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ABSTRACT 

The existing public infrastructures of Malaysia has suffered from decades of neglect 

and overuse, leading to the accelerated deterioration of bridges, building, 

transportation systems, and resulting in a situation that approaching a infrastructure 

crisis. This paper investigates the flexural behavior of Carbon Fiber Reinforced 

Polymer (CFRP) plates on high strength concrete beams. Eight concrete beam 

specimens with dimensions of 150 mm width, 200 mm height and 2150 mm length to 

give a clear span length of 2000 mm were manufactured and tested. These eight 

beams were grouped by four CB-series beams which were made without fly ash 

replacement and four CF-series beams which were made with 30% fly ash 

replacement. Six of the reinforced concrete beams were externally strengthened by 

pasting CFRP plates at the soffit of the beam, three different lengths, 1333 mm, 1667 

mm and 2000 mm which represent 66.7%, 83% and 100% respectively of the total 

beam span. The optimum length of the CFRP plate was then established for structural 

strengthening in terms of load carrying capacity, ductility and economical factor. The 

results have shown that 1667 mm which is 83% of the span length is the optimum 

length of the CFRP plate that achieved the highest strength; beyond this length, the 

increase in the strength was negligible considering the economical factor. The 

behavior of reinforced concrete beams made of 30% fly ash replacement and those 

made of normal concrete was similar at first crack and ultimate loads when externally 

strengthened with CFRP plates. 
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1.1 Background 

CHAPTERl 

INTRODUCTION 

In the last ten to fifteen years, Carbon Fiber Reinforced Polymer (CFRP) materials 

have emerged as promising alternative repair the members of reinforced concrete 

structures, and they are rapidly becoming materials of choice for strengthening and 

rehabilitation of concrete infrastructure. CFRP plates or sheets can be bonded to the 

exterior of concrete structures using high-strength adhesives to provide tensile or 

confining reinforcement which supplements that provided by internal reinforcing 

steel. CFRP materials are non-corrosive and nonmagnetic, and can thus be used to 

eliminate the corrosion problems invariably encountered with conventional repair 

materials such as externally-bonded steel plates. In addition, CFRPs are extremely 

light, strong, highly versatile, and comparatively easy to install, making them ideal 

materials for the repair and strengthening of concrete structures. 

1.2 Problem Statement 

Beams are critical part of buildings. Their constituent materials have a limited 

strength. Whenever forces applied are larger than their capacity due to overuse or 

deterioration, severe damaged or failure will occur. Reconstruction of the structure 

will be not economical. Thus, rehabilitation schemes by using CFRP material and the 

effect of this material to concrete beams must be studied. There was no study on the 

behaviour of fly ash concretes beams when strengthened with CFRP composites. A 

few research been done to investigate the effective length of CFRP plate to be used 

for flexural strengthening of reinforced concrete beams and achieve the highest load 

carrying capacity and the full span length was adopted which is not economical. 
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1.3 Objectives 

• To investigate the flexural behavior, in terms of ultimate load capacity and 

ductility ratio, of reinforced concrete beams strengthened with externally 

bonded carbon fiber reinforced polymer (CFRP) strips having different 

lengths in order to determine the optimum length ofCFRP plate. 

• To compare the flexural behavior of reinforced concrete beams made of 

normal and fly ash concrete strengthened with CFRP plates. 

1.4 Scope of Study 

• Cast eight 150*200*2000 mm reinforced concrete beams and calculate 

flexural/bending capacity and shear capacity of the casted beams. 

• Flexural test on 150*200*2000 mm reinforced concrete beams strengthened 

with CFRP strips. 

• Sieve analysis for the aggregates used to manufacture the beams. 

• Analyze the optimum CFRP length for the reinforced concrete beam and the 

effect of the fly ash. 
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2.1 Introduction 

CHAPTER2 

LITERATURE REVIEW 

It is common where problems arise when existing concrete structures or some of their 

components found to be inadequate and in need of repair and/or strengthening. One of 

the primary factors leading to the unsatisfactory state of the structure is corrosion of 

the reinforcing steel inside the concrete. A common feature that causes deterioration 

is that there is a reduction of the alkalinity of the concrete, which allows oxidation of 

the reinforcing steel to take place. This oxidation process leads to cracking of the 

concrete and possible spalling of the cover to the reinforcement [Waleed A. Thanoon 

et al. (2005)]. The following chapter discusses the literature review, this review is 

important as a first step to start this project and it will definitely help in setting up the 

experiments. This review focus on methods of strengthening, especially steel plate 

bonding and FRP composite bonding, effects of CFRP plates as strengthening 

material, and the mode of failures. 

2.2 Flexural strengthening using CFRP composites 

M. R. Esfahani et al., (2007) performed an experiment on reinforced concrete beams 

externally strengthened with CFRP sheets with different reinforcement ratios. Twelve 

reinforced concrete beams each of 150 mm width, 200 mm height and 2000 mm 

length were manufactured with concrete compressive strength of 25 MPa and cement 

content of 350kg/m3 and tested in four- point bending. They obtained that with large 

reinforcement ratio close to the maximum reinforcement ratio, pmax. failure of the 

strengthened beams occur in either interfacial debonding induced by flexural crack, or 

interfacial debonding induced by flexural- shear crack with adequate ductility. 
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Omrane Benjeddou et al., (2007) tested eight reinforced concrete beams while 

investigating the behaviour of damaged reinforced concrete beams repaired by 

bonding of carbon fibre reinforced plastic laminates. All test beams were 120 mm 

wide, 150 mm high and 2000 mm long. The main parameters investigated were 

damage degree, CFRP laminate width and concrete strength class. The concrete 

compressive strengths were 21 MPa and 38 MPa and normal concrete was used. The 

CFRP laminate width was varied from 50 to I 00 mm and the length of all laminates 

used was 1700 mm. An increase in the load capacity for the beam that was directly 

strengthened (not damaged) about 87% over the control beam was obtained. Two 

failure modes were observed for strengthened and repaired beams, namely, peeling 

off and interfacial debonding. The former was observed for all reinforced beams with 

the laminate width of I 00 mm while the latter was observed for all reinforced beams 

with the laminate width of 50 mm. an increase in load carrying capacity from 40 -

87% was obtained. 

A test performed by H. Toutanji et al., (2006) in which eight reinforced concrete 

beams were tested and analyzed: one control beam and seven beams reinforced with 

three to six layers of CFRP sheets bonded by inorganic epoxy. The test results 

showed that increasing the number of layers of CFRP sheets increase the load -

carrying capacity while reducing the ductility of the strengthened reinforced concrete 

beams. For three and four layers of reinforcement beams failed by the rupture of 

carbon fibre sheet, but for six layers of FRP reinforcement beams failed by FRP 

delamination. 

Ali Chahrour and Khaled Soudki, (2005) tested six reinforced concrete beams to 

investigate the flexural response of reinforced concrete beams strengthened with 

CFRP strips each beam was 150 mm wide, 250 mm deep and 2400 mm long, the 

compressive strength of the concrete was 39 MPa. The observed mode of failure for 

the strengthened beams was the flexural shear crack - induced interfacial debonding 

type. Externally bonded CFRP strips significantly increased the ultimate capacity of 

reinforced concrete beams (an increase up to 45% was obtained) while reducing the 

ductility. 

A paper presented by M. A. Shahawy et al., ( 1996) presents the test results of four 

reinforced rectangular concrete beams externally strengthened in flexure with bonded 

CFRP laminates. All beams were 203 mm wide, 305 mm high and 2744 mm long. 

4 



The concrete used in this investigation had compressive strength of about 29 and 41 

MPa. The CFRP laminate had 0.171 mm thickness and approximately 300 mm width 

the beams were strengthened over the full span length. The main variables were the 

number of CFRP layers. It is shown that bending capacity can be increased 

considerably by bonding CFRP laminates to the tension side of beams, an increase of 

13,66 and 92% for the beams strengthened with 1, 2 and 3 layers ofCFRP laminates 

respectively over the control beam was obtained . A reduction in deflection could also 

be achieved. 

Tom Norris et al., (1997) performed an experiment to study the effect of precracking 

of beams before strengthening with carbon fibre sheets. The importance of fibre 

direction was also examined. Nineteen beams were tested under four- point bending. 

They found that there was no difference in behaviour between the precracked beams 

and non - precracked ones at the ultimate level, the most significant differences were 

due to the fibre orientations; when CFRP fibres were placed perpendicular to cracks 

in a concrete test beam, a large increase in stiffness and flexural strength was 

observed and brittle failure occurred due to concrete rupture. When the CFRP fibres 

were placed obliquely to the cracks in the beam, a smaller increase in strength and 

stiffness was observed, however the mode of failure was more ductile. 

2.3 Disadvantages of external strengthening using steel plates 

The in situ rehabilitation or upgrading of RC beams using bonded steel plates has 

been proven in the field to control flexural deformations and crack widths, and to 

increase the load - carrying capacity of the member under service load for ultimate 

conditions. It is recognized to be an effective, convenient and economic method of 

improving structural performance. However, although the technique has been shown 

to be successful in practice, it also has disadvantages. Since the plates are not 

protected by the concrete in the same way as the internal reinforcement, the 

possibility of corrosion exists which could adversely affect the bond strength, leading 

to failure of the strengthening system. Uncertainty remains regarding the durability 

and the effects of corrosion. To minimize the possibility of corrosion, all chloride -

contaminated concrete should be removed prior to bonding and the plates must be 

subjected to careful surface preparation, storage integrity of the primer must be 

periodically checked, introducing a further maintenance task to the structure. The 
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plates are generally prepared by grit blasting, which unless a minimum thickness of 

typically 6 mm is imposed can cause distortion. Steel plates are difficult to shape in 

order to fit complex profiles. In addition, the weight of the plates makes them difficult 

to transport and handle on site, particularly in areas of limited access, and can cause 

the dead weight of the structure to be increased significantly after installation. 

Elaborate and expensive falsework is required to maintain the steelwork in position 

during bonding. The plates are required to be delivered to site within flatness 

tolerances to prevent stresses being introduced normal to the bondline during cure. 

The weight of the plate and this flatness requirement generally restricts the maximum 

plate length to between 6 - 8 m. since the spans requiring strengthening are often 

greater than this length, joints are required. Welding cannot be used in these cases 

since this would destroy the adhesive bond. Consequently lapped butt joints have to 

be formed, adding further complications to the design of the system. Studs are 

required to assist in supporting the steel plates during installation and under service 

loading conditions. This is especially true towards the ends of the plates where 

anchorages are required due to the high bending stiffness of the plate. The position of 

these studs must therefore be established prior to bonding. This process can involve a 

considerable amount of site work. Finally, if the plates are loaded in compression, 

buckling may occur, causing the plates to become detached. The process involved in 

strengthening with steel plates can therefore be considered as relatively time 

consuming and labour intensive [L C Hollaway and M B Leeming, (1999)]. 
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CHAPTER3 

METHODOLOGY 

3.1 Mixing of Concrete and Formwork Preparation 

In this research a total of eight reioforced concrete beams were designed and 

constructed according to (BSSIIO) code of practice. Four beams contained 30% fly 

ash and the remaining four beams were made of normal concrete. Six beams were 

externally strengthened with CFRP plates at the soffit of the beam with different 

length as shown io Table I. 

Table 1 : Summary of Beam Properties 

Beam dimensions (non) Concrete properties Tension reinforcement FRP properties 

b h d L A PFA fro K h E, A, Lfrp Lfr, AJ Et 

(%) (MPa) (GPa) (MPa) (GPa) non' non (%) non' (GPa) 

150 200 161 2150 1000 0 66 34 460 230 402 0 0 120 150 

150 200 161 2150 1000 30 69 34 460 230 402 0 0 120 150 

150 200 161 2150 1000 0 66 34 460 230 402 1333 67 120 150 

150 200 161 2150 1000 30 69 34 460 230 402 1333 67 120 150 

150 200 161 2150 1000 0 66 34 460 230 402 1667 83 120 150 

150 200 161 2150 1000 30 69 34 460 230 402 1667 83 120 150 

150 200 161 2150 1000 0 66 34 460 230 402 2000 100 120 150 

150 200 161 2150 1000 30 69 34 460 230 402 2000 100 120 150 
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3.1.1 Concrete Mixing Procedure 

The following points describe the procedure used for mixing of all samples: 

• Measure all the mix ingredients in the proportions and make sure that all the 

metal instruments and tools are moist (mixing drum, trowels, mixing trays, 

and rods). This to ensure that the moisture content is not drastically reduced 

by the properties of the metallic instruments and also to make sure that there is 

no standing water in mixing drum or pans. 

• Place the coarse and fine aggregate into the mixing drum. Turn on the mixer 

and allow it to mix for 25 seconds. 

• Add half of water and mix for one minute and leave it for eight minutes. 

• Mix the cementitious materials (cement or/and fly ash) together in a container 

and place it into the mixing drum and mix for one minute. 

• Pour the remaining water (with the required superplasticizer) and mix for one 

minute. 

• Do hand mixing to ensure homogeneousity. 

• Lower the handle of the concrete mixer and pour the contents out into a 

moistened pan. 

The workability and consistency of the concrete mixes were measured according to 

BS 1881: Part 102: 1983 using the slump cone test. The mould for the slump test is a 

frustum of a cone, 300 mm high. It was placed on a smooth surfuce with the smaller 

opening at the top and it was firmly held against its base during the entire operation; 

this was facilitated by foot - rest brazed to the mould. The mould was filled with 

concrete in three layers. Each layer was tamped 25 times with a standard 16 mm 

diameter steel rod, rounded at the end, and the top surface was struck off by means of 

sawing and rolling motion of the tamping rod. Immediately after filling, the cone was 

slightly lifted; the decrease in the height of slumped concrete was measured to the 

highest point. 
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3.2 Materials 

Materials used in this research were studied separately to acquire the properties which 

can be important information in analyzing the behavior of the specimens. 

3.2.1 Concrete 

The concrete properties included ordinary Portland cement (OPC), pulverized fuel 

ash (PF A) as a cement replacement material, mining sand for fine aggregate, granite 

gravel for coarse aggregate, superplasticizer as water reducing admixture and water. 

A 50 MPa compressive strength was chosen to simulate tall buildings. Each element 

in concrete is discussed below. 

3.2.1.1 Cement 

A commercially available ordinary Portland cement Type I according to BS 12 was 

used for all concrete mixes and for beam construction. Chemical properties of OPC 

are shown in Table 2. 

Table 2 : Chemical Properties of Ordinary Portland Cement 

Chemical constituents Percentage, (%) 

Silicon dioxide (SiOz) 21.98 

Aluminum dioxide (A)z03) 4.65 

Ferric oxide (FezOJ) 2.27 

Calcium oxide (CaO) 61.55 

Magnesium oxide (MgO) 4.27 

Sulfur oxide (S03) 2.19 

Potassium oxide (KzO) 1.04 

Sodium oxide (NazO) 0.11 

3.2.1.2 Pulverized Fuel Ash (PFA) 

The fly ash used in this study was obtained from Manjung Power Station at Lumut, 

Perak and is classified as low lime fly ash and ASTM Class F fly ash. Chemical 

composition and physical properties of fly ash are given in Table 3. 

9 



Table 3 : Chemical Composition and Physical Properties of Fly Ash 

Chemical constituents Percentage, % 

Silicon dioxide (SiOz) 56.39 

Aluminum dioxide (AhOJ) 17.57 

Ferric oxide (FezOJ) 9.07 

Calcium oxide (CaO) 11.47 

Magnesium oxide (MgO) 0.98 

Sulfur oxide (S03) 0.55 

Sodium oxide (NazO) 1.91 

Potassium oxide (K20) 1.98 

Physical properties 

Specific gravity 2.37 

Fineness, (m2 /kg) 243 

3.2.1.3 Aggregates 

Soils may be divided on basis of their dominating particle size into six arbitrary 

categories which are boulders, cobbles, gravel, sand, silt and clay. The size ranges of 

particles in each group are categorized according to the British Standard as defmed in 

BS5930: 1981. The following points describe the procedure used for sieve analysis. 

• A set of sieves of each diameter prepared. Weight and record each sieves. 

• Oven dry the sample overnight in an oven maintained at 105 - 11 0°C. 

• Put the sample on top and use a mechanical shaker for sieving. Agitation in 

the shaker is for a minimum period of 10 minutes. 

• Weight and record each sieves. 

The form recommended in British Standard for presenting aggregate distribution is 

the particle size distribution curve shown in the Appendix 3.1 and Appendix 3.2 from 

the data obtained from the sieve analysis. On this standard chart, it enables to 

recognise instantly the grading characteristics of a soil than tabulated figures. The 

position of a curve on the chart indicates the finess or coarseness of the aggregates. 
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The steepness, flatness and general shape indicate the distribution of aggregate sizes 

within the soil. [Head K.H, I 993] 

3.2.1.3.1 Fine Aggregate 

The fine aggregate used for all the mixes are from Tronoh, Malaysia. The sieve 

analysis test for fine aggregate is shown in Table 4. 

Table 4 : Sieve Analysis for Fine Aggregates 

Weight 
% Cumulative 

%Toal 
Sieve Size %Retained Weight 

Retained (g) 
Retained 

Passing 

2.36mm 110.3 Il.03 I 1.03 88.97 

2mm 30.4 3.04 I4.07 85.93 

1.18mm 118.1 11.81 25.88 74.12 

0.6mm 230.2 23.02 48.9 51.1 

0.425mm 125.2 12.52 61.42 38.58 

0.3mm 135.1 13.51 74.93 25.07 

0.15 mm 180.3 18.03 92.96 7.04 

O.o75 mm 60.2 6.02 98.98 1.02 

Pan 10.2 1.02 100 0 

Total- 1000 g 

And from the curve in Appendix 3.1, it can be seen that it is a well graded fine. 

aggregate. Please refer to Appendix 3.1 for the particle size distribution curve. 

3.2.1.3.2 : Coarse Aggregate 

Granite gravel with a maximum particle size of 20 mm and it was obtained from 

Papan granite, Ipoh, Malaysia. The sieve analysis for coarse aggregate is shown in 

Table 5. Both fine and coarse aggregates conforming to BS 882: 1992. 
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Table 5 : Sieve Analysis for Coarse Aggregates 

Weight 
% Cumulative 

%Toal 
Sieve Size %Retained Weight 

Retained (g) 
Retained 

Passing 

20mm 77 2.82 2.82 97.18 

14mm 579 21.17 23.99 76.01 

10mm 780 28.52 52.50 47.50 

5mm 1052 38.46 90.97 9.03 

3.35 mm 102 3.73 94.70 5.30 

Pan 145 5.30 100.00 0.00 

Total= 2735 g 

From the particle size distribution curve in Appendix 3.2, it can be seen that the slope 

between Doo and D10 is slightly steep. Thus, the result is slightly poor sorted coarse 

aggregate. Please refer to Appendix 3.2 for particle size distribution curve. 

This is acceptable as during the mix between the cement and aggregate ( coarse and 

fine ) all the particles are ensured to be homogeneous and interlocking between the 

particles ensure the bonding between the aggregate and the cement. 

3.2.1.4 Superplasticizer 

The superplasticizers are a category of water - reducing agents in that they are 

formulated from materials that allow much greater water reductions, or alternatively 

extreme workability of concrete in which they are incorporated. This is achieved 

without undesirable side effects such as excessive air entrainment or set retardation 

[Roger Rixom and Noel Mailvaganam, (1999)]. Commercially available, Sikament

Nl, superplasticizer in the form of aqueous solution was used as water reducing 

admixture (WRA) for all concrete mixes. It was a naphthalene formaldehyde 

sulphonate superplasticizer. 

3.2.1.5 Water 

The tap water was used for mixing and curing of all concrete mixes and hardened 

concrete respectively. 
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3.2.2 Reinforcing Steel 

The longitudinal reinforcement was high yield steel deformed bars with a diameter of 

16 mm for the tensile bars with a yield strength, modulus of elasticity, ultimate strain 

of 460 MPa, 230 GPa and 0.002 respectively. The shear reinforcement consisted of 

vertical stirrups of 6 mm diameter with characteristics strength of250 MPa. 

3.2.3 Carbon Fibre Reinforced Polymer 

3.2.3.1 Introduction 

A composite consists of two or more materials combined to produce a product that 

exceed their individual properties. In particular, fibre reinforced plastics is a 

combination of high - strength fibres and a matrix. The fibre is the strength of the 

composite, and the matrix is the product that holds the fibres together and acts as a 

load transfer median. Common fibres used for civil engineering projects are glass, 

carbon and aramid. The carbon fibres are stronger and stiffer than most other fibres, 

more corrosion resistant, lower in density and more widely available as a raw 

material. The matrix supports the fibres, protects them and transfers the loads through 

shear stresses. 

3.2.3.2 CFRP strips 

The carbon fibre reinforced plastic (CFRP) strips used in this research were Sika 

CarboDur SIOI2 of 100 mm width and 1.2 mm thickness. The properties of Sika 

CFRP strips as described by the supplier are shown in Table 6. The design and 

analysis for CFRP strips are shown in Appendix 3.3. 
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Table 6 : Properties of Sika' s CFRP System 

Tensile Elongation Elastic Compressive Adhesive Adhesive 
strength at break modulus strength strength on strength on 

(MPa) (%) (GPa) 
(MPa) concrete steel(MPa) 

(MPa) 

Sika >2400 1.4 150 - - -

CFRP 
strip a 

SikaDur- 12.8 > 100 >2 >25 - -
30 
adhesive 

3.2.3.3 Adhesive 

The strips were bonded to the soffit of the beams using epoxy SikaDur - 30. The 

epoxy resin used in this research consists of two components; part A is in white 

colour; part B is in dark grey. The mix ratio of part A and part B is three to one by 

quantity ratio. The mixture of the two is in light grey. The properties of the Sikadur -

30 adhesive are shown in Table 6 as well. 

3.3 Strengthened Beams 

The strengthened beams were designed to examine their flexural strength. Overal~ 

eight reinforced concrete beams were constructed; six of which were strengthened 

with CFRP strips. The others were tested without CFRP and served as the control 

beams. This section will describe the philosophy of the design, the CFRP application 

and instrumentation. 

3.3.1 Design of Beams 

The beams were designed to study the flexural response of a strengthened slab beam 

in a high building. All beams were 150 mm in width, 200 mm in height and 2150 mm 

in length to give a clear span length of 2000 mm. The concrete cover for steel is 39 

mm giving an effective depth of 161 mm. Two 16 mm bar diameter were used as a 
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tensile reinforcement. Please refer to Appendix 3.4 for the beam design and analysis. 

A critical part of the design was ensuring the beams failed due to flexure and not 

shear. To accomplish this, the shear stirrups were closely spaced; stirrups with 6 mm 

diameter were used for shear strengthening and spaced at I 00 centre to centre. The 

design was based on BS 8ll0: PART 1: 1997. A sketch for beam dimensions with 

longitudinal reinforcement and stirrup spacing is shown in Figure 3.1. The specimens 

were moulded in plywood boxes, and prior to casting, the mold walls were painted 

with lubricating oil to prevent adhesion with the cured concrete. The concrete was 

vibrated and kept in a moist environment by using plastic sheets. Specimens were 

demoulded after twenty fuur hours, and sprayed with water every day. 

I ,.II« 
.!I 1 0 h.'1ll$:ttl I.J;u 1t 

!$ IIUIII ,--, 

1 T 

II ffi'i.l ~!iii I 
I -

Ill 1111 I I I Ill~ 
RO@lOO 1run ~mmm 

IL 1 0 
; ... -1 

+----·~-~-,----··-·--~-------- 2000 uv:n --·-----~---·---·-+ 1~0 Imn 

(a) L.nwihldillal sKiian (\) n•:~s src•l~a 

Figure I : Beam Dimensions and Reinforcement Details 

3.3.2 CFRP Installation 

The most important factor in creating a composite system with reinforced concrete 

beam and CFRP is assuring the bond between the materials is adequate. Preparation 

of the concrete surface and the application of the CFRP are discussed in the following 

section. 

3.3.2.1 Concrete Surface Preparation 

It was necessary to have a level concrete surface to serve as a bonding plain for the 

CFRP. Also, the surface should be independent from all unwanted particles such as 

dust or grease. To achieve these, an electrical hand held steel grinder was used to 

remove the weak surface layer on the tension side of the beam. Nonelectrical manual 
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steel brush was also used to help for the same purpose mentioned above. The 

preparation was complete by blowing the specimen with compressed water to remove 

any excess particles. 

3.3.2.2 CFRP Bonding 

To investigate the effective length of CFRP plate for optimum strengthening, three 

different lengths were chosen. For each studied length two beams were constructed 

The procedure of bonding the CFRP to the beams is discussed below: 

• The CFRP plates were cut to the required length. 

• The CFRP plates were cleaned with acetone, this process was repeated until 

the washcloth was no longer blackened. 

• The reinforced concrete beams were first inverted, so that the tension face was 

at the top, to simplizy the application. 

• The epoxy was hand - mixed thoroughly and applied evenly to both carbon 

fibre strip and the concrete surface using a roller brush. 

• The CFRP strip was then smoothly hand - laid to achieve wrinkle - free 

surface, and the extra epoxy was squeezed out and removed keeping the 

thickness of epoxy between 2 - 3 mm. 

The specimens were cured at room temperatures for at least two weeks before testing. 

3.3.2.2.1 Beam CBl and CFl 

Beams CBI and CFl were served as control beams without strengthening with CFRP 

plates. Beam CB was made of normal concrete with a compressive strength of 66 

MPa and kept as a control for the other normal concrete beams those strengthened 

with different CFRP plate lengths. All normal concrete beams had a concrete 

compressive strength of 66 MPa. Beam CFI was made of concrete incorporating fly 

ash with 30% by weight of cementitious material and the compressive strength was 

69 MPa. The 30% fly ash was chosen for all fly ash beams for two reasons: 

I. To examine the behaviour of reinforced concrete beams made of fly ash when 

strengthened with CFRP system and the 20% fly ash is well known but when 

the 30% is used it will ensure the use of high volume of fly ash, so that the 

cement content can be reduced and consequently the cost and the 

environmental saving. 
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2. Because it's concrete compressive strength is almost similar to the normal 

concrete, to simplify the comparison. 

The beam CFl was kept as a control for the other fly ash beams those strengthened 

with CFRP system. 

3.3.2.2.2 Beam CB2 and CF2 

Beam CB2 was made of normal concrete and it was strengthened with a CFRP plate 

of a length of 1333 mm (67% of the span length) this length was chosen because it 

represents the region of the pure bending, beam CB2 was also considered a control 

beam for beam CF2 for the comparison of the behaviour of normal and fly ash 

concrete beams strengthened with the same amount ofCFRP. Beam CF2 was made of 

fly ash concrete and it was strengthened with CFRP plate of 1333 mm same as beam 

CB2. The external reinforcement of these two beams is shown in Figure 2. The areas 

covered by the CFRP plate for the shear reinforcement and for the bending moment 

are shown in Figure 3. 

11riTI1~iiii 1111111 
~----!333mm-----t 

-1 1- --- 2150mm --------

Figure 2 : External Reinforcement for CB2 and CF2 
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J'----1333mm-----} 

----- 2150rom -----~---'"1 

Area strengtllened wtth CFRP plates 

Shear Force Diagram 

Area strengthened With CFRP plates 

Bending Moment Diagram 

Figure 3 :Area Covered by CFRP Plate for 67% of the length 

3.3.2.2.3 Beam CB3 and CF3 

Beam CB3 was made of normal concrete and strengthened with a CFRP plate of 

length of 1667 mm (83% of the span length) which is the average length of 1333 mm 

and the full span length, (2000 mm). CB3 was also kept as a control for beam CF3. 

Beam CF3 was made of fly ash concrete and strengthened with a CFRP plate of 

length 1667 mm as well. The external reinforcement of CB3 and CF3 is shown in 

Figure 4 and the areas covered by the CFRP plate are shown in Figure 5. 
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Figure 4 : External Reinforcement for CB3 and CB4 
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.Nea strengthened w~h CFRP plates 

Shear Force Diagram 

Area strengthened w~h CFRP plates 

Bending Moment Diagram 

Figure 5 :Area Covered by CFRP Plate for 83% of the length 
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3.3.2.2.4 Beam CB4 and CF4 

Beam CB4 was made of normal concrete; it was strengthened with a CFRP plate of 

length 2000 mm corresponding to the full span length. CB4 was also kept as a control 

for CF4. Beam CF4 was made of fly ash concrete and it was strengthened with a 

CFRP plate of a length of 2000 mm as well. The external reinforcement of CB4 and 

CF4 is shown in Figure 6 and the CFRP covered shown in Figure 7. 

20 nun 

~---------------2~mm ----------------~ 
..._ _____________ 2!50mm 

(a) l.ou.g:intd.iml sedion 

Figure 6 : External Reinforcement for CB4 and CF4 
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Area strengthened wHh CFRP plares 

Bending Moment Diagram 

Figure 7 : Area Covered by CFRP plate for 1 00% length 
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3.3.3 Instrumentation 

The constructed beams were instrumented with Linear Variable Displacement 

Transducer. An L VDT placed underneath the mid-span of the beams, was used to 

record the deflection at the mid-span point. The deflection readings were recorded 

every 5 seconds. Figure 8 shows the L VDT position. 

r'n· bHIHII ftiafarciHDdf r 
II A Ill I I II I 

0 9 I L\"DT 
I 

+----------------lOOOmm-------------_. 

(a) ~alsKiioa 

Figure 8 : Beam Instrumentation 

3.4 Testing Procedure 

l5lrun __ i ! • . . 

A mid-span point load was performed on all eight test beams. The test set-up is 

illustrated in Figure 7. The beam were subjected to a static point loading using a 

hydraulic actuator with 500 kN capacity at the mid-span of the beam. The loading 

rate was 0.2 kN/s. 

r 
lllllllllllllllllllllllllll 

0 0 . /"r" LVDT 
stram gauge +--=c.:..::::.::.. __ __ ---

1+---------------------- 2000 mm ---------------------

Figure 9 : Test Setup 
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CHAPTER4 

RESULT AND DISCUSSION 

The variable for investigating the flexural behavior of high strength concrete beams 

strengthened with CFRP plates was the length of the CFRP plate. Beams were tested 

until failure occurred when subjected to central point load. During testing of beams, 

failure behaviour and crack pattern were observed, whereas load - deflection 

characteristics, ultimate and elastic load capacity and coefficient of ductility were 

recorded. This section presents the discussion on the results. 

4.1 Modes of Failure, Crack Pattern and Failure Load 

All the strengthened beams exhibited higher load carrying capacity compared to 

unstrengthened control beams. The ultimate failure loads for all the beams are shown 

below in Figure I 0. Please refer to Appendix 4.1 for theoretical calculation of all the 

beams. 

120 

100 

~ 80 
~ 

a 54.07 55.56 
..... 60 
~ 
Q 

E 
:£! 40 
:::> 

20 

0 

CBl CFl 

103.12 103 .89 106.06 106.99 

83.03 83.4 

CB2 CF2 CB3 CF3 CB4 CF4 

BeamiO 

Figure I 0 : Ultimate Failure Loads for The Tested Beams 

Failure mode and crack pattern were physically observed during flexural testing for 

all the beams. Cracks were marked for their extent and configuration and numbered 
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according to the sequence of their appearance. The schematic drawing of the cracks 

and picture are shown in Figure 11 to Figure 18. 

p 

l 

1+-----------~mm------------+1 

Figure ll : Schematic Drawing and Picture of CB 1 Crack Patterns 

p 

l.-----------2~mm------------~ 

Figure 12 : Schematic Drawing and Picture ofCFI Crack Patterns 

Figure 13 : Schematic Drawing and Picture of CB2 Crack Patterns 
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p 

Figure 14 :Schematic Drawing and Picture ofCF2 Crack Patterns 

p 

Figure 15 :Schematic Drawing and Picture ofCB3 Crack Patterns 

p 

Figure 16 :Schematic Drawing and Picture ofCF3 Crack Patterns 
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1+--- ---2000----·---

Figure 17 :Schematic Drawing and Picture ofCB4 Crack Patterns 

p 

Figure 18 :Schematic Drawing and Picture of CF4 Crack Patterns 

4.2 Effects of CFRP length 

It can be noticed that as the amount of CFRP strengthening material increased i.e. the 

length of the strengthening plate the failure load will increase results in high stiffness 

for the strengthened member. All the strengthened beams failed in flexure with plate

end debonding, the debonding failure can be attributed to the fact that: due to the 

flexural cracks formed in the constant moment region as the load increased the bond 

between the CFRP plate and concrete started to fracture at a certain load level and the 

failure propagated towards the shear span until most parts of CFRP plate detached 

from the concrete beam. It can be seen that the bond between the CFRP plate and the 

concrete beam was not strong enough to ensure the rupture of the CFRP plate. There 

were fewer but widely spaced cracks in the non-strengthened control specimens CB I 

and CF I however; there were more but narrower cracks at relative close spacing in 

the strengthened beams this shows the enhanced concrete confinement due to the 

CFRP strengthening. 
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4.3 Load- Deflection Behaviour 

The service load was taken at a level at which the deflection of the control beams was 

measured at about 35% of their ultimate loads, according to Tarek H. Almusallam 

and Yousef A. AL-Salloum, (2001), this means that the service loads for the control, 

CB I and CF I were about 19 KN and 19.4 KN respectively, and the corresponding 

deflections at that level were about 3.06 mm and 2.91 respectively. Therefore, all 

values for service loads for all strengthened beams were taken at reference deflections 

of 3.06 mm, for CB - series and 2.91 mm, for CF- series. 

All the strengthened beams experienced mid- span deflections smaller than those of 

the control specimens at their failure loads. The values of the maximum deflections 

decrease as the stiffness of the beam increases due to the increase in the amount of 

strengthening material. Figures 19 and 20 shows the load- mid-span deflection 

relationship of the CB-series and CF-series respectively. Before the flexural cracks 

start, the curves are close to each other. After yielding of reinforcement bars, the 

strength and stiffness of the strengthened specimens were larger when compared to 

the control specimens. After the failure, the loacHietlection curve of the strengthened 

beams dropped down; this behaviour was expected due to the increase in the beam 

stiffness as a result of increasing the length of CFRP plates. 
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Figure 19 : Load - Deflection Relationship For The CB- Series 
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Figure 21 : Ultimate Mid - Span Deflection For All Tested Beams 

4.4 CB-Series 

Beam CB I was not strengthened with CFRP plate made of normal concrete and was 

kept as the control specimen for CB-series. The beam exhibited small cracks at and 

around the loaded point and failed in flexure by crushing of concrete in compression 

zone; the cracks started at the tension sides and increased in width and length with the 

applied load. The failure load for CB l was 54.07 KN. Beams CB2, CB3 and CB4 

were strengthened with 67%, 83% and 100%, respectively, of the full span length and 

failed in flexure failure and plate-end debonding. The failure loads for CB2, CB3 and 

CB4 was 83.03 kN, 1 03.12kN and l 06.06kN respectively which represent 53.6%, 
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90.7% and 96% higher than their control beam (CBl). Results for CB - Series are 

tabulated in Table 7. 

Table 7 : Experimental Results at Service and Ultimate Loads For CB - Series 

BeamiD Service load (KN) %gain Ultimate load (KN) %gain 

CB1 19.0 -- 54.07 --

CB2 27 42 83.03 53.6 

CB3 36.0 89.5 103.12 90.7 

CB4 38.0 100 106.06 96 

4.5 CF-Series 

Beams CF1 was kept as the control specimen for the CF-series and was made of30% 

fly ash content. Beams CFI failed in a similar manner to CBI i.e. in flexure by 

concrete crushing at the compression face with ultimate failure load of 55.56 KN. 

Beams CF2, CF3 and CF4 were strengthened with 67%, 83% and 100%, respectively, 

of the full span length and they were failed in the same behaviour (flexural failure and 

plate-end debonding) as their respective control specimens (normal concrete) CB2, 

CB3 and CB4 respectively. The failure loads for CF2, CF3 and CF4 were 83.4 KN, 

103.89 KN and 106.99 KN which represents 50%, 87% and 92.6% higher than their 

control CFI. Table 8 summarizes the loads carried by the tested beams for the CF

Series. 

Table 8 :Experimental Results at Service and Ultimate Loads For CF - Series 

BeamiD Service load (KN) %gain Ultimate load (KN) %gain 

CFl 19.4 -- 55.56 --

CF2 28.76 48 83.40 50 

CF3 38.9 100.5 103.89 87 

CF4 40.95 Ill 106.99 92.6 
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4.6 Ductility 

Ductility usually calculated as the ratio of curvature, deflection or rotation at ultimate 

to yielding of steel [Tarek H. Almusallam and Yousef A. AL-Salloum, (2001)]. The 

ductility index in this study is obtained based on the ultimate deflection obtained from 

the test and the calculation of the yield deflection, and it is defined as the mid - span 

deflection, at ultimate load divided by the mid- span deflection at the point where the 

steel starts yielding. As it can be seen from load-deflection curves in Figure 19 and 

20, it can be seen that all CFRP-strengthened beams performed significantly better 

than the control beams with respect to load-carrying capacity. However, the observed 

increase in the strength was associated with the reduction in the deflection capacity of 

the respective beams. 

The ductility indices for all tested beams are shown in Table 9. The values of the 

ductility indices for the CFRP-strengthened beams were ranged from 2.7- 3.5. The 

strengthened beams exhibited lower values as compared with the control specimens 

CB I and CFl of 4.6 and 5.0 ductility indices. The low ductility of strengthened 

beams indicates that the addition of the CFRP strengthening system reduces the 

deforming ability at the ultimate stage of loading. The reduction in ductility for the 

strengthened beams in reference to the control specimens is not considered to be 

significant. Therefore, all the strengthened beams were shown to have adequate 

ductility, which ensured that their failure mode was of a ductile nature. 

Where: 

Jln: Ductility index 

au: Mid-span deflection at ultimate load (mm), and 

L\y: Mid-span deflection at yield load (mm). 
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Table 9 :Ultimate Deflection and Ductility Index of the Tested Beams 

BeamlD Yield deflection (mm) a Ultimate deflection (mm) b Ductility index (:;) 

CBI 5.6 25.76 4.6 

CFI 5.5 27.77 5.0 

CB2 5.04 17.68 3.5 

CF2 5.0 16.38 3.3 

CB3 5.04 15.66 3.1 

CF3 5.0 14.82 3.0 

CB4 5.04 13.775 2.7 

CF4 5.0 13.755 2.8 

a: calculated 

b: experimental 
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CHAPTERS 

CONCLUSION 

The results have shown that 1667 mm length which represented 83% of the span 

length was the optimum length of the CFRP plate that achieved the highest 

strength and beyond which the increase in the strength can be neglected. This 

length also achieved an adequate average ductility index, 2.65 when compared to 

the control sample's one which was 4.75; this yield a ductility ratio of0.56 which 

can be considered an adequate ductility compared to the previous studies. The 

behaviour of RC beams made of concrete incorporated 30% fly ash and those 

made of normal concrete when strengthened with CFRP plates was similar at the 

first crack and ultimate levels. 
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APPENDIX 3.1 

PARTICLE SIZE DISTRIBUTION CURVE FOR COARSE AGGREGATE 
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Analysis 

For Fine Aggregate: 

Dw = Effective size, particle size which I 0% of particles are finer, and 90% are 
coarser. 

=0.16mm 

n,, =particle size which 30% of particles are finer, and 70% are coarser 

=0.35mm 

Dw = particle size which 60% of particles are finer, and 40% are coarser 

=0.75mm 

Uniformity coefficient (Co) is the ratio of the 60% particle size to the 10% particle 
size. It is a measure of the slope of the line joining these two points in the graph 
shown earlier. 

C = D60 = 0.75mm 4.6875 
" D10 0.16mm 

Coefficient of gradation (C,) 

Dio 0.35
2 

c = 1.021 
: D60 x D10 0.75 X 0.16 

From BS 1377:

Forsand 

Co :S 6 and I :S C, :S 3 ( a well- graded aggregate ) 

C, < 0. 1 ( a possible gap graded aggregate ) 

For the fine aggregate used : Co= 4.6875 < 6 

c, = 1.021 1 :s 1.021 :S3 

And from the curve, it can be seen that it is a well graded fine aggregate. 
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APPENDIX 3.2 

PARTICLE SIZE DISTRIBUTION CURVE FOR COARSE AGGREGATE 
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Analysis 

For Coarse Aggregate: 

Dw = Effective size, particle size which 10% of particles are finer, and 90% are 
coarser. 

=4.75mm 

D,o = particle size which 30% of particles are finer, and 70% are coarser 

=7.00mm 

Doo = particle size which 60% of particles are finer, and 40% are coarser 

= ll.OOmm 

Uniformity coefficient (Co) is the ratio of the 60% particle size to the 10% particle 
size. It is a measure of the slope of the line joining these two points in the graph 
shown earlier. 

C =D'o = 11mm 42.316 
" D10 4.75mm 

Coefficient of gradation (C,) 

DJo 7.00 2 

c = 0.94 
' D60 x D10 11.00 x 4.75 

From BS 1377:-

For gravel 

Co 2: 4 and I -<: C, -<: 3 ( a well - graded aggregate ) 

C, < 0.1 (a possible gap graded aggregate) 

For the coarse aggregate used: Co= 2.316 < 4 

C,= 0.94 0.94 < 1 

From the particle size distribution curve, it can be seen that the slope between Doo and 
Dw is slightly steep. Thus, the result is slightly poor sorted coarse aggregate. 

37 



APPENDIX 3.3 

DESIGN OF CFRP 

Using ISIS Education Module 4 

ISIS Canada, L.A Bisby, Queen's University, 2004 

Concrete compressive strength, feu =50 MPa 

Area of steel, As = 402 mm2 

Steel yield strength, :ty = 460 MPa 

Steel modulus of elasticity, Es = 230 GPa 

FRP modulus of elasticity Efrp = !55 GPa 

Area ofFRP, Arrp = 120 mm2 

Efrpu = 1.55% 

<Dfrp = 0.75 (ISIScanada) 

Cc = Ts+Tfrp 

Cc = 0.45fc"b * 0.9x 

Ts = 0.95JYAs 

T frp = 0.75£ frpAfrpe frP 

0.405f'"bx = 0.95JYAs + 0.75EfrpAfrpefrP 

0.405 *50 *150 *X= 0.95 * 460 * 402 + 0.75 *155000 *120 * ( 0.0035 * ( 20
:-X)) 

x 2 -41.8x-3214.8 = 0 

-b±~b2 -4ac 
x=---::----

2a 

x=8l.4mm 

Calculate the strain in the FRP, e frP 
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(
h-x) 

Ejrp=Ecu* -X-

[ifrp = 0.0051-< EifrP" = 0.0155 

(
d-x) 

Es =Ecu * -X-

6, = 0.0034 >- [i y = 0.002 

The steel has yielded thus the amount of FRP is appropriate 

The factored moment resistance: 

M = 0.95.f.YAs(d- 0.45x) + 0.75E frPAfrPEi frp(h- 0.45x) 

M=33.3KN.m 

The factored moment of unstrengthened beam = 23.5 KN .m 

Thus the FRP has increased the flexural strength of the beam by about 42%. 
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APPENDIX 3.4 

BEAM DESIGN AND ANALYSIS 

Using BS 8110 

Assume: 

Live load = 3.0 KN/m2 

Finishing load = 1.0 KN/m2 

Thickness of slab = !50 mm 

Unit weight of concrete = 24.0 KN/m3 

feu= 50Mpa 

fy=460Mpa 

0 
1=2.15 m 

Loading: 

oh=200mm 

Slab dead load (gk) = self-weight + finishes 

= 0.15 * 24 + 1.0 

=4.6KN/m2 

Slab imposed load (qk) = 3.0 KN/m2 

Slab ultimate load = 1.4gk + 1.6qk 

= 1.4*4.6 + 1.6*3 

= 11.24 KN/m2 

Beam dead load = self-weight 

= 0.15*0.2*24 = 0.72 KN/m 

40 

b= l50mm 

d= !50 mm 



Beam ultimate load = 1.4gk 

= 1.4*0.72 

= 1.01 KNim 

Design load: 

Assume the slab is simply supported; beam 1-2 supports a uniformly distributed load 

from a 1.8 m width of slab plus it's self-weight. 

Design load (w) on beam 1-2 =slab load+ self-weight of beam 

= 11.24*2.0 + 1.01 = 23.5 KNim 

Design moment (M): 

M = w/2/8 = 23.5*2.0218 = 11.75 KN.m 

Design shear force (V): 

V = wl/2 = 23.5*2.012 = 23.5 KN 

Area of steel: 

K = M I feu b cf = 11.75*1061 50*150*1602 = 0.061 < 0.156 

Thus compression reinforcement does not required. 

~= 0.5 +.J0.25 -K /0.9 

(0.95,; z I d,; 0.775) 

~=0.93 

As= ( o/o.95JYz) = 180.7 mm
2 

As pmvide = 402 mm2 

Use2 T 16 

Shear link design: 

V=23.5 KN 

IOOAs 100x402 = 1.79 
bd 150xl50 

vc = 0.98N I mm 2 
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feu> 25 

(5oJm , vc = 
25 

* 0.98 = !.23N I mm 

0.5vc = 0.62 

v-VI - 23·5 *IO' 0.98Nimm2 

- /bd- 150*160 

v > 0.5vc 

VC + 0.4 = 1.23 + 0.4 = 1.63 

0.5vc < v < vc + 0.4 

A, = 0.4 * b = 0.4 *!50 = 0.253 
SV 0.95 * jj;,, 0.95 * 250 

sv = IOOmm 

A, = 56.5mm 2 

Provide 6m links at I 00 spacing c.c 

Deflection check: 

. 2000 
Actual span/depth ratto = -- = 12.5 

160 

M/ = !1.75 *!0' =3.06N/mm 2 

/bd' 150*1602 

fs = ~* fY * As~'"'~d *_I_ 
3 As provide fJh 

Where (3, is the percentage moment redistribution, equal 1.0 for simply supported 

beam. 

fs = 2 * 460 *180.7 = 137.85N I mm' 
3*402 

M d.fi . f: [ 4 77 - fs o t tcattOn actor= 0.55 + ( ,f I 
120 0.9+Ajbd' 

= 1.26 < 2.0 

The permissible span/depth ratio= 20 * 1.26 = 25.2 >actual 

Therefore the beam satisfies deflection criteria in BS 8110 
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APPENDIX 4.1 

BEAM MAXIMUM MOMENT CALCULATION 

Theoritical Calculation for Cll 1 

fw = 66 '"!Pa 

T=C 
U.%f;.,As = U.4USf,.bx 

0.95 X 460 X 402 = 0.405 X 66 X 150 X X 

x =43.8144 mm 

M=T.z 
M = 0.95f.A.z ·' -
M = 0.95 X 460 X 402 X 141.28352 

M = 24.82 kN.m 

4M 4(24.82kN.m) 
W=-= =49.64kN 

L 2m 

Theoritical Calculation for CF 1 

fw = 69lv!Pa 

T=C 
0.95f;.,A, = 0.405fcubx 

0.95 X 460 X 402 = 0.405 X 69 X 150 X X 

x =41.9095 mm 

M=T.z 
M = 0.95/..A,z .. 
M = 0.95 X 460 X 402 X 142.1407 

M = 24.97 kN.m 

4M 4(24.97k.V.rn) 
W=-= =49.94kN 

L 2m 

Theoritical Calculation for CB2 CB,CB4 

Using ISIS Canada 

fc = 65MPa 

As= 402mm"2 

f.= 450MPc< .. 
E, = 230GPa = 230 X 103Mi'a 
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z = d -· 0.45~: 
z = l61mm- 0.45: 43.8144m 

::: = 141.28352 mm 

z = d- 0.45x 
z = 161mm- 0.45:41.9095m 
z = 142.1407 ·m.m 



A1 ,., = 120mm2 

E1,, = l50GFa = 150 X 103 MPa 

From the experiment, it is observed that the failure of the beam was due to 
crushing of the concrete due to compression, after yielding of the internal steel 
reinforcement. 

(t1 = 0.85- 0.0015.fc >> 0.67 

= 0.85- 0.0015(66) = 0.751 > 0.67 

{J1 = 0.97- O.D025fc. » 0.67 

= 0.97- 0.0025(66) = 0.805 > 0.67 

0.6(0.751)( 66) (0.805)( 150k 

C, = 0,a,f~{J1 b( 

T" = 0,AJ~ with{; <l: f, 

T1., .... = 0r·~A1-:f .... E~ ....... s1 . ., .... ·t.vfth E': ...... , ~K s,f: .... .,., .. 
• /"' • I"' • i-' } '1:' • t• J. ,... J. :r "' 

( 
200- c.) 

= 0.85(460)(402) + 0.75(150000)(120) 0.0035 c ' 

c = 6lHl4mm 

h -c 
Ef'!'~ = -E'c.u_c_ 

[
200 - 68.84] 

f:frp = 0.0035 
6834 

• = 0.0067 

The CFRP used are Sika CarboDur M and the strain at failure is 1.2% 

0.0067 < 0.012 

~· f '! ' t h" • Ef~P 's1 .... p<.!. •· az_ ure .oy co:tcre .e crus rag 

rl-r. 
E""' =E.,"--- .... c 

[
1.61- 68.84] c,- 0.0035 68.84 . - 0.00•17 

E-" = 0.002 __, for stee! to yield 

0.0047 > 0.002 

s. > E,, • the stee! has yie !ded 
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a =P.c 
= 0.865( 68.84) 

To calculate the moment, 

M, = i!J"A"f~ ( d - ~) + 0frp J.,,,"F'f,"PEI,P ( h - ~) 

( 
0.805 X 68.84') = 0.85(460)(402) 161- ? ' 

, - { 0.805 X 68.84\ 
+ n.7S(1soooo)(Po)(o.ocli7) l._?m -

2 
} 

=36.53kN.m 

4-M 4-(:!o.S::!kll'.m) w =-= -'-----'-
L 2 

= 73.06kJII 
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Theoritical Calculation for CF2 CF3 CF4 

Using ISIS Canada 

fc = 6'iMPa 

As= 402mm"2 

fv- '160MPa 

E, = 230GPa = 230 X 103M?a 

A1,P = 120mm2 

Efrp = 150GFa = 150 X 103 /v!Pa 

From the experiment, it is observed that the failure of the beam was due to 
crushing of the concrete due to compression, after yielding of the internal steel 
reinforcement. 

a 1 = 0.85- 0.0015fc » 0.67 

= 0.85- O.ll015(6'i) = 0.746 > 0.67 

{J, = 0.97- 0.[)025fc » 0.67 

= 0.97- 0.0025(6\l) = 0.797 > 0.67 

00 atfJJ1 be= 1/J,AJ, + I/Jfr·pAfr·p£,<ry,l2frp 

0.6(0.746) ( 69)(0.797) ( 150)~ 

C, = T, + T1 ,P 

C, = 0ca,f~{J1 be 

T, ~ 1/J,AJ~ with f~ <<: f., 

( 
20[)- c ') 

= 0.85(460)(402) + 0.75(150000)(120) 0.0035 ' r: .. 

e = 67.57 mrn 

h-e 
efrp = Fc1.1_e_ 

[
200- 67.57], "'r., = 0.0035 = 0.006') 

. . 67.57 

The CFRP used are Sika CarboDur M and the strain at failure is 1.2% 

:. "Jrpu = IHJ1?: 

0.0069 < 0.012 
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d-e 

[
161- 67.57]' 

"" = 0.0035 ·. = 0.0048 
67.57 ' 

t:,_ = C.002--> for steel to yield 

0.0048 > 0.002 

"• > z,,.• the steel has yielded 

To calculate the moment, 

(
' 0.797 X 67.57) = 0.85(460) (402) 161- ? 

• - { 0.797 X 67.57) 
.,. 0.7:i(l:i0000)(120)(0.0~69) \ 20C- , 

\ 2 ~ 

=37.17kN.m 

4l•f 4(37.17kN.m) 
1i1l = - = --'-----" 

L 2 

= 74.:S4kN 

47 

a= {f.c: 
= 0.797(67.57) 


