Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

DESIGN OF A SEMI-ACTIVE STEERING SYSTEM FOR A PASSENGER CAR

BAHAROM, Masri (2008) DESIGN OF A SEMI-ACTIVE STEERING SYSTEM FOR A PASSENGER CAR. PhD thesis, University of Bradford.

[img] PDF
Download (7Mb)

Abstract

This thesis presents research into an improved active steering system technology for a passenger car road vehicle, based on the concept of steer-by-wire (SBW) but possessing additional safety features and advanced control algorithms to enable active steering intervention. An innovative active steering system has been developed as 'Semi-Active Steering' (SAS) in which the rigid steering shaft is replaced with a low stiffness resilient shaft (LSRS). This allows active steer to be performed by producing more or less steer angle to the front steered road wheels relative to the steering wheel input angle. The system could switch to either being 'active' or 'conventional' depending on the running conditions of the vehicle; e.g. during normal driving conditions, the steering system behaves similarly to a power-assisted steering system, but under extreme conditions the control system may intervene in the vehicle driving control. The driver control input at the steering wheel is transmitted to the steered wheels via a controlled steering motor and in the event of motor failure, the LSRS provides a basic steering function. During operation of the SAS, a reaction motor applies counter torque to the steering wheel which simulates the steering 'feel' experienced in a conventional steering system and also applies equal and opposite counter torque to eliminate disturbance force from being felt at the steering wheel during active control operation. The thesis starts with the development of a mathematical model for a cornering road vehicle fitted with hydraulic power-assisted steering, in order to understand the relationships between steering characteristics such as steering feel, steering wheel torque and power boost characteristic. The mathematical model is then used to predict the behaviour of a vehicle fitted with the LSRS to represent the SAS system in the event of system failure. The theoretical minimum range of stiffness values of the flexible shaft to maintain safe driving was predicted. Experiments on a real vehicle fitted with an LSRS steering shaft simulator have been conducted in order to validate the mathematical model. It was found that a vehicle fitted with a suitable range of steering shaft stiffness was stable and safe to be driven. The mathematical model was also used to predict vehicle characteristics under different driving conditions which were impossible to conduct safely as experiments. Novel control algorithms for the SAS system were developed to include two main criteria, viz. power-assistance and active steer. An ideal power boost characteristic curve for a hydraulic power-assisted steering was selected and modified and a control strategy similar to Steer-by-Wire (SBW) was implemented on the SAS system. A full-vehicle computer model of a selected passenger car was generated using ADAMS/car software in order to demonstrate the implementation of the proposed SAS system. The power-assistance characteristics were optimized and parameters were determined by using an iteration technique inside the ADAMS/car software. An example of an open-loop control system was selected to demonstrate how the vehicle could display either under-steer or over-steer depending on the vehicle motion. The simulation results showed that a vehicle fitted with the SAS system could have a much better performance in terms of safety and vehicle control as compared to a conventional vehicle. The characteristics of the SAS system met all the requirements of a robust steering system. It is concluded that the SAS has advantages which could lead to its being safely fitted to passenger cars in the future. Keywords: steer-by-wire, active steering, innovative, power-assisted steering, steering control, flexible shaft, steering intervention, system failure, safety features.

Item Type: Thesis (PhD)
Subject: T Technology > T Technology (General)
Divisions: Engineering
Depositing User: Users 2053 not found.
Date Deposited: 30 Sep 2013 16:55
Last Modified: 25 Jan 2017 09:44
URI: http://utpedia.utp.edu.my/id/eprint/7483

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...