course of data transmission over the

wireless channel and spreading them over the duration of operation of the interleaver.

There are three types of interleaving which are block interleaving, convolutional

interleaving and random interleaving [16].

2.5.1 Block interleaving

Data
read in

columns

1
(a)

Figure 5: Block interleaver sturucture [16]
(a) Data "read in"
(b) Data "read out"

Data
read out

rows

(b)

Classical block interleaver functions as memory buffer, as shown in Figure 5,

where data are written into this N x L rectangular array columnwise from the channel

encoder and its substance are sent to the transmitter. At the receiver, the inverse

operation is performed, which are, data are written into the contents of the array in the

receiver in row manner. Once the array is filled, it is read out in column manner into

the Viterbi decoder.

The (N,L) interleaver and deinterleaver for block interleaver are both periodic

with fundamental period T = NL. For the correlation time or error-burst-length time

that corresponds to L received bits, the effect of an error burst would corrupt the

equivalent of one row of the deinterleaver block at the receiver.

18

2.5.2 Convolutional interleaving

Defining the period

T=LN,

we refer to the interleaver as an (L x N) convolutional interleaver, which has proper

ties similar to those of the (L x N) block interleaver.

The sequence of encoded bits to be interleaved in the transmitter is arranged

in blocks of L bits. For each block, the encoded bits are sequentially shifted into and

out of a bank of N registers by means of two synchronized input and output

commutators. The interleaver is structured as follows:

!. The zeroth shift register provides no storage; that is, the incoming encoded

symbol is transmitted immediately.

2. Each successive shift register provides a storage capacity of L symbols

more than the preceding shift register.

3. Each shift register is visited regularly on a periodic basis.

With each new encoded symbol, the commutators switch to a new shift

register. The new symbol is shifted into the register, and the oldest symbol stored in

that register is shifted out. After finishing with the (N- I)th shift register (i.e., the last

register), the commutators return to the zeroth shift register. Thus the switching -

shifting procedure is repeated periodically on a regular basis.

The deinterleaver in the receiver also uses N shift registers and a pair of

input/output commutators that are synchronized with those in the interleaver. The

shift registers are stacked in reverse orde of those in the interleaver, resulting in the

deinterleaver performs the inverse operation in the receiver.

An advantage of convolutional over block interleaving is that in convolutional

interleaving, the total end-to-end delay is L(N - I) symbols and the memory

requirement is L(N- I)/2 in both the interleaver and deinterleaver, which are one-half

of the correspondinf values in a block interleaver/deinter!eaver for a similar level of

interleaving.

19

2.5.3 Random interleaving

In a random interleaver, a block of N input bits is written into the interleaver

in the order in which the bits are received, but they are reas out in a random manner.

Typically, the permutation of the input bits is defined by a uniform distributuin. Let

II(i) denote the permuted location of the ith input bit where i = 1,2, ... ,N. The set of
N

integers denoted by { II(z) h ~ " defining the order in which the stored input bits are

read out of the interleaver, is generated according to the following two-step

algorithm:

1. Choose an integer i 1 from the uniformly distributed set A = { 1 ,2, ... ,N}, with

the probability of choosing iJ being P(i1) = 1/N. the chosen integer iJ is set to

II(1).

2. for k > 1, choose an integer ik from the uniformly distributed set Ak = { i € A, i

f. i~, iz, ... , ik-1 }, with the probability of choosing ik being P(ik) = li(N- k + 1).

The chosen integer ik is set to II(k). Note that the size of the set Ak is

progressively reduced fork> 1. When k = N, we are left with a single integer,

iN, that is set to II(N).

2.6 Finite-State Channel (FSC) Model

Four-state simply partitioned Markov model is used to represent a typical fast

fading channel. This kind of finite-state channel (FSC) model can run easily and

resemble the real communication environment in effect. The selected channel has

parameters below: FSK (modulation), 100 kmlh (vehicle velocity) and 300 bits/s

(data rate). The Markov transition matrix related to the model is as follows [1]:

0.974932 0 0 0.025068
P= 0 0.515248 0 0.484752

0 0 0.997782 0.002218

0.039832 0.450840 0.052737 0.456590

20

CHAPTER3

METHODOLOGY

3.1 Procedure Identification

The main objective of this project is to investigate the utilization of BCH

codes in multimedia communication with performance comparison of non-interleaved

and interleaved BCH codes. Input message used is random integers. For performance

comparison, the encoded message is also decoded without interleaving and the rate of

error will be compared. A WGN channel is used.

Generating the
parity-check matrix

Encoding message blocks

Block interleaving

Modulation and
channel simulation

Block deinterleaving I

Decoding received message

I

Figure 6: Step-by-step System Methodology

21

The decoded
bits were being
compared with
the information
bits

3.1.1 Interleaved BCH Codes Algorithm

The BCH codes algorithm was divided into several parts for more detailed

explanations. Referring to the Matlab communication toolbox functions, the

algorithm for BCH code is listed as follows:

Step 1: Construct the codeword

m=4;

n=2"m-1;

k=S;

nwords=10;

From the codes above, n represents the codeword length, k is the message length,

and the nwords represents the nun1ber of words to encode for this progran1.

Step 2: Create states for random number generator

st1 = 27221; st2 = 4831;

stl and st2 are states for random nun1ber generator.

Step 3: Create Galois field array

msg=gf(randint(nwords,k,stl));

From the code above, randint{10,5) generates a 10 by 5 matrix of random binary

nun1bers. "0" and "1" occur with equal probability.

'GF' function creates a Galois field array. The msg=randint(nwords,k,stl))

creates a Galois field array from the matrix randint(nwords,k). The Galois field

has 2"m elements, where for this program, the value of m is set to default value 1.

Each element of x must be 0 or 1. The output for msg is a variable that MA TLAB

recognizes as a Galois field array, rather than an array of integers. [19)

x = double(msg.x);

The above code converts msg from Galois array to integer for error statistics

because biterr (code in interleaving stage) codes integers.

Step 4: Create generator polynomial

[genpoly,t) = bchgenpoly(n,k)

The function bchgenpoly gets generator polynomial and error-correction

22

capability. genpoly = bchgenpoly (n,k) returns the narrow-sense generator

polynomial of a BCH code with code length n and message length k. The

codeword length n must have the form 2/\m-1 for some integer m between 3 and

16. The output genpoly is a Galois row vector that represents the coefficients of

the generator polynomial in order of descending powers. The narrow-sense

generator polynomial is (X-alpha)*(X-alpha"2)* ... *(X-alpha"(N-K)), where

alpha is the root of the default primitive polynomial for the field OF (N+1). [20]

Step 5: Encode the message

code = bchenc(msg,n,k);

code= bchenc(msg,n,k) encodes the message in msg using an [n,k] BCH encoder

with the narrow-sense generator polynomial. msg is a Galois array of symbols

over GF(2). Each k-element row of msg represents a message word, where the

leftmost symbol is the most significant symbol. Parity symbols are at the end of

each word in the output Galois array code. [21]

y = double(code.x);

The above code converts code from Galois array to integer (in complex double

form) for interleaving.

Step 6: Create burst errors

errors= zeros(size(code)); errors(n-2:n+3) = [111111];

The above codes create burst error that will corrupt two adjacent codewords.

Step 7: Interleave encoded message

inter = randintrlv(y,st2);.

intrlvd = randintrlv(data,state) rearranges the elements in data using a random

permutation. The state parameter initializes the random number generator that the

function uses to determine the permutation. The function is predictable and

invertible for a given state, but different states produce different permutations. If

data is a matrix with multiple rows and columns, then the function processes the

columns independently. [25]

inter_err = bitxor(inter,errors);

23

The code inter_err = bitxor(inter,errors) includes burst errors created earlier into

the interleaved encoded message.

C = bitxor(A, B) returns the bitwise XOR of the two arguments A and B. Both A

and B must be unsigned integers. [26)

Step 8: BPSK modulation

mod= pskmod(code_err,2);

The pskmod function represents phase shift keying modulation.

y = pskmod(x,M) outputs the complex envelope y of the modulation of the

message signal x using phase shift keying modulation. M is the alphabet size and

must be an integer power of 2. The message signal must consist of integers

between 0 and M-1. The initial phase of the modulation is zero. For two­

dimensional signals, the function treats each column as I channel. [22)

Step 9: A WGN channel simulation

channel = awgn(mod,snr);

A WGN adds white Gaussian noise to a signal.

y = awgn(x,snr) add white Gaussian noise to x. the snr is in dB.

The power ofx is assumed to be 0 dBW. Ifx is complex, then awgn adds complex

noise [30].

Step 10: BPSK demodulation

r = pskdemod(ncode_dbl,2);

Demodulation is basically the reverse of modulation.

z = pskdemod(y,M) demodulates the complex envelope y of a PSK modulated

signal. M is the alphabet size and must be an integer power of2. The demodulator,

which is designed specifically for the symbol-set used by the modulator,

determines the phase of the received signal and maps it back to the symbol it

represents, thus recovering the original data. If y is a matrix with multiple rows

and colunms, then the function processes the colunms independently. In this case,

y3 is processed independently. [24)

24

Step 11: Deinterleave the interleaved message

D = randdeintrlv(C,st2);% Deinterleave.

deinter_gf = gf(D);

deintrlvd = randdeintrlv(data,state) restores the original ordering of the elements

in data by inverting a random permutation. To use this function as an inverse of

the randintrlv function, the same state input is used in both functions. In that case,

the two functions are inverses in the sense that applying randintrlv followed by

randdeintrlv leaves data unchanged. [27]

Step 12: Decode the received message

[newmsgl,errl,ccodel] = bchdec(deinter_gf,n,k)

The function bchdec represents the BCH decoder.

decoded = bchdec(code,n,k) attempts to decode the received signal in code using

an [n,k] BCH decoder with the narrow-sense generator polynomial. code is a

Galois array of symbols over GF(2). Each n-element row of code represents a

corrupted systematic codeword, where the parity symbols are at the end and the

leftmost symbol is the most significant symbol.

In the Galois array decoded, each row represents the attempt at decoding the

corresponding row in code. A decoding failure occurs if bchdec detects more than

t errors in a row of code, where t is the number of correctable errors as reported

by bchgenpoly. In the case of a decoding failure, bchdec forms the corresponding

row of decoded by merely removing n-k symbols from the end of the row of

code.

[decoded,cnumerr,ccode] = bchdec(deinter_gf,n,k) returns ccode, the corrected

version of code. The Galois array ccode has the same format as code. If a

decoding failure occurs in a certain row of code, then the corresponding row in

ccode contains that row unchanged. [28]

Step 13: Error Statistics

zl = double(newmsgl.x);

disp('Number of errors and error rate, with interleaving;');

[number_with,rate_with] = biterr(x,zl)

25

newmsgl is the decoded message that is converted to integer (in complex double

form) from Galois array by double for use in error statistics.

The biterr function compares unsigned binary representations of elements in x

with those in zl. [29]

BCH Matlab source could be referred in Appendix A.

3.2 Tools and Software Identification

This project requires Matlab simulation tool for producing results of encoding and

decoding for the error correction codes as well as interleaved and non-interleaved

BCHCodes.

26

CHAPTER4

RESULTS AND DISCUSSION

4.1 PERFORMANCE OF BCH CODES WITH VARYING SNR

The author utilized random integer as message and applied all the BCH

algorithms. Channel used is A WGN and the performances of bit error rate versus

signal-to-noise ratio (SNR) of the BCH codes were observed.

Signal-to-noise ratio is an engineering term for the ratio of power in a signal

(significant information) to the power contained in a noise that is present during

transmission [4], [10].

SNR = Psignal
Pnoise

SNR are usually expressed in terms of logarithmic decibel scale because many

signals have a very wide dynamic range. In decibels, the SNR is 20 times the base 1 0

logarithm of the amplitude ratio or 10 times the logarithm of the power ratio:

SNR = I 0 logw (Psirmal)
Pnoise

For this project, the SNR was related to the noise variance (No), which is:

I
SNR = 10 logw (-)

No

27

An error ratio is the ratio of the number of bits, or blocks incorrectly received

to the total number of bits, or blocks sent during a specified time interval [4] , [10].

The error ratio is usually expressed in scientific notation. For example, 2.5 erroneous

bits out of 1 00,000 bits transmitted would be 2.5 out of I 05 or 2.5 x I o-s.

Besides that, the bit error ratio for the transmission is the number of erroneous

bits received divided by the total number of bits transmitted. For the information

BER, the number of erroneous decoded bits is divided by the total number of decoded

bits.

Below are the results that show the error performances of both non­

interleaved and interleaved BCH codes and their performance comparison for a

certain amount of burst errors which are different from each other.

10-0 01

2 3
L

4 5 6
Eb'l'b

7

r

n= 31,k= 6
n=63,k= 7
n= 127,k=8

1

8 9 10

Figure 7: BER vs Eb/No for non-interleaved BCH codes

28

10
401

i
Q)

~ 104 ca

~
m

10
403

l

1

T

Figure 8: BER vs Eb/No for interleaved BCH codes

T T

2 3 4 5 6
Eb'l'b

n = 31,k = 6(nnirter1EB.ed)
n = 31 ,k = 6(irter1EB.ed)
n = 63,k = 7(nnirter1EB.ed)
n = 63,k = 7Qrter1EB.ed)

n = 127,k = a:nnirter1EB.ed)
n = 127,k = ~rter1EB.ed)

7 8 9 10

Figure 9: Comparison of BER vs SNR for interleaved and non-interleaved BCH
Codes

29

4.1.1 Discussions

From Figure 7, bit error rate (BER) of each BCH codes increases as signal-to­

noise ratio (SNR) increases. It is different compared to the theoretical BER vs SNR

shown in Figure 14 (Appendix C). This is because of the bursts of errors added in

BCH codes simulation for non-interleaving.

Comparing between BCH codes performances, codeword, n = 31 shows the

highest bit error rate while n = 63 shows the lowest bit error rate. Figure 9 presents a

clearer comparison of non-interleaved and interleaved BCH codes in terms of BER

over SNR. This occurs due to the instability of burst errors included where each BCH

code is provided with different amount of burst errors. Errors for n = 63 and n = 127

are not that enough to be detected.

Observing from these graphs, it could be seen that there are several limitations

that influence the success of interleaving technique. Firstly, it is based on the size of

burst of errors. For example, to combat bursts of errors of size t equal to a specific

given burst error size 10 , one needs to implement an algorithm with a set of parameters

to construct an interleaving code. When size t increases, that is, t > t0 , one needs to

implement an algorithm with a new set of parameters to construct another

interleaving code. This means, the interleaved array constructed for a specific t0 may

not be able to correct a burst of errors of size I as I > 10 •

Secondly, when the actual size of a burst, I, is less than t0 , with which the

interleaving algorithm is applied, the technique is no longer optimal which means that

the interleaving degree reaches its lower bound.

4.2 PERFORMANCE OF BCH CODES WITH SMALL BURST OF ERRORS

To prove that size of errors influence interleaving, another simulation is

performed with reduced size of errors. Figures below show the error performances of

both non-interleaved and interleaved BCH codes and their performance comparison

as amount of burst errors included is reduced. For a given communication system, the

bit error ratio which is the ratio of the number of bits incorrectly received to the total

number of bits sent during a specified time interval, will be affected by both the data

transmission rate and the signal power margin.

30

10-3
1

~--------~--~----,--- .---

- n=31,k=6 1
n=63,k=7
n= 127,k =8

' ' ~~-~

2 3 4 5 6
Eb'NJ

7
___j

8 9 10

Figure 10: BER vs Eb/No for non-interleaved BCH codes for smaller error burst

100 f --

2

BER \8"SUS Eb'N:> b irterieEN:ld BCH Codes

___L__ - ..l

3 4 5 6 7
Eb'NJ

n=31,k~=6
n=63,k=7
n = 127,k = 8

J _J___

j

8 9 10

Figure 11: BER vs Eb/No for interleaved BCH codes for smaller error burst

31

BER wrsus Eb'l'b
10° T r r ~

l
(

10-1

i
~
as 16

2
n = 31,k = 6(1UHrterteeed)
n = 31,k = 6(irterteeed)
n = 63,k = 7(1UHrterteeed)
n = 63, k = 7~rterteeed)
n = 127,k = 8(1UHrtertea\ed)

10-3
n = 127,k = 8(irtertea\ed)

1 2 3 4 5 6 7 8 9 10
Eb'l'b

Figure 12: Comparison of BER vs SNR for interleaved and non-interleaved
BCH Codes

4.2.1 Discussions

The result comparison analysis was performed. Figure 10 shows the error

performances for non-interleaved BCH codes which indicate that the higher the value

of Signal to Noise Ratio (SNR), the lower the Bit Error Rate (BER). This proves the

theoretical BER vs SNR shown in Figure 14 (Appendix D). The same goes for

interleaved BCH codes error performance shown in Figure 11. This is because, as

SNR increases, the signal power becomes stronger compared to the noise power.

Therefore, larger and clearer signal could be detected by the receiver.

Comparing between BCH codes performances, codeword, n = 31 shows the

highest bit error rate while n = 127 shows the lowest bit error rate, which once again

match the theoretical BER vs SNR graph.

From Figure 12, it could be seen that the BER for interleaved is lower than

the BER for non-interleaved BCH codes. This shows that interleaved BCH codes is

more efficient where no single data are missing at the receiver for a pack of data sent.

32

Instead, only a little part of a single data is missing as the data were interleaved

before being sent through channel where burst of errors occurs. Thus, received

message could be recovered easily. However, there are several points of SNR that

shows a reverse of the BER performance of interleaved and non-interleaved BCH

codes. This occurs due to the instability of burst errors included as each BCH code is

provided with different amount of burst errors.

4.3 BLOCK LENGTH VS. SIMULATION TIME

T T

rier1ea'.ed 8CH COOes l
f'D'Hrterteao..ed 8CH COOes

_ _,___ _ _.L ____j_ l .L _j

100 an n> 400 500 m> 700 t:W ~ 1cm
Block l..srg.h

Figure 13: Block length versus simulation time

4.3.1 Discussions

Figure 13 shows that interleaved BCH codes took longer time for the

additional interleaving/deinterleaving to the encoding/decoding compared to non­

interleaved BCH codes. This is due to the interleaving codes process which adds to

the codes complexity.

33

Interleaving BCH codes have more codes algorithm to be performed, which

takes times. Interleaving as mentioned in 1.2.4 is a way to protect data transmission

from burst errors. Encoded data is frrst interleaved and then burst errors are included.

Interleaved message with burst errors then enters modulation and channel simulation

and is deinterleaved before being decoded to obtain transmitted data.

From the graph, it could also be seen that non-interleaved BCH codes takes

lesser time to complete. lbis is due to encoding/decoding was performed without

interleaving, thus the codes algorithm is much simpler than interleaved BCH codes

algorithm.

34

CHAPTERS

CONCLUSION & RECOMMENDATION

5.1 CONCLUSION

Throughout this project, the author have learnt one of the powerful error

correcting codes called BCH codes and affect with varying SNR and error size when

combined with interleaving technique. BCH codes are used in data transmission over

noisy transmission channel, while interleaving is a technique to protect transmission

data from burst errors. This error detection would detect errors that are made due to

noise during the transmission from the transmitter to the receiver and eliminate the

noise. Interleaving helps improve the performance of error correcting process by

rearranging encoded data randomly before being transmitted. Burst errors occurred

during transmission where several data will be missing. When data was deinterleaved

and decoded, received data can be recovered easily.

All stages of system methodology are applied and channel used is A WGN.

Based on the simulation results, it shows that practical BER vs. SNR does not agree

with theoretical because of the addition of error bursts for the practical simulation.

Due to frequency of error bursts and the occurrence of other errors caused by channel

noise, the interleaver should ideally be made as large as possible. Nevertheless,

interleaver introduces delay into the transmission of the message signal. Therefore,

the nwords x k array must be filled before it can be transmitted [16]. This is an issue

in real-time applications concerning voice because it limits the udable block size of

the interleaver and requires a compromise solution.

Simulation time increases as number of codewords processed increases.

During simulation, long BCH codes consumes longer simulation period compared to

short BCH codes due to number of codewords processed (nwords) i.e. nwords = n­

k. However, for any BCH codes, longer simulation period also occurred if nwords is

35

set to be very high for example nwords = 1000. The very long codeword length are

producing good decoding efficiency, in other words, the longer the codeword that is

sent through the channel modulation, the more accurate the decoded data received.

The implementations of interleaved BCH codes and non-interleaved BCH

codes in Matlab simulation software for this Final Year project were nearly

successful. The codes enabled us to analyze the error correction codes and

interleaving in further detail and research were conducted successfully.

With interleaving, burst errors in forward error correction can be dispersed.

Although, interleaving technique would be much more effective if applied in mobile

fading channel instead of A WON. This is due to burst of errors usually occurs in

mobile fading environment.

5.2 RECOMMENDATIONS

1. Use QPSK, FSK as modulation.

2. Channel simulation with fast fading channel such as Binary Symmetric

Channel, Rayleigh and Rician.

3. Input used to be digital image and video.

36

REFERENCES

[1] Lijun Zhang, Victor 0. K. Li and Zhigang Cao, "Short BCH Codes for
Wireless Multimedia Data", IEEE, pp. 220-222, 2002.

[2] Irving S.Reed and Xuemin Chen, "Error-Control Coding for Data
Networks", Kluwer Academic Publishers Boston/Dorrdrecht/London, 1999.

[3] Hank Wallace, "Error Detection and Correction Using the BCH Code",
2001

[4] Wong Hui Yin, DEC "A Comparison Study of LDPC and BCH Codes",
Final Year Proj., Universiti Teknologi PETRONAS, 2006

[5] Wikipedia, <http://en.wikipedia.org/wiki/Berlekamp-Massey algorithm>,
last accessed 30 April 2007

[6] Matlab Lecture 10,
<http:/ /www.aquaphoenix.com/lecture/matlab 1 O/page5.htrnl# 1 0.4>, last
accessed 18 Sept 2007

[7] Wikipedia, <http://en.wikipedia.org/wiki/Galois theorv>, last accessed 20
Sept 2007

[8] Z. Moe, X. X. Qiu, R. A. Scholtz, and V. 0. K. Li, 1999 "ATM-based TH­
SSMA network for multimedia PCS", IEEE J. Select. Areas Commun., vol.
17, pp. 824-836.

[9] MATLAB 7.1 SP3, 2 August 2005 "DCT and Image Compression", Image
Processing Toolbox.

[10] William Stallings, "Data and Computer Communications", Pearson
Education 8'h Ed., 2007

[11] MATLAB 7.1 SP3, 2 August 2005 "Interleaver", Communication Toolbox.

[12] MATLAB 7.1 SP3, 2 August 2005 "Discrete Cosine Transform", Image
Processing Toolbox.

[13] Wikipedia, <http:/ /en. wikipedia.org/wiki/error _detection_ and_ correction>

[14] Daniel j. Costello, Jr. and Shu Lin, "Error Control Coding", Prentice Hall
2"d Ed., 2004.

37

[15] P. R. Chang, and C. F. Lin, "Wireless ATM-based multicode CDMA
transport architecture for MPEG-2 video transmission", Proc. IEEE, vol. 87,
pp. 1807-1824, 1999.

[16] Michael Moher, Simon Haykin, "Modern Wireless Communications",
Prentice Hall

[17] Yun Q. Shi, Xi Min Zhang, Zhi-Cheng Ni and Nirwan Ansari, "Interleaving
for Combating Bursts of Errors" Circuits and Systems Mag., IEEE, pp. 29-
42, first quarter 2004.

[18] S. A. Hanna, "Convolutional Interleaving for Digital Radio
Communications" Conf IEEE, pp 443-447, ICUPC '93.

[19] MATLAB 7.1 SP3, 2 August 2005, "Galois array" Communication
Toolbox

[20] MATLAB 7.1 SP3, 2 August 2005, "generator polynomial"
Communication Toolbox

[21] MATLAB 7.1 SP3, 2 August 2005, "bchenc" Communication Toolbox

[22] MATLAB 7.1 SP3, 2 August 2005, ''pskmod" Communication Toolbox

[23] MATLAB 7 .I SP3, 2 August 2005, "sum" Communication Toolbox

[24] MATLAB 7.1 SP3, 2 August 2005, ''pskdemod" Communication Toolbox

[25] MATLAB 7.1 SP3, 2 August 2005, "randintrlv" Communication Toolbox

[26] MATLAB 7.1 SP3, 2 August 2005, "bitxor" Communication Toolbox

[27] MATLAB 7.1 SP3, 2 August 2005, "randdeintrlv" Communication
Toolbox

[28] MATLAB 7.1 SP3, 2 August 2005, "bchdec" Communication Toolbox

[29] MATLAB 7.1 SP3, 2 August 2005, "biterr" Communication Toolbox

[30] MATLAB 7.1 SP3, 2 August 2005, "awgn" Communication Toolbox

[31] Wikipedia, <http:/ /en. wikipedia.org/wiki!Interleaving>, last accessed April
30,2008

[32] Yuan Dongfeng, " The Estimating on Performance to Interleaved BCH
Codes applied to the Mobile Communication Channel", IEEE, pp. 208-212

38

[33] R. Xiujie, W. Chengxiang, Y. Dongfeng andY. Qi, "Performance
Research of the Convolutional Code Using a Novel Interleaving Scheme in
Mobile Image Communication Systems and the Comparison with
Interleaved BCH Code", IEEE, pp. 998-1001.

39

APPENDIX A

SOURCE CODE

clear; clc;
stl = rand('state'); st2=rand('state'); %States for random number
generator

% Codeword length and message length
for n ~ 31

k ~ 6;
nwords = n-k; %number of words to process

msg ~ gf(randint(nwords,k,2,st1));
x_in ~ double(msg.x);
[genpoly,t] = bchgenpoly(n,k); %tis error-correction
capability
code~ bchenc(msg,n,k); % Encode the data
A~ double(code.x);

% Create a burst error that will corrupt two adjacent codewords.
errors= zeros(size(code));

for snr ~ 1:10
x(snr, 1) ~ snr;
errors(1:100) ~ [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
errors(101:174) ~ [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

% With Interleaving
%------------------
8 = randintrlv(A,st2); % Interleave.
inter err= bitxor(B,errors); %Include burst error.

% Enter modulation and channel simulation
mod= pskmod(inter_err,2);
channel= awgn(mod,snr);
C pskdemod(channel,2);

D = randdeintrlv{C,st2); % Deinterleave.
deinter_gf = gf(D);

1 1
1 1

[newmsgl,errl,ccodel] = bchdec(deinter_gf,n,k); %Decode
x_out_with = double(newmsgl.x);

%disp('Nurnber of errors and error rate, with
interleaving:');

·] ;

l ;

[number_with,rate_with] biterr(x_in,x_out_with); %Error
statistics
zi1(snr,1) number_with;
yi1 (snr, 1) rate with;

% Without Interleaving
%---------------------
code_err = bitxor(A,errors); %Include burst error.

% Enter modulation and channel simulation
mod~ pskmod(code_err,2);
channel= awgn(mod,snr);

41

end

n
k

end

r ~ pskdemod(channel,2);

r2 ~ gf (r);
[newmsg2,err2,ccode2] ~ bchdec(r2,n,k); %Decode
x_out_without ~ double(newmsg2.x);
%disp('Number of errors and error rate, without
interleaving:');
[number_without,rate_without] biterr(x_in,x_out_without);
% Error statistics
z1(snr,1) number_without;
y1(snr,1) ~ rate_without;

disp (' [x, y1, yi1] ');
[x, y1, yi1]

for n ~ 63
k ~ 7;
nwords = n-k; %number of words to process

msg ~ gf(randint(nwords,k,2,st1));
x_in ~ double(msg.x);
[genpoly,t] ~ bchgenpoly(n,k); %tis error-correction
capability
code= bchenc(msg,n,k); %Encode the data
A= double(code.x);

% Create a burst error that will corrupt two adjacent codewords.
errors= zeros(size(code));

for snr = 1:10
x(snr,l) = snr;
errors(10:399) [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] ;

errors(700:784) = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

% With Interleaving
%------------------
8 = randintrlv(A,st2); %Interleave.
inter_err = bitxor(B,errors); %Include burst error.

% Enter modulation and channel simulation
mod~ pskmod(inter_err,2);
channel= awgn(mod,snr);
C pskdemod(channel,2);

D = randdeintrlv(C,st2); % Deinterleave.
deinter gf = gf(D);
[newmsgl,errl,ccodel] = bchdec(deinter_gf,n,k); %Decode
x_out_with ~ double(newmsgl.x);

%disp('Number of errors and error rate, with
interleaving:');
[number_with,rate_with] biterr(x_in,x_out with); %Error
statistics
zi2(snr,l) = number_with;

42

end

n
k

end

yi2(snr,l} = rate_with;

% Without Interleaving
%---------------------
code_err = bitxor{A,errors); %Include burst error.

% Enter modulation and channel simulation
mod~ pskmod(code_err,2);
channel= awgn{mod,snr);
r ~ pskdemod(channel,2);

r2 ~ gf(r);
[newmsg2,err2,ccode2] = bchdec(r2,n,k); %Decode
x_out_without ~ double(newmsg2.x);
%disp('Number of errors and error rate, without
interleaving:');
[number_without,rate_without] biterr(x_in,x_out_without);
% Error statistics
z2(snr,l) number_without;
y2(snr,1) ~ rate_without;

disp(' [x,y2,yi2] ');
[x,y2,yi2]

for n ~ 127
k = 8;
nwords = n-k; %number of words to process

msg ~ gf(randint(nwords,k,2,st1));
x_in ~ doub1e(msg.x);
[genpo1y,t] ~ bchgenpoly(n,k); %tis error-correction
capability
code~ bchenc(msg,n,k); %Encode the data
A~ double(code.x);

% Create a burst error that will corrupt two adjacent codewords.
errors= zeros(size(code));

for snr = 1:10
x(snr,l) = snr;
errors(10:399) [1111111 111111111111];

errors(3600:3299) [1 1111111 1 11111111 1];

% With Interleaving
%------------------
8 = randintrlv(A,st2); %Interleave.
inter_err = bitxor(B,errors); %Include burst error.

% Enter modulation and channel simulation
mod= pskmod(inter_err,2);
channel= awgn(mod,snr);
C pskdemod(channe1,2);

D randdeintrlv(C,st2); % Deinterleave.

43

end

n
k

end

deinter_gf ~ gf(D);
[newmsgl,errl,ccodel] = bchdec(deinter gf,n,k); %Decode
x_out_with ~ double(newmsgl.x);

%disp('Nurnber of errors and error rate, with
interleaving:'};
[number_with,rate_with]
statistics
zi3(snr,l)
yi3 (snr, 1)

number_with;
rate with;

% Without Interleaving
%---------------------

biterr(x_in,x_out_with); %Error

code_err = bitxor(A,errors); %Include burst error.

% Enter modulation and channel simulation
mod~ pskmod(code_err,2);
channel= awgn(mod,snr);
r ~ pskdemod(channel,2);

r2~gf(r);

[newmsg2,err2,ccode2] = bchdec(r2,n,k); %Decode
x_out_without ~ double(newmsg2.x);
%disp('Number of errors and error rate, without
interleaving:');
[number_without,rate_without] biterr(x_in,x_out_without);
% Error statistics
z3(snr,l) number_without;
y3(snr,l) ~ rate_without;

disp(' [x,y3,yi3] ');
[x, y3, yi3]

figure, semilogy(x,yl, '-xr', x,y2, '-ob', x,y3, '-+g')
h = legend('n = 31,k = 6','n = 63,k = 7', 'n = 127,k 8',3);
set(h, 'Interpreter', 'none')
xlabel('Eb/No');
ylabel('Bit Error Rate (BER) ');
title('BER versus Eb/No for non-Interleaved BCH Codes');

figure, semilogy(x,yil, '-xr', x,yi2, '-ob', x,yi3, '-+g')
h = legend{'n = 31,k = 6', 'n = 63,k = 7', 'n = 127,k = 8',3);
set(h, 'Interpreter', 'none')
xlabel('Eb/No');
ylabel('Bit Error Rate (BER) ');
title('BER versus Eb/No for interleaved BCH Codes');

figure, semilogy(x,yl, ':xr',x,yil, '-or', x,y2, ':xb', x,yi2, '-ob',
X 1 y3 I I : Xg I f X 1 yiJ 1 I -og I)

h = legend('n = 31,k = 6(non-interleaved) ', 'n = 3l,k
6(interleaved)' 'n ~ 63,k ~?(non-interleaved)', 'n ~ 63,k
?(interleaved)', 'n ~ 127,k ~ 8(non-interleaved)' 'n ~ 127,k
S(interleaved) ',6);
set(h, 'Interpreter', 'none')
xlabel('Eb/No');
ylabel('Bit Error Rate (BER) ');
title('BER versus Eb/No');

44

n ~

31

k ~

6

[x,y1,yil]

ans

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

n ~

63

7

[x,y2,yi2]

ans

0.6200

0.6533

0.3133

0.2800

0.1200

0.0800

0.0400

0

0

0

APPENDIXB

RESULT

0.4000

0.4400

0.4400

0.3200

0.0800

0.0800

0.0400

0

0

0

45

1.0000 0.4668 0. 4 4 64

2.0000 0.3903 0.3189

3.0000 0.18 62 0.1964

4.0000 0. 0714 0.1071

5.0000 0.0179 0.0179

6.0000 0.0179 0

7.0000 0 0

8.0000 0 0

9.0000 0 0

10.0000 0 0

n ~

127

k

8

[x, y3, yi3]

ans

1.0000 0.4548 0.5189

2.0000 0.2458 0.2122

3.0000 0.1208 0.1408

4.0000 0.0252 0.0252

5.0000 0.0084 0

6.0000 0 0

7.0000 0 0

8.0000 0 0

9.0000 0 0

10.0000 0 0

46

APPENDIXC

SUBROUTINE MATLAB SOURCE CODE

1) bchgenpoly.m

% Initial checks
error(nargchk(2,3,nargin));

t ~ bchnumerr(N,K);
t2 ~ 2*t;

prim _poly ~ 1;

m ~ log2 (N+l);

if -isernpty(varargin)
prirn_poly ~ varargin{1};
% Check prirn_poly
if isernpty(prim_poly)

if -isnumeric(prirn_poly)
error('To use the default PRIM_POLY, it must be marked

by [J. 'I;
end

else
if -isnumeric (prim_poly) I I -is scalar (prim _poly) I I

(floor(prim_poly) -~ prirn_poly)
error('PRIM_POLY must be a scalar integer.');

end

if -isprimitive(prim_poly)
error('PRIM_POLY must be a primitive polynomial.'};

end
end

end

% Determine the cosets for this field
if prim_poly ~~ 1

coset cosets(rn, [], 'nodisplay');
else

coset cosets(m,prim_poly, 'nodisplay');
end

% For each coset that contains a power of alpha < 2t, add the
corresponding
% minimum polynomial to the list of minimum polynomials. Then
convolve all the
% minimum polynomials to make the generator polynomial.
rninpol_list ~ [];
for idx1 ~ 2 : numel(coset)

if(any(find(log(coset{idx1})<t2))) %coset contains a power of
alpha < 2t

% Compute the minimum polynomial for this coset
tempPoly ~ 1;
thisCoset ~ coset{idx1};

47

for idx2 ~ 1
tempPoly

length(thisCoset);
conv(tempPoly, [1 thisCoset (idx2)]);

end

% Zero pad polynomial if necessary
minPol ~ gf([zeros(1,m+l-length(tempPoly)) tempPoly.x],1);

% add polynomial to list
minpol_list [minpol list;minPol];

end
end

% Convolve all the rows of the rninpol list with each other.
len= size(rninpol list,l);
genpoly ~ 1;
for i = l:len,

genpoly ~ conv(genpoly,minpol list(i, :));
end

% Strip any leading zeros
% The size of the generator polynomial should be N-K+l
genpoly ~ genpoly(end-(N-K) :end);

2) bchenc.m

% Initial checks
error(nargchk(3,4,nargin));

% Number of optional input arguments
nvarargin = nargin - 3;

% % Fundamental checks on parameter data types
if -isa(msg, 'gf')

error('MSG must be a Galois array.');
end

if(msg.m ~~1)
error('MSG must be in GF(2). ');

end

%set and check the parity position
if(nargin>3)

parityPos varargin{1};
else

pari tyPos 'end';
end

if(-strcrnp(parityPos, 'beginning') && ~strcrnp{parityPos, 'end'))
error ('PARI TYPOS must be either ' 'beginning' ' or ' 'end' ' ')

end

[m_msg, n_msg] ~ size(msg);

if (n_msg ~~ K)
error('The message length must equal K. ')

end

48

% get the generator polynomial
genpoly ~ bchgenpoly(N,K};

% get the generator matrix
[h, gen] ~ cyclgen(N, (double(genpoly.x} I};

% do the coding
code = msg * gen;

% rearrange parity if necessary
%if(isempty(varargin) 11 strcmp(lower(varargin{l}}, 'beginning'})
if(strcmp(parityPos, 'end'})

code~ [code(:,N-K+1:end), code(:,1:N-K}];
end

3) randintrlv.m

% --- Usual error checks
error(nargchk(2,2,nargin}};
error(nargoutchk(0,1,nargout});

data size
orig_data
dimState

size (data);
data;
size(state);

% Obtains size of DATA

% Obtains dims of STATE

% --- Checks if DATA is 1-D row vector
if (data_size(1) ~~ 1)

data= data(:); %Converts sequence in DATA to a
column vector

data size~ size(data);
end

% --- Error checking on input arguments
if isempty(data)

error('comm:randintrlv:DataisEmpty', 'DATA cannot be empty. 'I
end

if (-isnumeric(data) && -isa(data, 'gf'))
error('cornm:randintrlv:DataisNotNumeric', 'DATA must be

numeric. ') ;
end

if isempty(state)
error{'cornm:randintrlv:StateisEmpty', 'STATE cannot be empty.')

end

if ~isnumeric(state)
error('comm:randintrlv:StateisNotNumeric', 'STATE must be

numeric.')
end

if -(all (dimState ~~ [1 1] I II all (dimState ~~ [35 1] I I
error('cornm:randintrlv:InvalidState', 'STATE must be scalar or

35-by-l. 'I
end

% Get the current state of rand, for restoral purposes later
originalState = rand('state');

49

rand('state',state); %Set the current state of
the uniform generator
int_vec ~ (randperm(data size(1111; %Return a random
permutation of the integers 1:data size(21

% Reset the state of rand to its original state
rand{'state', originalState);

% --- Reorder sequence of symbols
intrlved = intrlv{orig_data,int_vec);

4) pskmod.m

% Error checks
if(nargin<21

error('comm:pskrnod:numarg', 'Too few input arguments.');
end

if (nargin > 4 I
error('comm:pskrnod:numarg', 'Too many input arguments. ');

end

% Check that x is a positive integer
if (-isreal(xl I I any(any(ceil(xl -~ xll I I -isnumeric(xll

error('comrn:pskrnod:xreal', 'Elements of input X must be integers
in the range [0, M-1]. 'I;
end

% Check that M
if (-isreal(MI
-isnumeric (MI I

is a positive integer
I I -is scalar IMI I I M<~O I I (ceil(MI-~M) I I

error('comm:pskmod:Mreal', 'M must be a scalar positive
integer. ') ;
end

% Check that M is of the form 2'K
if (-isnumeric (M) I I (ceil (log2 (MI I -~ log2 (MI I I

error('comm:pskmod:Mpow2', 'M must be in the form of M 2AK,
where K is an integer. ');
end

% Check that x is within range
if ((min(min(xll < 01 II (max(max(xll > (M-1)11

error('comm:pskrnod:xreal', 'Elements of input X must be integers
in [0, M-1 l . ' I ;
end

% Determine initial phase. The
if (nargin >~ 31

ini_phase = varargin{l};
if (isempty(ini_phase))

ini_phase = 0;

default value is 0

elseif (-isreal(ini_phasel I I -isscalar(ini_phasel I
error('comm:pskrnod:ini_phaseReal', 'INI PHASE must be a real

scalar. ');
end

else
ini _phase 0;

end

50

% Check SYMBOL ORDER
if(nargin~~2 I I nargin~~3)

Symbol_Ordering ~'bin'; %default
else

Symbol_Ordering ~ varargin{2};
if (-ischar(Symbol_Ordering)) I I

(-strcmpi(Symbol_Ordering, 'GRAY')) &&
(-strcmpi(Symbol_Ordering, 'BIN'))

error('comm:pskmod:SymbolOrder', 'Invalid symbol set
ordering. ') ;

end
end

% --- Assure that X, if one dimensional, has the correct orientation
--- %
wid= size(x,l);
if (wid ~~ 1)

X ~ X (:);

end

% Gray encode if necessary
if (strcmpi(Symbol_Ordering, 'GRAY'))

[x_gray,gray_map] ~ bin2gray(x, 'psk',M);
[tf,index]~ismember(x,gray_map);

x=index-1;
end

% Gray encode

% Evaluate the phase angle based on M and the input value. The phase
angle
% lies between 0 - 2*pi.
theta ~ 2*pi*x/M;

%The complex envelope is (cos(theta) + j*sin(theta)). This can be
% expressed as exp(j*theta). If there is an initial phase, it is
added
% to the existing phase angle
y ~ exp(j*(theta + ini_phase));

% --- modulator output must be complex
if isreal(y)

y ~ complex(y,O);
end

% --- restore the output signal to the original orientation --- %
if(wid ~~ 1)

y = Y• I;
end

5) awgn.m

% --- Initial checks
error(nargchk(2,5,nargin));

% --- Value set indicators (used for the string flags)
pModeSet 0;
rneasModeSet = 0;

% --- Set default values
reqSNR ~ [];

51

sig
sigPower
pMode
measMode
state

[J ;
0;
'db';
'specify';
[J ;

% --- Placeholder for the signature string
sigStr = ' ';

% --- Identify string and numeric arguments
for n=l:nargin

end

if (n>l)
sigStr(size(sigStr,2)+1) ~ '/';

end
% --- Assign the string and numeric flags
if(ischar(varargin{n)))

sigStr(size(sigStr,2)+1) ~ 's';
elseif(isnumeric(varargin{n)))

sigStr(size(sigStr,2)+1) ~ 'n';
else

error('Only string and numeric arguments are allowed.');
end

% --- Identify parameter signatures and assign values to variables
switch sigStr

% --- awgn(x,
case 'n/n'

sig
reqSNR

% awgn (x,
case 'n/n/n'

sig
reqSNR
sigPower

snr)

varargin{1);
varargin{2);

snr, sigPower)

varargin{l);
varargin{2);
varargin{3);

% awgn(x, snr, 'measured')
case 'n/n/s'

sig
reqSNR
measMode

varargin { 1} ;
varargin { 2};
lower(varargin{3});

measModeSet = 1;

% --- awgn(x, snr, sigPower, state)
case 'n/n/n/n'

sig
reqSNR
sigPower
state

varargin{l};
varargin{2};
varargin{3};
varargin{4};

% --- awgn(x, snr, 'measured', state)
case 'n/n/s/n'

sig
reqSNR
measMode
state

measModeSet

varargin{l};
varargin{2);
lower(varargin{3));
varargin { 4} ;

1;

52

% --- awgn(x, snr, sigPower, 'dbllinear')
case 'n/n/n/s'

end

sig varargin{l};
reqSNR varargin{2};
sigPower varargin{3};
pMode lower(varargin{4}};

pModeSet = 1;

% --- awgn(x, snr, 'measured', 'dbllinear')
case 'n/n/s/s'

sig varargin{l};
reqSNR varargin{2};
measMode lower(varargin{3});
pMode lower(varargin{4});

measModeSet 1;
pModeSet 1;

% --- awgn(x, snr, sigPower, state, 'db I linear')
case 'n/n/n/n/s'

sig
reqSNR
sigPower
state
pMode

varargin{1};
varargin{2};
varargin{3};
varargin { 4};
lower(varargin{5});

pModeSet = 1;

% --- awgn(x, snr, 'measured', state, 'db I linear')
case 'n/n/s/n/s'

sig
reqSNR
measMode
state
pMode

measModeSet
pModeSet

otherwise

varargin{l};
varargin{2};
lower(varargin{3});
varargin{4};
lower(varargin{5});

1;
1;

error('Syntax error.');

% --- Parameters have all been set, either to their defaults or by
the values passed in,
% so perform range and type checks

% sig
if(isempty(sig))

error('An input signal must be given.');
end

if(ndims(sig)>2)
error('The input signal must have 2 or fewer dimensions.');

end

% --- measMode
if(measModeSet)

53

if(~strcmp(measMode, 'measured'}}
error('The signal power parameter must be numeric or

''measured''.');
end

end

% --- pMode
if(pModeSet)

switch pMode
case {'db' 'linear'}
otherwise

error('The signal power mode must be ''db'' or ''linear''.');
end

end

% -- reqSNR
if(any([-isreal(reqSNR) (length(reqSNR)>l) (length(reqSNR)--0)]))

error{'The signal-to-noise ratio must be a real scalar.'};
end

if(strcmp(pMode, 'linear'))
if(reqSNR<-0)

error('In linear mode, the signal-to-noise ratio must be >
0 • I) i

end
end

% --- sigPower
if(-strcmp(measMode, 'measured'))

%---If measMode is not 'measured', then the signal power must
be specified

if (any ([-isreal (sigPower) (length (sigPower) >1)
(length(sigPower)--0)]))

end

error('The signal power value must be a real scalar.');
end

if(strcmp(pMode, 'linear'))
if(sigPower<O)

end

error('In linear mode, the signal power must be>= 0. ');
end

% --- state
if(-isempty(state))

if(any([-isreal(state) (length(state)>l) (length(state)--0)
any((state-floor(state))--0)]))

end

error('The State must be a real, integer scalar.');
end

% All parameters are valid, so no extra checking is required

% --- Check the signal power. This needs to consider power
measurements on matrices
if{strcmp(measMode, 'measured')}

sigPower- sum(abs(sig(:)) .A2)/length(sig(:));

54

if(strcmp(pMode, 'db'))
sigPower = lO*loglO(sigPower);

end
end

% --- Compute the required noise power
switch lower(pMode)

case 'linear'
noise Power sigPower/reqSNR;

case 'db'
noisePower sigPower-reqSNR;
pMode = 'dbw';

end

% --- Add the noise
if (isreal (sig))

opType 'real';
else

opType
end

'complex';

y = sig+wgn{size{sig,l), size(sig,2), noisePower, 1, state, pMode,
opType);

6) pskdemod.m

% Error checks
if(nargin<2)

error('comm:pskdemod:numarg', 'Too few input arguments.');
end

if (nargin > 4)
error('comm:pskdemod:numarg', 'Too many input arguments. ');

end

%Check y, m
if(~isnumeric(y))

error{'comm:pskdemod:Ynum', 'Y must be numeric.');
end

% Checks that M is positive integer
if (~isreal (M) II ~isscalar (M) I I M<=O I I (ceil (M) ~=M) I I
~isnumeric (M))

error('comm:pskdemod:Mreal', 'M must be a scalar positive
integer. ') ;
end

% Checks that M is in of the form 2AK
if (~isnumeric (M) II (ceil (log2 (M)) ~= log2 (M)))

error('comm:pskdemod:Mpow2', 'M must be in the form of M 2AK,
where K is an integer. ');
end

% Determine INI PHASE. The default value is 0
if (nargin >= 3)

ini_phase = varargin{l};
if (isempty(ini~phase))

ini_phase = 0;
elseif (~isreal(ini~phase) I I ~isscalar(ini~phase))

55

error('comm:pskdemod:Ini_phaseReal', 'INI PHASE must be a
real scalar. 1

) ;

end
else

ini_phase 0;
end

% Check SYMBOL ORDER
if(nargin~~2 I I nargin~~J

Symbol_Ordering = 'bin'; %default
else

Symbol Ordering~ varargin(2};
if (-ischar(Symbol_Ordering}} II

(-strcmpi(Symbol_Ordering, 'GRAY')) &&
(-strcmpi(Symbol_Ordering, 'BIN'))

error('cornrn:pskdemod:SymbolOrder', 'Invalid symbol set
ordering. 1

) ;

end
end

% End error checks

% Assure that Y, if one dimensional, has the correct orientation
wid= size{y,l);
if (wid~~l)

y ~ y I:);
end

% De-rotate
y ~ y .* exp(-i*ini_phase);

% Demodulate
normFactor
domain to

M/(2*pi); %normalization factor to convert from PI-

% linear domain
% convert input signal angle to linear domain; round the value to
get ideal
% constellation points
z ~ round((angle(y) * normFactor));
% move all the negative integers by M
z(z < 0) ~ M + z(z < 0);

% --- restore the output signal to the original orientation --- %
if(wid ~~ 1)

z = z';
end

% Gray decode if necessary
if (strcmpi(Symbol_Ordering, 'GRAY'))

[z_degray,gray_map] ~ gray2bin(z, 'psk',M); %Gray decode
% --- Assure that X, if one dimensional, has the correct

orientation --- %

end

if(size(z,1) ~~ 1)

else

end

temp~ zeros(size(y));
temp(:) ~ gray_map(z+1);
z (:) ~ temp (:) ;

z ~ gray_map(z+1);

56

7) randdeintrlv.m

% --- Usual error checks
error(nargchk(2,2,nargin));
error(nargoutchk(0,1,nargout));

data size size (data);
orig_data data;
dimState size (state);

%

%

% Checks if DATA is 1-D column
if (data size(l) -- 1)

data = data (:) ; %
column vector

data size= size(data);
end

Obtains

Obtains

vector

Converts

% --- Error checking on input arguments
if isempty(data)

size of DATA

dims of STATE

sequence in DATA to a

error('comm:randdeintrlv:DataisEmpty', 'DATA cannot be empty.')
end

if (-isnumeric(data) && -isa(data, 'gf'))
error('comm:randdeintrlv:DataisNotNumeric', 'DATA must be

numeric. ') ;
end

if isempty(state)
error('comm:randdeintrlv:StateisEmpty', 'STATE cannot be empty.')

end

if -isnumeric(state)
error('comm:randdeintrlv:Stateis~otNumeric', 'STATE must be

numeric.')
end

if -(all (dimState == [1 1]) I I all (dimState == [35 1]))
error('comm:randdeintrlv:InvalidState', 'STATE must be scalar or

35-by-1..)
end

% Get the current state of rand, for restoral purposes later
originalState = rand('state');

rand('state',state); %Set the current state of
the uniform generator
int_vec = (randperm(data_size(1))); %Return a random
permutation of the integers 1:data_size(2)

% Reset the state of rand to its original state
rand('state', originalState);

% --- Rearrange sequence of symbols
deintrlved = deintrlv(orig_data,int_vec);

57

8) bchdec.m

error(nargchk(3,4,nargin));

% Fundamental checks on parameter data types
if ~isa(code, 'gf')

error('CODE must be a Galois array.'};
end

if (code.m~~l)
error('Code must be in GF(2). ');

end

% Check mandatory parameters code, N, K, t

% --- code
if isempty(code.x)

error('CODE must be a nonempty Galois array.');
end;

% --- width of code
[m_code, n_code] = size(code);
if N ~= n code

error('CODE must be either aN-element row vector or a matrix
with N columns.');
end

% Set and check the parity position
if(nargin>3)

parityPos varargin{l};
else

parityPos 'end';
end

if(~strcmp(parityPos, 'beginning') && ~strcmp(parityPos, 'end'))
error('PARITYPOS must be either ''beginning'' or ''end'' ')

end

% Get the number of errors we can correct
t = bchnumerr(N,K);

% Bring the code word into the extension field
M ~ log2(N+l);
code~ gf(code.x,M);

% Ensure that the code format into the berlekamp function is [msg
parity], since
% the function works only in that mode. The berlekamp function also
takes care
% of prepending zeros for shortened codes.
if strcmp(parityPos, 'beginning')

code= [code(:,N-K+l:n_code) code(:,l:N-K)];
end

% Pre-allocate memory. Each element in this column vector holds the
number of
% errors in the corresponding row
decoded gf(zeros(m_code, K));
cnumerr zeros(m_code,l);
ccode gf(zeros(m_code, N));

58

for j = 1 : m_code,

% Call to core algorithm BERLEKAMP
inputCode code(j,:);
inputCodeVal inputCode.x;
b 1; % narrow-sense codeword
shortened 0; % no shortened codewords
inWidth length(code(j, :));
[decodedint cnurnerr(j) ccodeint] = berlekarnp(inputCodeVal,

N,

end

decoded(j,:)
ccode (j,:)

gf(decodedint);
gf(ccodeint);

K,
M,
t,
b,
shortened,
inWidth);

% If necessary, flip message and parity symbols in corrected
codeword, undoing
% the flip prior to decoding.
if strcmp(parityPos, 'beginning')

ccode = [ccode(:,K+l:n_code) ccode(:,l:K)]; %#ok
end

9) biterr.m

% --- Typical error checking.
error(nargchk(2,4,nargin));

% --- Placeholder for the signature string.
sigStr = '';

flag = I I i

K = [];

% --- Identify string and numeric arguments
for n=l:nargin

end

if(n>l)
sigStr(size(sigStr,2)+1) = '/';

end
% --- Assign the string and numeric flags
if(ischar(varargin{n}))

sigStr(size(sigStr,2)+1) = 's';
elseif(isnurneric(varargin{n}))

sigStr(size(sigStr,2)+1) = 'n';
else

error('Only string and numeric arguments are accepted.');
end

% --- Identify parameter signitures and assign values to variables
switch sigStr

% --- biterr(a, b)
case 'n/n'

a
b

varargin{l};
varargin{2};

59

% --- biterr(a, b, K)
case 'n/n/n'

a
b
K

varargin(l);
varargin{2};
varargin(3);

% --- biterr(a, b, flag}
case 'n/n/s'

a
b
flag

varargin{ 1};
varargin(2);
varargin(3);

% --- biterr(a, b, K, flag)
case 'n/n/n/s'

a varargin(l);
b varargin(2);
K varargin(3);
flag varargin(4);

% biterr(a, b, flag, K)
case 'n/n/s/n'

a
b
flag
K

varargin { 1} ;

varargin(2);
varargin(3);
varargin(4);

% --- If the parameter list does not match one of these
signatures.

otherwise
error('Syntax error.');

end

if (isempty(a)) II (isempty(b))
error('Required parameter empty.'};

end

if -(min(min(isfinite(a))) && rnin(min(isfinite(b)))) I I -(isreal(a)
& isreal(b)) II max(max(a<O)) II max(max(b<O)) II
max(max(floor(a)-~a)) I I max(max(floor(b)-~b))

error('Inputs must be finite, real, positive integers.');
end

% Determine the sizes of the input matrices.
[am, an] size (a);
[bm, bn] ~ size(b);

% If one of the inputs is a vector, it can be either the first or
second input.
% This conditional swap ensures that the first input is the matrix
and the second is the vector.
if ((am~~l) && (bm>l)) II ((an 1) && (bn>l))

[a, b] ~ deal (b, a);
[am, an] size(a);
[bm, bn] ~ size(b);

end

% Check the sizes of the inputs to determine the default mode of
operation.
if ((bm ~~ 1) && (am > 1) I

60

default mode= 'row-wise';
if (an -= bn)

error ('Input row vector must contain
there are columns in the input matrix.');

end
elseif ((bn == 1) && (an > 1))

default_mode ='column-wise';
if (am ~= bm)

as many elements as

error('Input column vector must contain as many elements as
there are rows in the input matrix.');

else

end

end

default mode= 'overall';
if (am ~= bm) I I (an ~= bn)

error('Input matrices must be the same size.');
end

% Check that the user specified mode of operation is valid.
if isempty(flag)

flag = default_mode;
elseif - (strcmp(flag, 'column-wise') II strcmp(flag, 'row-wise') II
strcmp(flag, 'overall'))

error('Invalid string flag.');
elseif strcmp(default_mode, 'row-wise') && strcmp(flag, 'column-wise')

error('A column-wise comparison is not possible with a row
vector input.');
elseif strcrnp(default_mode, 'column-wise') && strcrnp(flag, 'row-wise'}

error('A row-wise comparison is not possible with a column
vector input.');
end

% Determine the minimum number of bits needed to represent the
matrices.
tmp =max(max(max(a)), max(max(b)));
if (tmp > 0)

syrn_len floor(log(tmp) I log(2)) + 1;
else

syrn_len 1· '
end

% Check that the user specified 'symbol length' is valid.
if ~isempty(K)

if max(size(K)) > l
error('Word length must be a scalar.');

elseif (-isfinite (K)) II (floor (K) ~=K) II (~isreal (K))
error('Word length must be a finite, real integer.');

elseif K < syrn_len
error('The specified word length is too short for the matrix

elements.');
else

sym_len K;
end

end

a2 toBinary(a, syrn_len);
b2 toBinary(b, syrn_len);

% Two separate flags are needed for the function to operate
efficiently.

61

% 'default mode' specifices if one of the inputs is actually a
vector while
% the other is a matrix, meaning that the vector should be compared
with each
% individual row or column of the matrix. 'flag' (which the user
specifies)
% specifies how the results of this comparison are reported.

if strcrnp(default~rnode, 'overall')
if strcmp(flag, 'column-wise')

for i = l:an
num(1,i) ~ surn(surn(a2(:,((i-1)*sym len+1):(i*sym len))

b2 (:, ((i-1) *sym~len+1): (i*sym~len))));
end
rat~ nurn I (arn*sym~len);

elseif strcmp(flag, 'row-wise')
num surn(a2-~b2,2);

rat nurn I (an*sym~len);

else
nurn surn(surn(a2-~b2));

rat num I (arn*an*syrn_len);
end
if (nargout > 2)

loc = zeros(arn,an};
for i ~ 1:an

loc (:, i) ~ sum((a2 (:, ((i-1) *sym~1en+1): (i*sym~len))
b2 (:, ((i-1) *sym~len+l): (i*sym~len))), 2);

end
end

elseif strcmp(default_mode, 'column-wise')
if (nargout < 3)

for i = 1: an,
num(1,i) ~ sum(sum(a2(:,((i-

1)*sym~len+1): (i*sym~len))-~b2));

else
end

loc = zeros(am,an);
for i = l:an,

loc(:,i) sum((a2(:, ((i-1)*sym~len+1): (i*sym len))
b2) ' 2) ;

else

num(1,i) sum (loc (: , i)) ;
end

end
if strcmp(flag, 'overall')

num sum (nurn);

rat nurn I (am*an*syrn_len);
else

rat nurn I (arn*sym~len);

end

if (nargout < 3)
for i = l:am,

else

num(i,1) ~ sum(a2(i,:)-~b2);

end

loc = zeros(am,an};
for i = 1: an

for j ~ 1:arn
loc(j,i) ~sum((a2(j, ((i-1)*sym len+l): (i*sym len))

b2 (1, ((i-1) *sym~len+1): (i*sym~len))), 2);
end

end

62

num(:,l) ~ sum(loc,2);
end
if strcmp(flag, 'overall')

num sum (num) ;
rat num I (am*an*sym_len);

else
rat num I (an*sym_len);

end
end

%%%
function b = toBinary(a, sym_len)
% Convert matrix to binary representation

[am an] ~ size(a);
b de2bi(a(:), sym_len);

% block transpose
b ~ reshape(permute(reshape(b', sym_len, am, an), [2 1 3]), am,
sym _len*an);

63

10~

APPENDIXD

GRAPH OF THEORETICAL BER VS SNR

L-

1 2 3

n= 31, k =6 J
n=63 k=7
n = 1Zr, k = 8

---L- ~

4 5 6 7 8 9 10

EJNa<cB)

Figure 14: Theoretical BER vs Eb/No

64

