Feasibility Study of Graphics Rendering in Cloud

Tan Kah Meng

Dissertation submitted in partial fulfilment of
the requirements for the
Bachelor of Technology (Honours)

(Information and Communication Technology)

MAY 2011

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Feasibility Study of Graphics Rendering in Cloud

by

Tan Kah Meng

A project dissertation submitted to the
Information and Communication Technology Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Technology (Honours)

(Information and Communication Technology)

MAY 2011

(Dr Mohamed Nordin Bin Zakaria) (Ms Nageeni Samih;/Binti Haron (@ Baharon)
Universiti Teknologi PETRONAS Universiti Teknologi PETRONAS

Bandar Seri Iskandar Bandar Seri Iskandar

31750 Tronoh 31750 Tronoh

Perak Darul Ridzuan Perak Darul Ridzuan

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work 1s my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

LY

TAI\II KNH MEN&} (12452)

ABSTRACT

A locally rendered graphics is restricted by the local CPU and GPU capability.
However, distributing rendering process across multiple CPUs will reduce rendering
time. MapReduce framework is originally developed by Google for the ease of web
search applications on a large numbers of CPUs. With the application of cloud
project, a MapReduce framework, graphics rendering is distributed across multiple
CPU. In this research, the author studies the feasibility of using MapReduce
framework on multiple CPUs to render graphics. The author even developed an

interface to facilitate the display of graphics rendering in multiple frames.

ACKNOWLEDGEMENT

I feel very happy and proud to be one of the students in Universiti Teknologi
Petronas and being above to develop this project as my Final Year Project. I wish to
thank all personnel who have contributed directly or indirectly in accomplishment of
this report, especially to my supervisor, Dr Mohamed Nordin Bin Zakaria and
Ms Nazleeni Samiha Binti Haron @ Baharon, for keeping me on the right track and

offering kind of encouragement when I needed it.

A high appreciation | wish to Dr Mohd Fadzil Bin Hassan, for sponsoring
this project and giving his guidance, shared his knowledge and experiences in

solving problems, and giving opinions throughout the project.

A full appreciation also I give to Mr. Liew Ying Wei, Low Power Embedded
Processor Division manager from Intel Microelectronics for giving his concern and
sponsoring items for my testing purposes. My greatest gratitude also goes to all other
staffs in the department for their continuous support and the best help in assisting

trainees.

I would like to express my gratitude to Andrew Goodney, Anand Raman,
Kailash Gajara, and Naman Gala for providing me with their Cloud Project. This

allows me to develop algorithms and my project.

Finally, my highest regards and appreciation goes back to both of my
supervisors Dr Mohamed Nordin Bin Zakaria and Ms Nazleeni Samiha Binti Haron
(@ Baharon, who guided me in accomplishing all the other tasks such as developing

the prototype, reports, presentations and etc.

TABLE OF CONTENTS

CHAPTER 1.ttt st ettt r e ne b st st 9
INTRODUCTION ..ottt esies et es s srese e sse s s s s et s snaaaesanasnsannsanas 9
L1 Background.......c..coo oottt sieesssssssaesve st ssanasmnestsrnnesnnente 9
1.2 Problem Statement..........ccouevrerrierrentriennsent ettt escneete st nsas s s e s 9
1.3 ODBJECHVES covevverreevirrccresientereerenressesmssssssssassessessasseraressarssesssssassssassssessersessesses 10
1.4 SCOPE OF STUAY .ottt ettt st s bs s 10

CHAPTER 2.t ectetrstersnennestesesnrssesassensssessessesassesessesassensosesnssonesnensnsnses 11
LITERATURE REVIEW ...ttt st s v seesne e sn et sssrnereasasnsnes 11
2.1 INrOAUCHION ..coueeieccrteeetr ettt et e s e n 11
2.2 Cloud COMPULNE ...cccoeereereereetrieeeeiesreesereesaeseseessseessessenasaesessssressessesensanens i1

2.2.1 Apache Hadoopccciviveiiniiriviniinrnrcrieseseressnsseesrssesressesessasssssnssessessanns 11
2.2.2 MapReduce Framework ... 13
2.3 Graphic Card........co ittt 14
2.3.1 Graphical Processing Unit (GPU) c..occorvverevernececrrecccrecec e 14

CHAPTER 3.ttt ettt et sn e se s e e e s san s eea s san s ennerns 16

METHODOLOGY ..ot sesie st tsa et s et ea s ba s bbb aes s st e aesens 16
3.1 INEFOAUCHION c.vvuierieicerieierieerccerrc s s e reressareeser s asne e sassasnaseessesesnesansasnnens 16
3.2 Previous Related Workcocoouveiiiiciceec e, 16
3.3 System Archit@CIUreccooccoiiciiicicrresrce e se s eeesae e e esaesessasennens 17

3.3.1. Architecttlre 1 ...cccciviniiicieci et ee e s e s e st sveemnanea 18
3.3.2. AIChItECtUIE 2 ...t trts e s eran e e ne e e e sae s e be s e aeeennas 19
3.3.3 ArChIteCUIE 3 ..ottt se et 20
3.3.4. SUMIMATY ..c.covniiiiniieiitentciee et ree e esten e ba e saesee et e s srenennen 20
3.4 SyStem ProtOtyPIiNg....cccocveereeerrescerentistesesiestesessessesss e e tsseseesessssaessssasssenns 21
3.5 Testing and Benchmarkingcccoooiiciiiiiiciiiiie e eeeeaeens 22

3.6 Tools and Equipment ReqUired..........ccccvvervieereirereecrereieseereeecesaeevesenens 23

CHAPTER 4..oiiiiiriiiiiritiintcstitertsie s st s stis bt sts st sm s s st oasssisassnnssonsssnenns 24

RESULTS AND DISCUSSIONcccoiiiiiieicteincrrstiene et sessesssessssessesssssnens 24
4.1 INTPOAUELION .ot ettt s s e st b et em s sm e e et e 24
B.2 TRttt eet et se ettt st st e ne e s r b et e e e e e e e e enes 25

B2 1. NEW et e ees e sre sr e asan et s e e e s e nr et bt ae s e e st eeb e 25
B.2.2, OPCIN... 1oeeiieiecetcesertee st s e s e et s s s e s e et e e e s e nere e s e neneenan 25
B, 2.3, SAVE cooerirereireeerestrireteste s e ess st e s e seas st e st e as st e e b ee s rs e s et e e s sentesanernennnas 26
G248, SAVE AS.oeiciciieiremtrte st st bbbt bbbt b s eebs 26
B2 A4 EXIE ittt ettt e e et 26
A3 Bt ittt ettt et et p e nen e 27
B30, UNAO ottt ettt st bt 27
B VIBW ettt ettt ee e st st ae et e st s s et st n s s et s e e nn s e nn e e smnen 27
440, FUll SCEEN.....ceiieiiiiirtet ettt ettt sb et eeesrae e ssssrese s e sasse s nesees 27
B8 TOOL ettt ettt e 28
4.5.1. Rotate CIOCKWISE....ccocrmiviorieririiienientciinicsciiis s es st cassnns 28
4.5.2. Rotate Counter CLOCKWISE.........cccoviirierieceieniceecne e 28
B0 G0 ettt ettt ettt ettt e e bbb e e e et aat et e s e s emt et e e aeen 29
4.6.1. PYevIous JMAEE ...ccvvevevevereireirennneesestnesnesiasssssaeesesses e enessessesesssssnssasnsenses 29
4.6.2. NEeXt IMAGEovuieiriieierierr sttt en e s aae e s 29
L A 5 1= | + OO RSO R ORI RRORUROT 30
A 7.1, CONTENE ...ttt eeeiee e st re s et e s s ea e ssesras et assneesen e sa e seaanbans 30
B.7.2. ADOUL ...ttt ettt n et e e s e e e e sn et s e seneanaan 30
4.8 SUNIMAIY .cceieiriireiieiteiessesieeetesetaesesiersanasesesssaseessansaasessessssssensessssssansersssssans 30

CHAPTER 5.ttt eresscesessee st s et st seeseseessane e esenansnsensensaenns 31
CONCLUSION ..ottt sttt e st s s sss s ab s sas s 31
REFERENCESottt nens 32

LIST OF FIGURES

Figure 1: Pseudo-Distributed Hadoop Configurationc.ccevecrrieviecnricnnneeneeienne. 12
Figure 2: MapReduce OVEIVIEWc..ceiieierniincciniincenieece e srecsts e sesceseneesseseenenns 14
Figure 3: The Basic Flow of MapReduce on the GPU ..., 15
Figure 4: Hadoop CHUSLETooci e 17
Figure 5: Distribution of FIAMeSccc.vcoerirciniiiniciiniins i 18
Figure 6: Distribution of Parts.......cccvvcincinininicnienicei et ctcreesscisseensceseenes 19
Figure 7: Distribution of Multiple Frames on Multiple Nodes......c.ccccoeeveneennnnsn. 20
Figure 8: PrOtOLYPING .ovvcvivrnrenrerenteioreeicsoisasiiescsonsesisesstossassaestonsssesessesessenssssassesessens 21
Figure 9: Black BOX TESHIME ...cccvviiriiviiviriiirriii e niescrcereeressesssssresressssssssenassens 22
Figure 10: Graphics Rendering in Cloud User Interface.........cccocovenveeneninninncnnnns 24
Figure 11: Load New IMage.........ccceeeeriverveeiiieererie e et crresstsneressssrsneressssessersseses 25
Figure 12: Load Data FIle ..ottt 25
Figure 13: Archive the Frames........cccoivevinicriiiieniesrenisesesressssseesassescssssnessesnes 26
Figure 14: Save As Different FOrmat.......coccooovevinmiriincre e 26
Figure 15: Remove the Last Frame ... 27
Figure 16: Viewing Full Screen ..ot 27
Figure 17: Rotate CIOCKWISEcovvvverrerierrciereeerrrersev e ressesneseeraeseeesessnsanesessasnnes 28
Figure 18: Rotate Counter ClOCKWISEccvriiiniirieice it 28
Figure 19: Goto Previous Imageccociivinninicnnnircn s 29

Figure 20: Goto Next IMAge.......cccoivirinincniiriiiistsis st ssn et snssssesnan 29

CHAPTER 1
INTRODUCTION

1.1 Background

Graphics cards play an important role in the formulation of images
displayed on computer screen. Better resolution of images will require higher
processing of the graphics card’s capability, hence adding costs to the card
itself. Amount of costs spent on graphics card alone can be exorbitant when

more computer users in this world are taken into consideration.

Rather than using the graphics card itself, this project proposing
images rendering via cloud computing service. At its broadest view, cloud
computing is by itself location independent computing and employs scalable
IT resources over the Internet; it is able to adjust and accommodate to
changes on demand. Rendering the image via the cloud computing service
not only saves the costs of acquiring hardware, i.e. graphics cards, it is

definitely fast, convenient, easy to use from the users’ end.

The aim of this project is to develop an interface to facilitate and
leverage feasibility of the inherent parallelism in a 3D graphics renderer by
leveraging MapReduce framework, a distributed computing framework in

cloud environment. MapReduce will be further discussed in Chapter 2.
1.2 Problem Statement

Conventional graphics rendering is on local GPU and CPU. However,
the process is limited by the device itself. In order to rendering a better
resolutions graphics, a better graphics card is needed. If the users are able to
connect to farms of computer dedicated for rendering process via cloud
computing technology, it is believed the rendering process time will reduce

with communication cost taken into account,

Scenario:

A user needs to do a simulation on a very complex 3D scene where
huge amount processing need to be done and each transition between frames
needs to be monitored. In order to process those data, user need to purchase
a more powerful machine such as main frame. However, using cloud
computing approach, data may be rendered in_farms of computer and data is

updated in order to produce the next frame.

1.3 Objectives

The objectives of this project are as follows:
e To study feasibility of rendering graphics in multiple CPUs using
MapReduce framework
o To render multiple frames with existing cloud framework

o To develop an interface for viewing image

1.4 Scope of Study

This research covers creation of an interface to facilitate rendering process

and building upon existing cloud framework to render multiple frames

CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Due to the emergence of 3D graphics, graphics cards are equipped with
substantial processing power due to the necessity to support higher end of
interactive games and applications. Graphics are being rendered locally using
GPU and CPU. However by connecting local computers to farms of computer
which applies MapReduce framework, graphics processes may be distributed
across farms of computing to reduce rendering time. Each of the section

below will discuss about cloud computing and graphic card respectively.

2.2 Cloud Computing

Cloud computing is a paradigm shift that enables scalable processing and
storage over distributed, networked commodity machines. (Coombe, 2009) In
this research, the resources are provided over the Internet by the public cloud,
via web services. The architecture used to delivers resources to the users is
Infrastructure as a Service (IaaS). Rather than purchasing graphic cards,

clients instead buy those resources as a fully outsourced service.

2.2.1 Apache Hadoop

Hadoop Apache is an open source implementation of reliable,
scalable, distributed computing. Hadoop is written in Java and
operates on data stored in a distributed file system, usually the
Hadoop Distributed File System (HDFS), which is based on the
Google File System.

Hadoop is a cloud computing infrastructure that provides a
virtualized interface to an arbitrarily scaled computing cluster. It
automates the division of the jobs submitted by the user into sub-

tasks, physical location to store data, movement of computations and

data, handling of machine failures, and all of the other details that are
required for a distributed computing system to work. Hadoop
instances consist of four types of processes (Hadoop): NameNode,
JobTracker, DataNode, and TaskTracker.

There is one NameNode and one JobTracker in a Hadoop
cluster. The NameNode manages a directory of data blocks that make
up the files system namespace and access to the files stored in HDFS.
The JobTracker manages jobs and coordinates sub-tasks among the
TaskTrackers. A DataNode and a TaskTracker instance run on each
slave machine. DataNode manage storage attached to a node and
provides access to data blocks. Meanwhile TaskTracker executes
tasks assigned to it by the JobTracker. Secondary NameNode provides
period check-pointing and housekeeping tasks. The layout of these

processes in a typical Hadoop cluster is summarized below:

NamenodeJ [Jobtfadxer}

’ Secondary [Tasmcuar] { Datanade |
L J
Browser H:::?;p JVYM
Linux OS
Sever

Figure 1: Pseudo-Distributed Hadoop Configuration

Hadoop is able of tolerate faults by re-executing failed tasks or
tasks whose results are no longer available because of later failures,
and by replicating data blocks among DataNodes. Hadoop’s fault
tolerance, along with its peer-to-peer bulk data transfers and largely
independent tasks, allow it to scale to thousands of machines. When
speculative execution is enabled, the same task may be executed on
multiple nodes to increase the probability of successful and fast

results,

2.2.2 MapReduce Framework

MapReduce is a programming model and implementation
developed by Google that is used to process vast amounts of datasets
distributed across large clusters in-parallel. (Inc.) It is highly scalable,

fault-tolerant, and useful for many large-scale data processing tasks.

A MapReduce job usually splits the input data-set into
independent chunks which are processed by the map tasks in a
completely parallel manner. The framework takes an input key/value
pair, sorts the outputs of the maps (intermediate key/value pairs) and
input to the reduce tasks which eventually generates an output. Both
the input and the output of the job are stored in a distributed file-
system. The framework takes care of scheduling tasks, monitoring

them and re-executes the failed tasks,

The MapReduce runtime system handles splitting the input
data, scheduling map and reduce tasks, and transferring input and
output data to the machines running the tasks. Jobs are managed by a
master that assigns tasks to slave machines and provides the locations
of intermediate values to reduce tasks. Computation on the machine
where the input data is already stored is preferred in order to
effectively schedule tasks and minimize network transfers. Large data
transfers are performed directly between the machine where the data
is stored and the machine that needs the data. Data transfers between
machines on the same rack are preferred to transfers between

machines that are more “distant” from each other in the network.

Map-Reduce is a framework that pools IT resources such as
compute power, and storage capacity into a set of shared services that
can be distributed and re-distributed as it needed across the network.
This is applicable for database, system and storage administrator who

seek for high performance, scalable, manageable and cost efficient

systems infrastructure. The layout of the processes in MapReduce is

summarized below:

Figure 2: MapReduce Overview

2.3 Graphic Card

Graphics cards are widely used in computers nowadays. Due to the
emergence of 3D graphics, graphics cards are equipped with substantial
processing power due to the necessity to support higher end of interactive

games and applications.

2.3.1 Graphical Processing Unit (GPU)

Aside from that, GPU is used in other domains as well. Due to
its increasing ability to be programmed, it contributes to general-
purpose computation. GPU is used as co-processors for CPUs,
offering high performance computing, and for applications such as
matrix operations, embedded system design, database, bioinformatics
(Fried, June) and other less conventional ones like audio signal
processing and weather forecasting. (Dinh, 2008) The special
abbreviation used in relevant context will be General-Purpose
Computing on GPUs (GPGPU). Not only GPUs are used in single
node concept, they are also recently applied in Distributed Computing

projects to further increase the processing power.

In the Map stage, a split operator will divide the input data into
multiple chunks in a way that the number of chunks is equal to the
number of threads. Hence, a Graphic Processing Unit (GPU) thread is

Input
Data

responsible with only one chunk. The runtime parameters for the Map
including the number of thread groups and the number of threads per
thread group are determined according to the occupancy of the GPU.
This thread configuration can also be specified by the programmer
himself. After the Map stage is finished, the intermediate key/value
pairs are sort so that the pairs with the same key are stored

consecutively.

In the Reduce stage, the split divides the sorted intermediate
key/value pairs into multiple chunks which are equal to the number of
threads. The thread configuration is set in a similar way as being done
in the Map stage. Each chunk then is assigned to a GPU thread. Note
that the key/value pairs with the same key are assigned to the same
chunk. Additionally, the thread with a larger thread ID is assigned
with a chunk consisting of key/value pairs of larger keys. This will
ensures that the output of the Reduce stage is sorted by the key. (He,
Fang, Govindaraju, Luo, & Wang, 2008) The processes can be

interpreted as in Figure 3.

Map Reduce
(Fhreadl)

?ﬁ (Threadi} .
1) Map . Reduce r
(Theeadn) . {Threadn)

Figure 3: The Basic Flow of MapReduce on the GPU

Cutput
Data

CHAPTER 3
METHODOLOGY

3.1 Introduction

The two important frameworks which will be implemented in the
cloud environment are MapReduce programming model and Hadoop
framework. Both of this technology will bring great impact toward the
progress of the project, such as on how we are going to build and preparing

data and resources (codes and algorithms).

3.2 Previous Related Work

Based on “Mars: A MapReduce Framework on Graphics Processors”
(He, Fang, Govindaraju, Luo, & Wang, 2008) it was shown that MapReduce
framework, with a single GPU works up to 16 times faster than that of CPU

for 6 common web applications.

The work done by Stuart et al. (2010) entitled “Multi-GPU Volume
Rendering using MapReduce” has showed that MapReduce programming
model has helps to attain efficiency in rendering large volume. When more
GPUs are added to large clusters, the project bears the potential of
performance gain for many tasks with reduced costs of GPU when they are

added in bulk.

Moreover, studies done by Gajara et al. (2009) entitled “Cloud-based
rendering using Hadoop™ shows that MapReduce may be used as a platform
for graphics algorithms. It is shown that time taken for rendering of models

decreases when the number of nodes increases.

3.3 System Architecture

In general, the architecture of the overall system will be as follow.

Client
. o
Switch
1000Mbit
100tibit i
Swritch Switch 106Mbit
- TaskTrack : i
! ,u’?)satarrzz deer — { JobTracker
: . H i i
! 3 i
. TaskTracker . : i i
. /Datatode ® f Namefiode ;
. TaskTracker H ' TaskTracker . |
© fDataNode | i. /DataNode ; |
; ; i H
~ TaskTracker ! i TasiTracker !
~ /DataNede ! % /DataNode © !
H i ¥ H
Lo Bk [Rex

Figure 4: Hadoop Cluster

However, the architecture of the rendering process will be discussed
below along with several different architectures to illustrate the difference.
There are three types of architecture suitable to perform rendering in this

environment. Details will be discussed below.

3.3.1. Architecture 1

Frame 1

MapReduce Framework

|

Frame 1

4

|

Frame 2

i

L cPU1]

| cPU2 |

Frame 3

7

CPU3

Figure 5: Distribution of Frames

In this architecture, each CPU will render one frame.
MapReduce need to handle the breaking of frames through the
Mapping phase and distribute it across the CPUs. The Reduce phase

will be merging of frames.

The system may compile and compress a few frames before
sending to users. This will reduce the network load. However, the
communication cost between CPUs will be high. Rendering different
frames might need different time. Therefore, it need to wait till every
CPU finish rendering the frames before compiling and sending to

client.

3.3.2. Architecture 2

Frame 1

L

i MapReduce Framework]

; t g
B ¥ E
1} !]

Figure 6: Distribution of Parts

In this architecture, it involves breaking of objects or portion
of the frame and distributes it across CPU. MapReduce need to handle
the breaking of objects through the Mapping phase and distribute it
across the CPUs. The Reduce phase will be merging of portions.

The system may compile and compress a few frames before
sending to users. This will reduce the communication cost but will

increase the network load between the system and client.

3.3.3. Architecture 3

Frame 1 Frame 2 Frame 3 Frame 4

‘ MapReduce Framework]

| 7 |

8 L N L J
08 my N
[] § !

CPU1 CPU2 CPU3

Figure 7: Distribution of Multiple Frames on Multiple Nodes

In this architecture, it involves breaking of objects or portion
of the frame and distributes it across CPU. However, the process is
chained where multiple frames may be processed at one time. One of
the major improvements in this architecture is the system able to

continuously feed the system with the data to render.
3.3.4. Summary

The architecture showed above contained its own pros and
cons. 1™ Architecture contains the simplicity which allows dedication
of CPU to process single frame, frame does not need to be particularly
distributed across the nodes. A queue system may be implemented
whenever number of frames is larger than number of CPU. However,
it might be very slow when there are less number(s) of CPU (E.g. 1)

and need to process a huge number of frames.

In 2" Architecture, it involves breaking of a single frame and
submitted to all the processing CPU for rendering process. However,

it only involves a single frame.

3™ Architecture is designed based on the 2 previous
architectures. Improvements have been made such as it allows
chaining of processes and rendering multiple files simultaneously
through MapReduce framework. Test has been designed to

demonstrate this architecture in Results and Discussion section.

3.4 System Prototyping

The development lifecycle that will be implemented for this project

will be prototyping.
Planning
Analysi
nauaa Syskem Prototype
Design
Implementation
Implementation
PROTOTYPE BUILDING
I System
Prototyping Methodology

Figure 8: Prototyping

Each module is being developed and added to the main module.
Below are the modules being developed:
(a) File
I Loading of new image
ii. Loading of data (.asc)
iii. Saving of multiple frames into an archive
iv. Save a particular frame as JPEG format

v. Exiting the whole applications by killing all the process

(b) Edit

I, Undo - Remove the latest frame

(c) View

i, View in Full Screen
(d} Tool

i. Rotate image clockwise

1i. Rotate image counter clockwise
(&) Go |

i Jump to next frame

il. Jump to previous frame
(f) Help

iii. Content

iv. About

3.5 Testing and Benchmarking

Output >

Blackbox

Figure 9: Black Box Testing

The prototype will be tested using Blackbox Testing approach. Each
module will be tested a few rounds with different dataset along with bugs

fixing to ensure quality work is produced

3.6 Tools and Equipment Required

Some of the tools and equipment which used in the project are as
follows:
e Ubuntu 10.04
» Hadoop 0.20.2
¢ Java Development Kit 1.6.0 20
s VMware Player 3.1.2

Below is the knowledge required before the author starts this project:
¢ Object-Oriented Programming (Java)
¢ Distributed Computing
¢ MapReduce algorithm
¢ Hadoop framework

¢ Python

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Introduction

Figure 10: Graphics Rendering in Cloud User Interface

The project developed not only may be used as an image viewer but
as well as it have the backbone of cloud computing. Data may be fed into the
system to start the rendering process. Among the functionalities developed is
divided into 6 groups:

(a) File

(b) Edit

(c) View

(d) Tool

(e) Go

(f) Help

Each function and each sub function will be discussed in detail below

along with the screen shot of each function.

4.2 File
4.2.1. New

¥ h File pame temporary pg Gpen

’ L Files of fype: AN fles (1) Cancal
zﬁ —_
R .

Figure 11: Load New Image

The application is able to load images (e.g. JPEG, PNG) and
add it to the queue of the frames.

4.2.2. Open...

Figure 12: Load Data File

It is possible to render frames using cloud computing
framework as in Architecture 3 - Figure 7: Distribution of Multiple

Frames on Multiple Nodes.

4.2.3. Save

Frames.zip

’f === 2ip

Figure 13: Archive the Frames

All the frames may be saved in an archive (.zip) to be used in
the future. This function allow the user to export the whole set of

data/image to other people or store it.

4.2.4. Save As

Output.ppm Output.jpeg

Figure 14: Save As Different Format

Image loaded using cloud framework will have .ppm format.
However, this can be converted to JPEG file format. Users are able to

select the directory of the file to be saved and the file name.

4.2.4. Exit

When the exit is invoked, the frames will be destroyed. The

author added a shortcut for this function which is the Escape button.

4.3 Edit
4.3.1. Undo

Figure 15: Remove the Last Frame

Using undo function, it allows the user to remove the latest
frame added to the queue. This remove process follows the concept of
LIFO (Last In First Out). However, once the image is being removed,

users need to add back the frame manually.

4.4 View
4.4.1. Full Screen

Figure 16: Viewing Full Screen

There will be time when users accidentally changed the screen
size. Users may load the image in full screen mode where the size of

the screen is taken to maximize the size of the panel being load.

4.5 Tool
4.5.1. Rotate Clockwise

Figure 17: Rotate Clockwise

Users may rotate clockwise where it rotate 90° to the right.
Image being rotated will not be saved and all the effect will be

removed once the user view the next frame.

4.5.2. Rotate Counter Clockwise

Figure 18: Rotate Counter Clockwise

The features will be the same as above except that the rotation is -90°.

4.6 Go

4.6.1. Previous Image

Frame 3

Frame 1 Frame 3

Figure 19: Goto Previous Image

Users are able to view previous images by clicking the

function of previous image in Go part.

4.6.2. Next Image

Figure 20: Goto Next Image

Users are able to view next frame by clicking the function of
previous image in Go part. Moreover, a shortcut key is created as well
which is the spacebar. Users may go to the next frame by tapping the

spacebar.

4.7 Help
4.7.1. Content

A simple message box to describe to the users regarding on

what function is available in the system.

4.7.2. About

A simple message box used to describe to the users the general

information of the system such as version number and description.

4.8 Summary

This project highlights the interface of the system along with the
features of distributed graphics processing across a network through
MapReduce. It explores the options of performing graphics rendering with

local GPU or across the cloud.

In each module developed, black box testing is applied where the
functionality is tested whether it preforming as it is supposed to be.
Development has been made in Python and this allows rapid prototyping of

each module.

In order to simulate the architecture, we may load multiple files into
the system. After 1 file is loaded, while it is still processing, 2™ file may be
loaded to process. Tasks will be distributed through MapReduce Framework to

all the processing nodes.

The application can be applied to students which require graphics

processing application such as simulation software and etc.

CHAPTER 5
CONCLUSION

This research main purpose is to study the feasibility of rendering graphics in
multiple CPUs using MapReduce framework along with developing an interface for
viewing image which able to render multiple frames with existing cloud framework.
These have been achieved by studying the architecture of cloud and rendering
process. System has been developed to tackled the issue of conventional graphics

rendering is on local GPU and CPU by using cloud computing as an approach.

The final outcome of this project is able to achieve the objectives which are

as follows:

1. To study feasibility of rendering graphics in multiple CPUs using
MapReduce framework
2. To render multiple frames with existing cloud framework

3. To develop an interface for viewing image

There is vast improvement can be made to the system and this research to
make it better, The author currently uses existing Cloud Framework which might not
be fully optimized. In the conducted study, the author does not give much attention
on the performance of the system and communication cost. There is much room of
improvement of this system in terms of the graphics rendering in cloud of GPUs or

optimize the coding.

REFERENCES

1.

10.
11.

12.

Coombe, B. (2009). Cloud Computing-Overview, Advantages, and
Challenges for Enterprise Deployment. Bechtel Technology Journal , 2(1), 4-
5.

Dinh, M. T. (2008). GPUs - Graphics Processing Units. Vertiefungsseminar
Architektur von Prozessoren, SS.

Fried, M. (2010, June). GPGPU Architecture Comparison of ATITM and
NVIDIAR GPUs. Retrieved from Microway:
http://www.microway.com/pdfs/GPGPU_Architecture_and Performance Co
mparison.pdf

Goodney, A., Raman, A., Gajara, K., & Gala, N. (2009). Cloud-based
rendering using Hadoop.

Hadoop. (n.d.). Retrieved from http://hadoop.apache.org/

He, B., Fang, W., Govindaraju, N. K., Luo, Q., & Wang, T. (2008). Mars: A
MapReduce Framework on Graphics Processors. Proc. PACT. n

Inc., Y. (nd.). Hadoop Tutorial from Yahoo! Retrieved from Yahoo!:
http://developer.yahoo.com/hadoop/tutorial/module5.html

N. Sainath, S. M. (2010). A Framework of Cloud Computing in the Real
World. Advances in Computational Sciences and Technology, 3(2), 175-190.
Shimpi, A. L., & Wilson, D. (June, 2008). NVIDIA's 1.4 Billion Transistor
GPU: GT200 Arrives as the GeForce GTX 280 & 260. Retrieved from
AnandTech: http://www.anandtech.com/show/2549/2

Streamyx. (n.d.). Retrieved from tmnet Streamyx: http://streamyx.tm/

Stuart, J. A., Chen, C.-K., Ma, K.-L., & Owens, J. D. (2010). Multi-GPU
Volume Rendering using MapReduce. ACM HPDC (pp. 841-848). Chicago,
linois: ACM.

Wasson, 8. (January , 2010). Intel's Core i3 and i5 dual-core processors.
Retrieved from The Tech Report: http://techreport.com/articles.x/18216

APPENDIX
Appendix 1: Configure Hadoop Distributed File System in Single Node Cluster
Appendix 2: Coding

Configure Hadoop Distributed File System in Single Node Cluster

(a) Sun Java 6

Command:

.Dowﬁxoﬁd IDK1.60_24 f'ro'ni Sun Microsystmi website

sudo gcdlt ~{ bashrc

export JAVA HOME——/home!hadoopijdkl 6024
- export PATH=SPATH:$JAVA_HOME/bin

expoit CLASSPATH=$JAVA HOME/ib

Result:

$; Java ~version

- javaversion "1.6.0 24" - e)

Java(TM) SE Runtime Enwrcnmem (bul]d 1.6.0 24- b07) :
Java HotSpot("I'M) Chent VM (bmld 19 1-b02; mixed mode shanng}

(b) Configure SSH
Install SSH:

'$ sudo apt-get install openssh-server -,

Create empty file to store SSH Key:

$ mkdir ~/.ssh

§ed ~/ssh AR R
$ touch methorized keys © -
$ touch id. rsa.pub

$cd..

Generate SSH key:

'$ ssh-keygen -t rsa

‘Generating publlc/pnvatc 158 key pmr :
Enter file in which to save the key {home/hadoop/. sshhd rsa)
Jhome/hadoop/ ssh/id_rsa
Enter passphrase (empty for no passphrase)
Enter same passphrase again; -
. Your identification has been saved in /home/hadoop/ sshfid ‘) rsa.
Your pablic key has been saved in /home/hadoop/. ssh/:d_rsa_pub

Append the contents of the pub file to the correct location on the remote

scrver:

hadoop@ubunm ~$ ssh—copy-ld i /homcfhadoop/ sshfid_rsa.pub hadoop@ubunte

- The authentlcnty of host ubuntu (127 0.1.1Y can't be cstabllshed .
RSA key fingerprint is 82:65:92:32:92:69:a2ce:0c:ed: f6:9b:88:84:0¢:34.
Are you sure you want to continue connecting {yes/no)? yes .
Warning: Permanenily added ubunt’ (RSA) to the list of knﬂwn hosts: .
hadmp@ubuntu‘s password:
-Now try logging into the machme with "ssh hadoop@ubunw"' and check in:

sshfauthonzzd |_keys

t0 makc sure we haven't addcd cxtra keys that you wcren't expectmg

Repeat the step for localhost:

" hadoop{@ubuntu:~§ ssh-copy-id =i ﬂiome/ﬁaddop!.sshfid_rsa.ﬁub hadoop@@localhost

(¢) Configure Hadoop

conf/hadoop-env.sh:

The java implementation to use. Requlred
export JAVA HOME—mnmemadoop/_pdkl 6.0 24/

Extra Java CLASSPATH elemcnts Optional
export HADOGP CLASSPATH“momeMadmp/jdkl b 0 24/11h

conf/core-site.xml:

<property> :

: <name>hadcop tmp. dlrdname>
<value>momemadoopresktopltempmary<a’value>
<description>A base for other femporary directories. </descnphon>

dpmperty> L .

<PT0PGHY>
- <pame>fs.default, name<lname>
- <value>hdfs:/flocalhost:5 43 I 0%/ value>
- <description>
- Name of the default ﬁle system A URI whose scheme and authorlty dctermmc the ﬁle system
implementation.: The vri's scheme determines:the config property (fs.SCHEME. lmpI) naming the
* FileSystem unplementannn class. The uri's authonty is used to dctermme the host, port, etc. fora
.. filesystem. . .
</description> .
</property>

conf/mapred-site.xml:

<Pf0Pﬂﬂy>
~<pame>mapred. job tracker</name>
- <value>localhost:5431]</v3]ue>
<descr1ptx0n> . ;)
. The host and port ﬁ:al the MapReduce _}ob tracker Tuns at. lf "local" 'thcn jOhS are rin in-process asa,
_‘single ma and reducc task,
<ldescnptlon> ’

<fproperty>

conf/hdfs-site.xml:

<pr0pcrty>
<piame>dfs. repllcauondnmne>
- <value>1 </value>.
i <descnpt:on> ’
- Default block rephcauon
The actial pumber of mphcatmns can be speclﬁed when the file is created The defablt is vsed if
replication-is not speclﬁcd in create time.
</description> ‘

</propcrty> :

(d) Format the NameNode

Command:

_:$_momgmgdqdp/!.ladoop—()l()glbi:n'f_ha(:igéup n'a'r.nenode_'-fpmila_tf S

(e} Test Hadoop Threads
Start:

$ Mome/hadoop/hadoop-0.202/bin/stirt-all sh

Result:

Sips .
11668 TaskTracker .
11467 SecondaryNameNode
11524 JobTracker
11824 Jps
11169 NameNode

11319 DataNode

Stop:

$ /home/hadoop/hadoop-0.20.2/bin/stop-all sh

p—
f= e B A N R N Y S

I T S N L S N TS B P N S T FU VS R PSR IO N PO TO N 6 I I N I N SIS IS

Coding

import Tkinter as tk
from PIL import Jmage, ITmageTk
import tkFiteDialog

import re

import sys

sys.path.append(Yhome/hadoop/Desktop/Test16/cloud/project/xform")
import xformMapper

import zipfile

root = th. Tk()

root. fitie("Graphics Rendering in Cloud Ul"

root. withdraw()

list_images = ['l jpg'] #To load a default image
img_index ={

rotateCounter = 0

def create_window{):
global root
global top
top = tk. Toplevel(root)

w, h = root. winfo_screenwidth(), root.winfo_screcenheight()

make the root window the size of the image
top.geometry("%dx%d+0+0" % (w, h))

global app
app = tk Frame(top)
app.grid()

def full_screen():
w, h = root. winfo_screenwidth(), root.winfo_screenheight()
top.geometry("Yodx%od-+0+0" % (w, h})

#global app
app = tk. Frame(top)
app.grid(y

pick an image file you have bmp jpg .gif .png

load the file and covert it to a Tkinter image object list_images[img_index]

def loadImage():
global imagel

image! = ImageTk Photoimage(Image.open(list_images[img_mdex]}}

get the image size
w = imagel.width()
h = imagel.height()

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
38
89
90
91
92
93
94
95
96
97
98
99
100
101

position coordinates of root 'upper left comer’
x={

y=0

root.geometry("YadxYed+%d+%d" % (w, h, x, ¥))

def renderlmage():

global panetl

panel] .configure{image=image1)

def popupChoices{event=None}:

global app
menu = tk.Menu(app, tearoff = 0)

menu_file = tk Menu{menu, tearoff = 0)
menu_edit = tk Menu(menu, tearoff = 0)
menu_ view = tk.Menu(menu, tearoff = 0)
menu_tool = tk. Menu(menu, tearoff = 0)
menu_go = tk.Menu(menu, tearoff = 0)

menu_help = tk. Menu{meny, tearoff = ()
menu.add_cascade(menv=menu_file, iabel='File')
menu_file.add_command(label=New', command=new image)
menu_file. add_command(label='Open...", command=fadd_file)
menu_file.add_separator()

menn_file.add command(label="Save', command=zip_file)
menu_file.add_command(label="Save As..., command=fsave_as)
menu_file add_separator(}
menuy_file.add_command(label="Exit', command=fexit)

menu.add_cascade(menu=menu_edit, label="Edit')

menu_edit.add_command(label="Undo', command=remove_latest)

menu.add_cascade{menu=menu_vicw, label='View")

menu_view.add command(label="Full Screen’, command=full_screen)
menu.add cascade{menu=menu_tool, label="Tool'")
menu_tool.add_command(label="Rotate Clockwise’, command=rotateClockwise)

menu_teol.add command(label="Rotate Counterclockwise', command=rotateCounterClockwisc)

menu.add_cascade(menu=menu_go, label='Go')

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

menu_go.add command(label="Previous Image', command=previousimage)

menu_go.add_command(label="Next Image’, command=nextimage)

menu.add_cascade{menu=menu_help, iabel="Help")

menu_help.add_command(label="Conient’, command-content)

menu_help.add_separator(}

meny help.add_command(label="About', command=ahout)

Get the current y-coordinate of the Entry

ycoord = app.winfo_pointery()

Get the current x-coordinate of the cursor

xcoord = app.winfo_pointerx()

Display the Menu as a popup as it is not associated with a Button

menu.tk_popup(xcoord, yeoord)

def new_image():

global img_index, list_images

fileName = tkFileDialog.askopenfilename(titte = Choose an image’, fitetypes=[("JPEG"," jpeg™),("All files",”. *™)])

if fileName |= None:
list_images.append({fileName)
nextlmage()

def fadd_file():
#fite = tkFileDialog. askopenfile(parent=root,mode="rb' title="Choose a file")
file = tkFileDiatog. askopenfilename(title = 'Choose a filg')
if file I= None:
= open(file, "r'")
text = f.read()
xformMapper. main(text len(list_images))
image_name = "output"+"%i" %o(len(list_images)+".ppm"
print image name

list images.append(image name)

def zip_file():
zip_file_name = tkFileDialog.asksaveasfilename(title="2ip", filetypes=[{".zip",".zip")])
zout = zipfile. ZipFile(zip_file name, "w")
for fname in list_images:
zout.write(fname)

zout.close()

def fsave_as():

saveAs_file name = tkFileDialog.asksaveasfilename{title="Save As", filetypes={("JPEG"," jpeg"),("All

ﬁ]es",". *rr)])

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

file name = list_images[img_index]

input_text = open(file_name, 'rb").read()

input_text = input_text{3:]

image_width, image_height, max_color = re. findall("(\d+ s HAdH s HOd+H s+, input_text)[0]

to_remove = re findali{"(\dHsH\d+Hs+HdHs+)", input_text){0}

input_text = input_text.replace(to_remove, "")

new_img = Image.new("RGB", (int{image width), int(image_height)})

for i in xrange(int{image_height)):
for j in xrange(int(image_width)):
1, 8, b = tuple(input_text[:3])
#print ord(r), ord(g), ord(b),r, g, b
input_text = input_fext[3:]
new_img.putpixel({j, i), (ord(r), ord{g), ord(b}))

new_img.save(saveAs_file_name)

def remove_latest():

del list_images[len(list images)-1]

def fexit():
top.destroy(}
root.destroy()

def pextImage(}):
global img_index, list_images
global rotateCounter

rotateCounter =0

if lenlist_images)-i > img_index:
img_index +=1
else:
img_index = 0
loadimage()

renderlmage(}

def previousimage():
global img_index, list_images
global rotateCounter

rotateCounter =0

if len(list_images)-1 > img_index:
img_index -= I
else:
img_index = 0
loadlmage()

renderImage()

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

def rotateClockwise():

global rotateCounter
rotateCounter -= 90

image = Image.open(list_images[img_index])
imRotate = image.rotate(rotateCounter)
filename = "temporary.jpg"

imRotate.save(filename)
list_images.insert(img_index, filename)
loadlmage()

renderimage()
del list_images[img_index]

def rotateCounterClockwise();

global rotateCounter
rotateCounter += 90

image = Image open(list_images[img_index})
imRotate = image.rotate(rotateCounter)
filename = "temporary.jpg"

imRotate.save(filename)
list_images.insert(img_index, filename)
loadImage()

renderimage()

del list_images[img_index]

def content():

root = tk. Tk()

root.title{'Content")

tk.Message(root, text="The Basic Functionalities; \n"
"File: New, Open, Save, Save As, Exitin"
"Edit: Undo\n"
"View: Full Screen\n”
"Tool: Rotate Clockwise, Rotate Counterclockwise\n
"Go: Previous Image, Next Image'n"
).pack(padx=100, pady=50)

root.mainloop()

def about():

root = tk. Tk{}

root.title('About’)

tk.Message(root, text="Graphics Rendering in Cloud UI \n"
"Version 9.0\n"
The system is designed by Gary Tan\n

254 "The developer believes that graphics rendering will be rendered in the Internet instead of locally in the

255 future”

256).pack(padx=100, pady=50)
257 root.mainloop()
258

259

260 defkey_escape(evt):

261 fexit()

262

263 defkey space(evt):

264 ' nextlmage(}
265

266

267 create_window()

268

269 root.bind_all('<Escape>’, key escape)

270 root.bind_all('<Button-3>', popupChoices)

271 root.bind_all{'<space>, key_space)

272 # root has no image argument, so use a label as a panel
273

274 loadimage()

275 global panell

276 panell = tk.Label(app, image=image1)

277 panell pack(side="top', fill="both’, expand="yes")
278 panell.image = imagel

279

280 # save the panel's image from 'sarbage collection'
281 renderlmage()

282 # start the event loop

283 reot.maisloop()

