Effect of Inorganic Compound on the Tensile Strength of Ordinary Portland Cement (OPC) Concrete

by

Mohamad Arif Bin Abdilah

Final Report submitted in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Civil Engineering)

July 2008

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

EFFECT OF INORGANIC COMPOUND ON THE TENSILE STRENGTH OF ORDINARY PORTLAND CEMENT (OPC) CONCRETE

by

Mohamad Arif Bin Abdilah

A project dissertation submitted to the Civil Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CIVIL ENGINEERING)

Approved by,

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July 2008

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MOHAMAD ARIF BIN ABDILAH

ABSTRACT

This project which is entitled Effect of Inorganic Compound on the Tensile Strength of Ordinary Portland Cement (OPC) Concrete clearly comes with its main objective(s) that is to produce the OPC concrete that has higher tensile strength as it is generally known that concrete is strong in resisting compressive force and weak in resisting tensile stress. Dow Corning DC520 Silane (water based emulsion) is chosen to be the inorganic compound that is incorporated in the concrete mix and its implications towards the concrete tensile strength and other performances are going to be discussed in this report. The failure mechanism of concrete and theories to rectify the failure occurrences in the concrete is discussed and explained in this report. Every step taken in undertaking this respective project are explained in details and that includes the literature review, planning and scheduling, experimental programs and laboratory tests as in split tensile test and compression test. The conclusion section summarized all the findings from this project while the recommendation section will recommend the suitable measures in a way to improve this project and probably to make sure the objective is met.

ACKNOWLEDGEMENTS

The successful completion of this project would not have been possible without the assistance and guidance of many individuals whose contribution has been tremendous.

First and foremost, I would like to express sincere gratitude and appreciation to project supervisor Dr. Victor R Macam for his numerous valuable input and guidance throughout the course of this project.

I would also like to thank Mohd Iqbal Farid bin Monsarif and Amril Hadri bin Jamaludin the Final Year Final Semester students for the tremendous effort they contributed, especially in providing the guidance and valuable information that was beneficial in a way to making the research successful.

Appreciations are also in order to the Civil Engineering Department of Universiti Teknologi PETRONAS (UTP) for the opportunity and in providing the facilities to undertake this project which has contributed tremendously in enhancing the technical knowledge and gaining more.

Thank you to the Final Year Project coordinator, Miss Niraku Rosmawati Ahmad and Mr. Kalaikumar for arranging the various seminars to support and aid in conducting this project. Thank you also lecturers, especially from the Civil Engineering Department from Universiti Teknologi PETRONAS for the help and advice dispensed throughout the period of the project.

I would like to take this opportunity to apologize for any parties that was inadvertently excluded from being mentioned and would like to thank all who has contributed and has aided in any way to make this project a success.

TABLE OF CONTENTS

CONT	FENT		PAGE
Abstra	ict		i
Ackno	wledgem	ents	ii
Table	of Conter	its	iii
Abbre	viations a	nd Nomenclatures	viii
CHAI	PTER 1:	INTRODUCTION	
1.1	Backgr	ound of Study	1
1.2	Probler	n Statement	2
1.3	Objecti	ve of Research	3
1.4	Scope of	of Research	4
CHAI	PTER 2:]	LITERATURE REVIEW	
2.1	What is	s Concrete?	5
2.2	Concre	te Constituents	6
2.3	Interfac	Interfacial Transition Zone (ITZ)	
2.4	Strengt	h of Concrete	7
2.5	DC520	(Silane-water based emulsion)	8
	2.5.1	Silane Coupling Agent (SCA)	9
CHAI	PTER 3: 1	METHODOLOGY	
3.1	Introdu	ction	11
3.2	Concre with Si	te Mix using Silane Coupling Agent (SCA) Treated Aggregate ze of 20mm, 14mm and 10mm.	12
	3.2.1	Planning and details	12
	3.2.2	Experimental programme	13
	3.2.3	Variables	14
	3.2.4	Materials used	14
	3.2.5	Concrete Mix Design	14
	3.2.6	Manufacture of test specimens	17
3.3	Mortar with D	Mix using Silane Coupling Agent (SCA) Treated Aggregate ifferent Mix Ratio between Silane and Water.	18
	3.3.1	Planning and details	18

	3.3.2	Experimental programme	19
	3.3.3	Variables	19
	3.3.4	Materials used	19
	3.3.5	Mortar Mix Design	20
	3.3.6	Manufacture of test specimens	20
3.4	Test me	ethods	21
	3.4.1	Compression test	21
	3.4.2	Splitting tension test	21
3.5	Milesto	ne for Final Year Project	23
3.6	HSE Re	equirement	25
	3.6.1	Personal Protective Equipment (PPE) Provided in Concrete Technology Laboratories	25
	3.6.2	HSE Procedure for Laboratory Works in Concrete Laboratory	26
	3.6.3	Hazard Analysis for DC520(Silane-water based emulsion)	27
CHAP	TER 4: I	RESULTS AND DISCUSSIONS	
4.1	Effect o differen	of Silane Coupling Agent (SCA) in concrete with three (3) at sizes of coated aggregate (10mm, 14mm and 20mm)	28
4.2	Effect of different	of Silane Coupling Agent (SCA) in mortar with three (3) at concentration of Silane that coat the aggregates	34
4.3	Overall	Summary of Results	36
CHAP	TER 5: 0	CONCLUSION AND RECOMMENDATION	
	Conclus	sion	38
REFE	RENCES		39
APPEN	NDIX A-1	: Mix Design for 10mm Aggregate Concrete	40
APPEN	VDIX A-2	2: Mix Design for 14mm Aggregate Concrete	41
APPEN	NDIX A-3	3: Mix Design for 20mm Aggregate Concrete	42
APPEN	VDIX B-1	: Compression and Tensile Tests Results for Mix 1(10mm)	43
APPEN	VDIX B-2	2: Compression and Tensile Tests Results for Mix 2(14mm)	44
APPEN	IDIX B-3	3: Compression and Tensile Tests Results for Mix 3(20mm)	45
APPEN	VDIX C-1	: Compression and Tensile Tests Results for Control Mix	46
APPEN	NDIX C-2	2: Compression and Tensile Tests Results for Mix 1	47
APPEN	IDIX C-3	: Compression and Tensile Tests Results for Mix 2	48

FIGU	<u>RE</u>	PAGE
1.0	Chemical Structure of Silane	9
2.0	Flow Chart of Research Methodology	11
3.0	Compression Tester	21
4.0	Specimen Holder	22
5.1	Graph of Tensile Stress (N/mm ²) versus Time(Day):Mix 1 (10mm)	28
5.2	Graph of Compressive Stress (N/mm ²) versus Time(Day):Mix 1 (10mm)	29
6.1	Graph of Tensile Stress (N/mm ²) versus Time(Day):Mix 2 (14mm)	30
6.2	Graph of Compressive Stress (N/mm ²) versus Time(Day):Mix 2 (14mm)	30
7.1	Graph of Tensile Stress (N/mm ²) versus Time(Day):Mix 3 (20mm)	32
7.2	Graph of Compressive Stress (N/mm ²) versus Time(Day):Mix 3 (20mm)	32
8.1	Graph of Tensile Stress (N/mm ²) versus Time (Day);Mortar	34
8.2	Graph of Compressive Stress (N/mm ²) versus Time (Day);Mortar	34

LIST OF FIGURES

LIST OF TABLES

<u>TAB</u>	LES	PAGE
1	Properties of DC520 (Silane-water based emulsion)	8
2	Design mix for 10,14, and 20 mm coarse aggregate	16

ABBREVIATIONS AND NOMENCLATURES

OPC Ordinary Portland Cement

SCA Silane Coupling Agent

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Concrete is well-renowned for its attribute that is "strong in resisting compressive force and weak in resisting tensile force". As a matter of fact, there were many studies been conducted in determining the reasons behind the weaknesses of concrete in resisting tensile force. As a result, researchers had come with their respective ideologies pertaining this respective phenomenon.

There is general agreement about the importance of the matrix-aggregate bond in the concrete. It is known that the transition zones (interfaces) are the weakest link of the composite material, playing a very important role in the process of concrete failure, as crack growth usually starts at the matrix-aggregate interfaces. Generally, the critical interfaces are those between coarse aggregate and mortar.

Crack propagation usually starts at the interfaces, and the cracks grow through the matrix. Coarse aggregates arrest crack growth, producing meandering and branching of cracks, and some particles are fractured. This mechanism depends greatly on the characteristics of the aggregate, especially surface texture and shape, and on the strength differences between aggregates and matrix. Thus, the type of coarse aggregate is one of the most important variables affecting the behavior of high strength concretes (HSC) [1].

In summary, as far as this project is concern there are two distinctive factors (failure mechanism) that are associated with the failure of concrete, namely:

- Transition zones (interfaces)
- Characteristics of the aggregates

- 1 -

It has been reported that there were many attempts on modifying the composition in concrete mix as in adding admixtures, and altering the attributions of coarse aggregates in a way to obtain as perfect adhesion as possible between the cement paste and aggregates in the concrete mixture .Thus, this project respectively comes with an initiative to produce a concrete mix that has a perfect adhesion between cement paste and aggregates which will lead to a concrete that possesses the attribution of 'high in resisting both compression and tensile force'.

1.2 Problem Statement

Concrete has a highly heterogeneous and complex structure. At the macroscopic level concrete may be considered to be a two-phase material, consisting of aggregate particles dispersed in a matrix of cement paste. At the microscopic level, a third phase – the transition zone – may be identified [2]. This transition zone exists as a thin shell, called the interfacial transition zone (ITZ), between aggregate particles and hydrated cement paste (HCP).

G.Giaccio and R.Zerbino had postulated that the transition zones (interfaces) are the weakest link of the composite material, playing a very important role in the process of concrete failure, as crack growth usually starts at the matrix-aggregate interfaces. Generally, the critical interfaces are those between coarse aggregate and mortar.

Therefore this project is carried out to modify the transition zones of the concrete by introducing Silane Coupling Agent (SCA) that is believed, capable of increasing the bond strength and durability of concrete by providing the chemical bridge to connect the inorganic materials in the concrete (such as cement paste and stone).

1.3 Objective of Research

The main objective(s) of this research are:

- To experiment the effect of incorporating DC520 (Silane-water based emulsion) in the concrete mix, on the tensile strength of Ordinary Portland Cement (OPC) concrete.
- ii) To determine the optimum mix design (coarse aggregate size and concentration of SCA that is used for coating the aggregate) of Ordinary Portland Cement (OPC) concrete treated with SCA, that produces the best strength performance.

The scope of study for this project includes the following:

- i) Conducting research through journals and books published which are closely related to OPC concrete properties and DC520 (Silane-water based emulsion)
- ii) Laboratory experimental assessment towards the properties of concrete incorporated with DC520 (Silane-water based emulsion). Generally, the tests are split tensile test and compression test with static loads.

1.4 Scope of Research

The scope of work for this research is to investigate the tensile strength of Ordinary Portland Cement (OPC) concrete when its designed mix is incorporated with DC520 (Silane-water based emulsion). Concrete samples will be produced with certain parameters manipulated accordingly, and the control mix will be produced as it will be compared to the concrete samples.

Tests that are going to be conducted for this research are:

- Compression test a concrete cylinder is placed with its axis vertical between the platens of a testing machine, and the load is increase until failure by indirect tension in the form of cracking along the vertical height takes place.
- ii) Splitting tension test a concrete cylinder is placed with its axis horizontal between the platens of a testing machine, and the load is increase until failure by indirect tension in the form of splitting along the vertical diameter takes place.

CHAPTER 2

LITERATURE REVIEW

2.1 What is Concrete?

By definition, concrete is a structural masonry material made by mixing broken stone or gravel with sand, cement, and water and allowing the mixture to harden into a solid mass. Concrete solidifies and hardens after mixing and placement due to a chemical process whereby water reacts with the cement, which bonds the other components together, eventually creating a stone-like material. The strength, durability and other characteristics of concrete depend upon the properties of its ingredients, the properties of the mix, the method of compaction and other controls during placing, compaction and curing. [3]

In the most general sense of the word, cement is a binder, a substance which sets and hardens independently, and can bind other materials together. The cement commonly used is Portland cement. Portland cement produced by intimately mixing together calcareous and argillaceous or other silica, alumina and iron oxide bearing materials, burning them at a clinkering temperature and grinding the resulting clinker.[3] Out of number of types of Portland cement, Ordinary Portland Cement (OPC) will be used throughout this project.

Ordinary Portland Cement has a medium rate of hardening and is suitable for most type of work. It is the one most commonly used for structural purposes when the special properties specified for other types of Portland cement are not required. [3]

2.2 Concrete Constituents

Concrete is made by mixing cement, water, and coarse and fine aggregates. The aim is to mix these materials in measured amounts to make concrete that is easy to transport, place, compact and place which will set, and harden to give strong and durable product. The amount of each material affects the properties of hardened concrete and as for this particular research's interests; it is more towards foreseeing the effect of each constituents to the tensile strength of concrete.

Cement is mixed with water and forms a paste. The paste acts like a glue and holds or bonds the aggregates together. As the cement content increases, so does strength and durability. Therefore to increase the concrete strength, increase the cement content of a mix [4].

Water is an important parameter for concrete. The principal reason for using water with cement is to cause hydration of cement. Water added in excess of hydration requirements will penetrates into the innumerable minute surface irregularities of sand and aggregate, bringing them into close adhesion. Besides functioning as a folding agent, water also enables the chemical reaction which cause setting and hardening and also to lubricate the mixture of fine and coarse aggregates and cement in order to facilitate placing [3].

Aggregate in concrete is a mass of particles which are suitable for resisting action of applied load, abrasion and percolation of moisture and the action of weather. It has been reported earlier in this report that aggregate surface texture is one of the most important factors affecting bond strength; rough surfaces usually have a higher bond than sawn surfaces. In addition, in the composite many characteristics of the aggregates affect properties in fresh concrete, which later will modify the behavior of hardened concrete [4].

2.3 Interfacial Transition Zone (ITZ)

In general, concrete is a material that comprise of three phases namely; the mortar, the aggregate and the Interfacial Transition Zone (ITZ) between the mortar and the aggregate. ITZ, which is structurally and mechanically different than the matrix, plays a critical role in determining the mechanical properties and failure behavior of concrete composites. The properties of the aggregates (type, shape, surface conditions, etc.), cement and admixtures and particularly the water-to-cement (w/c) ratio of the mixture are the main factors that form the structure of ITZ and thus its properties [6].

There is a general agreement about the importance of the ITZ region where it is notified as the weakest link of the composite material, playing a very important role in the process of concrete failure, as crack growth usually starts at the matrix-aggregate interfaces [1].

2.4 Strength of Concrete

Strength of concrete is commonly considered as its most valuable property, other than durability and impermeability. Nevertheless strength of concrete usually gives an overall picture of the quality of concrete because strength is directly related to the structure of the hardened cement paste. The strength of concrete is defined as the maximum stress it can resist or the maximum load it can carry (A. M. Neville, 2002).

The strength of concrete is further classified based on two (2) distinctive attribute:

- a) Compressive strength signifies on the maximum load the concrete can carry. Cubes, cylinders and prisms are the three types of compression test specimens used to determine the compressive strength.
- b) Tensile strength signifies on the maximum tensile stress the concrete may resists.
 Normally, tensile strength of concrete is only 5-10% of its compressive strength.

2.5 DC520 (Silane-water based emulsion).

DC520 (Silane-water based emulsion) is high purity, undiluted Isobutyltriethoxy-silane. When diluted with water, it can be used in the formulation of water repellent products. Upon proper application, the formulated product will penetrate and provide water repellence by chemically reacting with cementitious substrate. Treated substrates are hydrophobic and retain their original appearance. DC520 (Silane-water based emulsion) is a small molecule that allow for deep penetration into the cementitious surface. This material reacts with moisture in the air and in substrate in the presence of an alkaline or acidic environment to produce hydroxy groups. These hydroxy groups will bond with the substrate and itself to produce a hydrophobic treatment that inhibits water absorption into the substrates. An alkaline environment, such as new concrete, will catalyze the reaction and speed the formation of the hydrophobic surface.

Property	Result	Unit
Color	Milky white	
Non-Volatile Content	40	%
Volatile Organic Content (VOC)	<300	g/L
pH	4.5	
Density	8.216	lb/gal
Solvent (thinner)	Water	

Follows are the typical properties DC520 (Silane-water based emulsion).

Table 1: Properties of DC520 (Silane -water based emulsion)

2.5.1 Silane Coupling Agent (SCA)

Silane coupling agent (SCA) is a kind of auxiliary for modifying the interfacial layers of composites. SCA molecules have multifunctional groups with a general chemical formula of R-SiX₃ (*see figure 1.0*) where X stands for hydrolyzable groups bonded to Si, and R is a resin-compatible group.

Figure 1.0 Chemical Structure of Silane

X represents the functional group that reacts with organic materials like synthetic resins and may be selected from the following types of functional groups namely; vinyl, epoxy, amino, methacryl, acryl, isocyanato, and mercapto.

OR represents the functional group that reacts with inorganic materials like glass, metals, and silica and may be selected from the following types of functional groups namely; methoxy group, ethoxy group, and acetoxy group.

SCA is commonly used to significantly increase the bond strength and durability by providing the chemical bridge to connect the inorganic material (especially silicon-containing materials) and resin. According to the experience of composite technology, concentration of SCA aqueous solutions has a significant influence on the bond strength of composites. On the one hand, an aqueous SCA solution with a very low concentration may be not enough to create a SCA network that fully covers the surface of an inorganic material, resulting in lower bond strength. On the other hand, an aqueous SCA solution with a very high concentration may induce a multiple molecular layer on the surface, creating a porous physically absorbent layer, leading to much lower bond strength [5].

In 1999, Ma has coated the surface of marble specimens with styrene-butadiene resin emulsion, or KH-550, KH-560, KH-570 SCA solutions separately, before applying cement mortar. Splitting tensile test was conducted and the result showed that the modified interfacial layers were 27%, 57%, 69% and 84% higher than that control specimens respectively. Xiong in 2004 stated that, SCA can noticeably improve the microstructures of cement hydrates in the ITZ. The modifying mechanism of the ITZ using SCA is worth further investigated.

It is assumed that, ITZ region is weak when there is pore that makes the adhesion between cement pastes and aggregates loose. The presence of pore is originated from the water attached at the aggregate's surface. During hydration process, the respective water is being absorbed by cement during hydration process and eventually the pore formed. Sustaining to this matter, SCA is introduced in the concrete mixture to be coated on the aggregate's surface in a hope to make the aggregate hydrophobic, which by the possibility of the pore exists can be reduced.

CHAPTER 3 METHODOLOGY

3.1 Introduction

Figure 2.0 Flow Chart of Research Methodology

3.2 Concrete Mix using Silane Coupling Agent (SCA) Treated Aggregate with Size of 20mm, 14mm and 10mm.

This experiment is particularly to ascertain the early hypothesis of producing concrete with higher tensile strength by making the aggregate hydrophobic so that the presence of pore can be reduced. Design mix for every mixing was calculated based on BS1881 and the target strength is 30N/mm² at 28 days of strength. The procedures of the concrete manufacturing were the same as the normal practice. However, what differs this particular mix with the normal mix is the aggregate being coated with SCA before mixing took place.

3.2.1 Planning and details

Main tests	: Compression and tensile tests
Additional tests	: Slump test,
Sample	: Concrete grade 30
Size of sample	: Cylinder (100 mm x 200 mm)
Test days	: 2 nd day, 7 th day, 28 th day
No of samples	: Control Mix (18 samples); SCA (54 samples)

Compression test

	Coarse Aggre	gates : 10 mm						
		Test Days						
Concrete Samples	2 nd	7 th	28 th					
Control Mix	1	1	1					
SCA	3	3	3					
	Coarse Aggre	gates : 14 mm						
		Test Days						
Concrete Samples	2 nd	7 th	28 th					
Control Mix	1	1	1					
SCA	3	3	3					
	Coarse Aggre	gates : 20 mm						
		Test Days						
Concrete Samples	2 nd	7 th	28 th					
Control Mix	1	1	1					
SCA	3	3	3					

Tensile test

Coarse Aggregates : 10 mm								
		Test Days						
Concrete Samples	2 nd	7 th	28 th					
Control Mix	1	1	1					
SCA	3	3	3					
Coarse Aggregates : 14 mm								
		Test Days						
Concrete Samples	2 nd	7 th	28 th					
Control Mix	1	1	1					
SCA	3	3	3					
	Coarse Aggre	gates : 20 mm						
		Test Days						
Concrete Samples	2 nd	7 th	28 th					
Control Mix	1	1	1					
SCA	3	3	3					

3.2.2 Experimental programme

The sample preparation procedure is divided into several phases:

3.2.3 Variables

Three (3) sizes of coarse aggregates were used namely 10mm, 14mm and 20mm in a way to find the aggregate size in the concrete design mix that exhibit the highest tensile strength

3.2.4 Materials used

Ordinary Portland cement was used in this research. Crushed stone with size 10mm, 14mm and 20mm and medium river sand with a fineness modulus of 2.44 were used for making concrete and repair mortar, respectively. DC520 (Silane-water based emulsion) is mixed with water and the solution will was used to coat the aggregate. The mix ratios of this solution was 1:4 (Silane: Water) by volume.

3.2.5 Concrete Mix Design

The British Method of Normal Concrete Mix Design (Department of Environment, 1988) is being used throughout this project to produce the concrete samples. Applying the British Method, there are numbers of specified variables accordingly that are determined beforehand, namely:

- Characteristic Strength : __mm² at 28 days with proportion defective of %.
- Cement type : OPC (Ordinary Portland Cement)
- Maximum free water ratio : __:___
- Slump :____mm
- Maximum aggregate size : mm
- Minimum cement content : _kg/m³.

3.2.5.1 Stage 1

Then, according to these specified variables, the design is embarked with Stage 1 of the design. As for the standard deviation, the value is obtained from the table of relationship between standard deviation and characteristic strength.

As for the margin, for the value of k it corresponds to the value of proportion defective:

Then, the target mean strength is calculated:

 $f_m = f_c + k^*s$

3.2.5.2 Stage 2

Moving to Stage 2 of the design the free water content is determined in accordance to the value of slump and maximum uncrushed aggregate size.

3.2.5.3 Stage 3

Next, to determine the cement content, the following formula is used:

Cement content = (free- water content) / (free- water/ cement ratio)

3.2.5.4 Stage 4.

At this stage, the value the value of the relative density of aggregate (SSD) is assumed. From the value of the relative density of aggregate (SSD) the value of the concrete density is determined. Then using this formula, we can compute the total aggregate content:

Total aggregate content = $D - W_c - W_{fw}$ Where: D, wet density of concrete (kg/m³) W_c, cement content (kg/m³) W_{fw}, free- water content (kg/m³)

3.2.5.4 Stage 5

The corresponding value of fine and coarse aggregate is determined.

Fine aggregate content = Total aggregate content x proportion of fines

Coarse aggregate content = Total aggregate content – fine aggregate content

3.2.5.6 Design mix for concrete mix using 10, 14, and 20 mm coarse aggregate.

Coarse aggregates : 10mm									
Quantities	Cement (kg)	Water (kg)	Fine aggregate (kg)	Coarse aggregate (kg)					
Per m ³ (to nearest 5 kg)	425	235	735	975					
Per trial mix of 0.034 m ³	Per trial mix of 0.034 m ³ 14.45		25	33.15					
Coarse aggregates : 14mm									
Quantities	Cement (kg)	Water (kg)	Fine aggregate (kg)	Coarse aggregate (kg)					
Per m ³ (to nearest 5 kg)	$\begin{array}{c c} Per m^3 (to \\ nearest 5 kg) \end{array} 400$		690	1030					
Per trial mix of 0.034 m ³	13.6	7.49	23.5	36.72					
	Coa	rse aggregates : 20	Omm						
Quantities	Cement (kg)	Water (kg)	Fine aggregate (kg)	Coarse aggregate (kg)					
Per m ³ (to nearest 5 kg) 375		205	625	1210					
Per trial mix of 0.034 m ³	12.15	6.97	21.25	41.14					

Table 2: Design mix for concrete mix using 10, 14, and 20 mm coarse aggregate

3.2.6 Manufacture of test specimens

Coarse aggregates were sieved by using sieve machine to obtain 10mm, 14mm and 20 mm coarse aggregates. Those aggregates are then being washed and soaked into water for a day. Subsequently, the aggregates were allowed to dry on its own under constant temperature (±27 °C) for a day to achieve SSD condition. Then the designing, proportioning and quantifying works were done before the mixing. Just before the mixing took place, the coarse aggregate were coated with the solution of Dow Corning DC520 (Silane water-based emulsion) which was diluted with water beforehand. Next, the coated aggregates were dried under constant temperature (±27 °C) for 2 hours. The mixture of Silane and water is mixed by a ratio of 1:4 (Silane: Water) by volume. The concrete samples were casted into cylinder-shaped and 100 mm x 200 mm sized moulds. A vibrating table was used to compact the concrete. Full compaction was considered to have been achieved when air bubbles stopped appearing on the concrete surface. After vibrating, the concrete surface was finished smooth using a metal float and then covered with a polythene sheet to prevent evaporation of water from the concrete. The moulds were stripped next day and the hardened concrete samples were placed in the curing tank.

3.3 Mortar Mix using Silane Coupling Agent (SCA) Treated Aggregate with Different Mix Ratio between Silane and Water.

This experiment is particularly to determine the optimum concentration of Silane solution that is used to coat the aggregate which will produce concrete with highest tensile strength. Silane is diluted with water by three different mix ratios (Silane: Water) namely, (1:4), (1:8) and (1:12).

3.3.1 Planning and details

Main tests	: Compression (C) and tensile (T) tests
Additional tests	: Sieve Analysis, Silt Test
Sample	: Mortar
Size of sample	: Cylinder (60 mm x 120 mm)
Test days	: 2 nd , 7 th , 28 th , 60 th , 90th, 180th, 360th day.
No of samples	: Control Mix (42 samples); SCA (126 samples)

Days of	Con	trol	1:	4	1:	8	1:12		
Strength	C	T	C	T	C	T	C	T	
3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	
28	3	3	3	3	3	3	3	3	
60	3	3	3	3	3	3	3	3	
90	3	3	3	3	3	3	3	3	
180	3	3	3	3	3	3	3	3	
360	3	3	3	3	3	3	3	3	
Total	21	21	21	21	21	21	21	21	

3.3.2 Experimental programme

The sample preparation procedure is divided into several phases:

3.3.3 Variables

Aggregates were coated with the mixture of Silane and water and the mix ratio between both substances were varied (Silane: Water) 1:4, 1:8, and 1:12 to determine which mix ratio produce the best coating to the aggregates.

3.3.4 Materials used

Ordinary Portland cement was used in this experiment. Aggregates with size gaping from 10 mm -0.35mm were used for making mortar, respectively. The solution of DC520 (Silane-water based emulsion) which was mixed with water in three (3) different mix ratios was being used acting as coating material.

3.3.5 Mortar Mix Design

The design mix for this experiment is based on the ratio of 2:1 where two part of aggregate with one part of cement and water to cement ratio of 0.35.

3.3.6 Manufacture of test specimens

Coarse aggregates were sieved by using sieve machine to obtain aggregates with size gaping from 10mm - 0.35mm. Those aggregates are then being washed and soaked into water for a day. Subsequently, the aggregates were allowed to dry on its own under constant temperature (± 27 ⁰C) for a day to achieve SSD condition. Then the designing, proportioning and quantifying works were done before the mixing. Just before the mixing took place, the coarse aggregate were coated with the solution of Dow Corning DC520 (Silane waterbased emulsion) which was diluted with water beforehand. Next, the coated aggregates were dried under constant temperature (± 27 ⁰C) for a day. unlike the aggregates from the previous experiment where the aggregates were left dried for only 2 hours. The mortar samples were casted into cylinder-shaped and 60 mm x 120 mm sized PVC moulds. A vibrating table was used to compact the concrete. Full compaction was considered to have been achieved when air bubbles stopped appearing on the mortar surface. After vibrating, the concrete surface was finished smooth using a metal float and then covered with a polythene sheet to prevent evaporation of water from the concrete. The moulds were stripped next day and the hardened concrete samples were placed in the curing tank

3.4.1 Compression test

The cube, while still wet, was placed in the compression tester (Figure 3.0) with the cast faces in contact with the platens of the testing machine. The load on cube applied at a constant rate of stress equal to 0.2-0.4 MPa/second until it fails. The maximum load before the cube fails was taken and the compressive strength is calculated by dividing the maximum load to the cross-sectional area of the cube.

Figure 3.0: Compression tester

3.4.2 Splitting tension test

The cube, while still wet, is placed in specimen holder (Figure 4.0) with the cast faces in contact with the steel rod at both top and bottom of the specimen. The load on cube is applied at a constant rate of stress equal to 0.2-0.4 MPa/second until it fails. The maximum load before the cube fails is taken and the tensile strength is calculated by using the following equation: Where,

- P = maximum load
- D = Diameter of Specimen
- L = Height of Specimen

Figure 4.0: Specimen Holder

3.5 Milestone for Final Year Project 1

No.	Detail/ Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Selection of Project Tonic		-				-	-		-					
-	-Propose Topic			-	-		-	-		-	-	-	-	-	
	-Topic assigned to students														
2	Research Work			-	-			-		-		-		-	
	-Introduction														
	-Objective														
	-List of references/literature														
	-Project planning						_								
3	Submission of Preliminary Report														
4	Project Work			1				Tes.							
	-Reference/Literature														
	-Practical/Laboratory Work														
5	Submission of Progress Report														
6	Project work continue						-	-	The states				1000	-	and the second
	-Practical/Laboratory Work														
7	Submission of Interim Report Final Draft														
8	Oral Presentation														
9	Submission of Interim Report							-						-	

Milestone for Final Year Project 2

Detail/Week	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	E.M	W11	W12	W13	W14	SW
Preparation of Aggregates																
Mould Fabrication																
Mortar Mixing				2010												
Test																
Progress Report																
Submission																
Poster Presentation																
Dissertation Report									-		-		510-14			
Oral Presentation																Contraction of the

3.6 HSE Requirement

3.6.1 Personal Protective Equipment (PPE) Provided in Concrete Technology Laboratories

The following figures are the safety equipments that provided in the concrete laboratory in Universiti Teknologi PETRONAS:

3.6.2 HSE Procedure for Laboratory Works in Concrete Laboratory

- Wear earmuff when sieving process takes place.
- Wear glove when dealing with cement and aggregates.
- Wear rubber shoes in concrete laboratory.
- During concrete mixing, the mixer should be closed as long as the machine turned on.
- During the compression and tensile test in progress, the test zone should be isolated by closing the gate.
- All concrete waste should be put into special tank provided.

3.6.3 Hazard Analysis for DC520(Silane-water based emulsion)

Problem	Hazard Produced	Safety Precautious
DC520	 Silane is flammable and 	• Silane may be applied to damp
Silane (water-based	evolves ethanol upon	surfaces although dry surfaces are
emulsion) is harmful	cure	preferred to achieve maximum
to human and		penetration into the substrate.
environment		• Any plants or shrubs should be
		protected from exposure to the
		treatment.
		• Any material that should not be
		exposed to solvents should also be protected.
		• Do not store or use near sparks or
		open flames.
		• Do not smoke in the vicinity of
		application
		• Use in a well-ventilated area, or
		wear an air-supplied respirator.
		• Always wear protective goggles
		and gloves.
		• If inhaled, move immediately to
		fresh air. In case of skin or eye
		contact, flush immediately with
		water for 15 minutes. Remove
		contaminated clothing and shoes
		and call a physician.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Effect of Silane Coupling Agent (SCA) in concrete with three (3) different sizes of coated aggregate (10mm, 14mm and 20mm)

The following graphs are showing the results of compressive test and tensile test on the concrete samples. The sample comprises of control samples and the samples that were treated with SCA and of three sizes of coarse aggregate (10 mm, 14 mm, and 20 mm). Both compressive and tensile test have been conducted for 2nd, 7th, and 28th days of strength for all concrete mixes; Control Mix, Mix 1 (10 mm), Mix 2 (14 mm), and Mix 3 (20 mm).

4.1.1 Mix 1(10 mm)

Figure 5.1 Graph of Tensile Stress (N/mm²) versus Time (Day): Mix 1(10mm)

Figure 5.2 Graph of Compressive Stress (N/mm²) versus Time (Day): Mix 1 (10 mm)

From Figure 5.1 and Figure 5.2, the concrete with 10 mm sized and SCA coated aggregates show tensile stress and compressive stress of 3.63 N/mm^2 and 23.29 N/mm^2 at 28^{th} day of strength. In comparison to control mix, the SCA increased the tensile stress by 28.50% and decreased the compressive stress by 11.00%.

4.1.2 Mix 2 (14 mm)

Graph 2: Mix 2 (14 mm)

Figure 6.1 Graph of Tensile Stress (N/mm²) versus Time (Day): Mix 2(14mm)

Figure 6.2 Graph of Compressive Stress (N/mm²) versus Time (Day): Mix 2 (14 mm)

From Figure 6.1 and Figure 6.2, the concrete with 14 mm sized and SCA coated aggregates show tensile stress and compressive stress of 2.28 N/mm^2 and 19.43 N/mm² at 28th day of strength. In comparison to control mix, the SCA decreased both the tensile stress and compressive stress by 31.43% and 25.64% of decrement.

.

4.1.3 Mix 3 (20mm)

Figure 7.1 Graph of Tensile Stress (N/mm²) versus Time (Day) :Mix 3(20mm)

Figure 7.2 Graph of Compressive Stress (N/mm²) versus Time (Day): Mix 3 (20 mm)

From Figure 7.1 and Figure 7.2, the concrete with 20 mm sized and SCA coated aggregates show tensile stress and compressive stress of 2.15 N/mm^2 and 20.70 N/mm² at 28th day of strength. In comparison to control mix, the SCA decreased both the tensile stress and compressive stress by 12.00% and 23.61% of decrement.

4.2 Effect of Silane Coupling Agent (SCA) in mortar with three (3) different concentration of Silane that coat the aggregates.

The following graphs are showing the results of compressive test and tensile test on the mortar samples. The sample comprises of control samples and the samples with its aggregates that were treated with SCA of three different concentrations (Silane: Water) namely; 1:4, 1:8, and 1:12.Both compressive and tensile test have been conducted for 2nd, 7th, and 28th days of strength for all mortar mixes; Control Mix, Mix 1 (1:4), Mix 2 (1:8), and Mix 3 (1:12).

Figure 8.1 Graph of Tensile Stress (N/mm²) versus Time (Day); Mortar

Figure 8.2 Graph of Compressive Stress (N/mm²) versus Time (Day); Mortar

From Figure 8.1 and Figure 8.2, the mortar with its aggregates that were coated with concentration 1:4, 1:8, and 1:12 show tensile stress of 2.98 N/mm², 2.93N/mm², and 3.21N/mm² and the compressive stress of 7.98N/mm², 13.23N/mm² and 17.57 N/mm² at 28th day of strength. In comparison to control mix, the SCA decreased the tensile stress for all mixes; Mix 1, Mix 2, and Mix 3 by 30.37%, 31.54%, 25.00% of decrement, so as the compressive stress for all mixes; Mix 1, Mix 2, and Mix 3 that are decreased by 59.39%, 32.69%, 10.57% of decrement.

4.3 Overall Summary of Results

Two set of experimental programme were done to ascertain the early hypothesis which says that SCA is believed, capable of increasing the bond strength and durability of concrete by providing the chemical bridge to connect the inorganic materials especially silicon-containing materials and resin, in a hope it could manage to behave the exact way connecting inorganic materials in the concrete (such as cement paste and stone).

On the first experimental programme, two types of concrete mix were produced; control mix and concrete mix with its aggregates coated with SCA. In a way to have an adds-value, the concrete mix is further divided into 3 distinctive classes of samples by varying the coarse aggregates size (10mm, 14mm, and 20mm) to verify and observe the optimum aggregate size that will result in highest tensile strength.

According to the experience of composite technology, concentration of SCA aqueous solutions has a significant influence on the bond strength of composites. On the one hand, an aqueous SCA solution with a very low concentration may be not enough to create a SCA network that fully covers the surface of an inorganic material, resulting in lower bond strength. On the other hand, an aqueous SCA solution with a very high concentration may induce a multiple molecular layer on the surface, creating a porous physically absorbent layer, leading to much lower bond strength. Conclusively, the second experimental programme was conducted to determine the optimum Silane concentration that will result in highest tensile strength by varying the Silane concentration into three distinctive values in accordance to the ratio of Silane: Water (1:4, 1:8, and 1:12) and water is being used because DC520 is a Silane water-based and it only can be solved by water.

From the methodology perspective, during the first experiment, the aggregates coated with Silane were left dried for only 2 hours right after the coating took place. Unlike the first experiment, the aggregates coated with Silane were left dried for a day-long during the second experiment. The author deliberately altered this particular method to investigate how the drying period would effect the outcome.

Looking at the results for the first experiment, we may observe that at 28th day's strength, all compressive stress of concrete specimens gave lower value in comparison to the compressive stress of control mix. Same thing happened to tensile stress, except for the concrete with 10mm aggregates that gave some increment in the tensile strength compare to the control mix. This indicates that SCA somehow have managed to improve the tensile strength of concrete; however the proper way of implementing Silane is still in ambiguous stage. Another reason why concrete with 10mm aggregates exhibited highest tensile strength out of other aggregates size might due to larger surface area of the aggregates that give more contact between hardened cement paste and aggregates.

For the second experiment, the mortar that was being incorporated with SCA continually to exhibit weaker tensile and compressive strength in comparison to the control mix. However, the author somehow obtained one finding, which by, the less the concentration of Silane, the stronger the strength performance of mortar.

Finally, pertaining to the drying period of coated aggregates, it can be observed that lengthening the drying period has no significant effect to the strength performance of concrete.

- 37 -

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This Final Year Project is concern in producing High Tensile Strength Concrete as it is generally known that 'concrete is strong in resisting compressive stress and weak in resisting tensile stress'. In order to achieve this objective, study on the failure mechanism of concrete was carried out that lead to one simple conclusion saying that Interfacial Transition Zone (ITZ) is what that triggered the crack formation in concrete which subsequently lead to the failure for any particular concrete.

During the first semester, the focus was on doing literature review concerning the matter on concrete properties, concrete failure mechanism, and some remedial measures to improve the tensile strength of concrete. Secondly, the research on the inorganic compound that is to be implemented in the concrete mix to improve the tensile strength of concrete was carried out and as a result, Silane Coupling Agent (SCA) was chosen. The first experimental programme focused on experimenting the effect of SCA on the tensile strength of concrete and determining the optimum aggregate size that will result in highest tensile strength

For this second semester, the focus was also on experimenting the effect of SCA on the tensile strength of mortar and determining the optimum concentration of SCA that is used to coat the aggregates. Based on the results obtained, we may conclude that SCA most likely not an inorganic compound that is able to increase the tensile strength of concrete and mortar. However, there is a research which proved the success of increasing the strength of concrete by implementing SCA in the concrete mix. Sustaining to that matter, further research can be done especially on the method mixing and how to implement SCA in the mix correctly, as those are still in the ambiguous stage.

REFERENCES

- G.Raccio and R.Zerbino. Failure Mechanism of Concrete (Combined Effects of Coarse Aggregates and Strength Level).1998.
- [2] Mehta PK, Monterio PJM. Concrete structure, properties and materials, vol. 2. New Jersey: Prentice Hall; 1993. p.548.
- [3] Kartini Kamaruddin.Construction Material (Second Edition).University of Technology MARA Shah Alam.
- [4] Concrete Basics-A guide to Concrete Practice. Cement Concrete & Aggregate Australia. Sixth Edition August 2004.
- [5] Guangjing Xiong, Baiyun Luo, Xiang Wu, Gengying Li and Liqiang Chen, 2005 "Influence of Silane coupling agent on quality of interfacial transition zone between concrete substrate repairs materials", Department of Civil Engineering, Shantou University, Shantou 515063, PR China.
- [6] Tülin Akçaoğlu, Mustafa Tokyay and Tahir çelik, 2002 "Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete", Civil Engineering Department, Eastern Mediterranean University and Middle East Technical Eastern Mediterranean University, Turkey.
- [7] A.M Neville, Properties of Concrete, 1963-1995

			26/	8/08
	Reference or			
			Yalors	
Characteristic strength	Specified	×	N/men* at	13 Aug
		Fropostilien defective	6	
Standard deviation	Fig 1		nen' or no data	B Nimet
Margin	CI	(k= 100) 100 p	=	(k 12 N/mat
Target mean strength	C	30 4		42.11 Nime
Cement type	Specified	OPCISRPCIRHPC		A spinster
Aggregate type: coarse Aggregate type: fine		fos Haves		
Free-water/coment ratio	Table 2, Fig 4		Use the lower value	
Maximum free-water[coment ratio	Specified			
Slump or V-B	Specified	Slump 18	mm or V-B	
Maximum aggregate size	Specified			10 mm
Free-water content	Table 3			255 kg/m ³
Cement content	a	233 ÷ .		121-6 kg/m ³
Maximum cement content	Specified			kg/m³
Minimum cement content	Specified	kg/m² — U	lse if greater than and calculate Rem	ltem 3.1 3.4
Modified free-water/cement ratio				
Relative density of aggregate (SSD	,	<u></u>	iown/assumed	
Concrate density	Fig 5			<u>2365 kg/m</u>
Total aggregate content	a			1708 4 kg/m
Grading of fine aggregate	BS 852			
Propertion of fine aggregate	Fill		6 3	per cer
	1	E more x	***	284 4. Kgin
Fine alteregate content				
Fine aggregate content Coarse aggregate content			140 =	413-4 kg/m
Fine aggregate content Coarse aggregate content	Cement	Water I	int o m.	473-9_kg/m
Fine aggregate content Coarse aggregate content	Censent (Xp)	Water I (kg or 1) 0	in aggregate	473 S kg/m Coarse aggregate (kg)
Fine augregate content Coarse augregate content es X	Censent Opp	Water (Ag or 1)		413-5 kg/m Coarse acgregate (kg) 915

AN

Item Reference or milevalation Values 1.1 Characteristic strength Specified 36 Nimm* or as 32 $4ag$ 1.2 Standard deviation Fig 3 Nimm* or as 32 $4ag$ 1.3 Margin Cl $(k = 1.6a)$ $1.64 \times x = 3.12$ $31.06ag$ 1.4 Target mean strength Cl $(k = 1.6a)$ $1.64 \times x = 3.12$ $31.06ag$ 1.4 Target mean strength Cl $(k = 1.6a)$ $1.64 \times x = 3.12$ $31.06ag$ 1.4 Target mean strength Cl $(k = 1.6a)$ $1.64 \times x = 3.12$ $31.06ag$ 1.4 Target mean strength Cl $(k = 1.6a)$ $1.64 \times x = 3.12$ $31.06ag$ 6 Aggregate type Specified OPC/SRPC/REPC $3.06g$
Value 1.1 Characteristic strength Specified 40 Nime* at 33 day 1.2 Standard deviation Fig 3 Nime* at 33 day 13 Margin Cl (k = 1 + 44 1 + 44 34 34 36 14 1.4 Target mean strength Cl (k = 1 + 44 1 + 44 34 34 36 16
12 Standard deviation Fig 3 Nimm* at34day 13 Margin Ci (k = 1.64 _) 1.64 ×
1.3 Margin Ci (k = 1.04) N/ma* or no data 3 Nima 1.4 Target mean sircogth Ci (k = 1.04) 1.14 + X X 4 4 1.14 + X X X 4 1.14 + X X X 1.14 + X X X 1.14 + X X X X X X X X X X X
1.4 Target mean strength C1 (k = 1.44) 1.44 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
1.5 Cement type Specified OPC/SRPC/RHFC Impact type Sime 6.6 Assregate type: coarse Impact and type Sime Impact and type 7 Free-water/cement ratio Table 2, Fig 4 0.95 Use the lower value 8 Maximum free-water/cement ratio Specified Simp 75 mm or V.B Shamp or V-B Specified Stamp 75 mm or V.B Impact the type Maximum aggregate size Specified Stamp 75 mm or V.B Impact type Cement content Co 2.19 0.95 3.49.12 kg/m² Maximum cement content Specified Specified Impact type kg/m² kg/m² Modified free-water/cement ratio Specified kg/m² Use if greater than Item 3.1 and calculate Item 3.4 Modified free-water/cement ratio Impact type
-b Aggregate type: coarse Aggregate type: fine Or Openet Internated 7 Free-water/content ratio Table 2, Fig 4 0.95 7 Free-water/content ratio Table 2, Fig 4 0.95 8 Maximum free-water/content ratio Specified 0.95 9 Maximum aggregate size Specified Slump 15 mm or V-B 9 Maximum aggregate size Specified 14 kg/m² 9 Maximum cement content Table 3 249 2.95 1.49.2 kg/m² 19 Maximum cement content Specified 149.2 kg/m² kg/m² Modified free-water/coment ratio Specified kg/m² 0.95 1.49.2 kg/m² Modified free-water/coment ratio Specified kg/m² 0.95 1.49.2 kg/m² Modified free-water/coment ratio Specified kg/m² 0.95 1.49.2 kg/m² Relative density of aggregate (SSD) 1.7 known/assumed 1.7 known/assumed
Image: second
Maximum free-water/cement ratio Specified Use the lower value Shomp or V-B Specified Stump 15 mm or V-B Maximum aggregate size Specified Stump 15 mm or V-B 14 Maximum aggregate size Specified Stump 15 mm or V-B 14 mm Maximum aggregate size Specified 14 Agint 14 kgint Cement content Table 3 214 6.95 345.2 kg/m² Maximum cement content Specified kg/m² 0.95 345.2 kg/m² Maximum cement content Specified kg/m² 0.95 345.2 kg/m² Modified free-water/vement ratio Specified kg/m² use if greater than item 3.1 and calculate item 3.4 Relative density of aggregate (SSD) 1-7 known/assumed 2340 kg/m² Concress density Fig 5 2340 kg/m² 340 kg/m²
Slomp or V-B Specified Stomp 1s mm or V-B Maximum aggregate size Specified
Specified Stump 1s mm or V-B Maximum aggregate size Specified
Free-water content Table 3
Cernent content C3 <u>219</u> ± 0.55 = <u>149.02</u> kg/m ² Maximum cement content Specified
Cancent content C3 214 2 055 345.2 kg/m Maximum cement content Specified kg/m ⁴ 055 145.2 kg/m Minimum cement content Specified kg/m ⁴ Use if greater than item 3.1 and calculate item 3.4 Modified free-water/cempit ratio x7 known/kasurned Relative density of segregate (SSD) x7 known/kasurned Concrete density Fig 5 2346 kg/m ²
Maximum cement content Specified kg/m Maximum cement content Specified kg/m ⁴ —Use if greater than Item 3.1 and calculate Item 3.4 Modified free-water/coment ratio and calculate Item 3.4 Relative idensity of segregate (SSD) 1.4 known/assumed Concrete idensity Frg 5 2340 kg/m ²
Alad lited free-water/coment ratio Retailve density of segregate (SSD) Concrete density Fig 5 And calculate litem 3.4 And calculate litem 3.4
Relative density of segregate (SSD) 1-7 known/assumed Concrete density . Fig 5
Concrete density of segregate (SSD)
1 UKU THINKIN CALLER IN THE REAL PROPERTY AND A REAL PROPERTY AND
kgim ³
Grading of the aggregate BS 82 Zage
Proportion at the automate Fig 6 Proportion at the percent
The apprente comments and the second se
Coarse actropate (AD)
internet 2 Agr
12 07 _ 2 2 2 ¹ m ²

MIX 3 Concrete mix design form Item Reference or calculation Vulues LI Characteristic strength Specified_ 14/mm* at____ave days Proportion defective 15 12 Standard deviation PET CESH Fig] + N/ment or no data _____ X 1.3 Margin (k= 164] 164 × 1 1.4 5 Cornent type OPC/SRPC/RHPC Aggregate type: coarse aushedi Aggregate type: fine Free-water/scenent ratio Table 2, Fig 4 -Use the lower value Maximum free-water/cement ratio Specified Slump or V-B Specified Slump____ mm or V-B Maximum aggregate size 20 Free-water content Table 3 kg/m³ kg/mª Matainaun coment contant kg/m² Minimum coment contrat kg/m² - Use if greater than Item 3.1 and calculate Item 3.4 Relative density of aggregate (SSD) Concrete density Fig 5 kg/m³ Total aggregate content C4 Grading of fine aggregate Proportion of fine aggregate Fine aggregate content Coarse aggregate content (to nearest 5 kg)

				MIX SCA 10	1: Omm							
				Contro	I Mix							
Day		2			7			28				
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)			
Tensile	3.617	46.7	1.487	3.634	52.8	1.681	3.63	88.7	2.822			
Compress	3.644	113.1	14.4	3.616	165.9	21.12	3.63	205.5	26.17			
				Split Tens	ile Test							
Day		2			7			28				
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)			
S1	3.631	61.2	1.949	3.571	58.5	1.863	3.66	114.8	3.654			
S2	3.485	101.8	3.241	3.476	64.6	2.058	3.6	113	3.598			
S3	3.374	61.2	1.948	3.268	62.9	2.003						
Average		61.2	1.949		62	1.975		113.9	3.626			
				Compress	ion Test							
Day		2			7			28				
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)			
S1	3.473	133.2	16.96	3.677	169	21.51	3.64	175.6	22.36			
S2	3.26	92.1	11.72	3.607	194.1	24.71	3.52	143.8	18.31			
S3	3.459	130.9	16.66	3.608	166.5	21.19	3.45	190.2	24.21			
Average		132.05	16.81		176.53	22.47		182.9	23.29			
desistant.				Summ	ary							
	C	Control	S	CA								
Day	Tensile	Compression	Tensile	Compression								
2	1.487	14.4	1.949	16.81								
7	1.681	21.12	1.975	22.47								
28	2.822	26.17	3.626	23.29								

I Start The				MIX SCA 14	2: Imm				
ontrol Mix							and the second second		
Day		2			7			28	
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)
Tensile	3.709	67.6	2.152	3.749	64.4	2.051	3.728	104.6	3.328
Compress	3.734	231.6	29.49	3.721	223.7	28.49	3.76	205.2	26.13
				Split Tens	ile Test				
Day		2			7			28	
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)
S1	3.659	65.2	2.076	3.626	62.8	1.998	3.638	96.6	3.074
S2	3.444	59.7	1.9	3.347	66.4	2.112	3.545	65.1	2.071
S3	3.386	55.6	1.771	3.539	70	2.227	3.64	90.8	2.89
Average		60.17	1.916		68.2	2.170		93.7	2.982
				Compress	ion Test				
Day	a state of the second	2			7			28	
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²
S1	3.476	134.2	17.09	3.649	188.1	23.95	3.643	168.1	21.4
S2	3.409	116.6	14.85	3.662	187.6	23.89	3.901	147.7	18.8
S3	3.609	158.9	20.23	3.483	139.2	17.73	3.661	142.1	18.09
Average		146.55	18.66		187.85	23.92		152.63	19.43
				Summ	ary				
	C	Control	S	CA					
Day	Tensile	Compression	Tensile	Compression					
2	2.152	29.49	1.916	18.66					
7	2.051	28.49	2.170	23.92					
28	3.328	26.13	2.282	19.43					

Appendix B-2 Compression and Tensile Tests Results for Mix 2(14 mm)

	Appendix B-	3 Compression	and Tensile 7	Cests Results for	· Mix 3(20 mm))			
				MIX SCA 20	3: Imm				
ontrol Mix									
Day		3			10	28	3		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)
Tensile	3.816	78.9	2.511	3.8	80.1	2.551	3.791	76.9	2.448
Compress	3.799	160.9	20.48	3.79	219.4	27.93	3.73	212.1	27.01
				Split Tens	ile Test				
Day		3			10			28	
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)
S1	3.709	82	2.611	3.76	72.7	2.316	3.747	65.9	2.098
S2	3.766	58.2	1.854	3.693	65	2.068	3.638	66.6	2.119
S3	3.635	69	2.196	3.547	76.1	2.423	3.631	70.5	2.244
Average		63.6	2.025		74.40	2.370		67.67	2.154
				Compressi	ion Test				
Dav		3			10			28	
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)
S1	3.513	153.4	19.53	3.814	194.2	24.72	3.743	162.4	20.68
S2	3.802	135.3	17.23	3.611	158.5	20.18	3.774	170.4	21.69
S 3	3.77	133.7	17.02	3.68	203.8	25.95	3.59	155	19.74
Average		134.5	17.125		199	25.335		162.6	20.703
				Summ	ary				
	0	Control	S	CA					
Day	Tensile	Compression	Tensile	Compression					
3	2.511	20.48	2.025	17.125					
10	2.551	27.93	2.370	25.335					
28	2.448	27.01	2.154	20.703					

				CON	TROL				
				Split Ter	sile Test				
Day		2			7		28		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²
S1	705.5	30.6	2.946	702.29	51.1	4.929	712.81	48.3	4.659
S2	691.54	24.7	2.378	693.72	31.5	3.035	697.02	38.6	3.719
S3	693.76	22.2	2.137	714.16	39.9	3.853	692.38	46.2	4.461
Average		25.833	2.487		40.833	3.939		44.367	4.280
				Compres	sion Test				
Day		2			7		28		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²
S1	700.3	42.5	17.88	705.13	42	17.69	712.69	46.1	19.39
S2	712.27	43.2	18.19	682.43	44.2	18.6	704.42	48.9	20.57
S3	742.61	39	16.4	727.89	41.6	17.51	706.29	45.1	18.99
Average		41.567	17.490		42.600	17.933		46.700	19.650
				Sum	mary				
	C	ontrol							
Day	Tensile	Compression							
2	2.487	17.49							
7	3.939	17.933							
28	4.280	19.65							

Appendix C-1 Compression and Tensile Tests Results for Control Mix

				MI	X 1				
				Split Ter	sile Test				
Day		2			7		28		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²
S1	673.06	23.5	2.265	676.24	22.642	2.068	652.16	38.1	3.672
S2	652.11	33.5	3.228	654.85	33.715	2.638	692.18	21.1	2.036
S3	667.9	35.1	3.386	668.9	30.239	2.768	690.81	33.4	3.22
Average		30.700	2.960		28.865	2.491		30.867	2.976
				Compres	sion Test				
Day		2			7		28		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²
S1	672.57	23.6	9.936	659.56	13.664	5.751	681.29	25.1	10.57
S2	666.7	19	8.003	678.61	22.074	9.291	651.05	11.8	4.973
S3	678.97	17.9	7.549	640.89	14.969	6.301	679.92	19.9	8.384
Average		20.167	8.496		16.902	7.114		18.933	7.976
				Sum	mary				
	1	VIX 1							
Day	Tensile	Compression							
2	2.96	8.496							
7	2.491	7.114							
28	2 976	7 976							

Appendix C-2 Compression and Tensile Tests Results for Mix 1

				MI	X 2					
				Split Ter	sile Test					
Day		2			7			28		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	
S1	683.22	22.5	2.166	664.48	22.4	2.156	681.91	21.5	2.073	
S2	672.49	11.1	1.069	675.56	19.1	1.739	684.68	39.6	3.821	
S3	682.54	25.2	2.428	661.94	22.3	2.098	679.47	29.9	2.886	
Average		19.600	1.888		21.267	1.998		30.333	2.927	
				Compres	sion Test					
Day		2			7		28			
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	
S1	662.09	26	10.93	664.05	23.7	9.957	684.12	31.6	13.29	
S2	673.19	26	10.92	672.2	32.9	13.83	682.27	29.1	12.25	
S3	684.06	25.3	10.64	667.37	33.7	14.17	680.67	33.6	14.14	
Average		25.767	10.830		30.100	12.652		31.433	13.227	
				Sum	mary					
	N	VIIX 2								
Day	Tensile	Compression								
2	1.888	10.83								
7	1.998	12.652								
28	2.927	13.227								

Appendix C-3 Compression and Tensile Tests Results for Mix 2

- 48 -

				ML	X 3				
				Split Ter	sile Test				
Day		2			7		28		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²
S1	698.44	25	2.31	676.89	30.7	2.851	691.16	39.1	3.769
S2	697.18	15.6	1.445	698.77	34.7	3.125	696.57	34.2	3.297
S3	698.19	27.8	2.533	703.26	36.9	3.345	699.48	36.6	2.565
Average		22.800	2.096		34.100	3.107		36.633	3.210
				Compres	sion Test				
Day		2			7		28		
	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²)	Weight (kg)	Max. Load (kN)	Stress (N/mm ²
S1	690.37	32.1	13.52	683.85	37.9	15.81	703.78	37.3	15.88
S2	682.88	35.4	14.9	684.81	35.9	14.89	702.59	39.5	16.64
S3	709.47	37.3	15.68	697.34	39.4	16.60	682.6	48	20.2
Average		34.933	14.700		37.733	15.767		41.600	17.573
				Sum	mary				
	C	ontrol							
Day	Tensile	Compression							
2	2.096	14.7							
7	3.107	15.767							
28	3.21	17 573							