
DISSERTATION

Parallel Pipeline Implementation of 64-bit FPU on Hardware

by

Ng Kiat Hong

1450

Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

Supervised by:

Mr. Fawnizu Azmadi Hussin

Dissertation submitted in partial fulfilment of

the requirements for the course

EEB5034 Final Year Design Project

JUNE 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATE OF APPROVAL

Parallel Pipeline Implementation of 64-bit FPU on Hardware

by

Ng Kiat Hong

A project dissertation submitted to the

Electrical and Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Approved by,

(Mr. FaWnizuAzmadi Husin)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JUNE 2004

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

NG KIAT HONG

11

ABSTRACT

This project is entitled "Parallel Pipelined Implementation of 64-bit FPU on

Hardware". Most modern processors typically have two different logic units which

handle the calculations requiredby the computer. One of them is the arithmetic-logic

unit (ALU) which operates on integer operands while the other is the floating point

unit (FPU) which operates on real operands. The aim of this project is therefore to

create a FPUwhich complies withthe IEEE-754 double precision standard (64-bit).

The project also aims to study the speed improvements offered by parallel and

pipelined design. The project also requires application of advanced digital design

techniques by using Verilog in a real world project. The designed FPU is targeted to

be capable of performing floating point addition (FADD), subtraction (FSUB),

multiplication (FMUL) and division (FDIV) operations equally as fast. The FPU

must also demonstrate the performance rewards of the parallel and pipeline design. It

is thus implied that the project would require an initial study on FP numbers and FP

arithmetic. How FP arithmetic is actually implemented in hardware must also be

know in-depth.

The section on methodology details each steps that is expected to be taken

throughout the course of the project. The methodology would serve as a general

guideline to execute the project and more details and other refinements may be made

as further progress is made into the project. The project basically has two main

phases, the first being software RTL coding to be completed in semester 1 while the

second is hardware implementation and testing in FPGA.

The results available from the project thus far is incomplete, because of time

constraints, the Verilog coding is not totally finished. Once the codes are done, RTL

tests and simulation would need to be conducted, and then only will it be

implemented on the FPGA.

in

ACKNOWLEDGEMENT

The present project work was carried out from August 2003 to May 2004 under the

guaidance of Mr. Fawnizu Azmadi Husin from Electrical and Electronics

Engineering Programme of Universiti Teknologi Petronas. The author would like to

acknowledge his supervisors for providing valuable guaidance and advices needed

throughout the course of the project.

The author also wishes to express his gratitude to Mr. Rudolf Usselmann, whose

work at www.opencores.org provided a vital base for this project to get started.

Last but not least, the author wishes to thank every else directly or indirectly

involved in the completion of the project. Among them is Ivan, a colleague also

involved in a FPGA project, who has shared his know how's in Verilog coding. The

author also appreciates all the lab technicians who have helped maintain the FPGA

lab.

IV

TABLE OF CONTENTS

CERTIFICATE OF APPROVAL I

CERTIFICATE OF ORIGINALITY II

ABSTRACT HI

ACKNOWLEDGEMENT IV

TABLE OF CONTENTS V

LIST OF FIGURES VII

LIST OF TABLES VIII

CHAPTER 1 1

1 INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statement 1
1.3 Objectives 2
1.4 Scope of Study 2

CHAPTER 2 3

2 LITERATURE REVIEW AND THEORY 3

2.1 Real Number System 3
2.2 Binary Floating Point Numbers 4
2.3 IEEE Floating Point Number Representation [2,3,7] 5
2.4 IEEE-754 Rounding Modes [2,3] 6
2.5 Addition and Subtraction of Sign and Magnitude Numbers Using 2's

Complement Method [4] 7
2.6 Pipelining (Arithmetic vs. Instruction) [4] 9
2.7 Theoretical Speed Improvement of Pipelining [3] 10

CHAPTER 3 11

3 METHODOLOGY AND PROJECT WORK 11

3.1 Literature Research 12
3.2 Architecture Design and Specification 12
3.3 Verilog Coding [6] 12
3.4 RTL Simulation and Debugging 13
3.5 Synthesis and Gate Level Simulation (GLS) 15
3.6 Download to FPGA(Virtex-IIXC2V1000) 15
3.7 Program and Setup FPGA 15
3.8 Result Analysis & Checking and Hardware Debugging 16

CHAPTER 4 17

4 RESULTS AND DISCUSSION 17

4.1 General Architecture 17
4.2 Clocking Strategy 20
4.3 Pipelining Strategy 20

4.3.1 Pipeline Registers 22
4.3.2 Special Notes on the Exception Unit 22

4.4 Built in Adder versus Custom Coded Adder 22
4.5 The Exception Unit 24
4.6 the Pre-Align Unit for Addition and Subtraction Operations 24
4.7 The Pre-Align Unit for Multiplication and Division Operations 27
4.8 Addition and Subtraction Unit [4] 30
4.9 Multiplication Unit 31
4.10 Division Unit 32

4.11 The Normalization Unit 33

4.12 The Rounding Unit 35

CHAPTERS 39

5 CONCLUSION AND RECOMMENDATION 39

5.1 Further Improving FPU Performance 39
5.2 Using more Advanced Adder and Multiplier Algorithm 40

5.3 Recommendations for Future Works 41

5.4 Unsupported Features 41

REFERENCES 42

APPENDIX Al 43

APPENDIX A2 50

APPENDIX A3 54

APPENDIX B 55

APPENDIX C 57

APPENDIX D 60

APPENDIX E 62

APPENDIX F 64

VI

LIST OF FIGURES

Figure 1: The Real Line 3
Figure 2: Design Process Flow 11
Figure 3: Aldec ActiveHDL Main Screen 13
Figure 4: ActiveHDL Waveform Output 14
Figure 5: Signal changes recorded on an external text file 14
Figure 6: General Architecture of the FPU 17
Figure 7: Registering Combinatorial Output Using Delay Flip-Flops/Latches 20
Figure 8: Pipeline and Dataflow Structure of FPU 21
Figure 9: Pre-Align for Addition and Subtraction Algorithm 26
Figure 10: Dividend Alignment in Pre-Align Unit for Multiplication and Division

Operations 28
Figure 11: Addition and Subtraction of Exponents for Multiplication and Division

Operations 29
Figure 12: Add/Sub Unit Operation Flowchart 31
Figure 13: Normalization Flow 34
Figure 14: Mux to Check the Number of Leading Zeros 34
Figure 15: Rounding Unit Operation Flow 38
Figure 16: Alternative View of the Rounding Algorithm 38
Figure 17:Pipeline Stages and Registers (5 levels) 40

vn

LIST OF TABLES

Table 1: IEEE 754 Floating Point Formats 5

Table 2: Pipeline Structure of an Instruction Pipeline 9

Table 3: Functions of FPU Sub-Units 18

Table 4: Functions of Inputs to FPU 19

Table 5: FPU Outputs and their functions 19

Table 6: Pipeline Structure of the FPU 21
Table 7: Custom coded RCA versus synthesizer-tool chosen adder 23

Table 8: Exception Types Handled by the Exception Unit 24
Table 9: Inputs to Pre-Align (ADD/SUB) 25
Table 10: Outputs from Pre-Align (ADD/SUB) 25
Table 11: Inputs to Pre-Align (MUL/DIV) 27
Table 12: Outputs from Pre-Align (MUL/DIV) 27
Table 13: Inputs to Add/Sub Unit 30

Table 14: Outputs from Add/SubUnit 30

Table 15: Inputs to Multiplication Unit 31

Table 16: Outputs from Multiplier Unit 31

Table 17: Inputs to Division Unit 32
Table 18: Outputs from Division Unit 32
Table 19: Inputs to Normalization Unit 33
Table 20: Outputs from Normalization Unit 33
Table 21: Inputs to Rounding Unit 35
Table 22: Outputs from Rounding Unit 35

vm

CHAPTER 1

INTRODUCTION

1 INTRODUCTION

1.1 Background of Study

There are two general formats to representbinary numbers: fixed-point and floating

point. Fixed point notations are usually used to represent either positive or negative

integers only. Real numbers cannot be fully represented in fixed point as it lacks the

ability to store fractional components. An example of fixed point notation is the

two's complement system. Real numbers usually require the floating point notation

which represents number in binary scientific notation. The format is ± M x 2 where

1 < M < 2. The separate fields to the mantissa (M) and exponent(E) in floating point

notation provide plenty of flexibility for representing extremely large or extremely

small numbers.

Unlike fixed point numbers, floating numbers are considerably more complex,

requiring dedicated hardware to manipulate on most computers. This aim of this

project is to design and implement an arithmetic unit capable of manipulating

floating-point numbers. This unit is called a Floating Point Unit (FPU) and the

hardware implementation would be done on a Field Programmable Grid Array

(FPGA).

1.2 Problem Statement

The challenge of this project would be to design an IEEE-754 compliant FPU using

hardware description language, and then implement the design on hardware using

field programmable grid arrays (FPGA). Additionally, the FPU must support the

double-precision format (64-bit wide for every number) specified in the IEEE

standard. An existing implementation of a single-precision FPU (32-bit wide) is

already available as an open IP core by Rudolf Usselmann at Opencores. [1]

The FPU must also be built with performance enhancements in mind. Therefore, the

FPU would be designed with multiple pipeline stages to increase the efficiency of its

execution. The FPU, being an arithmetic execution unit would have an arithmetic

pipeline. However, the FPU still needs to be controlled by a control unit, which must

employ a basic instruction pipeline in order to keep the FPU busy all the time. The

target of this project would then be how to design an FPU, with parallel and

pipelined architecture. If possible, the performance of a pipelined design versus a

non-pipelined design could be compared.

1.3 Objectives

1. Learn and apply digital design techniques to implement a crucial part of the

microprocessor.

2. To keep up with industrial trends in digital design and learning large scale digital

design using the Verilog language.

3. Study the architecture and design of a Floating Point Unit (FPU).

4. To make a worthy contribution to parallel and pipelined FPU design.

5. To produce a FPU that would be capable of performing all four arithmetic

operations: ADD, SUB, MUL and DIV operation equally fast as each other.

6. Acquire the skills to manage a large scale long term project over two semesters.

1.4 Scope of Study

This project would require designing the FPU using a hardware description language

(HDL). The language of choice here is Verilog for it is relatively easy to learn and is

closer to hardware. The project also involves studying the architecture and

specification of the FPU. The design and implementation of the FPU must be

compliant with the IEEE-754 standard. Concepts such as parallel execution and

pipelining are also explored in the project.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2 LITERATURE REVIEW AND THEORY

2.1 Real Number System

The real number system consists of bothrational and irrational numbers. Bothcanbe

represented on a line shown below:

-CO <- +00

-2-1 0 1 2

Figure 1: The Real Line

All real numbers stretch from -co(negative infinity) to ^(positive infinity). Infinities

are not numbers themselves, but they represent the extreme ends of real .numbers.

Integers are rounded real numbers such as ...-2, -1, 0,1, 2...

Integers are easily represented in computers in binary form. The only challenge to

binary representation of integers would be the sign but this is easily solved using the

"two's complement" number system*. Real numbers meanwhile require the use of

the floating point number system, which is more challenging. In decimal form, a

typical floating point number is written in the scientific format

±MxlOE, 1 <M<10

The number M (mantissa) always has a value in between 1 and 10, for example

1.8687 or 9.0974. Note that both numbers only have 1 single digit before the decimal

point. The exponent (E) would determine the real position of the decimal point in M.

Therefore, numbers such as 0.0025647 is represented as 2.5647 x 10"3 and 9998.2

Other systems such as"one's complement", "sign-and-magnitude" are also used.

would be represented as 9.9982 x 103. The very act of having the decimal point

move around back and forth gives rise to the name "floating point".

2.2 Binary Floating Point Numbers

Binary digits could only carry two values, 0 and 1. Therefore, binary floating point

numbers have the following format:

±M x 2E, 1 < M< 2

Therefore the binary expansion of the mantissa, M would be:

M = (b0.bib2b3...)2 withbn = 0 or 1

Normalizing binary floating point numbers means adjusting it so that the leading bit,

b0 has a value of 1. This would have great implications in hardware later. A few

terms are normally usedwhile referring to floating pointnumber systems. They are:

Precision:

The number ofbits used to store the mantissa, M

Machine epsilon, e:

Thegap between the number 1 andthe next largest floating point value

Unit in the last place, ulp(x):

The gap between a floating point number x and the next larger floating point number

(for x > 0) or next smaller floating point number (for x < 0).

At its inception, the format for floating point numbers was very loosely defined and

each company's solution differed from the other. This made porting software across

to other platforms very difficult.

2.3 IEEE Floating Point Number Representation [2,3,7]

The IEEE FP number system was an industry wide initiative to standardize the

representation and arithmetic of binary FP numbers across multiple platforms and

fields of interest (both academics and industry). The IEEE 754-1985 defines three

formats for binary representation of floating point numbers; single, double and

extended. The basic difference is that each format successively uses more bits to

store the mantissa, hence providing higher precision for each number. Both the

single and double format does not store the leading bit of the mantissa (since it is

always 1), however the Intel Extended format do. Therefore, the precision of single

and double format is equal to the number of bits plus one. Other definitions in the

IEEE standard include:

• bits used for both mantissa and exponent

• range of numbers that can be represented - normal range and subnormal

range

• rounding operation and rounding modes

• exception conditions such as are invalid operation, division by zero,

overflow, underflow and inexact. The results of these operations are usually

set to "zero", "infinity" or"NaN1".

• arithmetic process; guard, round and sticky bits

• many more lower level details

Table 1: IEEE 754 Floating Point Formats

Format Total Bits Sign Bit Exponent Bits Mantissa Bits

Single 32 1 8 23 (+1 hidden)

Double 64 1 11 52 (+1 hidden)
Extended(Intel) 80 1 15 64

The format chosen for the project is the double precision. The precision of the

double format is effectively 53 bits since the leadingbit of the mantissa is not stored.

For the double format the exponent range is from Emin = -1022 to Emax = 1023.

The range of representable numbers is thus from 2.2 x 10" to 1.8x 10 .

Not A Number

2.4 IEEE - 754 Rounding Modes [2,3]

A design compliant with the IEEE-754 standard must implement four (4) rounding

modes. They are:

• Round to nearest: The result is rounded to the nearest representable number

• Round to zero: The result is rounded to the number nearer to zero

• Round up (to +oo): The result is rounded to the number nearer to +co

• Round down (to -oo): The result is rounded to the number nearer to -co

The default mode is round to nearest. In this mode, the result (let it be x) would be

rounded to the value that is nearest to it, in other words, one that gives the lowest

rounding error. Let the two bounds of x be x+ and x- (x+ and x- are both

representable numbers). In this mode, x will be rounded to x+ if it is nearer to it and

vice versa. However, if both x+ and x- are equally near to x, the one with its least

significant bit 0 would be chosen.

The next mode is round to zero. This mode is the simplest mode of all as the result

is obtained by simply truncating all the extrabits to the left of x. Though simple, the

disadvantage of this mode is that a consistent bias towards zero will be developed

over successive operations. This is a serious shortcoming as the result of an

operation with multiple steps may have a large error.

The last two modes are round up and round down. Both require roundingthe result

either towards the number nearer to positive infinity or negative infinity. These

rounding modes are useful in interval arithmetic as two values that correspond to the

upper and lower endpoints of the real result canbe obtained. Interval arithmetic can

be used to monitor and control errors in floating point computations as two values

can be produced for each result. If the desired endpoints themselves cannot be

represented, they can be either rounded up or rounded down. The accuracy of the

result therefore depends on the width of the interval. Mostalgorithms that implement

such arithmetic are designed to produce narrow interval, the more narrow the

interval, the more accurate is the result.

2.5 Addition and Subtraction of Sign and Magnitude Numbers Using 2's
Complement Method [4]

The mantissa of a floating point number is basically a magnitude only component

while the sign is stored on an additional bit. Taken together, the sign bit and the

mantissa bits would form a sign-and-magnitude number. Operating on sign-and-

magnitude data is slightly more complicated than the more common two's (2's)

complement. Multiplication and division is actually easier on sign-and-magnitude

data compared to 2's complement data, but the reverse is true for addition and

subtraction.

The algorithm employed for addition and subtraction in this particular FPU is based

on 2's complement method (Figure 12). For sign-and-magnitude numbers, the

operation needs to be carried out on the magnitudes only, thus for addition the sum

of the mantissa must be found while for subtraction, the difference between the

mantissa is calculated. Therefore, it is imperative to find out what the true operation

is on the magnitudes first before operating on them. For instance, an addition means

adding both magnitudes together when both their signs match. If their signs do not

match, the true task is to calculate the difference betweenthe magnitudes.

For true addition operations, the mantissa is simply added to one another, without

any special consideration. This is similar to 2's complement addition, except that the

carry-out is not ignored. Subtraction is the operation that truly utilizes the 2's

complement method. Let the operation be A - B. The method used is to take the 2's

complement of B and add it to A. If the magnitude of A is larger than B, the carry

out from the operation would be one (1). This carry out indicates that the answer is

the correct one. However, if the carryout is zero (0), then B is larger than A, thus the

result obtained is incorrect. To obtain the correct answer, the algorithm takes the

two's complement of the original result and then invert the sign. The following

equations provethe validity of the subtraction process:

Let the first operand = A

Let the second operand - B

2's complement of B = 2n - B

A-B =A + (2n-B) (whenA>B)

= A-B + 2n

= A-B (2n discarded)

Since the final carry-out of 2's complement addition is discarded, the 2n term in

the result can be ignored, leaving A - B as the result of the operation. However,

this only happens when A > B. For cases where A < B, the 2n term will not be

generated (no end carry) because A would need to borrow a digit from 2n to be

subtracted by B. Therefore, when A is smaller than B, the difference in

magnitude between A andB is given by (B- A), as shown below:

A-B =A + (2n-B) (whenA<B)

= 2n-(B-A)

Taking 2's complement inverse of (A - B)

2n-(A-B) = 2n-2n + (B-A) = (B-A)

2n - (B - A) is actually the 2's complement of (B-A). Thus, by taking the 2's

complement of the result, we would obtain the difference between A andB, that

is (B - A). When a smaller number is subtracted by a larger number, the sign of

the result has to be changed. Thus the sign of the result is the inverse of A.

Therefore, when an end-carry is not detected in the result of the subtraction, the

correct output would bethe 2's complement of the existing result and the sign of

the output is the inverseof the first operand.

2.6 Pipelining (Arithmetic vs. Instruction) [4]

There is a small but very important difference between arithmetic and instruction

pipelining. Arithmetic pipelining is applied only to arithmetic units inside a

processor while instruction pipelining could be applied on any processor in general.

Arithmetic pipelining basically takes the arithmetic execution stage (starting from

operand fetch to producing an output) and split it into a few pipeline stages. This is

the type of pipelining that is going to be used for the FPU. Using the FPU designed

for this project as an example, the process of floating point addition, subtraction,

multiplication and division can be divided into three segments. Each segment then

forms a single pipeline stage. Therefore, the execution of one floating point

operation would overlap with the execution of another operation in an earlier

pipeline stage. Further detail on arithmetic pipelining is explained on Section 4.3

(page 17)

Instruction pipelining is not currently being applied for the FPU project. Instruction

pipelining splits the fetch, decode, execute and store instructions into a few pipeline

stages and overlap their execution. Therefore, the executionof these four instructions

would be the one that overlaps in an instruction pipeline. While the CPU is executes

the decode instruction, a new fetch instruction is also being executed. The pipeline

structure of a 4-stage instruction pipeline processor is shown below:

Table 2: Pipeline Structure of an Instruction Pipeline

Clock Transition Tl T2 T3 T4 T5 T6

Instruction 1 Fetch Decode Execute Store

Instruction 2 Fetch Decode Execute Store

Instruction 3 Fetch Decode Execute Store

Instruction 4 Fetch Decode Execute

2.7 Theoretical Speed Improvement of Pipelining [3]

This section attempts to show a simple mathematical proof of the potential speedup

in a pipelined design. Let the cycle time, t be the time it takes for an instruction to

advance through a stage of the pipeline. This cycle time can be determined by:

T = Tm + d

where

zm = maximum stage delay (delay through the stage which
experiences the largest delay

d = time delay of through a latch (register), needed to store date
between stages

Usually, the delay d can be ignored as xm » d. Now, let n instructions be executed

without branches through the pipeline. The total execution time, 7* is

Tk = [km + (n-1)] x, where k - number ofpipeline stages

Without pipelining, the value of k is 1, thus the total execution time for a non-

pipelined design is

Tl = nkv

The speedup factor of a pipelined design is:

Tj _ nkx nk
S,, —— —-

Tk [k + (n-l)x] [k + (n-l)]

If we observe the behaviour of the equation above at the limit of n -> qo, we will see

that Sk = k. That means that the speed improvement of a pipelined design over a non-

pipelined one is equal to the number of pipeline stages itself. Therefore, the larger

the number of pipelines, the faster it is. However, this potential speedup occurs only

in ideal cases where n instructions can be fed into the pipeline without branching. In

real life, branches occur very often, reducing the potential speedup. Another factor

that would reduce the speedup is latches that exist between two pipeline stages. They

are also called as pipeline registers. All registers have a finite read and write delay to

it, thus every signal propagating from one stage to another mustencounter this delay.

A single stage combinatorial circuit would not need such registers as all the signals

are connected directly to each other. Hence, the speedup of a pipelineddesign over a

non-pipelined one is actually less than k, the number of pipeline stages.

10

CHAPTER 3

METHODOLOGY AND PROJECT WORK

3 METHODOLOGY AND PROJECT WORK

Architecture &

Design
Specification

(Word Document)

Synthesis & GLS
(FPGA Express)

Verilog Coding
(Aldec ActiveHDL)

Download to FGPA

(VirtexXC2V1000)

RTL Simulation and

Debugging
(Aldec ActiveHDL)

Program & Setup
FPGA

Result Analysis &
Checking

Hardware

Debugging

First Semester

Test Vectors

Second Semester

Figure 2: Design Process Flow

From the flow chart above, the project could be largely divided into two stages to be

completed over two semesters. The first semester would be concerned with purely

RTL (Register Transfer Language) coding while the second semester would be

implementing the design in FPGAand running all the hardware tests.

Before the design stage can start, literature research would be conducted first. Only

after literature review is done, then the design process illustrated in Figure 2 could

start.

11

3.1 Literature Research

Literature research was done on IEEE-754 compliant FP numbers and various FPU

designs. The main concern here is to find the general architecture and requirements

of a FPU. Studies were also done on the components that make up the FPU, such as

binary adders, multipliers and dividers. Literatures are largely obtained from library

texts and also sources on the internet.

3.2 Architecture Design and Specification

Every part of the FPU is first documented in form of a MS Word document before

being coded. The document serves as a design specification and guideline. The

functions of each module along with specific implementation details are included in

the document. Relevant flow charts are used to illustrate the algorithms used. *

3.3 Verilog Coding [6]

Verilog coding starts once the specification for any component of the FPU is

completed. Verilog codes are enteredusing the Aldec ActiveHDL IDE. Ideally, each

Verilog module is stored in separate source files. Different source files are then kept

in a common design/workspace. This allows easy manageability of the codes while

retaining the ability to call modules coded somewhere else. Written codes are then

compiled to check for syntax errors.

*The design specification is attached aspartof theappendix

12

• ActiveHDL rU (FPU_vti f:\AelidflmidYrJar_5*FmFr'U_v1lFPU_'/nsrcWpit,v

r

PttTjO6** © 6- •*- # <5> i »•! £ [00ns S*' £ "• | C- t- 5s M"iaisia«i |
,,** ir I*

Qerceplnn

Lkistrtod

S FPUtft

i-lflJarHimetet.v

llfflj(pu.v

i-FPU_vl library

"3
rt.!t

1 // Dea.lcu

// J2f

//

// Oca;tip:jot ; This js t.'ie cop led file (H-Jf ftioote toa-itiiej: jIJ tie oefcsi1 ais.nior unica
10 //

t^iii-r-irftlr :ii3 i* tempo

.- ttoublB-ffCBSJsioa FPU - {.4-bit
: Master FPff morals

.- Kg Klrit Hong
.' 1 MO

IS fpy derations (up^cdo.i;

16

00 - (trfri

":o si - sat

ji IB - Ivlll
V/. ii= dip

S3

!4 K.jUKiiinir Xixjes I'rjaoae.i:

jS] hies/^Stm. ,'5yRes.,./ ^J^5l^E^5^^
li Pass 2. Pcocesslay Instantiations.
A Pass 3. Processing EeftsvLoral statements,

j) ELE/DAG cods geixecatlag.
H Top nodules; add^sub mul div.
B Cunipi li? success 0 Erccsri CI Tfirning^ J,nnl?3iJ3

• tt ... done

S Console

pji'ijCoii ' "JHLw"]iws"

Figure 3: Aldec ActiveHDL Main Screen

3.4 RTL Simulation and Debugging

The completed RTL codes need to be tested in software first before being

downloaded to the FPGA and implemented in hardware. RTL simulation is used to

test the functionality of the FPU (or parts of the FPU) and to catch logic bugs. The

tool used to simulate the Verilog design is also Aldec ActiveHDL.

A testbench is written to provide stimulus to the design. The design must respond

with certain outputs for certain combinations of input. An incorrect output would

indicate a logic bug that needs to be traced and fixed. The source of test vectors for

the test bench could either be hard coded in the test bench itself or obtained from an

external file.

After simulation, the result can be monitored and viewed in many different ways.

One of the most useful is the waveform viewer which tracks the logic values of any

desired signal. Using the waveform editor, both the states of the input and output

could be easily observed on a timeline. This serves as a great debugging tool to root

13

out problems in the code or design. The figure below shows an example of the

waveform for a single bit full adder with Cin, x and y as the input and Cout and s as

the output. If the output does not respond as predicted by the input, a bug may exist

in the code.

Name Value Stimulator > . 2.0 . . 40 • . 60 .
70 ns

. i • 1

•-Cin t Formula

u t*yii(i
•* Cou(

1

0

1

0

Formula

Formula
* """'

tl • 1 tttll!!IJIHitlMltllUirtut.t >1 1III1UIII "" *" "•

l

Figure 4: ActiveHDL Waveform Output

The function "fmonitor" in ActiveHDL also allows signals to be recorded in an

external text file. An example of the output is shown in Figure 5. The text files could

then be further processed using another custom program that checks the output file

for anyviolations. A file-processing friendly language such as Perl could be used.

simloq - Notepad hu
e ; "ic - ^c^e^ v

1 1 tII- n u Snl V -I
o 0 1 X X 1

40 e 1 0 0

60 0 1 0 1 It

80 0 1 1 1

100 0 1 1 0

120 0 1 0 1

140 1 1 0 1

160 1 1 1 0

180 1 e 1 0 h

t,W? '•
. ___ ._—.-,.-. --::- _ -.-~. iv.i-.ri:;- "—- --7777-- .-:--— . —-:.-. !

Figure 5: Signal changes recorded on an external text file

Any bugs found at this point would require going backto the RTL coding stage and

fixing the bug at the Verilog code. All previously written testbench and test vectors

must then be reran on the newly fixed code to check if the bug has been truly fixed

and if anynew bugs were introduced by modifying the code.

14

3.5 Synthesis and Gate Level Simulation (GLS)

The finished RTL code could be synthesized using Synopsys FPGA Express, an

industrial strength Verilog synthesis tool. The Verilog codes would be loaded into

FPGA express and it would check for any syntax errors before proceeding. After

synthesis, an EDF netlist file would be created.

This file could again be loaded into ActiveHDL for GLS. GLS operates on the

netlist, meaning all the gates generated from the RTL codes. Bugs could still be

found at gate level which did not exist at RTL level because of the uncertainty in the

synthesis process. Coding styles, compiler directives and custom libraries are among

the few factors that may change how the software synthesizes the design. Therefore,

the generated circuit may not turn out to be as expected during RTL coding. Bugs

found here should also be fixed at the Verilog code.

3.6 Download to FPGA (Virtex-II XC2V1000)

After or during GLS, the design could be downloaded to the FPGA chip for

implementation on hardware. The preferred chip would be the Xilinx Virtex-II

XC2V1000 as it contains the most number of gates (1 Million gates) of all the chips

that are available in the university laboratory.

The Virtex»II chip resides on a reference board which contains plenty of I/O and

memory functions. Some examples are the PCI interface, DDR memories, RS232

port, 7 segment displays, LED and much more. All these features would greatly

speed up hardware testing and implementation as all the I/O to the FPGA chip do not

need to be manually wired. PROMs are available on board for any programs to be

loaded and executed.

3.7 Program and Setup FPGA

Once the FPGA has been programmed, it would need to be set up using Xilinx own

tool. Configuring the FPGA is done through the JTAG interface on the reference

board. Test programs that should be executed, along with the test vectors are then

15

loaded into the on board RAM for hardware testing. The output from the program

could then be stored in memory or output to another device for manual observation.

Hardware implementation is potentially the most difficult of all as subtle boundary

conditions that may not be accounted for in RTL could cause bugs in hardware.

Electrical loading conditions and signal quality are also other things that are out of

control during RTL but must be taken care of when the hardware implementation is

obtained.

3.8 Result Analysis & Checking and Hardware Debugging

The results from hardware tests need to be stored somewhere for analysis later. Since

all the latter stages are schedules for the second semester, hardware testing plans are

not yet ready.

16

CHAPTER 4

RESULTS AND DISCUSSION

4 RESULTS AND DISCUSSION

Sections 4.1 to 4.4 would discuss the general features of the FPU. Section 4.5

onwards meanwhile would present the design of eachpart of the FPU in detail.

4.1 General Architecture

The general architecture of the FPU is shown in Figure 6 below:

Clock First Operand Second Operand Operation Select Rounding Mode

EXCEPTION

Infinite Quiet NaN

Signaling NaN Inexact

PRE-ALIGN
PRE-ALIGN

(MUL/DIV)

ADD SUB MUL DIV

NORMALIZE & ROUNDING

Divide by Zero Underflow Overflow Zero Output

Figure 6: General Architecture of the FPU

The design in Figure 6 is the final top-level architecture of the FPU pending any late

changes. Design issues and other performance enhancements may require a

redefinition of the architecture. Do note that the architecture above do not explicitly

show the pipeline structure of the FPU.

17

There are 5 inputs, 9 outputs and 3 major stages in the FPU. The first major stage

consists of the pre-align units. The second contains all the arithmetic units operating

on mantissas and the third contains the normalizing and rounding units along with

any output logic (not shown). Seven (7) major sub-units are contained inside the

FPU, each of them coded as a separate Verilog "module". The full design

specifications are available in the appendix. The basic function of each unit is listed

in the table below:

Table 3: Functions of FPU Sub-Units

Sub- Units Function(s)

Pre-Align Aligns the exponent and mantissa of each operand before

addition and subtraction. Determines the true operation (Add

or Sub) to be performed on the mantissas

Pre-Align (Mul/Div) Performs dividend alignment for division operations. Add or

Sub exponents on Mul or Div operations. Determines the

sign of the result

Addition/Subtraction Adds and subtracts pre-aligned mantissas

Multiply Obtain the product of two mantissas from multiplication

Divide Obtain the quotient and remainder by dividing the dividend

mantissa with the divisor mantissa

Normalize/Rounding Normalize the result from the Add/Sub, Mul and Div units.

After normalizing, the result would be rounded according to

the selected rounding mode

Exception Checks for exceptions in the operands and then flags them.

These signals may be used at later pipelines stages and also

required to set flags in the status register of full CPU.

Table 4 lists the definition of each input to the FPU. Both input operands must be in

normalized form or in any other special form as defined by the IEEE-754 standard.

The FPU is never expected to handle non-floating point numbers. In real practice,

the operands already exist in IEEE-754 compliant forms inside the main system

memory before being fetched and operated upon by the FPU. Higher level software

must handle all the relevant format conversions before the operands are sent stored

in memory for operation.

18

Input

Clock

First Operand

Second Operand

Operation Select

Rounding Mode

Table 4: Functions of Inputs to FPU

Function

External clock input. This signal should come from the clock

generator and is used as the common clock that synchronizes

every operation inside the FPU

First input operand (IEEE-754 CompliantFP Number)

Second input operand (IEEE-754 Compliant FP Number)

Selects between Add, Subtract, Multiply and Divide operation

Selects between the four (4) different rounding modes:

i. Round-to-nearest

ii. Round-to-zero

iii. Round-to-positive infinity (up)

iv. Round-to-negative infinity (down)

Table 6 meanwhile lists the functions of the outputs from the FPU:

Table 5: FPU Outputs and their functions

Output

Output

Infinite

Ine

Signaling NaN

Quiet NaN

Divide by Zero

Underflow

Overflow

Zero

Function

The floating point output as a result from the operation

performed by the FPUon the inputoperands.

Output operand in infinite

Output operand is not exact, instead it has beenrounded

Signalling NaN; a type of NaN that causes an exception. This

feature is not implemented and is aliased to QuietNaN.

Quiet NaN; a non-exception type ofNaN.

Asserted when an operand is divided by zero

Result underflow; result is lower than the smallest possible

number that can be represented

Result overflow; result is higher than the highest possible

number that can be represented

The result is zero

19

4.2 Clocking Strategy

Most of the FPU would operate in one clock domain. In fact, every module would

operate on a global clock signal sourced from the input signal called "elk" except for

the divide unit. In hardware, the "elk" input would be connected to the clock

generator circuit on board the FPGA test board.

In such circumstances, each stage of the FPU must be able to complete its operation

within a single clock cycle. This is required in order to fulfill the pipelined design

requirement of having one complete result at every clock cycle. To properly

implement the clocking scheme, each sub unit is designed as a combinatorial circuit,

but with its final output registered on a clock-synched D flip-flop or latch. Figure 7

illustrates such design.

The divide module may be required to operate with a clock signal up to 53 times

faster than the global "elk" signal. This is due to the division algorithm which would

require 53 iterations to complete.

Clock

Input Combinatorial Circuit Output Flip-flop

Figure 7: Registering Combinatorial Output Using Delay Flip-Flops/Latches

4.3 Pipelining Strategy

The architecture of the FPU can be split into three (3) pipeline stages. Figure 8

illustrates all the three stages clearly. The top half is the data path that the operands

would follow for addition or subtraction operations while the bottom half is the

execution path for multiplication and division operations. Two separate paths were

designed as addition/subtraction does not share much hardware in common with

multiplication/division. Both groups use fairly distinct methods to produce the

results.

20

FIRST STAGE

PRE-ALIGN

(MUL/DIV)
R1 -

SECOND STAGE

+ ADD/SUB

ADD/SUB

EXPONENT

MUL/DIV

MANTISSA

R2

R2

THIRD STAGE

NORMALIZE/

ROUND

NORMALIZE/

ROUND

R3

R3

Figure 8: Pipeline and Dataflow Structure of FPU

This arithmetic pipeline design would then produce one floating point result at the

output after every clock cycle (beyond the initial latency). Using the ADD/SUB

datapath as an example, if each operation to be performed is called OpX, where X is

an integer that denotes every successive operation, the flow of execution on the

pipeline would be as illustrated in Table 6.

Table 6: Pipeline Structure of the FPU

Clock Transition Tl T2 T3 T4 T5 T6

Pre-align Opl Op2 Op3 Op4 Op5 Op6

Add/Sub Opl Op2 Op3 Op4 Op5

Normalize/Round Opl Op2 Op3 Op4

From Table 6, it can be seen that at the third clock transition, the first operation has

already passed through all the pipeline stages and its results made available at the

output. Beyond this point (the initial latency period), a new output for each

successive operation would be available after every clock. Although the example

uses the Add/Sub datapath, the same result would have been obtained from the

Mul/Div datapath.

21

4.3.1 Pipeline Registers

Referring to Figure 8, three groups of registers would need to be designed to

correspond with all three pipeline stages. All three of them must also be synched on

the global clock input.

Each pipeline registers Rl, R2 and R3 would store the intermediate result from each

pipeline stage before it could be operated by the next stage. Rl, R2 and R3 are not

single registers though as they represent multiple registers that exist at each pipeline

stage. Depending on the individual pipeline stage, registers may be needed to hold

one or more outputs from that stage. As an example, the pre-align unit has both pre-

aligned operands and the true operation select as the output. Registers must be made

to hold all those.

4.3.2 Special Notes on the Exception Unit

All the pipelining discussion so far has not touched on the exception unit of the FPU.

In actual fact, this unit is implemented to sit along with both pre-align units in the

first stage of the pipeline. The exception unit analyzes the inputs to look for

exceptions, thus their results must be made available for later pipeline stages to

process. Therefore, it has to execute in the first stage of the pipeline and also

conform to the single clock execution time constraint.

4.4 Built in Adder versus Custom Coded Adder

The design of the arithmetic unit stage relies heavily on the synthesizer choice of

what type of adders and multipliers to use. Supported operators are Add, Subtract

and Multiply. Therefore, all these three operations are performed using simple

Verilog commands: "+", "-" and "*". Only the divider would require manual hand

coding as synthesizers support only the divide operator ("/") for powerof 2 divisors.

The justification for such design choice was because the Virtex-II chip where this

FPU is going to be implemented has its own specific arithmetic optimizations. From

the Virtex-II data sheet:

22

Fast Lookahead Carry Logic
Dedicated carry logic provides fast arithmetic addition and subtraction. The Virtex-II CLB
has two separate carry chains. The height of the carry chains is two bits per slice. The
carry chain in the Virtex-II device is running upward.

Arithmetic Logic
The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be
implemented within a slice. In addition, a dedicated AND (MULT_AND) gate improves the
efficiency of multiplier implementation.

What the Virtex-II does is that it tries to solve the fundamental problem of binary

addition, which is carry generation and propagation by using dedicated circuitry to

quickly calculate the carry results. The Virtex-II also has its own dedicated 2-bit full

adder in every slice. Every CLB (Configurable Logic Block) of the Virtex-II

contains 4 slices; therefore plenty of hardware is available to implement arithmetic

operations.

The advantage of using the dedicated arithmetic resources inside the FPGA is that

they are really fast and they already there to be used. If a designer wishes to custom

code the arithmetic units (adders and multipliers especially), the FPGA

implementation may end up being slower. The reason for this is that the custom code

implementation would need complicated routing inside the FPGA, negating all the

speed advantage of its architecture. Custom codes also would take up plenty of area

to implement on the FPGA, wasting the logic resources.

From "Real World FPGA Design" by Ken Coffman, a custom coded 8-bit ripple

carry adder is twice as slow and also consumes twice the area compared to a

synthesizer chosen adder. The synthesized comparison for the ripple carry adder

versus the synthesis-tool version is shown in the table below:

Table 7: Custom coded RCA versus synthesizer-tool chosen adder

Type ofAdder (8 bit) Custom-coded ripple carry Synthesizer-tool version

Resources:

IOs 27 27

FG Function Generators 16 8

H Function Generators 0 0

CLB Flip Flops 7 0

Clock 77.6 MHz 135.1 MHz

23

4.5 The Exception Unit

The exception unit reads the input operands to the FPU and checks for four (4) types

of exceptions. The exceptions are listed in Table 8.

Table 8: Exception Types Handled by the Exception Unit

Exception Type Description

Infinity

NaN

Zero

Subnormal

Checks if one or both operands are infinite values

Checks if one or both operands are invalid numbers or values

Checks if one or both operands have a value of zero

Checks if one or both operands have a denormalized value

This unit takes three (3) inputs: clock, operand A and operand B while generating

eight outputs as listed below:

• Opa_nan • Opazero

• Opb_nan • Opbzero

• Opa_inf • Opa_dn

• Opb_inf • Opbdn

4.6 The Pre-Align Unit for Addition and Subtraction Operations

This unit is only activated when addition or subtraction operations are performed.

The functions of this unit are:

• Align the mantissas for addition and subtraction operations when their

exponents do not match.

• Restore the implicit leading bit and also the guard, round and sticky (GRS)

bits into the mantissa.

• Determine the true operation (addition or subtraction) that needs to be

performed on both input mantissas.

The pre-align unit has three (3) inputs and four (4) outputs, both described in Table 9

and Table 10. The pre-align unit would take both input operands supplied by the user

and operates on them as shown in Figure 9.

24

Inputs

opjaddsub

opA

opB

Outputs

opjuddsubjout

fractajout

fractbout

expjout

Table 9: Inputs to Pre-Align (ADD/SUB)

Description

Indicates the operation requested by the user.

First operand entered by the user (Operand A)

Second operand entered by the user (Operand B)

Table 10: Outputs from Pre-Align (ADD/SUB)

Description

True operation to be performedon mantissas

First mantissa aligned

Second mantissa aligned

Exponent for the result

Let A and B be the input operands. From Figure 9, the pre-align unit first splits both

A and B into their sign, exponent and fraction (mantissa) components. The

exponents of A and B are then compared. The next step would depend on the

outcome of this comparison. If both exponents are equal, there is no need for

mantissa alignment, thus the outputs (fractajout, fractb_out, exp_out) are simply

assigned to the inputs. The exponent of A is arbitrarily chosen as the output

exponent. The exponentof B can equallybe used as the output exponent.

If the exponent of A is largerthanB, the fraction of B would needto be shifted to the

right until both exponents are equal. The right shift is chosen to maintain the

integrity of the B. If B's mantissa were to be shifted to the left, it would lose its most

significant bits. This would unacceptably alter the numbers. The difference of the

exponents would be used as the shiftvalue. However, since the mantissa part is only

56 bits long, the maximum shift value is capped at 56. Shifting beyond 56 would

only result in all zeros.

Since the IEEE-754 format specifies an implicit leadingbit, this bit must be restored

to the fraction before any shifting can take place. Besides the leading bit, three more

bits must also be appended to the right hand end of the fraction. These bits are

commonly known as the guard, round and sticky bits.

25

i—expa > expb

exp_out = expa
exp_diff = expa - expb

shift_val =
exp_diff

shift_val = 56

fractjull = {1,fractb,3'b0}

fract_shifted = fractjull»
shift val

fractb_out = fract_full + sticky
fracta_out = {1,fracta,3'b0}

signa = opa[63]
signb = opb[63]

expa = opa[62:52]
expb = opb[62:52]
fracta = opa[51:0]
Fractb = opb[51:0]

exp_out = expa
fracta_out = {1,fracta,3'b0}
fractb_out = {1,fractb,3'b0}

expa < expb-.

exp_out - expb
exp_diff = expb - expa

shift_val =
exp_diff

shift val = 56

fractjull = {1,fracta,3'b0}

fract_shifted = fractjull»
shift val

fracta_out = fractjull + sticky
fractb_out = {1,fracta,3,b0}

op_addsub_out = opjn XOR (signa XOR
signb)

Figure 9: Pre-Align for Addition and Subtraction Algorithm

The variable called fract_full would be assigned to the restored version of B's

mantissa. It is this variable which would be shifted. A similar operation would be

performed if the exponent of A is smaller than B, with the mantissa of A being

shifted instead of B. The shifted mantissa would then be sent as an output along with

the fully restored version of the other input mantissa.

26

One last operation that the pre-align unit performs is to calculate the true operation to

be carried out on the mantissas. The algorithm first checks the sign bits of both

operands to determine which operation needs to be carried out on the mantissas. An

XOR operation is performed on the sign bits of both operand and the result XOR-ed

again with the operation selected. For an ADD operation, the same sign on both

operands means that their mantissas should be added. If it is different, then they

should be subtracted. For a SUB operation, the same sign on both operands would

mean that their mantissas must be subtracted from each other vice-versa.

4.7 The Pre-Align Unit for Multiplication and Division Operations

This unit is onlyrequired for multiplication or division operations. Its functions are:

• Align the dividend for divide operations (dividend alignment) [4]

• Restore the implicit leading bit to the mantissa of both operands

• Perform addition or subtraction on the exponents

• Determine the sign of the multiplication or division result

This unithas four (4) inputs andfour outputs, each defined in thetables thatfollow:

Table 11: Inputs to Pre-Align (MUL/DIV)

Inputs

elk

opjnuldiv

opA

opB

Outputs

signout

fractaout

fractbout

exp_out

Description

Clock inputto synchronize operation in the unit

Indicates either multiply or divide operation

First operand (Multiplicand or Dividend)

Secondoperand(Multiplier or Divisor)

Table 12: Outputs from Pre-Align (MUL/DIV)

Description

Resultant sign of the multiplication or division

106 bit long dividend or multiplicand

53 bit long divisor or multiplier

Exponent result of the multiplication or division

The pre-align unit execution is split into two stages. First is the dividend alignment

stage and second is addition/subtraction of aligned exponents. Figure 10 on the next

page shows the flowchart for the dividend alignment operations by the pre-align unit.

27

signa = opa[63]
signb = opb[63]

expa = opa[62:52]
expb = opb[62:52]
fracta = opa[51:0]
fractb = opb[51:0]

V 1'

fracta full = {1 .fracta, 53'bO}
fractbjull = {1 ,fractb, 53'bO}

fracta^shifted = {fracta, 53'bO}» 1
expa_shifted = expa + 1

V

No"

'op = Divide^
& -Yes

'

\fracta > frac;tb/

V

fracta_out = fractajull
expa_full = expa

fracta„out = fracta„shifted
expa_full = expa_shifted

' '

fractbj^ut = fractbjull
expb_full = expb

Figure 10: Dividend Alignment in Pre-Align Unit for Multiplication and Division Operations

The process starts by extracting the sign, exponent and mantissa components of both

operands. Let both operands be A and B. The implicit leading bits for the mantissa of

A and B is then restored. Both the aligned and non-aligned dividend (A) is first

formed. If the operation is a divide and the fraction of A (dividend) is larger than B

(divisor), the output dividend will be assigned to the shifted dividend. Thus, the

dividend alignment process is completed. Do note that the aligned length of A is

padded up to 106 bits to prepare it for division operations. For multiply operations,

the alignment would not be done and the extra 53 bits padded to its least significant

positions would be ignored.

Figure 11 meanwhile shows the exponent addition and subtraction operation which

takes place after the dividend alignment. Multiplication operations would require

addition of the exponents while division operations would require subtraction. Since

28

the exponents are stored in biased representation, the bias value must be subtracted

or added from the result to give to restore the proper bias to it. [3]

-MUL-

Output from dividend alignment:
expajull
expbjull

-DIV-

{col, expjmpl} = expajull + expbjull expbjmp = lexpbjull

' r 1
{co2, exp_out} = {col, expjmpl} - bias {col, expjmpl} = expajull + expbjmp + 1

col

i • ''

expjmp2 = lexpjmpl + 1 expjmp2 = expjmpl

1 I
exp_out = bias - exp_tmp2 exp_out = bias + exp_tmp2

^ r

sign_out = signa XOR signb

Figure 11: Addition and Subtraction of Exponents for Multiplication and Division Operations

The bias value for the 64-bit double-precision is 1023 in decimal. Therefore, for the

addition of biased exponents, the bias value of 1023 must be subtracted the results.

Conversely, the value of 1023 must be added to the subtraction result of biased

exponents. The operation here is very similar to what is done in the addition and

subtraction unit for mantissas, the only exception being the restoring of the bias

value that needs to be carried out by this unit. After the addition or subtraction of

biased exponents, the sign of the result must also be determined. Since the operation

involves only multiplication or division, the resultant sign is simply the XOR of the

sign for both input operands.

29

4.8 Addition and Subtraction Unit [4]

This particular unit (referred to as Add/Sub Unit from this point onwards) performs

addition and subtraction on only the mantissa of input operands, The resultant

exponent is obtained from the pre-align unit, thus only the resultant mantissa needs

to be calculated here. The inputs and outputs of this unit are described in Tables 13

and 14 below.

Table 13: Inputs to Add/Sub Unit

Inputs Description

Outputs

elk Clock input to synchronize operationwithin the unit

op_addsub True operation to be performed on the mantissas. Obtained from

the output of Pre-Align (Add/Sub) Unit.

fracta Mantissa of first operand; aligned and restored to 56 bits length.

fractb Mantissa of second operand; aligned and restored to 56 bit length

signa The sign ofthe first input operand, needed for the resultant sign

Table 14: Outputs from Add/SubUnit

Description

sum Sum or difference ofboth input mantissas

co Carry out from the addition or subtraction operation

sign_sum The sign of the result.

The execution of the Add/Sub unit is illustrated in Figure 12. The unit first loads all

its inputs into the appropriate wires. Since the mantissas at the input are already

aligned, the addition or subtraction can be done directly. Both operations are carried

out in two's complement style§. The op^addsub input wire is used to invert all the

bits of the second mantissa (fractb) and also as a first bit carry-in input at the full

adder. The effect is that during subtraction operations, the inverse of fractb (in two's

complement) is obtained and then added to the first operand (fracta) for the final

result. After each subtraction, the carry-out will be examined to see if it is one (1) or

zero (0). If it is zero that means the magnitude of A is smaller than B, thus the

correct result is given by the two's complement of the result, and the sign inverted.

Else, the sign of theresult is the same as the sign of the first operand.

Please refer to LiteratureReview (Section2.5) for proof that this can be done.

30

LOAD fracta LOAD fractb LOAD op_addsub

XOR

fractbjemp = fractb XQR op_addsub

4FULL ADDER

Yes

sign_sum = Isigna
co = co_temp

sum = Isum + 1

cojemp.sumJemp = fracta + fractb + op_addsub

sign_sum = signa
(if SUB) co = Icojemp

sum = sum„temp

Figure 12: Add/Sub Unit Operation Flowchart

4.9 Multiplication Unit

This unit also operates on mantissas only. The task of adding the exponents during

multiplication is already relegated to the Pre-Align (MUL/DIV) unit. Its input and

outputs are as follows

Table 15: Inputs to Multiplication Unit

Inputs

elk

fracta

fractb

Outputs

product

Description

Clock input to synchronize operation within the unit

53 bit long mantissa of the first operand (the multiplicand)

53 bit long mantissa of the second operand (the multiplier)

Table 16: Outputs from Multiplier Unit

Description

106 bit long product of fracta and fractb

Both input mantissas are only 53 bits long since the guard bits do not need to be

used. Both fracta and fractb is connected to the output of the Pre-Align (MUL/DIV)

unit (which restores the implicit leading bit to the mantissas). The product is formed

by using the Verilog multiply operator to obtain an optimized synthesized logic.

31 :j,iLUu^;-;'-i
;->;-;zcna5

4.10 Division Unit

Like the multiplication unit, the division unit operates only on the mantissas. Its

function is to accept two input mantissas and divides them to produce a quotient and

a remainder string. The inputs and outputs of this unit are shown in Table 17 and

Table 18.

Table 17: Inputs to Division Unit

Inputs Description

elk Clock input to synchronize operation within the unit

dividend 106 bit long dividend mantissa

divisor 53 bit long divisor mantissa

Table 18: Outputs from Division Unit

Outputs Description

quotient The quotient result from the division

remainder The remainder result from the division

The division is performed using the algorithm for unsigned binary division. This

algorithm requires that the dividend be twice as long as the divisor to execute the

division. To generate the 106 bit long dividend, the mantissa is padded with zeros to

the right (least significant position). This is accomplished by the Pre-Align Unit

(MUL/DIV). Padding zeros to the right is merely adding zeros to the right of the

radix point, thus the magnitude of the number is not affected at all. The dividend

must also be aligned so that its first 53 bits are smaller than the divisor. Otherwise,

divide overflow may occur, where there are insufficient bits to store the resulting

quotient. [4]

Because of the algorithm employed, the division unit must run in a separate clock

domain. More specifically, the division unit requires a clock that is 53 times faster

than the external clock as 53 shifts and subtractions are required to compute the

quotient and the remainder. However, this is still a work inprogress, thus the divisor

implemented in the current design is still a behavioral style "/" operator which is

unsynthesizable.

32

4.11 The Normalization Unit

The output from the arithmetic stage of the FPU is usually a non-normalized result.

Therefore, the function of the normalization unit would be to normalize the

arithmetic result before it is sent as an output from the FPU. In the actual

implementation, one large unit is used to contain both this normalization unit and the

rounding unit. Both operate within one pipeline stage. However, it is more

convenient to discuss them as separate entities. The inputs and outputs used by the

normalization unit only are listed in the tables below:

Table 19: Inputs to Normalization Unit

Inputs

elk

fractjin

exp_in

Outputs

fract_shifted

exp_shifted

denormalized

overflow

Description

Clock input to synchronize operation within the unit

Result mantissa from the arithmetic stage

Result exponent from the arithmetic stage

Table 20: Outputs from Normalization Unit

Description

The normalized mantissa

The exponent after normalization

Indicates that a denormalized number is formed

Indicates that an overflow happened

Normalizing a mantissa would require shifting it to the left or right until its most

significant bit is a one (1). Figure 13 illustrates the process. The first step of

normalizing would be to count the number of leading zeros in the mantissa. This

"counter" is implemented as a fast and wide multiplexer (mux) that selects a number

ranging from 0 to 105 at its input to be sent to its output, depending on the number of

leading zeros in the mantissa. This concept is shown in Figure 14. The direction to

shift is then determined using the number of leading zeros. Because of the way the

input is defined, the right shift is only necessary when the there are no leading zeros.

The exponent is then checked to see if it is already at the maximum value of

11111111110. If it is, a right shift cannot be done as it would cause an overflow.

Therefore, a combination of right shift and maximum exponent will result in an

overflow and the corresponding flag must be set to indicate this condition.

33

Count Leading Zeros in Fraction

Calculate Shift Direction

Maximum exponent check

Denormalized number check

Obtain shift value, either:
a) Idz -1
b) exp -1

Perform both:

Left shift and decrement exponent
Right shifts and increment exponents

CHOOSE FINAL SHIFTED FRACTION

AND EXPONENT

Maximum exponent'
may overflow

Flag output
denormalized

Figure 13: Normalization Flow

Mantissa

Number of leading
zeros in mantissa

Figure 14: Mux to Check the Number of Leading Zeros

34

A check for conditions leading to denormalized number is also done. Each left shift

would require the exponent to be decremented. Thus, if the number of left shifts

exceeds the value of the exponent, a denormalized number will result. A flag is also

set to indicate such condition. Since the exponent cannot be decremented beyond its

minimum value of 00000000001; there is a limit to how many left shifts can be

performed to the mantissa. Effectively, the number of left shifts is either equal to the

number of leading zeros minus one (normalized result) or the exponent minus one

(denormalized result). After all calculations are done, both the left and right shift is

done on the mantissa. The correct result is then chosen using another multiplexing

logic depending on the direction of shift (determined earlier).

4.12 The Rounding Unit

The rounding unit forms the second half of the larger normalization and rounding

unit. Its function is to round the normalized mantissa into IEEE-754 compliant

format. The IEEE-754 specification provides for four (4) rounding modes: round to

nearest, round to zero, round up (positive infinity) and round down (negative

infinity). The inputs and outputs of the rounding unit are summarized in Table 21

and 22 below:

Inputs

elk

fractshifted

exp_shifted

sign

r mode

Outputs

fractjout

exp_out

inexact

Table 21: Inputs to Rounding Unit

Description

Clock input to synchronize operation within the unit

Normalized mantissa from the normalization unit

Normalized exponent from the normalization unit

The sign of the result

Rounding mode selected

Table 22: Outputs from Rounding Unit

Description

Rounded mantissa

Rounded exponent

Inexact - indicates mantissa is truncated during rounding

35

The operation of the rounding unit is shown as a flow chart in Figure 15. Numbers

could either be rounded into a lower magnitude (called X- in Figure 15) or a higher

magnitude (X+ in Figure 15). The value of X- is simply the normalized mantissa,

with all the extra bits to the right truncated. Since the mantissa has 53 bits, every bit

starting from the 54th bit will be discarded to form X-. The value of X+ is obtained

by adding a 1 to the least significant position in X-. Both X- and X+ therefore form

the two end products of the rounding unit.

X-= (I.blb2b3 b52)2x2E

X+-[(l.blb2b3 b52) +(0.000 l)]2x2E

Depending on the rounding mode, either one of these will be chosen as the final

rounded output. The choosing logic forms the largest part of this unit. The rounding

logic for all modes is relatively simple, with the exception of round to nearest.

One notable catch of forming X+ is that adding "1" at the least significant position

may generate a carry that propagates all the way to the most significant bit. This will

be a significant issue if X+ were to be chosen as the final rounded output. This

condition can be detected using the carry-out from the most significant stage of X+.

To compensate, X+ must be shifted to the right and the exponent incremented by 1.

Incrementing the exponentpresents yet anotherproblem if the exponent is already at

maximum value. More logic will have to be spent to detect this condition and set the

rounded outputs properly according to the IEEE specification.

For round to zero, the rounded output is always X-. For round up (positive infinity),

x+ would be chosen if the number is positive, while x- would be chosen if the

number is negative. Round down (negative infinity) is the reverse of round up X-

would be chosen for a negative number while X+ is chosen for a positive number.

Round to nearest is the most complicated of all rounding modes. The IEEE- 754

specification requires this mode to be the default rounding mode if no rounding

modes are specified. The FPU however, must rely on the software to set the default

rounding mode as it does not include the logic to set it by default. This makes sense

since it is much easier to implement in software rather than hardware and no

36

additional hardware cost is incurred. In this mode, the first truncated bit (refereed to

as last bit in Figure 15) is checked to see if it is zero. If this bit is zero (0), then the

number is closer to the lower magnitude thus X- would be chosen. If it is a one (1),

then a tie condition is checked. A tie condition would happen if every bit to the right

of the first truncated bit is a zero. If one of those bits is not zero, then the number is

closer to the larger magnitude and X+ would be chosen. In case of a tie, the number

is equally spaced between X- and X+, therefore a tie-breaker is used to decide on the

final result. The tie-breaker is the least significant bit (LSB) in X- and X+ (they are

mutually exclusive). The final output would be equal to X- if its final bit is zero, else

it will be X+. [2,3,5] The logic used to determine the result for the round to nearest

mode is based on the truth table below:

Table 23: Truth Table Showing the Select Logic for Round to Nearest

First Truncated Rest of Truncated LSB of'X
Bit Bit

Result

(OforX-,lforX+)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 i

1 1 0 l

1 1 i: i

The first three columns of Table 23 represents the inputs to consider for choosing the

result while the last column shows the result itself as a function of the inputs. A zero

(0) on the result means X- is chosen while a one (1) means X+ is chosen. Using the

Karnaugh Map minimization technique, the logic used to select the result is reduced

to:

Result = (First Truncated Bit) OR (Rest ofTruncated Bit AND LSB ofX-)

Figure 15 does not shown the overflow handling inside the rounding unit. The IEEE-

754 standard has specifically defined the rounded output of a floating point number

whenever an overflow occurs. In case of overflow, the number would either be

rounded to infinity or to the largest number that can be represented in the format.

Figure 16 provides an alternative view of the algorithm applied in this unit.

37

X- = lower rounded magnitude
X+ = higher rounded magnitude

Figure 15: Rounding Unit Operation Flow

Round Up—•

M

U

X

—• Round Down
x+ Rounded

Outputft

—• Round to Zero
X-

Round to Nearest1—•

i \

Rounding Mode

Figure 16: Alternative View of the Rounding Algorithm

38

negative

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5 CONCLUSION AND RECOMMENDATION

5.1 Further Improving FPU Performance

Performance wise, there are still a few areas that can be improved in the design.

These improvements could come from addition of more pipeline stages to the current

design. More specifically, two additional pipeline stages could be gained by splitting

the first and last pipeline stages into two individual stages.

Both pre-align units actually perform two separates operations. For the ADD/SUB

pre-align unit, the first operation is to compare and obtain the difference in

exponents while the second operation is right shifting of the smaller mantissa. Since

the first operation involves a potentially large and complex subtraction (to obtain the

difference), doing the subtraction in one stage of the pipeline and then the shifting in

the next stage of the pipeline could result in considerable speed improvement (since

each pipeline stage is now shorter and takes lesser time).

For the MUL/DIV pre-align unit, some reorganization would be needed to split the

stage into two. The dividendalignment operation is relatively simple, thus it does not

need to be in a separate stage. The addition and subtraction of exponent operation

however is big and two stages can be identified here. First would be the addition or

subtraction of the exponents and second would be the addition or subtraction with

the bias value needed to restore the proper bias to the exponents. Therefore, the first

add-subtract operation can be done along with the dividend alignment while the

second add-subtract placed in a later pipeline stage.

39

The third stage also consists of two separate operations, normalizing and rounding. If

these operations were to be split into two stages, the bottleneck at stage 3 of the

current pipeline could also be reduced.

Both optimizations above, coupled with the suggested optimization below, would

result in a faster FPU. The pipeline structure of the FPU with a 5 stage pipeline is

illustrated in Figure 17 below:

FIRST STAGE SECOND STAGE THIRD STAGE FOURTH STAGE FIFTH STAGE

SUBTRACT

EXPONENTS
-**

R

1
-*• PRE-ALIGN

R

2 -
ADD/SUB ->•

R

3
NORMALIZE

R

4
ROUND

R

5

ADD/SUB

EXPONENTS

R

1

ADD/SUB

BIAS -

R

2
MUL/DIV -•-

R

3
NORMALIZE

R

4
ROUND

R

5

Figure 17: Pipeline Stages and Registers (5 levels)

5.2 Using more Advanced Adder and Multiplier Algorithm

Besides adding more pipeline stages as suggested above, the arithmetic calculation

stage must also be fast enoughto keep up. If not, every other pipeline stage wouldbe

limited by the clock speed of the arithmetic stage.

Even though it has been mentioned before that using the synthesizer optimized

blocks would be the best option, there is a third option which may yield better

results. That method would be to custom code the adders and multipliers, but with

compiler directives and vendor specific libraries (if available) so that the custom

codes would be implemented using the dedicated arithmetic resources on the FPGA.

This approach offers the best of both worlds as more advanced arithmetic

implementation could be used with the fast arithmetic resources. The only problem

with this approach is to find out how compiler directives should be used and what

each directive would mean. Vendor specific libraries are installed on most RTL IDEs

(such as ActiveHDL) but problems remain on their exact usage.

40

For example, a custom coded adder could be a cascaded structure consisting of 4-bit

wide carry-lookahead logic. 4 bit is generally the optimal width for the synthesizer to

improve area and speed performance. Longer adders (56 bit long for the FPU) would

need to cascade the 4 bit adder cells using carry lookahead logic too. Other

interesting arithmetic algorithms could also be explored, such as carry select adders,

carry save adders and other unsigned multiplier algorithms.

5.3 Recommendations for Future Works

Another recommendation is that more studies will be made on how to increase the

level of "parallelism" of the FPU. This would require much more work on the

control unit.

The current design used here actually has three different execution units, one

addition/subtraction, one for multiplication and one for division. Therefore, three

separate instructions could potentially run in parallel. Although some units along the

datapath are shared, such as the normalization/rounding unit, these could easily be

duplicated for every operation running in parallel. To implement such scheme

however, would require an advanced scheduling algorithm that would recognize

ahead of time; which instruction are non-dependent and can be executedin parallel.

Another area of improvement would be in logic minimization. Certain codes used in

the design is still behavioral based and may generate excessive logic. The codes

could be optimized in order to synthesize a more efficient logic, one that could

perform the same operation using fewer gates. This would also lower the area

utilization on the FPGA, allowing evenmore functions to be added to the chip.

5.4 Unsupported Features

The design currently does not have a synthesizable division algorithm. Full support

involving denormalized numbers is also not yet available. Divisions especially will

encounter serious problems if a denormalized input was used. The checks for

underflow and overflow are also not fully functional for multiplication and division

operations.

41

REFERENCES

[1] Rudolf Usselmann, Open Floating Point Unit, Free IP Cores Project,

www.opencores.org (last accessed 25/8/2003)

[2] Michael L. Overton, 2001, "Numerical Computing with IEEE Floating Point

Arithmetic", Society for Industrial and Applied Mathematics (SIAM)

[3] William Stallings, 2003, "Computer Organization & Architecture: Designing

for Performance", Prentice Hall

[4] M. Morris Mano, 1993, "Computer System Architecture, Third Edition"

Prentice Hall

[5] Theorem 5 by D.Goldberg, What every computer scientist should know about

floating point arithmetic, ACM Computer Survey, 1991

[6f Weng Fook Lee, 2003, "Verilog Codingfor Logic Synthesis", John Wiley&

Sons

[7] Guy Even & Wolfgang J. Paul, May 2000, "On the design of IEEE FPU",

IEEE Transactions on Computers, vol. 49

42

APPENDIX Al

SOURCE CODE FOR FPU (TOP-LEVEL ARCHITECTURE)

//

//

// Title : Double-precision FPU - 64-bit
// Design : Master FPU module
// Author : Ng Kiat Hong
//ID : 1450

//

//

// Description : This is the top levelfile that bindstogether all the othersmallerunits
//

//

'timescale Ins/ lOOps

/*

FPU Operations (opcode):

00 = add

01 -sub

10-mul

11- div

Rounding Modes (r_mode):

00 = round to nearest

01 = round to zero

10 = round up (+inf)
11 - round down (-inf)

*/

module fpu (elk, reset, opcode, r_mode, opa, opb, out,
snan, qnan, div_by_zero, overflow, inf, ine, zero);

//main ports
input elk, reset;
input [1:0] opcode;
input [1:0] r_mode;
input [63:0] opa, opb;
output [63:0] out;

reg [63:0] out;

//exception outputs
output snan, qnan;
output div_by_zero;
output overflow;
//output underflow;
output inf, ine, zero;

//Reg to double-sync inputs
reg [1:0] opcodesyncl, opcode_sync2;
reg [1:0] r_mode_sync1, r_mode_sync2;
reg [63:0] opa_syncl, opa_sync2;
reg [63:0] opb_syncl, opb_sync2;

//Asynchronous RESETand double-sync of all external inputs
//Double-sync is helpful in avoiding metastability problems - metastable - state between 0 & 1
//Reason is: external inputs may not conform to setup & hold times
//Inputs thatdo notmeetsetup&hold times may drive latches/FFlops to metastable states
//Double synching would force a metastable input to thecorrect stable statebydriving another signal
//that matches the setup and hold times

43

always @(posedge elk or posedge reset)
begin

if (reset)
begin

end

else

begin

end

end

opcodesyncl <=2'b0
opcode_sync2 <= 2'bO
r_mode_syncl <=2'b0
r_mode_sync2 <= 2'bO
opasyncl <= 64'bO
opa_sync2 <= 64'bO
opb_syncl <= 64'bO
opb_sync2 <- 64'bO

opcode_syncl <= opcode;
opcode_sync2 <= opcodesyncl;
rjnodesyncl <= r_mode;
r_mode_sync2 <= r_mode_syncl;
opa_syncl <=opa;
opa_sync2 <= opa_sync I;
opb_syncl <=opb;
opb_sync2 <= opb_syncl;

// -//

SI ALL MODULE INSTANTIATION STARTS HERE //
// //

//clock delayed signals to propagate signals to the proper stage
reg signa_r2, signa_r3, signa_out;
reg [1:0] opcode_r2, opcode__r3, opcode_out; //opcodeout is needed at output logic
reg [1:0] r_mode_r2, r_mode_r3;
reg sign_mu!div_r3; //clock delay coded before normalization block
reg [10:0] exp_addsub_r3;

always @(posedgeelk)
signa_r2 <= opa_sync2[63];

always@(posedgeelk)
signa_r3 <= signa_r2;

always @(posedge elk)
signa_out <= signa_r3;

always @(posedge cik)
opcode_r2 <= opcode_sync2;

always@(posedgeelk)
opcode_r3 <= opcode_r2;

always @(posedge elk)
opcode_out <= opcode_r3;

always @(posedge elk)
r_mode_r2 <= r_mode_sync2;

always @(posedge elk)
r mode r3 <= r mode_r2;

//-

//Exceptionunit instantiation
//-----

//Wire declaration

wire opa_nan, opb_nan;
wire opa_inf, opb_inf;
wire opazero, opb_zero;
wire opa_dn, opbdn;

44

exception unitl (elk, opa_sync2[62:0], opb_sync2[62:0],
opa_nan, opbjian,
opa_zero, opb_zero,
opa_inf, opb_inf,
opa_dn, opb_dn);

//

//Pre-Align (ADD/SUB) unit instantiation
//

//Wire declaration

wire [55:0] fracta_addsub, fractb_addsub;
wire [10:0] exp__addsub;
wire op_addsub;

prealign unit2 (elk, opcode_sync2[0], opa_sync2, opb_sync2,
fracta_addsub, fractb_addsub, expaddsub, op_addsub);

//

//Pre-Align (MUL/DIV) unit instantiation
//

//Wire declaration

wire signjnuldiv;
wire [105:0] fracta muldiv;
wire [52:0] fractbjnuldiv;
wire [10:0] expmuldiv;

pre_aiign_mulunit3 (elk, opcode_sync2[0], opa_sync2,opb_sync2,
sign_muldiv, fracta_muldiv, fractbjnuldiv, exp_muldiv);

//.

//ADD/SUB unit instantiation

//

//Wire declaration

wire [55:0] sum;
wire co;
wire sign_sum;

add_sub unit4 (elk, opaddsub, fracta_addsub, fractb^addsub, signa_r2,
sum, sign_sum, co);

II-

//MUL unit instantiation

//

//Wire declaration

wire [105:0] product;

mul unit5 (elk, fracta_muldiv[105:53], fractbjnuldiv, product);

//

//DIV unit instantiation

//

//Wire declaration

wire [52:0] quotient, remainder;

div unit6 (elk, fracta_muldiv,fractbjnuldiv, quotient,remainder);

45

//

//Normalization & Rounding unit instantiation
//-

//Wire/Regdeclarationfor inputs to normj-ound - reg bcoz case statementshad 2 be used
reg [105:0] fractjin;
reg [10:0] expjln;
reg sign jin;

wire [105:0] fractjsumj-3;
wire [105:0] fract_quo_r3;
wire fract_addsub_zero; //Unrelated - Used only inoutput stage - indicates add/sub output iszero

//Wire declaration for outputs
wire [52:0] fract_out;
wire [10:0] expjmt;
wire dn out, inejjut, overflowjDUt, norminf;

//elk delay signjnuldiv signal from First stage to third stage
always @(posedge elk)

signjnuldivj\3 <= signjnuldiv;

always @(posedgeelk)
expjiddsubj-3 <= expjiddsub;

//Padding input fraction to proper length
assign fractjiumj'3 = {co, sum, {49{l'b0}}};
assign fractjjuoj-3 = {quotient, {53{l'bO}}};

//Check for zero in ADD/SUB result

assign fractj^ddsub_zero = ~-(|fractjiumj3[i05:49]);

//choose correct fraction input to norm/round stage
always @(opcodej-3 or fractsumjO or productor fract_quoj"3)

begin
case(opcodej\3)

00,01: fractjin = fract_sumj"3;
10: fractjin = product;
11: fractjin = fractj}uo_r3;

endcase

end

//choose the correct exponent input
always @(opcodej\3[1] or expjiddsub r3 or expjnuldiv)

begin
case(opcodej-3[l])

1'bO: expjin - expjiddsubj-3;
Tbl: expjin = expjnuldiv;

endcase

end

//choose the correct sign input
always @(opcode_r3[I] or sign_sum or signjnuldivj-3)

begin
case(opcodej,3[l])

0: signjin = signjium;
1: signjin = signjnuldivj3;

endcase

end

normjnd unit7 (elk, fractjin, exp_dn, signjin, opcodej'3,remainder, rjnodej-3,
fractj)ut, expjiut, dnjiut, ine_out, overflowjjut, norm_inf);

46

//

//FPU output logic
//

/*

List of signals that needs to be clock propagated here (3rd stage output)
1 - sign for result - get from normalizationunit input
2 - all exception unit signals: opa/bjian/zero/inf/dn
3 - true op for addition/subtraction
4 - input opcode - already done on top!

•/

//Reg to clock propagate signals
reg sign_out;
reg opajianj-3, opajian_out, opbjianj-3, opbjian_out;
reg opa_inf_r3,opajnfjwt, opbj'nfj'3, opb_inf_out;
reg opa_zeroj-3, opajieroout, opbjzeroj-3, opb_zeroj)ut;
reg opajinj'S, opadnout, opbjinj'3, opbjinjjut;
reg opaddsubj-3, opjiddsub_out;
reg fract_addsubj>;eroj)ut;

//Clock delay the signals
always@(posedge elk)

begin
signjwt <= signjin;

opajianj-3 <= opajian;
opajianjjut <= opajian_r3;

opbjianj^ <= opbnan;
opbnanjDut <= opbjian_r3;

opajnf_r3 <= opajnf;
opajnfout <= opajnfj\3;

opbjnfj3 <= opbjnf;
opbinfout <= opbjnfj3;

opa_zeroj:3 <= opajzero;
opajzerojmt <= opajieroj-3;

opb_zeroj"3 <= opbjsero;
opbjzerojwt <= opbzeroj-3;

opajinj-3 <= opajin;
opajinout <= opajinjO;

opbjinj-3 <= opbjin;
opbjinjjut <= opbjinj-3;

opaddsubj'3 <= opjiddsub;
opjiddsubjjut <= opjiddsubj3;

fract_addsubjjeroj3Ut <= fractjiddsubjzero;
end

//-

//Check for exceptions
//

//Check 1: NaN

wire addsubjian, muljian, divjian;

//NaN happens only for inf- inf
assign addsubjian = -opcodej)ut[1] & opaddsubj>ut & opajnfjwt & opbinfjwt;

//NaN results for 0 x inf and inf x 0
assign muljian= opcode_out[l] &-opcodej>ut[0] &((opa_zero_out &opbj'nf_out) | (opa_inf_out &opb_zero_out));

//NaN results for 0/0 and inf/inf
assign divjian = &opcode_out &((opa_zero_out &opbjzerojwt)| (opajnfjnit &opbinfouf));

47

//Assert Qnanforall theseNaN conditions - assign Snanto Qnan
assign qnan= opajianjwt | opbnanjwt | addsubjian | muljian | divjian;
assign snan = qnan;

//Check 2: INF

wire addjnf, subjnf, muljnf, divjnf, resjnf;

//For ADD: Result is INF if either input operandsare inf
assign addjnf = -opcodejwt[1] & -~op_addsubjwt & (opajnfjwt | opb_inf_out);

//For SUB: Result is INF only if one of the inputsare INF - cannot be both (that's a NaN)
assignsubjnf= -opcode_out[i] & op_addsub_out & (opajnfoutA opbjnfjwt);

//For MUL: Result is INF if one input is a INF while the other is NON-ZERO
assign muljnf = opcode_out[1] &-opcodejwt[0] & ((opajnfjwt & ~opb_zero_out) | (~opa_zeroj}ut & opbjnfjwt));

//For DIV: Result is INF if its a NON-ZERO/ZERO or INF/NON-INF

assign divjnf= &opcode_out & ((-opa_zero_out & opb_zero_out) j (opa_inf_out & -opbjnfjwt));

//Assert Infinity for all the conditions above
assign inf = normjnf | addjnf | subjnf | muljnf | divjnf;

//Check 3: Divide by zero - simple one
assign divJ>y_zero = &opcodejwt & opbjzeroj>ut;

//Check 4: Inexact output
assign ine = ineout;

//Check 5: Zero

wire addsubj*ero, mulzero, divjiero;

//For ADD/SUB,ZERO is when the fractionaloutput itself is alreadyzero
//Hadto hackthe designand codea workaround to supportthe casewhentwo equalnumbers are SUBBed.
assign addsubzero = -opcodejwt[l] & fract_addsubjzero_out;

//For MUL, result is ZERO if is NON-INFxZERO or ZEROxNON-INF
assignmul_zero = opcode_out[l] & -opcodejwt[0] & ((-opajnf_out & opb_zero_out) | (opa_zero_out & -opbjnfjwt));

//For DIV, result is ZERO if its ZERO/NON-ZERO
assign divjiero - &opcode & opajserojjut & -opbjzerojDut;

//Assert zero for all conditions above

assign zero = addsubjiero | mul_zero | divjiero;

//check 6: Overflow - works for addition/subtraction only
assign overflow = overflowout;

//Check 7: Underflow - check not supported

//Calculate sign for inf result
wire signjnf;

assign sign_inf= (normjnf | muljnf | divjnf) ? signjwt:
(addjnf) ? signajwt:
(subjnf) ? ((opajnfjwt) ? signajwt: -signajwt):
signjwt;

always @(qnan or inf or signjwt or signjnf or dnjjut or zero or fractjmt or expout)
begin

if (qnan)
begin

out[51:0]={52{l'M]};
out[62:52]={0{l*bl}};
out[63] = signjwt;

end

else if (inf)
begin

out[51:0]={52{l'b0}};
out[62:52]={10{l'bi}};
out[63] = signjnf;

end

else if (dn_out)

48

begin

end

else if (zero)
begin

end

else

begin

out[51:0]-tractjwt[51:0];
out[62:52] = {10{l'b0}};
out[63] = signjwt;

out[51:0]={52{l'b0}};
out[62:52]={10{l'b0}};
out[63] = signjwt;

out[51:0] = fractjwt[51:0];
out[62:52] = expjwt;
out[63] = signjwt;

end

end

endmodule

49

APPENDIX A2

RTL TESTBENCH AND WAVEFORM FOR FPU (TOP-LEVEL)

//Thisis the top level testbench usedto validate the functionality of the FPU

'timescale Ins/ lOOps

I*

The FPU has 6 inputs and 9 outputs
Inputs:

clock

reset

[1:0] opcode
[1:0] rmode
[63:0] opa
[63:0] opb

Outputs:
[63:0] out
snan

qnan

divjjy_zero
overflow

underflow

inf

ine

zero

*/

module FPU_TB;

parameter elk = 20;

integer seed;

//reg inputs
reg clock, reset;
reg[l:0] opcode;
reg [1:0] rmode;
reg [63:0] opa, opb;

//wire outputs
wire [63:0] out;
wire snan, qnan;
wire divjjyjzero;
wire overflow, underflow;
wire inf, ine, zero;

//Local variable

reg signa, signb;
reg [10:0] expa, expb;
reg [51:0] fracta, fractb;

//clock signal
always

#10 clock <= !clock;

initial

begin
clock <= TbO;
reset <= TbO;
opcode <= 2'b0;
rjnode <= 2'bO;

signa <= 0;
expa<= 11'h0;
fracta <= 52'bO;

signb <= 0;
expb<=ll'h0;
fractb <= 52'bO;

50

16777215)};

16777215)};

I67772I5)};

/*

Scenario: Inputs that would cause exceptionflags to be asserted
•/

//Case 1: Infinite - when one infinite number is added to a normal number

#clk;//110

opcode <=2'b00;
//fracta is inf
expa<=ll'h7FF;
fracta <= 52'bO;

expb <= Sdistjiniform(seed, 1023,1046);
fractb <= {Sdistjmiform(seed, 1, 15), Sdistjiniform(seed, 1, 16777215), $dist_uniform(seed, 1,

//Case 2: Infinite - by divide to zero
#clk; ll\ 30

opcode <=2'bll;

expa <= Sdistjiniform(seed, 1023,1046);
fracta <= {Sdistjrniform(seed, 1, 15), Sdistjiniform(seed, 1, 16777215), Sdist_uniform(seed, 1,

expb<= Il'bO;
fractb <= 52'bO;

//Case 3: from +inf + -inf

#clk; //150

opcode <= 2'b00;

signa <= 0;
expa<=ll'h7FF;
fracta <= 52'b0;

signb <= 1;
expb<=ll'h7FF;
fractb <= 52'bO;

/*

Scenario: ADD

*/

//Case 1: Add 1 and zero

#clk; //170
opcode <= 2'bOO;

signa <= 0;
expa<=ll'dl023;
fracta <= 52'bO;

signb <= 0;
expb<= 11'hOOO;
fractb <= 52'bO;

//Case 2: Add 1 with 1

#clk; //190
expb<= H'dl023;

//Case 3: Add two random numbers

#clk; //210
signa <= 0;
signb <= 0;

expa<= Sdistjiniformfseed, 1023, 1046);
expb<= Sdist_uniform(seed, 1023,1046);

fracta <= {$dist_uniform(seed, I, 15), Sdistjaniform(seed, 1, 16777215), $dist_uniform(seed, 1,

51

16777215)};

16777215)};

16777215)};

16777215)};

16777215)};

16777215}};

I6777215)};

fractb <= {Sdistjmiform{seed, 1, 15), Sdistjiniform(seed, 1, 16777215), Sdistjmiform(seed, 1,

/*

Scenario: SUB

*/

//Case I: take 16 -4

#clk; //230
opcode <= 2'b01;

signa <= 0;
signb <= 0;

expa <= 11'd 1027;
expb<=ll'dl025;
fracta <= 52'bO;
fractb <= 52'bO;

//Case 2: take 4-16

#clk; //250

expb<=ll'dl027;
expa<= H'dl025;
fractb <= 52'bO;
fracta <== 52'bO;

//Case 3: take random number

#clk; //270

expa <= Sdistjiniformfseed, 1023, 1046);
expb <== Sdistjmiform(seed, 1023, 1046);

fracta <= {$distjiniform(seed, 1, 15), $distjiniform(seed, 1, 16777215), $distjiniform(seed, 1,

fractb <= {Sdistjjniform(seed, 1, 15), Sdist_uniform(seed, 1, 16777215), Sdistjiniform(seed, 1,

/*

Scenario: MUL

V

//Case 1: MUL of two random numbers

#clk; //290
opcode <=2'b 10;

signa <= 0;
signb <= 1;

expa <= $distjmiform(seed, 1023,1046);
expb <= Sdistjmiform(seed, 1023, 1046);

fracta <= {Sdistjiniform(seed, 1, 15), Sdistjiniform(seed, 1, 16777215), Sdistjmiformfseed, 1,

fractb <= {Sdistjiniform(seed, 1, 15), Sdistjiniform(seed, 1, 16777215), Sdistjmiform(seed, 1,

/*

Scenario: DIV

*/

//Case I: Div of two random numbers

#clk; //310
opcode <= 2'bll;

signa <= 1;
signb <= 0;

expa <= Sdistjmiform(seed, 1023,1046);
expb <= Sdist_uniform(seed, 1023, 1046);

fracta <= {Sdistjiniform(seed, 1, 15), Sdistjiniform(seed, 1, 16777215), Sdistjmiform(seed, 1,

fractb <= {Sdistjiniform(seed, 1, 15), Sdistjiniform(seed, 1, 16777215), $dist_uniform(seed, 1,

52

end

always @(signa orsignb orexpa orexpb orfracta orfractb)
begin

opa <= {signa, expa,fracta};
opb <= {signb, expb,fractb};

end

initial

#340 $finish(2);

//Unit Instantiation

fpu fpujinitl (
.clk(clock),
.reset(reset),
.opcode(opcode),
.r mode(r mode),
.opa(opa),
.opb(opb),
.out(out),
.snan(snan),
.qnan(qnan),
.divj)yjiero(divjDy_zero),
,overflow(overflow),
.inf(inf),
.ine(ine),
.zero(zero)

);

Endmodule

53

4
^

N
a
m

e
V

a
lu

e
•

.
2

0
.

i
4.

0
•

.
G

O
.

i
8

0
•

1
0

0
i

1
2

0
i

14
0

[
j

1
6

0
"

IS
O

'
2

0
0

•
2

2
0

.
.

2
4

0
.

•
2

6
0

1
•

2
8

0
.

3
0

0
1

3
r

13
<

_
J

3
4

0
n

s
U

R
=

cl
o

ck
1

n
n

n
r~

L
_

n
_

j~
~

L
_

r~
L

_
r"

L
_

r~
L

_
rx

_
r~

L
_

r
l_

j
l
j

l
j

lu
z
L

j.
R

=
re

se
t

0
!

S
R=

op
co

de
3

iS
Z

X
'

>
X<

X2
D

C

a
R

^
i

m
o

d
e

0
Ko

R
s

si
gn

a
1

_
r

EH
R

=
eu

pa
10

29
1°

P
*

7
X1

03
5

X2
0A

7
X'

02
3

X1
03

S
X1

02
7

x
-^

X1
03

2
V

10
33

Xw
29

3
R

;
fr

ac
ta

E
C

C
C

D
0G

D
57

84
5

D
0

0
D

0
0

0
0

0
0

0
0

0
X

X
oo

oo
oo

oo
oo

oo
X

X
oo

oo
oo

oo
oo

oo
o

X
X

X
EC

CC
D

00
D

57
84

5

3
R

;
fr

ac
ta

1
1

1
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
1

-.
.

/

X
X

X
X

X
X

Xl
1l0

11
00

11
00

1l0
01

10
t00

00
00

00
i10

10
10

l01
11

10
00

01
00

01
01

R=
si

gn
b

o
i

i
r=

-!
!B

R
=

en
pb

1
0

3
6

<
°Z

Xl
03

6
d

c
X2

04
7

x°
X1

02
3

X1
03

5
X'

02
5

X1
02

7
X1

03
0

X1
03

2
X'

03
6

B
R

=
fr

ac
tb

6
B

C
3

9
0

0
0

9
8

3
B

9
c
z

X
X

oo
oo

oo
oo

oo
oo

o
X

X
oo

oo
oo

oo
oo

oo
o

X
X

X
G

BC
39

00
09

83
B3

ff
ilR

=
fr

ac
tb

0
1

1
0

1
0

1
1

1
1

0
0

0
0

1
1

1
0

0
1

..
.
c
~

X
D

C
X

X
X

X
X0

11
O1

01
11

10
00

01
11

00
1O

0O
00

00
00

00
01

00
11

00
00

0I1
10

11
1O

O1

ff
lR

=
op

a
sy

nc
2

C
O

S
E

C
C

C
D

O
0D

57
84

5
c
:

X
x

X
X

X3
FF

OO
OQ

OO
OO

OO
G0

0
X

X
X

t
X

X
CO

5E
CC

CD
00

D
57

84
5

53
:

-
o

p
b

sy
nc

2
4G

C
6B

C
39

O
0G

98
3B

9
(
Z

X
X

X
X

X
X

X
x

X
X

X
X

40
C6

8C
39

00
09

83
B9

•*
z
e
ro

0
l_

r
i

•*
in

e
1 0

r
L

1

-°
in

f
i

1
•*

o
v

er
fl

o
w

0

•"
di

v_
bj

>
_z

er
o

-*
q

n
a
n

0
r

1

;o
•

1
1

I

-°
s
n

a
n

io
1

1
1

a
-
»

o
u

t
I8

F
9

5
8

B
5

8
C

0
C

0
B

4
C

0
<x

xx
xx

xx
xx

xx
xx

xx
x

X
X3

FF
OO

OO
0O

O0
OO

OO
O

X
x

X
X

X
X

X
X

X

S
I-

"
o

u
t

[1
01

11
11

11
00

10
10

11
00

0.
..
<

z
X

X
X

x
X

X
X

X
X

X
X

> >

APPENDIX B

SOURCE CODE EXCEPTION UNIT

/*

This file contains only the Exception module which checks for
- nan

-inf

-zero

- denormalized

conditions of each input operands
*/

'timescaie Ins / lOOps

module exception(elk,opa, opb,opajian, opb_nan,opa_zero, opbjiero, opajnf, opbjnf, opajin, opbjin);

input elk;
input [62:0] opa, opb;

output opajian, opbjian;
output opajnf, opbjnf;
output opazero, opbjiero;
output opajin, opbdn;

//Register al! outputs
reg opajian, opbjian;
reg opaj^ero, opbjiero;
reg opaj'nf, opbjnf;
reg opajin, opbdn;

//Local wires and reg
wire [!0:0] expa, expb; //stores exponentof opX
wire [51:0] fracta, fractb; //stores significant of opX

wire expajanes, expajieros, fractajzeros; //expaones representall "1" in expa
wire expbjmes, expb_zeros, fractb_zeros; //expbjmes representall" 1" in expb

//Assigning the exp and mantissa field to seperate wires
assign expa = opa[62:52];
assign fracta = opa[51:0];
assign expb = opb[62:52];
assign fractb = opb[51:0];

// //

//

// Major block - checking whether the input operands are inf, zero or NaN
//

//Do every check as a combinatorial assignment - then latch the output using a register

//Check for all 1's in exp of A &. B - indicates either an infinite number or a NaN
assign expajmes = &expa;
assign expbjmes = &expb;

//Check for all O's in exp of A & B = indicate either Zero or denormalized number
assign expaj^eros = ~(|expa);
assign expbjieros = -([expb);

//Check for all O'sin fraction of A & B ~ used to check for NaN inputs
assign fracta_zeros = -flfracta);
assign fractbjzeros = ~(|fractb);

//Check for NaN on both operand A & B
always @(posedge elk)

begin
opajian <= expajmes & (-fractaj^eros);
opbjian <= expbjmes & (-fractbjieros);

end

//Check for INF on both operand A & B

55

always @(posedge elk)
begin

opajnf <= expajmes & (fractaj^eros);
opbjnf <= expbjmes & (fractbj^eros);

end

//Check for ZERO on operand A & B
always @(posedge elk)

begin
opaj^ero <= expaj^eros & (fractajieros);
opb_zero <= expbzeros & (fractbj^eros);

end

//Check for Denormalized on operand A & B
always @(posedge elk)

begin
opajin <= expaj^eros & (-fractazeros);
opbjin <= expbzeros & {-fractbjzeros);

end

endmodule

56

/*

APPENDIX C

SOURCE CODE FOR PRE-ALIGN UNIT (ADD/SUB)

Pre-align module:
Function is to align the mantissa for additionand subtraction
Alsochecks for the real operation to be performed, eitheraddor sub

*/

'timescale Ins/ lOOps

module pre_align (elk, opjiddsub, opa, opb,
fractajjut, fractbjjut, expjmt, opjiddsubjaut);

//Input/OutputDeclaration
input elk;
input opjiddsub;
input [63:0] opa, opb;

output [55:0] fractajiut, fractbout;
output [10:0] expout;
output opj^ddsubjiut;

//Register all outputs
reg [55:0] fractajwt, fractbjmt;
reg [10:0] expjmt;
reg opjiddsubj^ut;

//Local Wires and Reg
wire opajead, opbjead;
reg signa, signb;
reg [10:0] expa, expb;
reg [51:0] fracta, fractb;

reg [10:0] expjiiff, expjiiffj;
reg [55:0] fract_fiill, fract_full_shr;
reg [55:0] fractajmtj, fractbjmtJ;
reg [10:0] exp_out_l;
reg sticky;

reg opjiddsubjiut_l;

//Get implicit leading "1" bit- if exponent isnon-zero, leading bitis 1
assign opajead = |expa;
assign opbjead = |expb;

always @(opa oropb oropajeadoropbjeadorexpa orexpb orfracta orfractb orexpjiiffj orexpjiiff
or fractjull or fract full_shr or sticky)
begin
//seperate the sign, exponentand mantissa field intoseperate reg
signa <= opa[63];
signb <=opb[63];
expa<=opa[62:52];
expb <= opb[62:52];
fracta <=opa[51:0];
fractb <=opb[51:0];

if(expa^=expb)
begin
expjout_l <= expa;
fracta_out_l <= {opajead, fracta, 3'b0};
fractb_out_I <= {opbjead, fractb, 3'bO};
//The following assignments aredone tokeep the values below from floating
expjiiffj <= 111)0;
expjiiff <= expjiiffj;
fractjull <= 56'bO;
fract_full_shr <= fract_fiill;
end //if expa == expb

57

else if (expa > expb) //if expa is larger than expb
begin
exp_out_l <= expa;
expjiiffj <= expa - expb;
//The fraction can only be shifted by a max of d56 as the mantissa field
//is only 56 bits wide with the hidden, guard and sticky bits
expjiiff <= (expjiiffj > H'd56) ? 1l'd56 : expjiiffj;
//Recover the hidden bit and the 2 guard bit
fractjull <= {opbjead, fractb, 3'bO};
//Right shift the mantissa
fractJ"ull_shr <= fractjull» expjiiff;
//Join the shifted bit with the sticky bit
fractb_out_l <= {fractJull_shr[55:l], fractJull_shr[0] | sticky};
fractajiut_l <= {opajead, fracta, 3'bO}; //fracta is not affected
end//ifexpa>expb

else //if expb is largerthan expa
begin
expjmtj <= expb;
expjiiffj <= expb - expa;
//The fraction can only be shifted by a max of d56 as the mantissa field
//is only 56 bits wide with the hidden, guard and sticky bits
expjiiff <= expjiiffj > 1l'd56 ? 1l'd56 : expjiiffj;
//Recover the hidden bit and the 2 guard bit
fractjull <= {opajead, fracta, 3'bO};
//Right shift the mantissa
fract_fiill_shr <= fractjull » expjiiff;
//Join the shifted bit with the sticky bit
fracta_out_l <= {fractJulUhr[55:l],fractjulljmr[0] | sticky};
fractbjiut_l <= {opbjead, fractb, 3'bO}; //fractb is not affected
end //else

end // always

always @(posedgeelk)
begin

end

expj>ut <= expjmtJ;
fractajiut <= fractaj>utJ;
fractb out <= fractb out 1;

always@(fract_full or expjiiff)
begin
//The case statement is used to obtain the value of the sticky bit
//This method is brute force as it would synthesize a giant single level MUX - but potentially is fastest
case(expjiiff) //synopsys fulljiase parallelj;ase

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

sticky = l'bO;
sticky = fractJullfO];
sticky = |fract_fiil1[01:0];
sticky = |fractjull[02:0];
sticky = [fractJull[03:0];
sticky - |fract_full[04:0];
sticky = |fract_full[05:0];
sticky = |fract_£ull[06:0];
sticky = |fract_full[07:0];
sticky =]fract_full[08:0];
sticky - |fractjull[09:0];
sticky = |fractjull[10:0];
sticky = lfract_full[11:0];
sticky = |fract_full[l 2:0];
sticky = |fract_full[l 3:0];
sticky = |fract_full[14:0];
sticky = |fract_full[15:0];
sticky = |fract_full[16:0];
sticky = |fractjull[17:0];
sticky = |fract_fu[l[18:0];
sticky = |fract_full[19:0];
sticky = |fractjull[20:0];
sticky = |fract_full[21:0];
sticky = |fract_fQll[22:0];
sticky = (fractJull[23:0];
sticky = |&act_futl[24:0];
sticky = |fract„full[25:0];
sticky = |fract_full[26:0];
sticky = |fract_£ull[27:0];
sticky = |fractjull[28:0];
sticky = |fractj"ull[29:0];

58

31: sticky = |fract full[30:0]
32: sticky = Ifract full[31:0]
33: sticky = |fract full[32:0]
34: sticky = |fract full[33:0]
35: sticky = |fract full[34:0]
36: sticky = |fract full[35:0]
37: sticky = Ifract full[36:0]
38: sticky = |fract full[37:0]
39: sticky = Ifract full[38:0]
40: sticky - Ifract full[39:0]
41: sticky = Ifract full[40:0]
42: sticky = jfract full[41:0]
43: sticky = Ifract full[42:0]
44: sticky = jfract full[43:0]
45: sticky = Ifract full[44:0]
46: sticky = jfract full[45:0]
47: sticky = jfract full[46:0]
48: sticky = jfract full[47:0]
49: sticky = jfract full[48:0]
50: sticky = jfract full[49:0]
51: sticky = Ifract full[50:0]
52: sticky = jfract full[51:0]
53: sticky = jfract full[52:0]
54: sticky = jfract ful![53:0]
55: sticky = jfract fuli[54:0]
56: sticky - jfract ful![55:0]

endcase

end

//Final block, check for the actual operation to be carried out
always @(opjiddsub or signa or signb)

begin
opjiddsubjmtj = opjiddsub A(signaAsignb);

end

always @(posedge elk)
opjiddsubjDut = opjiddsubout 1;

endmodule

59

APPENDIX D

SOURCE CODE FOR PRE-ALIGN UNIT (MUL/DIV)

/♦

Pre-align module for MUL & DIV operation:
Functions:

1. Perform dividend alignment to overcome divide overflow
2. Restore implicit bit in fraction A and B
3. ADD/SUBthe exponent on MUL & DIV operations
4. Calculate the sign of MUL & DIV operations

*/

'timescale Ins/ lOOps

module prealign mul (elk,opjnuldiv, opa,opb, signout, fractaout, fractbj>ut, expj>ut);

//Port Declaration

input elk;
input opjnuldiv;
input [63:0] opa, opb;

output signjjut;
output [105:0] fractaj>ut;
output [52:0] fractbjmt;
output [10:0] expout;

//Register outputs
reg signjiut;
reg [105:0] fractajmt;
reg [52:0] fractb_out;
reg [10:0] expjnit;
reg overflow;
//reg underflow;

//Local Wires & Reg
wire [105:0] fractajihifted;
wire [10:0] expajihifted;

wire [105:0] fractajwtjemp;
wire [10:0] expajiilljemp;
wire [105:0] fracta_full;
wire[52:0]fractb_fuli;
reg [10:0] expajull;
reg [10:0] expbjull;
reg opjnuldiv_2;

wire [10:0]expbjulljmp;
wire col, coji;
wire [10:0] expjmpl, expjmp2, expjmp3;

//Seperate sign, exp & fract bits
wire signa = opa[63];
wire signb = opb[63];
wire [10:0] expa = opa[62:52];
wire [10:0] expb = opb[62:52];
wire [51:0] fracta = opa[51:0];
wire [51:0] fractb = opb[51:0];

//Obtain implicit leading bit
wire opajead = jexpa;
wire opbjead = (expb;

//

//Function I: Perform dividend alignment if fracta is larger than fractb on DIV operation

60

//Obtain shifted values of fracta & expa
assign fractashifted = {fractaJiill} » 1;
assign expajshifted = expa + 1;

//- --

//Function 2: Restore implicit bit of both fractions

assign fractaJiill = {opajead, fracta, {53{l'b0}}};
assign fractbjull = {opbjead, fractb};

assign fractajwtJemp = (opjnuldiv & (fracta >= fractb)) ? fracta^shifted : fractaJiill;
assign expafuliJemp = (opjnuldiv & (fracta >= fractb)) ? expajshifted : expa;

//Choose the shifted values if the operation is DIV & fracta is larger than fractb
always@(posedge elk)

begin
fractajwt <= fractajmtjemp;
expajull <= expaJiillJemp;

//Register B outputs
fractbjwt <= fractbjull;
expbjull <= expb;

end

//-

//Function 3: Add or Subtract Exponent - Biased Representation!!

//assign {col,expjmpl} = opjnuldiv ? (expajull - expbjull): (expajull + expbJiill);
//assign {co2,expJmp2} = opjnuldiv ? ({col,expjmpl} + 12'dl023): ({col.expjmpl} - 12'dl023); //Add/Sub biasvalue of
1023

//Use algo from ADD/SUB unit to perform addition/subtraction ofbiased exponents
//Biased Exponents are basically magnitude only - range from 1 - 2046
//After add/sub operation, the bias value must be sub/add to restorethe correct value to the biased exponent result

//Delay opjnuldiv signal by one clock
always @(posedge elk)

opjnuldiv_2 <= opjnuldiv;

//invert expbjull if operation is SUB -XOR with 11 bits of opjnuldiv
assign expbjulljmp = expbjull A {11{opjnuldiv_2}};

//perform addition as usual with opjiddsub as initial carry-in to the adder
assign {col, exp tmpl} = expajull + expbfullJmp + opjnuldiv_2;

assign {expjmp2} = (opjnuldiv_2 & !col) ? (-expjmpl + 1): expjmpl ;

assign {coji, expjmp3} = (opjnuldiv_2) ?
((col) ? { 12'di023 + exp_tmp2): (12'dl023 -

expjmp2)):
({coi,expjmp2}-12'd!023);

always @(posedge elk)
begin

expjnit <= expjmp3;
overflow <- -opjnuldiv & coji;
//underflow <- ???

end

//

//Function 4: Calculate the sign of the result
always @(posedge elk)

signjwt <= signa Asignb;

endmodule

61

APPENDIX E

SOURCE CODE FOR ARITHMETIC EXECUTION UNIT

//This file contains all modules of the execution core

// All pure ADD/SUB/MUL/DIV operation is done here

'timescale Ins/ lOOps

/*

-—ADD/SUBTRACT MODULE-—

56 bit long add/sub module - 53 for mantinssa
- 2 for guard bit
-1 for sticky bit

*/

module add_sub (elk, opjiddsub, fracta, fractb, signa, sum, signsum, co);

input elk, opjiddsub, signa; //only the sign of opA is required
input [55:0] fracta, fractb;
output [55:0] sum;
output co, signsum;

//register outputs
reg [55:0] sum;
reg co, signjsum;

//local variables

wire [55:0] fractbjemp;
wire coJemp;
wire [55:0] sumjemp;

//op_addsub == 0 is ADD & opjiddsub = 1 is SUB
//SUB operation is carried out in 2's complement

//invert fractb if operation is SUB - extend opjiddsub to 56 bits to XOR every bit in fractb
assign fractbjemp = fractb A{56{opjiddsub}};

//perform addition as usual with opjiddsub as initial carry-in to the adder
assign {coJemp, sumJemp} = fracta + fractbjemp + opjiddsub;

//if the carry out from SUB operation is 0, then fracta < fractb
//therefore, when cojemp == 0, get the 2's complementof the result and invert the sign
always @{posedge elk)

begin
if (opjiddsub & !co temp)

begin
signjmm <= !signa;
co <= co temp;
sum <= -sumjemp + 1;

else

end

begin

end

signjjum <= signa;
co <= opjiddsub ? !co temp : cojemp;
sum <= sumjemp;

end

endmodule

I*

-—MUL MODULE-—

2 inputs - 53 bit long operands
I output -106 bit long product

NOTE: This multiplicationunit will only multiply the fraction/mantissa part of the

62

number.The addition of the exponentswill be performedusing another module that
could run simultaneouslywith the add/sub pre-align.
The calculation for the sign of the result is also left to the other module

V

module mul (elk, fracta, fractb, product);

input elk;
input [52:0] fracta, fractb; //Sinceguard bits are of no use, 53 bits are sufficient
output [105:0] product;

reg [105:0] product;

always @(posedge elk)
begin

product <= fracta * fractb;
end

endmodule

/*

-—DIV MODULE-—

Inputs - OpA - Dividend- I06bits
-OpB-Divisor-53 bits

output - Quotient - 53 bit long
Remainder- 53 bit long

NOTE: The division unit takes a divident that is padded with zeros on the right hand side
and then divides it with the divisor.

The task of padding the zeros is left to another unit - either the master FPU or using
another module responsible for subtracting the exponents.
The task of divident alignmentto avoid divide overflowis also done by the other module

*/

module div (elk, dividend, divisor, quo, rem);

input elk;
input [105:0] dividend;
input [52:0] divisor;
output [52:0] quo, rem;

reg [52:0] quo, rem;

//local wires

wire [105:0] quojemp;
wire [105:0] remJemp;

//Both These are not synthesizable - Code the algorithm YOURSELF!!!
assign quojemp = dividend / divisor;
assign remJemp = dividend % divisor;

always @(posedge elk)
begin

quo <= quo temp[52:0];
rem <- remjemp[I05:53];

end

endmodule

63

APPENDIX F

SOURCE CODE FOR NORMALIZATION AND ROUNDING

UNIT

//This source file would contain modules for 2 functions

//Function 1 is Normalizing
//Function 2 is Rounding

'timescale Ins/ lOOps

/*

Normalizing unit:
inputs: 112 bit long mantissa

11 bit long exponent
1 bit sign
2 bit opcode

*/

module norm rnd (elk, fractjn, expj'n, sign, opcode, remainder, rjnode,
fractjwt, expout, dnout, ineout, overflowjwt, infinitejwt);

input elk;
input [105:0] fractjn;
input [10:0] expjn;
input sign; //Rounding only
input [1:0] opcode; //Rounding only
input [52:0] remainder; //Rounding only
input [1:0] rjnode; //Rounding only

output [52:0] fractjwt;
output [10:0] expjwt;
output dnjwt;
output inejwt;
output overflowjwt;
output infinitejwt;

//Reg all outputs
reg [52:0] fractjwt;
reg [10:0] expjwt;
reg dnjwt;
reg inej^ut;
reg overflowjjut;
reg infinitejwt;

//Local Wires & Registers
reg [6:0] fractjdz; /*reg needed to hold the value constantly - register should not be clocked as it is fed by

combi circuit - up to 111 leading zeros may be present, thus
a 7 bit register is needed*/
wire shiftjiir; //Direction of shift
wire exp max; //Exponent is max
wire [6:0] shiftjval; //Magnitude of shift
wire ldzjessjexp; //Exponent is larger than no of left shifts required
wire [6:0] fractjdzjnil;
wire [10:0] expjnjnil;
wireoutjin; //indicates that the outputwillbe denormalized
wire outjwerflow; //indicates that output overflowoccured- exponent& mantissa cannot store result
wire [105:0] fract_sh_R, fract_sh_L;
wire [10:0] expjmjt, expjihj\.;
wire [105:0] fract„shifted;
wire [10:0] expjihifted;

wire [52:0] fractjiown, fractjip temp,fractjip; //wireto storerounded down& up fractions
wire cout; //wire to store carry out from fractjip
wire [10:0] expjip; //wire to store exponent for fractjip - neededbecoz fractjip may have carry-out
wire fractjrunc; //indicates that some value have been truncated
wire remjiotj^ero; //indicates that the divisionhas a non-zero remainder- used to signal inexact

64

reg [52:0] fractjmind;
reg [10:0] expjmind;
wire [52:0] fractjiearJemp, fractjoundjiearest, fractj-ound_zero; //stores result for every rounding mode
reg [52:0] fractjroundjip, fractjxwndjiown; //stores result for every rounding mode
wire [10:0]expjiearjemp, expjxwndjiearest, expj'oundj^ero;
reg [10:0] exproundjip, expj*oundjiown;
wire last_bit, trunc, rjiear_sel, fractjipjwerflow;
wire [1:0] rjipjjel, r_down_sel;

//.

//Normalization unit starts here
//.

//Count Leading Zeros in input fraction/mantissa
always@ (fractjn)

casex(fractjn) // synopsys fullj;ase parallelj;ase
I06'bl???

?????? : fract_ldz = 0;
106'bOl??

??????: fractJdz = 1;
!06'b001???

??????: fractJdz - 2;
106'bOOOl??????????????????????????????????? ??? ? ??????????????

???????: fractJdz = 3;
I06'b00001??

???????: fractJdz = 4;
106'b000001???

???????: fractJdz = 5;
106'b0000001??

???????: fractJdz - 6;
106'b00000001???

???????: fractJdz = 7;
106'bOOOOOOOOI??

???????: fractJdz - 8;
106'bOOOOOOOOO!???

???????: fractJdz - 9;

106'bOOOOOOOOOOl??

???????: fractjdz = 10;
106'b000000000001??

????????: fractJdz - 11;
I06'b0000000000001???

????????: fractJdz = 12;
106'b00000000000001??

????????: fractJdz = 13;
306'bOOOOOOOOOOOOOOl???

????????: fractJdz = 14;
106'b0000000000000001??

????????: fractJdz = 15;
106'b00000000000000001???

????????: fractJdz - 16;
106'b000000000000000001 ??

????????: fractJdz - 17;
106'b0000000000000000001???

????????: fractJdz - 18;
106'b00000000000000000001???

?????????: fractJdz = 19;

106'b00000000000000000000l ??

?????????: fractJdz = 20;
106'b0000000000000000000001 ???

?????????: fractJdz = 21;
106'b00000000000000000000001??

?????????: fractjdz = 22;
106'b000000000000000000000001 ???

?????????: fractjdz - 23;
i06'b0000000000000000000000001???7

????????? : fractjdz - 24;
106'b00000000000000000000000001 ???

?????????: fractjdz = 25;
106'b000000000000000000000000001??

?????????: fractjdz = 26;
106'b0OO00OO000OO000OO00OOO0Q0001??

?????????? : fractjdz = 27;

65

I06'bOO0OOO0OOOO0OOO0OOO000OOOOO01???

??????????: fractjdz = 28;
I06'b000000000000000000000000000001??

??????????: fractjdz - 29;

106'b0000000000000000000000000000001???

??????????: fractjdz = 30;
106'b00000000000000000000000000000001??

??????????: fractjdz = 31;
106'b000000000000000000000000000000001???

??????????: fractjdz = 32;
106'b0000000000000000000000000000000001??

??????????: fractjdz - 33;
106'b00000000000000000000000000000000001???

??????????: fractjdz = 34;
106'b000000000000000000000000000000000001???

???????????: fractjdz = 35;
106'b0000000000000000000000000000000000001??

??????????? : fractjdz = 36;
I06'b00000000000000000000000000000000000001???

??????????? : fractjdz = 37;
I06'b000000000000000000000000000000000000001??

???????????: fractjdz - 38;
106'b0000000000000000000000000000000000000001???

??????????? : fractjdz - 39;

106'b001??

??????????? : fractjdz - 40;
106'bOOOl???

???????????: fractjdz - 41;
106'bOOl???

???????????? : fractjdz = 42;
106'bOOOl??

???????????? : fractjdz = 43;
106'b001???

???????????? : fract_Idz = 44;
106'b0001??

???????????? : fractjdz = 45;
106'b001???

???????????? : fract_ldz = 46;
106'b0001??

???????????? : fractjdz = 47;
106'bOOl???

????????????: fractjdz = 48;
I06'b0001??

???????????? : fractjdz - 49;

106'bOOl??

????????????? : fractjdz- 50;
106'bOOOl???

????????????? : fractjdz =51;
106'bOOl??

?????????????: fractjdz = 52;
106'b0001???????????????????????????????????????

?????????????: fractjdz = 53;
I06'b001??????????????????????????????????????

?????????????: fractjdz = 54;
]06'b0001?????????????????????????????????????

?????????????: fractjdz = 55;
106'b001????????????????????????????????????

????????????? : fractjdz = 56;
106'bOOOl???????????????????????????????????

?????????????: fractjdz = 57;
106'bOOl?????????????????????????????????

?????????????? : fractjdz = 58;
106'bOOOl????????????????????????????????

??????????????: fractJdz = 59;

106'b001???????????????????????????????

?????????????? : fractjdz = 60;
106'b0001??????????????????????????????

??????????????: fractJdz = 61;
]06'b001?????????????????????????????

?????????????? : fract ldz = 62;

66

106'b0001 ????????????????????????????

??????????????: fractjdz = 63;
106'b001???????????????????????????

??????????????: fractjdz = 64;
I06'b0001??????????????????????????

?????????????? : fractjdz- 65;
106'bOOI????????????????????????

??????????????? ; fractjdz - 66;
106'bOOOl???????????????????????

??????????????? : fractjdz - 67;
106'bOOl??????????????????????

??????????????? : fractjdz = 68;
106'bOOOl?????????????????????

??????????????? : fractjdz = 69;

106'b001????????????????????

???????????????: fract ldz= 70;
106'bOOOl???????????????????

???????????????: fractjdz = 71;
106'bOOl??????????????????

??????????????? : fract ldz = 72;
106'b0001?????????????????

???????????????: fract ldz= 73;
106'b001???????????????

????????????????: fract ldz= 74;
106'bOOOl??????????????

????????????????: fract ldz^ 75;
106'b001?????????????

???????????????? : fractjdz = 76;
lO6'b000OO00OOO0OOO00OOO000OOOOO0000OOO0000000OO000OOO000OO00OO00OO00OO00OOO00OOO01????????????

????????????????: fract ldz= 77;
106'b00i???????????

????????????????: fractjdz = 78;
106'b0001??????????

????????????????: fractjdz = 79;

106'b001?????????

????????????????: fract ldz= 80;
106'b0001????????

????????????????: fractjdz = 81;
I06'b001??????

?????????????????: fractjdz = 82;
I06'b0001?????

?????????????????: fract_ldz = 83;
106'b001????

????????????????? : fractjdz = 84;
i06'b0001???

?????????????????: fractJdz - 85;
106'b001??

????????????????? : fract_ldz - 86;
106'b000i?

????????????????? : fractjdz = 87;
106'bOOl

?????????????????: fractjdz - 88;
lO6'bOOO00OO00OOO0OOO00OOO00000OO0O0000OOOOO000OOO000OOO00OOO0OO00OO00OO00OOO000OOOO0000000000

1????????????????: fractjdz- 89;

106'bOOO

01???????????????: fractjdz- 90;
106'b000

001??????????????: fractjdz- 91;
106'b000

0001?????????????: fractjdz- 92;
106'b000

00001 ????????????: fractjdz- 93;
106'b000

000001???????????: fractjdz- 94;
106'bOOO

0000001??????????: fractjdz - 95;
106'b000

00000001????????? : fractjdz = 96;
106'b000

000000001 ????????: fractjdz = 97;
106'b000

0000000001???????: fract ldz = 98;

67

106'b000

00000000001??????: fractjdz = 99;

106'b000

000000000001????? :fractjdz = 100;
106'b000

0000000000001???? :fractjdz = 101;
106'b000

00000000000001???: fractjdz = 102;
106'b000

000000000000001?? :fractjdz- 103;
106'b000

0000000000000001? :fractjdz = 104;
106'bOOO

0000000000000000?: fractjdz- 105;
endcase

//Calculate Shift Direction & shift value]
//Shift Right only when the number of leadingzero is 0, otherwiseshift Left
//assign shiftjiir - |fractJdz ? 1'bO : I'M;
assignshift_dir= -(jfractJdz); //shift_dir - 0 meansleft,shiftjiir = 1meansright

//Check forexp= 1111111111? - It means thatexpis already at max value or INF- no further increment is alowed
//assign expjnax - &expjn[10:l] ? l'bl : 1'bO;
assign expjnax = &expjn[10:l];

//Check that the number of leading zero is less than or equal to the exponent
assign ldzjess_exp = (fractjdz <- expjn[6:0]) ? I'bl : |expjn[10:7];

//Comparison done for the first 7 bits of the exponent
//This is to reduce the bit length of the synthesized part
//If either of the front 4 bit of of expj'n is 1, then expJn would be larger than fractjdz
//Alternative line of code - seems more complex,plus it synthesizesan additionalOR gate
//assign!dzjess_exp = |expjn[10:7] || fractjdz <= expjn[6:0] ? l'bl : 1'bO;

//Get both Left shift values first - choose using a mux later
assign fractJdzjnil - fractjdz -1;
assign expjn mil - expjn - 1;

//Ifnoof Idzis less thanexponent, shiftbynumber of Idz-1 elseshiftbyexp- 1 (results in minimum exp& denormalized no)
assign shift_va\ = ldzjess_exp ? fractJdzjnil : expjnjnil;

//Do actual shifting - obtain both shifted values: Right & Left
assign fractj*hJl = fractjn » 1'b I;
assign expjm_R - expJn + 1;

assign fractjih_L = fractjn « shift_val;
assign expjmj, - expJn - shift_val;

//Select between different shift values - no need to care about overflowed numbers - will be handled by rounding side
assign fract_shifted = (fractjdz — 1)? fractj'n : (shiftjiir) ? fract_shjt: fract_shj*,;

assign exp_shifted = (fractjdz == I) ? (expjn): ((shiftjiir) ? exp_sh_R ; exp_sh_L);

//If the no of leadingzero is morethan the exponent, a denormalized numberwouldresult- thus it is the inverse of
ldzjessjjxp
assign outjin = !Idz less_exp; //signal will begin used to setoutput exponent to 0000...0

//If theshiftdirection isright(only when there is no Idz) andtheexponent is already maximum - flagoverflow
//Latebugfix - overflow canalso occur if theproductof
assign outjwerflow = (expjnax & shiftjiir); //used tosettheoutput ofrounding unit

//

//Rounding unit starts here
//

/*Rounding mode selectors

0 = round to nearest

1 - round to zero

2 = round up (+inf)
3 - round down (-inf)

Value of Nmax:

68

fract jnax - 53'hlFFFFFFFFFFFFF
expjnax = ll'h7FE

Value of Ninf:

fractJnf-53'bO;
exp_inf=ll'h7FF;

V

//Get both rounded values

assign fractjiown - fract_shifted[104:52];
assign {cout, fractjipJemp} = fractjiown + {53'bO, l'bl}; /*cout is needed incasethe addition results in

a train of carries until the most significant bit*/

assign fractjip-(cout)? {cout, fractjipJemp} » 1 : fractjip Jemp; //shift resultby 1 to the right if cout—1

assign expjip - expjshifted + {10'bO,cout};

assign fractjipjwerflow = cout & (&expjshifted[10:l]);
fbrmX+

//Round to nearest calculation

//assign fractjiearjemp = (tie) ?
// {(fractjlown[0]) ? fractjip : fractjiown):
// ((lastjiit) ? fractjip : fractjiown);

/*Use the signal rjiearjei to select fractjip or down

last bit is MSB of the truncated part
trunc is the OR of the all the other bits in the truncated part
fractjiown[0] is LSB of X-
rjiear_sel — 0 is selecting fractjiown

K-map

lastjiit trunc fractjiown[0]
0 0

0 0

0 1

0 1

1 0

i 0

I 1

1 1

*/

r near sel

//indicates that overflow occured while trying to

assign lastbit- fractjtfiifted[51];

assign trunc = |fractjmifted[50:0];

assign r_near_sel= last_bit & (trunc | fractjiown[0]); //logic derived from K-map above

assign fractjiearjemp - (rjiearsel) ? fractjip : fractjiown;

assign expnearjemp - (rjiear_sel) ? expjip : expjihifted;

assign fractj-ound_nearest = (out_overflow | (rjiear_sel & fractupjjverflow)) ? 53'bO : fractjiearjemp;

assign expj-oundjiearest = (outjyverflow| (rjiear_sel & fractjipjjverflow)) ? 1l'h7FF : expjiearJemp;

//Round to zero calculation
assign fract_round_zero = (out_overflow) ? 53'hlFFFFFFFFFFFFF : fractjiown;

assignexpjxwndj^ero = (outoverflow) ? 11 'h7FE: expshifted;

//Round up calculation
assign rjip_sel[0] - sign;
assign r_up_sel[l] = out_overflow | (-sign & fractjip_overflow);

always @(rjipjiel or fractjip or fractjiown)
case (rjipjiel) // synopsys fulljiase parallelj;ase

69

endcase

2'bOO : fractroundjip - fractjip;
2'b01 : fractj'oundjjp - fractjiown;
2'blO : fractj-oundjip = 53'bO;
2'bl i : fract roundup - 53'hlFFFFFFFFFFFFF;

always @(r_upj*el or expjip or exp_shifted)
case (rjjpjjel) // synopsys full_caseparallelj;ase

2'b00 : expj-oundjip - expup;
2'b01 : expj-oundjip = expshifted;
2'blO : expj'oundjip - ll'h7FF;
2'b11 : expj'oundjip - 11'h7FE;

endcase

//Round down calcuation

assign rjiownjiel[0] = -sign;
assign r_downjiel[l] = outjjverflow | (sign & fractjipjwerflow);

always@(r_down_selor fractjip or fractjiown)
case (rjiown_seI) // synopsys full_caseparallel_case

2'bOO : fract_roundjiown = fractjip;
2'bOI : fractj'oundjiown- fractjiown;
2'b10 : fract_round_down = 53'bO;
2'b11 : fractj'oundjiown - 53'h1FFFFFFFFFFFFF;

endcase

always @(rjiown_sel or expjip or expjjhifted)
case(rjiown_sel) // synopsys full_case parallel_case

2'bOO : expj'oundjiown = expup;
2'b01 : expj'oundjiown - exp_shifted;
2'blO : exproundjiown = H'h7FF;
2'bl 1 : expj'oundjiown = 1l'h7FE;

endcase

//Final case to select result fraction
always @(rjnode orfractj'oundjiearest orfractj'oundj^ero orfractj'oundjjp orfractj'oundjiown) //still got some more 2
list

case (rjnode) // synopsys full_case parallelj^ase
2'bOO : fractj'ound - fractroundjiearest;
2'b01 : fractj'ound - fractj-ound_zero;
2'b10 : fractround = fractj-oundup;
2'b11 : fractj'ound = fractj'oundjiown;

endcase

//Final case to select result exponent
always @(rjnode orexpjroundjiearestorexpjxwnd_zero orexpj'oundjjp orexpj-oundjiown) //still got some more 2 list

case (rjnode) // synopsys full_case parallel_case
2'bOO : expround - expj-oundjiearest;
2'b01 : expj-ound - expj-ound_zero;
2'b10 : expj-ound = expj'oundjip;
2'bl 1 : expj'ound = expj^oundjiown;

endcase

//This is to check for inexact conditions

//Signal if any values are truncated
assign fract trunc = lastjjit | trunc;
assign remjiotj^ero - (&opcode) & (|remainder);

//Register all final outputs
always@(posedge elk)

begin
fractjwt <- fractj'ound;
expjwt <= expj'ound;
dnout <- outjin;
inejwt <= fractjrunc | remjiot_zero;
overflowjwt <- outjyverflow;
infinite_out <=outjwerflow & ((|rjnode) | (r_mode[l] &-(r_mode[0]Asign)));

end

endmodule

70

