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ABSTRACT

This project is entitled “Parallel Pipelined Implementation of 64-bit FPU on
Hardware”. Most modern processors typically have two different logic units which
handle the calculations required by the computer. One of them is the arithmetic-logic
unit (ALU) which operates on integer operands while the other is the floating point
unit (FPU) which operates on real operands. The aim of this project is therefore to

create a FPU which complies with the IEEE-754 double precision standard (64-bit).

The project also aims to study the speed improvements offered by parallel and
pipelined design. The project also requires application of advanced digital design
techniques by using Verilog in a real world project. The designed FPU is targeted to
be capable of performing floating point addition (FADD), subtraction (FSUB),
multiplication (FMUL) and division (FDIV) operations equally as fast. The FPU
must also demonstrate the performance rewards of the parallel and pipeline design. It
is thus implied that the project would require an initial study on FP numbers and FP
arithmetic. How FP arithmetic is actually implemented in hardware must also be

know in-depth.

The section on methodology details each steps that is expected to be taken
throughout the course of the project. The methodology would serve as a general
guideline to execute the project and more details and other refinements may be made
as further progress is made into the project. The project basically has two main
phases, the first being software RTL coding to be completed in semester 1 while the

second is hardware implementation and testing in FPGA.

The results available from the project thus far is incomplete, because of time
constraints, the Verilog coding is not totally finished. Once the codes are done, RTL
tests and simulation would need to be conducted, and then only will it be

implemented on the FPGA.
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CHAPTER 1

INTRODUCTION

1 INTRODUCTION
1.1 Background of Study

There are two general formats to represent binary numbers: fixed-point and floating-
point. Fixed point notations are usually used to represent either positive or negative
integers only. Real numbers cannot be fully represented in fixed point as it lacks the
ability to store fractional components. An example of fixed point notation is the
two’s complement system. Real numbers usually require the floating point notation
which represents number in binary scientific notation. The format is + M x 2% where
1 <M < 2. The separate fields to the mantissa (M) and exponent (E) in floating point
notation provide plenty of flexibility for representing extremely large or extremely

small numbers.

Unlike fixed point numbers, floating numbers are considerably more complex,
requiring dedicated hardware to manipulate on most computers. This aim of this
project is to design and implement an arithmetic unit capable of manipulating
floating-point numbers. This unit is called a Floating Point Unit (FPU) and the
hardware implementation would be done on a Field Programmable Grid Array

(FPGA).

1.2 Problem Statement

The challenge of this project would be to design an IEEE-754 compliant FPU using
hardware description language, and then implement the design on hardware using
field programmable grid arrays (FPGA). Additionally, the FPU must support the
double-precision format (64-bit wide for every number) specified in the IEEE



standard. An existing implementation of a single-precision FPU (32-bit wide) is

alrecady available as an open IP core by Rudolf Usselmann at Opencores. [1]

The FPU must also be built with performance enhancements in mind. Therefore, the
FPU would be designed with multiple pipeline stages to increase the efficiency of its
execution, The FPU, being an arithmetic execution unit would have an arithmetic
pipeline. However, the FPU still needs to be controlled by a control unit, which must
employ a basic instruction pipeline in order to keep the FPU busy all the time. The
target of this project would then be how to design an FPU, with parallel and
pipelined architecture. If possible, the performance of a pipelined design versus a

non-pipelined design could be compared.

1.3 Objectives

1. Learn and apply digital design techniques to implement a crucial part of the
Microprocessor.

2. To keep up with industrial trends in digital design and learning large scale digital
design using the Verilog language.

3. Study the architecture and design of a Floating Point Unit (FPU).

4. To make a worthy contribution to parallel and pipelined FPU design.

5. To produce a FPU that would be capable of performing all four arithmetic
operations: ADD, SUB, MUL and DIV operation equally fast as each other.

6. Acquire the skills to manage a large scale long term project over two semesters,

1.4 Scope of Study

This project would require designing the FPU using a hardware description language
(HDL). The language of choice here is Verilog for it is relatively easy to learn and is
closer to hardware. The project also involves studying the architecture and
specification of the FPU. The design and implementation of the FPU must be
compliant with the TEEE-754 standard. Concepts such as parallel execution and

pipelining are also explored in the project.



CHAPTER 2

LITERATURE REVIEW AND THEORY

2 LITERATURE REVIEW AND THEORY
2.1 Real Number System

The real number system consists of both rational and irrational numbers. Both can be

represented on a line shown below:

-0 +o0

h
v

Figure 1: The Real Line

All real numbers stretch from -co(negative infinity) to co(positive infinity). Infinities
are not numbers themselves, but they represent the extreme ends of real numbers.

Integers are rounded real numbers such as ...-2,-1,0, 1, 2...

Integers are easily represented in computers in binary form. The only challenge to
binary representation of integers would be the sign but this is easily solved using the
“two’s complement” number system*. Real numbers meanwhile require the use of
the floating point number system, which is more challenging. In decimal form, a

typical floating point number is written in the scientific format
+M x 105, 1<M <10

The number M (mantissa) always has a value in between 1 and 10, for example
1.8687 or 9.0974. Note that both numbers only have 1 single digit before the decimal
point. The exponent (E) would determine the real position of the decimal point in M.
Therefore, numbers such as 0.0025647 is represented as 2.5647 x 107 and 9998.2

LEE 14

* Other systems such as “one’s complement”, “sign-and-magnitude” are also used.



would be represented as 9.9982 x 10°. The very act of having the decimal point

move around back and forth gives rise to the name “floating point”.

2.2 Binary Floating Peint Numbers

Binary digits could only carry two values, 0 and 1. Therefore, binary floating point

numbers have the following format:
tMx25 1<M<2
Therefore the binary expansion of the mantissa, M would be:
M = (bo.bibsbs... ) with by, =0 or 1

Normalizing binary floating point numbers means adjusting it so that the leading bit,
bp has a value of 1. This would have great implications in hardware later. A few
terms are normally used while referring to floating point number systems. They are:
Precision:

The number of bits used to store the mantissa, M

Machine epsilon, &:

The gap between the number 1 and the next largest floating point value

Unit in the last place, ulp(x):

The gap between a floating point number x and the next larger floating point number

(for x > Q) or next smaller floating point number (for x <0).

At its inception, the format for floating point numbers was very loosely defined and
each company’s solution differed from the other. This made porting software across

to other platforms very difficult,



2.3 1EEE Floating Point Number Representation [2,3,7]

The TEEE FP number system was an industry wide initiative to standardize the
representation and arithmetic of binary FP numbers across multiple platforms and
fields of interest (both academics and industry). The IEEE 754-1985 defines three
formats for binary representation of floating point numbers; single, double and
extended. The basic difference is that each format successively uses more bits to
store the mantissa, hence providing higher precision for each number. Both the
single and double format does not store the leading bit of the mantissa (since it is
always 1), however the Intel Extended format do. Therefore, the precision of single
and double format is equal to the number of bits plus one. Other definitions in the
IEEE standard include:
¢ bits used for both mantissa and exponent
e range of numbers that can be represented — normal range and subnormal
range
o rounding operation and rounding modes
o exception conditions such as are invalid operation, division by zero,
overflow, underflow and inexact. The results of these operations are usually
set to “zero”, “infinity” or “NaN'™.
¢ arithmetic process; guard, round and sticky bits

e many more lower level details

Table 1: IEEE 754 Floating Point Formats

Format Total Bits Sign Bit | Exponent Bits | Mantissa Bits

Single 32 1 8 23 (+1 hidden

Double 64 1 11 52 (+1 hidden)
Extended(Intel) 80 1 15 64

The format chosen for the project is the double precision. The precision of the

double format is effectively 53 bits since the leading bit of the mantissa is not stored.

For the double format the exponent range is from Emin = -1022 to Emax = 1023.

The range of representable numbers is thus from 2.2 x 10°% t0 1.8 x 10°%,

T Not A Number



2.4 IEEE — 754 Rounding Modes [2,3]

A design compliant with the IEEE-754 standard must implement four (4) rounding
modes. They are:

e Round to nearest: The result is rounded to the nearest representable number

¢ Round to zero: The result is rounded to the number nearer to zero

¢ Round up (to +oo): The result is rounded to the number nearer to +oo

¢ Round down (to -0): The result is rounded to the number nearer to -co

The default mode is round to nearest. In this mode, the result (let it be x) would be
rounded to the value that is nearest to it, in other words, one that gives the lowest
rounding error. Let the two bounds of x be x+ and x- (x+ and x- are both
representable numbers). In this mode, x will be rounded to x+ if it is nearer to it and
vice versa. However, if both x+ and x- are equally near to x, the one with its least

significant bit 0 would be chosen.

The next mode is round to zero. This mode is the simplest mode of all as the result
is obtained by simply truncating all the extra bits to the left of x. Though simple, the
disadvantage of this mode is that a consistent bias towards zero will be developed
over successive operations. This is a serious shortcoming as the result of an

operation with multiple steps may have a large error.

The last two modes are round up and round down. Both require rounding the result
either towards the number nearer to positive infinity or negative infinity. These
rounding modes are useful in interval arithmetic as two values that correspond to the
upper and lower endpoints of the real result can be obtained. Interval arithmetic can
be used to monitor and control errors in floating point computations as two values
can be produced for each result. If the desired endpoints themselves cannot be
represented, they can be either rounded up or rounded down. The accuracy of the
result therefore depends on the width of the interval. Most algorithms that implement
such arithmetic are designed to produce narrow interval, the more narrow the

interval, the more accurate is the result.



2.5 Addition and Subtraction of Sign and Magnitude Numbers Using 2’s
Complement Method [4]

The mantissa of a floating point number is basically a magnitude only component
while the sign is stored on an additional bit. Taken together, the sign bit and the
mantissa bits would form a sign-and-magnitude number. Operating on sign-and-
magnitude data is slightly more complicated than the mére common two’s (2’s)
complement. Multiplication and division is actually easier on sign-and-magnitude
data compared to 2’s complement data, but the reverse is true for addition and

subtraction.

The algorithm employed for addition and subtraction in this particular FPU is based
on 2’s complement method (Figure 12). For sign-and-magnitude numbers, the
operation needs to be carried out on the magnitudes only, thus for addition the sum
of the mantissa must be found while for subtraction, the difference between the
mantissa is calculated. Therefore, it is imperative to find out what the true operation
is on the magnitudes first before operating on them. For instance, an addition means
adding both magnitudes together when both their signs match. If their signs do not

match, the true task is to calculate the difference between the magnitudes.

For true addition operations, the mantissa is simply added to one another, without
any special consideration. This is similar to 2’s complement addition, except that the
carry-out is not ignored. Subtraction is the operation that truly utilizes the 2’s
complement method. Let the operation be A — B. The method used is to take the 2°s
complement of B and add it to A. If the magnitude of A i.s larger than B, the carry
out from the operation would be one (1). This carry out indicates that the answer is
the correct one. However, if the carry out is zero (0), then B is larger than A, thus the
result obtained is incorrect. To obtain the correct answer, the algorithm takes the
two’s complement of the original result and then invert the sign. The following

equations prove the validity of the subtraction process:



Let the first operand = A
Let the second operand = B

2’s complement of B=2"-B

A-B =A+(2"-B) (when A > B)
=A-B+2"
=A-B (2" discarded)

Since the final carry-out of 2°s complement addition is discarded, the 2" term in
the result can be ignored, leaving A — B as the result of the operation. However,
this only happens when A > B. For cases where A < B, the 2" term will not be
generated (no end carry) because A would need to borrow a digit from 2n to be
subtracted by B. Therefore, when A is smaller than B, the difference in
magnitude between A and B is given by (B — A), as shown below:

A-B =A+(2"-B) (when A <B)
=2"-(B-A)

Taking 2’s complement inverse of (A — B)
2" (A-B)=2"-2"+(B-A)=(B-A)

2n — (B — A) is actually the 2°s complement of (B-A). Thus, by taking the 2°s
complement of the result, we would obtain the difference between A and B, that
is (B — A). When a smaller number is subtracted by a larger number, the sign of

the result has to be changed. Thus the sign of the result is the inverse of A.

Therefore, when an end-carry is not detected in the result of the subtraction, the
correct output would be the 2°s complement of the existing result and the sign of

the output is the inverse of the first operand.




2.6  Pipelining (Arithmetic vs. Instruction) [4]

There is a small but very important difference between arithmetic and instruction
pipelining, Arithmetic pipelining is applied only to arithmetic units inside a

processor while instruction pipelining could be applied on any processor in general,

Arithmetic pipelining basically takes the arithmetic execution stage (starting from
operand fetch to producing an output) and split it into a few pipeline stages. This 1s
the type of pipelining that is going to be used for the FPU. Using the FPU designed
for this project as an example, the process of floating point addition, subtraction,
multiplication and division can be divided into three segments. Each segment then
forms a single pipeline stage. Therefore, the execution of one floating point
operation would overlap with the execution of another operation in an earlier

pipeline stage. Further detail on arithmetic pipelining is explained on Section 4.3

(page 17)

Instruction pipelining is not currently being applied for the FPU project. Instruction
pipelining splits the fetch, decode, execute and store instructions into a few pipeline
stages and overlap their execution. Therefore, the execution of these four instructions
would be the one that overlaps in an instruction pipeline. While the CPU is executes
the decode instruction, a new fetch instruction is also being executed. The pipeline

structure of a 4-stage instruction pipeline processor is shown below:

Table 2: Pipeline Structure of an Instruction Pipeline

Clock Transition T1 T2 T3 T4 T5 T6
Instruction 1 Fetch | Decode | Execute | Store

Instruction 2 Fetch | Decode | Execute | Store

Instruction 3 Fetch | Decode | Execute | Store
Instruction 4 Fetch | Decode | Execute




2.7 Theoretical Speed Improvement of Pipelining [3]

This section attempts to show a simple mathematical proof of the potential speedup
in a pipelined design. Let the cycle time, T be the time it takes for an instruction to

advance through a stage of the pipeline. This cycle time can be determined by:

T=1Ty,+d
where
Tn = maximum stage delay (delay through the stage which
experiences the largest delay
d = time delay of through a latch (register), needed to store date

between stages
Usually, the delay d can be ignored as 7,, >> d. Now, let » instructions be executed

without branches through the pipeline. The total execution time, T} is
Ty = [km + (n-1)] t, where k = number of pipeline stages

Without pipelining, the value of k is 1, thus the total execution time for a non-

pipelined design is
T1 = nkt
The speedup factor of a pipelined design is:

S T,_ okt _ nk
YT, [k+(-Drl [k+(n-1)]

If we observe the behaviour of the equation above at the limit of n = co, we will see
that §; = k. That means that the speed improvement of a pipelined design over a non-
pipelined one is equal to the number of pipeline stages itself. Therefore, the larger
the number of pipelines, the faster it is. However, this potential speedup occurs only
in ideal cases where » instructions can be fed into the pipeline without branching. In
real life, branches occur very often, reducing the potential speedup. Another factor
that would reduce the speedup is latches that exist between two pipeline stages. They
are also called as pipeline registers. All registers have a finite read and write delay to
it, thus every signal propagating from one stage to another must encounter this delay.
A single stage combinatorial circuit would not need such registers as all the signals
are connected directly to each other. Hence, the speedup of a pipelined design over a

non-pipelined one is actually less than £, the number of pipeline stages.
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Architecture & |
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 Synthesis & GLS | | Download to FGPA | Prdgram & Setup | |
| (FPGA Express) | | (Virtex XC2V1000) " FPGA +—) | TestVactors
¢ Result Analysis &
Checking , Second Semester
Hardware
Debugging

Figure 2: Design Process Flow

From the flow chart above, the project could be largely divided into two stages to be

completed over two semesters. The first semester would be concerned with purely

RTL (Register Transfer Language) coding while the second semester would be

implementing the design in FPGA and running all the hardware tests.

Before the design stage can start, literature research would be conducted first. Only

after literature review is done, then the design process illustrated in Figure 2 could

start.
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3.1 Literature Research

Literature research was done on IEEE-754 compliant FP numbers and various FPU
designs. The main concern here is to find the general architecture and requirements
of a FPU. Studies were also done on the components that make up the FPU, such as
binary adders, multipliers and dividers. Literatures are largely obtained from library

texts and also sources on the internet,

3.2 Architecture Design and Specification

Every part of the FPU is first documented in form of a MS Word document before
being coded. The document serves as a design specification and guideline. The
functions of each module along with specific implementation details are included in

the document. Relevant flow charts are used to illustrate the algorithms used. }

3.3 Verilog Coding [6]

Verilog coding starts once the specification for any component of the FPU is
completed. Verilog codes are entered using the Aldec ActiveHDL IDE. Ideally, each
Verilog module is stored in separate source files. Different source files are then kept
in a common design/workspace. This allows easy manageability of the codes while
retaining the ability to call modules coded somewhere else. Written codes are then

compiled to check for syntax errors.

! The design specification is attached as part of the appendix
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Figure 3: Aldec ActiveHDL Main Screen

3.4 RTL Simulation and Debugging

The completed RTL codes need to be tested in software first before being
downloaded to the FPGA and implemented in hardware. RTL simulation is used to
test the functionality of the FPU (or parts of the FPU) and to catch logic bugs. The '
tool used to simulate the Verilog design is also Aldec ActiveHDL.

A testbench is written to provide stimulus to the design. The design must respond
with certain outputs for certain combinations of input. An incorrect output would
indicate a logic bug that needs to be traced and fixed. The source of test vectors for
the test bench could either be hard coded in the test bench itself or obtained from an

external file.

After simulation, the result can be monitored and viewed in many different ways.
One of the most useful is the waveform viewer which tracks the logic values of any
desired signal. Using the waveform editor, both the states of the input and output

could be easily observed on a timeline. This serves as a great debugging tool to root
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out problems in the code or design. The figure below shows an example of the
waveform for a single bit full adder with Cin, x and y as the input and Cout and s as

the output. If the output does not respond as predicted by the input, a bug may exist

in the code.
Name Srdator 1 .2 .8 .80 -, A
Name Valie Stimadator] . ' : i i rms
® Cin 1 Formula- |
# i Fartaula '
Formula

.............................................................................................................................

.....................................................................................................................................

Figure 4: ActiveHDL Waveform Output

The function “fmonitor” in ActiveHDL also allows signals to be recorded in an
external text file. An example of the output is shown in Figure 5. The text files could
then be further processed using another custom program that checks the output file

for any violations. A file-processing friendly language such as Perl could be used.

A B Sel ¥
g 1 % %
B 1 ¢} a
g 1 a 1
g 1 1 1
g 1 1 1]
a 1 a 1
1 1 i} 1
1 1 1 a
1 8 1 5}

Figure 5: Signal changes recorded on an external text file
Any bugs found at this point would require going back to the RTL coding stage and
fixing the bug at the Verilog code. All previously written testbench and test vectors

must then be reran on the newly fixed code to check if the bug has been truly fixed

and if any new bugs were introduced by modifying the code.
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3.5 Synthesis and Gate Level Simulation (GLS)

The finished RTL code could be synthesized using Synopsys FPGA Express, an
industrial strength Verilog synthesis tool. The Verilog codes would be loaded into
FPGA express and it would check for any syntax errors before proceeding. After

synthesis, an EDF netlist file would be created.

This file could again be loaded into ActiveHDL for GLS. GLS operates on the
netlist, meaning all the gates generated from the RTL codes. Bugs could still be
found at gate level which did not exist at RTL level because of the uncertainty in the
synthesis process. Coding styles, compiler directives and custom libraries are among
the few factors that may change how the software synthesizes the design. Therefore,
the generated circuit may not turn out to be as expected during RTL coding. Bugs

found here should also be fixed at the Verilog code.

3.6 Download to FPGA (Virtex-I1 XC2V1000)

After or during GLS, the design could be downloaded to the FPGA chip for
implementation on hardware. The preferred chip would be the Xilinx Virtex-Il
XC2V1000 as it contains the most number of gates (1 Million gates) of all the chips

that are available in the university laboratory.

The Virtex-II chip resides on a reference board which contains plenty of I/O and
memory functions. Some examples are the PCI interface, DDR memories, RS232
port, 7 segment displays, LED and much more. All these features would greatly
speed up hardware testing and implementation as all the 1/0 to the FPGA chip do not
need to be manually wired. PROMs are available on board for any programs to be

loaded and executed.

3.7 Program and Setup FPGA

Once the FPGA has been programmed, it would need to be set up using Xilinx own
tool. Configuring the FPGA is done through the JTAG interface on the reference

board. Test programs that should be executed, along with the test vectors are then
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loaded into the on board RAM for hardware testing. The output from the program

could then be stored in memory or output to another device for manual observation.

Hardware implementation is potentially the most difficult of all as subtle boundary
conditions that may not be accounted for in RTL could cause bugs in hardware.
Electrical loading conditions and signal quality are also other things that are out of
control during RTL but must be taken care of when the hardware implementation is

obtained.

3.8 Result Analysis & Checking and Hardware Debugging

The results from hardware tests need to be stored somewhere for analysis later. Since
all the latter stages are schedules for the second semester, hardware testing plans are

not yet ready.
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CHAPTER 4

RESULTS AND DISCUSSION

4 RESULTS AND DISCUSSION

Sections 4.1 to 4.4 would discuss the general features of the FPU. Section 4.5

onwards meanwhile would present the design of each part of the FPU in detail.

4.1 General Architecture

The general architecture of the FPU is shown in Figure 6 below:

Clack First Operand Second Operand Operation Select  Rounding Mode
PRE-ALIGN
PRE-ALIGN (MUL/DIV)

EXCEPTION ADD suUB MUL DIV
Y A Y Y
NORMALIZE & ROUNDING
Infinite Quiet NaN
Divide by Zero Underflow  Overflow Zero Output

Signaling NaN Inexact

Figure 6: General Architecture of the FPU
The design in Figure 6 is the final top-level architecture of the FPU pending any late
changes. Design issues and other performance enhancements may require a
redefinition of the architecture. Do note that the architecture above do not explicitly

show the pipeline structure of the FPU.
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There are 5 inputs, 9 outputs and 3 major stages in the FPU. The first major stage
consists of the pre-align units. The second contains all the arithmetic units operating
on mantissas and the third contains the normalizing and rounding units along with
any output logic (not shown). Seven (7) major sub-units are contained inside the
FPU, each of them coded as a separate Verilog “module”. The full design
specifications are available in the appendix. The basic function of each unit is listed

in the table below:

Table 3: Functions of FPU Sub-Units

Sub-Units Function(s)

Pre-Align Aligns the exponent and mantissa of each operand before
addition and subtraction. Determines the true operation (Add
or Sub) to be performed on the mantissas

Pre-Align (Mul/Div) Performs dividend alignment for division operations. Add or
Sub exponents on Mul or Div operations. Determines the
sign of the result

Addition/Subtraction Adds and subtracts pre-aligned mantissas

Multiply Obtain the product of two mantissas from multiplication

Divide Obtain the quotient and remainder by dividing the dividend
mantissa with the divisor mantissa

Normalize/Rounding Normalize the result from the Add/Sub, Mul and Div units.
After normalizing, the result would be rounded according to
the selected rounding mode

Exception Checks for exceptions in the operands and then flags them.
These signals may be used at later pipelines stages and also

required to set flags in the status register of full CPU.

Table 4 lists the definition of each input to the FPU. Both input operands must be in
normalized form or in any other special form as defined by the IEEE-754 standard.
The FPU is never expected to handle non-floating point numbers. In real practice,
the operands already exist in IEEE-754 compliant forms inside the main system
memory before being fetched and operated upon by the FPU. Higher level software
must handle all the relevant format conversions before the operands are sent stored

in memory for operation.
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Input
Clock

First Operand

Second Operand
Operation Select

Rounding Mode

Table 4: Functions of Inputs to FPU
Function
External clock input. This signal should come from the clock
generator and is used as the common clock that synchronizes
every operation inside the FPU
First input operand (IEEE-754 Compliant FP Number)
Second input operand (IEEE-754 Compliant FP Number)
Selects between Add, Subtract, Multiply and Divide operation
Selects between the four (4) different rounding modes:
i.  Round-to-nearest
ii. Round-to-zero
ili.  Round-to-positive infinity (up)

iv.  Round-to-negative infinity (down)

Table 6 meanwhile lists the functions of the outputs from the FPU:

Output
Output

Infinite
Ine

Signaling NaN
Quiet NaN
Divide by Zero
Underflow

Overflow

Zero

Table 5: FPU Outputs and their functions
Function
The floating point output as a result from the operation
performed by the FPU on the input operands.
Output operand in infinite
Output operand is not exact, instead it has been rounded
Signalling NaN; a type of NaN that causes an exception. This
feature is not implemented and is aliased to Quiet NaN.
Quiet NaN; a non-exception type of NaN.
Asserted when an operand is divided by zero
Result underflow; result is lower than the smallest possible
number that can be represented
Result overflow; result is higher than the highest possibie
number that can be represented

The result is zero
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4.2 Clocking Strategy

Most of the FPU would operate in one clock domain. In fact, every module would
operate on a global clock signal sourced from the input signal called “clk” except for
the divide unit. In hardware, the “clk” input would be connected to the clock

generator circuit on board the FPGA test board.

In such circumstances, each stage of the FPU must be able to complete its operation
within a single clock cycle. This is required in order to fulfill the pipelined design
requirement of having one complete result at every clock cycle. To properly
implement the clocking scheme, each sub unit is designed as a combinatorial ecircuit,
but with its final output registered on a clock-synched D flip-flop or latch. Figure 7

illustrates such design.

The divide module may be required to operate with a clock signal up to 53 times
faster than the global “clk” signal. This is due to the division algorithm which would

require 53 iterations to complete.

Clock ]

Input Combinatorial Circuit Output Flip-flop

Figure 7: Registering Combinatorial Output Using Delay Flip-Flops/Latches

4.3 Pipelining Strategy

The architecture of the FPU can be split into three (3) pipeline stages. Figure 8
illustrates all the three stages clearly. The top half is the data path that the operands
would follow for addition or subtraction operations while the bottom half is the
execution path for multiplication and division operations. Two separate paths were
designed as addition/subtraction does not share much hardware in common with
multiplication/division. Both groups use fairly distinct methods to produce the

results.
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FIRST STAGE SECOND STAGE THIRD STAGE

~ | | NORMALIZE/ |
PRE-ALIGN —» R1 —»{ ADD/SUB ~R2 —> oSN > R3
ADD/SUB
EXPONENT
PRE-ALIGN R1 Ro | o NORMALIZE/| | -
Y N TN ROUND
MANTISSA

Figure 8: Pipeline and Dataflow Structure of FPU

This arithmetic pipeline design would then produce one floating point result at the
output after every clock cycle (beyond the initial latency). Using the ADD/SUB
datapath as an example, if each operation to be performed is called OpX, where X is
an integer that denotes every successive operation, the flow of execution on the

pipeline would be as illustrated in Table 6.

Table 6: Pipeline Structure of the FPU

Clock Transition Tl T2 T3 T4 TS T6

Pre-align Opl Op2 Op3 Op4 Op5 Op6
Add/Sub Opl | Op2 | Op3 | Opd | Ops
Normalize/Round Opl Op2 Op3 Op4

From Table 6, it can be seen that at the third clock transition, the first operation has
already passed through all the pipeline stages and its results made available at the
output. Beyond this point (the initial latency period), a new output for each
successive operation would be available after every clock. Although the example
uses the Add/Sub datapath, the same result would have been obtained from the
Mul/Div datapath.
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4.3.1 Pipeline Registers

Referring to Figure 8, three groups of registers would need to be designed to
correspond with all three pipeline stages. All three of them must also be synched on

the global clock input.

Each pipeline registers R1, R2 and R3 would store the intermediate result from each
pipeline stage before it could be operated by the next stage. R1, R2 and R3 are not
single registers though as they represent multiple registers that exist at each pipeline
stage. Depending on the individual pipeline stage, registers may be needed to hold
one or more outputs from that stage. As an example, the pre-align unit has both pre-
aligned operands and the true operation select as the output. Registers must be made

to hold all those.

4.3.2 Special Notes on the Exception Unit

All the pipelining discussion so far has not touched on the exception unit of the FPU.
In actual fact, this unit is implemented to sit along with both pre-align units in the
first stage of the pipeline. The exception unit analyzes the inputs to look for
exceptions, thus their results must be made available for later pipeline stages to
process. Therefore, it has to execute in the first stage of the pipeline and also

conform to the single clock execution time constraint.

4.4 Built in Adder versus Custom Coded Adder

The design of the arithmetic unit stage relies heavily on the synthesizer choice of
what type of adders and multipliers to use. Supported operators are Add, Subtract
and Multiply. Therefore, all these three operations are performed using simple
Verilog commands: “+”, “-* and “*”. Only the divider would require manual hand

coding as synthesizers support only the divide operator (“/’} for power of 2 divisors.

The justification for such design choice was because the Virtex-II chip where this
FPU is going to be implemented has its own specific arithmetic optimizations. From

the Virtex-II data sheet:
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Fast Lookahead Carry Logic

Dedicated carry logic provides fast arithmetic addition and subtraction. The Virtex-1l CLB
has two separate carry chains. The height of the carry chains is two bits per slice. The
carry chain in the Virtex-ll device is running upward.

Arithmetic Logic

The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be
implemented within a slice. In addition, a dedicated AND (MULT_AND}) gate improves the
efficiency of multiplier implementation.

What the Virtex-Il does is that it tries to solve the fundamental problem of binary
addition, which is carry generation and propagation by using dedicated circuitry to
quickly calculate the carry results. The Virtex-II also has its own dedicated 2-bit full
adder in every slice. Every CLB (Configurable Logic Block) of the Virtex-II
contains 4 slices; therefore plenty of hardware is available to implement arithmetic

operations.

The advantage of using the dedicated arithmetic resources inside the FPGA is that
they are really fast and they already there to be used. If a designer wishes to custom
code the arithmetic units (adders and multipliers especially), the FPGA
implementation may end up being slower. The reason for this is that the custom code
implementation would need complicated routing inside the FPGA, negating all the
speed advantage of its architecture. Custom codes also would take up plenty of area

to implement on the FPGA, wasting the logic resources.

From “Real World FPGA Design” by Ken Coffman, a custom coded 8-bit ripple
carry adder is twice as slow and also consumes twice the area compared to a
synthesizer chosen adder. The synthesized comparison for the ripple carry adder

versus the synthesis-tool version is shown in the table below:

Table 7: Custom coded RCA versus synthesizer-teol chosen adder

Type of Adder (8 bit) Custom-coded ripple carry  Synthesizer-tool version

Resources:

10s 27 27

FG Function Generators 16 8

H Function Generators 0 0
CLB Flip Flops 7 0
Clock 77.6 MHz 135.1 MHz
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4.5 The Exception Unit

The exception unit reads the input operands to the FPU and checks for four (4) types

of exceptions. The exceptions are listed in Table 8.

Table §: Exception Types Handled by the Exception Unit

Exception Type Description

Infinity Checks if one or both operands are infinite values

NaN Checks if one or both operands are invalid numbers or values
Zero Checks if one or both operands have a value of zero
Subnormal Checks if one or both operands have a denormalized value

This unit takes three (3) inputs: clock, operand A and operand B while generating

eight outputs as listed below:

¢ Opa_nan ¢ Opa zero
» Opb nan o Opb zero
e Opa_inf e Opa_dn
e Opb_inf e Opb_dn

4.6 The Pre-Align Unit for Addition and Subtraction Operations

This unit is only activated when addition or subtraction operations are performed.
The functions of this unit are:
e Align the mantissas for addition and subtraction operations when their
exponents do not match.
o Restore the implicit leading bit and also the guard, round and sticky (GRS)
bits into the mantissa.
e Determine the true operation (addition or subtraction) that needs to be
performed on both input mantissas.
The pre-align unit has three (3) inputs and four (4) outputs, both described in Table 9
and Table 10. The pre-align unit would take both input operands supplied by the user

and operates on them as shown in Figure 9.
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Table 9: Inputs to Pre-Align (ADD/SUB)

Inputs * Description

op_addsub Indicates the operation requested by the user.
opA First operand entered by the user (Operand A)
opB Second operand entered by the user (Operand B)

Table 10: Qutputs from Pre-Align (ADD/SUB)

op_addsub_out True operation to be performed on mantissas
fracta_out First mantissa aligned

Sfracth_out Second mantissa aligned

exp_out Exponent for the result

Let A and B be the input operands. From Figure 9, the pre-align unit first splits both
A and B into their sign, exponent and fraction (mantissa) components. The
exponents of A and B are then compared. The next step would depend on the
outcome of this comparison. If both exponents are equal, there is no need for
mantissa alignment, thus the outputs (fracta out, fractb_out, exp_out) are simply
assigned to the inputs. The exponent of A is arbitrarily chosen as the output

exponent. The exponent of B can equally be used as the output exponent.

If the exponent of A is larger than B, the fraction of B would need to be shifted to the
right until both exponents are equal. The right shift is chosen to maintain the
integrity of the B. If B’s mantissa were to be shifted to the left, it would lose its most
significant bits. This would unacceptably alter the numbers. The difference of the
exponents would be used as the shift value. However, since the mantissa part is only
56 bits long, the maximum shift value is capped at 56. Shifting beyond 56 would

only result in all zeros.

Since the IEEE-754 format specifies an implicit leading bit, this bit must be restored
to the fraction before any shifting can take place. Besides the leading bit, three more
bits must also be appended to the right hand end of the fraction. These bits are

commonly known as the guard, round and sticky bits.
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expa > expp—m o

signa = opal[63]

signb = opb[B3]
expa = opa[62:52)
expb = opb[62:52]
fracta = opa[51:0]
Fractb = opb[51:0]

Compare
expa & exph

expa == expb

exp_out = expa
exp_diff = expa - expb

exXp_out = expa
fracta_ocut = {1,fracta,3'b0}
fractb_out = {1 fractb,3'b0} -

exp_diff > 56

shift_val =
exp_diff

shift_val = 56

fract_full = {1,fractb,3'00}

!

fract_shifted = fract_full >>
shift_val

|

fractb_out = fract_full + sticky
fracta_out = {1,fracta,3'b0}

h

exp_out = expb
e_xp__diff =expb - expa

exp_diff > 56

shift_val =
exp_diff

shift_val = 56

fract_full = {1,fracta,3'b0}

!

fract_shifted = fract_full >>
shift_val

|

fracta_out = fract_full + sticky
fraicth_out = {1,fracta,3'bC}

op_addsub_out = op_in XOR {signa XOR:

signb)

-

Figure 9: Pre-Align for Addition and Subtraction Algerithm

the fully restored version of the other input mantissa.
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The variable called fract full would be assigned to the restored version of B’s
mantissa. It is this variable which would be shifted. A similar operation would be
performed if the exponent of A is smaller than B, with the mantissa of A being

shifted instead of B. The shifted mantissa would then be sent as an output along with



One last operation that the pre-align unit performs is to calculate the true operation to
be carried out on the mantissas. The algorithm first checks the sign bits of both
operands to determine which operation needs to be carried out on the mantissas. An
XOR operation is performed on the sign bits of both operand and the result XOR-ed
again with the operation selected. For an ADD operation, the same sign on both
operands means that their mantissas should be added. If it is different, then they
should be subtracted. For a SUB operation, the same sign on both operands would

mean that their mantissas must be subtracted from each other vice-versa.,

4,7 The Pre-Align Unit for Multiplication and Division Operations

This unit is only required for multiplication or division operations. Its functions are:
e Align the dividend for divide operations (dividend alignment) [4]
s Restore the implicit leading bit to the mantissa of both operands
e Perform addition or subtraction on the exponents
o Determine the sign of the multiplication or division result

This unit has four (4) inputs and four outputs, each defined in the tables that follow:

Table 11: Inputs to Pre-Align (MUL/DIV)

Inputs Description

clk Clock input to synchronize operation in the unit
op_muldiv Indicates either multiply or divide operation
opA First operand (Multiplicand or Dividend)

opB Second operand (Multiplier or Divisor)

Table 12: Qutputs from Pre-Align (MUL/DIV)

Outputs Description

sign_out Resultant sign of the multiplication or division
fracta_out 106 bit long dividend or multiplicand
fractb_ouf 53 bit long divisor or multiplier

exp_out Exponent result of the multiplication or division

The pre-align unit execution is split into two stages. First is the dividend alignment
stage and second is addition/subtraction of aligned exponents. Figure 10 on the next

page shows the flowchart for the dividend alignment operations by the pre-align unit.
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signa = opa[63]

signb = opb[63]
expa = opa[62:52]
expb = opb[62:52] -
fracta = opa[51:0]
fracth = opb[51:0]

|

A b4

fracta_full = {1,fracta, 53'b0} fracta_shifted = {fracta, 53'b0} >> 1
fractb_full = {1, fractb, 53'b0} expa_shifted = expa + 1

op == Divide
&

fracta_out = fracta_full fracta_out = fracta_shifted
expa_full = expa expa_full = expa_shifted

fractb_out = fractb_full
expb_full = expb

Figure 10: Dividend Alignment in Pre-Align Unit for Multiplication and Division Operations
The process starts by extracting the sign, exponent and mantissa components of both
operands. Let both operands be A and B. The implicit leading bits for the mantissa of
A and B is then restored. Both the aligned and non-aligned dividend (A) is first
formed. If the operation is a divide and the fraction of A (dividend) is larger than B
(divisor), the output dividend will be assigned to the shifted dividend. Thus, the
dividend alignment process is completed. Do note that the aligned length of A is
padded up to 106 bits to prepare it for division operations. For multiply operations,
the alignment would not be done and the extra 53 bits padded to its least significant

positions would be ignored.

Figure 11 meanwhile shows the exponent addition and subtraction operation which
takes place after the dividend alignment. Multiplication operations would require

addition of the exponents while division operations would require subtraction. Since
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the exponents are stored in biased representation, the bias value must be subtracted

or added from the result to give to restore the proper bias to it. [3]

Qutput from dividend alignment:

expa_full
expb_full
MUL+DV——I
{co1, exp_tmp1} = expa_full + expb_full expb_tmp = lexpb_full
{co2, exp_out} = {col, exp_tmp1} - bias {col, exp_tmp1} = expa_full + expb_tmp+ 1
h 4
exp_tmp2 = lexp_tmp1 + 1 exp_tmp2 = exp_tmp1
exp_out = blas - exp_tmp2 exp_out = bias + exp_tmp2

h

sign_out = signa XOR signb

Figure 11: Addition and Subtraction of Exponents for Multiplication and Division Operations

The bias value for the 64-bit double-precision is 1023 in decimal. Therefore, for the
addition of biased exponents, the bias value of 1023 must be subtracted the results.
Conversely, the value of 1023 must be added to the subtraction result of biased
exponents. The operation here is very similar to what is done in the addition and
subtraction unit for mantissas, the only exception being the restoring of the bias
value that needs to be carried out by this unit. After the addition or subtraction of
biased exponents, the sign of the result must also be determined. Since the operation
involves only multiplication or division, the resultant sign is simply the XOR of the

sign for both input operands.

29



4.8 Addition and Subtraction Unit [4}

This particular unit (referred to as Add/Sub Unit from this point onwards) performs
addition and subtraction on only the mantissa of input operands, The resultant
exponent is obtained from the pre-align unit, thus only the resultant mantissa needs
to be calculated here. The inputs and outputs of this unit are described in Tables 13
and 14 below.

Table 13: Inputs to Add/Sub Unit

Inputs Description
clk Clock input to synchronize operation within the unit
op_addsub True operation to be performed on the mantissas. Obtained from

the output of Pre-Align (Add/Sub) Unit.

fracta Mantissa of first operand, aligned and restored to 56 bits length.
Sfracth Mantissa of second operand; aligned and restored to 56 bit length
signa The sign of the first input operand, needed for the resultant sign

Table 14: Qutputs from Add/SubUnit

Qutputs Description

sum Sum or difference of both input mantissas

co Carry out from the addition or subtraction operation
sign_sum The sign of the result.

The execution of the Add/Sub unit is illustrated in Figure 12. The unit first loads all
its inputs into the appropriate wires. Since the mantissas at the input are already
aligned, the addition or subtraction can be done directly. Both operations are carried
out in two’s complement style®. The op_addsub input wire is used to invert all the
bits of the second mantissa (fractb) and also as a first bit carry-in input at the full
adder. The effect is that during subtraction operations, the inverse of fractb (in two’s
complement) is obtained and then added to the first operand (fracta) for the final
result. After each subtraction, the carry-out will be examined to see if it is one (1) or
zero (0). If it is zero that means the magnitude of A is smaller than B, thus the
correct result is given by the two’s complement of the result, and the sign inverted.

Else, the sign of the result is the same as the sign of the first operand.

¥ Please refer to Literature Review (Section 2.5) for proof that this can be done.
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LOAD fracta LOAD fractb LOAD op_addsub

A J
XOR =«
Y * fractb_temp = fractb XOR op_addsub
FULL ADDER : <

co_temp,sum_temp = fracta + fractb + op_addsub

sign_sum = Isigna sign_sum = signa
co = co_temp (if SUB) co = lco_temp
sum = lsum + 1 sum = sum_temp

Figure 12: Add/Sub Unit Operation Flowchart

4.9 Multiplication Unit

This unit also operates on mantissas only. The task of adding the exponents during
multiplication is already relegated to the Pre-Align (MUL/DIV) unit. Its input and

outputs are as follows

Table 15: Inputs to Multiplication Unit

Inputs Description

clk Clock input to synchronize operation within the unit
fracta 53 bit long mantissa of the first operand (the multiplicand)
fracth 53 bit long mantissa of the second operand (the multiplier)

Table 16: Qutputs from Maultiplier Unit

Outputs Description

product 106 bit long product of fracta and fractb

Both input mantissas are only 53 bits long since the guard bits do not need to be
used. Both fracta and fractb is connected to the output of the Pre-Align (MUL/DIV)
unit (which restores the implicit leading bit to the mantissas). The product is formed

by using the Verilog multiply operator to obtain an optimized synthesized logic.
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4,10 Division Unit

Like the multiplication unit, the division unit operates only on the mantissas. Its
function is to accept two input mantissas and divides them to produce a quotient and
a remainder string. The inputs and outputs of this unit are shown in Table 17 and
Table 18.

Table 17: Inputs to Division Unit

Inputs Description

clk Clock input to synchronize operation within the unit
dividend 106 bit long dividend mantissa

divisor 53 bit long divisor mantissa

Table 18: Qutputs from Division Unit

Outputs Description

quotient The quotient result from the division

remainder The remainder result from the division

The division is performed using the algorithm for unsigned binary division. This
algorithm requires that the dividend be twice as long as the divisor to execute the
division. To generate the 106 bit long dividend, the mantissa is padded with zeros to
the right (least significant position). This is accomplished by the Pre-Align Unit
(MUL/DIV). Padding zeros to the right is merely adding zeros to the right of the
radix point, thus the magnitude of the number is not affected at all. The dividend
must also be aligned so that its first 53 bits are smaller than the divisor. Otherwise,
divide overflow may occur, where there are insufficient bits to store the resulting

quotient. [4]

Because of the algorithm employed, the division unit must run in a separate clock
domain. More specifically, the division unit requires a clock that is 53 times faster
than the external clock as 53 shifts and subtractions are required to compute the
quotient and the remainder. However, this is still a work in progress, thus the divisor
implemented in the current design is still a behavioral style “/” operator which is

unsynthesizable.

32



4.11 The Normalization Unit

The output from the arithmetic stage of the FPU is usually a non-normalized result.
Therefore, the function of the normalization unit would be to normalize the
arithmetic result before it is sent as an output from the FPU. In the actual
implementation, one large unit is used to contain both this normalization unit and the
rounding unit. Both operate within one pipeline stage. However, it is more
convenient to discuss them as separate entities. The inputs and outputs used by the

normalization unit only are listed in the tables below:

Table 19: Inputs to Normalization Unit

clk Clock input to synchronize operation within the unit
fract_in Result mantissa from the arithmetic stage
exp_in Result exponent from the arithmetic stage

Table 20: Outputs from Normalization Unit

Outputs Description

fract shifted The normalized mantissa

exp_shifted The exponent after normalization
denormalized Indicates that a denormalized number is formed
overflow Indicates that an overflow happened

Normalizing a mantissa would require shifting it to the left or right until its most
significant bit is a one (1). Figure 13 illustrates the process. The first step of
normalizing would be to count the number of leading zeros in the mantissa. This
“counter” is implemented as a fast and wide multiplexer (mux) that selects a number
ranging from 0 to 105 at its input to be sent to its output, depending on the number of
leading zeros in the mantissa. This concept is shown in Figure 14. The direction to
shift is then determined using the number of leading zeros. Because of the way the
input is defined, the right shift is only necessary when the there are no leading zeros.
The exponent is then checked to see if it is already at the maximum value of
11111111110, If it is, a right shift cannot be done as it would cause an overflow.
Therefore, a combination of right shifi and maximum exponent will result in an

overflow and the corresponding flag must be set to indicate this condition.
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Maximum exponent check

Dencrmalized number check

Count Leading Zeros in Fraction -

h 4

- Calculate Shift Direction -

exp[10:1] ==

111111111 Yeos—b

Maximum exponent -
may overflow

No—p

Flag output
denormalized

Yes

v

Obtain shift value, either;
a)ldz-1
b)exp -1

A

Perform both:
Left shift and decrement exponent
Right shifts and increment exponents

h 4

CHOOSE FINAL SHIFTED FRACTION
AND EXPONENT '

Figure 13: Normalization Flow

0 ——
1 ——
—
106 to 7 MUX
\
105 —»——|
————————— >
Mantissa

>0

S

Number of leading
| zeros in mantissa

v

Figure 14;: Mux to Check the Number of Leading Zeros
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A check for conditions leading to denormalized number is also done. Each left shift
would require the exponent to be decremented. Thus, if the number of left shifts
exceeds the value of the exponent, a denormalized number will result. A flag is also
set to indicate such condition. Since the exponent cannot be decremented beyond its
minimum value of 00000000001; there is a limit to how many left shifts can be
performed to the mantissa. Effectively, the number of left shifts is either equal to the
number of leading zeros minus one (normalized result) or the exponent minus one
(denormalized result). After all calculations are done, both the left and right shift is
done on the mantissa. The correct result is then chosen using another multiplexing

logic depending on the direction of shift (determined earlier). -

412 The Rounding Unit

The rounding unit forms the second half of the larger normalization and rounding

unit. Its function is to round the normalized mantissa into IEEE-754 compliant

format. The IEEE-754 specification provides for four (4) rounding modes: round to

nearest, round to zero, round up (positive infinity) and round down (negative

infinity). The inputs and outputs of the rounding unit are summarized in Table 21
~and 22 below:

Table 21: Inputs to Rounding Unit

Inputs Description

clk Clock input to synchronize operation within the unit
[fract_shifted Normalized mantissa from the normalization unit
exp_shifted Normalized exponent from the normalization unit
sign The sign of the result

r_mode Rouﬁding mode selected

Table 22; Outputs from Rounding Unit

Outputs Description

Sfract_out Rounded mantissa
exp _out Rounded exponent
inexact Inexact — indicates mantissa is truncated during rounding
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The operation of the rounding unit is shown as a flow chart in Figure 15. Numbers
could either be rounded into a lower magnitude (called X- in Figure 15) or a higher
magnitude (X+ in Figure 15). The value of X- is simply the normalized mantissa,
with all the extra bits to the right truncated. Since the mantissa has 53 bits, every bit
starting from the 54™ bit will be discarded to form X-. The value of X+ is obtained
by adding a 1 to the least significant position in X-. Both X~ and X+ therefore form

the two end products of the rounding unit.

X-= (1.b1b2b3.....b52)2 x 2E
X+ = [(1.b1b2b3.....b52) +(0.000.....1) ]2 x 2E

Depending on the rounding mode, either one of these will be chosen as the final
rounded output. The choosing logic forms the largest part of this unit. The rounding

logic for all modes is relatively simple, with the exception of round to nearest.

One notable catch of forming X+ is that adding “1” at the least significant position
may generate a carry that propagates all the way to the most significant bit. This will
be a significant issue if X+ were to be chosen as the final rounded output. This
condition can be detected using the carry-out from the most significant stage of X+.
To compensate, X-+ must be shifted to the right and the exponent incremented by 1.
Incrementing the exponent presents yet another problem if the exponent is already at
maximum value. More logic will have to be spent to detect this condition and set the

rounded outputs properly according to the IEEE specification.

For round to zero, the rounded output is always X-. For round up (positive infinity),
x+ would be chosen if the number is positive, while x- would be chosen if the
number is negative. Round down (negative infinity} is the reverse of round up X-

would be chosen for a negative number while X+ is chosen for a positive number.

Round to nearest is the most complicated of all rounding modes. The IEEE- 754
specification requires this mode to be the default rounding mode if no rounding
modes are specified. The FPU however, must rely on the software to sct the default
rounding mode as it does not include the logic to set it by default. This makes sense

since it is much easier to implement in software rather than hardware and no

36



additional hardware cost is incurred. In this mode, the first truncated bit (refereed to
as last bit in Figure 15) is checked to see if it is zero. If this bit is zero (0), then the
number is closer to the lower magnitude thus X- would be chosen. If it is a one (1),
then a tie condition is checked. A tie condition would happen if every bit to the right
of the first truncated bit 1s a zero. If one of those bits is not zero, then the number is
closer to the larger magnitude and X+ would be chosen. In case of a tie, the number
is equally spaced between X- and X+, therefore a tie-breaker is used to decide on the
final result. The tie-breaker is the least significant bit (LSB) in X- and X+ (they are
mutually exclusive). The final output would be equal to X- if its final bit is zero, else
it will be X+. [2,3,5] The logic used to determine the result for the round to nearest

mode is based on the truth table below:

Table 23: Truth Table Showing the Select Logic for Round to Nearest
First Truncated  Rest of Truncated LSB of X- Result

Bit Bit (0 for X-, 1 for X+)

b e ey DD D D
—_—_O O == SO
—_——— DD O OO

The first three columns of Table 23 represents the inputs to consider for choosing the
result while the last column shows the result itself as a function of the inputs. A zero
(0) on the result means X- is chosen while a one (1) means X+ is chosen. Using the
Karnaugh Map minimization technique, the logic used to select the result is reduced

to:
Result = (First Truncated Bit) OR (Rest of Truncated Bit AND LSB of X-)

Figure 15 does not shown the overflow handling inside the rounding unit. The IEEE-
754 standard has specifically defined the rounded output of a floating point number
whenever an overflow occurs. In case of overflow, the number would either be
rounded to infinity or to the largest number that can be represented in the format.

Figure 16 provides an alternative view of the algorithm applied in this unit.
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Figure 16: Alternative View of the Rounding Algorithm
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5 CONCLUSION AND RECOMMENDATION
5.1 Further Improving FPU Performance

Performance wise, there are still a few areas that can be improved in the design.
These improvements could come from addition of more pipeline stages to the current
design. More specifically, two additional pipeline stages could be gained by splitting

the first and last pipeline stages into two individual stages.

Both pre-align units actually perform two separates operations. For the ADD/SUB
pre-align unit, the first operation is to compare and obtain the difference in
exponents while the second operation is right shifting of the smaller mantissa. Since
the first operation involves a potentially large and complex subtraction (to obtain the
difference), doing the subtraction in one stage of the pipeline and then the shifting in
the next stage of the pipeline could result in considerable speed improvement (since

each pipeline stage is now shorter and takes lesser time).

For the MUL/DIV pre-align unit, some reorganization would be needed to split the
stage into two. The dividend alignment operation is relatively simple, thus it does not
need to be in a separate stage. The addition and subtraction of exponent operation
however is big and two stages can be identified here. First would be the addition or
subtraction of the exponents and second would be the addition or subtraction with
the bias value needed to restore the proper bias to the exponents. Therefore, the first
add-subtract operation can be done along with the dividend alignment while the

second add-subtract placed in a later pipeline stage.
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The third stage also consists of two separate operations, normalizing and rounding. If
these operations were to be split into two stages, the bottleneck at stage 3 of the

current pipeline could also be reduced.

Both optimizations above, coupled with the suggested optimization below, would
result in a faster FPU. The pipeline structure of the FPU with a 5 stage pipeline is

illustrated in Figure 17 below:

FIRST STAGE SECOND STAGE THIRD STAGE FOURTH STAGE FIFTH STAGE
SUBTRACT R R R R R
EXPONENTS o 1 - PRE-ALIGN | 2 = ADD/SUB 3 e NORMALIZE e 4 = ROUND 5

ADD/SUB R ADD/SUIB R R R R
EXPONENTS - 1 BIAS - 5 = MUL/DIV |~ 3 = NORMALIZE [ 4 -  ROUND = 5

Figure 17: Pipeline Stages and Registers (5 levels)

5.2 Using more Advanced Adder and Multiplier Algorithm

Besides adding more pipeline stages as suggested above, the arithmetic calculation
stage must also be fast enough to keep up. If not, every other pipeline stage would be

limited by the clock speed of the arithmetic stage.

Even though it has been mentioned before that using the synthesizer optimized
blocks would be the best option, there is a third option which may yield better
results. That method would be to custom code the adders and multipliers, but with
compiler directives and vendor specific libraries (if available) so that the custom
codes would be implemented using the dedicated arithmetic resources on the FPGA.
This approach offers the best of both worlds as more advanced arithmetic
implementation could be used with the fast arithmetic resources. The only problem
with this approach is to find out how compiler directives should be used and what
each directive would mean. Vendor specific libraries are installed on most RTL IDEs

(such as ActiveHDL) but problems remain on their exact usage.
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For example, a custom coded adder could be a cascaded structure consisting of 4-bit
wide carry-lookahead logic. 4 bit is generally the optimal width for the synthesizer to
improve area and speed performance. Longer adders (56 bit long for the FPU) would
need to cascade the 4 bit adder cells using carry lookahead logic too. Other
interesting arithmetic algorithms could also be explored, such as carry select adders,

carry save adders and other unsigned multiplier algorithms.

5.3 Recommendations for Future Works

Another recommendation is that more studies will be made on how to increase the
level of “parallelism” of the FPU. This would require much more work on the

control umnit.

The current design used here actually has three different execution units, one
addition/subtraction, one for multiplication and one for division. Therefore, three
separate instructions could potentially run in parallel. Although some units along the
datapath are shared, such as the normalization/rounding unit, these could easily be
duplicated for every operation running in parallel. To implement such scheme
however, would require an advanced scheduling algorithm that would recognize

ahead of time; which instruction are non-dependent and can be executed in parallel.

Another area of improvement would be in logic minimization. Certain codes used in
the design is still behavioral based and may generate excessive logic. The codes
could be optimized in order to synthesize a more efficient logic, one that could
perform the same operation using fewer gates. This would also lower the arca

utilization on the FPGA, allowing even more functions to be added to the chip.

5.4 Unsupported Features

The design currently does not have a synthesizable division algorithm. Full support
involving denormalized numbers is also not yet available. Divisions especially will
encounter serious problems if a denormalized input was used. The checks for
underflow and overflow are also not fully functional for multiplication and division

operations.
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APPENDIX Al

SOURCE CODE FOR FPU (TOP-LEVEL ARCHITECTURE)

i
i
/ Title  : Double-precision FPU - 64-bit
// Design  : Master FPU moduie

/ Author  :Ng Kiat Hong

HID : 1450

#
i
# Description : This is the top level file that binds together all the other smaller units
i
i
‘timescale 1ns / 100ps

*

FPU Operations (opcode):

00 =add
0§ =sub
10 = mul
11=div

Rounding Modes (r_mode):

00 = round to nearest
01 = round to zero

10 = round up {+inf)
11 = round down (-inf)

¥

module fpu { clk, reset, opcode, r_mode, opa, opb, out,
snan, gnan, div_by_zero, overflow, inf, ine, zero);

Hmain ports

input clk, reset;

input [1:0] opeode;
input [1:0] r_mode;
input [63:0] epa, opb;
output [63:0] out;

reg [63:0] out;

/fexception outputs
gutput snan, qnan;
output div_by_zero,
output overflow;
/foutput underflow;
output inf, ine, zero;

/Reg to double-sync inputs

reg [1:0] opcode_syncl, opcode_sync?;
reg [1:0] r_mode_syncl, r_mode_syncZ;
reg [63:0] opa_syncl, opa_syne2;

reg [63:0] opb_syncl, opb_sync2;

/iAsynchronous RESET and double-sync of all external inputs

/{Double-syne is helpful in avoiding metastability problems - metastable - state between 0 & 1

//Reason is: external inputs may not conform to setup & hold times

//inputs that do not meet setup&hold times may drive latches/FFlops to metastable states
//Double synching would force a metastable input to the correct stable state by driving another signal

/fthat matches the setup and hold times
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always @{posedge clk or posedge reset)
begin
if (reset}

begin
opcode_syncl <= 2'h0;
opcode_syne2 <= 2'b0;
r_mode_syncl <= 2'b0;
r_mode_sync2 <= 2'b0;
opa_syncl <= 64'b0;
opa_syne2 <= 64'bl;
opb_syncl <= 64'bl);
opb_sync? <= 64'bl);

end

else

begin
opcode_syncl <= opcode;
opcode_sync2 <= opeode_syncl;
r_mode_syncl <=r_mode;
r_mode_sync? <=r_mode_syncl;
opa_synel <= opa;
opa_sync2 <= opa_synci;
opb_syacl <=opb;
opb_sync2 <= opb_syncl;

end

end

I 1
/1 ALL MODULE INSTANTIATION STARTS HERE #/
it #

f/felock delayed signals to propagate signals to the proper stage

reg signa_r2, signa_r3, signa_ont;

reg [1:0] opcode_r2, opcode_r3, opeode_out; //opeode_out is needed at output logic
reg [1:0] r_mode_r2, r_mode 13;

reg sign_muldiv r3; /fclock delay coded before normalization block

reg [10:0] exp_addsub_r3;

always @{posedge clk}
signa_r2 <= opa_sync2[63];

always @(posedge clk)
signa 13 <=signa_r2;

always @(posedge clk)
signa_out <= signa_13;

always @(posedge cik)
opcode_r2 <= opcode_syncZ;

always @(posedge clk)
opcode 13 <= opecode_12;

always @{posedge clk)
opcode_out <= opcode_r3;

always @(posedge clk)
r_mode_r2 <=r_mode_sync2; -

always @(posedge clk)
r_mode_r3 <=r_mode r2;

it
//Exception unit instantiation
It

//Wire declaration

wire opa_nan, opb_nan;
wire opa_inf, opb_inf;
wire opa_zero, opb_zero,
wire opa_dn, opb_dn;
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exception unitl ( clk, opa_sync2{62:0], opb_sync2[62:0],
opa_nan, opb_nan,
opa_zero, opb_zero,
opa_inf, opb_inf,
opa_dn, opb_dn };

i
/Pre-Align (ADD/SUB) unit instantiation
/

//Wire declaration

wire [55:0] fracta_addsub, fractb_addsub;
wire [10:0] exp_addsub;

wire op_addsub;

pre_align unit2 ( clk, opcode_sync2[0], opa_syncZ, opb_sync2,
fracta_addsub, fractb_addsub, exp_addsub, op_addsub );

it
//Pre-Align (MUL/DIV) unit instantiation
it

/{Wire declaration

wire sign_muldiv;

wire [105:0] fracta_muldiv,
wire [52:0] fractb_muldiv;
wire [10:0] exp muldiv;

pre_align_mul uait3 { clk, opcode_sync2{0], opa_sync2, opb_sync2,
sign_muldiv, fracta_muldiv, fractb_muldiv, exp_muldiv );

1
/ADD/SUB unit instantiation
f

/fWire declaration
wire [55:0] sum;
wire co;

wire sign_sunt;

add_sub unit4 ( clk, op_addsub, fracta_addsub, fractb_addsub, signa_r2,
sum, sign_sum, ¢o };

1
HMUL unit instantiation
I

//Wire declaration
wire [105:0] product;

mul unit5 ( clk, fracta_muldiv[105:53] , fractb_muldiv, product );

i
HDIV unit instantiation
H

//Wire declaration
wire [52:0] quotient, remainder;

div unité ( ¢k, fracta_muldiv, fractb_muldiv, quotient, remainder);
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It
//Normalization & Rounding unit instantiation
It

/' Wire/Reg declaration for inputs to norm_round - reg beoz case statements had 2 be used
reg [105:0] fract dn;

reg [10:0] exp_dn;

reg sign_dn;

wire [105:0] fract_sum_r3;
wire [105:0] fract_quo_r3;
wire fract_addsub_zero; /Unretated - Used only in output stage - indicates add/sub output is zero

/IWire declaration for outputs

wire [52:0] fract_out;

wire [1(:0] exp_out;

wire dn_out, ine_out, overflow_out, norm_inf}

Hclk delay sign_muldiv signal from first stage to third stage
always @(posedge clk)
sign_muldiv_r3 <=sign_muldiv;

always @{posedge clk}
exp_addsub_13 <= exp_addsub;

#Padding input fraction to proper length
assign fract_sum_r3 = {co, sum, {45{1'b0}}};
assign fract_quo_r3 = {quotient, {53{1'b0}}};

{/Check for zero in ADD/SUB result
assign fract_addsub_zero = ~(|fract_sum_r3[105:497);

/ichoose correct fraction input to norm/round stage
always @(opcode_13 or fract_sum_r3 or product or fract guo_r3}

begin
case (opcode_13}
00,01: fract_dn = fract_sum_r3;
10: fract_dn = product;
11: fract dn = fract_quo_13;
endease
end

/ichoose the correct exponent input
always @(opcode_r3[1] or exp_addsub_13 or exp_muldiv)

begin
case {opcode_r3[1])
I'b0: exp_dn = exp_addsub_r3;
I'bl: exp dn = exp_muldiv;
endcase
end !

{ichoose the correct sign input
always @(opeode_r3[1] or sign_sum or sign_muldiv_r3)

begin
case (opcode_r3[1})
0: sign_dn = sign_sum;
1: sign_dn = sign_muldiv_t3;
endcase
end

norm_rnd unit? {clk, fract_dn, exp_dn, sign_dn, opcode_r3, remainder, r_mode_r3,
fract_out, exp_out, dn_out, ine_out, overflow_out, norm_inf );
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i
//FPU output logic
ff

'f*
List of signals that needs to be clock propagated here (3rd stage output)
1 - sign for result - get from normalization unit input

2 - all exception unit signals: opa/b_nan/zero/inf/dn

3 - true op for addition/subtraction

4 - input opcode - already done on top!

*/

//Reg to clock propagate signals

reg sign_out;

reg opa_nan_r3, opa_nan_out, opb_nan_r3, opb_nan_out;
reg opa_inf 13, opa_inf_out, opb_inf r3, opb_inf_ocut;

reg opa_zero_t3, opa_zero_out, opb_zero_r3, opb_zerc_ouf;
reg opa_dn_r3, opa_dn_out, opb_dn_r3, opb_dn_out;

reg op_addsub_r3, op_addsub_out;

reg fract addsub zero_out;

#/Clock delay the signals
always @(posedge clk)
begin
sign_out <=sign_dn;

opa_nan_r3 <= opa_nan;
opa_nan_out <= opa_nan_r3;

opb_nan_r3 <= opb_nan;
opb nan_out <= opb_nan_r3;

opa_inf r3 <=opa_inf}
opa_inf _out <= opa_inf_r3;

opb_inf 13 <= opb_inf;
opb_inf out <= opb_inf_13;

opa_zero_r3 <= opa_zers,
opa_zero_out <= opa_zero_13;

opb_zero_r3 <= opb_zero,
opb_zero_out <= opb_zero_13;

opa_dn_r3 <= opa_dxn;
opa_dn_out <= opa_dn_13;

opb_dn_13 <= opb_dn;
aph_dn_out <= opb_dn_r3;

op_addsub_r3 <= op_addsub;
op_addsub_out <= op_addsub_r3;

fract_addsub_zero_out <= fract_addsub_zero;

end
I
{{Check for exceptions
It

//Check 1: NaN
wire addsub_nan, mul_nan, div_nan;

//NaN happens only for inf - inf
assign addsub_nan = ~opcode_out[1] & op_addsub_out & opa_inf_out & opb_inf_out;

/MNaN results for 0 x infand infx 0
assign mul_nan = opcode_out{1] & ~opcode_out[0] & ((opa_zero_out & opb_inf_out}| (opa_inf_out & opb_zero_out));

{//NaN results for 6/0 and inf/inf
assign div_nan = &opcode_out & {{opa_zero_out & opb_zero_out} | (opa_inf_out & opb_inf_out));
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/Assert Qnan for all these NaN conditions - assign Snan to Qnan
assign qnan = opa_nan_out | opb_nan_out | addsub_nan | mul_nan | div_nan;
assign snan = gnan;

/fCheck 2; INF
wire add_inf, sub_inf, mul_inf, div_inf, res_inf}

/{For ADD: Result is INF if either input operands are inf
assign add_inf = ~opcode_outf1] & ~op_addsub_out & ( opa_inf_out | opb_inf out );

//For SUB: Result is INF only if one of the inputs are INF - cannot be both (that's a NalN)
assign sub_inf = ~opcode_out[1] & op_addsub_out & (opa_inf out * opb_inf_out);

#For MUL: Result is INF if one input is a INF while the other is NON-ZERO
assign mul_inf = opcode_outf1] & ~opcode_out{0] & ((opa_inf out & ~opb_zero out)| (~opa_zero_out & opb_inf out));

/fFor DIV: Result is INF if its a NON-ZERO/ZERQ or INF/NON-INF
assign div_inf = &opcode_out & ({~opa_zero_out & opb_zero_out) | (opa_inf_out & ~opb_inf out));

/lAssert Infinity for all the conditions above
assign inf = norm_inf | add_inf| sub_inf | mul_inf | div_inf;

{fCheck 3: Divide by zero - simple one
assign div_by_zero = &opcode_out & opb_zero_out;

/fCheck 4: Inexact output
assign ine = ine_out;

HCheck 5: Zero
wire addsub_zero, mul_zero, div_zero;

/fFor ADD/SUB, ZERQ is when the fractional output itself'is already zero
//Had to hack the design and code a workaround to support the case when two equal numbers are SUBBed.
assign addsub_zero = ~opcode_out[1] & fract_addsub_zero_out;

/Fot MUL, result is ZERO if is NON-INFxZERQ or ZEROxNON-INF
assign mul_zero = opcede_out]1] & ~opcode_out{0] & ({(~opa_inf_out & opb_zero out) | (opa_zero_out & ~opb_inf_out));

/For DIV, result is ZERO if its ZERQ/NON-ZERO
assign div_zere = &opcode & opa_zero_out & ~opb_zero_out;

/fAssert zero for all conditions above
assign zero = addsub_zero | mul_zero | div_zero;

Heheck 6; Overflow - works for addition/subtraction onfy
assign overflow = overflow_out;

//Check 7: Underflow - check not supperted

//Calculate sign for inf result
wire sign_inf}

assign sign_inf= (norm_inf| mul_inf | div_inf) ? sign_out :
(add_inf) ? signa_out :
(sub_inf) 7 ({(opa_inf_out} ? signa_out : ~signa_out) ;
sign_out;

always @{qnan or inf or sign_out or sign_inf or dn_out or zero or fract out or exp out)

begin
if (qnan)
begin
out[51:0] = {52{1'b1}};
out[62:52] = {G{1'bl}};
out[63] = sign_out;
end
else if (inf)
begin
out[31:0] = {52{1'b0} };
out[62:52]1= {10{1'bl}};
out[63] =sign_inf;
end

else if (dn_out)
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begin
out[51:0] = fract_out[51:0];
out[62:52] = {10{1'b0} };
out[63] = sign_out;

end
else if (zero)
begin
out[51:0] = {52{1'b0} }
out[62:52} = {10{1'b0}};
cut{63] = sign_out;
end
else
begin
out[51:0] = fract_outf51:07;
out[62:52] = exp_out;
out[63] = sign_out;
end
end
endmodule
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APPENDIX A2

RTL TESTBENCH AND WAVEFORM FOR FPU (TOP-LEVEL)

/iThis is the top level testbench used to validate the functionality of the FPU
‘timescale 1ns/ 100ps

/*
The FPU has 6 inputs and 9 cutputs
[nputs:
clock
reset
[1:0] opcode
i1:0] r mode
[63:0] opa
[63:0] opb
Qutputs:
[63:0] out
snan
qnan
div_by zero
overflow
underflow
inf
ine
Zero
*/

module FPU_TB;
parameter clk = 20;
integer seed;

Hreg inputs

reg clock, reset;
reg [§:0] opcode;
reg [1:0] r_mode;
reg [63:0] opa, opb;

fhwire outputs

wire [63:0] out;

wire snan, gnan;

wire div_by_zero;

wire overfiow, underflow;
wire inf, ine, zero;

{/Local variable

reg signa, signb;

reg [10:0] expa, expb;
reg [51:01 fracta, fractb;

/Hclock signal
always
#10 clock <= Iclock;

initial
begin
clock <= 1'b0;
reset <= 1'b0;
opcode <= 2'bly;
r_mode <= 2'b;

signa <= {;
expa <= 11'hdy
fracta <= 52'b0;
signb <=0,
expb <= 11'h{;
fracth <= 52'b0;
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’f*
Scenario: Inputs that would cause exception flags to be asserted
*

HCase |- Infinite - when one infinite number is added to a normal number
#elk; /110

opcode <= 2'b00;
/{fracta is inf
expa <= 11T'h7FF;
fracta <= 52'b0;

expb <= §dist_uniform{seed, 1023, 1046},
fracth <= {$dist uniform(seed, 1, 15), $dist_uniform(seed, 1, 16777215), $dist_uniform(seed, 1,
16777215)};

//Case 2: Infinite - by divide to zero
ftelk; 130

opeode <=2'bl11;

expa <= $dist_uniform(seed, 1023, 1046};
fracta <= {$dist_uniform(seed, 1, 15), 3dist uniform(seed, 1, 16777215), 3dist uniform(seed, 1,
16777215));

expb <= 11'bl;
fractb <= 52'b0;

{/Case 3: from +inf + -inf
#clk; 1150

opcode <=2'600;

signa <=0
expa <= 1 I'h7FF;
fracta <= 52'bl;

signb <= ;
expb <= 1T'h7FF;
fractb <= 52'b0;

'H
Seenario: ADD
*/

//Case 1: Add | and zero
#elk; /170
opcode <= 2'000;

signa <=0
expa <= 11'd1023;
fracta <= 52'00;

signb <= {;
expb <= 11'h000;
fractb <= 52'00;

HCase 2: Add 1 with 1
#elk; 11190
expb <= 11'd1023;

/iCase 3: Add two random numbers
#elk; /210

signa <= 0;

signb <=1

expa <= §dist_uniform(seed, 1023, 1046),
expb <= $dist_uniform(seed, 1023, 1046),

fracta <= {$dist uniform{seed, , 15), $dist_uniform(seed, 1, 16777215), $dist_uniform(seed, I,
16777285)):
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fractb <= {3dist_uniform(seed, 1, 15), $dist uniform(seed, 1, 16777215), $dist_uniform(seed, 1,

16777215)};

/*

Scenario: SUB

®/

HCase !: take 16 - 4

#elk; 11230

opcode <=2'b01;

signa <=0,

signb <= {;

expa <=11'd1027;

expb <= 11'd1025;

fracta <= 52'00;

fractb <= 52'b0;

//Case 2: take 4 - 16

#elk; 1250

expb <= 11'd1027;

expa <= 11'd1025;

fractb <= 52'00;

fracta <= 52'b0,

#Case 3: take random number

feli; 1270

expa <= §dist_uniform(seed, 1023, 1046);

expb <= §dist_uniform(seed, 1023, 1046);

fracta <= {Bdist uniform(seed, 1, 15), $dist_uniform(seed, 1, 16777215), $dist_uniform(seed, 1,
16777215y},

fractb <= {Bdist uniform(seed, [, 15), Bdist uniform(seed, 1, 16777215), 8dist_uniform{seed, I,
16777215)};

'I*

Scenario: MUL

*f

//Case 1: MUL of two random numbers

#elk; 4290

opcode <= 2'b10;

signa <=0,

signb <= 1;

expa <= $dist_uniform(seed, 1023, 1046),

expb <= $dist_uniform(seed, 1023, 1046);

fracta <= {§dist_uniform(seed, 1, 15), $dist uniform(seed, 1, 16777215), $dist uniform(seed, 1,
16777215)};

fractb <= {$dist_uniform{seed, 1, 15), Sdist uniform(seed, 1, 16777215), $dist uniform(seed, 1,
16777215)};

I‘*

Scenaric: DIV

*/

#/Case 1: Div of two random numbers

#elk; H310

opecode <=2'b11;

signa <=1;

signb <=0,

expa <= §dist_uniform(seed, 1023, 1046);

exph <= $dist_uniform(sesd, 1023, 1046);

fracta <= {$dist_uniform(seed, 1, 15), $dist_uniform(seed, 1, 16777215}, $dist_uniform(seed, 1,
16777215)};

fractb <= {$dist_uniform(seed, I, 15), $dist_uniform(seed, 1, 16777215), S$dist uniform(seed, 1,
16777215)};
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end

always {@(signa or signb or expa or expb or fracta or fractb)
begin
opa <= {signa, expa, fracta};
opb <= {signb, expb, fractb};
end

initial
#340 $finish(2);

{/Unit Instantiation
fpu fpu_unit] (
clk(clock),
reset(reset),
.opeode(opcode),
1_mode(r_mode),
-opa(opa),
.opb(opb),

.oui{out},
.snan{snan),
«qnan{gnan),
div_by_zero{div_by_zero),
overflow(overflow),
infinf),

.ine{ine),

zero{zero)

)

Endmodule



APPENDIX A3

RTL SIMULATION WAVEFORM FOR FPU (TOP-LEVEL)
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APPENDIX B

SOURCE CODE EXCEPTION UNIT

,’*
This file contains only the Exception module which checks for
- nan
- inf
- zZero
- denormalized
conditions of each input operands
¥/

“timescale Ins / 100ps
module exception( clk, opa, opb, opa_nan, opb_nan,opa_zero, opb_zere, opa_inf, opb_inf, opa_dn, opb_dn};

input clk;
input [62:0] opa, opb;

output opa_nan, opb_nan;
output opa_inf, opb_inf:
output opa_zero, opb_zero;
output opa_dn, opb_dn;

/fRegister al! outputs

reg opa_nan, opb_nan;

reg opa_zero, opb_zero;

reg opa_inf, opb_inf;

reg opa_dn, oph_dn;

/Local wires and reg

wire [10:0] expa, expb; /fstores exponent of opX
wire [51:0] fracta, fractb; /fstores significant of opX

wire expa_ones, expa_zeros, fracta_zeros; /fexpa_ones represent all "1" in expa
wire expb_ones, expb_zeros, fracth_zeros; //expb_ones represent all "1" in expb

/IAssigning the exp and mantissa field to seperate wires
assign expa = opa[62:52);
assign fracta = opa[51:0];
assign expb = opb[62:52];
assign fractb = opb[51:0];

4 -
f
// Major block - checking whether the input operands are inf, zero or NaMN
i

/Do every check as a combinatorial assignment - then fatch the output using a register

//Check for all 1's in exp of A & B - indicates either an infinite number or a NalN
assign expa_ones = &expa;
assign expb_ones = &expb;

/iCheck for all 0's in exp of A & B = indicate either Zero or denormalized number
assign expa_zeros = ~(|expa);
assign expb_zeros = ~(lexpb);

{/fCheck for all 0's in fraction of A & B = used to check for NaN inputs
assign fracta_zeros = ~{|fracta);
assign fractb_zeros = ~(|fractb);

f/iCheck for NaN on both operand A & B
always @(posedge clk)
begin
opa_nan <= expa_ones & (~fracta_zeros);
opb_nan <= expb_ones & (~fracth_zeros);
end

/f{Check for INF on both operand A & B
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always @(posedge clk)
begin
opa_inf <= expa_ones & (fracta_zeros);
opb_inf <= expb_ones & (fractb_zeros);
end

HCheck for ZERO on operand A & B
always @(posedge clk)
begin
opa_zero <= expa_zeros & (fracta_zeros);
opb_zero <= expb_zeros & (fractb_zeros);
end

//Check for Denormalized on operand A & B
always @(posedge clk)
begin
opa_dn <= expa_zeros & (~fracta_zeros);
opb_dn <= expb_zeros & {~fractb_zeros);
end

endmodule
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APPENDIX C

SOURCE CODE FOR PRE-ALIGN UNIT (ADD/SUB)

/%

Pre-align module:
Function is to align the mantissa for addition and subtraction
Also checks for the real operation to be performed, either add or sub

*f
‘timescale 1ns / 100ps

module pre_align ( clk, op_addsub, opa, opb,
fracta_out, fractb_out, exp_out, op_addsub_out };

/nput/Output Declaration
input clk;

input op_addsub;

input {63:0] opa, opb;

output [55:0] fracta_out, fractb_out;
output [10:0] exp_out;
output op_addsub_out;

HRegister all outputs

reg [55:0] fracta_out, fractb_out;
reg [10:0] exp_out;

reg op_addsub_out;

//Local Wires and Reg
wire opa_lead, opb_lead;
reg signa, signb;

reg [16:0] expa, expb;
reg [51:0] fracta, fractb;

reg [10:0] exp_diff, exp_diff_1;

reg [55:0] fract_full, fract_full_shr;
reg [55:0] fracta_out_1, fractb_out_1;
reg [10:0] exp_out_1;

reg sticky;

reg op_addsub_out_1;

#/Get implicit leading "1" bit - if exponent is non-zero, leading bit is 1
assign opa_lead = |expa;
assign opb_lead = |expb;

always {@(opa or opb or opa_lead or opb _lead or expa ot expb or fracta or fractb or exp_diff | or exp_diff
or fract_full or fract_full_shr or sticky)
begin
Mseperate the sigi, exponent and mantissa field into seperate reg
signa <= opaf63];
signb <= opb[63],
expa <= opa[62:52};
expb <= opb[62:52];
fracta <= opa[51:0};
fractb <= opb[51:0];

if {expa == exph)
begin
exp_out_| <=expa;
fracta_out_1 <= {opa_lead, fracta, 3'b0};
fractb_out_I <= {opb_lead, fractb, 3'b0};
J{The following assignments are done to keep the values below from floating
exp_diff 1<=110;
exp_diff <= exp_diff 1;
fract full <= 56'b0;
fract_full_shr <= fract_full;
end //if expa == expb
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else if {expa > expb} //if expa is larger than expb
begin
exp out | <=expa,
exp_diff 1 <= expa - expb;
{/IThe fraction can only be shifted by a max of d56 as the mantissa field
//is only 56 bits wide with the hidden, guard and sticky bits
exp_diff <= {exp_diff 1> 11'd56) ? 11'd56 : exp_diff 1;
//Recover the hidden bit and the 2 guard bit
fract full <= {opb_lead, fractb, 3'b0};
{//Right shift the mantissa
fract_full_shr <= fract_full >> exp_diff;
//Join the shifted bit with the sticky bit
fractb_out_1 <= {fract_fuli_shr{55:1], fract_full shr[0] | sticky};
fracta_out_| <= {opa_lead, fracta, 3'b0};  //fracta is not affected
end //if expa > expb

clse /fif expb is larger than expa
begin
exp_out_ 1 <=expb;
exp_diff 1 <=exph - expa;
//The fraction can only be shifted by a max of d56 as the mantissa field
/fis only 56 bits wide with the hidden, guard and sticky bits
exp_diff <= exp_diff t > 11'd56 7 11'd56 : exp_diff 1;
/Recover the hidden bit and the 2 guard bit
fract_full <= {opa_lead, fracta, 3'b0};
//Right shift the mantissa
fract_full_shr <= fract_full >> exp diff;
//Toin the shifted bit with the sticky bit
fracta_out_1 <= {fract_full_shr{55:1],fract_full_shr[0] | sticky};
fractb_out_1 <= {opb_lead, fracth, 3'b0}; //fractb is not affected
end Helse

end // always

always @{posedge clk}
begin
' exp_out <= exp_out_1;
fracta_out <= fracta_out_1;
fractb_out <= fractb_out_1;
end

always @(fract_full or exp_diff)

begin

/iThe case statement is used to obtain the value of the sticky bit

{/This method is brute force as it would synthesize a giant single level MUX - but potentially is fastest

case(exp_diff) fisynopsys full_case parallel_case
00: sticky = 1'b0;
01 sticky = fract_full[0];
02: sticky = |fract_fuli[01:0];
03; sticky = |fract_futl[02:0];
04: sticky = |fract_full[03:0];
05: sticky = |fract_full{04:0],
06: sticky = |fract_{ull{05:0];
07: sticky = |fract_{ull[06:0];
08: sticky = Ifract_full[¢7:0];
09: sticky = ifract_full[08:0];
10; sticky = |fract_full[09:0];
11: sticky = |fract_fuli[10:0];
t2: sticky = |fract_full[11:0];
13: sticky = jfract_fullf12:0];
14: sticky = |fract_full[13:0};
15: sticky = |fract_full[14:0];
16: sticky = [fract_full[15:0];
17: sticky = [fract_full[16:0];
18: sticky = |fract_fuli[17:0];
19: sticky = |fract_full[ 18:0];
20: sticky = |fract_full{19:0};
21: sticky = |fract_full{20:01;
22: sticky = |fract_full[21:0];
23: sticky = Ifract_full[22:0];
24: sticky = |fract_full[23:0];
25: sticky = |fract_full[24:0];
26: sticky = {fract_full[25:0];
27: sticky = |fract_full{26:01;
28: sticky = |fract_full{27:0};
29: sticky = |fract_full[28:0];
30: sticky = |[fract_full[29:0];
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31: sticky = |fract_full[30:0];
32 sticky = |fract_full[31:0;
33: sticky = |fract_full[32:0);
34: sticky = |fract_full[33:0];
35: sticky = |fract_full{34:0],
36: sticky = |fract_full[35:0;
37: sticky = |fract_full[36:0];
38: sticky = |fract_full[37:0];
39: sticky = |fract_full[38:0];
40; sticky = |fract_full[39:0];
41; sticky = ifract_full[40:0];
42: sticky = |fract_full[41:0];
43: sticky = jfract_full[42:0];
44: sticky = |fract_full[43:0];
45: sticky = {fract_full[44.0];
46: sticky = ifract_full[45:0];
47: sticky = |fract_full[46:0];
48: sticky = {fract_full[47:0];
49: sticky = {fract_full[48:0];
50: sticky = |fract_full[49:0];
51: sticky = |fract_full[50:0];
52: sticky = |fract_full[51:0];
53: sticky = |fract_full[52:0];
54: sticky = |fract_full[53:0];
55: sticky = |fract_tull[54:0];
56: sticky = |fract_full[55:0];
endcase
end

HFinal block, check for the actual operation to be carried out
always @(op_addsub or signa or signb)
begin
op_addsub_out_1 =op_addsub ~ (signa”signb};
end

always @(posedge cik)
op_addsub_out = op_addsub_out 1;

endmodule
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APPENDIX D

SOURCE CODE FOR PRE-ALIGN UNIT (MUL/DIV)

/*

Pre-align module for MUL & DIV operation:
Functions:
1. Perform dividend alignment te overcome divide overflow
2. Restore implicit bit in fraction A and B
3. ADD/SUB the exponent on MUL & DIV operations
4. Calculate the sign of MUL & DIV operations

*f
“timescale Ins / 100ps
module pre_align_mul ( cik, op_muldiv, opa, opb, sign_out, fracta_out, fractb_out, exp_out );

}Port Declaration
input clk;

input op_muldiv;
input [63:0] opa, opb;

output sign_out;

output [105:0] fracta_out;
output [52:0] fractb_cut;
output [10:0] exp_out;

{/Register outputs

reg sign_out;

reg [105:0] fracta_out;
reg [52:0] fractb_out;
reg [10:0] exp_out;
reg overflow;

ffreg underflow;

/Local Wires & Reg
wire [105:0] fracta_shifted;
wire [10:0] expa_shifted;

wire [105:0] fracta_out_temp;
wire [10:0] expa_ full temp;
wire [105:0] fracta_full;

wire [52:0]fractb_full;

reg {10:0] expa_full;

reg £10:0] expb_full;

reg op_muldiv 2;

wire [10:0]expb_full_tmp;
wire col, co_d;
wire [10:0] exp_tmpl, exp_imp2, exp_tmp3;

{/Seperate sign, exp & fract bits
wire signa = opa[63];

wire signb = opb[63];

wire [10:0] expa = opa[62:52];

wire [10:0] expb = opb[62:52];
wire [51:0] fracta = opa[31.0];

wire [51:0] fractb = opb[51:0];

/fObtain implicit leading bit
wire opa_lead = |expa;
wire opb_lead = expb;

i

/fFunction 1: Perform dividend alignment if fracta is larger than fractb on DIV operation
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/fObtain shifted values of fracta & expa
assign fracta_shified = {fracta_full} >> 1;
assign expa_shifted = expa + 1;

H
//Function 2; Restore implicit bit of both fractions

assign fracta full = {opa lead, fracta, {53{1'b0}}};
assign fractb_full = {opb_lead, fractb};

assign fracta_out_temp = (op_muldiv & (fracta >= fracth)) ? fracta_shifted : fracta_full;
assign expa_full_temp = (op_muldiv & (fracta >= fractb)) 7 expa_shifted : expa;

//Choose the shifted values if the operation is DIV & fracta is larger than fractb
always @(posedge clk)
begin
fracta_out <= fracta_out_temp;
expa_full <= expa_full_temp;

/fRegister B outputs
fractb_out <= fractb_full;
expb_full <= expb;

end

i
/fFunction 3: Add or Subiract Exponent - Biased Representation!!

/fassign {col,exp_tmpl} = op_muldiv ? (expa full - expb full) : (expa full + expb full);
/fassign {co2,exp tmp2} = op_muldiv ? ({col,exp_tmpl} + 12'd1023) : ({col,exp_tmpl} - 12'd1023); //Add/Sub bias value of
1023

//Use algo from ADD/SUB unit to perform addition/subtraction of biased exponents
//Biased Exponents are basically magnitude only - range from 1 - 2046
/{After add/sub operation, the bias value must be sub/add to restore the correct value to the biased exponent result

/Delay op_muldiv signal by one clock
always @(posedge clk)
op_muldiv_2 <= op_muldiv;

Hinvert expb_full if operation is SUB - XOR with 11 bits of op_muldiv
assign expb full tmp =expb full” {11 {op muldiv 2}},

{fperform addition as usual with op_addsub as initial carry-in to the adder
assign {col, exp tmpl} =expa full +expb_full tmp + op_muldiv_2;

assign {exp_tmp2} = (op_muldiv_2 & !col) ? (~exp_tmpl + 1) : exp_tmpl ;

assign {co_d, exp_tmp3} = (op_muidiv_2)?
{(col) 7 12'd1023 + exp_tmp2 }: ( 12'd1023 -
exp_tmp2)):
{{col, exp_tmp2} - 12'd1023);

always @(posedge clk)
begin
exp_out <= exp_tmp3;
overflow <= ~op_muldiv & co_d;
funderflow <= 777
end

i
/fFunction 4: Calculate the sign of the result
always @(posedge clk)

sign out <= gigna " signb;

endmodule
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APPENDIX E

SOURCE CODE FOR ARITHMETIC EXECUTION UNIT

// This file contains all modules of the execution core
/f All pure ADD/SUB/MUL/DIV operation is done here

‘timescale 1ns / 100ps
'I*

----ADD/SUBTRACT MODULE-----

56 bit long add/sub module - 53 for mantinssa
- 2 for guard bit
- 1 for sticky bit

*
module add_sub (clk, op_addsub, fracta, fractb, signa, sum, sign_sum, co};

input cik, op_addsub, signa; ffonly the sign of opA is required
input [55:0] fracta, fractb;

output [55:0] sum;

output co, sign_sum,

/Iregister outputs
reg [55:0] sum;
reg co, sign_sum;

/flocal variables

wire [55:0] fractb_temp;
wire co_temp;

wire [55:0] sum_temp;

Hfop_addsub == 0 is ADD & op_addsub==1is SUB
//SUB operation is carried out in 2's complement

ffinvert fractb if operation is SUB - extend op_addsub to 56 bits to XOR every bit in fractb
assign fractb_temp = fractb ~ {56{op_addsub}};

/perform addition as usual with op_addsub as initial carry-in to the adder
assigh {co_temp, sum_temp} = fracta + fractb_temp + op_addsub;

Hif the carry out from SUB operation is 0, then fracta < fractb
/ftherefore, when co_temp == 0, get the 2's complement of the result and invert the sign
always @(posedge clk)

begin
if (op_addsub & 'co_temp)
begin
sign_sum <= !signa;
co <= co_temp;
sum <=-~sum_temp + 1;
end
else
begin
sign_sum <= signa;
co <= op_addsub ? !co_temp : co_temp;
sum <= sum_temp,
end
end
endmodule
,'*
----- MUL MODULE-----

2 inputs - 53 bit long operands
I output - 106 bit long product

NOTE: This multiplication unit will only multiply the fraction/mantissa part of the
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number. The addition of the exponents will be performed using another module that
could run simultaneously with the add/sub pre-align.
The calculation for the sign of the result is also left to the other module

¥/
module mul (clk, fracta, fractb, product);
input clk;
input f52:0] fracta, fractb; //8ince guard bits are of no use, 53 bits are sufficient

output [105:0] product;

reg [105:0] product;

always @(posedge ctk)
begin
product <= fracta * fractb;
end
endmodule
/*
- DIV MODULE-—---

Inputs - OpA - Dividend- E06bits
- OpB - Divisor - 53 bits
output - Quotient - 53 bit long
Remainder- 53 bit fong

NOTE: The division unit takes a divident that is padded with zeros on the right hand side
and then divides it with the divisor.
The task of padding the zeros is left to another unit - either the master FPU or using
another module responsible for subtracting the exponents,
The task of divident alignment to avoid divide overflow is also done by the other module

*/
medule div (clk, dividend, divisor, quo, rem);

input clk;

input [105:0] dividend;
input [52:0] divisor;
output [52:0] quo, rem;

reg [52:0] quo, rem;

Hocal wires
wire [105:0] quo_temp;
wire [105:0] rem_temp;

//Both These are not synthesizable - Code the algorithm YOURSELF!!!
assign quo_temp = dividend / divisor;
assign rem_temp = dividend % divisor;

always @(posedge clk)
begin
que <= quo_temp[52:0];
rem <=rem_temp[105:53];
end

endmodule
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APPENDIX F

SOURCE CODE FOR NORMALIZATION AND ROUNDING

UNIT

//This source file would contain modules for 2 fenctions
//Function 1 is Normalizing
//Function 2 is Rounding

“timescale 1ns / 100ps
,f*

Normalizing unit:
inputs: 112 bit long mantissa
11 bit long exponent
1 bit sign
2 bit opcode

*#/

module norm_rnd (clk, fract_in, exp_in, sign, opcode, remainder, r_mode,
fract_out, exp_out, dn_out, ine_out, overflow_out, infinite_out );

input clk;

input [105:0] fract _in;

input [10:0] exp_in;

input sign; /Rounding only

input [1:0] opcode;  //Rounding only

input [52:0] remainder; //Rounding only
input [1:0] r_mode; //Rounding only

output [52:0] fract_out;
output [10:0] exp_out;
output dn_out;

outpuf ine_out;

output overflow_out;
output infinite out;

//Reg all outputs
reg [52:0] fract_out;
reg {10:0] exp_out;
reg dn_out;

reg ine_out; '

reg overflow_out;
reg infinite_out;

//Local Wires & Registers

reg [6:0] fract_ldz,  /*reg needed to hold the value constantly - register should not be clocked as it is fed by
combi circuit - up to 111 leading zeros may be present, thus

a 7 bit register is needed*/

wire shift_dir; f//Direction of shift

wire exp_max; //Exponent is max

wire [6:0] shift_val, /Magnitude of shift

wire 1dz_less_exp;  //Exponent is larger than no of left shifts required

wire [6:0] fract_ldz_mil;

wire [10:0] exp_in_mil;

wire out_dn; Hindicates that the output will be denormalized

wire out_overflow;  /indicates that output overflow occured - exponent & mantissa cannot store resuit

wire [105:0] fract_sh_R, fract sh_L;

wire [10:0] exp_sh_R, exp_sh_L;

wire [105:0] fract_shified;

wire [10:0] exp_shifted;

wire [52:0] fract_down, fract up temp, fract_up; /fwire to store rounded down & up fractions
wire cout; /iwire to store carry out from fract_up

wire [10:0] exp_up; //wire to store exponent for fract_up - needed becoz fract_up may have carry-out
wire fract_trung; Hindicates that some value have been truncated

wire rem_not_zero; //indicates that the division has a non-zero remainder - used to signal inexact
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reg [52:0] fract_round;

reg [10:0] exp_round;

wire [52:0] fract_near_temp, fract_round_nearest, fract_round_zero; //stores result for every rounding mode
reg [52:0] fract_round_up, fract_round_down; fistores result for every rounding mode

wire [10:0]exp_near_temp, exp_round_nearest, exp_round_Zero;

reg [10:0] exp_round_up, exp_round_down;

wire last_bit, trune, r_near_sel, fract_up_overflow;

wire [1:0] r_up_sel, r_down_sel;

i
/MNormalization unit starts here
1

/fCount Leading Zeros in input fraction/mantissa
always @ (fract_in)
casex{fract_in) /f synopsys full_case parallel_case
[06Th 1727727722702 2007 7 0 11771020 T I 20 e 1 a1 1212190299 II99T

7?7 : fract_ldz= 0;

2799777 ; fract_idz = 10;

106'B00000000000 1 7777 2 Y T Y I T R 200 I 020N NNNNNNNNNNT
TN s fract_ldz= 11;

[06'b0000000000001 7272227227222 T 1Y R T I I I T I T I I TN ININIINNTINN
77977 « fract_ldz= 12

29797797 : fract_ldz = 18;
106'h0000000000000000000 1777177222772 2212901 T R IR I T TP I 101700129770 199371027172
779797777 : fract_Idz = 19;

2127?777977 : fract_ldz = 20,
106'B000000000000000000001 2277778 222700271 222222020202 1212002127020 223 1IN TININ?
NI  fract_ldz= 21,
106'000000000000000000000 12222222220 221 Y I T 1T IT T I I I I M1
227727777 fract_ldz = 22;
106'5000000000000000000000001 7227777121721 1110072009222 29022 9092000009029 710279
122777727« fract ldz = 23;
106'b0000000C00000000000000001 2777¥7222220222277 311 NINININININININNVVVNVD02D22IPINITINNTININ?
222229977 : fract_ldz = 24;

106'50000000000000000000000000012772239297272977277727277712177222202202000920990799099 97 1799922977177
722727777 fract_ldz = 26;

106'b0G00000000000003000000000001777
77777977 : fract [ldz = 27,
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e I:52?1:561350:003(’)});00000000000000(}00000000 12999922220000 927222700 01 I IR0 INI977991000 0 NN 0NNT
1197729277 ¢ fract_ldz= 32;

??????????l:gg?l:(t)ﬁiodgoj)0?)%000000000000000000000000001??????????????‘?????????????????????????????????????????????
TP77 ¢ fract Idz= 35;

£06'5000000000000000000000G00000000000000 1797277229077 17 7222272277701 0 20220 0 0T T 109900079
??????????2; (;g}ESBB’SSOZO%%;OOO00000000(}000000000000000 N N S U Y S N A RS AU AN
??????????'i (;ér}'l?gtﬂ‘gggﬂéﬂﬂﬁ);()ﬂo000000(}0000000000000000001?‘??‘?‘?‘?‘??????‘?‘??‘?‘?'?'?'?'?'?'?'?'?'?'?‘?‘?‘?'?'??'?'??????????????????????
¥TIIIIT + fract_ldz = 38;

T 106'h0000000000000000000000000000000000000001777722279992229292997229927299929997999922 7999922779777
W + fract_ldz = 39;

106'60G00000000000000000080000000000000000000E2722772772277220027220092029279 7077777 090122079 790072
77771779777 : fract_ldz = 40,

PRI . fract_]dz = 41,

S L06b0000000000000000000600000000000000000000001977729229229922992999292007297799009 1199999997999
9209999999997 : fract ldz= 42;

......... ib6'bOO070GO000000000000000000000000000(}00{)0000001??????????????????????????????????????????????'????
297977997777 : fract_ldz = 43;

lllllllll ii)6'bOO000D000000000000000000(}00000000(}000000000{)I????????’?‘?‘??':"??'???’??’?'????????’?’???????????????????
7PIINIT : fract_Idz= 44;

299979777777 : fract Idz= 45;
..... ! 106‘;30@000(}000000000(}0000000000000{){)00000000{]00001?‘??????????????????????????????????????????'????
MITININT : fract_Idz = 46;

79T fract_|dz= 47

O L06'0000000000000000000000G0000000000000000000000000 1792227229209229079992990990 10999 TN IININI N
FIPPITINI?  fract ldz= 48,

106'500GD0000000D000000000000000C0000000000HI0000000001277772727222727272727279722271717 27779279177
299729779777 : fract_ldz = 49;

106'500000C0000C0000000000000000000000000000000000000001 2227272222222 RINNININININININY
2979999999927 : fract_ldz= 50;

106'5000000003000060000¢00000000600000000000000000000000 1277772 11I7INITIIIIPIVVNITTNINNINNT
2999999999797« fract_ldz= 51;

106'6000000000000000000300000000000000000000003000000000012797727777272222772221222777102722997977
2999999999997 : fract ldz = 52; '

T L 06600000000000000000000000000000000000000000000000000000122222222222997202070999 TP TIIINNT?
WTIIIIIIINY ¢ Fract_Idz= 53;

T 106b000000000000000060000000000000000000000000000000000000012772972222222922209299029299999997977
FITRNINNNNY - fract le = 55,

2 ?
106"3000(—)—000000000000000000_0OOOOOUGDOOOOOOGOOOOOOUOO0000000001 RPNV 1IN
W77 - fract_ldz = 56;

FITIVPLINNT - fract_ldz = 54;

29999772999277 « fract ldz = 60;

o i6‘6"5300006(}00000000000000(}000000U(}OGOD00000000000000000000000000001?????????????‘????????‘????????‘?
QIPMNIIIIINIT fract_ldz = 61;

PPIININNNY fl‘E\Ct‘le = 62;

66



TN ¢ fract_ldz = 635
106'bG0000000000006000000000000000000000000000000000000000¢000000000019277727777727727220T7 1777
FIPIVVIININNNY - fract_ldz = 64;

106'b0000000000D0C0GR0000G00000000000000000000000030000000000000000000001 7272222222202 72272997777
AP fract_ldz = 65; :

FFEI2729907179? + fract ldz= 60,

277972279277977 : fract_ldz = 70;

106'b00000000G0000B000000000000000000003000000000000000000000000000000000001 2777277722277227792
D097V fract_ldz = 71,

""""" 106'b000000000000000000000000000000000060000000000000000000000000000000000600001777772229999997

99999999009999%  fract ldz= 73;

979272797 ¢ fract_ldz= 77;

106'H000000000000000008000000000000006000000000000000C0000000000000000000000000000012777777277?
7779292999979927 : fract_ldz = 78:

TINVIIIIIIIIIIIT : fract ldz= 79;

106'b000C0000000¢00006000000600000000000000000G0000000000000000000000G000000000300000001777777
99992992729779777 + fract ldz= 82

TIMNNNINNTINNT - fract_ldz = 83;
106'b0000C000000000000000006000000030000000003000000G00000000060000000000000000060000000001 2277
FEEPNMMNNNNNNNT - fract_idz = 84,

106'6000000G00000000000000600000000000000000G00000060000600000003000000000000000000000G0001 727

106'h00000000000000000000000000000000000000000000000000000000000000600000000000000000000000017
TN | fract_Idz= 87,

© 106'600000000000000000000000000000000000000000000000000000000000000000000000000000000000000001

106'6000000000000000000000000300000000000000000600000000000000¢000000030000CG000000000000000000
001779777777797?7 ¢ fract_ldz= 91,
106'60000000000006000000000¢030000000000000000000000000000000060000000G0000C00C00000000000000
00017222779272277 : fract_ldz= 92;
106'60000000000000000000000000000000000000000000000000000G000000000000000000000000000000000000
00001272929779777 ; fract_ldz = 93;
106'6000000060005000000000060000000300000000030000000300003000000000000000000000000000000000000
00000177729777777 ; fract ldz= 94;
106'600000000000000000000000000000030000000000000000600000000000000000000000006000000000000000
0000001727722722? . fract_ldz= 95;
106'600000000000000000000000000000040000000003000000600000000000000000000600000000000000000000
00000001?777777777 : fract_ldz = 96;
106'b000G00000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000017772977? « fract_1dz= 97,
106'500000G00000000000000000000¢00000000000CG000000C0000000000000000000030000G00000000006000000
00000000012779277 - fract_Idz= 98;
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106'5G0000000600000000000000G00000000000000000000000060000000000000006000000000000000000000000
0000000000172777? : fract_ldz= 99;

106500000000000000000000000000000000000000000000003000000000000000000000000000600000000000000
00000000000177777 : fract_Idz= 100;
106'b00000000000000000000036000000000600000000000000000000:0000300000000000000030000000000000000
0000000000001222? : fract_ldz= 101;
106'600000000000000000000000000000500000000060000006000030000000000000000000000000000000000000
0000000000000177? : fract_ldz= 102;
106'500000000000000300000000000006000000000000000000000030000000000000006000000000000000000000
00000000000000177 ; fract_ldz = 103, .
106'b0C000000000000C0000000000000000000030C000000G0000000000000060000000000000000004CC000C000
00000000000000017 : fract_ldz= 104;
106'b00000000000000000000000000¢00000000G0000000000000CG0000600C000000000000000000000000000000
00000000000000007 : fract 1dz= 105;
endcase

HCalculate Shift Direction & shift value]

//Shift Right only when the number of leading zero is 0, otherwise shift Left
Hassign shift dir = |fract_ldz ? 1'b0 : 1'bl;

assign shift_dir = ~(ifract_ldz); //shift dir = 0 means left, shift_dir = | means right

HCheck for exp = 11111111117 - Tt means that exp is already at max value or INF - no further increment is alowed
ffassign exp_max = &exp_in[10:13 7 1'b1 : 1'bd;
assign exp max = &exp in[10:1];

/{Check that the number of leading zero is less than or equal to the exponent

assign Idz_less exp= (fract_ldz <= exp_in[6:01} ? I'bl : [exp_in[10:7];
/Comparison done for the first 7 bits of the exponient
#This is to reduce the bit length of the synthesized part
#1If either of the front 4 bit of of exp_in is 1, then exp_in would be larger than fract ldz
//Alternative line of code - seems more complex, plus it synthesizes an additional OR gate
Massign Idz_less_exp = |exp_in[10:7] |} fract_ldz <= exp_in[6:0] ? 1'b1 : 1'b0;

//Get both Left shift values first - choose using a mux later
agsign fract_ldz_mil = fract_ldz - 1;
assign exp_in_mil =exp_in- 1;

#1f no of 1dz is less than exponent, shift by number of ldz - | else shift by exp - 1 (results in minimum exp & denormalized no)
assign shift_val = Idz_less_exp ? fract_ldz mil : exp_in_mil;

/Do actual shifting - obtain both shifted values: Right & Left
assign fract_sh_R = fract in >> 1'bl;
assign exp sh R=exp_in+1;

assign fract_sh_L = fract_in << shift_val;
assign exp_sh_L = exp_in - shift_val;

/iSelect between different shift values - no need to care about overflowed numbers - will be handled by rounding side
assign fract_shifted = (fract_Idz==1) ? fract_in : (shift dir) 7 fract_sh_R : frac{_sh_L;

assign exp_shifted = (fract_ldz==1) 7 (exp_in) : {(shift_dir) ? exp_sh R :exp_sh_L);

/If the no of leading zero is more than the exponent, a denormalized number would result - thus it is the inverse of
ldz_less_exp
assign out_dn = !ldz_less_exp; f/signal will begin used to set output exponent to 0000...0

/1t the shift direction is right (only when there is no idz) and the exponent is already maximum - flag overflow
/Late bug fix - overflow can also occur if  the product of
assign out_overflow = (exp_max & shift_dir); /used to set the output of rounding unit

i
//Rounding unit starts here
it

/*Rounding mode selectors

0 = round to nearest

| = round to zero

2 = round up (+inf)

3 = round down {-inf)

Value of Nmax:

68



fract_max = 53'h|FFFFFFFFFFFFF
exp_max = 11'"h7FE

Value of Ninf:
fract inf=53'b0;
exp_inf'= 11'h7FF;
*f
//Get both rounded values
assign fract down = fract_shifted[104:52];
assign {cout, fract_up temp} = fract_down + {53'b0, i'b1}; fAcout is needed in case the addition results in
a train of carries until the most signiftcant bit*/
assign fract_up = (cout) 7 {cout, fract_up_temp} >> 1 : fract_up_temp; #shift result by 1 to the right if cout ==

assign exp_up = exp_shifted + {10'b0,cout};

assign fract_up _overflow = cout & (&exp_shifted[10:1]); /findicates that overflow occured while trying to
form X+

/fRound to nearest calculation

//nssign fract_near_temp = (tie) 7
H {(fract downf0]) ? fract_up : fract_down}:
H {(last_bit) ? fract_up : fract_down) ;

/*Use the signal r_near_sel to select fract up or down

last_bit is MSB of the truncated part

trunc is the OR of the all the other bits in the truncated part
fract_down[0] is LSB of X-

r_near_sel == 0 is selecting fract_down

K-map

last_bit  trunc fract_down[0] r_near_sel

0 0 v} 0
0 0 1 0
0 1 0 0
0 1 1 ]
I 0 0 0
I 0 i 1
H 1 0 [
1 1 1 i
*/

assign last_bit = fract_shifted[51];

assign trunc = |fract_shifted[50:0];

assign r_near_sel = last_bit & ( trunc | fract_down[0]); //logic derived from K-map above

assign fract near temp = (r_near sel)? fract_up : fract_down;

assign exp_near_temp = (r_near_sel) ? exp_up : exp_shifted;

assign fract_round_nearest = (out_overflow | (r_near_sel & fract up overflow))? 53’00 : fract_near_temp;
assign exp_round_nearest = (out_overflow | (1_near sel & fract_up_overflow) ) 7 1 'h7FF : exp_near_temp;

/MRound to zero calculation
assign fract_round_zero = (out_overflow) ? 53'h1FFFFFEFFFFTFF : fract down;

assign exp_round_zere = (out_overflow) ? 11'h7FE : exp_shifted;
//Round up calculation
assign r_up_sel[0] = sign;

assign r_up_sel[1] = out_overflow | (~sign & fract_up_overflow);

always @(r_up_sel or fract_up or fract_down)
case (r_up_sel) / synopsys full_case parallel_case
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2000  fract_round_up = fract_up;

2'b01:  fract_round_up = fract down;

2b10:  fract round_up = 53'b0;

2'blt: fract round up = 53'h1FFFFFFFFEFFEF;
endcase

always @(r_up_sel or exp_up or exp_shifted)
case {r_up_sel) /! synopsys full_case parallel_case
2600 :  exp_round_up =exp_up;
2601 exp_round_up = exp_shifted;
2%10:  exp round_wp = 11'h7FF;
2bl1:  exp round up=1F'h7FE,;
endcase

/Round down calcuation
assign r_down_sel[0] = ~sign;
assign r_down_sel[1] = out_overflow | (sign & fract_up_overflow});

always @(r_down_sel or fract_up or fract_down)
case (r down sel)  // synopsys full_case paraliel_case
2000  fract round_down = fract_up;
2'h0i:  fract_round down = fract_down;
2'b10: fract_round_down = 53'b0;
2011 fract_round_down = 53'hIFFFFFFFFFFEFF;
endecase

always @(r_down_sel or exp_up or exp_shifted)
case (r_down_sel}  // synopsys full_case parallel_case
2'600:  exp_round_down = exp_up;
2%01:  exp_round_down = exp_shifted;
2'b10 : exp round_down = 11'h7FF;
2'b11:  exp_round_down= l}'h7FE;
endcase

/fFinal case to select result fracticn
always @ (r_mode or fract_round_nearest or fract_round_zero or fract round_up or fract_round down) //still got some more 2
list
case (r_mode) /1 synopsys full_case paralle]_case
2'b00 ; fract_round = fract_round_nearest;
2'b01 : fract_round = fract_round zero;
2'010 : fract_round = fract_round up;
2'b11 ; fract_round = fract_round_down;
endcase

//Final case to select result exponent
always (@ (r_mode or exp_round_nearest or exp_round_zero or exp_round_up or exp_round_down) //still got some more 2 list
case (r_mode) // synopsys full_case parallel_case
2'b00 : exp round = exp_round_nearest;
2'601 : exp_round = exp_round_zere;
2'b10 ; exp_round = exp round_up;
2'b11 : exp_round = exp_round_down;
endcase

/(This is to check for inexact conditions

/fSignal if any values are truncated

assign fract_trunc = last_bit | trunc;

assign rem_not_zero = (&opcode) & (fremainder);

//Register all final outputs
always @(posedge clk)
begin
fract_out <= fract_round;
exp_out <= exp_round;
dn_out <= out_dn;
ine_out <= fract_trunc | rem_not_zero;
overflow_out <= out_cverflow;
infinite_out <= out_overflow & ( (Jr_mode) | ( r_mode[1] & ~(r_mode[0]"sign)) );
end

endmodule
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