
MOBILE ROBOTS: OBSTACLE AVOIDANCE AND MANUVERING

By

MOHD SHAHRIMAN B M SHARIF

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Department
In Partial Fulfillment of the Requirements

For the Degree
Bachelor of Engineering

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

©Copyright 2004
By

Mohd Shahriman B M Sharif,2004

CERTIFICATION OF APPROVAL

MOBILE ROBOTS: OBSTACLE AVOIDANCE AND MANUEVERING

By

Mohd Shahriman B M Sharif

A projectdissertation submitted to the

Electrical Electronics Engineering Programme

Universiti Teknologi Petronas

In partial fulfillment for the

Bachelor ofEngineering (Hons)

(Electrical & Electronics Engineering)

Mr Mohd Haris B Md Khir

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERIISKANDAR

31750 TRONOHPERAK

DECEMBER 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is of my own except as specified in the reference and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified source or persons.

man B M Sharif

ACKNOWLEDGEMENTS

In The name ofAllah the Beneficent, the Merciful

My utmost gratitude to Mr Mohd Haris Mohd Khir for allowing me to do a Final Year

Project under his supervisions. Even with a tight time schedule, he has managed to

support and give advices which are the key factor of finishing the project in time.

Without his relentless effort to guide and supervise me, the project will not have been

successful.

I would like to record my thank to Ms Nasreen and Mr Zuki, the coodirnator of Final

Year Project. Without their management and coordination, the flow of this project

might not be as expected.

Special thanks to Ms Siti Hawa who has given me numerous technical supports as a

lab technician. She has been helpful to prepare the electronics components and parts

for the project.

Very special thanks to Azizan B Hashim, who has taught and give advice to me in

many areas which was not known to me before. His help in giving ideas and

programming skills is also one of the key factors of the success of this project.

Special thanks to Sarah Liyana Bt Roseley for being supportive in many ways through

out this project. Without her warm support this project might not reach this level.

Last but not least, my utmost gratitude to my father M Sharif B M Lani and mother

Nor Asmara Bt Ishak which has brought me up and help in many ways unimaginable.

Only god may repay them. Also to my friends who have been supportive during the

period of this project were held. Not to forget to all others who have help in the

project directly and indirectly and might not be mentioned here.

in

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL

CERTIFICATION OF ORIGINALITY

ACKNOWLEDGEMENTS

TABLE OF CONTENTS 4

LIST OF FIGURES 6

LIST OF TABLES 7

ABSTRACT 8

CHAPTER 1: INTRODUCTION 9

1.1 BACKGROUND OF STUDY 9

1.2 PROBLEM STATEMENT 10

1.3 OBJECTIVE AND SCOPE OF STUDY 11

1.4 THE RELEVANCY OF THE PROJECT 12

1.5 FEASIBILITY OF THE PROJECT WITHIN SCOPE AND TIME FRAME

12

CHAPTER 2: LITERATURE REVIEW AND/OR THEORY 13

2.1 STRUCTURE 13

2.2 MOBILITY AND MOVEMENTS 13

2.3 POWER DISTRIBUTION AND FAIL SAFE 14

2.4 SENSORS 15

2.5 MICROCONTROLLER 18

2.6 DIFFERENTIAL DRIVE CONTROL ALGORITHM 18

CHAPTER 3: METHODOLOGY OF PROJECT WORK 21

CHAPTER 4: RESULTS AND DISCUSSION 24

4.1 STRUCTURE AND MOBILITY 24

4.2 POWER DISTRIBUTION AND FAIL SAFE 26

4.3 ROTARY ENCODER 28

4.4 INFRARED SENSOR 31

4.5 ULTRASONIC SENSOR 33

4.6 LINE FOLLOWER 34

4.7 MICROPROCESSORS 35

4.8 ALGORITHM 38

4.8.1 Coordinate to path conversion 38
4.8.2 Dead reckoning. 39
4.8.3 Error correction codes 40

4.8.4 Obstacle Avoidance 41

4.8.5 Line Follower 44

4.9 DRIVE CIRCUIT 45

4.10 RS232 COMMUNICATION 47

4.11 SERVO CONTROLLER 48

4.12 AS A WHOLE 50

CHAPTER 5: RECOMMENDATION 52

5.1 STRUCTURE DESIGN 52

5.2 DATA COMMUNICATION 52

5.3 ACCURACY 52

5.4 ACTUATORS 53

CHAPTER 6: CONCLUSION 54

REFERENCES 56

APPENDIX A: MAIN SOURCE CODES 57

APPENDIX B: SERVO CONTROLLER SOURCE CODES 86

APPENDIX C: MOBILE ROBOT PARTS 88

APPENDIX D:L298 DATASHEET 91

APPENDIX E:PIC16F877 DATASHEET 92

APPENDIX F:PIC16F84A DATASHEET 93

APPENDIX G: OPERATION MANUAL 94

APPENDIX H: COMPONENTS LIST 95

APPENDIX I: ALGORITHM FLOWCHART 99

LIST OF FIGURES

FIGURE 2-1 A SIMPLE BLACK & WHITE ENCODER 15

FIGURE 2-2 IS1U60 INFRARED DETECTOR 16

FIGURE 2-3 PIC 16F877 FROM MICROCHIP 18

FIGURE 3-1 FLOW OF DESIGN 21

FIGURE 3-2 WORKFLOW FOR PART OR STAGES 22

FIGURE 4-1 LOCATION OF MOTOR AND TIRES IN RADIUS 24

FIGURE 4-2 ACTUAL DESIGN IMPLEMENTATIONS 25

FIGURE 4-3 ORTHOGRAPHIC DRAWING 25

FIGURE 4-4 5V VOLTAGE REGULATOR 27

FIGURE 4-5 A SIMPLE BLACK & WHITE ENCODER 28

FIGURE 4-6 OUTPUT SIGNAL FROM ENCODERS 29

FIGURE 4-7 INFRARED TRANSMITTER AND DETECTOR 30

FIGURE 4-8 INFRARED TX OSCILLATOR 31

FIGURE 4-9 MODULATED INFRARED SIGNALS 32

FIGURE 4-10 LINE FOLLOWER SENSOR 34

FIGURE 4-11 LINE FOLLOWER ALGORITHM 34

FIGURE 4-12 MICROCONTROLLER CONNECTIONS 36

FIGURE 4-13 AXIS ALGORITHM 38

FIGURE 4-14 DEAD RECKONING ALGORITHM 39

FIGURE 4-15 PWM NEEDED FOR A STRAIGHT LINE 40

FIGURE 4-16 ERROR CORRECTION CODES ALGORITHM 41

FIGURE 4-17 CASE 1: SIMPLE OBSTACLE (SAME ALGORITHM ON LEFT OR
RIGHT MOVEMENT) 41

FIGURE 4-18 CASE 2: OBSTACLE ON THE LEFT OR RIGHT (SAME
ALGORITHM ON LEFT OR RIGHT MOVEMENT) 42

FIGURE 4-19 CASE 3: WALL OBSTACLE (SAME ALGORITHM ON LEFT OR
RIGHT MOVEMENT) 43

FIGURE 4-20 OBSTACLE AVOIDANCE ALGORITHM 44

FIGURE 4-21 LINE FOLLOWER ALGORITHM 45

FIGURE 4-22 DOUBLE 4 A H-BRIDGE 46

FIGURE 4-23 RS232 COMMUNICATION CIRCUIT MODULE 47

FIGURE 4-24 WIDTH OF PWM FOR SERVE @ CASTER 48
FIGURE 4-25 SERVO CONTROLLER 49

FIGURE 4-26 PATH OF ROBOT 50

FIGURE 0-1 FRONT SETUP MOUNT OF EACH TIRES 88

FIGURE 0-2 INFRARED / ROTARY ENCODER / STRIPES 88

FIGURE 0-3 ULTRASONIC TRANSMITTER AND RECEIVER 89

FIGURE 0-4 INFRARED TRANSMITTER / DETECTOR 89

FIGURE 0-5 REAR SERVO CONTROL CASTER 89

FIGURE 0-6 THE WHOLE ROBOT LAYOUT 90

LIST OF TABLES

TABLE 3-1 SEQUENCE OF PARTS AND TOOLS 23
TABLE 4-1 SPECIFICATION OF THE STRUCTURE 26

TABLE 4-2 SPECIFICATION OF VOLTAGE REGULATOR BOARD 27

TABLE 4-3 BINARY STATES FOR MOVEMENTS 37

TABLE 4-4 MICROCONTROLLER BOARD SPECIFICATION ^7

TABLE 4-5 WIDTH OF PWMFOR SERVE @ CASTER 48

ABSTRACT

The objective of the project is to design and implement a mobile robot. The robot

will be able to avoid obstacles and have its own decision making capability. It will be

a part of the preparation for the department of Electrical Electronics Engineering

University Teknoiogi Petronas for various activities which require robotics design

participation. As one of the final year electrical electronics student I have been given

the chance to be part of the path finding.

The scope of the study will be mainly on the design and implementation of the

robot from scratch or little knowledge. The study will be handled part by part for

components needed for the robot. First will be the structure of the robot. Next the

mobility and drive circuit will be design to enable the robot to be mobile. Sensors will

be put in place so that the robot is able to "feel" and "see" it's surrounding. When this

is done a "brain" or microcontroller will be put in place so that it is able to control

itself and make simple decision.

The methodology or approach can be divided into software and hardware.

Basically the same methodology will be use again and again in the module design

process. Finally the parts will be integrated as one mobile robot. This will become the

final robot.

In the discussion part, the findings are being discussed in detail. The problem and

the solution for the problem is being discussed base on the student point of view. The

reader might get the idea on the limitations of a mobile robot as the size and weight

increases. These are the factors that are becoming the bottle neck in this design

project.

Before ending the chapter, some recommendation has been suggested for further

improvement by future robotics builder. The suggestions are made base on ^q current

available technology and also the experience gain by the student through out this

design project.

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND OF STUDY

Autonomous robot has become common in this new world of high technology.

Autonomous means that the robot is able to be stand alone in doing some decision

making such as avoiding obstacle and also to follow certain path without any human

intervention. This is normally related to artificial intelligent which is still being study

in leading university through out the world. The intelligence of the alporithm is

implemented in small and even large scale robots.

The robot diverse from the type of the movement to the type of environment

they were created for. There are bipedal robots which move on two sets of "foot" and

also there are robots which use tires to move. There even robots which can fly with

the help of some wings or blades which commonly originates form model planes or

helicopters. What ever the size or the environment it is built for, the function of the

robot is crucial depending on the task that has been specified for it. NASA astonishes

the world when 2 of their autonomous robot have been safely landed on the surface of

mars. These robots were sent to Mars due to the environment which is hostile to the

human at the moment. These robots were able to conduct some experiments to gather

information for the scientist millions of miles away. The crucial thing here is that both

of these robots are autonomous. They are able to make decision on what path to

choose and able to avoid any accident such as ending up in a crater. TL is is r^.ll

obstacle avoidance intelligence.

1.2 PROBLEM STATEMENT

There is a need to design robot that is capable of carrying very high load which

is roughly around 10kg. The robot must be mobile, which means the robot must be

able to move in the direction required. Sensors must be use as to give information of

the surrounding to the robots. These will be the eyes and ears for the robots. Finally

the robot must be intelligent enough to think or decide on its own to do certain task

such as avoiding obstacles on the route that has been predetermine.

Through out the period of study all these parts of the robot has been design and

develop and finally integrated into one working robot. The robot has been developed

part by part as to ensure the parts are working before all the components are

integrated. The project is significant as it will develop the fundamentals of robotics

needed for the university to further the study on this exciting area of electrical

electronics engineering. Fields such as circuit design drive design, micro processing,

programming and mechanical design is being used to achieve this.

10

1.3 OBJECTIVE AND SCOPE OF STUDY

The objective of the study is to design and implement the mobile robot with the

obstacle avoidance capability. Besides that the robot must also be able to handle

heavy load. This has lead to design of sub parts of the robots

1.3.1. Structure design

The robot will need a structure or base body for the whole part can reside. The

challenge is to design a sturdy body without compensating on the weight. Heavy

weight for the body will lead to more power consumption and heavier on the design

for the motor and gearing.

1.3.2. Mobility and movement

In order to be mobile, the robot needs to have "legs" to move. The design will

only concentrate on robots which move using dc motors and tires. The specifications

of the motor depend largely on the type of load that the robot will carry. These will be

the major constraint besides the availability of the component locally. Drive circuit

might also be needed to control the current and voltage supplied to the motors.

1.3.3. Power distribution and fail safe

The power that is being supplied to all the components needs to be regulated at

a certain value. This will lead to some design on the power system for the robot. Some

circuit will be needed to check the voltage status of the robot and also the charging of

the batteries on the robot. As the size of the robot is relative large a fail safe

mechanism will be implemented to avoid any hazard to its surrounding. Example of

this fail safe is fuses and also current sensors.

1.3.4. Sensors

Sensors are transducers that can be used to measure some parameter of the

surrounding. This information will then be process by the microprocessors to check

for some event that will trigger another event. This is a way for the robot to see the

world around it.

11

1.3.5. Microprocessors or Microcontrollers

Microprocessors or microcontrollers are the brain for the robot. This will be

the component that will decide what to do in conjunction of some event detected by

the sensors. The microcontroller will be able to make some minor decision which in

the end will control the movement of the robot base on the environments.

1.4 THE RELEVANCY OF THE PROJECT

There are a lot of other universities that is doing research on robotics. It is

really relevance to develop a robot in house to be established as one of major

university. Besides that the robot will serve as basis for further studies in the future.

Having an in house design robot will lead to detail understanding of the robot

mechanism itself. This study will lead to further detail development and also

applications on the in house robots. The university can use the research material to

compete in robotics competition around the world.

1.5 FEASIBILITY OF THE PROJECT WITHIN SCOPE AND TIME

FRAME

The project is considered feasible based on the time given and also the

abundance of information on robots from the internet and also the library.

The first half of the project period will concentrate more on the basic structure

of the robot itself such as the structure, drive circuit and the power distribution and

fail safe.

The second half of the project has been concentrated on the sensors and also

the implementation of algorithm for the robot to be autonomous. The robot design

process might be better if it was a team effort.

12

CHAPTER 2: LITERATURE REVIEW AND/OR THEORY

Literature review is the research that has been done by collecting information

from various sources such as from the internet and books. The research for the robot

has been done part by part of the sub component for the robot such as the structure,

mobility and movement, power distribution and fails safe, sensors and

microprocessors.

2.1 STRUCTURE

There are many shape and sizes for the structure. The design will depend on the

application or the task the robot will do. For example a robot that is needed to be put

into Martian land need to be able to withstand the corrosive environment, the high

level of temperature difference and also light. The shape can be round which is good

for tight spaces and also box like shape spaces. The shape and sizes does not matter

much as long as the drive motor is sufficient to carry the load. Many robot designers

would prefer to use light weigh material which is easy to be shape into me desired

shape. Many of the design uses rounded shape as it will give better movement in tight

space. Method of connecting these parts will be either using welding method or nut

and screw method. For high specification robots the parts are specially molded and

then the parts are created using some other techniques which gives high degree of

precision.

2.2 MOBILITY AND MOVEMENTS

The mobility of the robot will depend on some factors. First will be the

estimated load that the robot needs to carry. This is the weight including the weight of

the robot that will be moved by motors or other mechanism. The motor must have

sufficient torque to move the load. This has been a great challenge. Number of tires

will also determine the required torque for the robot. Rule of thumb is that as the

number of tires increase the value for the start up torque will be less. ThL has b^cn

studied using some simple experiments in the lab. As to ease of giving mobility 3 tires

13

will be used, 2 of them will be coupled with dc motors and another one will be let free

as a support. These combinations have been tested and prove to be workable.

2.3 POWER DISTRIBUTION AND FAIL SAFE

In many large scale robots the power robots will be supplied by rechargeable

batteries. There are many type of batteries which is suitable for robotics. The

difference is in the material use for the batteries and also the number of Ampere that

the batteries can supply in a specific number of periods. The higher the v«iue of uie

number of ampere per hour for the batteries the longer it can supply power to the

robot. The drawback is that the batteries will need special care such as a specific way

of charging and discharging and also the price are relatively high.

Fail safe is important in robots as it uses a lot of expensive and sensitive

components that might get destroy due to surges or short circuit. Fail safe circuit such

as circuit breakers needs to be put in place to overcome this. Normally the fail safe

feature will be implemented along with the voltage and regulator circuit. The circuit

will detect any abnormality and decide to break the connection or do some other

preventive measure.

Due to the size of the robot is relatively big another failsafe will be put in place

such as remote off. This can avoid any unwanted accident due to the robot

malfunction or breakdown. The remote can automatically turn off the roDot from a

distance.

14

2.4 SENSORS

Sensors are transducers which are capable of changing one state of energy to

another. These characteristics can be used to measure the analog world. This

transducer will give output in current or voltage variation. We can then use this

information to manipulate the movement of the robot. There are a lot of transducers

than can be use. The sensor use is as follow;

2.4.1. Rotary Encoder

One of the ways to control the rotation or to get data from the wheel rotation is

to apply rotary encoder setup to the robot. There are various ways to do this

depending on the selection of sensor which is available for use. The basic idea of this

technique is two detect to different state for example ON and OFF. By detecting the

transition of ON and OFF the rate of change can be measured. This change of state

implies to several information such as speed, position and synchronization of tne

wheels. Having the rotary encoder can be helpful by feeding data to the

microcontroller.

Normally the simplest setup is to have black and white strips across the wheels

or couple to the wheels. These black and white strips can be detected by having a

simple infrared transmitter and detector to detect its state. This signal will then be

converted to a stream of 1 and 0 pulses which then fed to the microcontroller to be

process to get information such as the speed and the distance travel. With further

manipulation the data can be use for other more intelligent control of the robot.

Figure 2-1 A simple black & white encoder

15

2.4.2. Infrared Sensors

Infrared sensor is one of the most basic and cheapest sensors around. It uses

modulated infrared light to detect obstacle. The transmitter will transmit a burst of

signal which will then be detected by its detector. In the market there are numerous

types of infrared diodes that can be use. They differ in size and also th~ radius in

which the infrared can be used. One common problem with infrared sensor is false

triggering. This happens when the detector accidentally detects ambient infrared from

the surrounding and interprets it as an obstacle. This problem can be solved by few

methods; one is by software and another one by hardware. In software the "polling"

method can be use to identify which receiver is actually detecting the correct signal.

This can led to reliable detection. By hardware, there are detectors in market which

only detects infrared signal in a specific band of frequency. This is a more reliable

solution to the problem. The only problem with this method is the transmitted infrared

signal needs to be modulated at the frequency detectable by the detector. Having this

the infrared can be use as one of the reliable sensors at a good distance.

3.5 3.5

3.4 3 .4 2.9 3.6

(
a

1.5

01
•*

o

O

£0

V.^ \

i

i i

4
1 1.0

1
Q

0

1

0.5

i

2.542.54

' Toleranc*j - ~ 0.2

3><2>® 0) V0

Vc

UT

ID

c

Figure 2-2 IS1U60 Infrared Detector

16

2.4.3. Ultrasonic Sensor

Ultrasonic sensor is another common sensor use in robotics. Thi« type of

sensor uses high frequency sound burst which is generated by certain means at certain

frequency. The bounced echo will be then picked up by the ultrasonic receiver which

will gives the signals to a set of amplifiers and finally converted to digital signal by

means of comparator or other method. The output from the ultrasonic can be use as

simple as to detect obstacle or to be use as ranging module. In order to use the

ultrasonic as a ranging module the output of the receiver needs to be connected to an

analog to digital converted which is fed to the microprocessor. The microprocessor

can then determine the range base on the voltage value on its input.

Ultrasonic sensor signal will attenuate at a distance. So in order to get a better

range a higher power is needed to create the ultrasonic chirp. This is a problem if the

robot carries a limited power supply. Another drawback is the accuracy of the sensor

will fluctuates depending on the temperature and the air density of its surrounding.

This is common to some of the "low grade" transducer that is used. W:'.h higher

grades of transducers, they have design intelligent ways to compensate it surrounding

effects.

2.4.4. Line Follower

A line follower sensor is actually a set of sensor use to detect a "landmark" or

route which can be black lines or maybe metal strips on the floor or path in which the

robot moves on. Normally in some industry metal strips is placed under the path in

which autonomous robots is used to carry some item from one point to another point

accurately. This method can also be applied using other sensor such as infrared sensor

which can be use to detect lines or variation of markings which then can be use to

guide the robot to the destination. In this project the line follower circuit is used to

reduce the error that is encounter by the robot.

17

2.5 MICROCONTROLLER

There are several microprocessors that can be use to control a robot. Normally

the microprocessor use will also have embedded memory. When a memory is

embedded the microprocessor is known as microcontroller. There are many type of

microcontroller available in the market such as PIC form Microchip, Atmel, HC

family and many more. The difference is in the architecture and the language use. The

basic and common microcontroller is the PIC. A version of PIC 16F877 is a potential

candidate for the microcontroller as it have a lot of digital analog converter and PWM

output that can be use for sensors and also driver circuit switching.

MCLR/V"

RAO/ANO

RAWAN1

RA2/AN2A/'f;.e?-

RA3/A*J3M?eF*

RA4.T0CK

RA&AN4/H

RE&RDJANS

RE1AVR/AN8

RE2,'CS/AN7

Vdd

OSCUCLKIN

OSC^.'CLKOUT

RC0/T1OSO/T1CK(

RC1T10SI/CCP2

RC2TCCP1

RC&SCKfSCL

RDO/PSPO

RD1.PSP1

RB7/PGD

RB&PGC

RB5

Figure 2-3 PIC 16F877 from Microchip

2.6 DIFFERENTIAL DRIVE CONTROL ALGORITHM

Dead reckoning (derive from deduce reckoning) is a simple mathematical

procedure for determining the present location of a vessel by advancing some

previous position through known course and velocity information over given length of

time (Dunlap & Shufeldt,1972). The concept was adapted to automobile control in

early 1910 and now it is used in the robotics to answer some question such as "where

am I now", "how far", "how fast" and "where I need to go" for the robot.

Using the rotary encoder the data needed can be fed to the microprocessor

which will then monitor the rotation of the motors by implementing some

mathematical analysis as below.

C

D_DUf!+DrigH<

Equation 1 Displacement

V, +VYlejt ^ v righi
F-

Equation 2 Velocity

D

tires

theta=D,efl D"sh'
d

Equation 3 Theta

3

tires

teta

19

This method of calculating theta is susceptible to error due to bump in the

surfaces. Therefore the effective wheel radius needs to be considered to reduce the

errors due to uneven surfaces.

Expressing in terms of encoder counts

D,
IttN,

~C~
•R.

Equation 4 Encoder counts left

orA,

Equation 5 Encoder counts right

Nx = number of count on left/right encoders

Ct = encoder counts per wheel revolution

This method does not give a 100% accurate rotation as error might be introduce

due to bumps on the surface and the friction factor of the surface, b:u this d^ad

reckoning technique has been proven to be able to reduce the error rate if the

technique is not being implemented.

20

CHAPTER 3: METHODOLOGY OF PROJECT WORK

The flow of the project has been done according to a simple flow which is then

applied through out the project. The same flow is used on each sub parts of the robot.

Identify specification of the
robot

' '

Choose alternative base on

constrain and criteria

Create drawing

Purchase components
needed

Assemble and testing

Work on next part or stage

Figure 3-1 Flow of design

21

Hardware J

1. Structure

2. Mobility & Movement
3. Power Distribution &

Fail Safe

4. Sensors

5. Microcontrollers

V Software J

1. Coordinate to Path

Conversion Algorithm
2. Movement

3. Error Correction

4. Interrupt Handling
5. Sensor Interface

6. RMS interface

7. Obstacle avoidance

8. Line Follower

9. Memory and codes
optimizations

Figure 3-2 Workflow for part or stages

The first step is to identify the task or the general specification of the robot such

as what is the intended purpose of the robot. When the information is available, the

next step is to do research on the parts that need to be design and develop. The

alternatives will be then layout and then the best alternatives will be chosen base on

the constraints and the criteria. Constrains are mainly on the availab:!'.y of '.he

components locally at a reasonable price. Next step will be to transfer the

specification into drawing. From the drawing the practicality will be identified. Next

the design needs to be approved by the supervisors. When this is done the components

can be purchase. When all the component are available the part will be assemble and

then it will be tested to see whether it meets the intended specification. If the result is

satisfactory, the work on the next part or module will continue. Below are stages of

the parts in sequence. Some of the stages overlap each other as it can be conducted in

parallel. (Refer Gantt chart).

22

Table 3-1 Sequence of parts and tools

No Parts or stage Material or Tools Used

components used

1. Structure 1. Metal Sheet 1.

2.

Drill

Arc welding

2. Mobility and movement 1. Motor with 1. Screw driver

gearbox 2. Pliers

2. Tires & Caster

3. Nuts and screw

3. Power distribution and fail 1. Batteries (seal 1. Solders

safe lead acid) 2. Multi meter

2. Connectors & 3. Screw driver

Wires

4. Sensors 1. Ultrasonic,

infrared

transducers

2. Electronics

1. Simulation

software (

Mul*:",im or

Pspice)

components (2. Breadboard

transistor, 3. Solder

resistors etc) 4.

5.

Multi meter

Oscilloscope

5. Microprocessors 1. PIC16F877 1. Breadboard

(Microchip) 2.

3.

4.

5.

6.

Electronics

components

Oscilloscope

Mplab (PIC

programming

software)

PICC

comrder

Connectors

23

CHAPTER 4: RESULTS AND DISCUSSION

This part will consist of results and discussion on the project itself base on

observation, findings and evaluation on the robot behavior and characteristics

4.1 STRUCTURE AND MOBILITY

Motor

Figure 4-1 Location of motor and tires in radius

The structure design that is being implemented is as above. The robot will be

driven by two independent dc motor which is mounted to the structure of the robot by

the shaft that is connecting the tires and the gearbox. This connection has been tested

as not reliable and further more reliable method of mounting is still being tested. This

unreliable method of mounting has been the reason for the misalignment of the

movement of the robot. The third wheel is a caster wheel which is only use as a

supporting wheel. The third wheel is fixed using a servo in order to further reduce the

error rate. A feedback navigation system needs to be developed to reduce the error.

The position of the wheels is in radius of each other due to a reason. When the

wheels are in radius of each other, theoretically the movement of the robot will be

much easier and enable the robot to make a round turn and save the turning radius.

24

But in the implementation the caster radius has been increase slightlyout of radius but

it still work the same.

The structure is being built from mild steel which makes the structure strong

but heavy. Two plates of thin metal is being use as the base and the top cover for the

robot. The structure is then painted with silver paint to avoid corrosion from take

place. The structure implements screw and detach system which enables the robot to

be stored in a small area for transporting. One problem is that the nuts and screw

needs to have secondary nuts as to ensure that screw and nuts will not move place

after a while.

Figure 4-2 Actual design implementations

Figure 4-3 Orthographic Drawing

25

Table 4-1 Specification of the structure

Width 30 cm

Length 40 cm

Height 28 cm

Net Weight 2 kg

Material Mild Steel

4.2 POWER DISTRIBUTION AND FAIL SAFE

In order to power up the robot, a sealed lead acid batteries will be the source

of the power of the motor and the H-bridge board. In order to supply a high voltage

due to the characteristics of the H bridge circuit, the 6.8V batteries are connected in

parallel. The positive line of the battery line is connected to a fuse as to ensure safety

to the circuit. The 12 to 13 volt that being supplied will be connected to the H bridge

board (deliver power to the motor) and also to the regulator board which will supply a

regulated 5v to the H bridge board. The microprocessor power circuit will be on

separate board as to ensure electrical isolation from high current and voltage that

might destroy the microcontroller.

26

12Volts

•

Snd

D—

Ul

LM7905CT

III OUT

C1

"ICOuF

112

LM7905CT

C2

^
1QQuF-

C3

10uF

C4

10uF

C5

0.1uF

C6

0.1uF

Figure 4-4 5v Voltage regulator

Gnd51

—a

5v1

—a

12v1

—a

Gnd5v2

—-a
5v2

._a
12v2

—-a

Table 4-2 Specification of voltage regulator board

Input Voltage 12 to 13

Output Voltage 4.89 to 5 Volt

Current 1A

In order to regulate the voltage to a level which can be used for digital circuit,

a voltage regulator is used. The voltage regulator is a built in device which is capable

of stepping down DC voltage to the desired voltage. Internally the circuit consist of

transistor which open and close in the process to regulate the output voltage. If the

voltage at the output is less the transistor will open more thus giving more voltage at

the output. In terms of current the voltage regulator supplies more than we need which

is around 1 A. In order to ensure that the voltage regulator work at its operating point,

a heat sink is attached to the power regulator package.

27

4.3 ROTARY ENCODER

The rotary encoder has been fixed on both front tires. On the tires a strip of

black and white has been placed. In order to change this analog form into a digital

form an infrared transmitter and detector is used. The infrared transmitter and detector

circuit is capable of differentiating the black and white color. This signal is then fed

into a NOT gate so that the digital value is much better.

Figure 4-5 A simple black & white encoder

The output of the encoder can be seen as depicted below. From the signal

itself we can see that with the same PWM value the speed on each motor is actually

different.

28

Stopped
CH1=5V

DC 111

=Tracej1 = Ma* 5.200V
Prpd 131.0ms

Mill

Dirty
0.000V

52I7&

2004/08/13 13:00:25

50ms/div

(50mg/div)
NORM:20kS/s

Freq 7.634Hz

=Filter= =offset= =Record Length= =Trigger=
Smoothing : OFF CHI : 0.00V Main : 10K Mode : fiUTO
BW : full CH2 : 0.00V Zoom : 10K Type : edge CH2 <f

Delay : 0.0ns
Hold Off : MINIMUM

Figure 4-6 Output signal from encoders

This digital signal is then fed into the microprocessors for manipulation in

order to get the speed, distance travel and also in implementation of a simple error

correction codes. Above is the signal that has been captured from the rotary encoder.

The top signal refers to the left wheel encoder and the bottom signal refers to the right

wheel encoders. The rotation of the wheel can now be represented in terms of pulse.

This pulse is used to measure the distance travel by the robot. The distance value is

also use in error correction codes to improve the accuracy of the robot.

29

VDD

Infi (ii e<ILED

47Kohm

Sense

—Q

f
infiwedDeteetor

Figure 4-7 Infrared Transmitter and Detector

The encoder use does not have a good resolution. For every pulse it represent

1.3cm in distance that the tires has turn. Therefore we can aspect at least an error rate

of 1 pulse or 1.3cm per meter. From the test run done, the robot is capable of moving

to the target located at certain distance at a good accuracy. This shows that the

encoder is reliable for the analysis but in order to get higher resolution thus lesser

error rate a more fine system needs to be implemented.

Above is the circuit that is used for the rotary encoder. It consists of an

infrared transmitter and also a infrared detector. The circuit will detect the black an

white strips that has been place on the wheels of the robot. As the nature of the

infrared in which only white or reflective surface will be detected by the detector.

This is how the wheel rotation is converted into a stream of pulse by the circuit.

30

4.4 INFRARED SENSOR

Infrared detector use in this circuit is placed in front tires of the robot. This

sensor will be able to tell which side of the robot is having the obstacle. From the

output of the sensors, certain maneuvers can be taken so that the robot is able to avoid

it.

The infrared use is modulated at 38 kHz band frequency. This is done as the

detector only detects a certain band of frequency and filter out the rest. This is done as

to ensure the reliability of the sensor from detecting ambient infrared. In order to get

the desired frequency modulation a 555 timer is used to generate the square wave

needed. The circuit is shown as below.

R?

"I.Okohm

I.Okohm

J70ohm
>

vcc
5V

OUT

R5T

DIS

THR

TRI

CON
GIID

CI

•lOOnF

U1

LM555CH

Sense

-a

Figure 4-8 Infrared TX oscillator

In order to light up multiple infrared transmitter diodes, the output of the

oscillator is then connected to a set of NPN transistor so that multiple infrared diodes

can be light up at higher voltage than the one supplied by the output of the oscillator,

by doing these 4 infrared diodes is used with 2 on each side.

31

Some calculation can be done in order to get the desired oscillator frequency.

Referring to the above circuit, the value of the capacitor and resistor can be estimate

using the formula below.

1.44
fc =

(Ki + R3)C

Equation 6 Oscillation frequency

The value of capacitor is more limited that the value for the resistor. So in

order to ease on the calculation and practicality, the C value is chosen to be 100 nf.

By doing this the value of Rl and R2 has been chosen to be 1 k Ohm and R3 to be

270 ohm. Even though by calculation this value will give the needed modulation

frequency, when the circuit was built on to the Vero board the frequency has change

to 40 kHz. Fortunately the detector has a certain band pass value which it can detect.

Waiting for trigger 2004/08/13 13:03:27

=Filter= =Offset= =Record Lengths =Trigger=
Smoothing : off CHI : 0.00V Main : 10K Mode : fiUTO
BW : FULL CH2 : 0.00V Zoom : 10K Type : EDGE CH2 <F

Delay : 0.0ns
Hold Off : MINIMUM

Figure 4-9 Modulated Infrared Signals

32

The figure above shows the modulated signal that is being supplied to the

infrared transmitter. The above signal is the signal that is being modulated at 38 KHz,

while the bottom signal is the output from the detector. When the detector detects llie

bounce infrared signal the circuit will produce a low logic signal.

The drawback of this sensor is that it is not able to sense the obstacle if the

obstacle is black in color. Most of the time the sensor is only reliable for a very short

distance range. This range has been measure at 10 to 17 cm from the object. Another

drawback of the sensor is that it is not as sensitive as ultrasonic; this sensor only

detects some moving obstacles which bounce the infrared signal.

4.5 ULTRASONIC SENSOR

Ultrasonic sensor used comes from a DIY kit. The KIT was used as it is more

reliable and due to the time limit which has come short. The sensor is reliable to

detect an object at a minimum distance of half a meter a way from the robot. Once

triggered, the circuit will latch the relay to create a high to low transitio- which is

then detected by the microcontroller. The original circuit needs the circuit to be

powered from a 12 volt dc supply. This is not suitable for the robot as the maximum

power carried by the robot is already 12 volt. After some test, the circuit is still

reliable if powered at 9v dc supply voltage. The sensor is sensitive enough that it will

be triggered most of the time. In order to ensure that only the "real" obstacle is

detected the microprocessor will enable or disable the output from the ultrasonic. This

has prove to be practical than turning on and off of the ultrasonic Circuit.

33

4.6 LINE FOLLOWER

-4 -s

M IED?
LED! T£ 3[sX LED4

X T -X-

L_a MD MD

Figure 4-10 Line follower sensor

The line follower sensor consists of 3 set of infrared transmitter and detector

connected in parallel to each other. The outputs of the sensor are connected to the

microcontroller for processing.

-"#• .•?"•" ••':.' Left-Centre-Right
j<||f-'|, :•- 0 0 0 No line Check Algorithm
C'™.N'.>.::\ .,,_,;. - 0 1 0 Straight
•X*>-~\£r.]-. 1 0 0 Left (Adjust left speed)
''~~'iW'. ™: ':"!••. . 1 1 0 Left (Adjust left speed)

•Q
^j0t

^•^
0

0

0

1

1 Right (Adjust right speed)
1 Right (Adjust right speed

''*#»: o# 1 1 1 Start Line Follower

;:-4yk Infrared TX/D Sector

Figure 4-11 Line Follower Algorithm

34

The line that is placed on the floor needs to be on different color than the

floor. In this case the line is black in color while the floor will have a lighter color.

The sensor is used to guide the robot so that the error rate can be further reduces. This

is not the solution for the error problem that is being faced but a supplementary sensor

to help the robot to move in better line.

4.7 MICROPROCESSORS

There are several version of PIC. It is a programmable microcontroller that is

produce by Microchip that can be use for many applications. The famous version is

the P16F84 and P16F84a. For the project another high end PIC will be use. PIC

16F877 will be use as the main microcontroller due to some function that it is capable

of. One is the Pulse Width Modulation (PWM) output pin which can be use for

controller the motor drive circuit. Using the PWM signal the speed of the motor can

be control. This will also helps to reduce the power consumption due to rapid

switching. Another reason why this version is being chosen is due to the large number

of digital to analog converter. These pins are suitable to be used with the ultrasonic

transducers as the analog converter can be use to define distance and not only "1" or

"0". This will increase the range of the output that the microcontroller can read from.

Another important aspect of using PIC16F877 is due to the large area of built in ROM

and RAM which is needed in order to program the algorithm to the robot.

The microcontroller can be program either by using assembly language or a

high level compiler in C language. Programming in assembly language will make the

code more optimize in term of memory managements but as the codes gets into

complex loop and subroutine, keeping track of the codes will be difficult. High level

of programming skills and experience will be needed if the codes are in assembly

language. Another simpler method and more manageable is to use the O language

compiler. What it does is to convert from normal C language codes into the assembly

language before exporting the codes into the microcontroller memory. Most of the

codes to set up the bits and mode of the microcontroller will be taken care by the built

in function in the C compiler. The algorithm that is being implemented is much easier

as the coding is more readable.

35

5ml

a—

r

XI

~Vl/Vm-*J 0 !>—-
MftJhui , Hay. Sp»ra»

330* m

KtJit

:3

^a^—
•*h

—vw-
•l.Sohri,

Rlflhtlr

—a

UllfttEOJliO

—D

sin

-—a

EncodtrLefl

—D

Figure 4-12 Microcontroller Connections

In hardware implementation the microcontroller needs a regulated 5V voltage

supplywhich is being regulated using LM7805 voltage regulator. The inputvoltage is

from a separate 9V battery. The microcontroller is capable to run at 20 MHz clock but

a 4 MHz crystal clock is sufficient to the processing of the codes. Two normally open

switches are used to control the operation of the microcontroller. The first one is used

to give a low signal to Microcontroller clear pin which will restart the whole process

of the controller if pressed. The next button will be used to signal a sta.. sequence

which will start the operation of the robot.

The output pins from the microcontroller will be fed to the H Bridge circuit,

some LEDs and also a buzzer. The 6 pins that will be fed to the H bridge consist of 4

pins which will give the combination for the direction and 2 pins which will gives the

PWM signal to the H bridge. The PWM signal is used to control the speed by varying

36

the ON time and OFF time of the H bridge circuit. This will result in average power

output to the motor depending on the duty ratio selected or generated by the PWM

pins.

Table 4-3 Binary states for movements

Direction Bit3 Bit2 Bitl BitO

Forward 1 0 1 0

Reverse 0 1 0 1

Right Turn 0 1 1 0

Left Turn 1 0 0 1

Stall 0 0 0 0

Table 4-4 Microcontroller Board Specification

Clock 4 MHz

Memory Size 256 x Sit of memory

PinO Master Reset

Pinl Start or Run

Pinl7 PWM1

Pinl6 PWM2

Pin22 Bit4

Pin21 Bit3

Pin20 Bitl

Pinl9 BitO

Pin 18 Encoder left

Pin 15 Encoder right

Pin 33 Ultrasonic

Pin 39 Infrared Left

Pin 40 Infrared Right

37

4.8 ALGORITHM

4.8.1 Coordinate to path conversion

The way that the robot moves depends on the algorithm that is being used

inside the microcontroller. In order to differentiate between the negative and positive

axis of the robot, a flag is used inside the microcontroller to define the positive or

negative value of the axis. A certain sequence of movement is set inside the "if loop"

statement in order the robot to move the desired location. The path of the robot is

predefined using a Cartesian coordinate system with the front of the robot as

referenced.

Flag =10
Y axis

Flag = 00
V.

IfY>0

-straight(y)
IfX>0

-turn left

-straight(x)

\ / IfY>0

-straight(y)
IfX>0

-turn right
-straight(x)

r\

Robot

X axis

1 \

U J
Flag =11 Flag = 01^^^ ()^^^^
-turn left

-straight(x)
-turn left

-straight(y)

-turn right
IfX>0

-straight(x)
-turn right
-straight(y)

Figure 4-13 Axis algorithm

38

4.8.2 Dead reckoning

In the robot a dead reckoning technique is used. The rotary encoder will be the

input to the system. By having this accurate measurement system can be implemented

thus giving the robot the capability to move point to point at higher accuracy.

The encoders consist of 16 black and white strips in other word for a full revolution

16 pulse will be detected.

pulse -—(2nr)

Equation 7 No of pulse conversion

r= radius ofthe wheels

By simple mathematics we can say that for every 1 meter there will be roughly

50 pulses. Thus in real time the coordinate that is being program into the robot in

centimeters can be converted into number of pulse. Now the robot will move as long

as the count of pulse has not reach the needed number of pulse.

In terms of accuracy, the accuracy is about 1 or 2 pulse or from 2 to 4 cm each time.

This is due to the floating point operation done by the microcontroller which will tend

to converge the value to a certain fix value thus giving some error.

Get Value

y '

pulse = value /3.96

i '

Get Encoder

Reading

yS va ue ^\
enough

Stop
Take new value

Figure 4-14 Dead reckoning algorithm

39

4.8.3 Error correction codes

In order to reduce the error as the robot moves forward an error correction

codes has been implemented. At first a PID control was the intended choice but due to

the time and knowledge limit, the error correction algorithm was derived from test

conducted on the robot. The robot tends to move toward the left if the same PWM

signal was given on both motor. Further analysis shows that one of the motor is

actually driving reverse when it is moving forward. Thus due the gearing was

intended to move in one direction the speed on both motor was different. By trial and

error the best PWM value to get the robot to move straight was obtained.

PWM needed for straight line movement

12 3 4 5 6 7 8

Right Motor PWM needed

• PWM left

- Ideal PWM

right

Actual PWM

right

Figure 4-15 PWM needed for a straight line

By analysis it can be seen that it is a not proportional relation between the

PWM of the right motor and the left motor. From analysis the ratio of left PWM to

right PWM is 1.5. Again by trial and error the algorithm is created to correct the

robot movement. This is base on the actual pulse that has been counted by the

encoder, if one side of the encoder counts more than the other the error correction will

try to reduce the PWM on the side which has the bigger count. This has led to a better

improvement but still some small error can be seen.

40

Get Encoder Left and Right

ir

Difference =

Encoder L Value - Encoder R Value

Difference < 0 / \
Difference > 0

•
V

Reduce

PWM right

:e = 0

Reduce

PWM left

Different

1

Reduce

PWM left

Figure 4-16 Error correction codes algorithm

4.8.4 Obstacle Avoidance

The mobile robot is equip with some intelligent to avoid the obstacle on its

way through the predetermined path. In this project one drawback of the algorithm is

that it does not subtract the distance travel for obstacle avoidance but it will safe the

last distance travel and resume on the remainder as the obstacle avoida:..e routine

ends.

Figure 4-17 Case 1: Simple Obstacle (Same algorithm on left or right movement)

41

This is the simplest case the robot my find. What the robot will do is to turn

right and then move forward about 2 meters then turning left and then moving

forward again fora distance before turning left and again moving straight at a distance

and final make a right turn and ending the routine. The microcontroller will then

resume from the last distance its travel. This algorithm will work the s:...ie on the

reverse side forexample when the first step is to move to the left instead of right.

A

>

Obstacle

T

< Robot Robot / Robot \
Obstacle

Figure 4-18 Case 2: Obstacle on the left or right(Same algorithm on left or right
movement)

If the robot detects obstacle while on its wayto correct the first case error, the

robot will then turn back to the original route and try the left side of the obstacle

instead. If the robot encounters the same obstacle then the robot will stop and sound a

beeper sequence indicating a dead end.

42

Obstacle Obstacle Obstacle Obstacle Obstacle

t

/ Robot H \

\ / "
/' Robot r \

t

/ Robot \j \ /' Robot r \

\ '' '

t

/ Robot \

Figure 4-19 Case 3: Wall obstacle (Same algorithm on left or right movement)

Due to the nature of the algorithm, the robot has wall following behavior.

When the robot encounter a wall like obstacle, the robot will move to the right and

continue moving before trying again to pass the wall. Again the wall is dieted the

robot will follow the same routine. If it encounter obstacle while moving to the right,

the robot will try to move toward the left. Again using the same algorithm the robot

will move and check until it found a way out. If again the robot encounter obstacle

while moving to the left, the robot will sound the beeper indicating a dead end.

43

Straight

Move

until distance

reach

Yes

Turn Right/Left
Move Straight

T

Turn Left/Right
Move Straight

Turn Left/Right
move straight

Turn Right/Left

Turn Left

Turn Left

Move Straight

Yes

Dead End Beeper ON

Figure 4-20 Obstacle avoidance algorithm

4.8.5 Line Follower

The robot will enter line follower mode when it detects a straight black line.

This will automatically puts the robot into the line follower mode unless the overwrite

switch is being activated. When the robot is in the line follower mode the algorithm

will try to ensure that only the center sensor is being detected or triggered. This is

how the robot will try to follow the black lines. If on side of the 3 sensor is activated

with the center sensor, the algorithm has been written so that the side which is

crossing the black line will be getting a slower value of PWM. This is ho., the ro'uot

maintains the movement on the black line.

44

Check Bit 0 , 1 ,2

1 = Black strip

1 0 = White strip

ooo 1 1 1

ooo X Bit _
O©©

110
x. Value /

011

^obot is more tc the 1 Robot is more to the

right 010 left

Robot is straight
No need

oo o
Figure 4-21 Line follower algorithm

4.9 DRIVE CIRCUIT

In order to supplied the needed power and be able to control the direction of

the rotation of the motor thus the robot, a H bridge board has been design based on the

application notes given by the manufacturer. The H Bridge was design to be able to

allow maximum of 4A of current to be supplied to the motors. The amount of current

varies depending on the load of the motor. For example the current needed to move

the robot would be high at start up but decrease slightly at when running. The more

the weight that the motor need to carry the higher the current will be needed to

maintain the same speed. This has been a challenge as the maximum rating for the

design will be around 4A. If the current that is being drawn is more than 4A the

current will gives smoke signals.

The H bridge board consists of two L298 dual H bridge chip. In order to get

the high current setup, some modification has been put in place. The digital voltage of

the chip is supplied by the voltage regulation board which regulates 5v from the

batteries. The H bridge board will have 2 levels of voltage, one at 5 volt and another

one at 12 or 13 volt. The high voltage will be supplied to the motor through the

circuit. In order to move the robot at start up 1.68A of current is needed at each motor.

45

The voltage level at this current would be around 6V which is half of the

voltage supplied to the board. The board voltage supply of 13 volt is actually shared

for both motor to ensure both motor gets the same amount of power assuming no

loses and no defects to the components used. From the experiment, if the board uses a

separate voltage source each at 6.8 volt the motor will move at a really low speed and

torque, when measured the current is at 1.30A.

Further analysis shows that it is due to the internal design of L298 chip which

will not allow higher current if the supplied voltage is less than a certain level. The

solution was to connect the battery supplied in parallel and supply higher voltage thus

allowing higher current to the motor. Now the problem arises is that the L298 chip

heats up quickly and thus making its life shorter. Fortunately the H bridge board uses

PWM signal to control the output power to the motor. Using a low duty cycle around

40% to 45% the motor speed is at a desirable range and the heat generated is less.

Each drive forward or reverse the circuit will supply 4volt to the motor.

Figure 4-22 Double 4 A H-Bridge

46

4.10 RS232 COMMUNICATION

The final part of the robot is a communication module and Robotic

Management System (RMS) software has been developed with the help of Mr Azizan

Hashim specifically for this robot. The RS232 chip is used to create a communication

link between the PIC microcontroller and also the computer. The RMS provides the

graphical user interface between the mobile robot and the computer. The RMS has

been developed so that the user is able to plot the path of the robot to move. The

software then converts the normal coordinate system to that the one the robot is able

to understand.

The converted coordinate can be then uploaded to the RAM of the PIC. As

long as the rest microcontroller is not in reset mode, the coordinate will be available

in the microcontroller. If the user wants to change the coordinate, the robot needs to

be reconnected back to the computer and then put into reset mode. Then the new

coordinate can be reloaded to the RAM of the microcontroller.

vcc
,5V

CT

1uF

C6

1uF

P-u

C9

1uF

C8

1uF
UD

v+ sri a

•M- TlOUt
>:s« R tin
•12- Ft lout

V- Tim

T3QUT TJln
Riln Ri*ut

MAK232

Serial Converter

J17

—E3
--o

DSUB9M

Serial Con sector

Figure 4-23 RS232 Communication Circuit Module

RC7

RC6

47

4.11 SERVO CONTROLLER

The servo controller has been built using PIC16F84A. The sole purpose of this

micron roller is to generate the required PWM pulse in order for the servo to work.

The basic operation is simple to be implement in the microcontroller with caution in

the programming sequence as the input to the servo is very sensitive to the pulse

width generated.

\+ A*|«- B"H

Figure 4-24 Width of PWM for serve @ Caster

Table 4-5 Width of PWM for serve @ Caster

A width

(ms)

B Width

(us)

Position of servo

(Caster wheels)

Input from

PIC 16F877

17 225 180 degrees 010

17 700 45 degrees right 001

17 1125 Straight (0 degrees) 000

17 1300 45 degrees left 011

0 0 Free wheel 100

The servo controller will receive signal from the main microcontroller as

referred above. The servo controller will then translate the movement and prepare the

needed pulse so that the caster wheels attached to the servo is moved to the desired

position.

48

VDO

.1

C'l

Htf a
Red

a-r
Black

n—i

U3

XTAL-4MHz

Black

U1

IMS

RAS PM
UHTOKatMM

MODHCSiCLI'XiU'
tSl VDD

KKVillT RET

ser rk
fbj fjk

PB3 EBi

330kohm

RAI

±

Figure 4-25 Servo Controller

Control Bill

—n
Contra Bit2

—a

Control BitO

—•

49

4.12 AS A WHOLE

M

D

C.

3

Expected Path
Actual Path wit^-yut servn ard

error correction codes (ECC)
Worse case : Actual path with
servo and ECC

Robot

Turn

Figure 4-26 Path of robot

The robot should move from point A to point G as depicted by the path above.

This is done by giving a coordinate to the microcontroller. The microcontroller will

then convert this coordinate into a series of steps in order to achieve this movement.

The robot is capable to measure the distance that it's has travel. When the robot

reaches each point it will stop for a while and the beeper on the microcontroller board

will beep to indicate the end of a step. The robot will then turn to the correct direction

before moving on to the next point. The algorithm should move the robot in a path

that will create a box.

50

After the first run a problem is clear. The robot was having some problem in

moving straight. At first the reason might lay in the structure or the way the gearbox

and the tire is being mounted, but after some observation and evaluation the culprit

was identified. The error was coming from the caster tires. As the surface of the test

area is uneven the caster tire always get interrupted thus position at the wrong angle

each time. The small difference in the caster angle has cause the robot to __jt be a'Je

to move straight. A test has been conducted in which the caster tire has been

temporarily immobilized by masking tape it. The robot was found to be able to move

straight.

The solution for this problem was to put a servo controlled caster. This design

fix has shown a large improvement on the movement. This was not enough the robot

still deviate if it moves further so error correction codes was implemented to fix the

error. This also has reduced the error more. As the error was coming from the

structure and also the behavior of the motor itself an optional method is implement

which is to include a line follower to supplement the error correction codes.

For obstacle avoidance the robot is using 2 types of sensors. The ultrasonic

will detect any obstacle that is directly in front of the robot while the infrared sensor

will detect any obstacle in front of the tires. The two sensors are connected to me

microcontroller so that certain algorithm will take place as the sensor detects any

obstacles.

The robot will also follow black lines if the switch mode is turn on and if the

line follower sensors detect a starting black strip on the floor. The robot is capable of

following the line without much problem.

51

CHAPTER 5: RECOMMENDATION

They are a lot of aspect on this design project that can be improved in order to

get a better outcome. Here are some of the recommendations that can be improved in

the future.

5.1 STRUCTURE DESIGN

At the moment the structure was not design properly with mechanical analysis

such as static and dynamic. In the future a better design can be achieved if the project

can be handled with the help from mechanical department which can build a better

light weight and stronger chassis than the one that is currently used for the project.

Attachment with the mechanical department will ensure that the electrical student to

only concentrate on the electrical aspect on the robot and will not have problem with

the structure related problem.

5.2 DATA COMMUNICATION

Due to time constraint the robot does not have any capability to communicate

with any desktop in real time. Actually they are a lot of pre fabricate modules that can

be interface with the robot microcontroller which can enable the robot to

communicate or the receive instruction in real-time basis. By having a real-time

feedback from the desktop, the robot should be able to have advanced processing

capability and maybe life video streaming from and on board camera.

5.3 ACCURACY

In order to achieve higher level of accuracy and control few aspects needs to

be improved in the future. First the component used for the project needs to be the one

design for robotics, in other words all the electronics used should have a better quality

than the normal components. Components such as motor and drive circuit should be

bought or first design properly from robotics shops which is available in the market.

The use of normal component and modifying it to suit the robotics needs is not a good

52

idea if the accuracy level needed is high. Sensors and encoder should also be reliable

and purchase or design with higher accuracy. This will help to reduce errors thus

giving a good output in the end.

5.4 ACTUATORS

Grippers, hands are actuators that might be included in the further

enhancement of the robot. This additional component will allow the robot to pick

things up and put it at another location. A good actuator with the help -f sensors

should be use together or else the actuator will be useless to detect the item needed to

be picked. With this addition the robot intelligent can be further enhanced.

53

CHAPTER 6: CONCLUSION

The structure of the robot has been built from heavy but study material. This

has led to unexpected problem in the weight of the robot thus the power needed to

move a heavy robot. For this design project, the student assume that the total weight

of the robot which is 8 Kg to be the total load that the robot is capablecarryingover a

distance. Even at this load the robot is capable to do its objective.

The H-Bridge design using L298 is good enough for this project as long the

maximum weight does not exceed 8Kg in total. The problem of high current drawn

will arises as the total current demand increases. The heating effect of the L298 chip

is the main problem. At certain mode the circuit will kick into the safe mode thus

making the power to the motor to be very low.

The ultrasonic is the main sensor use for this mobile robot. The range of the

sensor is very big but the problem lies in the minimum distance the robot can sense.

This is a problem as even at the lowest setting the distance is still far from the robot,

making maneuvering in very small area such in the lab quit challenging.

The infrared sensor works nicely but not as expected. The sensors are able to

detect obstacle as long that the surface reflect the infrared signal and also flat and

sometimes need the obstacle to be moving. This has made the sensor less reliable than

the ultrasonic sensor. In this design all the sensor has been put into OR gate

orientation to increase the reliability and coverage of the sensors.

Intelligence of the robot lies in the complex and lengthy algorithm use in the

microcontroller. It is not easy to implement such algorithm if there is no good support

from the programming side. With the help of an experience programmer this problem

can solve in the short period of time. With higher intelligence robot, the longer the

codes will be. In this project the bottle neck was at the microcontroller itself. Even

using the best microcontroller available in the lab, the RAM and ROM was already at

their fullest.

54

The software support of this mobile project is actually exceeding the

objectives of the project. But in order to increase the functionality, the Robotic

Management System has been developed with the help of Mr Azizan Hashim. This

software operates not just to be used to upload the data into the microcontroller but

also use in debugging the mobile robot. The software was able to give an "inside

look" into the microcontroller.

Error in movement is the biggest problem of all. The main reason of this

problem was from the structure make up. Unforeseen, the simplest part can be the part

that will create the most problem towards the end. Even with the help of error

correction and line follower sensor, the problem is still there. The worst part is that

the reliability of the solution will depend on the condition of the structure during

runtime. In the future, it is best that the structure is properly design and any loose end

needs to be fixed properly.

Overall, the mobile robot has achieved the objective very well even giving

valuable data for future projects on this area. The mobile robot manage to move from

one point to the next point with minimal error and also capable to avoid obstacle on

its way. The upload feature of this mobile robot is the first in this university and can

be develop further in the future.

There are many obstacles that need to be overcome before a stable robotic

platform is available in house. This mobile robot project and all other projects before

this will be the stepping stone for future engineers to develop new and better robotics.

Implementing knowledge gain from theory will be different from the knowledge gain

from the experience itself. Having all the basics for developing a good robot in house

will give a strong future on robotics later on. After solving the obstacles, we will have

a good mobile robot. With the current design and available components, the objective

of the project has been achieved.

55

REFERENCES

[I] Build a remote control robot David R .Shircliff, McGraw Hill

[2] Obstacles Avoidance in Multi-Robots ,Gill Zomaya

[3] Battle Bots the official guide, Clarkson, Me Graw Hill

[4] Robot androids and animatronics (Second Edition), John lovine Graw Hill

[5] Build Your Own Robotl, Karl Lunt

[6] Animatronics A Guide to Animated Holiday Displays, Edwin Wise ,Prompt

Publication

[7] Sensors for Mobile Robot ,Theory and Application, H.R Everett

[8] Applied Robotics ,Edwin Wise, Prompt Publications

[9] L298 H-bridge Datasheet

[10] LM78XX Voltage Regulator Datasheet

[II] PIC 16F877 Datasheet and application

[12] PIC C, Instruction Manual.

[13] http://www.mstracey.btinternet.co.uk/pictutorial/picmain.htm

[14] http://www.galileo.org/robotics/design.html

[15] http://www.seattlerobotics.org/encoder/index.html

[16] http://www.picant.com/robot/robot.html

56

APPENDIX A: MAIN SOURCE CODES

/*

INFORMATION:

1. Program=Mobile Robot

2. Prog ram mers= Shahriman

Azizan

3. Latest Update= 30.11.2004

PROGRAMMER'S NOTE:

1. Distance Calculation= Success

2. Tyre Error Correction= Success

3. Object Avoidance= Success (kerek14b.c)

4. Data Uploading= Success (kerek14b.c)

5.Line Follower= Success

7

include <16F877.h>

#use delay{clock=4000000)

#fuses XT,NOPROTECT,NOWDT,NOLVP,PUT

#byte port_b=0x06

#byte port_c=0x07

#byte port_d=0x08

#use rs232(baud=9600, xmit=PIN_C6,rcv=PlN_C7)

#reserve 0x110:0x11F

#reserve0x190:0x19F

//Warning: if x=0,signx must be 0

//Warning: if y=0,signy must be 0

//PORT # = PIN # FUNCTION

// A = PIN 0 [2] Start Switch

// PIN 1 [3] Buzzer

// PIN 2 Override Line Follower

// PIN 3

// Pin 4 [6] MM warning only pull low

// PIN 5

// B = PIN 0 Ultrasonic Sensor

// PIN1

// PIN 2

// PIN 3

// PIN 4

// PIN 5

// PIN 6 lr left

// PIN 7 lr right

57

// C = PIN CI [15] Input A (right) encoder

// PIN1 [16] CCP2 PWM motor /C1

// PIN 2 [17JCCP1 PWM motor /C2

// PIN 3 [18] Input B (left) encoder /C3

// PIN 4 [23]

// PIN 5 [24]

// PIN 6 [25] Tx

// PIN 7 [26] Rx

// D = PINCI [19] Right Motor LSB

// PIN1 [20] Right Motor MSB

// PIN 2 [21] Left Motor LSB

// PIN 3 [22] Left Motor MSB

// PIN 4 [27] Servo A0

// PIN 5 [28] Servo A1

// PIN 6 [29] Servo A2

// PIN 7 [30] Reserved

// E =PIN0 Line St

// PIN 1 Line Se

// PIN 2 Line Se

//Drive Train=DCBA, DC=right wheel, BA=leftwheel

//Drive Data: 00=No movement, 10=Forward, 01=Reverse

//Line sensor: Black=HIGH, White=LOW

//data_status

//0=No transmission, 1=Start byte accepted transmission in progress, 2=Data error, 3=finished transmission

byte data_status=0;

bytedata_count=1;

byte data_counter=0;

//•*****"UTK interrupt flow**"

byte flow_flag=0;

byte is_mark=0;

byte is_main_interrupted=0;

//**

void straight(int distancejncm); //distance in cm units

void turn_right(void);

void turnJeft(void);

void stop(void);

void initialize(void);

void pwm_right(long dutyratio);

void pwm_left(long dutyratio);

void interdelay(void);

58

void beeper_off(int maxcount);

void allinone(int signx.int x,int signy, int y);

byte buffer_rb,buffer_ext;

int i;

#bit INTF_BIT = OxOB.1

//Interrupt for serial on-received

#int_rda

void serialjnterrupt()

{

intdata_rcv;

intdatajd;

intdata_typejd;

/*

Note:

data_counter=0 start byte

data_counter=1 no of points

data_counter=2 to n+1 points data

data_counter=n+2 stop byte

*/

data_rcv=getch();

//If there is no transmission

if (data_status==0)

{

//Check for start byte

if(data_rcv==OxFF)

{

//Accept for next=no of points

data_counter=1;

data_count=0;

//Transmission in progress

data_status=1;

}

}

else

//If transmission has been started

if (data_status==1)

{

//Extract for data count

if (data_counter==1)

{

if (data_rcv>0)

{

59

//data count

//Clear RAM

}

data_count=data_rcv;

for(i=0;i<=15;i++)

write_bank(2, i.OxOO);

write_bank(3, i.OxOO);

data_counter=2;

}

else

{

data_status=2;

printf("DATACOUNT error! \r\n");

}

}

else

//Extract for coordinate data and stop byte

if (data_counter>1)

{

datajd={data_counter-2)/4;

//Extract for coordinate data

if (data_id<data_count)

{

data_type_id=data_counter-((data_id*4)+2);

switch(data_type_id)

{

{

break;

{

break;

case 2:

{

break;

case 0:

case 1:

write_bank(2,data_id,data_rcv);

write_bank(2 ,data_id+8,data_rcv);

whte_bank(3,data_id,data_rcv);

60

case 3:

break;

}

//Increase counter

data_counter=data_counter+1;

}

else

//Extract for stop byte

if (datajd==data_count)

{

if (data_rcv==OxFE)

{

else

write_bank(3, data_id+8 ,data_rcv);

data status=3;

data_status=2;

printf{"STOP BYTE error! \r\n");

}

}

}

//If there is an error

if (data_status==2)

{

//ERROR ROUTINE!

//Restart procedure

data_status=0;

data_count=1;

data_counter=0;

printf("Reload data or reset PIC \r\n");

beeper_off(5);

}

//If data completed

if (data_status==3)

{

//FINISH ROUTINE!

printf("Succesful! \r\n",flow_flag);

phntff'Data count= %u\r\n",data_count);

//Read all memory

61

for (i=0;i<=(data_count-1);i++)

{

printf("%u\t%u, %u, %u,%u

\r\n",i+1,read_bank(2,i),read_bank(2,i+8),read_bank(3,i),read_bank(3,i+8));

}

//Restart procedure

data_status=0;

data_counter=0;

printf("Press START switch to resume \r\n");

beeper_off(4);

}

}

}

#int_ext

void extjsr(void);

#int_rb

void ext_rb(void);

lilt IIIIIIIIIIIIIIIIII Villi IIIIIIIIIIIIII till IIIIIIII liIII,'itI!IIIIII MAIN CODES STARTS ItIIIIIIII ttItIIHill!IfIIIIII ItIIIIIIIIIIIIIIU

void main()

{

int count,signx,x,signy,y;

printf("Welcome to RMS v1.3 \r\n");

beeper_off(1);

INTF_BIT = 0;

disablej nterrupts(INT_RDA);

disable_interrupts(INT_RB);

disablejnterruptsfl NT_EXT);

disablejnterrupts(global);

setup_ccp1 (ccp_off);

setup_ccp2(ccp_off);

set_tris_a(0xFF);//use all as input at the moment.. maybe status led after this

set_tris_b(0xF1); // not use at the moment, use for sensor interrupt

set_tris_c{0x89); // use for PWM and encoder input 0000 1001

set_tris_d(0x00); // ail use for motor controller and servo

port_b=0xF1;

initialize();

62

port_b_pullups(TRUE);

delay_ms(1000);

/r************DATA UPLOADING'

//Clear RAM

for(i=0;i<=15;i++)

{

write_bank{2,i,0x00);

write_bank(3,i,0x00);

}

//RDA and global ON

en able _jnterrupts(l NT_RDA);

enablejnterrupts(global);

printf("Upload data \r\n");

beeper_off(2);

while (true)

{

if (input(PIN_A0)}

{

//RDA and global OFF

disable_interrupts(INT_RDA);

disable_interrupts(global);

break;

}

}

ext_int_edge(H_TO_L);

INTF_BIT = 0;

//Global ON

enable_interrupts(global);

delay_ms(1000);

beeper_off(3);

while(true)

{

printffPress START switch to run \r\n");

while (true)

{

if{input(PIN_A0))

{

break;

}

}

63

for (count=0;count<=(data_count-1);count++)

{

//printf("Point=%u \r\n",count+1);

signx=read_bank(2,count);

x=read_bank(2,count+8);

signy=read_bank{3,count);

y=read_bank(3,count+8);

//printf("signx[%u]=%u, x[%u]=%u, ",count,signx,count,x);

//printf("signy[%u]=%u, y[%u]=%u\r\n",count,signy,count,y);

allinone(signx,x,signy,y);

beeper_off(2);

}

setup_ccp1 (ccp_off);

setup_ccp2(ccp_off);

initialize();

beeper_off(5);

}

while (1);

}

iiiiii itiimmii iimm niiii am mi mum nun mm mm main codes ends iiii iinummnnn nun mumiiiiii ttmsm

iin mi mi niiiiii iiiumiuiium iiiiiiiiii iiiiiiii iiiiii initialization codes starts mi mi ii ii iiiiii iiii mi iimimi..

void initialize(void)

{

port_c=0x00;

port_d=0x00;

}

//////// w ////// niiii mi iimmii iiiiiiii mm iiiiiiii initialization codes ends /;// iiiiii mm iiiiii iiii mi mmiiiiii

iiitiiii nnit nnitmiit nnmm mmnnit mmnwinterdelay -pause- start mmsnnunmiunimimmm

void interdelay(void)

{

printf("lnterdelay \r\n");

port_d=0x00;

delay_ms(1000);

64

}

//ttiiitiiiiuttnitniiutiiiiinuunnitnitiiiffittnf interdelay -pause- ends iiiiit mm tintuttinintuitunm>

iiitmimmnmtmmnmimmnmimmtimuuiim path algo starts mmu nn mi ittin ii u mi itnnun mi mmmm

void allinone (int signxjnt x,int signy, int y)

{

if (signx==0 && signy==0)

{

//If goto Axis 1

if(y>0)

{

straight(y);

interdelay();

}

if (x>0)

{

turn_right();

interdelay();

straight(x);

interdelay{);

}

}

else if (signx==1 &&signy==0)

{

//If goto Axis 2

if(y>0)

{

straight(y);

interdelayf);

}

//Note:x must be > 0 because signx=1

turnjeft();

interdelayO;

straight(x);

interdelayO;

>

else if (signx==1 &&signy==1)

{

//If goto Axis 3

//Note:x must be > 0 because signx=1

turn_left();

interdelayO;

straight(x);

65

interdelayO;

//Note:y must be > 0 because signy=1

turnjeft();

interdelayO;

straight(y);

interdelayO;

}

else if (signx==0 && signy==1)

{

//If goto Axis 4

turn_right();

interdelayO;

if (x>0)

{

straight(x);

interdelayO;

}

//Note:y must be > 0 because signy=1

turn_right{);

interdelayO;

straight(y);

interdelayO;

}

}

// tiniiu iiu ii iiiimi mi iiiimi mm int iitmm path algo ends mmmi mi mi mi mummi mi itmm mi unit nun mm

n umm nun nnun iiiimm itmi tintwmm basic movements starts mm iiiiitmm iiii itmm mumitiiumm

//added err codes

//Drive Train=DCBA, DC=right wheel, BA=left wheel

//Drive Data: 00=No movement, 10=Forward, 01=Reverse

void straight(int distance_incm)

{

int state_right,state_left;

//actual distance

float actual_total_avg;

float distance_pulse;

//tak berubah

long duty_right;

long dutyjeft;

66

//dir_path:

//0.0=same pulse, 1.0=right>left (overshoot left), 2.0=left>right (overshoot right)

float pulse_diff;

float dir_path;

float pulse__total_right;

float pulse_total_left;

int distance;

float pulse_total_right_temp;

float pulsejotaljeftjemp;

int distance_temp;

//dirjine:

//0=straight inline

//1=small overshoot left previously, 2=small overshoot right previously

//3=large overshoot left previously, 4=large overshoot right previously

//5=lost!

//6=dummy value (at startup of detection ONLY)

int linefollow_mode;

int dirjine;

//Jump to marker3

pulse_total_right=0.0;

pulse_totai_left=0.0;

distance=distance_incm;

is_ma in_interrupted=0;

goto marker3;

marker2: //route on returning from all interrupt flow

//reserved: pulse_total_right

//reserved: pulsejotaljeft

//reserved: distance

beeper_off(4);

pulse_total_right=pulse_total_right_temp;

pulse_total_left=pulse_total_left_ternp;

distance=distance_temp;

is_main_interrupted=0;

goto marker3;

markerl: //route for interrupt flow

pulse_total_right=0.0;

67

pulse_total_left=0.0;

if (flow_flag==2 || flow_flag==5)

{

distance=200;

}

else

{

distance=100;

}

//Jump to markerl

goto marker3;

marker3: //common route for all

pulse_diff=0-0;

dir_path=0.0;

actual_total_avg=0.0;

duty_right=330;

duty_left=500;

//Reset to search for line follow mode

linefoilow_mode=0;

//printf("Straight\r\n");

//use pin CO as right wheel encoder input

//use pin C3 as left wheel encoder input

//read initial state of encoder

state_right = input(PIN_CO);

state_left=input(PIN_C3);

//send pwm

pwm_right(d uty_right);

pwm_left(duty_left);

//Send signal to servo

port_d=0x00;

delay_ms{500);

//release

port_d=0x40;

output_bit(PIN_C4,0); //nitestaje

output_bit(PIN_C5,0); //nitestaje

//ON EXT, ON RB before moving

68

is_mark=0;

INTF_BIT = 0;

enableJnterrupts(INT_EXT);

enable_interrupts(INT_RB);

//*******

//moving the robot

// servo DC(right wheel) BA(left wheel)

//0100 1010

port_d=0x4A;

//1 pulse =7.853cm/rotation.

distance_pulse=(float)distance/3.9269;

iiiiuiumiiiiiuHiiuniiiiiuimHiiiniiiiiiiiiiminniiiiiiiiiiniiini

//hitam = 0 putih =1

while (actual_Jotal__avg < distance_pulse)

{

//- CHECK FOR LINE FOLLOW MODE-

if (linefollow_mode==0)

{

//If senses all 3 black stripes

if (input(PIN_E0)==1 && input(PIN_E1)==1 && input(PIN_E2)==1)

{

linefollow_mode=1;

beeper_off(1);

output_bit(pin_C4,0); //nitestaje

output_bit(pin_C5,0); //nitestaje

//Reset duty cycle to be normal again

duty_hght=330;

duty_left=500;

//send pwm

pwm_right(duty_right);

pwm_left(d uty_left);

//Set dummy value

dir_line=6;

//printf{"Line \r\n");

}

}

//

//If interrupt occur, main not yet flagged

if (is_mark==1 &&is_main_interrupted==0)

69

{

//Reserve state

pulse_tota!_right_temp=pulse_total_right;

pulse_totaMeft_temp=pulse_total_left;

distance_temp=distance;

is_main_interrupted=1;

}

//If YES (main is flagged), and small interrupt not yet flagged

^•^.-^•^-.^YES****************

if (is_main_interrupted==1 && is_mark==1)

{

switch{flow_flag)

{

case 1:

{

turn_right();

interdelayO;

break;

}

case 7:

{

turn_left();

interdelayO;

turn_left();

interdelayO;

break;

}

case 4:

{

tumJeftO;

interdelayO;

break;

}

case 8:

{

//worst case scenario

beeper_off(10);

break;

}

goto markerl;

goto markerl;

goto markerl;

70

}

}

//Ifmain is flagged, and small interrupt is flaggedOR main is never flagged

j»**»*********************g-i-OA|Q|_|"r Qy\|_Q|JLATION* ******************************

if ((is_main_interrupted==1 && is_mark==0) j| (is_mainjnterrupted==0))

{

tl!illliltlllillllllllrneasum$\$\ancevu\zetllilltllltllllllilllllltlllllll

//right

if (input(PIN_C0) == 0 && statejight == 1)

{

pulse_total_right=pulse_tota!_right+1;

state_right = 0;

}

else

if (input(P!N_C0) == 1 && statejight ==0)

{

pulse_total_right=pulse_total_right+1;

statejight = 1;

}

//left

if (input(PIN_C3) == 0 && statejeft == 1)

{

pulse_total_left=pulseJotal_left+1;

statejeft = 0;

}

else

if (input(PIN_C3) == 1 && statejeft ==0)

{

pulseJotalJeft=pulseJotalJeft+1;

state left = 1;

}

lllllllllllliHIIIIIIImeaswe&stencevuteellllllllilttilllllllllilllllllli

IIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIII ECC llllllllimillllllllllllllllllllllll

//If not in Line Follow Mode, do the Error Correction

if (linefollowjnode==0)

{

if (pulsejotaljight==pulseJotalJeft && dir_path!=0.0)

{

dutyjight=330;

dutyjeft=500;

pwmjight(dutyjight);

pwmjeft{dutyjeft);

71

}

else

dir_path=0.0;

output_bit(pin_C4,0); //nitestaje

output_bit(pin_C5,0); //nitestaje

}

else

if (pulseJotaljight>pulseJotaljeft)

{

pulse_diff=pulseJotal_right-pulseJotalJeft;//right>left slow right faster left

if (pulsejjiff>1.0&&dir_path!=1.0)

{

dutyjight=450;

//dutyjeft=450;

pwmj"ight(dutyjight);

//pwmjeft(dutyjeft);

dirjpath=1.0;

output_bit(pin_C4,1); //nitestaje

output_bit{pin_C5,0); //nitestaje

}

}

else

if (pulsejotaljight<pulseJotalJeft)//right <leftslow leftfaster right

{

pulse_diff=pulseJotalJeft-pulseJotaljight;

if (pulse_diff>1.0 && dir_path!=2.0)

{

}

//dutyjight=300;

duty_left=450;

//pwmjight(dutyjig ht);

pwmjeftfdutyjeft);

dir_path=2.0;

outputJjit(pin_C4,1); //nitestaje

output_bit(pin_C5,1); //nitestaje

}

llliillll!llltl!lllIttllIIIIIUr\QVo\\QwllllllIlllllilillllllllI!lllll!illll

//If in Line Follow Mode, do the Line Follow Correction

if (linefollowjnode==1)

{

//E0=Left,E1 =Center,E2=Right

72

//If small overshoot to the right

if(input(PIN_E0)==1 &&input(PIN_E1)==1 &&input(PIN_E2)==0)

{

if(dirjine!=2)

{

outputJ3it(pinj34,1); //nitestaje

outputJiit(pin_C5,0); //nitestaje

//printffOverR \r\n");

//Decrease left PWM

dirjine=2;

duty_right=400; //default=330

dutyjeft=200; //sblm ni 300, default=500

pwmjight(dutyjight);

pwmjeft(dutyjeft);

}

}

else

//If small overshoot to the left

if(input(PIN_EO)==0&&input(PIN_E1)==1 && input(PIN_E2)==1)

{

if(dirjine!=1)

{

outputJjit(pin_C4,0); //nitestaje

output_bit(pin_C5,1); //nitestaje

//Decrease right PWM

//printf("OverL\r\n*');

dutyjight=180; //sblm ni 200, default=330

dutyjeft=500; //default=500

pwmjight(dutyjight);

pwmJeft(d uty_left);

dir_line=1;

}

}

else

//If large overshoot to the right

if (input(P!N_E0)==1 && input(PIN_E1)==0 && input(PIN_E2)==0)

{

if (dirjine!=4)

{

output_bit(pin_C4,1); //nitestaje

outputJjit(pinj35,0); //nitestaje

//printf("OverR\An");

73

//Decrease left PWM

dutyjight=500; //default=330

dutyjeft=110; //sblm ni 300, default=500

pwmjight(duty_right);

pwmjeft(dutyjeft);

dirjine=4;

}

}

else

//If large overshoot to the left

if (input(PIN_E0)==0 && input(PIN_E1)==0 &&input(PIN_E2)==1)

{

if(dirjine!=3)

{

output_bit(pin_C4,0); //nitestaje

output_bit(pin_C5,1); //nitestaje

//printf("OverL\r\n");

//Decrease right PWM (ni yg ada problem)

duty_right=120; //default=330

dutyjeft=500; //default=500

pwmj-ight(duty_right);

pwmJeft(d utyJeft);

dirjine=3;

}

}

else

//If it is in-line straight

if ((input(PIN_E0)==0 && input(PIN_E1)==1 && input(PlN_E2)==0)

(input(PIN_E0)==1 &&input(PIN_E1)==1 && input(PIN_E2)==1))

{

{

if (dirjine!=0)

outputjDit(pin_C4,0); //nitestaje

outputjDit(pin_C5,0); //nitestaje

dutyjight=330;

dutyjeft=500;

pwmjight(d uty right);

pwmJeft(d uty_left);

dirjine=0;

}

}

else

//If it is lost from the line

if (input(PIN_E0)==0 &&input(PIN_E1)==0 && input(PIN_E2)==0)

74

{

if(dirjine!=5)

outputJ)it(pin_C4,1); //nitestaje

output_bit(pin_C5,1); //nitestaje

//printf("Lost\nn");

//If previously overshoot to the left

if (dirjine==1 || dirjine==3)

{

delayjns(lOO);

// servo DC(right wheel) BA(left wheel)

//0100 0010

portjj=0x42;

//0100 1010

port_d=0x4A;

//Decrease right PWM (ni yg ada problem)

}

else

//If previously overshoot to the right

if (dir_line==2 || dirjine==4)

{

delayjns(100);

//Decrease left PWM

dutyjight=120; //default=330

dutyjeft=500; //default=500

pwmjight(dutyjight);

pwmJeft(d utyjeft);

// servo DC(right wheel) BA(left wheel)

//0100 1000

port_d=0x48;

//0100 1010

portjd=0x4A;

dutyjight=500; //default=330

dutyjeft=110; //sblm ni 300, default=500

pwm jight(dutyjight);

pwm Jeft(d utyjeft);

}

else

//If previously is in-line straight

if (dirjine==0)

75

dutyjight=330; //default=330

dutyjeft=500; //default=500

pwmjight(dutyjight);

pwmJeft(d utyjeft);

//Out of line follow mode (and return to ECC mode)

linefollowjnode=0;

beeperjjff(l);

//Reset for ECC

dirjjath=0.0;

}

dirjine=5;

}

}

//////////////////////Calculate average total pulse/////////////////////////

actualJotaLavg=((float)pulseJotaMeft+{float)pulseJotaljight)/2.0;

//printf("»L=%3.2f, R=%3.2f, A=%3.2f

\r\n",pulseJota IJeft, pulseJotaljight,actualJota Ijavg);

//////////////////////Calculate average total pulse/////////////////////////

}

}

/////////AA/HILELOOP/////////////////////

//OFF after moving
11**** Ik***-*****-********** * *

disableJnterrupts{INT_RB);

disableJnterrupts(INT_EXT);

//If NO, change state flag

if (isjnain_interrupted==1 && isjnark==0)

{

switch(flowjlag)

{

76

case 1:

{

flowj1ag=2;

//printf("F=%u \r\n",flow_flag);

interdelayO;

turnJeftO;

interdelayO;

}

case 2:

{

break;

goto markerl;

flowjlag=3;

//printf("F=%u\r\n",flowJlag);

interdelayO;

turnjeft();

interdelayO;

break;

goto markerl;

)

case 3:

{

flowjlag=0;

//printf("F=%u \r\n",flowJlag);

interdelayO;

turnjight();

interdelayO;

//Return to original main

goto marker2;

break;

}

case 4:

case 7:

{

f!owJlag=5;

//printf("F=%u \r\n",flow_flag);

interdelayO;

turnjight();

interdelayO;

77

goto markerl;

break;

}

case 5:

{

}

flowJlag=6;

//printf("F=%u \r\n",flow_flag);

interdelayO;

turnjight();

interdelayO;

break;

goto markerl;

case 6:

{

flowjlag=0;

//printf("F=%u \r\n",flow_flag);

interdelayO;

turnJeftO;

interdelayO;

//Return to original main

goto marker2;

break;

)

J

}

//*"*******NO*

}

void turnjight(void)

{

int statejight,statejeft;

//int reqjotatej)ulse=15;

float reqjotatejjulse=10.0;

int pulsejotaljight=0,pulseJotaljeft=0;

float actualjotaijavg=0.0;

long dutyjight=330;

long dutyjeft=500;

pwmjight(dutyjight);

78

pwm Jeft(d utyjeft);

//printffRight \r\n");

//Send signal to servo

port_d=0x20;

delay_ms(200);

//0010 0110

port_d=0x26;

//read initial state of encoder

statejight = input(pinjCO);

statejeft= input(pin_C3);

pulsejotaijight=0;

pulsejotaljeft=0;

//hitam = 0 putih =1

while (actualjotaljavg < reqjotatejpulse)

{

//right

if (input(pin_C0) == 0 && state_right == 1)

{

}

else

}

pulseJotalj"ight=pulseJotaljight+1;

statej"ight = 0;

if (input(pin_C0) == 1 &&statejight ==0)

{

pulseJotaljight=pulseJotaljight+1;

statejight = 1;

//left

if (input(pin_C3) == 0 && statejeft == 1)

{

pulseJotaljeft=pulsejotaljeft+1;

statejeft = 0;

else

if (input(pinj33) == 1 && statejeft ==0)

pulseJotaljeft=pulsejotaljeft+1;

statejeft =1;

actualjotal_avg=((float)pulsejotalJ eft+(float) pulsejotaljight)/2.0;

}

79

//Send signal to servo

portjj=0x20;

delay_ms(200);

}

void turnjeft(void)

{

int statejight,statejeft;

//int reqjotatejiulse=15;

float reqjx>tatej)ulse=10.0;

int pulsejotaljight=0, pulseJotaljeft=0;

float actualjotal_avg=0.0;

long dutyjight=330;

long dutyjeft=500;

pwmjig ht(duty right);

pwmjeft(dutyjeft);

//printf(*'Left\r\n");

//Send signal to servo

portjd=0x20;

de!ay_ms(200);

//00101001

port_d=0x29;

//read initial state of encoder

statejight = input(pinjCO);

statejeft= input(pinj33);

pulseJotaLright=0;

pulseJotaljeft=0;

//hitam = 0 putih =1

while (actualjotaljavg < reqjotate_pulse)

{

//right

if (input(pin_C0) == 0 &&statejight == 1)

{

}

else

pulseJotaljight=pulsejotaljight+1;

statejight = 0;

if (input(pin_C0) == 1 && statejight ==0)

{

pulseJotaljight=pulseJotaljight+1;

statejight = 1;

80

}

//left

if (input(pin_C3) == 0 && statejeft == 1)

{

pulseJotalJeft=pulseJotalJeft+1;

statejeft = 0;

else

if (input(pin_C3) == 1 && statejeft ==0)

pulseJotalJeft=pulseJotalJeft+1;

statejeft =1;

actualJotaljavg=((float)pulseJotalJeft+(float)pulseJotaljight)/2.0;

}

//Send signal to servo

port_d=0x20;

de!ay_ms(200);

}

void stop()

{

printf{"Stop \r\n");

portjj=0x00;

delay_ms(500);

}

iiniiiimiminiimimiiiiiiiiinniimiiiitmmmmit basic movements ends iiittmuuniitmumtiiimunimuttu

iiiiiiiiiiiiliiuimtnimnminminimmum motor control pwm starts uimitniuiumiiinuiiuumuutniiii

void pwmjight(long dutyratio)

{

setupJimer_2(T2_DIVJ3Y_16,249,1);

setup_ccp1 (ccpj^wm);

setjpwm1jduty(dutyratio);

}

void pwm_left(long dutyratio)

{

setupJimer_2(T2_DIV_BYJ6,249,1);

setupjxp2(ccpj)wm);

setjjwm2jJuty(dutyratio);

}

////////// mmnun mitt nu mi nnnn mmitmi motor control pwm ends miunmtmmuiuiiiumtuumimm

mm itiimi mi iiiin itmmuuttiiiimmmimi mm beeper codes starts nun mitt iiii mm itiiii mm itiinmmmm

void beeper_off(int maxcount)

{

int count;

for {count=1 ;count<=maxcount;count++)

{

output_high(PIN_A1);

delayjns(IOO);

outputJow(PIN_A1);

delayjns(IOO);

}

}

ii ii iiii ii itmi nu mi mmmm mm iimmmmmi it beeper codes ends ununumtmutmiumiiimiummttmm

#intj3xt

void extjsr{)

{

if (isjnark==0)

{

bufferj3xt=portJ);

disableJnterrupts(INT_EXT);

disableJnterrupts(INT_RB);

stop();

beeper_off(4);

printf("(F) \r\n");

//tukar flag

switch(flowjlag)

{

case 0:

case 2:

case 3:

{

flowJlag=1;

//printf("F=%u \r\n",flow_fiag);

break;

}

case 1:

{

flowJlag=7;

//printf("F=%u \r\n",flow_flag);

break;

}

82

case 4:

case 7:

{

flowJlag=8;

//printf("F=%u \r\n",flowJIag);

break;

}

case 5:

case 6:

{

flowJlag=4;

//printf{"F=%u \r\n",flowjlag);

break;

}

}

isjnark=1;

}

//Delay wajib

de!ayjns(5000);

}

#int_rb

void exWb()

{

buffer_rb=port_b&0xF0;

if (bufferjb==0xB0 [| bufferjb==0x70)

{

if (isjnark==0)

{

disableJ nte rrupts(l NT_RB);

disableJ nterrupts (INT_EXT);

stop();

beeperjjff(4);

if (bufferjb==0xB0)

{

printf("(L) \r\n");

//tukar flag

switch(flowjlag)

{

case 0:

case 2:

83

case 3:

{

flowJiag=1;

//printf("F=%u \r\n",flow_flag);

break;

}

case 1:

{

flowJlag=7;

//printf("F=%u \r\n",flowJlag);

break;

}

case 4:

case 7:

{

flowJlag=8;

//printf("F=%u \r\n",flowJlag);

break;

}

case 5:

case 6:

{

flowJlag=4;

//printf("F=%u \r\n",flowJlag);

break;

}

}

}

else

if (bufferjb==0x70)

{

printf("(R) \r\n");

//tukar flag

switchfflowjnag)

{

caseO

case 2

case 3

{

//printf("F=%u \r\n",flowJlag);

break;

}

case 1:

flowJlag=1;

84

{

//printf("F=%u\r\n",flowJIag);

break;

}

case 4:

case 7:

{

//printf("F=%uWT'.flowJIag);

break;

}

case 5:

case 6:

{

//printf("F=%u \r\n",flow_flag);

break;

}

}

}

isjnark=1;

}

//Delay wajib

delayjns(IOOO);

}

else

{

//printf("(X)\r\n",bufferj-b);

INTFJ31T = 0;

enableJnterrupts(INT_RB);

}

}

flowJlag=7;

flowjlag=8;

flowJlag=4;

85

APPENDIX B: SERVO CONTROLLER SOURCE CODES

include <16F84A.h>
#use delay(clock=4000000)
#flises XT,NOPROTECT,NOWDT

^define delay_l 225 //us
#define de!ay_2 700 //us
tfdefine delay_3 1125 //us
#define delay_4 1300 //us

^define delayjpulse 17 //ms

void moveJ (void)
void move_2(void)
void move_3(void)
void move_4(void)

void main()
{

while (true)

{
in

{
if (input(PIN_AI)==l && input(PrN_A0)=0)

output_low(PINJ32);
outputJiigh(PINJ34);

moveJ();
}
112

else if(input(PIN_Al)=1 &&• input(PIN_A0>=1)
{

outputJiigh(PIN_B2);
outputJiigh(PINJ34);

}
in

move_4();

elseit(input(P[N_Al)=0&&input(P[N_AO)=0)
I

outputJow(PIN_B2);
outputJow(PIN_B4);

move_3();

}
//4

elseif{input(PrN_Al)=0&&input(PIN_AO)==l)
!

output high(PIN_B2);
outputJow(PINJ34);

move_2();

void moveJO

{
output_high(PINJ33);

delayjjs(delayj);

outputJow(PINJ33);
delayjns(delayjulse);

86

}

void move_2()

{
output_high(PIN_B3);

delay_us(delay_2);

outputJow(PIN_B3);
delayjns(delayjpulse);

}

void move__3()

{
output_high(P[N_B3);

delayjjs(delay_3);

outputJow(PIN_B3);
delayjns(del ayjiulse);

i

void move_4()
5

outputJiigh(PIN_B3);
delayjjs(delayjt);

outputJow(PINJ33);
delay ms(delayjpulse);

I

87

APPENDIX C: MOBILE ROBOT PARTS

Figure 0-1 Front setup mount of each tires

Figure 0-2 Infrared / Rotary Encoder / Stripes

Figure 0-3 Ultrasonic Transmitter and Receiver

Figure 0-4 Infrared Transmitter / Detector

Figure 0-5 Rear Servo Control Caster

89

-:•«

* I.

Figure 0-6 The whole robot layout

90

APPENDIX D: L298 Datasheet

91

57.

. OPERATINGSUPPLYVOLTAGEUPT046V

• TOTAL DC CURRENT UP TO 4 A

m LOW SATURATION VOLTAGE

. OVERTEMPERATURE PROTECTION

m LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V

(HIGH NOISE IMMUNITY)

DESCRIPTION

The L298 is an integrated monolithic circuit in a 15-
lead Multiwatt and PowerSO20 packages. It is a
high voltage, high current dual full-bridge driver de
signed to accept standard TTL logic levels and drive
inductive loads such as relays, solenoids, DC and
stepping motors. Two enableinputs are provided to
enable ordisablethe device independentlyof the in
put signals. The emitters of the lower transistors of
each bridge are connected togetherand the corre
sponding external terminal can be used for the con-

BLOCK DIAGRAM

L298

DUAL FULL-BRIDGE DRIVER

Multiwatt15 PowerSO20

DRDERING NUMBERS : L298N (Multiwatt Vert.)
L298HN (Multiwatt Horiz.)
L298P (Pn"2rS02rn

nectionofanexternalsensing resistor. Anadditional
supply input is provided so that the logic works at a
lower voltage.

OUTl

Q
OUT2

O

+vs
iWUnF

Hfa-
OUT!

O
OUT4

c

+V5S

1
lOOnF

Inl
O-

Ifl2

EnA

Vf

^,x>

SENSE

Jenuary 2000

Rsa

i*.

fTO3Vhct

-lO-O-CE^
10

T
13

O SENSE a

2_bsd

In*

InJ

—O

En*

—O

1/13

L298

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

VS Power Supply 50 V

Vss Logic Supply Voltage 7 V

v(,ven Input and Enable Voltage -0.3 to 7 V_

A

A

A

lo Peak OutputCurrent (each Channel)
- Non Repetitive (t = 100u.s)
-Repetitive (80% on -20% off; ton = 10ms)
-DC Operation

3

2.5

2

"sens Sensing Voltage -1 to 2.3 V

Ptot Total Power Dissipation (Tease = 75°C) 25 W

Top Junction Operating Temperature -25 to 130 °C

Tsig, Tj Storage and Junction Temperature -40 to 150 °C

PIN CONNECTIONS (top view)

THERMAL DATA

1

&
CURRENT SENSING B

e
Vlultiwatt15

3 OUTPUT4

13 OUTPUT3

3 INPUT4

1> ENABLE B

J INPUT 3

13 LOGIC SUPPLY VOLTAGE V,

J GND

INPUT2

z

-e

3 ENABLE A

D INPUT 1

J SUPPLYVOLTAGE Vs

13 OUTPUT 2

3 OUTPUT 1

Z3 CURRENT SENSING A

TAB CONNECTED TO PIN 8

GND

Sense A

N.C.

OuM

Out 2

Vs

Input 1

Enable A

Input 2

GND

f
1 20

2 19

3 18

4 17

5 PowerSO20 16

6 15

7 14

8 13

9 12

10 11

GND

Sense E

N.C.

Out 4

Out 3

Input 4

Enable I

Input 3

VSS

GND

Symbol Parameter PowerSO20 Multiwatt15 Unit

Rihj-case Thermal Resistance Junction-case Max. - 3 °C/W

Rth j-amb Thermal Resistance Junction-ambient Max. 13 n 35 °c/w

(*) Mounted on aluminum substrate

2/13 <*7

L298

PIN FUNCTIONS (referto the block diagram)

MW.15 PowerSO Name Function

1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor to
control the current of the load.

2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load
connected between these two pins is monitored at pin 1.

4 6 Vs Supply Voltage for the Power Output Stages.
A non-inductive 10OnF capacitor must be connected between this
pin and ground.

5;7 7;9 Input 1; Input2 TTL Compatible Inputs of the Bridge A.

6;11 8;14 Enable A; EnableB TTL CompatibleEnable Input: the Lstate disables the bridge A
(enable A) and/or the bridge B (enable B).

8 1,10,11,20 GND Ground.

9 12 VSS Supply Voltage for the Logic Blocks. A100nF capar" .*mustb~
connected between this pin and ground.

10; 12 13;15 Input3; Input4 TTL Compatible Inputs of the Bridge B.

13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the load
connected between these two pins is monitored at pin 15.

- 3;18 N.C. Not Connected

ELECTRICAL CHARACTERISTICS (Vs = 42V;Vss = 5V,Tj =25°C; unless otherwise specified)

Symbol Parameter Test Condit ons Min. Typ. Max. Unit

Vs Supply Voltage (pin 4) Operative Condition Vih +2.5 46 V

Vss Logic Supply Voltage (pin 9) 4.5 5 7 V

Is Quiescent Supply Current (pin 4) Ven=H; Il = 0 V = L

Vi = H
13

50

22

70

mA

mA

Ven = L Vi = X 4 mA

Iss Quiescent Current from Vss (pin 9) Ven = H; Il = 0 V|=L
Vi = H

24

7

36

12

mA

mA

Ven = L Vj=X 6 mA

ViL Input Low Voltage
(pins 5, 7, 10,12)

-0.3 1.5 V

ViH Input High Voltage
(pins 5, 7, 10,12)

2.3 VSS V

IlL Low Voltage Input Current
(pins 5, 7, 10,12)

V = L -10 uA

llH High Voltage Input Current
(pins 5, 7, 10,12)

Vi=H< Vss -0.6V 30 100 UA

Ven = L Enable Low Voltage (pins 6,11) -0.3 1.5 V

Ven = H Enable High Voltage (pins 6,11) 2.3 Vss V

Ln = L Low Voltage Enable Current
(pins 6,11)

Ven = L -10 uA

Un = H High Voltage Enable Current
(pins 6,11)

Ven = H < Vss -0.6V 30 100 uA

VcEsat(H) Source Saturation Voltage lL= 1A
Il = 2A

0.95 1.35

2

1.7

2.7

V

V

VcEsat(L) Sink Saturation Voltage Il = 1A (5)
lL= 2A (5)

0.85 1.2

1.7

1.6

2.3

V

V

VcEsat Total Drop lL = 1A (5)
lL=2A (5)

1.80 3.2

4.9

V

V

VSens Sensing Voltage (pins 1,15) -1 (1) 2 V

5i 3/13

L298

ELECTRICAL CHARACTERISTICS (continued)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

T, (V) Source Current Turn-off Delay 0.5Vito0.9lL (2); (4) 1.5 US

T2 (V) Source Current Fall Time 0.9 lL to 0.1 lL (2); (4) 0.2 M«

T3 (V) Source Current Turn-on Delay 0.5 V]to 0.1 lL (2); (4) 2 us

T4 (V) Source Current Rise Time 0.1 lL to0.9lL (2); (4) 0.7 us

Ts (V) Sink Current Turn-off Delay 0.5Vito0.9lL (3); (4) 0.7 us

T6 (V) Sink Current Fall Time 0.9 lL to 0.1 lL (3); (4) 0.25 us

T7 (V) Sink Current Turn-on Delay 0.5Vito0.9lL (3); (4) 1.6 us

T8 (V) Sink Current Rise Time 0.1 lL to0.9 lL (3); (4) 0.2 us

fc (V) Commutation Frequency iL = 2A 25 40 KHz

Ti (V8n) Source Current Turn-off Delay 0.5Vento0.9lL (2); (4) 3 us

T2 (Ven) Source Current Fall Time 0.9 lL to 0.1 lL (2); (4) 1 us

T3 (Ven) Source Current Turn-on Delay 0.5Vento0.1 lL (2); (4) 0.3 us

T4 (Ven) Source Current Rise Time 0.1 lL to0.9 lL (2); (4) 0.4 us

T5 (Ven) Sink Current Turn-off Delay 0.5Ve„to0.9lL (3); (4) 2.2 us

T6 (Ven) Sink Current Fall Time 0.9 lL to 0.1 lL (3); (4) 0.35 us

T7 (Ven) Sink Current Turn-on Delay 0.5Vento0.9lL (3); (4) 0.25 U.S

TB (Ven) Sink Current Rise Time 0.1 IL to0.9 lL (3); (4) 0.1 ^

1) 1)Sensing voltage can be-1 Vfort 5 50 usee; insteady state VSens min>-0.5 V.
2) See fig. 2.
3) See fig.4.
4) The load must be a pure resistor.

Figure 1 : Typical Saturation Voltage vs. Output
Current.

Figure 2 : Switching Times Test Circuits.

4/13

VSAT
(V)

2.4

2D

1.S

1.2

VS =42V
H

/
** s. /

& >
<*"

<*^

0.4

0.4 0B U 1.6 2.0 2.4 I0(A).

INPUT

O—

ENABLE
o—

VSS*5V %«42V
O

Note: For INPUT Switching, set EN = H
For ENABLESwitching, set IN = H

,20 a

JSU/1

*v

APPENDIX E: PIC16F877 Datasheet

92

©
Microchip PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

PIC16F873

PIC16F874

PIC16F876

PIC16F877

Microcontroller Core Features:

High performance RISC CPU

Only 35 single word instructions to learn

All single cycle instructions except for program
branches which are two cycle

Operating speed: DC - 20 MHzclock input
DC - 200 ns instruction cycle

Up to 8Kx 14 words of FLASH Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM Data Memory
Pinout compatible to the PIC16C73B/74B/76/77

Interrupt capability (up to 14 sources)
Eight level deep hardware stack

Direct, indirect and relative addressing modes

Power-on Reset (POR)

Power-up Timer (PWRT) and
Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation

Programmable code protection

Power saving SLEEP mode

Selectable oscillator options

Low power, high speed CMOS FLASH/EEPROM
technology

Fully static design

In-Circuit Serial Programming™ (ICSP) via two
pins

Single 5V In-Circuit Serial Programming capability

In-Circuit Debugging via two pins

Processor read/write access to program memory

Wide operating voltage range: 2.0V to 5.5V

High Sink/Source Current: 25 mA

Commercial, Industrial and Extended temperature
ranges

Low-power consumption:

- < 0.6 mA typical @ 3V, 4 MHz

- 20 uA typical @ 3V, 32 kHz

- < 1 uA typical standby current

3 2001 Microchip Technology Inc.

Pin Diagram

PDIP

MCLFWPP

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3A/REF+

RA4/T0CKI

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vqd

VSS

OSCVCLKIN

OSC2/CLKOUT

RcomosomcKi

RC1/T10SI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSP0

RD1/PSP1

RB7/PGD

RB6/PGC

RBS

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RCM'Sni/SDA

RD3/PSP3

RD2/PSP2

Peripheral Features:

• TimerO: 8-bit timer/counter with 8-bit prescaler

• Timer!: 16-bit timer/counter with prescaler,
can be incremented during SLEEP via external
crystal/clock

• Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler

• Two Capture, Compare, PWM modules

- Capture is 16-bit, max. resolution is 12.5 ns

- Compare is 16-bit, max. resolution is 200 ns

- PWM max. resolution is 10-bit

• 10-bit multi-channel Analog-to-Digital converter
• SynchronousSerial Port (SSP) with SPI™ (Master

mode) and l2C™ (Master/Slave)
• Universal Synchronous Asynchronous Receiver

Transmitter (USART/SCI) with 9-bit address
detection

• Parallel Slaye_Port (PSPJ 8-bitswide, with
external RD, WR and CS control (40/44-oin only)

• Brown-out detection circuitry for
Brown-out Reset (BOR)

DS30292C-page 1

C16F87X

Diagrams

PDIP, SOIC

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/T0CKI

RA5/AN4/SS

VSS

OSC1/CLKIN

0SC2/CLKOUT

omosomcKi

C1/T10SI/CCP2

RC2/CCP1

RC3/SCK/SCL

QFP

)292C-page 2

< d

^joa.Q.Q.iiou

OOOQDDDOO
cc cc cc cc cc a: cc cc a:

nimm
a: z

Qt 'T'T't'j-MM w c) o to

mmm
Z2(OC0>nm^ZZ ft m

liisil

RB7/PGD

RB6/PGC

RS5

RB4

RB3/PGM

RB2

RB1

RBO/INT

VDD

VSS

RC7/RX/DT

Rcerrx/CK

RC5/SD0

RC4/SDI/SDA

PLCC

u. u.
Ui 111

Ii
m cm

z z
<<

3a
no:

i-O »•

^|£
1-0 J n (5 m **
<<Oocommmo
cmSzaiKccitz

a. D.

tlttl ill!
nnnnnnnnnnn

i!L9
L10
C 11
C12
C13
C14

•C15
C16

H17<

39p
38

37p

RA4/T0CK1
RA5/AN4/SS
RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7
VDD

VSS

OSCt/CLKIN

OSC2/CLKOUT
RC0/T1OSO/T1CK1

NC

PIC16F877 35
34

33

NC

RC0n"1OSO/T1CK!

OSC2/CLK0UT

0SC1/CLKIN

Vss

VDD
RE2/AN7/CS

RE1/AN6/WR

RE0/AN5/RD

RA5/AN4/SS

RA4rrOCKI

PIC16F874

320
31

30p
291

UUUUUUUUUUU

mimm
<N <- -i a t- cvi
0.0.00.0. a.
OOWI/IWCO

O^^cCCCOi
t °

&OQOZ

o °-
cc

RB3/PGM
RB2

RB1

RBO/INT
VDD
VSS

RD7/PSP7

RD6/PSP6
RD5/PSP5

RD4/PSP4
RC7/RX/DT

© 2001 Microchi'~ Technoingy '-

PIC16F87X

Key Features
PICmicro™ Mid-Range Reference

Manual (DS33023)
PIC16F873 PIC16F874 PIC16F876 PIC16F877

Operating Frequency DC - 20 MHz DC - 20 MHz DC-20 MHz DC - 20 MHz

RESETS (and Delays) POR, BOR
(PWRT, OST)

POR, BOR
(PWRT, OST)

POR, BOR
(PWRT, OST)

POR, BOR
(PWRT, OST)

FLASH Program Memory
(14-bit words)

4K 4K 8K 8K

Data Memory (bytes) 192 192 368 368

EEPROM Data Memory 128 128 256 256

Interrupts 13 14 13 14

I/O Ports Ports A,B,C Ports A,B,C,D,E Ports A,B,C Ports A,B,C,D,E

Timers 3 3 3 3

Capture/Compare/PWM Modules 2 2 2 2

Serial Communications MSSP, USART MSSP, USART MSSP, USART MSSP, USART

Parallel Communications — PSP
— PSP

10-bit Analog-to-Digital Module 5 input channels 8 input channels 5 input channels 8 input channels

Instruction Set 35 instructions 35 instructions 35 instructions 35 instructions

s> 2001 Microchip Technology Inc. DS30292C-page 3

C16F87X

le of Contents

Device Overview 5

Memory Organization 11
I/O Ports 29

Data EEPROM and FLASH Program Memory 1"!
TimerO Module 47

Timerl Module 51

Timer2 Module 55

Capture/Compare/PWM Modules 57
Master Synchronous Serial Port (MSSP) Module 65
Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) 95
Analog-to-Digital Converter (A/D) Module 111
Special Features of the CPU 119
Instruction Set Summary 135
Development Support 143
Electrical Characteristics 149

DC and AC Characteristics Graphs and Tables 177
Packaging Information 189

indix A: Revision History 197
indix B: Device Differences 197

ndix C: Conversion Considerations 198

c 199

ine Support 207
ler Response 208
6F87X Product Identification System 209

TO OUR VALUED CUSTOMERS

our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
lucts. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
anced as new volumes and updates are introduced.

iu have any questions or comments regarding this publication, please contact the Marketing Communications Department via
ail at docerrors@maH.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.
welcome your feedback.

st Current Data Sheet

•btain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page,
last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

ata

srrata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
ces. As device/documentation issues become known to us, we willpublish an errata sheet. The errata will specify the revision
licon and revision of document to which it applies.

etermine if an errata sheet exists for a particular device, please check with one of the following:

Jcrochip's Worldwide Web site; http://www.microchip.com
Dur local Microchip sales office (see last page)
he Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

in contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-
3 number) you are using.

stomer Notification System

ister on our web site at www.microchip.com/cn to receive the most current information on all of our produf*',

292C-page 4 © 2001 Microchip Technology Inc.

PIC16F87X

1.0 DEVICE OVERVIEW

This document contains device specific information.
Additional information may be found in the PICmicro™
Mid-Range Reference Manual (DS33023), which may
be obtained from your local Microchip Sales Represen
tative or downloaded from the Microchip website. The
Reference Manual should be considered a complemen
tary document to this data sheet, and is highly recom
mended reading for a better understanding of the device
architecture and operation of the peripheral modules.

There are four devices (PIC16F873, PIC16F874,
PIC16F876 and PIC16F877) covered by this data
sheet. The PIC16F876/873 devices come in 28-pin
packages and the PIC16F877/874 devices come in
40-pin packages. The Parallel Slave Port is not
implemented on the 28-pin devices.

The following device block diagrams are sorted by pin
number; 28-pin for Figure 1-1 and 40-pin for Figure 1-2.
The 28-pin and 40-pin pinouts are listed in Table 1-1
and Table 1-2, respectively.

FIGURE 1-1: PIC16F873 AND PIC16F876 BLOCK DIAGRAM

Device
Program
FLASH

Data Memory
Data

EEPROM

PIC16F873 4K 192 Bytes 128 Bytes

PIC16F876 8K 368 Bytes 256 Bytes

Program
Bus

FLASH

Program
Memory

Program Counter k^

8 Level Stack

(13-bit)

Data Bus

RAM

File

Registers

RAM Addr<1>

=7*=

14/

\L
Instruction reg

Addr MUX \
• A

Indirect
8/ Addr

iZ
Instruction
Decode &

Control

Direct Addr

Power-up
Timer

Oscillator
Start-up Timer

FSR reg <$=

rp=£>| STATUS reg

3, MUX

ALU

ISrC-O
Timing

Generation C^>

Power-on
Reset

Watchdog
Timer

-: n

OSC1/CLKIN
0SC2/CLK0UT

TimerO

Data EEPROM

Timerl

SL

CCP1.2

Brown-out

Reset

In-Circuit
Debugger

Low Voltage
Programming

MCLR Vdd, Vss

Timer2

Synchronous
Serial Port

Note 1: Higher order bits are from the STATUS register.

•J 2001 Microchip Technology Inc.

W reg

10-bit A/D

USART

PORTA

>

PORTB

PORTC

0

RAO/ANO

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/T0CKI_
RA5/AN4/SS

RBO/INT

RB1

RB2

RB3/PGM

RB4

RB5

RB6/PGC

RB7/PGD

RC07T1OSO/T1CKI

RC1/T10SI/CCP2

RC2/CCP1

RC3/SCK/SCL

RC4/SDI/SDA

RC5/SD0

RC6/TX/CK

RC7/RX/DT

DS30292C-page 5

C16F87X

JRE 1-2: PIC16F874 AND PIC16F877 BLOCK DIAGRAM

Device
Program
FLASH

Data Memory
Data

EEPROM

5IC16F874 4K 192 Bytes 128 Bytes

=IC16F877 8K 368 Bytes 256 Bytes

FLASH

Program
Memory

Program 14
Bus *

Jote 1: Higherorder bits are from the STATUS register.

292C-page 6

PORTA

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3/VREF+

RA4/T0CKj_
RA5/AN4/SS

RC0/T1OSO/T1CKI

RC1/T10SI/CCP2

RC2/CCP1

P^/SCK/SC"

RU4/SDI/SDA

RC5/SD0

RC6/TX/CK

RC7/RX/DT

-_*£<] RE0/AN5/RD

-—-S RE1/AN6/WR

-~HE! RE2/AN7/CS

© 2001 Microchip Technology Inc.

PIC16F87X

FABLE 1-1: PIC16F873 AND P1C16F876 PINOUT DESCRIPTION

Pin Name
DIP

Pin#

SOIC

Pin#

l/O/P

Type
Buffer

Type
Description

OSC1/CLK1N 9 9 I ST/CMOS<3> Oscillator crystal input/external clock source input.

OSC2/CLKOUT 10 10 0 Oscillator crystal output. Connects to crystal or resonator in
crystal oscillator mode. In RC mode, the OSC2 pin outputs
CLKOUTwhich has 1/4 the frequency of OSC1, and denotes
the instruction cycle rate.

MCLR/VPP 1 1 l/P ST Master Clear (Reset) input or programing voltanp inr '* This
pin is an active low RESET to the device.

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/T0CK!

RA5/SS/AN4

2

3

4

5

6

7

2

3

4

5

6

7

I/O

I/O

I/O

I/O

I/O

I/O

TTL

TTL

TTL

TTL

ST

TTL

PORTA is a bi-directional f/O port.

RAOcan also be analog inputO.

RA1 can also be analog inputi.

RA2 can also be analog input2 or negative analog
reference voltage.

RA3 can also be analog input3 or positive analog
reference voitage.

RA4 can also be the clock input to the TimerO
module. Output is open drain type.

RA5 can also be analog input4 or the slave select
for the synchronous serial port.

RBO/INT

RB1

RB2

RB3/PGM

RB4

RB5

RB6/PGC

RB7/PGD

21

22

23

24

25

26

27

28

21

22

23

24

25

26

27

28

I/O

I/O

t/0

I/O

I/O

I/O

I/O

I/O

TTL/ST<1>

TTL

TTL

TTL

TTL

TTL

TTL/ST<2>

TTL/ST<2>

PORTB is a bi-directional I/O port. PORTB can be software
programmed for internal weak pull-up on all inputs.

RBO can also be the external interrupt pin.

RB3 can also be the low voltage programming input.

Interrupt-on-change pin.

Interrupt-on-change pin.

Interrupt-on-change pin or fn-Circuit Debugger pin. Serial
programming clock.

Interrupt-on-change pin or In-Circuit Debugger pin. Serial
programming data.

RC0/T1OSO/T1CKI

RC1/T10SI/CCP2

RC2/CCP1

RC3/3CK/SCL

RC4/SDI/SDA

RC5/SDO

RC6/TX/CK

RC7/RX/DT

11

12

13

14

15

16

17

18

11

12

13

14

15

16

17

18

I/O

I/O

I/O

I/O

I/O

t/0

I/O

I/O

ST

ST

ST

ST

ST

ST

ST

ST

PORTC is a bi-directional I/O port.

RCO can also be the Timer1 oscillator output orTimerl
clock input.

RC1 can also be the Timerl oscillator input or Capture2
input/Compare2 output/PWM2 output.

RC2 can also be the Capturel input/Compare 1 output/
PWM1 output.

RC3 can also be the synchronous serial clock input/output
for both SPI and l2C modes.

RC4 can also be the SPI Data In (SPI mode) or
data I/O (l2C mode).
RC5 can afso be the SPI Data Out (SPf mode).

RC6 can also be the USART Asynchronous Transmit or
Synchronous Clock.

RC7 can also be the USART Asynchronous Receive or
Synchronous Data.

Vss 8, 19 8, 19 p — Ground reference for logic and I/O pins.

Vdd 20 20 p
— Positive supply for logic and I/O pins.

Legend: i = input

Note 1: This buffer is

2: This buffer is

3: This buffer is

0 = output
— = Not used

a Schmitt Trigger
a Schmitt Trigger
a Schmitt Trigger

\> 2001 Microchip Technology Inc.

I/O = input/output P = power
TTL = TTL input ST = Schmitt Trigger input

input when configured as the external interrupt.
input when used in Serial Programming mode.
input when configured in RC oscillator mode and a CMOS input otherwise.

DS30292C-page 7

C16F87X

LE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

Pin Name
DIP

Pin#

PLCC

Pin#

QFP

Pin#

l/O/P

Type
Buffer

Type
Description

1/CLKIN 13 14 30 I ST/CMOS<4> Oscillator crystal input/external clock source input.

2/CLKOUT 14 15 31 0 Oscillator crystal output. Connects to crystal or resonator
in crystal oscillator mode. In RC mode, OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and
denotes the instruction cycle rate.

R/VPP 1 2 18 l/P ST Master Clear (Reset) input or programming voltage input.
This pin is an active low RESET to the device.

ANO

AN1

AN2/VREF-

AN3/VREF+

TOCKI

SS/AN4

2

3

4

5

6

7

3

4

5

6

7

8

19

20

21

22

23

24

I/O

I/O

I/O

I/O

I/O

I/O

TTL

TTL

TTL

TTL

ST

TTL

PORTA is a bi-directional I/O port.

RAO can also be analog inputO.

RA1 can also be analog inputi.

RA2 can also be analog input2 or negative
analog reference voltage.

RA3 can also be analog input3 or positive
analog reference voltage.

RA4 can also be the clock input to thr TmerO timer'
counter. Output is open drain type.

RA5 can also be analog input4 or the slave select for
the synchronous serial port.

INT

PGM

PGC

PGD

33

34

35

36

37

38

39

40

36

37

38

39

41

42

43

44

8

9

10

11

14

15

16

17

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

TTL/ST^

TTL

TTL

TTL

TTL

TTL

ttl/st'2'

ttl/st'2'

PORTB is a bi-directional I/O port. PORTB can be soft
ware programmed for internal weak pull-up on all inputs.

RBO can also be the external interrupt pin.

RB3 can also be the low voltage programming input.

Interrupt-on-change pin.

Interrupt-on-change pin.

Interrupt-on-change pin or In-Circuit Debugger pin.
Serial programming clock.

Interrupt-on-change pin or In-Circuit Debugger pin.
Serial programming data.

nd: I = input

1: This buffer

2: This buffer

3: This buffer

Slave Port

4: This buffer

>92C-page 8

O = output
— = Not used

is a Schmitt Trigger input
is a Schmitt Trigger input
is a Schmitt Tngger input
mode (for interfacing to a
is a Schmitt Trigger input

I/O = input/output P = power
TTL = TTL input ST = Schmitt Trigger input

when configured as an external interrupt,
when used in Serial Programming mode.
when configured as general purpose I/O and a TTL input when used in the Parallel
microprocessor bus),
when configured in RC oscillator mode and a CMOS input otherwise.

© 2001 Microchip Technology Inc.

PIC16F87X

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

Pin Name
DIP

Pin#

PLCC

Pin#

QFP

Pin#

l/O/P

Type
Buffer

Type
Description

PORTC is a bi-directional I/O pun.

RC0/T1OSO/T1CKI 15 16 32 I/O ST RC0 can also be the Timerl oscillator output or a
TimeM clock input.

RC1/T10SI/CCP2 16 18 35 I/O ST RC1 can also be the Timerl oscillator input or
Capture2 input/Compare2 output/PWM2 output.

RC2/CCP1 17 19 36 I/O ST RC2 can also be the Capturel input/Comparel
output/PWM1 output.

RC3/5CK/SCL 18 20 37 I/O ST RC3 can also be the synchronous serial clock input/
output for both SPI and l2C modes.

RC4/SDI/SDA 23 25 42 I/O ST RC4 can also be the SPI Data In (SPI mode) or
data I/O (l2C mode).

RC5/SDO 24 26 43 I/O ST RC5 can also be the SPI Data Out (SPI mode).

RC6/TX/CK 25 27 44 I/O ST RC6 can also be the USART Asynchronous Transmit
or Synchronous Clock.

RC7/RX/DT 26 29 1 I/O ST RC7 can also be the USART Asynchronous Receive
or Synchronous Data.

RDO/PSPO 19 21 38 I/O st/ttl(3>

PORTD is a bi-directional I/O port or parallel slave port
when interfacing to a microprocessor bus.

RD1/PSP1 20 22 39 I/O st/ttl(3)

RD2/PSP2 21 23 40 I/O st/ttl*3)

RD3/PSP3 22 24 41 I/O
ST/TTL(3)

RD4/PSP4 27 30 2 i/O ST/TTL*3'

RD5/PSP5 28 31 3 I/O ST/TTL(3>

RD6/PSP6 29 32 4 i/O st/ttl(3>

RD7/PSP7 30 33 5 I/O st/ttl'3'

PORTE is a bi-directional I/O port.

RE0/RD/AN5 8 9 25 I/O st/ttl'3) RE0 can also be read control for the parallel slave
port, or analog inputs.

RE1/WR/AN6 9 10 26 I/O st/ttl<3> RE1 can also be write control for the parallel slave
port, or analog input6.

RE2/CS/AN7 10 11 27 I/O stttl<3> RE2 can also be select control for the parallel slave
port, or analog inpur.7.

VSS 12,31 13,34 6,29 p — Ground reference for logic and I/O pins.

VDD 11,32 12,35 7,28 p — Positive supply for logic and I/O pins.

NC
—

1,17,28,

40

12,13,
33,34

—
These pins are not internally connected. These pins
should be left unconnected.

Legend: I = input O = output I/O = input/output P = power ,
— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel

Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

© 2001 Microchip Technology Inc. DS30292C-page 9

APPENDIX F: PIC16F84A Datasheet

93

Microchip PIC16F84A
18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller

High Performance RISC CPU Features:

Only 35 single word instructions to learn

All instructions single-cycle except for program
branches which are two-cycle

Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

1024 words of program memory

68 bytes of Data RAM

64 bytes of Data EEPROM

14-bit wide instruction words

8-bit wide data bytes

15 Special Function Hardware registers

Eight-level deep hardware stack

Direct, indirect and relative addressing modes
Four interrupt sources:

- Externa! RBO/INT pin

- TMRO timer overflow

- PORTB<7:4> interrupt-on-change

- Data EEPROM write complete

Peripheral Features:

• 13 1/0 pins with individual direction control

• High current sink/source for direct LED drive

- 25 mA sink max. per pin

- 25 mA source max. per pin

• TMRO: 8-bit timer/counter with 8-bit

programmable prescaler

Special Microcontroller Features:

• 10,000 erase/write cycles Enhanced FLASH
Program memory typical

• 10,000,000 typical erase/write cycles EEPROM
Data memory typical

• EEPROM Data Retention > 40 years

• In-Circuit Serial Programming™ (ICSP™) - via
two pins

• Power-on Reset (POR), Power-up Timer (PWRT),
Oscillator Start-up Timer (OST)

• Watchdog Timer (WDT) with its own On-Chip RC
Oscillator for reliable operation

• Code protection

• Power saving SLEEP mode

• Selectable oscillator options

© 2001 Microchip Technology Inc.

Pin Diagrams

PDIP, SOIC

RA2 -«—»-L~ »1
^J

18 3-—RA1
RA3 -»—•-L~ 2 17 H-«—-RAO

RA4/T0CKI -—- L" 3

4

"0

O

16

15

3" OSC1/CLKIN

3 - OSC2/CLKOUTMCLR - L

Vss—- L~ 5 o> 14 3 " VDD
RBO/INT -—- Z 6 CO 13 H-—-RB7

RB1 •*—•>[! 7 > 12 H"—-RB6

RB2 -—-C 8 11 U-«—»- RB5

RB3 -—-L~ 9 10 J-—-RB4

SSOP

RA2

RA3

RA4/T0CKI

MCLR

Vss

Vss-

RB0/INT

RB1

RB2

RB3

-^7"

O

en
-n
CO

20g
i"j_j
18 "J

17 H-

16 J

1S"J-

14 H •

13-J-

12 :•

11 :

•RA1

RAo

OSC1/CLKIN

OSC2/CLKOUT

•VDD

VDD

RB7

RB6

RB5

RB4

CMOS Enhanced FLASH/EEPROM

Technology:

• Low power, high speed technology

• Fully static design

• Wide operating voltage range:

- Commercial: 2.0V to 5.5V

- Industrial: 2.0V to 5.5V

• Low power consumption:

- < 2 mA typical @ 5V, 4 MHz

- 15 uA typical @2V, 32 kHz

- < 0.5 uA typical standby cir .it @ 2^'

DS35007B-page 1

IC16F84A

le of Contents

Device Overview 3

Memory Organization 5
Data EEPROM Memory 13
I/O Ports 15

TimerO Module 19

Special Features of the CPU 21
Instruction Set Summary 35
Development Support 43

Electrical Characteristics 49

DC/AC Characteristic Graphs 61
Packaging Information 71

sndix A: Revision History 75
sndix B: Conversion Considerations iv

mdix C: Migration from Baseline to Mid-Range Devices 78

< 79

.ine Support 83
ter Response 84
6F84A Product Identification System 85

TO OUR VALUED CUSTOMERS

i our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
•ducts. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
lanced as new volumes and updates are introduced.

ou have any questions or comments regarding this publication, please contact the Marketing Communications Department via
nail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.
! welcome your feedback.

>st Current Data Sheet

obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

j can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
3 last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

rata

errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
/ices. As device/documentation issues become known to us, we will publish an errata sheet. The errata willspecify the revision
silicon and revision of document to which it applies.

determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com
four local Microchip sales office (see last page)
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

len contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-
re number) you are using.

istomer Notification System

gister on our web site at www.mlcrochip.com/cn to receive the most current information on all of our products.

50078-page 2 © 2001 Microchip Technology Inc.

1.0 DEVICE OVERVIEW

This document contains device specific information for
the operation of the PIC16F84A device. Additional
information may be found in the PICmicro™ Mid-
Range Reference Manual, (DS33023), which may be
downloaded from the Microchip website. The Refer
ence Manual should be considered a complementary
document to this data sheet, and is highly recom
mended reading for a better understanding of the
device architecture and operation of the peripheral
modules.

The PIC16F84A belongs to the mid-range family of the
PICmicro® microcontroller devices. Ablock diagram of
the device is shown in Figure 1-1.

PIC16F84A

The program memory contains 1K words, which trans
lates to 1024 instructions, since each 14-bit program
memory word is the same width as each device instruc
tion. The data memory (RAM) contains 68 bytes. Data
EEPROM is 64 bytes.

There are also 13 I/O pins that are user-configured on
a pin-to-pin basis. Some pins are multiplexed with other
device functions. These functions include:

• External interrupt

• Change on PORTB interrupt

• TimerO clock input

Table 1-1 details the pinout of the device with descrip-
tions.and details for each pin.

FIGURE 1-1: PIC16F84A BLOCK DIAGRAM

FLASH
Program
Memory

1Kx14

Program
Bus 14

Instruction Register

iz

Instruction
Decode &

Control

Timing
Generation

m
OSC2/CLKOUT

OSC1/CLKIN

13,
Program Counter C

8 Level Stack
(13-bit)

Direct Addr

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

m m
MCLR Vdd, Vss

© 2001 Microchip Technology inc.

Data Bus 8
^

RAM
File Registers

68x8

7,- RAM Addr

Addr Mux

X indirect
Addr

FSR reg

STATUS reg C

MUX

ALU

W reg

EEPROM Data Memory

EEDATA I^O
EEPROM

Datp Merr?"y
64x8

=> EEADR

TMRO

^C>
M RA4/T0CKI

I/O Ports

Y^HXI RA3:RA0
<U>[X] RB7:RB1

M RBO/INT

DS35007B-page 3

IC16F84A

1LE 1-1: PIC16F84A PINOUT DESCRIPTION

'in Name
PD1P

No.

SOIC

No.

SSOP

No.

l/O/P

Type
Buffer

Type
Description

31/CLKIN 16 16 18 I ST/CMOS<3> Oscillator crystal input/external clock source input.

:2/CLKOUT 15 15 19 0 Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. In RC mode,
OSC2 pin outputs CLKOUT, which ;.*,& 1/4 th*
frequency of OSC1 and denotes the instruction
cycle rate.

LR 4 4 4 l/P ST Master Clear (Reset) input/programming voltage
input. This pin is an active low RESET to the device.

l/TOCKI

17

18

1

2

3

17

18

1

2

3

19

20

1

2

3

I/O

I/O

I/O

I/O

I/O

TTL

TTL

TTL

TTL

ST

PORTA is a bi-directional I/O port.

Can also be selected to be the clock input to the
TMRO timer/counter. Output is open drain type.

VINT

I

i

[

)

J

r

6

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

7

8

9

10

11

12

13

14

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

TTL/ST(1)

TTL

TTL

TTL

TTL

TTL

TTL/ST<2>

TTL/ST<2>

PORTB is a bi-directional I/O port. PORTB can be
software programmed for internal weak pull-up on
all inputs.

RBO/INT can also be selected as an external

interrupt pin.

Interrupt-on-change pin.

Interrupt-on-change pin.

Interrupt-on-change pin.
Serial programming clock.

Interrupt-on-change pin.
Serial programming data.

5 5 5,6 P — Ground reference for logic and I/O pins.

1 14 14 15,16 P
— Positive supply for logic and I/O pins.

end: l= input 0 = Output
— = Not used

e 1: This buffer is a Schmitt Trigger
2: This buffer is a Schmitt Trigger
3: This buffer is a Schmitt Trigger

>007B-page 4

I/O = Input/Output P = Power
TTL = TTL input ST = Schmitt Trigger input

input when configured as the external interrupt,
input when used in Serial Programming mode,
input when configured in RC oscillator mode and a CMOS input otherwise.

© 2001 Microchip Technology Inc.

APPENDIX G: Operation Manual

1. Load RMS software

a. Can be found in the CD

2. Connect the connection to mobile robot RS232

a. Connect between the robot RS232 module at the back of the robot

with the computer COM port.

3. Turn on Main Power

a. The switch is located at the front of the robot

4. Turn on microcontroller power

a. Located at the left back side of the robot

b. Turn on line follower mode if needed.

5. Set the path on the RMS

a. Click on the box on the RMS interface

6. Load the coordinate

a. Click UPLOAD TO ROBOT

7. Press start button to confirm

a. Located at the left back side of the robot

8. Disconnect cable from PC to RS232

a. Disconnect the cable from the robot to the pc

9. Press start to run

a. The button is located at the left back side of the robot

94

APPENDIX H: Components List

Structure and Mobility

No Item Quantity Where to get

I Geared DC motor 2 Bicycle Shop near to

Ipoh Mosque

2 Steel Frame

3 Screws and nuts

Power Distribution and Fail Safe

No Item Quantity Where to get

1 LM7805 Lab Store

2 LM7809 Lab Store

3 Fuses 4A 3 Meyer Electronics

(Ipoh)

4 Vera Board 2 Lab Store

5 lOOuF Capacitor 1 for each

regulator

Lab Store

6 O.luf Capacitor 1 for each

regulator

Lab Store

7 1OuF Capacitor 1 for each

regulator

Lab Store

8 Connectors State Electronics

(Ipoh)

95

Rotary Encoder (For 2 sets)

No Item Quantity Where to get

1 Infrared TX and RX set 2 State Electronics

(Ipoh)

2 330 Ohm 2 Lab Store

3 1OK Ohm 2 Lab Store

4 47k Ohm Trimmer 2 Lab Store

5 LM 7805 1 Lab Store

6 NOT GATE 1 Lab Store

Infrared Sensor

No Item Quantity Where to get

1 NE555 Timer 1 Lab Store

2 8 Pin Socket 1 Lab Store

3 Infrared TX Diodes 4 Lab Store

4 ISU160 2 Lab Store

5 47uF Capacitor 2 Lab Store

6 47 Ohm 2 Lab Store

7 Ik Ohm 2 Lab Store

8 270k Ohm 1 Lab Sore

9 lOOnF Capacitor I Lab Store

Ultrasonic Sensor (DIYKIT)

No Item Quantity Where to get

1 ESCOLES-15 1 Meyer Ipoh

96

Line Follower

No Item Quantity Where to get

1 Infrared TX and RX set 3 Set State Electronics

Ipoh

2 330k Ohm 3 Lab Store

3 1Ok Ohm 3 Lab Store

4 40k Ohm Trimmers 3 Lab Store

5 Connector 1 State Electronics

(Ipoh)

Microprocessor @ Microcontroller

No Item Quantity Where to get

1 LM7805 1 Lab Store

2 5 V Buzzer 1 Lab Store

3 4Mhz Xtal 1 Lab Store

4 Push Button (NO) 2 Lab Store

5 PIC 16F877 1 Lab Store @

www.microchip.com

6 0.1 uF Capacitor 1 Lab Store

7 lOOnF Capacitor 1 Lab Store

8 LED 6 Lab Store

9 3.3k Ohm 3 Lab Store

10 lOOuF 2 Lab Store

11 Connectors State Electronics

12 Vero Board

97

Drive Circuit

No Item Quantity Where to get

1 L298D 2 State Electronics

2 0.1uF Capacitor 4 Lab Store

3 IN4004@IN4001 8 Lab Store

4 Connectors State Electronics

5 Vero Board Lab Store

RS232 Communication

No Item Quantity Where to get

1 MAX 232 1 State Electronics

2 luF Capacitor 4 State Electronics @

Meyer Electronics

3 IC Socket 1 Lab Store

4 Male or Female D Connectors 2 Lab Store

Servo Controller

No Item Quantity Where to get

1 PIC 16F84@!6F84A 1 Lab Store

2 4Mhz Xtal 1 Lab Store

3 lOOnF Capacitor 1 Lab Store

4 330k Ohm 1 Lab Store

5 Led 2 Lab Store

6 Vero Board Lab Store

7 Connectors 1 State Elect, jnics

98

APPENDIX I: Algorithm Flowchart

Get Value

pulse = value /3.96

Get Encoder

Reading

Stop
Take new value

Dead reckoning algorithm

Get Encoder Left and Right

"* '

Difference =

Encoder L Value - Encoder R Value

Differenee <0 /^\ Difference >0

y

Reduce

PWM right

:e = 0

Reduce

PWM left

Differenc

Reduce

PWM left

Error correction codes (ECC) algorithm

99

Straight
Turn Right/Left
Move Straight

Turn Left

Turn Left

Move Straight

Yes

Turn Left/Right
Move Straight

Dead End Beeper ON

Move

until distance

reach

Yes

Turn Left/Right
move straight

Turn Right/Left

Obstacles avoidance algorithm

Check Bit 0 , 1 ,2

1 = Black strip

1 r
0 = White strip

OOO 1 1 1

ooo X Bit \ _
OOO

110
~>v Value y

011

^obot is more tc the 1 Rol30t is more to th e

right 010 left

F

IS

,obot is straight
o need

o© o

Line follower algorithm

100

