# Trip Generation Equation for Primary School 

by<br>Mohd Raizullan bin Ramli

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons)<br>(Civil Engineering)

JULY 2008

Universiti Teknologi PETRONAS<br>Bandar Seri Iskandar<br>31750 Tronoh<br>Perak Darul Ridzuan

## Trip Generation Equation for Primary School

by<br>Mohd Raizullan bin Ramli<br>A project dissertation submitted to the Civil Engineering Programme<br>Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CIVIL ENGINEERING)

Approved by,


## CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

## ACKNOWLEDGEMENT

I would like to express my deepest gratitude to individuals who have assisted me directly or indirectly throughout the semester to complete my project. The presence of these people is the essence to make my project successful.

First of all, I would like to express their sincere thanks and utmost appreciation to my project Supervisor, Assoc. Prof. Dr. Madzlan bin Napiah for his guidance, concerns and advice in completing this project. I would like to express my gratitude to Civil Engineering Department of Universiti Teknologi PETRONAS (UTP) and Final Year Project committee for their commitment and willingness to provide guidance and monitor my project.

I would like to thank all my friends especially Mr. Lee Kee Foo and Mr. Muhammad Hazwan bin Kamarudin for helping me throughout this project and sharing their knowledge about this topic. I also wish to extend my warmth thank to the teachers and staff of Sekolah Kebangsaan Tronoh, Sekolah Kebangsaan Pusing and Sekolah Kebangsaan Siputeh for their kindness in helping me to get the data regarding these three primary schools. Finally, I am sincerely grateful to my family, especially my beloved parents for their supports all these while.


#### Abstract

In Malaysia, the car ownership is growing rapidly in recent years. The same situation even occurs in the school area. This trend seems to be continuing in the future if the environment also remains growing in trend as before. The main objective of this project is to produce regression equations for trip generation in primary schools during morning peak hour and evening peak hour based on selected variables and compare these equations with the general trip generation equation for primary school produced by HPU (Highway Planning Unit). Trip generation forecast during planning stage is very important in order to ensure that the transportation problem in the school area, such as traffic congestion and parking problems, will not occur in the future. This project also will determined whether the general trip generation equation for primary school produced by HPU, which is only based on certain area in Malaysia, can be use to all primary school or not. For this project, Sekolah Kebangsaan Tronoh, Sekolah Kebangsaan Pusing and Sekolah Kebangsaan Siputeh have been chosen as the study areas. The scope of study for the project include literature review, trip generation survey and data analysis. In this project, the methodology has been divided into several stages which are selection of study area, data collection for trip generation survey, data collection for independent variables, data analysis and finally the comparison of results with the HPU. Hopefully, this project will improve the Malaysian Trip Generation Manual.


## TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ..... i
CERTIFICATION OF ORIGINALITY ..... ii
ACKNOWLEDGEMENT ..... iii
ABSTRACT ..... iv
CHAPTER 1: INTRODUCTION
1.1 Background of Study ..... 1
1.2 Problem Statement ..... 2
1.3 Objectives and Scope of Study ..... 2
CHAPTER 2: LITERATURE REVIEW
2.1 Traditional Trip Generation Model ..... 3
2.2 Type of Trip Generation ..... 5
2.3 Trip Generation Equation ..... 6
CHAPTER 3: METHODOLOGY
3.1 Project Identification ..... 8
3.2 Hazard Analysis ..... 11
CHAPTER 4: RESULTS AND DISCUSSION
4.1 Results of Trip Generation Survey ..... 12
4.2 Discussion ..... 29
CHAPTER 5: CONCLUSION AND RECOMMENDATION
5.1 Conclusion ..... 30
5.2 Recommendation ..... 31

## LIST OF FIGURE

Figure 2.1 The relationship between and destination and production and attraction ..... 4
Figure 3.1 Procedure flow chart ..... 10
Figure 4.1 Graph trips per hour versus number of students during morning peak hour ..... 23
Figure 4.2 Graph trips per hour versus number of students during evening peak hour ..... 23
Figure 4.3 Graph trips per hour versus number of staff during morning peak hour ..... 24
Figure 4.4 Graph trips per hour versus number of staff during evening peak hour ..... 24
Figure 4.5 Graph trips per hour versus school area during morning peak hour ..... 25
Figure 4.6 Graph trips per hour versus school area during evening peak hour ..... 25
Figure 4.7 Graph trips per hour versus number of students during morning peak hour (comparison with data given in Malaysian Trip Generation Manual) . ..... 27
Figure 4.8 Graph trips per hour versus number of students during evening peak hour (comparison with data given in Malaysian Trip Generation Manual) . ..... 27
Figure 4.9 Graph trips per hour versus school area during morning peak hour (comparison with data given in Malaysian Trip Generation Manual) ..... 28
Figure 4.10 Graph trips per hour versus school area during evening peak hour (comparison with data given in Malaysian Trip Generation Manual) ..... 28

## LIST OF TABLE

Table 4.1 Trip generation for Sekolah Kebangsaan Tronoh during morning peak hour ..... 12
Table 4.2 Trip generation for Sekolah Kebangsaan Tronoh during evening peak hour ..... 12
Table 4.3 Trip generation for Sekolah Kebangsaan Pusing during morning peak hour ..... 13
Table 4.4 Trip generation for Sekolah Kebangsaan Pusing during evening peak hour ..... 13
Table 4.5 Trip generation for Sekolah Kebangsaan Siputeh during morning peak hour ..... 13
Table 4.6 Trip generation for Sekolah Kebangsaan Siputeh during evening peak hour ..... 14
Table 4.7 Percentage of the vehicles entering and exiting the survey Locations ..... 14
Table 4.8 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Tronoh during morning peak hour . ..... 14
Table 4.9 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Tronoh during evening peak hour . ..... 15
Table 4.10 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Pusing during morning peak hour ..... 15
Table 4.11 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Pusing during evening peak hour ..... 15
Table 4.12 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Siputeh during morning peak hour . ..... 16
Table 4.13 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Siputeh during evening peak hour . ..... 16
Table 4.14 Total trips generated (trip/hour) based on types of vehicle during morning and evening peak hour ..... 16
Table 4.15 Vehicle composition that entering and exiting the survey locations during morning peak hour . ..... 17
Table 4.16 Vehicle composition that entering and exiting the survey locations during evening peak hour . ..... 17
Table 4.17 Total trip generation (pcu/hour) for Sekolah Kebangsaan Tronoh during morning peak hour. ..... 17
Table 4.18 Total trip generation (pcu/hour) for Sekolah Kebangsaan Tronoh during evening peak hour. ..... 18
Table 4.19 Total trip generation (pcu/hour) for Sekolah Kebangsaan Pusing during morning peak hour. ..... 18
Table 4.20 Total trip generation ( $\mathrm{pcu} / \mathrm{hour}$ ) for Sekolah Kebangsaan Pusing during evening peak hour. ..... 18
Table 4.21 Total trip generation (pcu/hour) for Sekolah Kebangsaan Siputeh during morning peak hour. ..... 19
Table 4.22 Total trip generation (pcu/hour) for Sekolah Kebangsaan Siputeh during evening peak hour. ..... 19
Table 4.23 Total trips generated (pcu/hour) during morning and evening peak hour ..... 19
Table 4.24 Total trip generation (trip/hour) for Sekolah Kebangsaan Tronoh during morning and evening peak hour ..... 20
Table 4.25 Total trip generation (trip/hour) for Sekolah Kebangsaan Pusing during morning and evening peak hour ..... 20
Table 4.26 Total trip generation (trip/hour) for Sekolah Kebangsaan Siputeh during morning and evening peak hour ..... 20
Table 4.27 Total trip generation (pcu/hour) for Sekolah Kebangsaan Tronoh during morning and evening peak hour ..... 21
Table 4.28 Total trip generation (pcu/hour) for Sekolah Kebangsaan Pusing during morning and evening peak hour ..... 21
Table 4.29 Total trip generation (pcu/hour) for Sekolah Kebangsaan Siputeh during morning and evening peak hour ..... 21
Table 4.30 Independent variables. ..... 22

Table 4.31 Trip generation equations for primary schools based on selected independent variables . . . . 26

Table 4.32 Average, minimum and maximum rate of trips based on number of students and school area given in Malaysian Trip Generation Manual . . . . . . 26

Table 5.1 Trip generation equations for primary schools based on selected independent variables . . . . 30

## CHAPTER 1

## INTRODUCTION

### 1.1 Background of Study

Trip generation is the first step in the conventional four-step transportation forecasting process (followed by trip distribution, mode choice, and route assignment), widely used for forecasting travel demands. It predicts the number of trips originating in or destined for a particular traffic analysis zone. In the main trip generation analysis is focused on residences, and that trip generation is thought of as a function of the social and economic attributes of households. At the level of the traffic analysis zone, the language is that of land uses "producing" or generating trips. Zones are also destinations of trips, trip attractors. The analysis of attractors focuses on nonresidential land uses.

Trip generation is the process of determining the number of trips that will begin or end in each traffic zone within the study area. Since the trips are determined without regard to destination, they are referred to as trip ends. Each trip has two ends, and these are described in terms of trip purpose, or whether the trips are either produced by a traffic zone or attracted to a traffic zone. For example, a home-to-school trip would be considered to have a trip end produced in the home zone and attracted to the school zone.

This project is focused on producing regression equations for trip generation in primary schools and compares it with the general trip generation equation for primary school produced by HPU. For this project, Sekolah Kebangsaan Tronoh, Sekolah Kebangsaan Pusing and Sekolah Kebangsaan Siputeh have been chosen as the study areas.

### 1.2 Problem Statement

HPU already produce general trip generation equation for the primary school, but it is only based on certain area in Malaysia. To prove whether this HPU trip generation equation can be use for all primary school or not, traffic survey have been done for the primary schools around the UTP campus. Regression equation will be produced from the traffic survey. Both equation will be compare to prove whether the HPU trip generation equation can be use to all primary school in Malaysia or not.

### 1.3 Objective and Scope of Study

The main objectives of this research are:
i. Produce regression equations for trip generation in primary schools during morning peak hour and evening peak hour based on selected independent variables.
ii. Compare these equations with the general trip generation equation for primary school produced by HPU.

The scope of study for the project is including the literature review, trip generation survey to collect the traffic data and data analysis. The trip generation equation for primary school will be deriving from the trip generation survey data. This equation will be compare with the general HPU trip generation equation for primary school.

## CHAPTER 2

## LITERATURE REVIEW

### 2.1 Traditional Trip Generation Model

Several transportation planning textbooks discuss two common approaches for trip generation: Regression model and categorical analysis (Meyer and Miller, 2001, Hutchinson, 1974, and Oi and Shuldiner, 1962). Historically, both techniques relate trip making to the number of vehicles in a household. Oi and Shuldiner clearly summarized the other factors that influence vehicle trip making. They enumerate the six important factors: household size, distance, residential density, income, occupation of the household head, and social area indexes. These factors have been commonly used as the independent variables to explain vehicle trip making.

In the categorical analysis, trip observations are aggregated in terms of the common socioeconomic characteristics rather than spatially grouping household or person. As the regression modeling, the vehicle ownership is the critical variable. The other factors, which are used in the regression model, can be also applied to the categorical analysis.

The traditional concept of the origin and destination is, in general, borrowed for the pedestrian demand models. Typically, trip generation, the first stage in a four steps travel demand model, is to evaluate the number of trip ends that occurred in each subarea. According to 'Principles of Urban Transport Systems Planning' (Hutchinson, 1974), "Two types of trip generation analysis are carried out, referred to the terms, trip production and trip attraction. For the trip production, trip ends that are based at a residence are called home-based trips. For the trip attraction, trip ends are based on nonhome end such as employment, retail services, recreation places, and so on." Figure 2.1 shows the relationship between origin and destination and production and attraction model. Since trip production is associated with the home, if the home is either origin or destination, the trips should be considered in trip production model. From this separate
process, the traditional trip-generation phase is assumed that trip production equivalently occurs with trip attraction.


Figure 2.1 The relationship between origin and destination and production and attraction (After Hutchinson, 1974)

### 2.2 Type of Trip Generation

There are two kinds of trip generation models: production models and attraction models. Trip production models estimate the number of home-based trips to and from zones where trip makers reside. Trip attraction models estimate the number of homebased trips to and from each zone at the non-home end of the trip. Different production and attraction models are used for each trip purpose. Special generation models are used to estimate non-home based, truck, taxi, and external trips.

### 2.2.1 Cross-Classification

Over time the profession has come to understand that considerable predictive power and accuracy can be gained by disaggregate analysis of influential variables. This means that the models use factors describing individual sample units (e.g., persons, households or workplaces) rather than an average value of each factor for each analysis zone. The result is trip generation models with trip rates for sample units having specific characteristics, such as households of one, two, or more family members, owning one, two, or more vehicles. These models are based on the trip rates for individual sample households having those particular discrete characteristics. Most trip production models are two- or threeway cross-classification tables with the dependent variable being trips per household or trips per person. The independent variables are most often income, auto ownership, and household size. Virtually all of the trip attraction models use employment and an identifier of location as independent variables.

### 2.2.2 Multiple Regression

Early trip generation models were commonly developed by regression analysis because of its power and simplicity. The independent variables in such models were usually zonal averages of the various factors of influence. Trip generation equations developed by regression are still used by some planning agencies, more commonly for attraction models than for production models. This is because only zonal averages of trip attracting characteristics are usually available since most travel surveys do not survey at trip destinations. Obtaining
more detailed data for individual attraction zones requires a survey of trip attractors, such as a workplace survey.

### 2.2.3 Experience Based

Early travel forecasting used extrapolation of past trends to estimate future travel. Such an approach is still used occasionally for estimating future traffic on a single facility, in a relatively isolated area, where only moderate and uniform growth or change in development pattern is anticipated. One level of sophistication that can be added to trend analysis to respond to anticipated growth is comparing the past traffic trend to the trend of development during the same period. This provides understanding of how traffic on the subject facility will respond to expected development changes. That relationship between the two trends is incorporated subjectively in the trend forecast.

### 2.3 Trip Generation Equation

Trip generation provides the linkage between land use and travel. Trip generation may be separated into two phases. In the first, an understanding and quantification of the travel-land use linkage is developed. In the second phase, the results of the quantification are applied to forecasted land use characteristics to develop future travel estimates. The purpose of trip generation analysis is to provide the means for relating the number of trips to and from activities in an area to the land use and socioeconomic characteristics of the activities measured in terms of land use intensity, character of the activities and location within the urban environment. The study of trip generation attempts to identify and quantify the trip ends related to various urban activities without describing other trip characteristics such as direction, length or duration. Usually, the interest is in trips per average weekday, but may be for weekend or special purpose travel.

Almost all currently applied trip generation analysis can be categorized as described below :
i. Relating trip ends to land use and socioeconomic characteristics through regression analysis.
ii. Relating trip ends to land area, floor area or other use measures such as employment through trip rates.
iii. Classifying trip ends by characteristics of the analysis unit generally referred to as cross-classification analysis.

## CHAPTER 3

## METHODOLOGY

### 3.1 Project Identification

The main part in this project is to do the traffic survey for the primary schools around the UTP campus. The purpose of this survey is to collect the traffic data in order to know the total number of trip generated by each school. Initially, 5 potential primary schools are identified for this project. The schools are as follow :

| Sekolah Kebangsaan Tronoh, Jalan Bota Lama, 31750 Tronoh, Perak. |
| :---: |
| Sekolah Kebangsaan Pusing, Jalan Lahat, 31550 Pusing, Perak. |
| Sekolah Kebangsaan Siputeh, 31560 Siputeh, Perak. |
| Sekolah Kebangsaan St. Bernadette's Convent, Jalan Pusing, 31000 |
| Batu Gajah, Perak. |
| Sekolah Kebangsaan Sultan Yussuf, Batu Gajah, Perak. |

For this project, minimum 3 schools are required. The 3 chosen schools are the first 3 schools as shown in the list (Sekolah Kebangsaan Tronoh, Sekolah Kebangsaan Pusing and Sekolah Kebangsaan Siputeh). The pictures of these primary schools have been attached in Appendix A.

This survey will be done during the peak hour, which is in the morning and evening. The data will be collected during the weekdays for one week for each school. The trip generation for each school will be counted for every 15 minutes interval and the total trip that enter and exit the school will be recorded in the form as attached in Appendix B. The trip are collected according to the vehicles type as shown below :

[^0]The peak hour and total number of trip generated during the peak hour will be identified. Three independent variables have been chosen which are total number of staffs, total number of students and size of school area. These data are also needed for this project. Once all the data are collected, the following graph have been plotted :
i. Graph trips per hour versus number of students during morning peak hour
ii. Graph trips per hour versus number of students during evening peak hour
iii. Graph trips per hour versus number of staff during morning peak hour
iv. Graph trips per hour versus number of staff during evening peak hour
v. Graph trips per hour versus school area during morning peak hour
vi. Graph trips per hour versus school area during evening peak hour

The best fit line will be draw for each graph in order to get the linear equations. These linear equations will be use as the trip generation equation for the primary school and will be comparing with the general trip generation equation for primary school produced by Highway Planning Unit (HPU) to prove whether the Highway Planning Unit (HPU) trip generation equation can be use to all primary school in Malaysia or not.


Figure 3.1: Procedure flow chart

### 3.2 Hazard Analysis

Safety is the important aspect for the surveyor when conducting the traffic survey. When safety is taken into consideration, the accidents can be prevented. Accidents do not happen without cause. The identification, isolation, and control of these causes are underlying principles of all accident prevention techniques. Here are some safety rules that will be beneficial when conducting the traffic survey :

1. Wear high-visibility safety vests of approved color and high-top leather work boots to provide the most protection whenever working within the right-of-way, at any time when exposed to traffic.
2. Always face traffic when working on the shoulders of roads. If this situation can't be done alone, have a co-worker act as a lookout. When working in a zone between two-way traffic stand parallel to the traveled way and again use a lookout.
3. Do not make sudden movements that might confuse a motorist and cause him/her to take evasive action that could result in injury to the motorist as well as to surveyors.
4. Avoid interrupting traffic as much as possible. There are several ways to do this. One of the best ways is to use offset lines as much as possible. This procedure will keep the surveyors from oncoming traffic. Minimize the crossing of traffic lanes on heavily traveled roads. Do not try to walk or run across traffic lanes.
5. Use an approved barrier such as oranges cones to shield the surveyors from traffic.
6. Avoid working on wet pavement in an active traffic area. This will put the surveyors in a danger situation.

## CHAPTER 4

## RESULTS AND DISCUSSION

### 4.1 Results of Trip Generation Survey

The trip generation survey has been conducted in three study areas (primary school) which were Sekolah Kebangsaan Tronoh, Sekolah Kebangsaan Pusing and Sekolah Kebangsaan Siputeh. Three types of vehicles have been considered during the survey which was vehicle Type 1 (motorcars, taxis and small vans), Type 2 (lorries, buses and large vans) and Type 3 (motorcycles and scooters). The results of the survey were based on morning and evening peak hour. The results of the survey are based on samples taken in five days for each study area which were from Monday to Friday. The full results of the survey have been attached in Appendix C. Table 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 shows the overall results of the survey.

Table 4.1 Trip generation for Sekolah Kebangsaan Tronoh during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) |  | Type 2 <br> (lorries, buses and <br> large vans) |  | Type 3 <br> (motorcycles and <br> scooters) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | Out | In | Out | In | Out |
| Monday | 61 | 46 | 0 | 0 | 37 | 34 |
| Tuesday | 67 | 54 | 0 | 0 | 39 | 37 |
| Wednesday | 62 | 52 | 0 | 0 | 41 | 39 |
| Thursday | 65 | 53 | 0 | 0 | 40 | 39 |
| Friday | 63 | 53 | 0 | 0 | 40 | 38 |

Table 4.2 Trip generation for Sekolah Kebangsaan Tronoh during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) |  | Type 2 <br> (lorries, buses and <br> large vans) |  | Type 3 <br> (motorcycles and <br> scooters) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | Out | In | Out | In | Out |
| Monday | 35 | 42 | 0 | 0 | 30 | 31 |
| Tuesday | 36 | 42 | 0 | 0 | 29 | 31 |
| Wednesday | 37 | 47 | 0 | 0 | 25 | 26 |
| Thursday | 34 | 44 | 0 | 0 | 30 | 31 |
| Friday | 38 | 47 | 0 | 0 | 31 | 32 |

Table 4.3 Trip generation for Sekolah Kebangsaan Pusing during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) |  | Type 2 <br> (lorries, buses and <br> large vans) |  | Type 3 <br> (motorcycles and <br> scooters) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | Out | In | Out | In | Out |
| Monday | 78 | 60 | 3 | 3 | 52 | 48 |
| Tuesday | 80 | 61 | 3 | 3 | 53 | 51 |
| Wednesday | 74 | 57 | 3 | 3 | 53 | 51 |
| Thursday | 79 | 63 | 3 | 3 | 56 | 55 |
| Friday | 79 | 63 | 3 | 3 | 53 | 51 |

Table 4.4 Trip generation for Sekolah Kebangsaan Pusing during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) |  | Type 2 <br> (lorries, buses and <br> large vans) |  | Type 3 <br> (motorcycles and <br> scooters) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | Out | In | Out | In | Out |
| Monday | 30 | 43 | 5 | 3 | 26 | 30 |
| Tuesday | 30 | 49 | 3 | 3 | 12 | 20 |
| Wednesday | 19 | 24 | 6 | 5 | 26 | 26 |
| Thursday | 33 | 31 | 4 | 4 | 36 | 29 |
| Friday | 44 | 54 | 4 | 4 | 35 | 36 |

Table 4.5 Trip generation for Sekolah Kebangsaan Siputeh during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) |  | Type 2 <br> (lorries, buses and <br> large vans) |  | Type 3 <br> (motorcycles and <br> scooters) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | Out | In | Out | In | Out |
| Monday | 114 | 94 | 6 | 6 | 94 | 93 |
| Tuesday | 115 | 95 | 6 | 6 | 93 | 91 |
| Wednesday | 120 | 98 | 6 | 6 | 97 | 94 |
| Thursday | 112 | 91 | 6 | 6 | 99 | 98 |
| Friday | 109 | 87 | 6 | 6 | 94 | 92 |

Table 4.6 Trip generation for Sekolah Kebangsaan Siputeh during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) |  | Type 2 <br> (lorries, buses and <br> large vans) |  | Type 3 <br> (motorcycles and <br> scooters) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | Out | In | Out | In | Out |
| Monday | 65 | 79 | 5 | 5 | 50 | 52 |
| Tuesday | 67 | 81 | 5 | 5 | 52 | 55 |
| Wednesday | 55 | 74 | 5 | 5 | 45 | 47 |
| Thursday | 71 | 86 | 5 | 5 | 62 | 65 |
| Friday | 58 | 80 | 4 | 4 | 48 | 50 |

The percentage of the vehicles entering and exiting the survey location has been determined from the results of the survey as shown in Table 4.7.

Table 4.7 Percentage of the vehicles entering and exiting the survey locations

| Morning Peak Hour |  |  |  | Evening Peak Hour |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total In | Total Out | \% In | \% Out | Total In | Total Out | \% In | \% Out |
| 2264 | 1983 | 53.3 | 46.7 | 1235 | 1427 | 46.4 | 53.6 |
| TOTAL $=\mathbf{4 2 4 7}$ |  |  | TOTAL $=\mathbf{1 0 0 . 0}$ | TOTAL $=\mathbf{2 6 6 2}$ |  |  | TOTAL $=\mathbf{1 0 0 . 0}$ |

Besides, the total trip generation during morning and evening peak hour in unit of trip per hour (trip/hour) based on types of vehicles can be determined from the results as shown in Table 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14.

Table 4.8 Total trip generation (trip/hour) based on types of vehicle for Sekolah
Kebangsaan Tronoh during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (trip/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (trip/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (trip/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 107 | 0 | 71 |
| Tuesday | 121 | 0 | 76 |
| Wednesday | 114 | 0 | 80 |
| Thursday | 118 | 0 | 79 |
| Friday | 116 | 0 | 78 |

Table 4.9 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Tronoh during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (trip/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (trip/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (trip/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 77 | 0 | 61 |
| Tuesday | 78 | 0 | 60 |
| Wednesday | 84 | 0 | 51 |
| Thursday | 78 | 0 | 61 |
| Friday | 85 | 0 | 63 |

Table 4.10 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Pusing during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (trip/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (trip/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (trip/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 138 | 6 | 100 |
| Tuesday | 141 | 6 | 104 |
| Wednesday | 131 | 6 | 104 |
| Thursday | 142 | 6 | 111 |
| Friday | 142 | 6 | 104 |

Table 4.11 Total trip generation (trip/hour) based on types of vehicle for Sekolah
Kebangsaan Pusing during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (trip/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (trip/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (trip/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 73 | 8 | 56 |
| Tuesday | 79 | 6 | 32 |
| Wednesday | 43 | 11 | 52 |
| Thursday | 64 | 8 | 65 |
| Friday | 98 | 8 | 71 |

Table 4.12 Total trip generation (trip/hour) based on types of vehicle for Sekolah
Kebangsaan Siputeh during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (trip/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (trip/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (trip/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 208 | 12 | 187 |
| Tuesday | 210 | 12 | 184 |
| Wednesday | 218 | 12 | 191 |
| Thursday | 203 | 12 | 197 |
| Friday | 196 | 12 | 186 |

Table 4.13 Total trip generation (trip/hour) based on types of vehicle for Sekolah Kebangsaan Siputeh during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (trip/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (trip/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (trip/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 144 | 10 | 102 |
| Tuesday | 148 | 10 | 107 |
| Wednesday | 129 | 10 | 92 |
| Thursday | 157 | 10 | 127 |
| Friday | 138 | 8 | 98 |

Table 4.14 Total trips generated (trip/hour) based on types of vehicle during morning and evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (trip/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (trip/hour) |  | Type 3 <br> (motorcycles and <br> scooters) <br> (trip/hour) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Morning <br> Peak <br> Hour | Evening <br> Peak <br> Hour | Morning <br> Peak <br> Hour | Evening <br> Peak <br> Hour | Morning <br> Peak <br> Hour | Evening <br> Peak <br> Hour |
|  | 453 | 294 | 18 | 18 | 358 | 219 |
| Tuesday | 472 | 305 | 18 | 16 | 364 | 199 |
| Wednesday | 463 | 256 | 18 | 21 | 375 | 195 |
| Thursday | 463 | 299 | 18 | 18 | 387 | 253 |
| Friday | 454 | 321 | 18 | 16 | 368 | 232 |
| TOTAL | $\mathbf{2 3 0 5}$ | $\mathbf{1 4 7 5}$ | $\mathbf{9 0}$ | $\mathbf{8 9}$ | $\mathbf{1 8 5 2}$ | $\mathbf{1 0 9 8}$ |

The vehicle composition which generates the trips for both study areas has been analyzed in Table 4.15 and 4.16.

Table 4.15 Vehicle composition that entering and exiting the survey locations during morning peak hour

| Vehicle Type | Vehicle Composition (\%) |
| :---: | :---: |
| Type 1 (motorcars, taxis and small vans) | 54.3 |
| Type 2 (lorries, buses and large vans) | 2.1 |
| Type 3 (motorcycles and scooters) | 43.6 |
| TOTAL | $\mathbf{1 0 0 . 0}$ |

Table 4.16 Vehicle composition that entering and exiting the survey locations during evening peak hour

| Vehicle Type | Vehicle Composition (\%) |
| :---: | :---: |
| Type 1 (motorcars, taxis and small vans) | 55.4 |
| Type 2 (lorries, buses and large vans) | 3.3 |
| Type 3 (motorcycles and scooters) | 41.3 |
| TOTAL | $\mathbf{1 0 0 . 0}$ |

The total trip generation during morning and evening peak hour in unit of passenger car unit per hour ( $\mathrm{pcu} /$ /hour) can be determined by multiplying vehicle Type 1 (motorcars, taxis and small vans) with 1.0 , Type 2 (lorries, buses and large vans) with 2.0 and Type 3 (motorcycles and scooters) with 0.33 . The results were shown in Table 4.17, 4.18, 4.19, 4.20, 4.21, 4.22 and 4.23.

Table 4.17 Total trip generation (pcu/hour) for Sekolah Kebangsaan Tronoh during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (pcu/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (pcu/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (pcu/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 107 | 0 | 24 |
| Tuesday | 121 | 0 | 25 |
| Wednesday | 114 | 0 | 27 |
| Thursday | 118 | 0 | 26 |
| Friday | 116 | 0 | 26 |

Table 4.18 Total trip generation (pcu/hour) for Sekolah Kebangsaan Tronoh during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (pcu/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (pcu/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (pcu/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 77 | 0 | 20 |
| Tuesday | 78 | 0 | 20 |
| Wednesday | 84 | 0 | 17 |
| Thursday | 78 | 0 | 20 |
| Friday | 85 | 0 | 21 |

Table 4.19 Total trip generation (pcu/hour) for Sekolah Kebangsaan Pusing during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (pcu/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (pcu/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (pcu/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 138 | 12 | 33 |
| Tuesday | 141 | 12 | 35 |
| Wednesday | 131 | 12 | 35 |
| Thursday | 142 | 12 | 37 |
| Friday | 142 | 12 | 35 |

Table 4.20 Total trip generation (pcu/hour) for Sekolah Kebangsaan Pusing during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (pcu/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (pcu/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (pcu/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 73 | 16 | 19 |
| Tuesday | 79 | 12 | 11 |
| Wednesday | 43 | 22 | 17 |
| Thursday | 64 | 16 | 22 |
| Friday | 98 | 16 | 24 |

Table 4.21 Total trip generation (pcu/hour) for Sekolah Kebangsaan Siputeh during morning peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (pcu/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (pcu/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (pcu/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 208 | 24 | 62 |
| Tuesday | 210 | 24 | 61 |
| Wednesday | 218 | 24 | 64 |
| Thursday | 203 | 24 | 66 |
| Friday | 196 | 24 | 62 |

Table 4.22 Total trip generation (pcu/hour) for Sekolah Kebangsaan Siputeh during evening peak hour

| Sample <br> Day | Type 1 <br> (motorcars, taxis and <br> small vans) <br> (pcu/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (pcu/hour) | Type 3 <br> (motorcycles and <br> scooters) <br> (pcu/hour) |
| :---: | :---: | :---: | :---: |
| Monday | 144 | 20 | 34 |
| Tuesday | 148 | 20 | 36 |
| Wednesday | 129 | 20 | 31 |
| Thursday | 157 | 20 | 42 |
| Friday | 138 | 16 | 33 |

Table 4.23 Total trips generated (pcu/hour) during morning and evening peak hour

| Sample <br> Day | $\|c\|$ <br> Type 1 <br> (motorcars, taxis and <br> small vans) <br> (pcu/hour) | Type 2 <br> (lorries, buses and <br> large vans) <br> (pcu/hour) |  | Type 3 <br> (motorcycles and <br> scooters) <br> (pcu/hour) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Morning <br> Peak <br> Hour | Evening <br> Peak <br> Hour | Morning <br> Peak <br> Hour | Evening <br> Peak <br> Hour | Morning <br> Peak <br> Hour | Evening <br> Peak <br> Hour |
|  | 453 | 294 | 36 | 36 | 119 | 73 |
| Tuesday | 472 | 305 | 36 | 32 | 121 | 66 |
| Wednesday | 463 | 256 | 36 | 42 | 125 | 65 |
| Thursday | 463 | 299 | 36 | 36 | 129 | 84 |
| Friday | 454 | 321 | 36 | 32 | 123 | 77 |
| TOTAL | $\mathbf{2 3 0 5}$ | $\mathbf{1 4 7 5}$ | $\mathbf{1 8 0}$ | $\mathbf{1 7 8}$ | $\mathbf{6 1 7}$ | $\mathbf{3 6 5}$ |

The total of trip generation (trip/hour) during morning and evening peak hour for study areas has been summarized in Table 4.24, 4.25 and 4.26.

Table 4.24 Total trip generation (trip/hour) for Sekolah Kebangsaan Tronoh during morning and evening peak hour

| Sample Day | Morning Peak Hour <br> (trip/hour) | Evening Peak Hour <br> (trip/hour) |
| :---: | :---: | :---: |
| Monday | 178 | 138 |
| Tuesday | 197 | 138 |
| Wednesday | 194 | 135 |
| Thursday | 197 | 139 |
| Friday | 194 | 148 |

Table 4.25 Total trip generation (trip/hour) for Sekolah Kebangsaan Pusing during morning and evening peak hour

| Sample Day | Morning Peak Hour <br> (trip/hour) | Evening Peak Hour <br> (trip/hour) |
| :---: | :---: | :---: |
| Monday | 244 | 137 |
| Tuesday | 251 | 117 |
| Wednesday | 241 | 106 |
| Thursday | 259 | 137 |
| Friday | 252 | 177 |

Table 4.26 Total trip generation (trip/hour) for Sekolah Kebangsaan Siputeh during morning and evening peak hour

| Sample Day | Morning Peak Hour <br> (trip/hour) | Evening Peak Hour <br> (trip/hour) |
| :---: | :---: | :---: |
| Monday | 407 | 256 |
| Tuesday | 406 | 265 |
| Wednesday | 421 | 231 |
| Thursday | 412 | 294 |
| Friday | 394 | 244 |

The total of trip generation (pcu/hour) during morning and evening peak hour for study areas has been summarized in Table 4.27, 4.28 and 4.29.

Table 4.27 Total trip generation (pcu/hour) for Sekolah Kebangsaan Tronoh during morning and evening peak hour

| Sample Day | Morning Peak Hour <br> (pcu/hour) | Evening Peak Hour <br> (pcu/hour) |
| :---: | :---: | :---: |
| Monday | 131 | 97 |
| Tuesday | 146 | 98 |
| Wednesday | 141 | 101 |
| Thursday | 144 | 98 |
| Friday | 142 | 106 |

Table 4.28 Total trip generation (pcu/hour) for Sekolah Kebangsaan Pusing during morning and evening peak hour

| Sample Day | Morning Peak Hour <br> (pcu/hour) | Evening Peak Hour <br> (pcu/hour) |
| :---: | :---: | :---: |
| Monday | 183 | 108 |
| Tuesday | 188 | 102 |
| Wednesday | 178 | 82 |
| Thursday | 191 | 102 |
| Friday | 189 | 138 |

Table 4.29 Total trip generation (pcu/hour) for Sekolah Kebangsaan Siputeh during morning and evening peak hour

| Sample Day | Morning Peak Hour <br> (pcu/hour) | Evening Peak Hour <br> (pcu/hour) |
| :---: | :---: | :---: |
| Monday | 294 | 198 |
| Tuesday | 295 | 204 |
| Wednesday | 306 | 180 |
| Thursday | 293 | 219 |
| Friday | 282 | 187 |

Three independent variables have been selected for this particular land use which is primary schools. The independent variables include :
i. Total number of students
ii. Total number of staff
iii. School area (acres)

The information on the independent variables for study areas are as in Table 4.30.

Table 4.30 Independent variables

| Study Area | Number of <br> Students | Number of <br> Staff | School Area <br> $\left(\mathbf{1 0}^{\mathbf{3}} \mathbf{f t}^{\mathbf{2}}\right)$ |
| :---: | :---: | :---: | :---: |
| Sekolah Kebangsaan <br> Tronoh | 247 | 29 | 152 |
| Sekolah Kebangsaan <br> Pusing | 341 | 35 | 222 |
| Sekolah Kebangsaan <br> Siputeh | 576 | 49 | 209 |

The relationship between the selected independent variables and the trips generated has been found. Figure 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 shows the trip generation relationships during morning and evening peak hour. The trip generation equations have been produced from the plotted linear graphs.


Figure 4.1 Graph trips per hour versus number of students during morning peak hour


Figure 4.2 Graph trips per hour versus number of students during evening peak hour


Figure 4.3 Graph trips per hour versus number of staff during morning peak hour


Figure 4.4 Graph trips per hour versus number of staff during evening peak hour


Figure 4.5 Graph trips per hour versus school area during morning peak hour


Figure 4.6 Graph trips per hour versus school area during evening peak hour

The best fit line has been drawn for each graph in order to get linear equation. The trip generation equations for primary school during morning and evening peak hour have been summarized in Table 4.31.

Table 4.31 Trip generation equations for primary schools based on selected independent variables

| Independent <br> Variables | Trip Generation Equations |  |
| :---: | :---: | :---: |
|  | Morning Peak Hour | Evening Peak Hour |
| Number of Students | $\mathrm{T}=0.464 \mathrm{x}+26.58$ | $\mathrm{~T}=0.314 \mathrm{x}+12.74$ |
| Number of Staff | $\mathrm{T}=7.672 \mathrm{x}-82.11$ | $\mathrm{~T}=5.169 \mathrm{x}-60.05$ |
| School Area $\left(\mathbf{1 0}^{\mathbf{3}} \mathbf{f t}^{\mathbf{2}}\right)$ | $\mathrm{T}=1.259 \mathrm{x}-37.87$ | $\mathrm{~T}=0.580 \mathrm{x}+21.92$ |

From the Malaysian Trip Generation Manual, the following data are given :
Table 4.32 Average, minimum and maximum rate of trips based on number of students and school area given in Malaysian Trip Generation Manual

| Independent Variables | Morning Peak Hour | Evening Peak Hour |
| :---: | :---: | :---: |
| Number of Students | Average rate 0.43 trips/student <br> Minimum rate 0.23 trips/student <br> Maximum rate 0.78 trips/student | Average rate 0.37 trips/student <br> Minimum rate 0.19 trips/student <br> Maximum rate 0.66 trips/student |
| School Area (ft ${ }^{3}$ ) | Average rate 7.9 trips/fit ${ }^{2}$ <br> Minimum rate 0.11 trips $/ \mathrm{ft}^{2}$ <br> Maximum rate 20.14 trips $/ \mathrm{ft}^{2}$ | Average rate 3.3 trips $/ \mathrm{ft}^{2}$ <br> Minimum rate 0.06 trips $/ \mathrm{ft}^{2}$ <br> Maximum rate 13.1 trips $/ \mathrm{ft}^{2}$ |

The minimum and maximum rate of trips are plotted on the graph (dash line) to compare between the trip rates given by the Malaysian Trip Generation Manual produced by Highway Planning Unit with the trip generation equation derive from data collected during the traffic survey. Figure 4.7, 4.8, 4.9 and 4.10 shows the comparison graph.


Figure 4.7 Graph trips per hour versus number of students during morning peak hour (comparison with data given in Malaysian Trip Generation Manual)


Figure 4.8 Graph trips per hour versus number of students during evening peak hour (comparison with data given in Malaysian Trip Generation Manual)


Figure 4.9 Graph trips per hour versus school area during morning peak hour (comparison with data given in Malaysian Trip Generation Manual)


Figure 4.10 Graph trips per hour versus school area during evening peak hour (comparison with data given in Malaysian Trip Generation Manual)

### 4.2 Discussion

### 4.2.1 Comparison

From the graph in Figure 4.7, 4.8, 4.9 and 4.10, we can compare between the trip rates given by the Malaysian Trip Generation Manual produced by Highway Planning Unit with the trip generation equation derive from data collected during the traffic survey. Comparison can be done based on number of students and school area only, since there is no rate of trips based on number of staff are given in Malaysian Trip Generation Manual. From this comparison graph, it can be proved whether the trip generation equation for primary school produced by Highway Planning Unit, which is based on a certain area in Malaysia can be use to all primary school or not. If the data collected from traffic survey locate within the minimum and maximum trip rates given in Malaysian Trip Generation Manual, it is proved that the trip generation equation for primary school produced by Highway Planning Unit can be use to all primary school in Malaysia. If not, it is shows that its only can be use in a certain area and cannot represent the whole primary school in Malaysia.

### 4.2.2 Independent Variables

In this project, three independent variables have been chosen which are total number of students, total number of staff and school area. These variables actually give significant impact on the trip generation equation of the study areas. Based on the theory, as the total number of students, total number of staff and size of school area increase, the trips generated will also increase. After data analysis has been done, the relationship between total number of students and total number of staff with the trip generated is according to the theory. However, the relationship between the school area with the trips generated is not according to the theory. It is because some of this primary school has larger area, but the area has not been developed. Therefore, it will reduce the number of students and staff, and also reduced the total trips generated.

## CHAPTER 5

## CONCLUSION AND RECOMMENDATION

### 5.1 Conclusion

In conclusion, the regression equations for trip generation in primary schools around the UTP Campus during morning and evening peak hour based on total number of students, total number of staff and school area have been produced, as shown in Table 5.1.

Table 5.1 Trip generation equations for primary schools based on selected independent variables

| Independent <br> Variables | Trip Generation Equations |  |
| :---: | :---: | :---: |
|  | Morning Peak Hour | Evening Peak Hour |
| Number of Students | $\mathrm{T}=0.464 \mathrm{x}+26.58$ | $\mathrm{~T}=0.314 \mathrm{x}+12.74$ |
| Number of Staff | $\mathrm{T}=7.672 \mathrm{x}-82.11$ | $\mathrm{~T}=5.169 \mathrm{x}-60.05$ |
| School Area $\left(\mathbf{1 0}^{\mathbf{3}} \mathbf{f t}^{\mathbf{2}}\right)$ | $\mathrm{T}=1.259 \mathrm{x}-37.87$ | $\mathrm{~T}=0.580 \mathrm{x}+21.92$ |

Comparison between the trip rates given by the Malaysian Trip Generation Manual produced by Highway Planning Unit with the trip generation equation derive from data collected during the traffic survey clearly shows that all the data collected locate within the minimum and maximum trip rates given in Malaysian Trip Generation Manual. Therefore, it is proved that the trip generation equation for primary school produced by Highway Planning Unit can be use to all primary school in Malaysia, although it is done based on a certain area in Malaysia only.

### 5.2 Recommendation

### 5.2.1 Data Collection

It is recommended to gather more data in order to get more accurate results. In this project, the samples were taken at only three places due to time constraint. ITE (Institution of Transportation Engineer) recommended five sites to be use when it becomes necessary to establish a local trip generation.

### 5.2.2 Types of Vehicles

Types of vehicles which have been considered in this project were only vehicle Type 1 (motorcars, taxis and small vans), Type 2 (lorries, buses and large vans) and Type 3 (motorcycles and scooters). Therefore, it is recommended to also consider other types of vehicle such as bicycles in order to improve the results of the trip generation survey. There are a lot of students that use bicycles as their transportation mode.

### 5.2.3 Independent Variables

Rate of trips for primary school based on number of staff are not given in Malaysian Trip Generation Manual. In order to improve this manual, the trip generation equation for primary school based on number of staff should be included. Number of staff can give a big impact on the trip generation equation because most of teachers and staff come to school with their own transport. Based on the theory, as the total number of staff increase, the trips generated will also increase.

## REFERENCES

1. Fricker, J D. \& Whitford, R K. 2004. Fundamentals of Transportation Engineering: A Multimedia Systems Approach. USA: Prentice Hall.
2. Garber, N J. \& Hoel, L A. 2002. Traffic \& Highway Engineering. USA: Brooks/Cole.
3. Hutchinson, B.G. 1974. Principles of Urban Transport System Planning, McGraw Hill.
4. Institute of Transportation Engineers. 1982. Trip Generation, 3rd Edition
5. Khisty, C. \& Lall, B. 2003. Transportation Engineering: An Introduction. USA: Prentice Hall.
6. Malaysian Trip Generation Manual, Highway Planning Unit, Ministry of Works Malaysia.
7. Meyer, M.D. and Miller, E.J. 2001. Urban Transportation Planning 2nd Edition, McGraw Hill.
8. Oi, W.Y. and Shuldiner, P.W. 1962. An Analysis of Urban Travel Demands, Northwestern University Press.
9. Survey Safety Handbook for Department of Transportation, State of Florida. Taken from [http://www.dot.state.fl.us/surveyingandmapping/Safety.pdf](http://www.dot.state.fl.us/surveyingandmapping/Safety.pdf)

APPENDIX A

## PICTURES OF SURVEY LOCATIION (PRIMARY SCHOOL)



Sekolah Kebangsaan Tronoh


Sekolah Kebangsaan Pusing


Sekolah Kebangsaan Siputeh

FINAL YEAR PROIECT (FYP)
TRP GENERATIONEQUATMON FOR PRIMARY SCHOOL
TRAFFIC SURVEY FORM

SCHOOL $\qquad$ DAY DATE : $\qquad$

15 MINUTES INTERVAL TIME

| TYPE 1 <br> Motorcars, taxis and small vans |  |  |  |  |  |  |  | TYPE 2 <br> Lorries, buses and large vans |  |  |  |  |  | TYPE 3 <br> Motorcycles and scooters |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN |  |  |  | OUT |  |  |  | IN |  |  | OUT |  |  | IN |  |  |  | OUT |  |  |  |
| 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 | 4 | 5 | 6 | 4 | 5 | 6 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 9 | 10 | 11 | 12 | 7 | 8 | 9 | 7 | 8 | 9 | 9 | 10 | 11 | 12 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 13 | 14 | 15 | 16 | 10 | 11 | 12 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 17 | 18 | 19 | 20 | 13 | 14 | 15 | 13 | 14 | 15 | 17 | 18 | 19 | 20 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 21 | 22 | 23 | 24 | 16 | 17 | 18 | 16 | 17 | 18 | 21 | 22 | 23 | 24 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 25 | 26 | 27 | 28 | 19 | 20 | 21 | 19 | 20 | 21 | 25 | 26 | 27 | 28 | 25 | 26 | 27 | 28 |
| 29 | 30 | 31 | 32 | 29 | 30 | 31 | 32 | 22 | 23 | 24 | 22 | 23 | 24 | 29 | 30 | 31 | 32 | 29 | 30 | 31 | 32 |
| 33 | 34 | 35 | 36 | 33 | 34 | 35 | 36 | 25 | 26 | 27 | 25 | 26 | 27 | 33 | 34 | 35 | 36 | 33 | 34 | 35 | 36 |
| 37 | 38 | 39 | 40 | 37 | 38 | 39 | 40 | 28 | 29 | 30 | 28 | 29 | 30 | 37 | 38 | 39 | 40 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 41 | 42 | 43 | 44 | 31 | 32 | 33 | 31 | 32 | 33 | 41 | 42 | 43 | 44 | 41 | 42 | 43 | 44 |
| 45 | 46 | 47 | 48 | 45 | 46 | 47 | 48 | 34 | 35 | 36 | 34 | 35 | 36 | 45 | 46 | 47 | 48 | 45 | 46 | 47 | 48 |
| 49 | 50 | 51 | 52 | 49 | 50 | 51 | 52 | 37 | 38 | 39 | 37 | 38 | 39 | 49 | 50 | 51 | 52 | 49 | 50 | 51 | 52 |
| 53 | 54 | 55 | 56 | 53 | 54 | 55 | 56 | 40 | 41 | 42 | 40 | 41 | 42 | 53 | 54 | 55 | 56 | 53 | 54 | 55 | 56 |
| 57 | 58 | 59 | 60 | 57 | 58. | 59 | 60 | 43 | 44 | 45 | 43 | 44 | 45 | 57 | 58 | 59 | 60 | 57 | 58 | 59 | 60 |

## APPENDIX C

## FULL RESULTS OF TRIP GENERATION SURVEY

1. SEKOLAH KEBANGSAAN TRONOH

| MONDAY (MOṘNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLYTRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 0 | 0 | 0 | 0 | 2 | 2 | 4 |  |
| 6.45 AM | 7.00 AM | 1 | 1 | 0 | 0 | 2 | 2 | 6 |  |
| 7.00 AM | 7.15 AM | 17 | 17 | 0 | 0 | 17 | 17 | 68 | , |
| 7.15 AM | 7.30 AM | 29 | 20 | 0 | 0 | 13 | 10 | 72 | 150 |
| 7.30 AM | 7.45 AM | 14 | 8 | 0 | 0 | 5 | 5 | 32 | 178 |
| 7.45 AM | 8.00 AM | 2 | 1 | 0 | 0 | 0 | 0 | 3 | 175 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips : 178 trips ( 98 in, 80 out)

| MONDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| START TIME | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 14 | 12 | 0 | 0 | 14 | 14 | 54 | . |
| 1.15 PM | 1.30 PM | 8 | 11 | 0 | 0 | 7 | 7 | 33 |  |
| 1.30 PM | 1.45 PM | 10 | 14 | 0 | 0 | 6 | 6 | 36 |  |
| 1.45 PM | 2.00 PM | 3 | 5 | 0 | 0 | 3 | 4 | 15 | 138 |
| 2.00 PM | 2.15 PM | 1 | 2 | 0 | 0 | 2 | 3 | 8 | 92 |


| Peak hour time | $: 1.00 \mathrm{PM}-2.00 \mathrm{PM}$ |
| :--- | :--- |
| Peak hour trip | $: 138$ trips $(65$ in, 73 out $)$ |


| TUESDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| START TIME | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLYTRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 2 | 2 | 0 | 0 | 0 | 0 | 4 |  |
| 6.45 AM | 7.00 AM | 4 | 4 | 0 | 0 | 3 | 3 | 14 |  |
| 7.00 AM | 7.15 AM | 20 | 19 | 0 | 0 | 17 | 17 | 73 | . |
| 7.15 AM | 7.30 AM | 28 | 22 | 0 | 0 | 13 | 13 | 76 | 167 |
| 7.30 AM | 7.45 AM | 15 | 9 | 0 | 0 | 6 | 4 | 34 | 197 |
| 7.45 AM | 8.00 AM | 2 | 2 | 0 | 0 | 1 | 1 | 6 | 189 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips : 197 trips (106 in, 91 out)

| TUESDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| START TIME | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 13 | 10 | 0 | 0 | 12 | 12 | 47 | 11 |
| 1.15 PM | 1.30 PM | 9 | 12 | 0 | 0 | 7 | 7 | 35 | With |
| 1.30 PM | 1.45 PM | 9 | 11 | 0 | 0 | 7 | 8 | 35 | - |
| 1.45 PM | 2.00 PM | 5 | 9 | 0 | 0 | 3 | 4 | 21 | 138 |
| 2.00 PM | 2.15 PM | 4 | 8 | 0 | 0 | 2 | 2 | 16 | 107 |
| 2.15 PM | 2.30 PM | 4 | 5 | 0 | 0 | 3 | 3 | 15 | 87 |

Peak hour time $\quad: 1.00 \mathrm{PM}-2.00 \mathrm{PM}$
Peak hour trip : 138 trips ( 65 in, 73 out)

| WEDNESDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 0 | 0 | 0 | 0 | 1 | 1 | 2 |  |
| 6.45 AM | 7.00 AM | 3 | 3 | 0 | 0 | 2 | 2 | 10 | 4 |
| 7.00 AM | 7.15 AM | 19 | 17 | 0 | 0 | 18 | 18 | 72 | , |
| 7.15 AM | 7.30 AM | 28 | 23 | 0 | 0 | 14 | 13 | 78 | 162 |
| 7.30 AM | 7.45 AM | 12 | 9 | 0 | 0 | 7 | 6 | 34 | 194 |
| 7.45 AM | 8.00 AM | 3 | 2 | 0 | 0 | 1 | 1 | 7 | 191 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips : 194 trips (103 in, 91 out)

| WEDNESDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 17 | 13 | 0 | 0 | 15 | 12 | 57 |  |
| 1.15 PM | 1.30 PM | 10 | 13 | 0 | 0 | 5 | 5 | 33 | T. |
| 1.30 PM | 1.45 PM | 7 | 15 | 0 | 0 | 3 | 6 | 31 |  |
| 1.45 PM | 2.00 PM | 3 | 6 | 0 | 0 | 2 | 3 | 14 | 135 |
| 2.00 PM | 2.15 PM | 1 | 2 | 0 | 0 | 2 | 2 | 7 | 85 |

Peak hour time : 1.00 PM - 2.00 PM
Peak hour trip : 135 trips ( 62 in, 73 out)

| THURSDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 1 | 1 | 0 | 0 | 1 | 1 | 4 |  |
| 6.45 AM | 7.00 AM | 7 | 7 | 0 | 0 | 3 | 3 | 20 |  |
| 7.00 AM | 7.15 AM | 19 | 17 | 0 | 0 | 20 | 20 | 76 |  |
| 7.15 AM | 7.30 AM | 25 | 18 | 0 | 0 | 7 | 6 | 56 | 156 |
| 7.30 AM | 7.45 AM | 14 | 11 | 0 | 0 | 10 | 10 | 45 | 197 |
| 7.45 AM | 8.00 AM | 2 | 2 | 0 | 0 | 1 | 1 | 6 | 183 |


| Peak hour time | $: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$ |
| :--- | :--- |
| Peak hour trips | $: 197$ trips $(105 \mathrm{in}, 92$ out $)$ |


| THURSDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | $\begin{aligned} & \text { HOURLY } \\ & \text { TRIPS } \end{aligned}$ |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 11 | 11 | 0 | 0 | 16 | 12 | 50 | ( ${ }^{1}$ |
| 1.15 PM | 1.30 PM | 8 | 9 | 0 | 0 | 7 | 12 | 36 | (4ilu |
| 1.30 PM | 1.45 PM | 12 | 18 | 0 | 0 | 6 | 5 | 41 | ${ }^{1}$ |
| 1.45 PM | 2.00 PM | 3 | 6 | 0 | 0 | 1 | 2 | 12 | 139 |
| 2.00 PM | 2.15 PM | 2 | 3 | 0 | 0 | 2 | 3 | 10 | 99 |

Peak hour time $\quad: 1.00 \mathrm{PM}-2.00 \mathrm{PM}$
Peak hour trip : 139 trips ( 64 in, 75 out)

| FRIDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | $\begin{aligned} & \text { HOURLY } \\ & \text { TRIPS } \end{aligned}$ |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 0 | 0 | 0 | 0 | 2 | 2 | 4 |  |
| 6.45 AM | 7.00 AM | 4 | 4 | 0 | 0 | 2 | 2 | 12 |  |
| 7.00 AM | 7.15 AM | 24 | 22 | 0 | 0 | 16 | 16 | 78 |  |
| 7.15 AM | 7.30 AM | 22 | 15 | 0 | 0 | 14 | 12 | 63 | 157 |
| 7.30 AM | 7.45 AM | 13 | 12 | 0 | 0 | 8 | 8 | 41 | 194 |
| 7.45 AM | 8.00 AM | 1 | 1 | 0 | 0 | 2 | 2 | 6 | 188 |


| Peak hour time | $: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$ |
| :--- | :--- |
| Peak hour trips | $: 194$ trips $(103 \mathrm{in}, 91$ out $)$ |


| FRIDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | $\begin{aligned} & \text { HOURLY } \\ & \text { TRIPS } \end{aligned}$ |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 11.45 AM | 12.00 PM | 5 | 4 | 0 | 0 | 5 | 3 | 17 |  |
| 12.00 PM | 12.15 PM | 12 | 14 | 0 | 0 | 13 | 15 | 54 | 4 |
| 12.15 PM | 12.30 PM | 17 | 20 | 0 | 0 | 11 | 10 | 58 | + |
| 12.30 PM | 12.45 PM | 4 | 9 | 0 | 0 | 2 | 4 | 19 | 148 |
| 12.45 PM | 1.00 PM | 1 | 4 | 0 | 0 | 1 | 2 | 8 | 139 |

Peak hour time $\quad: 11.45 \mathrm{AM}-12.45 \mathrm{PM}$
Peak hour trip $: 148$ trips ( 69 in, 79 out)
2. SEKOLAH KEBANGSAAN PUSING

| MONDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| START TIME | $\begin{aligned} & \text { END } \\ & \text { TIME } \end{aligned}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLYTRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 1 | 1 | 0 | 0 | 2 | 2 | 6 |  |
| 6.45 AM | 7.00 AM | 7 | 7 | 0 | 0 | 7 | 7 | 28 | - |
| 7.00 AM | 7.15 AM | 25 | 19 | 1 | 1 | 22 | 20 | 88 | ${ }^{1}$ |
| 7.15 AM | 7.30 AM | 38 | 27 | 2 | 2 | 18 | 17 | 104 | 226 |
| 7.30 AM | 7.45 AM | 8 | 7 | 0 | 0 | 5 | 4 | 24 | 244 |
| 7.45 AM | 8.00 AM | 2 | 2 | 0 | 0 | 2 | 2 | 8 | 224 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips $: 244$ trips ( 133 in, 111 out )

| MONDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { START } \\ \text { TIME } \end{gathered}$ | $\begin{aligned} & \text { END } \\ & \text { TIME } \end{aligned}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | $\begin{aligned} & \text { HOURLY } \\ & \text { TRIPS } \end{aligned}$ |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 13 | 9 | 2 | 2 | 11 | 10 | 47 |  |
| 1.15 PM | 1.30 PM | 6 | 5 | 2 | 2 | 13 | 8 | 36 |  |
| 1.30 PM | 1.45 PM | 2 | 4 | 0 | 0 | 1 | 4 | 11 | 4+14 |
| 1.45 PM | 2.00 PM | 1 | 4 | 0 | 0 | 0 | 2 | 7 | 101 |
| 2.00 PM | 2.15 PM | 21 | 30 | 3 | 1 | 12 | 16 | 83 | 137 |
| 2.15 PM | 2.30 PM | 3 | 11 | 0 | 2 | 1 | 1 | 18 | 119 |


| Peak hour time | $: 1.15 \mathrm{PM}-2.15 \mathrm{PM}$ |
| :--- | :--- |
| Peak hour trip | $: 137$ trips $(61$ in, 76 out $)$ |


| TUESDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLYTRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 0 | 0 | 0 | 0 | 2 | 2 | 4 |  |
| 6.45 AM | 7.00 AM | 7 | 7 | 0 | 0 | 6 | 6 | 26 | , |
| 7.00 AM | 7.15 AM | 18 | 15 | 1 | 1 | 16 | 16 | 67 | , |
| 7.15 AM | 7.30 AM | 42 | 31 | 2 | 2 | 25 | 23 | 125 | 222 |
| 7.30 AM | 7.45 AM | 13 | 8 | 0 | 0 | 6 | 6 | 33 | 251 |
| 7.45 AM | 8.00 AM | 2 | 2 | 0 | 0 | 1 | 1 | 6 | 231 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips $\quad: 251$ trips ( 136 in, 115 out )

| TUESDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| START <br> TIME | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 8 | 8 | 3 | 3 | 17 | 13 | 52 |  |
| 1.15 PM | 1.30 PM | 8 | 5 | 1 | 1 | 5 | 2 | 22 |  |
| 1.30 PM | 1.45 PM | 4 | 6 | 0 | 0 | 3 | 2 | 15 | 3 |
| 1.45 PM | 2.00 PM | 1 | 4 | 1 | 0 | 2 | 2 | 10 | 99 |
| 2.00 PM | 2.15 PM | 17 | 25 | 1 | 1 | 6 | 15 | 65 | 112 |
| 2.15 PM | 2.30 PM | 8 | 14 | 1 | 2 | 1 | 1 | 27 | 117 |

Peak hour time $: 1.30 \mathrm{PM}-2.30 \mathrm{PM}$
Peak hour trip : 117 trips ( 45 in, 72 out)

| WEDNESDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLYTRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 1 | 1 | 0 | 0 | 2 | 2 | 6 |  |
| 6.45 AM | 7.00 AM | 8 | 8 | 0 | 0 | 7 | 7 | 30 |  |
| 7.00 AM | 7.15 AM | 17 | 12 | 1 | 1 | 18 | 18 | 67 |  |
| 7.15 AM | 7.30 AM | 32 | 26 | 2 | 2 | 22 | 21 | 105 | 208 |
| 7.30 AM | 7.45 AM | 17 | 11 | 0 | 0 | 6 | 5 | 39 | 241 |
| 7.45 AM | 8.00 AM | 1 | 1 | 0 | 0 | 1 | 1 | 4 | 215 |


| Peak hour time | $: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$ |
| :--- | :--- |
| Peak hour trips | $: 241$ trips (130 in, 111 out) |


| WEDNESDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 11 | 10 | 2 | 2 | 15 | 14 | 54 |  |
| 1.15 PM | 1.30 PM | 2 | 4 | 0 | 0 | 11 | 9 | 26 |  |
| 1.30 PM | 1.45 PM | 5 | 7 | 2 | 2 | 0 | 2 | 18 | + |
| 1.45 PM | 2.00 PM | 1 | 3 | 2 | 1 | 0 | 1 | 8 | 106 |
| 2.00 PM | 2.15 PM | 9 | 17 | 1 | 2 | 6 | 8 | 43 | 95 |
| 2.15 PM | 2.30 PM | 5 | 9 | 0 | 0 | 0 | 1 | 15 | 84 |

Peak hour time : $1.00 \mathrm{PM}-2.00 \mathrm{PM}$
Peak hour trip $: 106(51 \mathrm{in}, 55$ out $)$

| THURSDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 2 | 2 | 0 | 0 | 2 | 2 | 8 |  |
| 6.45 AM | 7.00 AM | 10 | 9 | 0 | 0 | 7 | 7 | 33 |  |
| 7.00 AM | 7.15 AM | 21 | 15 | 1 | 1 | 20 | 20 | 78 |  |
| 7.15 AM | 7.30 AM | 29 | 21 | 2 | 2 | 22 | 21 | 97 | 216 |
| 7.30 AM | 7.45 AM | 19 | 18 | 0 | 0 | 7 | 7 | 51 | 259 |
| 7.45 AM | 8.00 AM | 1 | 1 | 0 | 0 | 3 | 2 | 7 | 233 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips : 259 trips ( 138 in, 121 out)

| THURSDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 12.45 PM | 1.00 PM | 10 | 6 | 0 | 0 | 12 | 6 | 34 |  |
| 1.00 PM | 1.15 PM | 19 | 14 | 2 | 2 | 14 | 10 | 61 |  |
| 1.15 PM | 1.30 PM | 2 | 4 | 0 | 0 | 7 | 9 | 22 | - |
| 1.30 PM | 1.45 PM | 2 | 7 | 2 | 2 | 3 | 4 | 20 | 137 |
| 1.45 PM | 2.00 PM | 0 | 5 | 2 | 1 | 2 | 2 | 12 | 115 |
| 2.00 PM | 2.15 PM | 10 | 21 | 1 | 2 | 2 | 9 | 45 | 99 |
| 2.15 PM | 2.30 PM | 5 | 8 | 0 | 0 | 1 | 3 | 17 | 94 |

Peak hour time : 12.45 PM-1.45 PM
Peak hour trip : 137 trips ( 73 in, 64 out)

| FRIDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 1 | 1 | 0 | 0 | 2 | 2 | 6 | 1 |
| 6.45 AM | 7.00 AM | 8 | 7 | 0 | 0 | 8 | 8 | 31 | , |
| 7.00 AM | 7.15 AM | 18 | 14 | 1 | 1 | 18 | 18 | 70 | 14 ${ }^{1}$ |
| 7.15 AM | 7.30 AM | 40 | 31 | 2 | 2 | 24 | 22 | 121 | 228 |
| 7.30 AM | 7.45 AM | 13 | 11 | 0 | 0 | 3 | 3 | 30 | 252 |
| 7.45 AM | 8.00 AM | 3 | 2 | 0 | 0 | 3 | 2 | 10 | 231 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips $\quad: 252$ trips ( $135 \mathrm{in}, 117$ out)

| FRIDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 11.45 AM | 12.00 PM | 9 | 5 | 0 | 0 | 7 | 3 | 24 |  |
| 12.00 PM | 12.15 PM | 15 | 16 | 2 | 2 | 22 | 20 | 77 |  |
| 12.15 PM | 12.30 PM | 16 | 25 | 2 | 1 | 5 | 10 | 59 |  |
| 12.30 PM | 12.45 PM | 4 | 8 | 0 | 1 | 1 | 3 | 17 | 177 |
| 12.45 PM | 1.00 PM | 1 | 4 | 0 | 0 | 0 | 1 | 6 | 159 |

$\begin{array}{ll}\text { Peak hour time } & : 11.45 \mathrm{AM}-12.45 \mathrm{PM} \\ \text { Peak hour trip } & : 177 \text { trips }(83 \text { in, } 94 \text { out })\end{array}$
3. SEKOLAH KEBANGSAAN SIPUTEH

| MONDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{aligned} & \text { END } \\ & \text { TIME } \end{aligned}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 1 | 1 | 0 | 0 | 0 | 0 | 2 | . |
| 6.45 AM | 7.00 AM | 10 | 9 | 1 | 1 | 14 | 14 | 49 | 4 |
| 7.00 AM | 7.15 AM | 38 | 33 | 1 | 1 | 25 | 25 | 123 | $4$ |
| 7.15 AM | 7.30 AM | 46 | 35 | 4 | 4 | 44 | 44 | 177 | 351 |
| 7.30 AM | 7.45 AM | 20 | 17 | 0 | 0 | 11 | 10 | 58 | 407 |
| 7.45 AM | 8.00 AM | 0 | 0 | 0 | 0 | 2 | 1 | 3 | 361 |

Peak hour time $\quad: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips : 407 trips ( $214 \mathrm{in}, 193$ out )

| MONDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 37 | 34 | 3 | 3 | 38 | 31 | 146 |  |
| 1.15 PM | 1.30 PM | 22 | 29 | 1 | 1 | 9 | 14 | 76 | 4 |
| 1.30 PM | 1.45 PM | 6 | 15 | 1 | 1 | 3 | 5 | 31 | - |
| 1.45 PM | 2.00 PM | 0 | 1 | 0 | 0 | 0 | 2 | 3 | 256 |

Peak hour time $\quad: 1.00 \mathrm{PM}-2.00 \mathrm{PM}$
Peak hour trip : 256 trips ( 120 in, 136 out)

| TUESDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLYTRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 1 | 1 | 0 | 0 | 2 | 2 | 6 |  |
| 6.45 AM | 7.00 AM | 12 | 10 | 1 | 1 | 13 | 13 | 50 |  |
| 7.00 AM | 7.15 AM | 35 | 31 | 2 | 2 | 22 | 21 | 113 | 4 |
| 7.15 AM | 7.30 AM | 46 | 36 | 3 | 3 | 49 | 48 | 185 | 354 |
| 7.30 AM | 7.45 AM | 22 | 18 | 0 | 0 | 9 | 9 | 58 | 406 |
| 7.45 AM | 8.00 AM | 1 | 0 | 0 | 0 | 3 | 2 | 6 | 362 |

Peak hour time $: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$
Peak hour trips : 406 ( $214 \mathrm{in}, 192$ out $)$

| TUESDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | $\begin{aligned} & \text { HOURLY } \\ & \text { TRIPS } \end{aligned}$ |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 41 | 38 | 3 | 3 | 28 | 25 | 138 |  |
| 1.15 PM | 1.30 PM | 23 | 32 | 1 | 1 | 18 | 21 | 96 |  |
| 1.30 PM | 1.45 PM | 3 | 8 | 1 | 1 | 6 | 8 | 27 | 14. |
| 1.45 PM | 2.00 PM | 0 | 3 | 0 | 0 | 0 | 1 | 4 | 265 |

Peak hour time $\quad: 1.00 \mathrm{PM}-2.00 \mathrm{PM}$
Peak hour trip : 265 trips ( 124 in, 141 out)

| WEDNESDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{aligned} & \text { END } \\ & \text { TIME } \end{aligned}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 2 | 2 | 0 | 0 | 2 | 2 | 8 |  |
| 6.45 AM | 7.00 AM | 12 | 11 | 1 | 1 | 17 | 17 | 59 | + |
| 7.00 AM | 7.15 AM | 40 | 34 | 2 | 2 | 23 | 23 | 124 | 4aryer |
| 7.15 AM | 7.30 AM | 43 | 36 | 3 | 3 | 42 | 39 | 166 | 357 |
| 7.30 AM | 7.45 AM | 25 | 17 | 0 | 0 | 15 | 15 | 72 | 421 |
| 7.45 AM | 8.00 AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 362 |


| Peak hour time | $: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$ |
| :--- | :--- |
| Peak hour trips | $: 421$ trips $(223$ in, 198 out $)$ |


| WEDNESDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 1.00 PM | 1.15 PM | 33 | 30 | 4 | 4 | 35 | 35 | 141 |  |
| 1.15 PM | 1.30 PM | 9 | 16 | 1 | 0 | 8 | 4 | 38 |  |
| 1.30 PM | 1.45 PM | 3 | 9 | 0 | 1 | 0 | 1 | 14 | V\% 1 |
| 1.45 PM | 2.00 PM | 10 | 19 | 0 | 0 | 2 | 7 | 38 | 231 |


| Peak hour time | $: 1.00 \mathrm{PM}-2.00 \mathrm{PM}$ |
| :--- | :--- |
| Peak hour trip | $: 231$ trips $(105$ in, 126 out $)$ |


| THURSDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLYTRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 6.45 AM | 7.00 AM | 12 | 12 | 1 | 1 | 16 | 16 | 58 | + |
| 7.00 AM | 7.15 AM | 39 | 32 | 2 | 1 | 29 | 28 | 131 | + |
| 7.15 AM | 7.30 AM | 40 | 33 | 3 | 4 | 39 | 39 | 158 | 347 |
| 7.30 AM | 7.45 AM | 21 | 14 | 0 | 0 | 15 | 15 | 65 | 412 |
| 7.45 AM | 8.00 AM | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 355 |


| Peak hour time | $: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$ |
| :--- | :--- |
| Peak hour trips | $: 412$ trips $(217 \mathrm{in}, 195$ out $)$ |


| THURSDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 12.45 PM | 1.00 PM | 4 | 2 | 1 | 1 | 10 | 4 | 22 |  |
| 1.00 PM | 1.15 PM | 44 | 47 | 3 | 3 | 46 | 48 | 191 |  |
| 1.15 PM | 1.30 PM | 21 | 28 | 1 | 1 | 5 | 10 | 66 | 4 |
| 1.30 PM | 1.45 PM | 2 | 9 | 0 | 0 | 1 | 3 | 15 | 294 |
| 1.45 PM | 2.00 PM | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 274 |

Peak hour time $: 12.45 \mathrm{PM}-1.45 \mathrm{PM}$
Peak hour trip : 294 trips ( 138 in, 156 out)

| FRIDAY (MORNING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{aligned} & \text { END } \\ & \text { TIME } \end{aligned}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 6.30 AM | 6.45 AM | 1 | 1 | 0 | 0 | 1 | 1 | 4 | 1 |
| 6.45 AM | 7.00 AM | 8 | 7 | 1 | 1 | 17 | 17 | 51 | War |
| 7.00 AM | 7.15 AM | 43 | 38 | 2 | 2 | 24 | 23 | 132 | 120 |
| 7.15 AM | 7.30 AM | 48 | 37 | 3 | 3 | 45 | 45 | 181 | 368 |
| 7.30 AM | 7.45 AM | 10 | 5 | 0 | 0 | 8 | 7 | 30 | 394 |
| 7.45 AM | 8.00 AM | 1 | 0 | 0 | 0 | 1 | 1 | 3 | 346 |


| Peak hour time | $: 6.45 \mathrm{AM}-7.45 \mathrm{AM}$ |
| :--- | :--- |
| Peak hour trips | $: 394$ trips (209 in, 185 out $)$ |


| FRIDAY (EVENING) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { START } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { END } \\ \text { TIME } \end{gathered}$ | 15 MINUTES INTERVAL TRIPS |  |  |  |  |  |  | HOURLY TRIPS |
|  |  | TYPE 1 |  | TYPE 2 |  | TYPE 3 |  | TOTAL |  |
|  |  | IN | OUT | IN | OUT | IN | OUT |  |  |
| 11.45 AM | 12.00 PM | 7 | 3 | 0 | 0 | 9 | 1 | 20 |  |
| 12.00 PM | 12.15 PM | 31 | 36 | 4 | 3 | 19 | 27 | 120 | , |
| 12.15 PM | 12.30 PM | 18 | 33 | 0 | 1 | 16 | 17 | 85 | (4) |
| 12.30 PM | 12.45 PM | 2 | 8 | 0 | 0 | 4 | 5 | 19 | 244 |
| 12.45 PM | 1.00 PM | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 225 |


| Peak hour time | $: 11.45 \mathrm{AM}-12.45 \mathrm{PM}$ |
| :--- | :--- |
| Peak hour trip | $: 244$ trips (110 in, 134 out $)$ |


[^0]:    Type 1 - Motorcars, taxis and small vans
    Type 2 - Lorries, buses and large vans Type 3 - Motorcycles and scooters

