GRID FOLLOWING ROBOT USING EVENT-DRIVEN PROGRAMMING
TECHNIQUE AND LED-LDR SENSORS

By

NURUL ZAHIDAH BT MD. HASIDIN

FINAL DISSERTATION

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
Jor the Degree
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

SEPTEMBER 2011

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2011
by
Nurul Zahidah Bt Md. Hasidin, 2011

CERTIFICATION OF APPROVAL

GRID FOLLOWING ROBOT USING EVENT-DRIVEN PROGRAMMING
TECHNIQUE AND LED-LDR SENSORS

by
Nurul Zahidah Bt Md. Hasidin

A project interim report submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Flectronics Engineering)

Appfoved b

Mr Abu Bakar Sayuti Bin Hj Mohamad Saman
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

SEPTEMBER 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that
the original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons,

Nurul Zahidah Bt Md. Hasidin

ABSTRACT

Grid Trekker is a grid follower robot which is a type of mobile robot that uses
line detection for its navigation. The ultimate aim of this project is to build a mobile
robot that can maneuver correctly through paths determined by its user. The mobile
robot must be able to maneuver based on grids marked on the floor. Using Paraliax
Board of Education robotics kit, this project focuses on the sensor assembly using
combination of LED and light dependant resistor (LDR) which is simple but
effective. Another aim of this project is the program development using event-driven
programming. Unlike traditional programming, where the control flow is determined
by the program structure, the control flow of event driven programs is largely driven
by external events. The main routine basically reacts to events based on its current
state and transition to the next state accordingly, much like a Finite State Machine
(FSM). Implemented in PBASIC, this technique was successfully implemented in
programming the Grid Trekker.

iii

ACKNOWLEDGEMENTS

I would like to express my many thanks to my supervisor of this project, Mr Abu
Bakar Sayuti Bin Hj Mohamad Saman for the motivation and guidance in this project.
He has constantly provided valuable guidance and advice which has motivated me to
contribute my fullest to this project. Step by step guidance motivates me to keep moving
and make this project done. Not forgetting my family and friends who has giving
tremendous support and concern along the way which greatly motivated me to keep
putting effort on completing this project. I would like to thank the Final Year Project
Committees to have organized and assisting us for these two semesters on completing
this project. Finally, I would like to thank Universiti Teknologi PETRONAS (UTP) for
providing us with the excellent environment and access to facilities to complete this

project on our own initiative,

TABLE OF CONTENTS

ABSTRACT ...t tntesraeressissnaasnesanessasssassassnssrssesasssassss shases shos snessassssssnases sesssssgsssns it
ACKNOWLEDGEMENTScoorctinemncscsssiissssassssssssssssssiassossamssssansassssssersssssssassssases iv
TABLE OF CONTENTS........ooniitminismmneomenssissennessscnomsmssessssssstonsesssasssisesssesesesasssssssssesss v
LIST OF FIGURES ..o sssinisnississsistsmsassissssssssissssssssssssssasssss ssnsssasasssssssansssasssnsis vii
LIST OF TABLES ..ottt sestes st ssssessssssssssssssssescssnsssessensassssanssessessasaneses ix
CHAPTER 1 ...t ssosn e et ae b bes s b ses b sssasntssmaspabssenasesiasnnsnasonsssasan 1
INTRODUCTIONooviiiiiriresensssesietserers s arionessssrssenssssssssssasssssssnssassessssssansnssisesssssessssensans 1
1.1, Background StUAY sessssiesssisssasessssrsns 1
1.2. Problem STatement.........ccorrerremcnrcrenenesirmrnss st sasasessssssesssasssssssasasasssssesssenssens 2
L3 OOV cceeiriricrrerecnnirsaeresscrsresmsecrsis et ssersen st srssssastssese s srsss et sramasn s simasensseseasn 2
1.4, Scope of STUAY ..ottt resssessessssessss s srssssesssssssevas 2
CHAPTER 2ecieetreeint s receeascemnessessasssseress s e snsssabassss st asessbes s easasnts s sonssanesansassssasssasssacs 4
LITERATURE REVIEW AND THEORYcccioienimmrrcecnsermissssinssississsassssssssssssassssess 4
2.0, MODILE 1ODOL ..ottt s et s e s sb s s 4
2.1 1. MICrOCONLIONIETorvvviriisemistmrinssinescsissassss s e cssrssssssasessssersesessenes 4

2.1.2. SeIVO MO0coievisnrstinrnsssisnsssastesristirs s srsssssnsasisasssssansstosesassssassnssnss 4

2.1.3. LINE SNSOTecrverenertisisssmsinmsiesisisrissssssmsessssssnsnssssssnsnsssssssessossseansassssnsas 5

2.1.3.1. Light Dependant Resistor (LDR) & LEDcccconericrncnrircnnns 5

2.1.3.2, How the LDR WOTKSccoeovrrieieirrccnis s 6

2.2. Line follower robot & grid follower robof.......cccieciiienniiniicccecni i 7
2.3. Finite State Machine (FSM)........ccccuierieervenncoreesenescrssserscssessesarssassssssssssesncsassansns 7
2.3.1. State Transition MatriXccocverminnirceninnneresienscrecesssssserasssssisens 8

2.3.2. State Transition DI&ZIAMccccomomcennemnrisinnmnes s 9

24, PSEUAOCOAE ..ottt st sy e sren s sr s i b s a s p s st s 11
2.5. Conventional Programimingc..eseceimerirsssimssssiissssssmissesssersssssesssssess 11
2.6. Event-driven programming..........uiemsevnomisssiissssassssssisssessssssies 12
2.6.1. C and PBASIC PrOZraMccccvrvreecmiaceerienmmesnsiesscomnassmssorssenesssssasensns 12

CHAPTER 3 METHODOLOGYooiviiviiririiciniinimnsnens s sssssssssnessssssns 14

3.1. Research MethOdOIOZYcoccvurcmirrcnenminniissecnnesns s emsesssse s s s ssssssenns 14
3.1.1. Building the line sensor using Light Dependant Resistors (LDR)

and white LEDS.........commimninsiisanesssisesses 14

3.1.2. Testing Sensor Response to light reflection from LEDo.cccccerni. 15

3.1.2. Grid Following Behavior Modeling........c.ccouvencirmrnionccnennsrccssonne 17

3.2, KEY MUIESIONEoneeeeeeceremcicnecn e enen e sbees e e s e i esassssebsnetsesanesssnssensnasssssensrsssesss 18

3.3, Project aCtiVILIES. e iiiererreeenseiesssinser e toresbes st st nse s b e s raentsessenessasnnen 19

3.4, TOOIS USEU ..ot e esssas s ereass s e ss sersanssasssas shss s s dsaanes 20

34,1 HATAWAR......ooocceieeeecrenricneeccteetnensecsestcsnesnstaesesnensensscssssenensnssnsassansas 20

3.4.2. SORWATE ...t bbb st naens 21

3.4.3. Computer SyStem TeqUIrINENL;c..coereuiremrrermrersereacsrsermecassessssrsersans 21

CHAPTER 4 RESULT AND DISCUSSIONcooiiriinirtssceis st veeevenesrssssasssesanns 22

4.1, Hardware assemblycooriiieiiciniiincenint et saressesransssssanessessessranssarins 22

4.1.1. 5erv0 MOLOIS.....ciieiiinieticncn st stn e s e sten e cene s ses e snsns s sassassans 23

4.1.2. Line SenSOr CONSIIUCIIONccimrueeermvermsiresnsssesnssscssessasiesanpesnsesescesassens 23

4.1.2.1. Sensor drawbacks............coverieeinenseeiinisinen st 27

4.1.2.1.1. Sensor POSIION....c..ccvecreeeirnnroiesesessersssnsesenssenans 27

4.1.2.1.2. LEDs as Indicators to Verify Input Detection.......... 28

4.1.2.1.3. Number of Sensors........ccureriimsscsmmissssscssosssns 28

4.2. Building the Grid Trackcccuriirimvenisnnninssismiommmssm s e 29

4.3. Algorithm Developmentccviiicninnncnsincesssinessasesssisessesinssesssnssensisssns 29

4.3.1. LG FOUOWINEcrieierecreirrernsnseriracsseensercarascsnorassncssesassessessassssnsssses 30

4.3.2, Grid FOHOWINEccovereceeerceireininecenrersensseseesessessnesesssessessessessssnsssessanses 36

CHAPTER 5 CONCLUSION....ccocvimtnmsiincnniniinnssiisonsse s iissssesssssiosssssisssassssssasesaes 49

REFERENCES ...ttt ssns i seestetese s sesastssssss s spassseransesssesassmsssbesssasssssase 50

vi

LIST OF FIGURES

FIGURE 1: SCHEMATIC DIAGRAM FOR LDR SENSOR CIRCUIT []..ccoovvrnrmrienrsimmensrsnressasssens 6
FIGURE 2: FSM CONCEPT FLOW ... s ssssessins S 7
FIGURE 3: STATE TRANSITION DIAGRAMcooiiiinievsincsmmemissveisississsnsssansass s ssssvsestssaesssssessane 9
FIGURE 4: STATE TRANSITION DIAGRAM FOR SIMPLE LINE FOLLOWING BEHAVIOR .. 10
FIGURE 3;: BASIC STAMP EDITOR V2.5.1 coiiriininrssimmrmrnssnnscsasstnsssissesssscossmsssas st sssssassssrassssessas 13
FIGURE 6: BOTH COUPLE OF LED-LDR SENSOR DETECTS LIGHTcocoinmnrvsninsnenrisnnsens 16
FIGURE 7: LEFT SENSOR DOES NOT DETECT LIGHT ON A DARK SURFACE..........cccocumnuu. 16
FIGURE 8: TESTING SENSOR RESPONSE......cccocennumnmmmrennnssnnssssssss s sesssssrsmesssiss 17
FIGURE 9: KEY MILESTONE OF THE PROJECT ..ot rnsssserssasssseasasnss 18
FIGURE 10: ACTIVITY FLOWuoiiiiiirniienssismiatniss s sasns s smsassntassssssssansasenera prssssssassassssesssians 19
FIGURE 13: 6V POWER SOURCE.... vttt ssssssssiassssssssassssss ssssasssssasassssssees 22
FIGURE 11: PARALLAX BOE-BOT ...cociviicrmrmiensinismnses s srissesssssssssssessssssasasenssssarase 22
FIGURE 12; PINS AND SERVO ASSIGNMENTooonrrvormrmirirsimsissnmmssrsniorsseonessesscreens crareserinaaes 22
FIGURE 15: SERVO MOTOR ..o sssssssss st snssrmsssss basmssssms ehanistssrissssrasssnsssnssisitases 23
FIGURE 14: 3 PINS PLUG SERVO MOTOR ...t sissasssssnsasssasssrssessassnsas 23
FIGURE 16: LED SENSOR CIRCUIT DIAGRAM [4]..ccocvivirivmsirirermrarimmsssssssissssrsersssesssrsssiessyanss 23
FIGURE 17: LDR SENSOR CIRCUIT DIAGRAM [4]....iiinscnnsssisisisimssssssnsnes 23
FIGURE 18: (A) SIDE VIEW OF THE LINE SENSOR,

(BY FRONT VIEW OF THE LINE SBENSOR ... 24
FIGURE 19; LINE SENSOR CIRCUIT CONSISTING OF LED-LDRcoimnmmcemnisscenssncnnnnees 25
FIGURE 20: VEROBOARD LINE SENSOR CIRCUIT ..o nssss s en st v 26
FIGURE 21: SENSOR ASSIGNED TO I/O PIN3 AND PIN6, POWER SOURCE CONNECTED... 26
FIGURE 22: SENSOR 18 MOUNTED UNDER THE GRID FOLLOWER ROBOT 27
FIGURE 23: POSITION OF SENSOR AFFECTS ACCURACY OF TURN AT JUNCTION 28
FIGURE 24: LED INDICATORS ADDED ..ot s sersssssssssssssssssssssissseasesabasssssaeas 28
FIGURE 25: POSSIBLE POSITION FOR THE THIRD SENSOR,;

{A) AT THE FRONT, (B) AT THE BACK, (C) BETWEEN THE EXISTING TWO......cccvecueunne 29
FIGURE 26: GRID FOLLOWER ROBOT MANEUVER ACCORDING TO GRIDS.............ccneece. 29
FIGURE 27: LINE FOLLOWING ROBOT BEHAVIOR........ccovviiininrinnrinssserensssssssssssssssssnssssnsnsns 30
FIGURE 28: STATE TRANSITION DIAGRAM FOR SIMPLE LINE FOLLOWING

BEHAVIOR FROM CHAPTER 2conivirrinnnninesincstresssissisisastessibamsesnssssbensrasss 31
FIGURE 29: MOBILE ROBOT ABLE TO MANEUVER ON GRIDS ACCORDING TO THE
FORMATION SET .ot scssssssmssstinssiinst s sssssnsmsssssnsssamsssss i st ssssnstssmssas sesssnsas 36

vii

FIGURE 30: GRID TREKKING BEHAVIOR oooooeoooooveseeos e s eessssssosesesseresesesssssasssssssesseesessssessessees 37

FIGURE 31: FSM STATE CHART FOR GRID FOLLOWER ROBOTcoconvrirmenmmminesressssmsessasinns 40
FIGURE 32: LEDS INDICATORS SUBROUTINES ARE CALLED IN THE MAIN ROUTINE. REFER
FULL PROGRAM AT APPENDIX C-B(III}covericrrmresmismnnsssrsssersessessssssmssmsasssansones 47

FIGURE 33: SENSOR INDICATOR AND JUNCTION COUNTER LED INDICATORS
SUBROUTINES. REFER FULL PROGRAM AT REFER FULL PROGRAM AT
APPENDIX C-B(IID)coirimiirisismirsimminsssoisisionniniiinsississsssessisssiarsmn ssssssasressessssssnssss 48

viii

LIST OF TABLES

TABLE 1: TRANSITION MATRIX FOR SIMPLE LINE TREKKER BEHAVIOR.....c.ccouercrrecssernnn 9
TABLE 2: BASIC MOVEMENTS OF THE LINE FOLLOWING APPLICATIONocoocccevrmrnen 15
TABLE 3: HARDWARE USED BASED ON THE PARALLAX BOE-BOT STUDENT GUIDE [8]21
TABLE 4: COMPONENTS FOR LINE SENSORooooosteeesesscnenresssasmsesssssssssssesssssssssssssssssssserens 24
TABLE 5: LINE FOLLOWING BEHAVIOR OVERVIEWccvovontooreesseeossssssssasessessssossesesses 30
TABLE 6: TRANSITION MATRIX FOR SIMPLE LINE TREKKER BEHAVIOR (FROM CHAPTER
2] oot seere s st et et RRE SRR RSB RS RS RR 31
TABLE 7: GRID TREKKING BEHAVIORecovvveerovsvsomeeseessessssmsssessssssossmeseseseessssssssssesssssssessss 38
TABLE 92 ARRAYS ccvvorvre e conessessorssessssseresssmmsees st setstssssesssassssis s sssssssasssssessssssesssssssssmsssesses 39
TABLE 8: STATE TRANSITION MATRIX FOR GRID TREKKING w.vcovvvcsccasrssreseccnsarmsssssssons 39

CHAPTER 1
INTRODUCTION

1.1. Background Study

A robot is a re-programmable, multifunctional device designed to move material,
parts, tools, or specialized devices through variable programmed motions for the
performance of a variety of tasks [1].In practice, it is usually an electro-mechanical
machine which is guided by computer or electronic programming, and is thus able to
do tasks on its own. Robots can be classified to several classes by the Japanese
Industrial Robot Association (JIRA) that are manual handling device, fixed sequence
robot, variable sequence robot, playback robot, numerical control robot and
intelligent robot [1]. However, generally robots can be classified to two types; fixed

position robot and mobile robot.

Mobile robots have the capability to move around in their environment and are
not fixed to one physical location [1]. Hence, the ability to move autonomously in
the environment opened a wide scope of its application such as task that involves
transportation, exploration, surveillance, guidance, etc. Autonomous mobile robots
offer a great medium of testing on intelligent behavior. In order to autonomously
move, mobile robots needs sensing, interpretation, cognition and coordination as the
input to be processed. The type of sensor equipped to it determines the way the robot
navigates. A grid follower robot uses line detection for navigation,

A grid follower robot is a mobile robot that can detect and follow a line drawn on
a floor {2]. Generally, the path is predefined and can be either visible like a black
line on a white surface with a high contrasted color or it can be invisible like a
magnetic field [2]. This line may be as simple as a physical white line on thé floor or
as complex lines e.g. embedded lines, magnetic lines and laser guide lines. In order

to detect these specific lines, various sensing schemes can be employed [3].? it tracks

the path based on difference of colors since only the bright part reflects back the
lights to the sensor. To make it autonomously move based on the path drawn, the
robot must be equipped with suitable sensors [3].

Thus, because of its mechanism and the way it navigates, this robot is named the
grid follower robot. Other names of the grid follower robot is line follower and it can
be used in various areas such as the industrial automated equipment carriers,
automated cars, tour guides in museums and other similar applications. The

mechanism is described further in chapter 2.

1.2. Problem Statement

A grid follower robot must have the ability to recognize grids on the floor by means
of a line sensor assembly consisting Light Dependant Resistor (LDR) and white
LED. The sensor detects the line as input. The input will be processed by the
algorithm to perform several required tasks such as detecting a line, moving forward,
backward, reversing, taking various degrees of turns and stopping. Most importantly
the robot requires an algorithm which gives the machine an artificial intelligence

such as the ability to maneuver based on how it is programmed.

1.3, Objective

The ultimate aim of this project is to build a mobile robot that can maneuver
correctly through paths determined by its user. The mobile robot must be able to
maneuver based on grids marked on the floor. Using a ready Parallax Board of
Education robotics kit, this project focuses on the sensor assembly and the program

development using Finite State Machine model.

1.4. Scope of Study

The grid follower robot covers the area of digital electronics, microprocessor,

microcontroller, and programming.

The project will evolve around the program development using event-driven
programming. Knowledge in programming will definitely be tested to ensure the
program developed able to coordinate the microcontroller to the actuators (motors
and wheels) of the grid follower robot. This will give the grid follower robot a sense
of artificial intelligence which is the ability to move autonomousty based on the pre-
drawn grids, This involves programming the Parallax BASIC Stamp® 2
microcontroller using PBASIC Language. Event driven programming is used for

more organized and reliable program.

The project will also cover the knowledge of circuit theory to fulfill the objective
of the sensor development for the mobile robot. The cheapest but effective line
sensor which consists of LEDs and Light Dependant Resistors (LDR) will be built.

CHAPTER 2
LITERATURE REVIEW AND THEORY

2.1. Mobile robot

Mobile robot consists of several imporiant parts that are the microcontrolier, sensor

and the servo motor.

2.1.1. Microcontroller

A microcontroller is a programmable device that is designed into your digital
gadgets [4]. Microcontroller for embedded systems is different with embedded
microcontroller as the latter have its ROM burned with a purpose for specific
functions needed by the system [5]. A microcontroller has a CPU (a microprocessor)
in addition to a fixed amount of RAM, ROM, I/O ports and timer all on a single chip.
This means no external memory, I/O, or timer can be added to it.

A microcontroller differs from microprocessor where microprocessor
contains no RAM, no ROM, and no I/O ports on its chip. Microprocessors can have
external RAM, ROM and I/O but this will make the system bulkier causing it to me

less-favorable and not ideal for applications with limited cost and space [5}.

2.1.2. Servo motor

Servo motor is a DC motor with more than two electrical terminals. Servo motors
is the three-wire DC servo motor that is often used for a control surface on a model
airplane or a steering motor on a radio-controlled car. There are two types of servo

motor which are the 180 and 360e.

The original servo motor it the 180 which is an assembly of a DC gear head

motor, a position sensor on the shaft and an integrated circuit for control. It rotates at

the range of 180 and this rotation range is not suitable for wheeled robot
propulsions. This type of servo motor converts electrical to mechanical in which an

electrical input determines the position of the armature of a motor {6].

For wheeled robot, the second type of servo motor which is the continuous servo
360 is used. This type of servo has been modified to have 360 rotation. The servo
motors used for this robot will enable the robot to make various degrees of turns and

movements such as turn, moving forward and backward.

2.1.3. Line Sensor

Autonomous mobile robots offer a great medium of testing on intelligent
behavior. In order to autonomously move, mobile robots needs sensing,
interpretation, cognition and coordination as the input to be processed. The type of
sensor equipped to it determines the way the robot navigates. A grid follower robot
uses line detection for navigation. This line sensor consists of photoresistors or also

be called as Light Dependant Resistors (LDR) and white L.EDs.

2.1.3.1. Light Dependant Resistor (LDR) & LED

Light dependant resistors or also known as photoresistors are simply variable
resistors in many ways similar to potentiometers, except that the resistance change is
caused by a change in light level rather than turning a knob. Photoresistors are easy

to interface to a microcontroller [6].

2.1.3.2. How the LDR works

Vit Wd

£

M >
/“ -
Sow

Figure &-2
Scheratic -
i P} O First Light
204 2200 Betection
3 Circeiit
28 - 2k
= =
Vss sy

Figure 1: Schematic diagram for LDR sensor circuit [ERROR! BOOKMARK NOT
DEFINED.]

In this project, BASIC Stamp module is used. The BASIC Stamp microcontroller
/O pin can function as an output or an input. As an output, the I/O pin can send a
high (5 V) or low (0 V) signal [Error! Bookmark not defined.]. Up to this point, high
and low signals have been used to turn LED circuits on and off thus it then controls

the servos.

The BASIC Stamp I/O pin can also function as an input. As an input, the I/O pin
does not apply any voltage to the circuit it is connected to. Instead, it just receives
input without any actual effect on the circuit. The input registers will store values
that indicated whether or not the LDR detects light. Different with early systems
which needs constant voltage for the I/O pin, an I/O pin set to input does not
necessarily need 5 V applied to it to make its input register store a 1. Anything above
1.4 V wilt make the input register for an I/O pin store a 1. Similarly, an I/O pin must
not get 0 V to make its input register store a 0. Any voltage below 1.4 V will make

an input register for an I/O pin store a 0 [4].

When a BASIC Stamp I/O pin is an input, the circuit behaves as though neither
the I/O pin nor 220 Q resistors are present. Based on Figure 1 above, the resistance,
R of the LDR could be a few ohms if the light is very bright, or it could be in range

of 50 kQ in complete darkness. In a room with high intensity of light, the resistance
could be as small as a 1 kQ or it can be as large as 25 k€ in low intensity light {4].

When the resistance varies, the output voltage, Vo will also vary. Larger R
produces small output voltage, Vo and vice versa. The output voltage, Vo is what the
1/O pin is detecting when it is functioning as an input. If this circuit is connected to

ING, when the voltage at Vo is above 1.4 V, IN6 will store a 1 and vice versa [4].

2.2. Line follower robot & grid follower robot

There are some differences of the line follower robot and the grid follower robot.
The line follower robot follows a simple single-line track while grid follower robot
requires detection of complex gridlines and remembering the position on which it is
at that time. This requires less number of states or movements of the robot. Grid
follower robot have the ability to detect intersections and react based on program
loaded to if; whether to turn at the intersection or not, This requires more states of
movement, more complex and detailed behavior modeling using Finite State

Machine concept.

2.3. Finite State Machine (FSM)

Finite state machine is a concept used to build a behavior control program by
implementing the behaviors as finite-state machines. FSM is a computational
element consisted of a collection of states. With the main objective of FSM to
generate actions, consider the diagram Figure 2 showing a Control System controls

and Application {7].

Control

The control system receives inputs form the application. Control system process
and analyze it before output is produced to affect the application. A simple logical

condition showing portiray clear model on describing the control modet above:
IF (input conditions) THEN Output

The logical condition above assigns the logical inputs to the actions (output)
required to be done according to the application of the system [7]. The input
conditions are written in logical expressions which are formulated from Boolean
algebra. There may be more than one input feed, and this requires logical operators

such as AND and OR. Input conditions can be written as below:
(LDRDetectRight=0) AND (LDRDetectLefi=0)
(LDRDetectRight=0) OR (LDRDetectLeft=0)

However, this simple model is sufficient only for trivial systems where for more
realistic applications needs more complicated control model. Finite State Machine
(FSM) is one of the most powerful models to describe behavior [7]. Behavior

modeling is to describe what to do in all imaginable situations [7].

The Finite State Machine introduces concept of a states. All states represent all
possible situations for the state machine. To be able execute a behavior or
movement; there must be a kind of memory on how the state machine reach the
present situation. As the. machine runs, the states changes continuously, and the

output depends on the current state and also the input [7].

To keep the machine understandable, there must be a limit to the number of
states. Designer must take this into consideration and use only important and

required states for simplification of the system.

Finite state machine tools are mainly the state transition diagram and the state

transition table.

2.3.1. State Transition Matrix
A state transition table is a table represents states and the next state [7]. It

displays the conditions that must be achieved for transition to occur [7]. For example

refer to Table 1 for the transition matrix of a line following robot.

Present states\Next states | 00 01 10 11

Idle ' - - - Forward
Forward (11) Stop Turn left Tum.right Forward
Turn Left (01) Stop Turn left | Tumright | Forward
Turn Right (10) Stop Turn left | Twn right | Forward
Stop (00) | Stop Turn left | Turn right | Forward

Table 1: Transition matrix for simple line trekker behavior

Referring to table 1, the line following robot have five basic states and by default
in idle state. The line following robot will only start moving forward when detects
input from its pair of sensors bits 11. In other states, the line following robot will

stop, turn left, turn right and stop if the input feed is 00, 01, 10 and 00 respectively.

2,3.2. State Transition Diagram
A state transition diagram is a graphical representation equivalent to the state

transition matrix [71. It is similar to the transition matrix but easier to understand. It
consists of two elements: a circle to denote states and an arc (or arrows) for the
transition. The transition condition is written over the arc. Transition from one state

to another will only happen if the transition condition is true.

Transition condition / Input

Transition condition / Input
Figure 3: State transition diagram

Figure 4 below is an example of a simple line trekking robot state transition
diagram. See that the transition condition is actually the input feed from its pair of
sensors, Transition condition will trigger the state machine execution environment
only to the current state and then it disappears. At idle state, when the line sensors
feeds 11, 'Idle' state will be triggered to move to 'Forward’ state only. Then, in
'Forward' state, any inputs (00, 01, 10 and 11) detected will trigger the current state

to execute the next state accordingly.

H

1
idie - o S
Forward _

/ 4
- \!E . 5
Turn Right Turn Left
{correction (correction
mode) mode)

Figure 4: State transition diagram for simple line foliowing behavior

All applications must have actions or outputs to be performed. The term ‘output’

is commonly used for hardware while term ‘action’ is for software. Several types of

10

actions such as entry action, exit action, input action and transition action. These
actions can be defined depending on the conditions and moment they are performed.
Entry action is done when the FSM enters a state. Exit action is done when the
FSM leaves the state. Transition action is an action performed during the state
change and is transition dependent. Input action is when an input or transition

condition is trye. Input actions are state independent and are used in any state.

Not all of these actions are practically used. Only some actions are used
depending on the model used. The best known are Mealy and Moore models. Moore
model generates only entry actions while Mealy model generates only input actions.
Choosing the type of model suitable for usage depends on the application. Hardware

systems are best using Moore model [7].

2.4. Pseudo-code

Pseudo-Code is simply a numbered list of instructions to perform some task. It is
an artificial and informal language that helps programmers develops algorithms.
Pseudo-code is a "text-based” detail algorithm design tool used before a programmer
writes a computer program. Writing pseudo-codes includes the usage of while, do,

for, if, switch. Examples below will illustrate this notion.
Example of pseudo-code:

If student's grade is greater than or equal to 60

Print "passed”

Else

Print "failed"

2.5. Conventional programming

11

Traditional sequential programs is structured as a single flow of control using
standard constructs such as loops and nested function cells. This type of program
represented in execution context in the location of the program counter and in the

procedure call tree in the temporary variables allocated on the stack [7].

2.6. Event-driven programming

The grid follower robot's programming is an event-driven programming
technique. Events are a better means of managing I/O concurrency in server software
than threads: events help avoid bugs caused by the unnecessary CPU concurrency
introduced by threads. Event-based programs also tend to have more stable
performance under heavy load than threaded programs [8 }. Event driven
programming is a very flexible way of allowing programs to respond to many inputs
or events. Unlike traditional programming, where the control flow is determined by
the program structure, the control flow of event driven programs is largely driven by
external events. Typically, event loops are pre-programmed to continually look for
information to process.

Event-driven programs require detailed event-handler functions that must
execute fast and always return to the main event-loop so no context can be preserved
in the call tree and the program counter. Event-driven programming relies heavily on
static variables to preserve the execution context from one event to the next [7].

One of the biggest challenges of using event-driven programming is on the
management of the execution context. This execution context is represented as data
and will be feed back into the controt flow of the event-handler code. This allows
each event handler to egecute only the actions appropriate in the current context.
However, this dependence on context data leads to deeply nested if-else constructs
and this will become complicated to understand, hard to test and maintain. It will be
easier to understand, test and maintain the program if a fraction of these conditional

branches can be eliminated [7].

12

2.6.1. C and PBASIC Program
C provides the fundamental control-flow constructions required for well-

structured programs. It is used to various applications. However, in this project,
program used is the Parallax BASIC . language (PBASIC) which is a language
proprietary for Parallax mobile robots. Software used is the Basic Stamp Editor
v2.5.1. This software translates the program into a PBASIC language that the Stamp
understands, but would be very hard for humans to read and write then in this form
the program is sent to the Stamp. This will leave room for the Stamp to do other
things while the difficult process is done by the computer {9].

BASC Stmp - Untithed2 i L

Fhe Ean Directve Ran. Help _ -
ISR - & 1BBNR D F ~LL2e707 BRL GABPA LKAAK &
iz [[E Rsmmmester 20T THRy20 TTE = Wnetichkeddd._3_gid bekdtng3oensots_ juntiion erhencement b:2 Uttt |

Nrvbyadhoat Do

ketrebuerl3 5T

e eihed e

VinetrabieriiS 522

[irtrel b3 1.b:2

ietrekketB. 3032

veirekionl bl

TmacirekberitR_1 bo2

inetiakkan(2 bo?

SinsdrekeiBE_2.7_kadkz In ¢ ot delect bre but need

rocketBa 2 hsl

Svsrebied B3 feds n 1 ok dates) et need &
ok a2 4 bl

Enateke (3 b

wivekharlEl 6 b2

aneireld el 1.6:2

Weatrekial 2 g trabhang jurscthn enbancemer
etk di_ 3 grd ek kang_ Fetonin: | rtice: e
ok

3 . -

B, Storvp e { bt b b2~ boe w1 | = P] S

13

CHAPTER 3
METHODOLOGY

3.1. Research Methodology

This research project is done by using the Parallax Inc's Boe — Bot™ Basic
Stamp 2 (BS2} module, Board of Education robot kit. The hardware is programmed
using the BASIC Stamp Editor v2.5 which is using the PBASIC programming
language. PEIC16C57 is embedded on the BS2 module [4]. The grid follower robot is
build based on the Parallax Boe-Bot Board of Education kit, line sensor consists of
white LEDs and LDRs, Servo motors, and programming using PBASIC software.
This project focuses on two main parts that are the grid following behavior modeling

and the line sensor assembly.

3L Building the line sensor using Light Dependant Resistors (LDR) and white
LEDs

Line sensor is a circuit which is able to see the black & white lines on the floor
and translate the wheels location in relation to the line {5] .The sensor will detect the
black tape on white surface. Light emitted by the white LED is reflected by the white
surface while black surface absorbs the lights.

In order to let the robot sense the line, a sensor circuit has to be made. A low cost but

functional sensor consists of LED-LDR combination sensors [4]. This is a circuit

14

which is able to see the black line on the floor as input and converts the vehicles
location in relation to the line into a digital signal. If 2 LEDs are used, there might be
a combination of 00, 01, 10 and 11 and these digital signals will determine the
program that will be executed to keep the robot on the line. More sensors give more

information to the mobile robot to locate itself on the grids.

Inputs Description
Left Right Sensor position on the track - Action
0 0 Both sensors detects black, robot at Stop
junction.

0 1 Left sensor on black, right sensor on Turn left
white. Robot is not straight on the grids. {Correcting position)

1 0 ‘Right sensor on black, left sensor on Turn right
white. Robot is not straight on the grids (Correcting position)

1 1 Both sensors on white surface. Robot Move forward

moves forward

Table 2: Basic movements of the line following application

Robot navigation is the ability of the robot to perform movements. The robot
will be programmmed to perform movements such as moving forward, backward and
turn. The first stage is programming the robot to perform the basic movements
blindly without the sensors. Second stage is to program the robot to maneuver on

lines with the input feed from the sensors.

3.1.2. Testing Sensor Response to light reflection from LED

LDRDetectLeft = IN3 fleft led is assigned to I/0 pin 3
LDRDetectRight = IN6 'left led is assigned to I/0 pin 6

DEBUG CRSRXY, 0, 3, "L = ", BINI LDRDetectLeft,
v R = ", BINI LDRDetectRight

Program 1: Testing sensor response

15

Above is the program codes used to display the input value detected at both
LED-LDR sensors. The information will be displayed at the debug terminal. Debug
terminal is small window displaying required information asked by user in the
coding.

The line sensor operates based on the detection of light intensity. When light
reflected form bright surface to the LDR the debug terminal will detect as 'l' and
vice versa. The combination of both bits (00, 01, 10 and 11) defines the state of
movement the robot will perform. To test the response to light:

1. Enter, save, and run the line trekking program in Chapter 4.

2. Make sure it is still connected to the serial cable and that the measurements are
displaying in the Debug Terminal.

3. Let the sensors head downwards. This is to ensure actual situation when light is
reflected to it. Put a black paper or dark surface under the right LED-LDR couple.
Observe the debug terminal and compare it with the movement of the servo.

4, Record the movement of the servo for every case is recorded.

a -~ Bl
& Debug Terminal : P
Com Port Baud Rate Party Data Bits Flow Cortral g v DTR ATS

@ R<{ @ DSR @ CTS

Macsos Pause Clear Close Echo Off
Figure 6: Both couple of LED-LDR sensor detects light
— ‘
& Debug Terminal L_-_":"Eq
Com Port Baud Rate Pasity Data Bs Flow Contiot PR DTR RTS

® RX @ DSR @ CTS

Macros Pause Cleay Close Echo Off

16

Figure 7: Left sensor does not detect light on a dark surface

Bits State/ Pulse duration | Servo rotation
movement 812 S13 Left Right
a Servo Servo
00 Pauze (stop) 750 750 Stop Stop
01 Turn left 850 850 CCW CCW
10 Turn right 650 650 CW CW
11 Forward 850 650 CCW cwW

Figure 8: Testing sensor response

3.1.2. Grid Following Behavior Modeling

The grid follower robot's programming is an event-driven programming
technique. There are many benefits of using event-driven programming as explained
in chapter 2.Event loops are pre-programmed to continually look for information to
process. The robot will continually look for information from the sensor to be
processed and converted to action.

The algorithm development will first be based on the Finite State Machine
(FSM). FSM is a technique to design digital logic or computer programs using
mathematical abstraction. It shows behavior model of a certain system and is written
using finite number of states, the transition from the current state to another state and
the actions taken by the states. It is quite similar to flow graph where the step by step
sequence of the logic when certain conditions are met can be seen when it runs [2].
FSM is a brilliant method for human to understand and construct computer program.

The FSM will be developed into full algorithm which is in pseudo-code. The
program will be further refined and written as PBASIC program. The PBASIC code
is a switch-select type of coding. Thus, in the actual code, the main construct that
will be used is switch-select because it closely neglects the format of FSM. Thus,

17

program development and debugging will be much easier compared to other
methods.

There are basically two stages on the Grid Following behavior modeling which is
firstly to model the line following behavior first, and then more states will be added
to upgrade it to have the grid following behavior. This will be explained further in
Chapter 4, Algorithm Development.

3.2. Key milestone

— R

» Literature research
« Self study on the mobile robot and Stamp Basic
» Hardware assembly: servo motors.

« Program 1: Program basic movements; move forward,
backward, turn.

|

» Building the line sensor

+ Advanced programming: Programming based on Finite State
Machine (FSM).

« Convert the FSM code to pseudo-code.

« Convert the pseodo-code to PBASIC language.

* The grid follower will be able to follow grid and move
according to program.

Figure 9: Key milestone of the project

3.3. Project activities

Programming

FSM
v

Pseudo-code

v
—> Line following

Literature
research

T

v
Test
\

Program meet
requirement?

Grid following <

Circuit
working?

Final Design

Meet
Objective?

Final
Prototype

19

34. Tools used

34.1. Hardware

Figure 10: Activity flow

Boe-Bot Robot Parts Kit
Parallax Stock Code Description Quantity
BS2-IC BASIC Stamp 2 microcontroller module 1
28150 Board of Education Rev B 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1
150-01020 1 kQ resistors 2
150-02020 2 kQQ resistors 2
150-02210 220 € resistors 8
350-00006 Red LED 2
350-00009 Photoresistors (EG&G Vactec VT935G group | 2
B)
350-90000 LED standoff for infrared LED 2
350-00001 LED light shield for infrared LED 2
451-00303 3-Pin Header 2
700-00015 #4 screw-size nylon washer 2
710-00007 7/8” 4-40 pan-head screw, Phillips 2
713-00007 15” Spacer, aluminum, #4 round 2
800-00016 Jumper wires (bag of 10) 2
28133 Boe-Bot Hardware Pack : 1
700-00002 4-40 x 3/8”machine screw, Phillips 8
700-00003 Hex nut, 4-40 zinc plated 10
700-00009 Tail wheel ball 1
700-00016 4-40 x 3/8” flathead machine screw, Phillips 2

20

700-00022 Boe-Bot aluminum chassis 1
700-00023 1/16" x 1.5 long cotter pin 1
700-00025 13/32" rubber grommet 2
700-00028 4-40 x 1/ 4” machine screw, Phillips 8
700-00038 Battery holder with cable and barrel plug 1
700-00060 Standoff, threaded aluminum, round 4-40 4
721-00001 Parallax plastic wheel 2
721-00002 Rubber band tire 4
900-00008 Parallax Continuous Rotation Servo 2

Table 3: Hardware used based on the parallax Boe-Bot student guide [ERROR! BOOKMARK
NOT DEFINED.]

3.4.2. Software
» Parallax BASIC Stamp Software v2.5

3.43. Computer system requirement:
* Windows 98 or newer operating system
= A serial or USB port
s A CD-ROM drive, World Wide Web access, or both

21

CHAPTER 4
RESULT AND DISCUSSION

4.1. Hardware assembly

For this project, the Grid Trekker robot is assembled using Parallax Inc. Board of
Education. This kit comes with a microcontroller module named Basic Stamp 2

(BS2) which has a microcontroller PIC16C57 embedded on the module.

¢ Voltage source: 6V DC

e Program is transferred to microcontroller via serial port.

Front

O O w

w m

£ LDR(L) LDR(R) 83

3 = Pin6) _ (Pin3) S =

s 3 &5

v @ -
v v

Back
Figure 12: Pins and servo assignment

Figure 13: 6v power source

22

4.1.1. Servo Motors

One of the important parts of the mobile robot is the servo motors. Mobile robots
need to use continuous servo motors or also known as 360> DC motors. The mistake
done during executing this project is using the wrong servos. Using 180¢ servos does
not give the correct response of the robot's movement. This is because Grid Trekker

robot must have the capability to turn various angles. Thus, using 180 servos limits

the angle to 180 turns only.

Figure 15: servo motor Figure 14: 3 pins plug servo motor

4.1.2. Line sensor construction

Circuit construction of the line sensor is as the diagram. A simple LED-LDR
combination sensor is constructed. A circuit with two pairs of LED-LDR sensors is
built. Using two pairs of LED-LDR sensors will reduce

the power consumption.

Figure 17: LDR sensor
circuit diagram [4]

Figure 16: LED sensor circuit
diagram [4]

23

Components Used For Line Sensor Circuit:

No. | Components Quantity
1 2kS) resistor 2
2 1k<2 resistor 2
3 2200} resistor)
4 White LED 2
5 | Heat shrink tubing Sem
6 | Single core wire As needed.
7. | Veroboard 1
Table 4: Components for line sensor
Equipments used:
1. Solder
2. Solder iron
3. Flux
4. Wire cutter

Circuit is constructed and tested on breadboard before permanently mounted on
the veroboard. One of the factors that needed to be taken care of when building a
circuit is the distance between both pairs of LED-LDR sensors. The distance should
not be too wide or too close and this depends on the width of the grids track. The
distance used for this line sensor is 2.5¢m.

Once the circuit is setup on the veroboard, testing is done using the Parallax
Basic Stamp Editor V2.5.1. See the coding in Chapter 3 (3.1.2 Testing Sensor
Response to Light Reflection from LED).

b
Space +0.75cm

(@) (b)

Figure 18: (a) Side view of the line sensor, (b) Front view of the line sensor

24

Figure 19: Line sensor circuit consisting of LED-LDR

Circuit is then soldered on the veroboard. This process needs to be carried out
carefully since the components easily burnt if heat from the solder is applied directly
to the components. When soldering, heat should be applied to the solder iron and
then apply the melted iron to the components leg. During the soldering process, heat
from the solder must not have direct contact to the components legs for too long as it
may burn the components. Current across the components are measured to ensure the
circuit functionality. Zero current indicates shorted circuit and vice versa. Solder iron
is applied only to the necessary point cleanly and not connected to other points on
the veroboard as this may cause shorted circuit as well. Connection is checked and
ensure the veroboard is slashed at certain points (as shown in figure 20) to separate

both sensor circuits from one another to prevent short circuit.

25

The veroboard is
slashed in between to
separate the
connection.
To Vdd o
To Vss
——memes

Figure 21: Sensor assigned to 1/0 pin3 and pin6, power source connected

The output from the circuit will be connected to I/O pin 3 and I/O pin 6 of the
basic stamp. /O stands for input/output. The BASIC Stamp has 24 pins and 16 of
them are 1/0 pins. This I/O pins acts as the intermediate between the microprocessor

and external devices; for example the line sensor. Sensor will give input from the

26

environment to the microprocessor to be monitored. This enables the I/O pins
programmed to detect and react to the external input. Only with external inputs
enable Grid Trekker robot to indicate the grids on the track based on light detection.

This gives the robot a sense of intelligence.

Figure 22: Sensor is mounted under the grid follower robot

4.1.2.1. Sensor drawbacks

The LED-LDR line sensor is low cost and simple. As low-cost as it is, one
cannot get an accurate input sensing from it. One of the problems caused from this
cheap line sensor is the sensitivity of the LDR cannot be controlled. LDR is sensitive
to the environmental light that disturbs the input sensing. Covering the LDRs with
heat shrink tubing is one of the solutions. Heat shrink tubing is a material used to
protect wirings in which this tubing shrinks when heat applied. Thus, LDR can be
covered from always detecting surrounding lights especially the light from the LED.
Another weakness of this line sensor is it provides slow response. Speed of the Grid
Trekker robot must be put at the slowest due to the underperformance of the line

SEnsors.

4.1.2.1.1. Sensor Position

Sensor position also affects the accuracy of the Grid Trekker's movement. Sensor

must be put in the middle of the servos. Putting it at the front or back will cause

27

failure of turning accurately at the junction. Due to slow response of sensor, the Grid
Trekker robot will stop at the junction with some displacement. Putting sensor at the

middle counters the problem.

& I -
i 1 :‘ — -
Displacement ' \ ; ‘1
{
A7 N Rl ! @
®

' i‘ﬁ

Figure 23: Position of sensor affects accuracy of turn at junction
4.1.2.1.2. LEDs as Indicators to Verify Input Detection

Problem occurs where the Grid
Trekker robot cannot detect junctions
properly. To observe the action, programmer
need to know what exactly is the input
detected by the sensors. It is difficult to

observe the action without LED indicator.

Thus, a simple LED circuit is constructed on \ o
the mini breadboard. The indicators include Figure 24: LED indicators added
detecting left and right, and indicator for number of junctions. LEDs are assigned to
other free /O pins and a subroutine for this function is added to the program. See the

program in Chapter 3 (3.1.2 Testing Sensor Response to Light Reflection from LED).

4.1.2.1.3. Number of Sensors

The next problem faced is when the Grid Trekker robot fails to have a precise

turn at the junction. Number of sensors used affects accuracy of the robot

28

positioning. As only a pair of sensors are used, the Grid Trekker robot maintain its
position on exactly to the middle of the line. While the Grid Trekker robot is not at
the middle of the line and detects a junction, it will not have an accurate turn. By
adding another sensor this problem can be countered. There are two options of
adding sensors either in between the two current sensors, or at the front or back of
the Grid Trekker robot.

JEC
. ey \ ® O | | 90 ®
i i i & v i
&
(a) (b) (©)
Figure 25: Possible position for the third sensor; (a) At the front (b) At the back, (¢) Between the
existing two
4.2. Building the Grid Track

The track is built using PVC black tape
on a white surface. Note that surface and
the tape itself must not reflect light as this
will produce disturbance to the sensor in
acquiring data based on the reflection of on
the grid track. Black tape will absorb most
of the light beamed by the LEDs while
bright surface (white) reflects most of the
light and sensed by the LDR.

Figure 26: Grid follower robot maneuver
according to grids

4.3. Algorithm Development

Finite State Machine gives clearer overview on how to program the movements
of the Grid Trekker robot. FSM is a powerful method for behavior modeling and has
been explained in chapter 2. The process of software modeling is first software

29

modeling is done using FSM model. Then pseudo code will be written based on the
FSM before it is converted to PBASIC program. There are two stages in developing
the algorithm for Grid Trekking which is first from the development of line
following algorithm then only adding some states for grid trekking.

4.3.1. Line Following

43.1.1. Line following Behavior

Figure 27 shows basic line following behavior.

Line following behavior overview

When both sensors are on black line (00), consider
00 it at a junction of the grid. Mobile robot stops at

junction.

When both sensors are on white surface (11),
1 1 consider it in a position straight on the black line

and it will move forward.

When the mobile robot position is not straight on
1 0 the black line, either one of the sensors will detect

the black line.

When the left on white (1) and the right sensor on

black line (0), the robot will have to correct its

0 1 position straight on the black line by turning right
until its position is straight and vice versa for the
Figure 27: Line following other case (10).
robot behavior Table 5: Line following behavior overview

30

4.3.1.2. State Transition Matrix for Line Trekker

Recall from Chapter 2, state transition matrix is a tool for FSM model. To achieve grid
trekking behavior, line trekking behavior modeling is where the work starts with. Based on
the table 6 below, there are only five states used for line trekking. More explanation can be
found in Chapter 2, State Transition Matrix.

| Present states\Next 00 o0 | 10 11
| states
Idle - - - Forward
Forward (11) Stop Turn Turn Forward
left right
Turn Left (01) Stop Turn Tumn Forward
left right
Turn Right (10) Stop Turn Turn Forward
left right
Stop (00) Stop Turn Turn Forward
left right

Table 6: Transition matrix for simple line trekker behavior (from chapter 2)

4.3.13. Drawing State Chart Pseudo code

mode)

Figure 28: State transition diagram for simple line following behavior from chapter 2

43.14. Pseudo code for Line Trekking

31

Based on (A) and (B) programs below, event-driven programming is more
comprehensible. Even though the conventional program is shorter, the program may be
confusing to be understood especially when the number of states increases. Thus,
conventional programming is not suitable for complex behavior modeling. Using event-
driven technique instead, manages the program to its behavior or states making it more
comprehensible. Event-driven technique enables programming for more complex and
realistic behavior.

A. Conventional

Do
Assign left and right LDR Sensor to I/0 Pins
Open debug terminal for left and right LDR sensors

if Left LDR detected then
if Right LDR detected then 'L =1, R =1
go to subroutine forward
else =1, R= 0
go to subroutine turn right
endif
else
if Right LDR detected then 'L =0, R=1
go to subroutine turn left
else
go to subroutine stop
endif
endif
LOoP

Pseudo code 1: Line Following Program Using Conventional Programming (main routine).

B. Eveat-Driven

DO
Assign left and right LDR Sensor to I/0 Pins
Open debug terminal for left and right LDR sensors

if both Left and Right LDR not detected then
state=forward
endif

CASE forward
go to subroutine forward
if both Left and Right LDR not detected then
state=pauze

ELSEIF Left LDR not detected and Right LDR detected then
state=tleft

32

SELECT state

CASE idle
IF Left LDR not detected AND Right LDR not detected THEN

state=forward
ENDIF

CASE forward
go to subroutine goforward
IF Left LDR not detected AND Right LDR not detected THEN
state is pauze

ELSEIF Left LDR not detected AND Right LDR detected THEN
state is tleft

ELSEIF Left LDR detected AND Right LDR not detected THEN
state is tright

ENDIF

CASE pauze
go to subroutine GoStop
IF Left LDR not detected AND Right LDR Detected THEN
state is tleft
ENDIF

CASE tleft
go to subroutine TurnLeft
IF Left LDR detected AND Right LDR Detected THEN
state is forward '
ENDIF

CASE tright
go to subroutine TurnRight
IF Left LDR detected AND Right LDR Detected THEN
state is forward
ENDIF

ENDSELECT
LOOP

Pseudo Code 2: Event Driven Pseudo Code.

33

4.3.1.5. Line Following Program

0o

LDRDetectright = IN3 'assign input to pin 3 and pin 6

LDRDetectleft = INé

DEBUG CRSRXY, 0, 3, ™L= ", BIN1 LDRDetectLeft,
w R= ", BINI LDRDetectRight

IF (LDRDetectLeft=0} AND (LDRDetectRight=0) THEN
state=forward
ENDIF

CASE forward

GOSUB GoForward

IF (LDPRpetectLeft=0) AND (LDRDetectRight=0} THEN
state=pauze

ELSEIF (LDRDetectleft=(0) AND (LDRDetectRight=1) THEN
state=tleft

ELSEIF (LDRDetectleft=1) AND (LDRDetectRight=(0) THEN
state=tright

ENDIF

CASE pauze

GOSUB GoStop

IF (LDRDetectLeft=1) AND (LDRDetectRight=1} THEN
state=tleft

ENDIF

CASE tleft

GOSUB TurnlLeft

IF (LDRDetectlLeft=1) AND (LDRDetectRight=1) THEN
state=forward

ENDIF

CASE tright

GOSUB TurnRight

IF (LDRDetectLeft=1) AND (LDRDetectRight=1} THEN
state=forward

ENDIF

ENDSELECT
PAUSE 20
LOOP

Program 1: Line Folllowing Grid Trekking Main Routine PBASIC Program.

34

43.1.6. The Subroutines for Line Trekking

idlez:

IF (LDEDetectLeft=(0) AND (LDRDetectRIight=0) THEN
PULSOUT 13, 750

pPULSOUT 12, 750

PAUSE 20

ENDIF

RETURN

GoStop:

FOR counter = 1 T0 8
PAUSE Z(

PULSOUT 13, 750
PULSOUT 12, 750
PARUSE 20

NEXT

RETURN

GoForward:
PAUSE 20
PULSOUT 13, 650
PULSOUT 12, 850
PAUSE 20
RETURN

TurnRight:

PAUSE 20

FOR counter = 0 TQ 1

PULSOUT 13, 850 'slz is left
POULSOUT 12, 850

PAUSE 20

GOSUB GoStop

NEXT

RETURN

TurnLerlt:

PAUSE 20

FOR counter = 0 TO 1

PULSOUT 13, 650 'sl3 is right
PULSQUT 12, 650

PAUSE 20

GOSUB GoStop

NEXT

RETUREN

Program 2: Line Trekking Subroutines

35

To ensure program is neat and manageable, subroutines are used. Subroutine is a portion
of code within a larger program that performs a specific task and is relatively independent of
the remaining code. Subroutines can be called several times from several places during
execution of a single program and then return back to the next instruction after the
subroutine is done. This will reduce redundancy of the program as well. For line trekking,
there are five subroutines, each represent each state present for the program.

432. Grid Following

The difference of grid following to line following is grid following behavior
must be able to turn 90° left or right (depending on the programmer's formation). A
grid following robot must be able to perform movements according to the formation
set. This means it must be able to count junctions and can distinguish which junction

to turn9°.

Formation
programmed

Figure 29: Mobile robot able to maneuver on grids according to the formation set

36

43.2.1. Grid following Behavior

_.....jza’j=ﬁ
Route,
=3 Route,
~_ = /TR
j: J=2 j=3 j-_-4
| | | i=
] 1 1
i=3,]=0, j=5,j=0
s=5+1 s=5+1
-1 = Route,
_ s=2
=1 = i i]=3
i=3,i=0. 1 — i=
s=5+1 j=4j=0
Route, g=1+]
T\ s=0

i=

=0, j=1

Figure 30: Grid trekking bshavior

Figure 30 shows an example of the formation that may be programmed to the
Grid Trekker. Table 7 shows the behavior of the Grid Trekker in which the
movements are based on what is programmed. The difference of Grid Trekking to
Line trekking is Grid Trekking requires the usage of arrays and counters in order to
count and give the robot memory and intelligence on where should the Grid Trekker
turn at junction. Other addition is the action of turning 90 degrees when it reaches a

junction where Line Trekking does not have.

37

Route | Junction Behavior
(s) (4)
0 =] At route s=0, junction is counted until reaches j=2 then reset. S is then
=2, 0 incremented to a new route.
When this condition reached, the grid trekker will turn right 90 dégrees.
1 J=1,2 At route s=1, junction is counted unﬁl reaches j=3 then reset. S is then
J=3,0 incremented to a new route. When this condition reached, the grid
trekker will turn left 90 degrees.
2 =1 At route s=2, junction is counted until reaches j=2 then reset. S is then
J#Z, 0 incremented to.a new route. When this condition reached, the grid
trekker will Stop.
3 F=1,2.3 At route s=3, junction is counted until reaches j=3 then reset. S is then
J=4,0 incremented to a new route. When this condition reached, the grid
trekker will Stop.
4 =] - At route s=4, jm;cﬁon is counted until reaches j=2 then reset. S is then
J=2,0 incremented to a new route. When this condition reached, the grid
trekker will Stop.

Table 7: Grid trekking behavior

Length of the route can be programmed based on number of junctions, j
encountered. Combination of routes, s enables the grid trekker robot moves in a
formation assigned. This detail is defined in the program. For further understanding,

follow the state fransition matrix.

38

43.2.2. State Transition Matrix for Grid Trekker
Current Entry Actions 1 Next State 1/ Entry Actions 2 Next State
State LIR i s Direction (D) L IR i : e 2
Idle 1 {1 j=0 5=0 Forward 11t j=0 5=0 Forward
Forward j1 |1 j=90 s=0 Forward 1411 | j=0 's=0 Forward
Forward |l [0 | j=0 s=0 Turn Right Pl j=0 s=0 Forward
‘Forward [0 | ! i=0 s=0 Turn Left 111 j=0 | s=0 Forward
Forward (0 |0 | j<L, s=40 . Forward 141 |j=j+1 s=0 Forward
Forward {0 |0 [j=L, | s=0 jTurnRight90°. {1 {1 | j=0 |s=s5+1 | Forward
Fofward 010 “ j<i, s= 1. | Fofward | 111 , =i+ 1 3 =. 1 Forward
Forward {0 {0 |j=L, | s=1 | TurnLeft90° {1 |1 | j=0 ‘s=s+1 | Forward
Forward |0 10 | j<is s=72 Forward 1|1 Hj=j+1 . 5 = 2 Forward
Forward [0 [0 | j=1L, s=2 | TurnRight90® |1 [1 1 j=0 |s=5+1 | Forward
Forward {0 |0 | j<L, § = 3. Forward .l 1 B J=j+1 s=3 Forward
Forward {0 [0 | j=1L, s¥3 7 TurnLeft90°. {1 |1} j=0 |s=s5+1 | Forward
Forward |0 0 J<Lg §= 4 . Forward E j=j+1 S =4 Forward
Forward [0 |0 {j=1; | s=4 { TarnRight90°: {1 {1 § j=0 |s=s+1 | Forward
Forward |0 0. =0 J|s= s,,;ax . Stop - - - - Stop

Table 8: State transition matrix for grid trekking

Length (8)

Direction

(S=D

0 L =2 Turn 90° Right
i L, =3 Turn 90° Left
2 L, =2 Turn 90° Right
3 L, =4 Turn 90° Left
4 L j=2 Turn 90° Right

Table 9: Arrays

Recalling from Chapter 2, entry action is done when the FSM enters a state.

Machines usually use Moore model where this model generates only entry actions.

The FSM will only change from one state to another if the entry action of the current
state is fulfilled. Referring Table 8, when the current state is ‘Jdle’, the FSM will only
go to the next state that is Forward’ when left LDR (L) detects 1 and right LDR (R)

detects 1 while junction detected (j) is by default zero and route (s) is zero. Else, the

FSM will stay in the current state it is in. This applies with other states also.

39

4.3.2.3. Drawing State Chart

Similar to Chapter 2, the state chart of line following robot behavior has been
explained. In this part, the focus is the next stage of program development; that is the
grid following robot behavior modeling. Note that the difference of line following
and grid following is the latter have more states. There are some modifications added
for grid following behavior modeling that is "Turn 90° Left’ and 'Turn 90° Right'

when it founds the junction. This involves counters for junction and route counting.

R 4
/7 Turn Left N /

7
0" 1 024 01

o

Fipure 31: FSM state chart for grid follower robot

40

4324, Pseudo code

DEBUG: program running

On LEDright at sensor

On LEDleft at sensor

——————————————————————— fdefine route]-———————swwmarmmmnem
'set array for route length=noc of Jjunction encountered, j:

' length(s) = no. of junctions

length{0) = 2 Jjucticns encountered
length{l) 3 jucticns encountered
length(2) = 2 jucticns encountered
length(3) = 4 juctions encountered
length(4) = 2 juctions encountered

'set array direction(s)= response/direction of movement
's=route
direction{0}) = turn right 90 degrees at junction

directicon{l} = turn left 20 degrees at junction
direction{2} = turn right 90 degrees at Jjunction
direction{3} = turn left 90 degrees at junction
direction{4) = in stop positiocn

DG

assign right LDR sensor to I/0 pin 3
assign left LDR sensor to I/0 pin 6
DEBUG:print both sensor L and R inputs to debug terminal

SELECT state

CASE 1: idle
IF Left LDR detected AND Right LDR detected THEN
state = forward
ENDIF¥

CASE 2: forward
Gc to subreoutine move forward
IF Left LDR not detected AND Right LDR not detected THEN
Increment junction encountered by one
IF junction encountered = array length(s) THEN
array direction(s)
Increment s by one to move to the next route
ENDI®
ELSEIF (LDRDetectLeft=0) AND (LDRDetectRight=1) THEN
Turn left to correct position
ELSEIF (LDRDetectlLeft=1) AND (LDRDetectRight=0) THEN
Turn right to correct position
ENDIF

41

CASE 3: turn left to correct position
go to subroutine turnleft to correct position
IF Left LDR detected AND Right ILDR detected THEN
state=forward
ENDIF

CASE 4: turn right to correct position
go to subroutine, turn right to correct position
IF Left LDR detected AND Right LDR detected THEN
state=forward
ENDIF

CASE 5: turn left 90 degrees at junction
go to subroutine, turn left 90 degrees at junction
IF (LDRDetectLeft=1) AND (LDRDetectRight=0) THEN
state=turn right to correct position
FLSEIF Left LDR not detected AND Right LDR detected THEN
state=turn left to correct positicn
iF Left LDR detected AND Right LDR detecied THEN
state=forward
ENDIF

CASE 6: turn right 90 degrees at junction
go to subroutine turn right 90 degrees at junction
IF Left LDR detected AND Right LDR not detected THEN
state=turn right to correct position
ELSEIF Left LDR not detected AND Right LDR detected THEN
turn left to correct position
ELSEI¥ Left LDR detected AND Right LDR detected THEN
state=forward
ENDIF

CASE 7: stop position
EXIT

ENDSELECT

LOOP

END

subroutine move forward

subroutine turnleft to correct position
subroutine, turn right to correct position
subroutine, turn left 90 degrees at junction
subroutine turn right 90 degrees ait junction
subroutine stop position

Pseudo Code 3: Grid Trekking Main Routine Pseudo Code. Refer full program at APPENDIX C-b(ii)

43.2.5. Grid Following Program

P e [main routine]----=—-——————r——————-———-—
DEBUG CR, "program running!”

HIGH LEDright

HIGH LEDleft

length(0) = 2

length (1} = 3

length(2) = 2

length(3) = 4

length(4) = 2

direction{0) = trightj

direction{l) = tleft]

direction(2) = tright]j

direction(3) = tleft]

direction{4) = pauze

directionB(0} = trightjf

directionB(l) = tleftif

directionB(2) = trightjf

directionB (3} = tleftif

seqg = 4 'number of total segments in this route
i =20 'resel junction counter

s = 0 'start at first segment

state = 0 'added 'to initialize state to zero

'‘define inputs
INPUT 3
INPUT 6
INPUT 5

DO
IDRDetectright = IN3
LDRDetectleft = IN&

DEBUG CRSRXY, 0, 3, "L= ", BINl LDRPetectLeft,
¥ R= ", BINL LDRDetectRight,
GOSUB SensorliIndicator
SELECT state
CASE idle
I¥ {LDRDetectleft=1} AND {(LDRDetectRight=1) THEN

state=forward
ENDIF

43

CASE forward
GOSUB GoForward
IF (LDRDetectLeft=0) AND {(LDRDetectRight=0) THEN
j=9+ 1 ‘increment Jjunction counter
IF (j = length(s)} THEN
HIGH LEDFront
state = direction(s)
i=0
s = s+1 'next segement
ELSEIF (LDRDetectlLeft=0) AND (LDRDetectRight=1) THEN
state=tleft
ELSEIF (LDRDetectLeft=1) AND (LDRDetectRight=0) THEN
state=tright
ENDIF
ENDIF

CASE tleft
GOSUB Turnleft
IF (LDRDetectieft=1) AND {LDRDetectRight=1) THEN
state=forward
ENDIF

CASE tright
GOSUB TurnRight
IF (LDRDetectLeft=1) AND (LDRDetectRight=1) THEN
state=forward
ENDIF

CASE tleftj
GOSUB TurnLeftJ
IF {LDRDetectlLeft=1) AND (LDRDetectRight=0) THEN
state=tright
ELSEIF (LDRDetectLeft=0) AND (LDRDetectRight=1) THEN
state=tleft
ELSEIF (LDRDetectLeft=1) AND {(LDRDetectRight=1) THEN
state=forward
ENDIF

CASE trightj
GOSUB TurnRightJ
IF {LDRDetectLeft=1} AND (LDRDetectRight=0} THEN
state=tright
ELSEIF (LDRDetectLeft=0) AND (LDRDetectRight=1} THEN
state=tleft
ELSEIF {LDRDetectlLeft=1} AND (LDRDetectRight=1l} THEN
state=forward
ENDITF

44

CASE pauze
EXIT

ENDSELECT

PAUSE 20
LOOP

END

subroutine move forward

subroutine turnleft to correct peosition
subroutine, turn right to correct pesition
subroutine, turn left 90 degrees at junction
subroutine turn right 90 degrees at junction
subroutine stop position

Program 3: Grid Trekking Main Routine PBASIC Program. Refer full program at APPENDIX C-b{ii)

45

4.32.6. Grid Following Program Subroutines

There is addition of two states for grid trekking which are turning right 90
degrees and turning left 90 degrees which are assigned to subroutines "TurnRight]'
and 'TurnLeft)' accordingly. When the grid trekker encounters a junction, it will either turn
right or turn left 90 degrees or vice versa. This turn is different with turn right and turn left

in correction mode. The correction modes are only to maintain the position of the grid

trekker on the black grids.

Vo [subroutine TurnRightJ]----m-m-m—memmmmmm—
'subroutine, turn left 90 degrees at juncfion

TurnRightJ:

'GOSUB GoStop

PAUSE 200

FOR counter = (0 TC 12
PULSOUT 13, 850 512 is left
PULSOUT 12, 850
PAUSE 90

NEXT

GOSUB GoStop

FOR counter= 0 TO 1
PULSOUT 13, 650
PULSQUT 12, 850

NEXT

GOSUB GoStop

RETURN

bt [subroutine TurnLeftJ]---—---—————————w—wumaw
'subroutine turn right 90 degrees at junction

TurnleftJ:

PAUSE 200

FOR counter = ¢ TO 10 'sbh: disabled
"PAUSE 200
PULSOUT 13, 650 's13 is right
PULSCUT 12, 650
PAUSE 90

NEXT

GOSUB GoStop

FOR counter= {0 TO 2
PULSCUT 13, €50
PULSOUT 12, 850

NEXT

GOSUB GoStop

RETURN

Program 4: Additional Subroutines in Grid Trekking. Refer full program at APPENDIX C-b(ii)

46

From 4.2.1.3 LEDs as Indicators to Verify Input Detection previously
have been mentioned that two subroutines are added to the program to include input
detection function to accompany the LED circuit is constructed. These subroutines is
called in the main function where 'sensorIndicator’ subroutine detects and lights up
when the sensor pairs detects light (or on white region), and ‘JuncIndicator'
subroutine lights up a number of LEDs according to the number of junctions

detected.

BO

DEBUG CRSRXY, 0, 3, "L= ", BINl LDRDetectLeft,
" R= ", BINl LDRDetectRight

GOSUB SensorIndicator
SELECT state

CASE forward
GOSUB GoForward
IF (LDRDetectLeft=0) AND (LDRDetectRight=0) THEN

j=3+1
GOSUB JuncIndicator 'led indicator
I¥ {(j = length(s)) THEN ‘we're at end of segment

HIGH LEDFront

GOSUB Frontsensor

state = direction{s}

j =0 'reset Jjunction counter

HIGH ledl

HIGH led2

HIGH led3

HIGH led4d

5 = 5+1 'next scgement

ELSEIF (LDRDetectLeft=0} AND (LDRDetectRight=1) THEN

state=tleft

ELSEIF (LDRDetectLeft=1}) AND (LDRDetectRight=0) THEN
state=tright

ENDIF

ENDI®

LCOOP

Figure 32: LEDs Indicators Subroutines Are Called In the Main Routine. Refer full program at
APPENDIX C-b(iii)

47

The subroutines are as follows:

JuncIiIndicator:

IF{ j=0 } THEN
LOW 1iedl
LOW led?
LOW 1ed3
LOW ledd
ELSEI®(j=1)} THEN
BIGH ledl
LOW led2
LOW led3
LOW ledd
ELSEIF(7=2) THEN
HIGH ledl
BIGH led2
LOW led3
LOW led4
ELSEIF(j=3} THEN
HIGH ledl
HIGH ledZ
HIGH led3
TL.OW ledd
ELSEIF({ j=4) THEN
HIGH ledl
HIGH ledZ
HIGH led3
HIGH led4
ENDIF
RETURN

Sensorindicator:

IF(LDRDetectright=1) THEN
LOW detectright

ELSE
HIGH detectright

ENDIF

IF({ LDRDetectleft=1)} THEN
LOW detectleft

ELSE
HIGH detectleft

Figure 33: Sensor Indicator and Junction Counter LED Indicators Subroutines. Refer full program at
APPENDIX C-b(iii)

48

CONCLUSION

Grid follower robot has focuses on two main parts that are the line sensors and
the program. Problems faced during the hardware assembly have been successfully
overcome and gives more understanding on the project. Circuit construction needs
multiple trying times to finally get the working one. Finite state machine (FSM) is a
powerful model for behavior (state) modeling. FSM allows more complex behavior
modeling with the aid of state diagram for understanding. Event driven programming
enables easier understanding on state machines, respond only to a subset of allowed
events and changed directly to only a subset of all possible siates. The usage of
event-driven programming technique makes programming more comprehensible and
neat. Many more cases should be programmed in order to enable to increase the

reliability of the grid following program.

49

REFERENCES

[1] Nehmzow, Ulrich. Mobile Robotics: A Practical Introduction. s.i. : Springer, 2003,

{2] Pakdaman, Mehran and Sanaatiyan, M. Mehdi. Design and Implementation of Line
Follower Robot. Second International Conference on Computer and Electrical Engineering, p. 6,

2003.

[3] Baharuddini, M. Zafri, Abidinl, Izham Z. and Mohideen1, S. Sulaiman Kaja. Analysis of

Line Sensor Configuration for the Advanced Line, 2006.
[4] Parallax Incorporation. Parallax [Online] http://www.parailax.com/.

{5 1 Mazidi, Muhammaad Ali, Mckinlay, Rolind D. and Causey, Danny. PIC Microcontroller and
Embedded Sytems Using Assembly and C for PIC18. s.L. : Pearson Prentice Hall, 2008.

[6] Jones, Joseph L., Flynn, Anita M. and Seiger, Bruce A, Mobile Robots, Inspiration to
Implementation, 2nd ed. s.l. : A K Peters, Lid, 1999.

[7] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Woistenholme. Modeling

Software with Finite State Machine: A Practical Approach : Taylor & Francis Group, LLC 2006.

[8] Dabek, Frank, et al. Event-driven Programming for Robust Software. MIT Laboratory for

Computer Science.

[9] Ferdinand AL Williams. Microcontroller Projects with Basic Stamps. : R&D Books, Miller

Freeman, Inc. 2000.

50

15

Wey) yuen 1| sqe].

uossspuqns Joday jeui g

4!

uoisstugns Jodal yeag

¢l

(uoneuasaid axsod) Xqd-21d

cl

urerdord

€ Ul SJUOWOACW snopieA Fuwumpqueod (Supwmesfoid jo0jog ose) oS ip SuinwerSoird podsuBApY

It

(suOIIpUO0D {RI9A3S) Judwasow SururwrerSoxd 100Ja8 ase) as() ¢ JurumesBol] paouBApyY

01

yodar ssaioud jo uoissnugng

owasow Surureidoad joajeg ase)) as() 17 SunuRISoLJ PacURAPY

ey NS vo paseq Fuwwrerdold : | SunmeiSold poourApy

3eyo JAS] Ho paseq apo2 opnasd Sunuig,

Lo T Y- - - B B}

SUOIPUOD PUE 1Lyd NS

Iosuss woxy ndul yum jog-sog SurimiSolg

10qOJ 10 SpLIS oY) Sunea:)

o | en | =

Iosuas oul] a3 Suipjng

£1

(4]

11

01

Woasuonduasaq

'°.z

LUVHD LINVD

V XIANAddV

APPENDIX B
HARDWARE INFORMATION

a. Parallax Inc. Basic Stamp 2 (BS2) module

;fn‘a‘ o fa annn modUes
Fowgr 2082w seer 108 4ive 33100 ——l
GV halery o p

F " e udu.mrs fur

G e e Bean di(l

Breadaay vas o

T CERROCT 197
] PBF-.SI‘”

HazrD? BT (DrNos W
BASHKE Stamp 10 15
16 GESAS O 19 terachaerd

D R O

Sl
ah

S0 P enamsamasasnd

Fesetentrrg s
w2l frun el

i EET'n')‘

ponur s

Fi'r s o
o T ier

F‘B’«J ml. t'lfl]vu' lu ', w .mg Sin
1

Figure 2: Basic Stamp 2 microcontroller Module

52

APPENDIX C
PBASIC PROGRAM CODE

Basic movements program

For FYPl, basic movements such as move forward, backward, turn are
programmed to the robot. Basic movements can be done simply by controlling the
movement of the servo motor, The movements can be clockwise or counter clock

wise. These basic movements will be put under subroutines.

a. Basic movement

i Pause
The PAUSE command enables the grid follower robot to stop at some duration of
time before executing the next block of codes. We can set the duration of the

pause state.

"{$STAMP BSZ2}

"{SPBASIC 2.0}

DEBUG "start timer",CR

PAUSE 1000

DEBUG "one second elapsed...",CR

PAUSE 2000

DEBUG "two seconds elapsed...",CR

DEBUG "Done"

END

53

From the program above, the duration argument is 1000 which equals to 1

second. User can increase the duration by increasing the duration argument
between the values of 0-65535.

ii,. Move forward

Moving forward needs both wheels to turn clockwise. To make the wheel turn

clockwise, the duration argument must be less than 750

'Robotics with the Boe-~Bot - ServoPl3Clockwise.bs2

'Run the servo connected to P13 at full speed clockwise.
'{$STAMP BS2}

*{SPBASIC 2.3}

DEBUG "Program Running!"
Do

PULSOUT 13, €50

PAUSE 20

Loop

END

The coding above enables servo pin 13 to turn clockwise. To make the robot

move forward, both wheels must turn clockwise as the program below:

'Robotics with the Boe-Bot - MoveForward.bs2

'Run the servo connected to P13 at full speed clockwise.
'{55TAMP BSZ}

'{SPBASIC 2.5}

DEBUG "Program Running!"
DO

pPULSOUT 13, 650

PULSOUT 12, 650

PAUSE 20

LOOP

ENDS

54

2
-

Move Backward

Moving backward needs both wheels to turn counter clockwise. To make the
wheel furn clockwise, the duration argument must be more than 750. Ideal
duration for full speed rotation is 850.

' Robotics with the Boe-Bot - ServoPIl3CIlockwise.bs2

' Run the servo connected to P13 at full speed clockwise.
' {SSTAMP BSZ2}

' {$PBASIC 2.5]

DEBUG "Program Running!"
Do

PULSOUT 13, 850

PAUSE 20

LooP

END

The coding above enables servo pin 13 to turn clockwise. To make the robot

move forward, both wheels must turn clockwise as the program below:

' Run the servo connected to P13 at full speed clockwise.
' {5STAMP BSZ)}
' {SPBASIC 2.5}

DEBUG "Program Running!®
DG

PULSOUT 13, 850

PULSOUT 12, 850

PAUSE 20

LOOP

END

55

iv. Turn
To make the robot turn, both wheels must turn in opposite direction. Based on the
coding below, servo pin 13 is turning counter clockwise and servo pin 12 is

turning clockwise.

' Robotics with the Boe-Bot - ServosPl3CcwPlZCw,bs?
' Run the servo connected to P13 at full speed
counterclockwise

' and the servo connected to P12 at full speed clockwise.

' {SSTAMP BSZ}

' {SFBASIC 2.5)

DEBUG "Program Running!"
DO

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

LOOP

v Pivot
To make the robot turn, one wheels must stop and another one turn either
clockwise or counter clockwise. Based on the coding below, servo pin 13 is

turning counter clockwise and servo pin 12 is in stopping mode.

' {SSTAMP BSZ2}

! {SPBASIC 2.5}

DEBUG "Program Running!"
DO

PULSOUT 13, 850

PULSOUT 12, 750

PAUSE 20

LOOP

56

b. Full Programs

For FYP2, more advanced programming is done, requiring the Boe Bot maneuver
based on the input sent by the sensor. Embedded with sensor, the Grid Trekker
robot can perform line trekking function. This means this Grid Trekker robot can
now differentiate bright and dark surfaces, allowing it to follow a line.

The next stage of programming is to program the robot to follow grids instead of
just lines, This Grid Trekker robot must maneuver based on the program and

follows certain route that has been programmed to it.

i. Line trekking from sensor input (conventional programming)

' Useful for following a 2.25 inch wide vinyl electrical tape
stripe.

' {SSTAMP BS2} ' Stamp directive,

' {SPBASIC 2.5} ' PBASIC directive.

——————————————————————— [Constants J-~——=——m-ommmmm

LEDleft CON 10 'led is active
high

LEDright CON 0

et bt b bt [Variables]----~-~=-v~--—-m-mmmmmm

LDRDetectLeft VAR Bit
LDRDetectRight VAR Bit
intersect VAR Byte

DEBUG "Program Running!"
HIGH LEDright 'led on
HIGH LEDIeft

bo
LDRDetectLeft = IN3 "left led is assigned to i/o pin 3
LDRDetectRight = IN6 'left led is assigned to i/o pin 6

DEBUG CRSRXY, 0, 3, "L = ", BINl1 LDRDetectlLeft,
" R = ", BIN1 LDRDetectRight

57

IF (LDRDetectLeft = 1} THEN

IF (LDRDetectRight = 1) THEN "L =1, R =1
GOSUB GoForward

ELSE *'L =1, R=20
GOSUB TurnRight

ENDIF

ELSE

IF (LDRDetectright = 1) THEN 'L =0, R=1
GOSUB TurnLeft

ELSE
GOSUB GoStop

ENDIF

ENDIF
PAUSE 20

GoForward:
PAUSE 20
PULSQUT 13, 650
POULSQUT 12, 850
RETURN

idlez:

IF (LDRDetectlLeft=(0} AND (LDRDetectRight=(0) THEN
'FOR counter = 1 TO 120

PULSOUT 13, 750

pPULSOUT 12, 750

PAUSE 20

'NEXT

ENDIF

RETURN

GoStop:

FOR counter = 1 TO 8
PAUSE 20

PULSQUT 13, 750
PULSOUT 12, 750
PAUSE 20

NEXT

RETURN

58

GoForward:
PAUSE 20

'FOR counter =
PULSOUT 13, 650
PULSOUT 12, 850
PAUSE 20

'GOSUB GoStop
'NEXT

TurnRight:
PAUSE 20

FOR counter = 0
PULSOUT 13, 850
PULSOUT 12, 850
PAUSE 20

GOSUB GoStop
NEXT

TurnLeft:

PAUSE 20

FOR counter = 0
PULSOUT 13, 650
PULSOUT 12, 650
PAUSE 20

GOSUB GoStop
NEXT

RETURN

1 TO 4

TO 1

TO 1

'slZ is left

's13 is right

59

ii. Linetrekhking from sensor input (CASE..SELECT)

* {§STAMP BS2}
T {SPBASIC 2.5}

e s [constants]—-——=—=-————~s e
idle CON 0

pauze CON 1

Forward CON 2

tright CON 3

tleft CON 9

LEDRight CON 10

LEDLeft CON 0

it [variables] —————mm—mm e e e
state VAR Byte

LDRDetectRight VAR Bit

LDRDetectLeft VAR Bit

counter VAR Byte

intersect VAR Byte

F o e e e e e [main routine]-==-mwme e e e
DEBUG CR, "program running!"”

HIGH LEDright
HIGH LEDleft

Lo
LDRDetectright = IN3 'assign input to pin 3 and pin 6
LDRbetectleft = IN6

‘compare input with crsrxy
DEBUG CRSRXY, 0, 3, "L= ", BIN1 LDRDetectleft,
P R= ", BINl LDRDetectRight

IF (LDRDetectleft=0) AND (LDRDetectRight=0} THEN
state=forward
ENDIF

CASE forward

GOSUB GoForward

IF (LDRDetectlLeft=0) AND (LDRDetectRight=(0) THEN
state=pauze

ELSEIF (LDRDetectLeft=0) AND (LDRDeteciRight=1)THEN
state=tleft

ELSEIF (LDRDetectLeft=1} AND (LDRDetectRight=() THEN
state=tright

ENDIF

60

CASE pauze

GOSUB GoStop

IF (LDRbDetectLeft=1) AND (LDRDetectRight=1) THEN
state=tleft

ENDIF

CASE tleft

"'GOSUB TurnLeft

GOSUB PivotLeft

IF (LDRDetectLeft=1) AND (LDRDetectRight=1}) THEN
statesforward

ENDIF

CASE tright

'GOSUB TurnRight

GOSUB PivotRight

IF (LDRDetectLeft=1) AND (LDRDetectRight=1) THEN
state=forward

ENDIF

ENDSELECT
PAUSE 20

LOOP

idlez:

IF (LDRDetectLeft=0) AND (LDRDetectRight=0} THEN
FFOR counter = 1 TO 120

PULSOUT 13, 750

pULSOQOUT 12, 750

PAUSE 20

'NEXT

ENDIF

GoStop:

FOR counter = 1 TC 8
PAUSE 20

PULSOUT 13, 750
PULSOUT 12, 750
PAUSE 20

NEXT

RETURN

61

GoForward:

PAUSE 20

'FOR counter = 1 TO 4
PULSQUT 13, 650
PULSOUT 12, 850
PAUSE 20

'GOSUB GoStop

'NEXT

RETURN

TurnRight:

PAUSE 20

FOR counter = 0 10 1

PULSCUT 13, 850 'gl2 is left
PULSQUT 12, 850

PAUSE 20

GOSUB GoStop

NEXT

TurnlLeft:

PAUSE 20

FOR counter = (0 TO 1

PULSOUT 13, 650 's13 is right
POULSOUT 12, 650

PAUSE 20

GOSUB GoStop

NEXT

RETURN

62

ifi. Grid trekking from sensor input with LED indicator (CASE...SELECT)

' {$STAMP BS2}
' {SPBASIC 2.5}
'line trekking coding 8

b e et e e e e e [constants] ——————————————— e e
idle CON 0

pauze CON 1

forward CON 2

trighti CON 12

tleft] CON 13

tright CON 3

tleft CON 4

setstop CON 2

setstopZ CON 2

LEDRight CON 14 'at sensor

LEDLeft CON 15 'at sensor

detectleft CON 2

detectright CON 0

ledl CON 7 'indicator for junction, j=1
iedz CON 9 'indicator for junction, j=2
led3 CON 11 "indicator for junction, j=3
led4 CON 10 "indicator for junction, j=4
M e e L e e ey [variableg] ——~—m—mrmm oo e e e e
state VAR Byte

LDRDetectRight VAR Bit

LDRDetectLeft VAR Bit

counter VAR Byte

'arrays to store distance and direction of turn
MAXSEG CON 5

length VAR Byte (MAXSEG)
lengthB VAR Byte (MAXSEG)
direction VAR Byte (MAXSEG)
directionB VAR Byte (MAXSEG)
3j VAR Byte
5 VAR Byte
seq VAR Byte

63

B et et e [main routine]--——=———~———m
DEBUG CR, "program running!”

HIGH LEDright

HIGH LEDleft
B define route -----
length(0) = 2
length({l)}
length(2)
length ({3)
length{4) =
direction (0
direction (1l
direction(2 trightj
direction (3 tleft]
direction(4) = pauze
seqg = 4 'number of total segments in this route
j=0 'reset junction counter
s =0 'start at first segment
state = 0 'added to initialize state to zero

3
2
4
2

= tright]
tleft]

Il

)
)
)
)

'define inputs
INPUT 3
INPUT &

"Preset LEDs state
oW ledl
LOW led2
LOW 1led3
LOW ledd

bo

LDRDetectright = IN3
LDRDetectleft = ING6

DEBUG CRSRXY, 0, 3, "L= ", BINl LDRDetectLeft,
" R= ", BIN]l LDRDetectRight

GOSUBR SensoriIndicator
SELECT state
CASE idle
IF (LDRDetectlLeft=1} AND (LDRDetectRight=1) THEN

state=forward
ENDIF

64

CASE forward
GOSUR GoForward
IF (LDRDetectLeft=0) AND (LDRDetectRight=0) THEN

=3 +1 'increment junction counter
GOSUB JuncIndicator 'led indicater
IF (j = length(s)) THEN ‘we're at end of segment

HIGH LEDFront

GOSUB Frontsensor

state = direction(s)

j =0 'reset junction counter

HIGH ledl
HIGH led2
HIGH led3
HIGH led4
s = g+l 'next segement

FELSEIF (LDRDetectLeft=0) AND (LDRDetectRight=l) THEN

state=tleft

ELSEIF (LDRDetectLeft=1) AND (LDRDetectRight=0} THEN
state=tright

ENDIF

ENDIF

CASE tleft
GOSUB Turnleft
IF (LDRDetectLeft=1) AND (LDRDetectRight=1) THEN
state=forward
ENDIF

CASE tright
GOSUB TurnRight
IF (LDRDetectlLeft=1) AND (LDRDetectRight=1} THEN
state=forward
ENDIF

CASE tleftj
GOSUB TurnLeftd
IF (LDRDetectlLeft=1) AND (LDRDetectRight=0) THEN
state=tright
ELSEIF (LDRDetectlLeft=0) AND (LDRDetectRight=1) THEN
state=tleft
ELSEIF (LDRDetectlLeft=1) AND (LDRDetectRight=1} THEN
state=forward
ENDIF

65

CASE tright]

'GOSUB TurnLeftd
GOSUB TurnRightd

IF (LDRDetectLeft=1) AND (LDRDetectRight=0) THEN

state=tright

ELSEIF (LDRDetectLeft=0) AND (LDRDetectRight=1} THEN

state=tleft

ELSEIF (LDRDetectLeft=1) AND (LDRDetectRight=1) THEN

state=forward
ENDIF

CASE pauze
EXIT

ENDSELECT
PAUSE 20

LOOP
LOW LEDright

LOW LEDleft
DEBUG CR,"The End."

GoForward:

FOR counter = 0 TO 10

PULSOUT 13, 740
PULSOUT 12, 760
PAUSE 15
'GOSUB GoStop
NEXT
RETURN

TurnRightJd:

PAUSE 200

FOR counter = 0 TO 12
PULSQUT 13, 850
PULSOUT 12, 850
PAUSE 380

NEXT

GOSUB GoStop

FOR counter= 0 TO 1
PULSOUT 13, 650
PULSOUT 12, 850

NEXT

GOSUB GoStop

RETURN

'sl2 is left

66

TurnLeftd:

'"GOSUB GoStop

PAUSE 200

FOR counter = (TO 10 1sb: disabled
'PAUSE 200
PULSOUT 13, 650 'sl3 is right
PULSOUT 12, 650
PAUSE 90
'GOSUB GoStop

NEXT 'sb: disabled

GOSUB GoStop

FOR counter= (0 TO 2
PULSOUT 13, 650
PULSOUT 12, 850

NEXT
GOSUB GoStop
RETURN
e e [subroutine TurnRight]-----—--——-===w—m
TurnRight:
'FOR counter = 0 TO 1 'sb: disabled
PULSOUT 13, 770 'sl2 is left
PULSQUT 12, 770
PAUSE 50
GOSUB GoStop
' NEXT '*sb: disabled
RETURN
Y e [subroutine TurnLeft]---—=m=mm—m—m—-————
TurnLeft:
' FOR counter = 0 TO 1 'sb: disabled
PULSOUT 13, 730 *s13 is right
PULSOUT 12, 730
PAUSE 50
GOSUB GoStop
v ONEXT "sb: disabled
RETURN
e [subroutine GoStop]---——=~=rrr—m—-—————
GoStop:
'FOR counter = 0 TO 1
PAUSE 30

PULSOUT 13, 750
PULSOUT 12, 750
PAUSE 30

'NEXT

RETURN

67

———————————————— [subroutine_ JuncIndicator] ---—-——=-==-—=———-

JuncIndicator:
IP{ 3=0) THEN 'sh:added 'to reset leds
when j=0
LOW ledl 'sb:added
LoW led2 'sb:added
LOW led3 'sbh:added
LOW led4d 'sb:added
ELSEIF(j=1 } THEN 'shimodified from if —>
elseif
HIGH ledl
'LOW ledl
LOW led2 'sb:added
LOW led3 'sb:added
LOW led4 'sb:added
ELSEIF({ j=2} THEN
HIGH ledl
HIGH led2
'LOW ledl
'LOW led2
LOW led3 'sb:added
LOW ledd 'sh:added
ELSEIF{ j=3) THEN
HIGH 1ledl
HIGH 1led2
HIGH led3
'LOW ledl
'"LOW led?2
'LOW led3
LOW led4 *sb:added
ELSEIF{ j=4) THEN
HIGH 1ledl
HIGH led?2
HIGH 1led3
HIGH led4
"LOW ledl
'LOW led2
'LOW led3
"TOW ledd
ENDIF
RETURN

68

Sensorindicator:
IF(LDRDetectright=1) THEN 'LED indicator when right
sensor detects white region
LOW detectright
ELSE
HIGH detectright
ENDIF

IF{ LDRDetectleft=1) THEN
LOW detectleft

ELSE
HIGH detectleft

ENDIF

IF{ LDRDetectFront=1) THEN
LOW detectfront
ELSE
HIGH detectfront
ENDIF
RETURN

Frontsensor:
IF (LDRDetectFront = 0) THEN
IF (3 = length(s}) THEN
HIGH LEDFront
state = directionB(s)

j=20
g = g+l
ENDIF

ENDIF

69

