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ABSTRACT

pH neutralization process is a process that is widely studied due to its highly nonlinear

process reaction. Its nonlinearity behavior is caused by static nonlinearity between pH

and concentration. This nonlinearity depends on the substances in the solution and on

their concentrations. In this project, the nonlinearity of the process was investigated.

Later, the mathematical model of the process was developed based on McAvoy et al

[I]. In addition to the mathematical model, an empirical model was also obtained

from Analytical & Chemical Pilot Plant located in the Process Control &

Instrumentation Laboratory (23-00-06). Both models were then used to develop the

Fuzzy Logic Controller (FLC) by using Advanced-Neuro Fuzzy Inference System

(ANFIS) and also gain-scheduling method. In ANFIS implementation for empirical

model, the FLC output was identical to the output from PID. Therefore it is concluded

that FLC could be used to replace PID for empirical model. In ANFIS implementation

for mathematical model, the FLC also could be implemented for mathematical model

since the controlled variable successfully follows all the set point changes. For gain-

scheduling method, the FLC was tested on servo and regulator problems. The servo

test was performed by using a random number generator to generate random pH set

points between 3 and 11 and the simulation is performed for 100 seconds. The result

for the servo test was similar with the result from the ANFIS implementation for

mathematical model. For regulator test, the disturbance was the ±20% variation in

acid flow. The result for the regulator shows, the controller manages to eliminate the

disturbance effect in the process variable. In overall, the project successfully shows

that FLC could be a good alternative to PID controller.
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CHAPTER 1

INTRODUCTION

1.1 Background

pH neutralization process is a process that is widely under research due to its highly

nonlinear process reaction. Its nonlinearity behavior is caused by the static

nonlinearity between pH and concentration.

PID controller which is a linear controller is not sufficient to control wide range ofpH

since it relies on the principle of linearity that guarantees a Y% change in the process

variable following an X% change in the control effort. The ratio or gain between X

and Y will be fixed, whether the process is running at maximum capacity, minimum

capacity or somewhere in between. Hence, PID only works beautifully in linear

process which makes it very bad for pH neutrahzation process which is very highly

nonlinear.

A resort to the conventional PID controller was to apply gain-scheduling method as

offeredby commercial controller for example Commander 355 from ABB [2].

Gain-scheduling could be further upgraded by taking the advantages offeredby fuzzy

logic since fuzzy logic allows a continuous transition among the gain values in the

table.

In this project, the nonlinear behavior of pH neutralization process will be studied to

implement Fuzzy Logic Controller (FLC) on the process.

1.2 Problem statement

For wide range of pH value in the pH neutralization process, linear PID controller is

not sufficient to control the process; therefore a new controller will be developed for

the process. The controller will consolidate the gain-scheduling method and fuzzy

logic design.



1.3 Objectives and Scope of Study

• To understand the nonlinearity behavior of the pH neutralization process.

• To develop the mathematical model ofpH neutralization process.

• To obtain the empirical model of the pH neutralization process based on the

Analytical & Chemical Pilot Plant located in the Process Control &

Instrumentation Laboratory (23-00-06).

• To obtain the Kc and 7} for different pH set point in the mathematical model as

part of the gain-scheduling method.

• To design fuzzy logic controller for the mathematical model and empirical

model based on the Advanced-Neuro Fuzzy Inference System (ANFIS) and

also gain-scheduling method.

• To test the FLC based on servo and regulator problems on the mathematical

and empirical model ofpH neutralization process.

• Make the comparison test between the Linear PID, Fuzzy Logic Controller

(gain-scheduling method) and Fuzzy Logic Controller (ANFIS).



CHAPTER 2

LITERATURE REVIEW

2.1 pH neutralization

pH is the measurement of the acidity or alkalinity of a solution containing a

proportion of water. Neutralization is the process to neutralize acidic and alkaline

solution to produce salt and water. The process is highly nonlinear as shown in the

Figure 1.

pH

12

Actual

^-neutralization

Linear

"-. system

'n 1

-5 ([Ha]- [NaOH]) x 10"3 (mol/1) x

Figure 1: Titration curve for pH neutralization process.

Here is presented the chemistry point of views that explain the non linearity behavior

of pH neutralization process as per explained by Astrom [3], pH is a measure of the

concentration or more precisely theactivity of hydrogen ions ([FT]) in a solution. It is

defined as:

pH = -\og[H+] (1)

However, the formula is not totally correct since [H+] has the dimension of

concentration which is measured in the unit M= mol/1. The modified formula is:



pH = -\og[H+]fH fn^ constant with dimension1/mol (2)

However, the first formula is universally accepted in most of chemistry textbooks.

Water molecules are dissociated (split up into hydrogen and hydroxyl ions) according

to the formula:

H2O^H+ +OH~ (3)

In chemical equilibrium, the concentration of hydrogen H** (or rather H30+) and

hydroxyl ions are given by the formula:

[g+][Qg"l= Constant (4)
[H20]

Only a small fraction of the water molecules are split up into ions. The water activity

is practically unity, and we get:

[H+][OH~] = Kw (5)

The equilibrium constant Kw has the value 10"14 [(mol/1)2] at 25°C.

So, where the nonlinearity come from?

It is good to depict the process with an example. Let's take a look on the

neutralization process of »u mol hydrochloric acid, HCl by mB mol of sodium

hydroxide NaOH in a water solution. The reaction takes place as follows:

HCl + NaOH &H+ +OH~ +Na+ +Cr (6)

Let's the total volume be V. The concentration of chloride ions is then:

[Cr] = xA=mA/V (7)



and the concentration of sodium ions is given by:

[Na+] = xB=mB/V (8)

because the acid and base are completely ionized. Since the number of positive ions

equals the number ofnegative ions, it follows that:

xA+[OH-] = xB+{H+] (9)

The concentration of hydroxyl ions can be related to the hydrogen ion concentration

by Equation 5:

x=xB~xA=[OH-]-[H+]^-^- =\0^H-l4-10-pH (10)
L-" J

Solving for [H*] gives:

[H+] =^]x2/4 +Kw-x/2 (11)

[OH-] =^jx2/4 +Kw-x/2 (12)

This gives:

PH =f(x) =[H+] =^x2/4 +Kw-x/2 (13)

Equation 13 proves the nonlinearity of the pH neutralization process with the curve as

shown in Figure 1.

Let's us check the slope ofthe curve by taking its derivative of fanctionf(x):

f(x) = 101°ge (U)



From the f (x), the largest value is at pH=7. It decreases rapidly for larger and smaller

values ofpH. Therefore, the gain can vary by several orders of magnitude.

The curve shown is for the strong acid-strong base (SASB) reaction since strong acids

and bases are completely dissociated when diluted in water. A weak acid is not

completely dissociated, so it can absorb hydrogen ions by converting them to

undissociated acid. A weak acid or weak base has an ability to resist changes in pH.

This is the property called buffering. For weak acid/ base reaction, the curve would be

less steep.

Figure 2 shows the MATLAB block diagram of Equation 13.

-r-KD
pH

+

-Iog10(u(1))CL)—
*

*

scfrt(u(1))
Fcn2

U(1 )*2/4

Fen

1E-14

Kw

Figure 2: MATLAB SIMULINK block for Equation 13.

2.2 Mathematical model of pH neutralization process

Mathematical model of the process is developed based on McAvoy et al [i] model

which are:

dx
V-r = FaCa-(Flt+Fb)xa

at

V^t =FbCb-(Fa+Fb)xh
at

(14)

(15)



Units:

xa, Xb, mol/ litre = concentration of non-reacting acid and base solution in the mixing

tank

Ca, Cb, mol/litre = concentration of influent and neutralizing agent.

Fat Fb ,litre/sec = flow rate of influent and reagent

The equations are presented physically as shown in Figure 3.

C^

G«j

Fa

Influent
Pump

Cb,

Agent Pump

C^2i

04—'
Fb

7^.

Xa Xb V

Mixing tank

Fa+

Fb

Figure 3: Physical representation of the pH neutralization process.

The given equations are based on Continuously Stirred Tank Reactor (CSTR). By

assuming a prefect mixing in the tank isothermally, McAvoy derived the dynamic

model which was verified experimentally.

To develop the equivalent MATLAB SIMULINK block, the Ordinary Differential

equation (ODE) has to be represented in state space/ matrix form. The matrix form of

the equations was:

(F.+F„)/V 0

0 -(Fa+Fb)/V
u{t) (16)\*a~ +

FaCJ
7V

lA-
/v _



y =[i -if!;
13.

(17)

*u(t) represent the input to the system which could be the Fa, Fb, Ca, Cb

Fromthe matrix equations, the block diagram of the equation is developed as shown

in Figure 4 and 5.

F C1 a^b

V

S D Xa . 1

s

Xa

u(t)

\
1

- y(t)
Fa+Fb

V
J *
i.

1

L
F C1 b^b

V

' - xb 1

s

xb

*KV

Figure 4: ODE block diagram

Ca

Fa

FaCa/V I
Fb

(Fa+Fb)/V
FaCa/V1 l=T H+

V

Cb

FbCb/V
xb

FaCa/V2

Figure 5: MATLAB SIMULINK mathematical model of pH neutralization plant.



2.3 Empirical model

Besides the mathematical modeling, the process can be identified through another

easier method called empirical modeling. This method is specially designed for

process control. The model is developed based on the dynamic relationship between

selected input and output variables.

Empirical model is tailored for specific need of a particular process control and is not

meant to satisfy all process design and analysis requirements and can not replace the

mathematical models for all same processes.

In empirical modeling, model is determined by making small changes in the input

variable about a nominal operating condition. The resulting dynamic response is used

to determine the model. The general procedure is essentially an experimental

linearization of theprocess that is valid for some region aboutthe nominal conditions.

The procedure for empirical transfer function model identification is shown in Figure

6 [4].



A priori

r* h

Start

Irnmla«1a#Im j Experimental *
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Plant

I

Determine model structuie
•4 i

Alternative

data

I

Parameter

I
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1 --•

L
Model

i

coin pieLion

Figure 6: Procedure for empirical transfer function model identification.

Empirical modeling involves designed experiment, during which the process is

perturbed to generate dynamic data. The success of the methods requires close

adherence to principles of experimental design and model fitting. There are two

identification methods namely the statistical method and also process reaction curve

method.

Process reaction curve is the easiest one as compared to the statistical method and the

most widelyused for identifying dynamic models.
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The process reaction curve method involves the following four actions:

1. Allow the process to reach steady state.

2. Introduce a single step change in the input variable.

3. Collect the input and output response data until the process again reaches steady

state.

4. Performthe graphical process reactioncurve calculations.

The model is based on a first-order-with dead-time model. The model is shown in

Equation 18.

Y(s) Kce

X(S) TS + 1
(18)

There are slightly two different graphical approaches to determine the process

parameters. The first technique is adapted from Ziegler Nichols [5]. This method

derives the process parameters by using graphical calculations as shown in Figure 7.

Figure 7: Process reaction curve for Method I.

Theprocess parameters are determined from the equations:

11

Control valve

% opening



A
T = —

S

(19)

(20)

0 = interception of maximum slope with initial value (as shown in Figure 7)

Method II uses the graphical calculations as shown in Figure 8.

Control valve

% opening

Figure 8: Process reaction curve for Method II.

The process parameters are determined fromthe equations:

Kc is similar as in Equation 19

^l-5(/63%-/2S%) (21)

Q- ^63% ~ T (22)

Because of the difficulty to evaluate the slop, especially when the signal has high

frequency noise, Method I [6] typically has larger errors in parameter estimates; thus,

Method II is preferred.

2.4 PID controller

There are three basic controller modes in PID controller:

12



2.4.1 Proportional (P)

The proportional controller receives voltage at a certain reading as its input, which

comes from the comparator and represents the control difference. The controller

reacts to the input by trying to make this control difference equal to zero as quickly as

possible. This in turn results in the output of the controller to respond proportionally

to the input variable. However, a settling signal can only appear at its output if an

input voltage is also applied; it therefore requires a control difference at the input in

order to be able to generate the manipulated variable at all output. Thus, the P

controller cannot be used anywhere because the system that intends to implement it

needs a settling signal at their input in order to maintain the controlled variable.

However, it still can be used in a control circuit system with high amplification.

2.4.2 Integral (Reset)

The integral controller mode acts on the magnitude and duration of the error. In this

case, the controller's output is modified by the amount of error (number of times the

proportional gain is reached) in the period specified by the constant time Integral (Ti)

tuning parameter. By using integral control, the target is to obtain zero steady state

error. Basic rule of thumb for using integral is too much integral effects would give

unstable system or at least too many overshoots. The integral amount is total up with

each pass through the calculation and becomes the controller bias (automatic reset).

Some controllers state this parameter as repeats per minute while others use the

reciprocal, minutes per repeat (Ti).

2.4.3 Derivative (Rate)

The derivative element in the controller acts upon the rate of change of error. If there

exists the rate of change of error in the input of the controller, the controller will

respond by adjusting its manipulated variable to counter the rate of change, thus

hopefully able to correct the process variable before it strays very far from the set

point. In simple explanation, derivative control is required to reduce the timetaken for

the process to reach steady state. The Time Derivative (Td) tuning parameter

determines the amount of derivative action.

If the derivative is based on the rate of change of error, the risk of having a rate of

change of error willexist each time an operator makes a set point change. This results

13



in a kick of the controller output, which will likely upset the process each time the set

point is changes. Modern controllers calculate the derivative term based on the rate

change ofthe process variable measurement.

The controllerthat used in observing the characteristic of a control system in practice

is set at the conditions where the modes are used in combination with each other with

the exception of the P mode that is used at every measurement. The proportional

mode was used by its own or with the combination of the other modes. The following

parts of this section describe the criteria and characteristic of each mode in study the

exception of the P mode that hasbeenelaborated on its ownpreviously.

2.5 PID controller variation

2.5.1 Proportional Integral (PI)

The response of PI controller has about the same overshoot as proportional control

however theperiod is larger. In spite of this, the response returns to the setpoint after

certain period. The good thing about this controller is that it eliminates offsets.

2.5.2 Proportional Integral Derivative (PID)

PID controller gives better output compared to P, PI controller since the response of

this controller mode has a lower overshoot and returns to the set point more quickly

than response of the other types ofcontrollers.

2.6 The characteristics of P, I and D controllers

Briefly, for a simple low-order system that can tolerate some offset, P control is

satisfactory. However, the PI controller greatly recommended when we are facing

with the application of a process that cannot tolerate offset. Onthe other hand, if the

control is higher-order, the PID controller is needed to prevent large overshoot and

long settling time.

In most modern control application, PI controller is often the choice because it

eliminate offset and requires only two parameter adjustments. Even though the PID

controller offers the combination of benefits that the other controller cannot produce

14



on their own, tuning a PID controller is more difficult because of the three parameters

involved that must beadjusted thus making the tuning procedure tobecomplicated. In

addition to that, the presence of derivative action also could cause the controller

output to be very edge ifthere is too much disturbance inthe input signals.

Table 1: Effect of PID controller gain.

( IMlllollll KlM llllll

Decrease

OmisIiiiuI

Increase

Senium mm

P Small change

I Decrease Increase Increase

D Small change Decrease Decrease

Table 1 shows the effects of each controller gains on a closed loop system. These

correspondences might not be exactly accurate, because P, I and D controller gains

are mutually related to each other. By changing one of the variables, it will affect the

other two. For theoretical basis, the table should be used only as a reference when

determining the gain values for P, I and D.

2,7 PID tuning

PID tuning is matter ofselecting the right combination ofP, I and D action to achieve

the desired closed loop performance. This is done by adjusting the tuning constants,

Kc, Ti and Td. There are several methods for determining the optimum value of these

gains. The methods are:

i. Trial and error

The value of Kc, Ti and Td are set byplugging inany appropriate values. Then,

by making one or more tuning value to be constant, the other tuning value is

either increased or decreased until the controller setting eliminates the

consecutive error,

ii. Ziegler- Nichols [5]

This method is very convenient when mathematical model of the plant is not

known as well as the systems withknown mathematical model. There are two

main tuning methods recognized byZiegler and Nichols, namely:

• Open loop process reactioncurve

• Closed loop

15



2.7.1 Open loop

Open loop process reaction curve also known as Cohen & Coon method. This method

derives all the tuning parameters from process reaction curve from a step input. The

Cohen & Coon tuning rule assumes that S-shaped process reaction curve can be

approximated by a process model consisting of a first order lag and a dead time as

shown in Equation 18 and Figure 7.

Table 2: Cohen & Coon tuning parameters calculation.

id Mudi ( .ilutl.iiiuii (K H t)

P only

P+I

P+D

P+I+D

KP =

Kp =
1

UK.

RK.

9_ _tf
10 +12

T =T11 1d
(30 + 37?)

(9 + 207?)

K,= RK.

5 7?
- + —

4 6

T =T1D 1d
(6-27?)

(22 + 37?)

K,= RK„

4 7?
—+ —

3 4

3

_„ (32 + 67?) 4

(13+ 87?) (11 + 27?)

Table 2 gives all the formula to calculate the tuning parameters for each type of

controller.

16



2.7.2 Closed loop

Unlike the open loop method which evaluates the system on a step response, closed

loop method is evaluated based on the system at its limit of stability. The following

procedures show how to apply this method:

1. Start any trending ofPV.

2. Set the Kp and Td to their minimum values and Ts time constant to its maximum

value. Then place the controller in the Automatic state.

3. Increase the proportional gain in small steps. After each adjustment, observe the

PV response to a SP change. When sustained oscillations are observed, note the

value ofthe proportional gain and the period (in minutes) of the oscillations:

Gu = proportional gain for sustained oscillations.

Pu^ period of oscillations (in minutes).

4. Calculate the controller settings as shown in Table X.

5. Make any final adjustment in Kp, T; and Td to obtain the desired PV response.

Table 3: Closed loop tuning parameters calculation.

( oiiiinllu Lv 1, h

p 0.5 Gu

PI 0.45 Gu Pu/2

PID 0.6 Gu 0.5 Pu 0.125 Pu

Figure 9 shows the PID controller built in MATLAB SIMULINK.

Kp

Ti t:

Kp*e

5T

Fb

MV

Product

Integrator

Td

(Z>
du/dt

product

Derivative

Figure 9: PID block built in MATLAB SIMULINK.
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2.8 Fuzzy logic

Fuzzy logic was first introduced by Dr. Lotfi Zadeh [7] in his seminar paper in 1965.

He proposed a methodology to deal with impression, which he called fuzzy sets.

Fuzzy sets overcome the problems of crisp sets, where instead of only "true" and

"false" or "yes" and "no," a membership ofdegree from "0" to "1" can be assigned to

a set. The application of fuzzy logic to control systems, which are very popular

currently, was first introduced by E.H. Mamdani [8] and his students in 1972. In fuzzy

logic control applications, linguistic rules can be developed where, based on current

conditions of the process, the next control actions can be formulated.

2.8.1 Set definition

Set can be defined as a collection ofobjects distinct and perfectly specified [9]. Apart

of set is a subset. For example, let's have a finite referential set:

E= {a,b,c,d,e}

We can form a crisp subset of E, for example:

A={b,d,e}

Or in other form:

A-
a b C d e

0 1 0 1 1

In above case, the element b belong to A, hence its degree of membership is 1.

However, the element a does not belong to A, so its membership is 0. This property

called a degree of membership. We can form a function, which represent this

property.

ua(x)=1 ifx€ A

OifxGA

This is a basic classical set theory. However fiizzy set is an extension of crisp set. Dr.

Lotfi Zadeh [7] gave the following definition of fuzzy set:
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Afuzzy set is a class of object with a continuum ofgrades ofmembership. Such a set

is characterized by a membership (characteristic) function, which is assigned to each

object a great membership ranging between zero and one.

Zimmerman [10] defined fuzzy set as a set that denoted by an ordered set of pairs, the

first element of which denotes the element (x) and the second (ua(x)) the degree of

membership:

A={(x,ua(x)|xGX}

Where uA(x) takes the values ranging from [0,1].

A= {(a, 0.4), (b, 0.2), (c,0), (d, 0.8) ,(e, 1)}

Fuzzy set can also be represented by linguistic variable, as follow:

H (height) - (very short, short, nice, tall, very tall)

2.8.2 Concept of fuzzy logic

A process control algorithm that based on Fuzzy logic is called Fuzzy Control. It is

essentially embeds the intuition and experience of the operator. Generally, fuzzy

control is similar to the expert system based on control. It is described by a set of IF...

THEN... rules (called implication). The rule is described in Figure 10.
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Start

Define output and input

Define the rule based on input and output

Fuzzification

Denazification

NO

Start

Figure 10: Flowchart of fuzzy logic.

Fuzzy Logic Controller (FLC) would normally take the reading of error (E) and the
rate of change oferror (AE/ dt) as the inputs and change in process variable (APV)

signal as the output. The controller then transforms the crisp values of (E) and (AE/
dt) into corresponding fuzzy values (usually there are several fuzzy values ofE and

(AE/ dt). From the knowledge ofthe controller, the fuzzy values of(E) and (AE/ dt)
determine which particular rule or rules are to be fired through an inferencing

algorithm. Several values of(AE/ dt). Several values of(AE/ dt) will then be obtained
and a defuzzification mechanism will then transform these into one crisp value. The
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actual control signal obtained by adding (AE/ dt) to the past value of u, which is send

to the plant.

2.8.3 Fuzzy Logic Controller (FLC)

Fuzzy control provides a formal methodology for representing, manipulating and

implementing a human's heuristic knowledge about how to control a system [JJJ.

Figure 11 shows the basic block diagram of FLC implementation.

1

y\r(t) ,
u(t)Fuzzy Logic

Controller

(FLC)

Process

y(t)

9

Figure 11: Block diagram of FLC implementation.

There are four main components ofFLC [9]:

1. Rule- Base. (Set of IF-THEN rules), which contains a fiizzy logic quantification

of the experts' linguistic description of how to achievegood control.

2. Inference mechanism, (also known as "inference engine"/ "fuzzy inference"

system), which emulate the expert's decision making in interpreting and applying

knowledge about how best to control the plant.

3. Fuzzification interface. Converts controller inputs into information that the

inference mechanism can easily use to activate and apply rules.

4. Defuzzification interface. Converts the conclusions of the inference mechanism

into actual inputs for the process.

Figure 12 shows how the FLC architecture.
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Inference System

r(t)

i i , i

1'
u(t)

Fuzzification Defuzzification
^p.

Rule- Base

Figure 12: FLC architecture.

Example given by Rahmat, Norhisham [12] could give a better understanding on the

FLC architecture.

Table 4: Basic Rule Base.

KAA \1 1

Ml

I.L

/I

Ml

M 1

1 1

1 1

1

/I

1 1

III Mil

I

VLE VLE LE ZE HE

VLE LE ZE HE VHE

LE ZE HE VHE VHE

Mil ZE HE VHE VHE VHE

VLE = Very 1ow error LE = ,ow error ZE = Zero error HE = High error

VHE^ Very high error

Based onTable 4, let'sE and AE bethe input labels. FLC output signal isU. Then the

rule is as follows (example):

"IF E is LE AND AE is LE THEN V is VLE"

First step is to take E and AE and determine the degree to which they belong to each

ofthe appropriate fuzzy sets via membership functions. The inputs are always a crisp

numerical values limited to the range of the input. Figure 13 shows the membership

functions of the system,
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-3 Variable E, AE, or U

Figure 13: Membership functions.

Once the inputs have been fuzzified, the degree to which each part of the antecedent

has been satisfied for each rule is known. If the antecedent of a given rule has more

than one part, the fuzzy operator is applied to obtain one number that represents the

result of the antecedent for that rule. This number will then be applied to the output

function. Fuzzy operator is applied to the membership functions for "AND" or "OR"

operators. For AND there are two built-in logical operators; MIN (minimum) and

prod (product). Twobuilt-in OR are max (maximum) andprobor(probabilistic OR).

AND:

min(a,b) = {minimum of a and b}

prod (a,b) = a*b

OR:

max(a,b) = { maximum of a and b}

probor(a,b) = a+b - a*b

Example:

Let have next input values: E = 0.2 and AE = 1.4 and the result for the membership

function is as shown in Table 5.
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Table 5: Degree of membership.

4 ^m>^s1l-^
x it

•t

1 Kteiuct^of

uvle(x) 0 I^vle(x) 0

|^le(x) 0 Hle(x) 0

M-ze(x) 0.8 Uze(x) 0

uHe(x) 0.2 u-he(x) 0.6

u-vhe(x) 0 Hvhe(x) 0.4

uu(x) = min {uEi (x) AND ^AEi(x)}

5<i<l

Based on Figure 13 and also the calculation of the membership function degree of

membership, Table 6 is obtained.

Table 6: Table of Rule Base according to membership function.

1 VM> \l I

M 1

1 1

/I

III

M 1 11 /I III Mil

0 0 0 0 0

0 0 0 0.6 0.4

0 0 0 0.2 0.2

MM 0 0 0 0 0

The values are tabulated as in Figure 14.
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Ua(x) HE VH

-3 Variable U 1-42

Figure 14: Result of aggregation.

The last step is to defuzzification. The input for the defuzzification process is a fuzzy

set (the aggregate output fuzzy set) and the output is a single number. As much as

fuzziness helps the rule evaluation during the intermediate steps, the final desired

output for each variable is generally a single number. However, the aggregate of a

fuzzy set encompasses a range ofoutput values, and so must be defuzzified in order to
resolve a single output value from the set. Perhaps the most popular defuzzification

method is the centroid calculation, which returns the center of area under the curve.

There are five built-in methods supported: centroid, bisector, middle of maximum (the

average ofthe maximum value ofthe output set), largest ofmaximum, and smallest of
maximum. Forthisexample, byusing the centroid method, the output is 1.42.

2.9 Fuzzy Inference System (FIS)

Fuzzy inference is the process of formulating the mapping from a given input to an

output using fuzzy logic. The mapping then provides abasis from which decisions can

be made, or patterns discerned. The process of fuzzy inference involves all of the

pieces that are described in the previous sections: membership functions, fiizzy logic
operators, and if-then rules. There are two types offuzzy inference systems that can
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be implemented in the Fuzzy Logic Toolbox: Mamdani-type and Sugeno-type. These

two types of inference systems vary somewhat in the way outputs are determined.

2.9.1 Mamdani FIS

Mamdani's fuzzy inference method is the most commonly seen fuzzy methodology.

Mamdani's method was among the first control systems built using fuzzy set theory. It

was proposed in 1975 by Ebrahim Mamdani [JT] as an attempt to control a steam

engine and boiler combination by synthesizing a set of linguistic control rules

obtained from experienced human operators. Mamdani's effort was based on Lotfi

Zadeh's 1973 paper on fuzzy algorithms for complex systems and decision processes

ra.

Mamdani-type inference, as we have defined it for the Fuzzy Logic Toolbox, expects

the output membership functions to be fuzzy sets (Figure 15). It does not have any

specific equation. Thedevelopment of Mamdani FIS is application specific.

Input 1

Mamdani

FIS
Output

Input 2

Figure 15: Mamdani FIS.

After the aggregation process, there is a fuzzy set for each output variable that needs

defuzzification. It's possible, and in many cases much more efficient, to use a single

spike as the output membership functions rather than a distributed fuzzy set. This is

sometimes known as a singleton output membership function, and it can be thought of

26



as apre-defiizzified fuzzy set. It enhances theefficiency of thedefuzzification process

because it greatly simplifies the computation required by the more general Mamdani

method, which finds the centroidofa two-dimensional function.

2.9.2 Sugeno FIS

Sugeno FIS is developed by Michio Sugeno [13], this type of FIS structure differs

from its its Mamdani counterpart by having constant or linear equations fro output

variable (input method still the same). The linear equations depend on the actual input

value for its computation:

Constant y= k k= measured experimentally/ calculated

Linear y- miX]+m2X2+ +m^x„ + c

Where, ms> m2, ...,mn= gradient to the nth input,

xi,X2, :.,xn- input variable value to the nth input

c = y-intercept y = output variable

Basically bothof theFIS brings several unique advantages overanother:

Advantage of Sugeno method:

• It's computationallyefficient.

• It works well with linear techniques (e.g. PID control).

• It works wellwith optimization and adaptive techniques.

• It has guaranteed continuity ofthe output surface.

• It's well-suited to mathematical analysis.

• The membership functions could be developed by using the Advanced Neuro

Fuzzy Inference System (ANFIS) provided withMATLAB thus make the FIS

development easier.

Advantages ofMamdani method:

• It's intuitive.

• It has widespread acceptance.

• It's well-suited to human input.

27



2.10 Gain scheduling

A majority of feedback control techniques, including the venerable PID algorithm,

relies on the principle of linearity that guarantees a Y % change in the process

variable following an X % change in the control effort. The ratio or gain between X

and Y will be fixed, whether the process is currently running at maximum capacity,

minimum capacity, or somewhere in between. A controller need only know the value

of that gain and the speed at which the process moves to select its control efforts

appropriately.

Unfortunately, not all processes are strictly linear. Even the classic linear system

comprised of a weight hanging from a spring will respond less and less to forces

applied to the mass as the spring is stretched (or compressed) to the limits of its travel.

On the other hand, even nonlinear processes can be approximated as linear if X and Y

are small enough. Consider, for example, a chemical process where a base is added to

a solution to increase its pH. As the Figure 16 shows, the process reacts much more

dramatically to the addition of the base when the pH is already in range B. A

controller attempting to raise the pH all the way from range A to range C would

proceed much too aggressively through range B if it assumed that the entire process

were governed by a single low gain. Conversely, it would be much too conservative in

ranges A and C if it assumed that the high gain ofrange B prevailed throughout.
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PH

Range A Range B Range C

Acid-base mixture (mL)

Figure 16: Different range with different gain value.

The classical solution to this problem is to operate the process entirely within one

range or another (that is, keep X and Y low) or use a control algorithm that varies its

gain as the process gain varies. If the variations in the process gain can be observed or

inferred while the controller is in operation, it is fairly simple to update the

controller's gain accordingly. This is often accomplished with a gain schedule- a look

up table that gives the controller gain appropriate for the current operating range as

indicated by the value of the process variable.

In the pH control example, the gain schedule would have three entries corresponding

to each of the three pH ranges. Each controller gain would be set according to a

separate tuning test executed while the process operates in the corresponding pH

range.

In the previous discussion, no problem was raised regarding the gain-scheduling.

From Figure 16, it was showed that, there was no continuous transition from the

ranges (e.g. fro range A to range B, etc).

To cater this problem, fuzzy logic system would be useful to ensure a smooth

transition among the ranges.
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For pH problem, Karr [14] has proposed the range for strong acid strong base (SASB)

neutralization process. From the idea, the membership functions of the fuzzy

controller could be developed easily.
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CHAPTER 3

METHODOLOGY & PROJECT WORK

3.1 Mathematical model

Mathematical model is obtained by combining several block diagrams previously

discussed in section 2.3. Figure 17 shows the block diagram for uncontrolled process

while Figure 18 shows the whole mathematical model completes with the PID

controller.

3

Fa

Ca

Ft)

Cb

V

H+

| |

0.5 .—->

X pH->
Ca

* SASB

5 Plant

Fb

0.4

Cb

10

V

Figure 17: The SIMULINK block to simulate the uncontrolled pH neutralization

process.
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Kp

r£
Sel point

• Kp
.Ti

• MV FB

3

mV display

m
pH display

pH scope

Figure 18: The SIMULINK block to simulate mathematical model with PID

controller.

The Plant block in Figure 18 is the same block as shown in Figure 5 while the SASB

block in the same as in Figure 2. The result from the simulation from Figure 18 is

shown in Figure 19.

7-

6 -

5-

4 -

10

PID controlled ser\o response

15 20

time(sec)
25 30 35 40

Figure 19: The simulation result based on P+I only controller with the

mathematical model of pH neutralization process.
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3.2 Empirical model

3.2.1 Empirical data

Empirical model is obtained by using Method I Ziegler Nichols as discussed

previously in section 2.3.

From several lab experiments, several set of data are collected to determine all the

required parameters to that it can be simulated in MATLAB SIMULINK. The data are

obtained from the Process Control System Laboratory sessions. The procedure for the

Lab is attached in Appendix I. The data is shown in Table 7. The PID tuning constant

is obtained from the Cohen-Coon formula for open-loop tuning as shown in Table 2.

Table 7: Empirical data from lab experiment.

MiJHiiiiiiitiil SI 1 1

Process Reaction Curve, Gp(s)

M 1 2 si I 3

Change in

Manipulated

Variable, 8

0.1 0.1 0.2

Change in Control

Variable, A
0.7 0.455 0.667

Apparent dead

time,0 (sec)
0.15 1.3 0.649

Apparent time

constant, x (sec)
0.162 0.94 0.351

Process gain, Kc 7 4.55 3.33

R-9/t 1.08 1.38 1.85

Tuning Parameter, Gc(s)

Proportional, Kp 0.15 0.16 0.795

Integral time, Ti

(sec/repeat)
1.103 1.21 1.067

Derivative time,

Td (sec/repeat)
0 0 0
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3.2.2 Simulation

Those set of data are then is simulated in the MATLAB SIMULINK as shown in

Figure 20. The results are shown in Figure 21, 22 and 23.

In10ut1

L

PID .•"H"™L ^
nStep PID Contrc Her

*"

Scope

1

1

pH sensor

Figure 20: MATLAB simulation block diagram for empirical model.
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0.4
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—i i 1 r
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time(sec)

Figure 21: Simulation result from SET 1.
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Step response for SET 2

1.4
-

1.2
- -

1 .

pHsetpoint
CO

-

0.6
-

0.4
-

0.2
- /

0 i i i

D 2 3 4 5 6 7 8 9 10

time(sec)

Figure 22: Simulation result from SET 2.
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] 1 2345678910
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Figure 23: Simulation result from SET 3.
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3.3 Gain table

From the PID controlled closed loop as shown in Figure 18, the gain table of the

process was developed.

To develop the gain table, trial and error is the standard procedure for any fiizzy logic

controller design. However there are several rules of thumb. For example, let's see

Figure 24 which is the titration curve ofneutralization process.

The titration curve of acid vs base solution

14

12 i/"""^

10 /
8 j

£ 6 '

4 -
-

2 \
0

o

-

0 1 3 4 5 6

x, (mol/!)
10

Figure 24: pH neutralization titration curve.

From the titration curve, we could see that the linearity exist for the pH ranging

approximately from 5 to 9, hence we could conclude that for this range the gain

should be a single constant value. Secondly based on [2], to control accurately under

these conditions you need a switchable gain to vary dependent on the pH value you

want to control to. The gain factor drops by a factor of 10 per pH unit ofneutrality.

Therefore a low gain is required near a pH value of 7 and high gain at a higher or

lower pH value. Based on [14], there should be 7 membership functions required to

control any neutralization process between strong acid and strong base.
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The third rule is based on the method of open loop tuning for any PID controller.

Basically, we start Kp with low value and T; with high value (e.g. 9999). The aim of

this step is to obtain thebest value of Kp andTj for specific value of pH set point.

Based on the establishedrules, for example for set point ofpH 7:

Kp = 10 Tj-1020

After several trial and error procedures, the gain table is successfully developed. The

table is shown in Table 8 tabulated in graphical form shown in Figure 25.

Table 8: The plot for Kp and T; versus pH set point.

pH set point Kp Ti

1 76 0.5

2 72 990

3 52 1200

4 50 663

5 14 685

6 14 851

7 14 1020

8 14 1180

9 14 1350

10 52 4300

11 52 4300

12 72 4300

5000

4500

4000

3500

3000

i= 2500
2000

1500

1000 -\
500

0

Kp & Ti vs pH

-^—v

12 3 4 5 6 7

pH set point

9 10 11 12

Figure 25: The plot for Kp and Ti versus pH set point.
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3.4 ANFIS method

Besides the idea presented above, ANFIS was also used in order to design controller

to replace the whole PID controller in the empirical and mathematical model. This

method is based on the methodology proposed by Hazrin Hany [15] where only one

fuzzy controller is used to replace the PID controller for the closed loop transfer

function as shown. The idea behind this design is quite simple. The FLC will replace

the PID controller after the FLC is well-trained to imitate the PID controlled response.

Appendix II shows the ANFIS Graphical User Interface (GUI) used in the design

works.

3.4.1 Empirical model

The FIS for the closed loop is constructed by using ANFIS GUI provided by

MATLAB. Figure 26 shows how the data are collected from the existing model based

on the successfully tuned closed-loop. The closed-loop was perfectly tuned for its Kc

and Tj. From this successfully set-up, then the data are collected. The result from the

PID controlled was shown in Figure 27.

step

Best tuning constants:
Kc=u.01

Ti=0.18

+o
PID Saturation

pH sensor

Integrator

-Jdtfdtl fr.
Derivative—saturation!

a

Figure 26: The setup to obtain the FIS for empirical model.
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Figure 27: Result from PID controlled process.

The FIS obtained is saved as 'empiricalfis' file to be used in the simulation later.

3.4.2 Mathematical model

The same method used for empirical model is used for mathematical model. Figure 27

shows the arrangement to collect the data to be used for training purposes in ANFIS

GUI.
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H pH scope

Figure 28: The setup to obtain the FIS for mathematical model.

The best setting for Kp and Ti for mathematical model is obtained from Table 8 for pH

10 to 12. The FIS obtained is saved as 'math.fis' file to be used in the simulation later,

3.5 Gain-scheduling method

3.5.1 Fuzzy Inference System (FIS) for Kp

After obtaining the gain table as shown in Table 8 and Figure 25, the membership

functions of the each controller parameter could be developed. Figure 29 shows how

the controller would control the process.
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Figure 29: The process loop controlled by two fuzzy logic controllers.

For this development, the Fuzzy Logic Toolbox provided in MATLAB/SIMULINK is

used. The Graphical User Interface of the toolbox could be accessed by typing fuzzy'

at the command prompt.

For Kp, the fuzzy rules as given by Karr [14] and also Nio Tiong Ghee; Kumaresan,

S.; Liau Chung Fan [16] are applied. Based on their rules, the inputs required for Kc

tuning are the error signal from the controller (E) and also the set point (SP). Figure

30 shows the logic of input/output relationship of the IQ controller and the rules are

shown in Table 9.
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setpoint
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Mamdani
Kc
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Figure 30: The input-output relationship for Kc controller.

Table 9: Fuzzy rules for Kp.

M'M

\i-ii,\tiilfe(\ \)

Nm.TlftS)-: ',

Mil"

1 I I

\lllllt l.\)«' Not So Small (LES) Not So Large (LEL) Not So Large LEL)

Miltltv \uifn
*

(MV)
\ ery Small (VS) Small (S) Small (S)

ViiluHM \ ery Small (VS) Very Small (VS) Very Small (VS)

Mildlvjl.isu^lli)
r §

\ ery Small (VS) Small (S) Small (S)

Basil jb,,r \ot So Small (LES) Not So Large (LEL) Not So Large (LEL)

\«\ li.rtirWH) Normal (N) Very Large (VL) Very Large (VL)

From Table 9, each membership function is as shown in Table 10. However, it must

be noted that, those range is subject to changes during the actual design of the

controller later. For pH set point, the membership type is trapezoidal.
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Table 10: Membership function pH ranges.

4NW9M!fttt •"> -8 *- •«- pll,range, fL , .

1 to 3

• * r*- . .

Very Acidic (VA)

Acidic (A) 2.5 to 5

Mildly Acidic (MA) 4.5 to 7

Neutral (N) 6.5 to 8

Mildly Basic (MB) 7.5 to 10

Basic (B) 9.5 to 12

Very Basic (VB) 11.5 to 14

Membership function for ApH is shown in Table 11. The membership type is

trapezoidal and triangle.

Table 11: Membership function ApH ranges.

MiMlili(i«>lMp 1mm urn 1 urn i.iiim (\[jll)

Negative Large (NL) -lOtoO

Small (S) -1.5 to 1.5

Large (L) Oto 10.

Last but not least is the membership functions for the output; Kp. Table 12 shows the

rough arrangement. Since Kp, the membership type is Gaussian type; the range would

be rearranged in the GUI to fit the input later. The range given below is only the

average value for eachmembership function. For Gaussian type, the function must be

specified as the average and also the standard deviation.

Table 12: Membership function Kp ranges.

Mi iiriiii Mifn"^imc1i«ni

Lx. -y I

Small (S) 25 to 35

Not So Small (LES) 50 to 60

Normal (N) 70 to 80

Not So Large (LEL) 100 to 105

Very Large (VL) 127 to 134
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Table 13: FIS properties for Kp.

I0^fa5il£»4,>-vt. -^ *£>*. Method u .
And Min

Or Max

Implication Min

Aggregation Max

Defuzzification Som

Based on the information provided above, the FIS is developed. The FIS must then be

tested on the controller by trial and error basis. Appendix III shows all the fuzzy GUI

interfaces related to Kp fuzzy rules.

3.5.2 Fuzzy Inference System (FIS) for Tt

For Ti, the information provided by Nio T. G., Sivakumar K.3 Liau C. F. [14] is used.

For Ti, the Sugeno type is used instead of Mamdani. The relationship between the

input and output is either constant or linear. The relationship is developed directly

from the gain table for Tj as shown in Table 1. For Ti, the input is the pH set point

while the output is the integral time, T; as shown in Figure 31.

pH set point Ti fuzzy

Sugeno

Ti

Figure 31: Sugeno FIS for Ti controller.

From Table 8, the linear relationships could be summarized into 7 different equations.

The input-output relationships are summarized in Table 14 and 15. X represents the

input while y represents the output. Appendix IV shows all the fuzzy GUI interfaces

related to Ti fuzzy rules.
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Table 14: Input region for T; membership

Super Acidic (SA)

functions.

Ui'l.Hioiisljip

[12 2.5 2.55]

.'

Very Acidic (VA) [2.55 2.6 2.9 2.95]

Quite Acidic (QA) [2.95 3 4 4.05]

Acidic (A) [4.05 4.14.4 4.45]

Mildly Acidic to Basic (MA2B) [4.45 4.5 9.0 9.05]

Quite Basic (QB) [9.05 9.19.9 9.95]

Very Basic (VB) [9.95 10 12 12.05]

Table 15: Output function for Tj membership functions.

Mi'iirl^t'shrp linulimi Kil.ilKinslnp

Super Acidic (SA; . (jij.v ?2'J

Very Acidic (VA) y = 1200

Quite Acidic (QA) y - 555x - 465

Acidic (A) y = -1733x-8700

Mildly Acidic to Basic (MA2B) y=167x- 149

Quite Basic (QB) y = 3350x- 28660

Very Basic (VB) y - 4300
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CHAPTER 4

RESULT & DISCUSSION

4.1 ANFIS method

To test the 'empiricalfis' and 'math.fis' obtained from section 3.4, the arrangement as

shown in Figure 32 (empirical) and Figure 34 (mathematical) are used. The results of

both simulations are shown in Figure 33 (empirical) and Figurer 35 (mathematical)

respectively.

Step
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s
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Figure 32: ANFIS implementation for empirical model.
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Figure 33: The simulation result for empirical model. Blue (set point), Red (PI

controller), Green (ANFIS).
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Figure 34: ANFIS implementation for mathematical model.
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ANFIS for mathematical model
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Figure 35: The result from ANFIS implementation for mathematical model at

pH=7.

4.1.1 ANFIS for empirical model

From the simulation result shown in Figure 34, the result was very impressive. The

FLC controlled output follow the set point successfully. The settling time is

approximately 3.5 seconds. The time lag is approximately 1.2 seconds with an over

damped response.

It must be noted here that the controller only act for a limited range of pH which is

approximately from pH 10 to 12 based on the experiment conducted in the laboratory

during the process modeling. The result shows that the set point is 1 which represents

the output for any value between the given ranges.

Both the PID controlled and FLC controlled responses are over damped response. The

response type could be determined based on the operator discretion. The basic idea is

the FLC will follow the response from the PID based on the training done in ANFIS

GUI.
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However based on the training, for a given over damped PID controlled response, the

FLC output could be designed to produce under damped response as shown in Figure

36. It could be accomplished by changing the type of membership function during the

ANFIS training. In this design, Bell membership function would give the under

damped response while Trapezoidal membership function would give the exact

response as PID.

As the FLC is designed for the specific plant only, the FLC is not possible to be

implemented to other similar pH neutralization plants. Therefore, mathematical

modeling could be used to portray the whole ANFIS implementation for any pH

neutralization plants.

ANFIS for empirical model
9

— set point
1.8 - — ANFIS

1.6 -

PID

1.4

~ 1-2
c

"o
a- 1
(0

^^

/!/^^ ~~
°- 0.8 / -

0.6 J
0.4

0.2 - 1
0

C

/ i i i i i i , ,

) 1 2 3 4 5 6 7 8 9 1 0

time(sec)

Figure 36: Underdamped FLC response from overdamped PID response.
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4.1.2 ANFIS for mathematical model

Figure 34 shows the result of ANFIS implementation for mathematical model at 7 pH.

The result is also very impressive, the settling time is approximately 3.5 seconds.

i
Q.

30 40

ANFIS for mathematical model

50

rTirn

60 70

time(sec)
80 90 100

Figure 37: ANFIS for mathematical model for random set points range between

3 to 11 pH.

Figure 37 shows the output for random set points range between 3 to 11 pH. The

result was not quite good since there are so many spike signals that could lead to fault

alarms at the operator workstation. However, the pH output still follows the random

set points.

Based on the explanation from Hazaril [17], for pH process, a special control valve/

pump known as 'dosing pump' is required to prevent the normal spikes in the pH

process. In this mathematical model, since the control valve is not modeled based on

the 'dosing pump,' therefore the spikes could not be avoided. Therefore for the

analysis on the ANFIS implementation for mathematical model, the result could be

accepted by neglecting the spikes.
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To design the FLC for mathematical model by using ANFIS, the training was

performed by using the highest set point of the plant which is at pH 12. As compared

to empirical model design, the training was performed by using random set point from

Otol.

4.2 Gain-scheduling method

For gain-scheduling method, the FIS files developed in section 3.5 will be tested on

servo and regulator problem.

4.2.1 Servo problem

[HCf],Ca

:h^v
Kpjuzzy

Ti_fuzzy

•2±t
•

pH error

Kp
Ti

Mi/ Fb

[NaOH],Cb

;ontio1 valvt

(litre/sec)

:H
• nlrol valve

(lilra/sjc)

pH display

pH a:ope

Figure 38: Block diagram for testing servo problem. The random number

generator was used between pH 3 and 11.
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Figure 39: The result from the servo problem simulation. Green (Set point), Blue

(Process variable).

For servo problem, the FLC for Kp and Tj are simulated against a uniform random

number generator for pH between 3 and 11 in 100 seconds duration as shown in

Figure 38. The result was shown in Figure 39.

The output is almost similar to the output from the ANFIS implementation for

mathematical model. There are still some spikes in the signals despite successfully

follow the random set point changes. The occurrence of the spikes was explained in

section 4.1.2.
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4.2.2 Regulator problem

random Fa 10% e

:hA [HCI].Ca

Kp_luiiy

Ti_fuzzy

•£

pH eiror

Kp
Ti
MV Fb

control valve

(tiIre/sec]

:H
control valve

(litre/sec]

pH ditplay

pH scope

Figure 40: Block diagram for testing regulator problem. The random number

generator was used to vary the acid flow, Fa at ±20% variation.
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Figure 41: The result from the regulator problem simulation. Green (Set point),

blue (Process variable).
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For regulator problem, the FLC for Kp and Tj are simulated with ±20% disturbance in

acid flow, Fa in 100 seconds duration as shown in Figure 40. The result was shown in

Figure 41.

From the result, it shows that the controller manage to marginally reject the

disturbance effects. The process variable still maintains around the set point value,

although quite fluctuating with the occurrence of spikes.
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CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

From the project, there are several conclusions could be made. Firstly on the

behaviour of the pH neutralization process itself. From the study, it really shows that

the process is highly nonlinear. Although the work is only for Strong Acid- Strong

Base (SASB) only, but according the work done by Ylen Jean Peter [18], the other

weak or strong acidic and basic interaction also will give the same nonlinear

behaviour.

Therefore, for high variation of pH in the set point, normal PID controlled would not

be sufficient. One possible method is to use gain scheduling technique. Gain

scheduling technique could be further upgraded to achieve more robust controller by

using FLC.

There are two methods for FLC design, either by using ANFIS tool or gain-

scheduling method. The main difference between those two methods is, the former

one require less effort to design the Fuzzy Inference System (FIS) since the use of

ANFIS GUI was very helpful in order to design such controller. Besides that, ANFIS

implementation directlyreplaces the PID controller fromthe process loop while in the

gain-scheduling method, the PID controller is not permanently replaced, however, the

FLC is used to vary the PID input parameters; Kp and Tj.

In this project, ANFIS is implemented for both the empirical and mathematical

models of pH neutralization process. Empirical model is a linearized model of the

process for the Analytical & Chemical Pilot Plant located in the Process Control &

Instrumentation Laboratory (23-00-06).

ANFIS design for empirical and mathematical model gives a very impressive result.

For the empirical model, ANFIS successfully follow the predetermined PID response.

For the mathematical model, by neglecting all the spikes around the set points, the

result is also acceptable.
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Gain-scheduling method is a very tedious method since it required to be started from

the lowest level of the design approach. Everything must be started from the

beginning. The output response from gain-scheduling method approach is almost

similar to the ANFIS implementation (Compared the output from Figure 37 and 39).

For the regulator problem, the simulation proves that for ±20% error in the acid flow,

Fa, the controlled variable still capable to catch up with the set point.

From ANFIS implementation, the best inference would be the FLC could be used to

replace PID controller in the process loop to control a wide range of pH value.

However, if the designers decide to maintain the PID controller for any reason, they

still might do that by using the gain-scheduling method approach. The reason for

maintaining the PID controller could be due to the robustness of PID controller.

In overall, FLC could be used as an alternative to PID controller. FLC could be

implemented with various configurations depending on the designers' requirements.

5.2 Recommendation

The most important continuation of this project is nothing else but to physically

implement the controller to the physical pH neutralization plant.

To physically implement the controller, one possible method was to use relevant Data

Acquisition (DAQ) to obtain the signal from the Distributed Control System (DCS)

workstation into the MATLAB. MATLAB already pre-included set of PID algorithm

that is suitable for industrial process application in addition to the FLC. The tuning

tasks must also be performed in MATLAB. To obtain the signal from the DCS, the

interface provide by MATLAB such as Real-Time Workshop tools provided in the

SIMULINK packages.

Secondly is on the 'dosing pump' model. It is also recommended to redevelop the

mathematical model of the process by integrating the 'dosing pump' model so that all

the spikes could be eliminated and hence better and accurate output response would be

acquired.
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In addition to FLC, there are many new developments in other artificial intelligent

(Al) methods for process control such as Neural Network, Genetic Algorithm and

total Neural-Fuzzy integration (in fact that is ANFIS originated from). Therefore, it

should be great ideas to start using these methods.

On the other hand, other conventional methods of process control such as feed

forward-control, cascade-control might also be ventured to see their effective. These

methods provide some advantages due to common availability in commercial PID

controllers.
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EXPERIMENTS

PH CONTROL IN A CSTR

4.1 OBJECTIVE OF THE EXPERIMENT

(i) To study the pH control pilot plant and prepare a P & ! diagram.

(ti) To tune a liquid flow control loop by ultimate gain method.

(iii) To tune a pH control loop oy !he process reaction curve method.

(iv) To study the closed loop characteristic or the pH control loop ct ihe CSTP..

4.2 INTRODUCTION AND THEORY

pH is defined as iogtoH* and is a measure of the acidity or alkalinity of a liquid. The pH scale is

from 1 to 14. with 7 as the pH of neutrai water. A value of the pH lower than 7 designate as acidic

solution. pH control is important for many chemical processing applications and in pollution

control.

In the present experiment the acid flow is under PID flow control while the CSTR pH is controfled

by a PID loop controlling the alkaline flow. The loop will be tuned by the utlimate gain method

(refer Experiment 3, Table 3.1). The pH control loop will be tuned by the process reaction cun/e

method, {refer to Experiment 2, Table 2.1)

4.3 EXPERIMENTAL EQUIPMENT

The schematic diagram of the experiment set-up is shown in the figure 4.1. Acid solution pumped

from tank VE100 by pump P100 into CSTR VE120. The alkaline solution from tank VE110 is

pumped by pump P110 into the same CSTR, VE120. The CSTR is equipped with a stirrer and

pH transmitter AT122. If desired further neutralisation may be carried out in a second CSTR

VE130, or the final neutralisation tank VE140. Besides pH dissolve oxygen can also be

measured in a tank VE140.

The major control hardware includes the following:

Flow transmitter

Conductivity transmitter

pH transmitter

Dissolved oxygen transmitter
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FT120, FT121, FT130

CT110, CT100

AT122, ATI 30, AT140

AT141



Flow controller FIC120, F1C121

pH controller AIC122, AIC 130

Control valves FCV120, FCV121, FCV130

The simplified diagram for the flow control and pH control are shown in Figures 4.2 and 4.3

respectively.

4.4 PROCEDURE

The experiment has the following three part:

(i) Tuning flow loop in the acid flow path.

(ii) Tuning pH control loop.

(iii) Operating closed loop pH control.

4.4.1 Start-up

1 Switch on power to the Local Control Panel.

2 Turn the selector to DCS to run the experiment under DCS control. Set it to local if the

experiment to be run under local control by using the mufti loop controller only.

3 Switch on the main air supply compressor at the compressor room. Wait for the compressor

to stop before starting any experiment. This is to ensure that the main instrument air supply

to ihe system is sufficient before running any experiment.

4 Switch on the DCS server and clients. The entire system to start-up automatically. When

prompted, key in your user name and password to log in. Consult the supervisor for ihe

correct user name and password^

4.4.2 Preparation of Acidic process stream

1 Fill the acid storage tank with water (up to V? tank).

2 Use the manual pump provided for acid to pump about 10% of the acid solution into the

storage acid lank. Caution: Always add acid to water. Do no add water to the acid.

3 Stir the final solution to ensure homogeneity.

4.4.3 Preparation of Alkaline process stream

1 Fill the alkaline storage tank with water, {up to Yi tank).

2 Use the manual pump provided for alkaline to pump about 30% of the acid solution into the

storage acid tank. Caution:'Always add alkaline to water.

3 Stir the final solution to ensure homogeneity.
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4.4.4 Start Up

Table 4.4: Preparation and Start-Up

STEP ACTION

Ensure that ail Utility Services are ready (i.e. Switch on

Power Supply to Control Panel and Switch on Air Supply

Systems to Ihe Piiot Plant.

At the Local Control Panel, turn (he selector switch to 'DCS'.

Fill the vessel VE100 with water until it is about half full.

Ensure thai the DCS is ready (i.e. it is communicating

properly with the control panel).

At the computer and the 'Chemical Processing Over-View'

display, click on the button [PID FIC 120].

From the WS/PNL select combo-box, choose DCS. This will

transfer control of the pilot plant to the DCS.

7 From the Control select combo box, choose FIC120.

10

At the Controller Faceplate (F1C120) set the controller to

MANUAL mode.

Close the control valve FCV120 manually (0%) i.e.

a) Setting Control Mode to 'MANUAL', then

b) At the MV data entry field, key in 0 and press [Enter],

Adjust the Hand Valves at the Pilot Plant as follows:

Open Hand Valve HV103

Close Hand Valve HV102

53

REMARKS

Display for 'Experiment

1 - Simple PID (low

Control (FIC 120)' will

appear.

Click on drop down box

and select 'DCS'.

Click on drop down box

and select 'MANUAL'.

Same operation to

Open/Close other

control valve manually.

Hand valves to be

Open/Closed Fully.



4.4.5 Closed Loop Tuning of Flow Loop

iable 4.5:ClosedLoop Tuning Method for Flow Control Loop

STEP ; ACTION

Al the FIC12QController Faceplate, set the P, I and D

! parameters as follows:

1 I- Gain (Kp) =2.0
I - Integral time (!) = 9999

Derivative time (D) = 0.0

Adjust the Controller Set Point (SP) to0.1 m3/h

Set the Controller Manual Mode and Open the Control

ValveFCV120by36%

4 Start the Pump P100 via DCS

Slowly adjust the Control Valve FCV120 to bring the

Process Variable (PV) to almost equal to the SP

Observe the PV from the Trend Window and wait until it has

stabilised to a constant value

7 I Set the Controller to AUTO mode

8 Wait for the PV to stabilised

10

Make a small step change to SP (e.g. increase the set point

by 10% i.e. to 110)

Observe the PVfrom the Trend Window. If the PVresponse

is not oscillator/, adjust the control Gain (KP) value until it

become oscillatory
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REMARKS

Before setting any

variables, click on

'OPER' icon (on lower

right side) and type

'MNGR'.

Set SP = 100

Set Controller

Manipulated Variable,

MV = 86%

Click on drop down box

and select 'ON*

Adjust MV

Set controller to

MANUAL mode, adjust

SP and MV to initial

values and double Kp

value. Repeat Step 7, 8

and 9.



12

13

14

15

16

17

j If Ihe PV response is oscillatory, observe whether the
magnitude ofPV is increasing or decreasing. If it is

increasing reduce the controller gain by 1.5times. If it is

decreasing increase ihe controller gain by2 times. Aim to

obtain an oscillatory response with almost constant

amplitude.

When constant amplitude oscillation is achieved allowat

least 3 oscillation cycles to be recorded and freeze the trend

window,

Print out Ihe PV response curve.

Stop pump P100 and set the controller FIC120 to MANUAL
mode.

Using the printed graph obtained from section above,

measure and tabutate the relevant values as required.

K> is the ultimate gain of the controller (the controller gain at
which constant amplitude oscillation is acquired). Tv is the
ultimate amplitude oscillation of PV

Based on Ihe equations for Closed Loop Tuning for Pi,
calculate the requiredcontroller tuning parameters.

Key in the calculated tuning parameters at the FIC120
controller faceplate.

Table 4.6: Tabulation of Results- Results for Closed Loop Tuning

Measurement

Ultimate Controller Gain, Ku

Time for 3 Oscillation periods or

I more (minute)

Calculations:

Ultimate Period, Tu(time taken for

one Oscillation period) (minute)

Tuning Parameters:

Test 1 Test 2
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Print in colour

Refer Table 4.6

Refer Table 3.1

Set Kg ~ Kc and Iniegrai

= T,

Test 3 Average



Gain, Kc
i 1

Integral Time, T, (minute/repeat)
i _.

Derivative Time, T0

(minute/repeat)

4.4.6 pH Control

Table 4.7: Preparation for pH Control

STEP ACTION

Ensure lhat all Utility Services are ready (i.e. Switch on

Power Supply to Control Panel and Switchon Air Supply

Systems to (he Pilot Plant.

Adfust the Hand Valves at the Pilot Plant as follows:

Open Hand Valve HV103

Close Hand Valve HV102

Close Hand Valve HV112

Open Hand Valve HV113

| At the Local Control Panel, turn the selector switch to
I 'DCS'.

Ensure that the DCS is ready (i.e. It is communicating

property with the control panel).

At the computer and the 'Chemical Processing Over-View'

display, click on the burton [PID AIC 122].

From the WS/PNL select combo-box, choose DCS. This

will transfer control of the pilot plant to the DCS.

From the Control select combo box, choose pH A1C122

At the FIC120 Controller Faceplate:

Set the controller to AUTO mode.

Set its output to 100% (fully open).

Set its P. I and D values obtained from Experiment 1.
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REMARKS

Hand valves to be

Open/Closed Fully.

Display for 'Experiment

4- Simple PID pH

Control (AIC 122)'will

appear.

Click on drop down box

and select'DCS'.

SetMV= 100, Kp, I and

D accordingly.



10

M

12

Open HVIOO and HV110 to fill vessels VE100 and VEHO
with water until each of them is about %full.

Close HV110 when the water level at VE110is /* full.

When the water level at VE100 isabout %full, start pump
PI00 via DCS to fill Ihe reaction vessel VEI20. Continue to

fill VE100.

When the water level at the reaction vessei VEI20 is above !

its agitator blades stop pump P100. '

13 Close HV 100 when the water level at VE100 is 'A full.

14

15

16

17

18

At the vessel VE100 use thehand pump provided to add

concentrated sulphuric acid into it (Note: do not add water

into concentrated acid instead addacid to water]. Observe
thereading oftheconductivity meter. Stop adding acid

when theconductivity of thesolution is approximately 100
micron-Siemen.

At the vessel VE110 use the hand pump provided to add

concentrated caustic soda (Sodium hydroxide) solution into

it. Observe the reading ofthe conductivity meter. Stop
adding acid when the conductivity of the solution is

approximately lOOmicron-Siemen.

At the AIC122 Controller Faceplate, set the controller to

MANUAL mode.

Close the Control Valve pHCVl2 manually (0% open).

Ensure that all tanks are properly covered.

Table 4.8: Start-Up

STEP ACTION

Start agitator AG120 via DCS.
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The students are advised

to wear eye protection

goggle and rubber

gloves when dealing with

acid solution.

The students are advised

to wear eye protection

goggle and rubber

gloves when dealing with

acid solution,

Click on drop down box

and select 'MANUAL'.

pHCV12isthesame

Control Valve as

FCV121.

REMARKS



At the FIC120 Controller Faceplate:

- Adjust the Controller Set Point to 0.05 m3/h

Start pump P100 via DCS.

4.4.7 Identification of pH Process

Table4.9: Process Identification for pHControl Loop

ACTIONSTEP

2 ••

At the AIC 122Controller Faceplate, manually

Open Control Valve pHCVl22 to 10%.

Start pump P110 via the computer.

Observe the pH curve from the Trend Window and

wait until it has stabilised.

Adjust the output of controller AIC122 to obtain a

stable pH value (ATI22) between 6.5 and 7.5.

At the ControllerFaceplate (AIC122) make a Step

change of between 10 to 20% to the control valve

FCV121 manually.

Observe the pHcurve (AT122) from the Trend

Window and wait until it has stabilised to a new

constant value and freeze the trend window. .

Print out the pH irend curve.

Stop both the pumps P100 and P101, and the

agitator AG 120 via DCS. Then set the controllers

F1C120 and F1C121 to MANUAL mode.
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Set SP = 50

REMARKS

SetMV= 10.

Click on drop down box and

select 'ON'.

SetSP = 7.

Set SP = 7.7.

Adjust controller MV.

This is the process Reaction

cun/e.

Print in colour.



Table 4.10: Result Analysis for pH Control Lccp

STEP
ACTION

Compare the process value curve with a setof
expected process Reaction Curve provided in Figure
2.6.

REMARKS

10
Identify (he process response with the corresponding |
Reaction Cun/e. I

Make several measurements as perthe Reaction
Curve chart. Refer to Table 4-.11.

Sketch aBlock Diagram to represent (he process i Dead time, Capacity/Rate of
and describe the characteristic of this process.

15

Using the printed graph obtained from section above
(process analysis) above, measure andtabulate the
relevant values as required. Refer table 4.9.

Based on the equations for Open Loop Tuning,
calculate the required controiter tuning parameters.
Refer table 2.1.

At the AIC122 controller faceplate. Key in the
calculated controller tuning parameters.

Table4.ti; CSTR Model

Rise, Time Constant, Noise.

Note: dBu and dM are

changes from the I3' stable

; output to the 2"a.

Type of model Time constant, T,' Time constant, Tz Decay time, x

First Order

First Order with decay time

Second order

Second order with decay time
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Table 4.12: Results lor Open Loop Tuning

Measurement Test 1

-— •

Test 2 Test 3 Average

Change in Manipulated

Variable, dM

i

Change in Ultimate Value, dBu i
!

Slope, S

Apparent Dead Time, Td

Calculations;

Apparent Time Constant,

T = dBu / S

•

Steady Slate Process Gain,

KP = dBu / dM

R = Td/T

Tuning Parameters:

Gain, Kc

Integral Time, Tj

(minutes/repeat)

Derivative Time, T0

(minutes/repeat)
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4.4.8 pH Control Performance

Table 4 13: Control Loop Performance Test for pH Control Loop

STEP ACTION

Repeat the Start-up procedure for this experiment.

At the AIC122 Controller Faceplate:

- Set the controller to MANUAL mode

Set its output to 10%

Set its P, Iand Dvalues obtained from Experiment
4B or Experiment 4C.

Start pump P110 via the computer

Set both the Controller (FiC120 AND AIC122) to
Auto mode.

Wait for the Process Value (PV) of FIC120AND

AIC122 to stabilise.

Make a small step change to the Set Point of

FIC120 Controller of between 10% to 20%.

Observe the Process Value (PV) of the pH controller

AIC122 from the Trend Window and look for some

typical responsecharacteristic. Referto guide lines.

Capture the importance process response and print
out the trend curve.

Stop both the pumps P100 and P110 and the

agitator AG120via the computer then set the

controllers FIC 120 and AIC 122 to manual mode.
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REMARKS

Refer Siborg (1989).

Print in colour.



Table 4.14; Tabulate and Analyse Results

STEP

10

M

13

ACTION

Using the printed graph obtained from section

above (process analysis) above, measure and

tabulate the relevant values as required.

Describe the Characteristic of the process

response.

Discuss the functions of each controller tuning

parameters P, I and D.

Suggest any improvement to the process control

loop and its total error.

REMARKS

Refer Table 4.15 Seborg

(1989).

Table 4.15: Closed Lcop Response

Characteristic ] Test 1
1

Test 2 Test 3 Average

Initial value of SV

Final value of SV
i

i

AS

Gain j
i

Rise Time

Overshoot

Decay ratio

Period

Response Time
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4.5 INTERIM REPORT

The interim report should contain:

(viii)

(ix)

(xi)

(xii)

(xiii)

(xiv)

P & I diagram of process.

Flow control loop tuning dataand results.

Process Reaction Curve experimental data.
Suggested Process Model.

Cohen-Coon Setting Calculations.

Closed Loop Response Characteristic.
Answers to review questions.

4.6 REVIEW QUESTIONS

(0

(ii)

(hi)

fiv)

•Sketch the titration curve of a strong acid- strong base.
What is meant by process gain?

Do you expect any difficulty in controlling the pH at a value 7?
Give one example each of a

(a) strong acid

(b) strong base

(c) weak acid

(d) weak base

2.7 REFERENCES

Seborg D.E., T.F. Edgar and D.A. Meltiechamp. Process Dynamics and Control. John Wiley and
Sons, New York, 1989. pg; 116-118, 164-173.
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Appendix II

ANFIS GUI



J Anfis Editor; Untitled

FBe Edit View
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II.l: Loading the training data.
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II.2: Setting up the membership functions for thetraining.
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II.3: Result from the training.
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File BJit View

output

input2
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n.4: The FuzzyInterference System (FIS) from the ANFIS training.



Appendix III

Kp fuzzy rules



File Edit View

XX
Kc^uzzy

(mamdani)

PH

XX
error

III.l: FuzzyInferenceSystem (FIS)for Kp.



File Edit View

FIS Variables

pH
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Membership function plots Pl°t points: -| g^
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III.2: Themembership functions for input pH.
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Membership Function Editor; Kc_t"uzzy
File Edit View

RS Variables

XX
Kc

error

•fiL'b* '' I

-LA

Membership function plots P|ot points:
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input variable "error"
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III.3: The membership functions for input error pH.
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-J Mem be itshi d Function Editor: Kc. fu;

File Edit View

FIS Variables

pH Kc

E
error

Membership function plots P'Dt points: 181
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III.4: The membership functions for output Kp,



Rle Edit View Options
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III.5: The rules based on the KD FIS.
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III.6: 3-dimentional view ofthe input-output relationships ofpH, errorpH and
Kp.



Appendix IV

Tj fuzzy rules



J FIS Editor: Ti fuzz

File Edit View
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IV.I: Fuzzy Inference System (FIS) for Tj.
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J Membership f-unction Editor; Ti fuzzy
File gQ View

RS Variabfes

phsetpoint Ti

Membership function plots P'°t points:

IV.2: The membership functions for input pH set point.



File Edit View

RS Variables
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phsetpoint Ti

Membership function plots P'ot points:

output variable Tr

;vj v ft ' , L_ 2_ __ J
tf-r7T . * . '

it r " ~ r :' • *i#»4' r •C. •? "t".

IV.3: The membership functions for output Tj.



Ryle Viewer: Ti_fuzzy
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IV.4: The rules based on the Tj FIS.
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File Edit View Options
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IV.5: 2-dimentional view oftheinput-output relationships ofinputpHset point
and Tj.


