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ABSTRACT

This thesis is a development ofprevious works done by [2} on capability of

neural controller to efficiently track prescribed paths. Equipped with knowledge on

optimal preview control obtained from [1], the initial weights of linear and nonlinear

neural controller are initialized to the optimal gains. The implemented neural

controller will in turn minimize a performance index, which includes the lateral and

attitude angle errors ofvehicle models with respect to the paths.

The thesis differs from [2] in a sense that different types of neural controller

are established to achieve a better path following accuracy. Two algorithms, gradient

descent and quasi-Newton which utilize a batch training method, are introduced as

comparison to the gradient descent method that incorporates the online (or

incremental) training method. The class of learning (whether good or bad) of the

neural controllers is evaluated from the obtained percentage of average weight

change, maximum path and yaw attitude angle errors as well as the maximum steering

wheel angle. The behaviors oflearning rates and updated weights are given special

attention in this thesis. To conduct the specified works, the MATLAB programs

written by [2] have been extended and modified.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Many researches on automated car control have been conducted during these

past few years. Quite a number of efforts have been concentrated on the capability of

the self-guided vehicles to accurately follow various types of paths. A vital factor in

realizing the aim is steering control.

Various approaches have been carried out for this purpose, including optimal

preview control and neural network. Optimal preview control is capable to portray the

driver's vision of the path and process the knowledge so that the vehicle can follow

the path as accurately as possible. A controller that utilizes the technology of neural

network has the ability to 'learn' from past errors and adjust the network to obtain

specific target output. In other words, provided that suitable weights are used, a neural

controller will achieve a more precise path following.

This study aims to develop a neural network controller that could control both

linear and nonlinear vehicle models to follow prescribed paths with the smallest

errors. Different types of neural controller are introduced for comparison purposes.

The behaviours of the learning rates and updatedweights are also investigated.

1.2 Brief Outline on Previous Works

This thesis has been conducted with reference to works by Sharp and

Valtetsiotis [1] on optimal preview control and Dandre [2] on the upgraded

performance ofthe optimal preview control with the use ofneural network.



Thefirst reference is about representation of driver'svision, in which roadand

linear vehicle information (in discrete time equation) are combined and assessed by

the linear quadratic cost fimction. The implemented optimal control minimizes the

cost (lateral errors and attitude angles relative to the path) according to its priority,

which is path following.

The second reference shows comparison of weights initialized to zero, and

weights obtained as optimal gains from works of Sharp and Valtetsiotis [1] to

implement single and multi-layered neural controller. The algorithm used is gradient

descent, and the training mode is identified as online (or incremental) training.

Tracking simulations are done on linear and nonlinear car models.

IJ Outline of Thesis

Chapter 2 is a review on neural networks; its definition, training methods

(batch or online) and algorithms (gradient descent andQuasi-Newton).

Chapter 3 is a review on previous works by Sharp [1] and Dandre [2]. This

chapter summarizes the linear and nonlinear car models, path models as well as the

optimal preview controller, which has the ability to drive a linear car model on

simulated paths.

Chapter 4 outlines the implementation of a linear neural network that could

control the linear car to accurately follow the simulatedpaths. Two types of training

are introduced: online training and batch training. Two algorithms are introduced:

gradient descent method andQuasi-Newton method The learning ability ofthe neural

controller is judged by the average percent weight change by learning and the

maximum errors obtained through the MATLAB simulations.



Chapter 5 revolves around implementation of a nonlinear neural network that

is designed to control nonlinear car to follow prescribed paths. Researches and

simulations for the nonlinear network are conducted similarly as for the linear

network (Chapter 4).

Chapter 6 concludes the study and outlines recommendations for future

works.

1.4 Contribution of the Thesis

• Proves that the training of neural network for more than one epochs would

increase the controller performance in most situation

• Shows that the batch training, namely using the gradient and quasi-Newton

methods, could be implemented to several situations, in which better

outputs are achieved with a shorter training time

• Confirms that the behaviours of the learning rates play a vital role in

shaping the behaviours of the updated weight; in which the learning rates

will slowly reduced towards zero, leading small variations of updated

weights after several epochs



CHAPTER 2

REVIEW ON NEURAL NETWORKS FOR CONTROL

This chapter is an overview on basic structure of neural network, its training

schemes and algorithms, which are significant factors in implementing the neural

controller for the simulated paths and car models.

2.1 BACKGROUND OFNEURALNETWORK

Neural networks, inspired by biological nervous system, are composed of

simple elements operating in parallel. Demuth and Beale [3] described, "Neural

networks are adjusted, or trained, so that a particular input leads to a specific target

output". The particular situation is as shown in Figure 2.1: Target

Input

Neural network
including connections

(called weights)
between neurons

Adjust
weights

Output'&

Figure 2.1; Adjustment ofneural network to obtain specific target output

Neural Network performs two major functions; Learning and recall. Learning

is the process ofadapting the connections in a neural network to produce a desired

output vector in response to astimulus vector presented in the input buffer. Recall, on



the other hand, is the process of accepting input stimulus and producing output

response in accordance withthe network weight structure.

2.2 NEURAL NETWORK TRAINING

Neural networks could produce desirable outputs by having sufficient training.

Commonly the networks are adjusted, or trained so that a particular input leads to a

specific target output.

There are two different styles oftraining, which are incremental training and

batch training. The training styles differ in terms of how the weights and biases are

adjusted.

• Online Training

Online training updates weights and biases as each input is presented to the

network. By setting a value of network learning rate, the weights will change at each

subsequent time step (instance). Thus, weights are updated more than once per entire

presentation of training data (epoch).

• Batch Training

According to Bersetkas and Tsitsiklis [5], batch algorithm is a conventional

numerical optimization technique. By implementing batch training, weights and

biases are accumulated over an epochbefore being updated. Thus, in each epoch, the

weights areonly updated once. Another alternative (but similar mode of operation) to

batch training is mini-batch training. In this case, weight changes are accumulated

over somenumberof instances before beingupdated.



2.2 NEURAL NETWORK ALGORITHM

The most commonly used neural network learning algorithm is back

propagation. The term refers to the manner in which the gradient is computed for

nonlinear multilayer networks [6]. Standard back propagation is a gradient descent

algorithm, in whichthe networkweights are moved alongthe negative of the gradient

of the performance function.

This algorithm has different variations based on the standard optimization

techniques. The variations include the gradient descent, conjugate gradient descent,

Newton, Quasi-Newton and Levenberg-Marquardt method. The applications of these

algorithms rely on the scale of the network to be used. Gradient descent method is

typically for a large scale network, conjugate direction is for a medium scale, Quasi-

Newton and Levenberg-Marquardt (preferred for low residual regression problems)

for small scale while Newton method is for a tiny scale network [7]. Two methods

were used for this project, and are described in this section. The methods are gradient

descent and Quasi-Newton method.

2.2.1 Gradient Descent Method

In neural network, the gradient descent learning is applied to determine

network weights that minimize error functions. The two parameters (weight and error

functions) create an error surface. This algorithm usually initializes at a commonly

randompoint in the weight space and points along the line of steepest descent until a

minimum in the error surface is found. As the sequences of the points reaching to the

minimum, the changing rate from the previous to next points decreases.



This particular manner is due to the formulation of the gradient descent

learning itself:

Aw=-TJ- (2.1)

where w is the weighting vector, J is the performance and y is the learning rate. The

negative sign implies that the gradient descent is approximated by taking small but

finite steps in the direction of steepest descent. As soon as the weights just start to

change in the direction of the gradient at the measured point, the true gradient itself

will start to change. [8]. Thus, as the algorithm progresses, the learning rate will be

getting smaller and approaches zero.

A gradient descent algorithm by itself has a slow response. To increase the

rate of response, momentum term is combined with the basic algorithm This

combination results in movement in fixed direction. Thus, if several steps arepointed

towards the samedirection, the rate of response of the algorithm will increase.

Another modeof the gradient descent algorithm that is applied in this research

is gradient descent with adaptive learning rate back propagation. Without adaptive

learning, the learning rate is kept constant throughout learning. Selection of high

learningrate may lead the algorithm to oscillateand becomeunstable, while selection

of small learning rate will result in longer time taken for thealgorithm to converge to

the desired minimum point.

By applying adaptive learning, the learning rate is allowed to change during

the training process. This algorithm will keep the learning step size as large as

possible while keeping learning stable 16]. Thelearning rateis changed in such a way

that it will be increased if stable learning is obtained per instance or decreased when

the learning becomes unstable.



2.2.2 Quasi-Newton Method

Quasi-Newton method is a recommended technique for small sized networks

(weights and inputs areless thanhundred). Quasi-Newton is a batch update algorithm

As referred to [9], it works out the average gradient of the error surface across all

cases before updating weights once at the end of an epoch. Since this is a batch

update algorithm, it is unnecessary to select momentum or adaptive learning rates,

which makes this method easy.

Generally, the updatedvariable is adjusted according to the following formula:

x-x + adX (2.2)

where x are weight / bias variables, dX is search direction and a is the selected line

search algorithm There are various line search algorithm that could be used with

Quasi-Newton method, which includes Brent search, secant, golden section and

backtracking search. For this research, backtracking search is set as default for the

network training. In this search routine, the step multiplier is initialized at 1 and then

it backtracks until an acceptable reduction in the performance is obtained.

The first search direction is the negative of the gradient performance while in

the succeeding iterations, the search direction is obtained bythe following formula:

dX = -H/gX (2.3)

where gX is the gradient and H is the approximatedHessian matrix.



CHAPTER 3

REVIEW ON CAR MODELS, ROAD PREVIEW MODELS AND

OPTIMAL PREVIEW CONTROLLER

In previous work by [1], an optimal preview controller is implemented to

follow simulatedpaths. Linear and nonlinear car models are designedto incorporate

with the controller, as have been described by [2]. The first section of this chapter

outlines the two car models, the next section describes the road preview models and

the final section explains the optimal preview controller. Detailed explanation on the

car models, road preview models and optimal controller could be retrieved from [2].

3.1 CAR MODELS

3.1.1 Linear Car Model

As illustrated by [1] and repeated by [2], the vehicle model is of standardyaw

/ sideslip type. It is assumed that the car is a rigid body, moves on flat paths with three

degrees of freedom forward, lateral (side) and yawing (side to side) motions. There

are four types of forces of the vehicle model: front axle longitudinal force, front axle

lateral force, rear axle longitudinal force and rear axle lateral force. Aerodynamic

forces are discarded for this study, as they are considerably insignificant at normal

speed for normal cars. The input to the car is the steering wheel angle.

In practice, speed should be reduced if the vehicle is nearing a curve or

changing directioa However, for simplicity, the car moves only in forward direction

with a constant speed throughout the whole path.

The parameters of the vehicle are as in the following Table 1:



Body Mass (M)
Yaw Inertia (Iz)

Distance from center ofgravity to
front axle (a)

Distance from center ofgravity to rear
axle (b)

Cornering stiffness offront axle tyres
(Cr)

Cornering stiffness ofrear axle tyres
(Cr)

Fixed Steering Ratio (Handwheel/
road wheel), G

1200 kg
1500 kgnf

0.92

1.38

l^xlO'Nrad'1

8xl04Nrad"x

17

Table 3.1: Vehicle Model Parameters

.»

The state space equations of motion of the car model isx - Ax + B£w with

the state vectors:

x=[xi x2 X3 X4]T where xi is global lateral position y,

x2 is global lateralspeed y,

X3 is global attitude angle *F,

X4 is global attitude rate ty.

and

0 1 0 0

0 -{Cf +Cr)/Mi (Cf+Cr)/M (bCF-aCf)/Mu
0 0 0 1

0 (bCr-aCf)Uzu (aCf-bCr)IIs -(a2Cf+b2C,)/Izu

A= B~

0

Cf/MG

0

aCfIIzG

Theequations of motion are transformed to discrete time using the MATLAB

command 'c2d\ Taking A* and Bd as discrete matrices, the equation of motion

becomes x(k+l) - A<ix(k) + Bd^w(k) in which k is the sampling time and T is the

sampling interval. The sampling period is initially setas0.05 s, and could bereduced

when vehicle moves in higher speed to increase the number of preview points for the

car controller. Thepreview points will be explained in thenextsection.

10



3.1.2 Non-Linear Car Model

The assumptions as well as the parameters of the non-linear car model are set

to be similar as the previous linear car model. The difference between both models is

the calculation of lateral tyre forces, which according to [2], are calculated using the

Magic Formula by Bakker, Nyborg and Pacejka All the Magic Formula parameters

are considered constant and correspondto dry surface. The parametersofthe formula

are given as in Table 2 below:

Stiffness, one tyre (bm) 17.5

Shape, one tyre (Cm) 1.68

Peak, one front tyre (oW) 3840

Peak, one rear tyre (do*) 2560

Curvature (em) 0.6

Table 3.2: Magic FormulaParameters

In discrete state-space model, the non-linear car model is repeated from [2],

given by the following forms:

Xl(k+1)-Xl(k) + T.x2(k)

(3-1)

x2(k+l) - x2(k) +T[-L (F^k^ Fyf (k))]
M

x3(k+l)-X3(k) + T.X4(k)

X4(k+1) - X4(k) +T[1 .(aFyKk)- My <k))]

11



3.2 ROAD PREVIEW MODEL

Four paths are considered for the study: sinus path, lane change, sudden

change of direction and smooth randompath. By considering constant forward speed,

the paths can be described by the lateral deviation, yr, from a fixed straight line (x-

axis) at sampling time kT.

In the global point of view, the road information is stored in the lateral

deviations ym from a fixed x-axis at the time kT, corresponding to a specifiedforward

speed u. Figure 3.1 shows the path errors in the global frame.

Taking n as the number ofpreview values, the lateral deviations at time kuT

meters ahead ofthe car could berepresented as yicfOO = [yio yri ... yra]T The uT

is the x spacing, in which u is the speed of the vehicle. Figure 3.1 shows the car and

the road at instant k. At the next instant (k+l)T, the first road preview sample is

discarded and the second sample ofyn«(k) becomes the first value for y^(k+l) and so

oa For simplicity, the last sample value becomes the input to the system and the other

n samples are regarded as states.

uT
x axis

^ x.| %±
yn y« y#

42^
yro

^"""- •„.„ ' r r

r

road

Figure 3.1: CarandRoadat instant k (adaptedfrom [2])

Taking y^f as the state vector and yn as the input to the road system, the state

space equation for the road preview model is yrej(k+l) - D. y^k) + E.yn. The vectors

ofD and E are:

12



D-

0 1 0 0 0

0 0 1 .. 0 0

andE =

0 0 0 1 0

0 0 0 0 1

In thelocal point ofview, theroad information is stored inthe lateral

deviations y* from thelocal x-axis ofthe car, asdepicted inFigure 3.2:

Figure 3.2: RoadPreviewModel Local Point of View (from [I])

3.3 OPTIMAL CONTROLLER

The purpose of the controller implementation is to estabhsh a connection

between the road preview model and the car. In other words, the car is to be driven

along the path with the aid ofthe optimal controller. The state space equation ofthe

carand theroad (having no connection between both) isas follows:

x{k + l)

Mk +l)

(3.2)

The Linear Quadratic Gaussian (LQG) is then assessed with thefollowing cost

function;

Ad 0

0 D

x(k)
+ •** + A

13



J=Lim ^{kiR^ik^s^k)^^) withz=[x yj-

(3-3)

n->ai k=0

Tin which Ri - C\Q.C with C =
"10 0 0-10 00

0 0 10 IluT -XtuT 0 " 0
andQ =

0

°2.

• • T •
corresponding to thestate vector Z = [y y q> q> yr0 yA ....^rfe],with

R2=l.

Ri reflects the path following priorities, namely thepatherrors and the attitude angle

errors while R2 represents the importance attached to the control input. It is assumed

that the pair (A, B) is stabilizable to guarantee existence, pair (A, Qy2C) is detectable

for stability and R2 to bepositive definite to ensure finite control energy.

The works by Louam [10] and Prokop [11] show that the time-invariant

optimal control, minimizing the cost function J is £w(k) =-K.z(k). The vector gain K

is determined by first solving the non-preview model, x = [y y <p <p] . Using the

obtained result, the remainder of K which represents the preview control

yr^lyro y* .... ^ f is solved.

Several controllers can be set up by changing the priorities in the cost

functioa If the priority is path following, qi is set to be 100 and q2 is 0. If the priority

is to keep the car tangential to the path, qi is set to be 0 and q2 is 100. On the other

hand, ifpriority is based on controlling the steer input and roughly following the path,

qi is 0.05 and q2 is 0. For all cases, R2 is set to unity.

In this study, the priority is concentrated on path following. According to

simulation results obtained by [1] and repeated by [2], as the speed of vehicle is

14



increased, the preview gain will be more oscillatory. Figure 3.3 shows the simulation

result for the optimal preview gainsof path following.

0.2

3

-0.2

.„

-0,4

0

I 1 -T-

l20m/s 30 m/s
lOriVs

10 20 30 40 50 60
distance ahead, m

Figure 3.3: Optimal Preview GainsforPath Followingfor Five Different Speeds

(from [J])

It should be noted that the controller is optimal as it is able to minimize the

cost (3.3). However the optimal gain K is obtained due to theselection of matrices Q

and R, which arethecost priorities. Without further adaptation, the matrices selection

might not be the best selection. Therefore further modification to gain K can be

implemented to obtain a better performance minimization. The final values ofK may

differ from the initial values of K. The gain update could be implemented using

learning algorithms that will be highlighted in thenextchapters.

15
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CHAPTER 4

NEURAL NETWORK STEERING CONTROL OF A LINEAR

CAR MODEL

Fourpaths(sinus shaped, lane change, sudden change of direction and smooth

random path) were simulated and tracked with the use of an optimal controller. From

previous works done by Sharp in [1], it is proven that the optimal controller has the

capability to precisely trackreasonable paths.

Dandre [2] has continued the research by tracking the similar paths using

neural networks. The coefficients obtained through the optimal control theory were

taken as the initial weighting parameters for the neural controller. The results proved

that most of the time, neural controllers can perform significantly better than the

conventional optimal controller.

This section is an upgraded version of works done by [2] for a linear car

model. Previously, the network was trained using the online gradient method. Batch

training (Gradient and Quasi-Newton) is now introduced for comparisoa Updated

weights, learning ratesandtimetakenafter final epochs are discussed.

4.1 IMPLEMENTATION USING GRADIENT METHOD

4.1.1 Neural Network Controller Implementation

The controller is set to be a linear, single processing neuron. The input to the

controller is the augmented state z = [x yr]T. x is obtained from the equations of

motionofthe car model while y, is the local lateralpreview errors. The output ofthe

16



neuron is the steering wheel angle, 5SW which was represented by [2], inthe following

formula:

Ssw = w1(k).z1(k)+w2(k).z2(k)+....wn+5(k).zn+5(k) (4.1)

By considering n preview points, there would be 4+n+l weighting parameters

and one bias for the single neuron. The weighting parameters are set in such way as

there arefour non-preview system (states x) and n+1 preview points at instant k. As it

is desired that all path following errors be minimized, the best steering wheel angle

would be zero when the car is moving on a straight path. Thus the biasb is set to zero.

Using linear quadratic cost function, the vehicle performance is evaluated

according to formula (3.3). Fromthe equation, the partial derivatives of the cost with

respect to the augmented state (&&$),$„,&)/dz(k)) and the partial derivatives of

the cost with respect to control variable (dJ(z(k\Sw(k))/S„(k)) can beobtained. As

thecarissupposed to follow thesimulated paths, thecost priorities are set as:

qi=1009q2 = l,Ra=landRl=
ft 0"
0 q2

As was done in previous works, the initial weighting parameters W0 for the

neural controllers were taken from coefficients obtained from the optimal control

theory. Alternatively the initial weighting parameters could also beseteither to zero,

or chosen randomly. However, it is preferred to take the obtained coefficients from

the optimal control theory as it gives the best representation of the path tracking

optimization.

A high learning rate may lead to instability of the algorithm whilst a low

learning rate may cause longer time for the algorithm to converge to desired

performance. By running the simulation for a number of times, the best initial
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learning rates were chosen based on the least maximum y-path error obtained after the

simulation. To ensure an improved performance of the steepest gradient descent

algorithm, the learning rate is allowed to be adaptive, i.e. it is allowed to change

during the training process. By using [4], the learning rate is multiplied by 1.05 ifthe

cost ratio between the present cost and previous cost is less than 1. On the other hand,

it is multiplied by 0.7 ifthecost ratio is more than 1.005.

4.1.2 Simulation by Online Training

In works by Dandre [2], the network was trained for one epoch. One epoch is

equivalent to one whole simulated path length minus the number of preview points.

The preview points are arbitrarily set to 40 for all cases. For some paths, network

training for one epoch would be sufficient, but in some cases, by training for several

epochs, the network performance would be improved, which in turn reduces the

maximum y-path error. The behaviour of the learning rates and the updated weights

per epochs could also be observed. For this section, the number oftraining epochs is

set to five.

A. Sinus Path(at 20nVs, 40preview points)

The path following is as shown in Figure 4.1(i). Initially, after the first epoch,

the maximum steady-state path error is 6.5X10"4 m(Figure 4.1(ii)). At the first epoch,

the learning rate and the updated weights oscillate alittle and significantly reduced to

some steady-state values (Figures 4.1(iii, iv)). By training the network up to five

epochs, the maximum steady-state path error is reduced to 2x10"* m(Figures 4.1 (v)).

The path errors during the first and final epochs are significantly less that the errors

generated by the optimal controller. The learning rates become very small while the
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updated weights settle to some constant values after certain epochs (Figures 4.1(vi,

vii)). The maximum steering wheel angle is 0.2 radians (Figure 4.1 (viii). The

observations for the sinus path are summarized in the following Table4.1:

f .Sinus Path

Initial Learning Rate 0.1

Path Distance 900m

Maximum y-path Error (First Epoch) 6.5X10"4 m

Maximum y-path Error (Final Epoch) 2X10"4 m

Final Learning Rate (First Epoch) 1.1113e-017

Final Learning Rate (Final Epoch) 1.8971e-256

Learning Time (s) - First Epoch 10.215

Learning Time (s) - Final Epoch 48.388

Final Weight (at 10th Point) -0.9813

Table 4.1: Summarized Observationsfor Sinus Path Following

B. Lane Change(at 20m/s,40 previewpoints)

The path following is as shownin Figure 4.2(i). The maximum y-path errors

for the first and final epochs are similar, at 8xl0"3 m(Figure 4.2(h)). Similar to the

sinus path, the learning rate increases andtheupdated weights oscillate a little before

reducing tremendously to steady-state values during the first epoch, as shown in

Figures 4.2(iii, iv). After the first epoch, the learning ratecontinues to decrease while

the updated weights vary insignificantly (Figures 4.2(v, vi)). The maximum steering

wheel angle is shown in Figure 4.2 (vii). Table 4.2 summarizes the whole

observations:
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Ininal Learning Rate
2 1 Jin l bdii|j>ft

Path Distance

Maximum y-path Error (both cases)
Final LearningRate (First Epoch)
Final LearningRate (FinalEpoch)
Learning Time (s) - First Epoch
Learning Time(s) - FinalEpoch
Final Weight (at 10m Point) ~~

0.05

300m
^8xl0"5m

1.3608e-016

7.4652e-075

4.637

16.745

-0.9813

Table 4.2: Summarized ObservationsforLane Change Path Following

C. Sudden Change ofDirection (at20m/s, 40preview points)

The path following is as shown in Figure 4.3(i). The maximum y-path errors

are similar during the first and final epochs (Figure 4.3 (ii)). The neural network

controller has a slightly better performance than theoptimal controller, judging by the

obtained path errors. The behaviour ofthelearning rates and the updated weights are

also parallel tothe behaviours observed from the previous path following (Figures 4.3

(iii - vi)). The summary ofthe observationis as shownin Table 4.3:

J. Snddm CImiijei- «t 1
Initial Learning Rate

hivt linn

0.3

Path Distance 200m

Maximumy-path Error (both cases) 0.065 m

Final Learning Rate (First Epoch) 6.7641e-008

FinalLearning Rate (Final Epoch) 7.2805xl0_i4
Learning Time (s) - First Epoch 3.465

Learning Time (s) ~ Final Epoch 9.955

FinalWeight (at 10m Point) -0.9813

Table 4.3: Summarized Observationsfor Sudden Change ofDirection

D. RandomPath (at 20m/s, 40 previewpoints)

The path following is as shown in Figure 4.4(i). The maximum y-path error

after the first epoch reduces from 3xl0"3 m to 2.48xl0"3 m after the fifth epoch as

shown in Figures 4.4 (ii, iii). The behaviour of the learning rates and the updated
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weights is also parallel to the behaviour observed from the previous path following

(Figures 4.4 (iv- v)). The summary of the observation is as shown inTable 4.4:

4. Random I'.Hli

Initial Learning Rate 0.1

Path Distance

Maximum y-path Error (First Epoch)
Maximum y-pathError(FinalEpoch)
Final Learning Rate (First Epoch)
Final Learning Rate (Final Epoch)
Learning Time (s) - First Epoch
Learning Time (s) - Final Epoch
FinalWeight (at IP"1 Point)

900m

3x10"' m
2.48x10"* m

1.8633x10
F5Z"

5.8885xl0'^&
8.393

40.344

-0.9813

Table 4.4: Summarized Observationsfor Random Path
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Figures 4.1: Sinus Path at 20m/s, 40 preview points

(Solid: NeuralNetwork, Dashed: Optimal Controller)
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Figure 4.1(i): Path Following (follows up until K-n-1)
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Figure 4.1(ii): Maximum y-path error atfirst epoch (blue: neural controller, green:
optimal controller)
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Figure 4. l(iii): Plot ofLearning Rate at First Epoch
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Figure 4.1(iv): Plot ofUpdated Weight at First Epoch
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Figure 4.1(v): Maximum y-path error atfifth epoch
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Figure4.1(viii): Network Output
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Figures 4.2:Lane Changeat 20m/s, 40preview points
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Figure 4.2(v): P/or ofLearning Rate vs. No. OfEpoch
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Figure 4.2(vii): Network Output

25



Figures 4.3: Sudden Change of Direction at 20m/s, 40 preview points
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Figure 4.3(ii): Maximum y-path erroratfirst epoch
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Figure 4.3(iii): Plot ofLearningRateat FirstEpoch
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»lot at Updated Weighi vs. nio. of Epoch
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Figure 4.3(vii): Network Output
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Figures 4.4: Random Path at 20m/s, 40 preview points
(Solid: Neural Network, Dashed: Optimal Controller)
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Figure 4.4(ii): Maximum y-path error atfirst epoch
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Figure 4.4(iv): P/or ofUpdated Weight vs. No. OfEpoch

Figure 4.4(v): P/ttf ofLearning Rate vs. No. OfEpoch
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4.13: Simulation by Batch Training

The gradient method with adaptive learning rate could also be used for

training in batches. The batch size is set to be the total distance of path minus the

number of preview points, while the adaptive rate is set as default using MATLAB

command 'traingda'. The network training will stop either when the maximum

number of epochs is reached or the performance has reached the goal. For this

training, the epochs are set to 10 while the performance goal is set to lxl0"10. As the

network deals with a linear car model, the transfer function that calculates the layer's

output from its input is set as 'purelin'.

A. Sinus Path (at 20m/s, 40 preview points)

Using the similar path (as in Figure 4.1(i)), the maximum y-path error

increases to 3x10"3 m with batch training (Figure 4.5(i)). The neural network

controller has a slightly better performance than the optimal controller judging from

the obtained maximum y-path error. It takes four epochs to converge to the

performance goal (Figure 4.5(ii)). The maximum steering wheel angle remainsat 0.2

m/s (Figure 4.5 (iii)). The training time is however shorter with batch learning as

compared to the online learning.

B. Lane Change and Sudden Change ofDirection (at 20m/s, 40 preview points)

The maximum y-path errors are reduced to 0.0075 m and 0.061 m for lane

changeand suddenchangeofdirection respectively. For both paths, the learningtakes

less than one epoch to achieve the performance goal The maximum steering wheel

angles are similarbetween the batchand onlinetraining. The timestaken for training
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are also shorter. Figure 4.6 and Figure 4.7 illustrate the simulated lane change and

sudden change ofdirection.

C. Random Path (at 20m/s, 40 preview points)

The path following is as shown in Figure 4.8(i). The maximum y-path error is

2.3xlO"3m (Figure 4.8(ii)). The performance goal at 1x10"10 is unachievable even after

more than ten epochs. The maximum steering wheel angle is 0.18 radians, as shown

in Figure 4.8 (iii).
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Figures 4.5: Sinus Path at 20m/s,40 preview points
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Figure4.5(i)- (top):y-path error
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Y PATH FOLLOWING ERROR

iro 150 am

distance, m
YAW ATTITUDE ANGLE ERROR

ISO

distance, m

Figure 4j6(i) - (top): y-path error
Figure4.6(i)- (bottom): Yaw AttitudeAngle Error

STEERING WHEEL ANGLE

-J4 V f-A-

so

100 15Q 3M

distance, m
ATTITUDE ANGLE FOLLOWING

rx-

150

distance, m
20D

Figure 4.6(H) - (top): Steering WheelAngle (Network Output)
Figure 4.6(ii) - (bottomMm/wdMwg/e Following

32

300



Figures 4.7: Sudden Change ofDirection at 20m/s, 40 preview point
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Figures 48: Random Path at 20m/s, 40 preview point
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4.2 IMPLEMENTATION USING QUASI-NEWTON METHOD

4.2.1 Neural Network Controller Implementation

The neural controller is set similarly as described in the previous section. The

algorithm for network training differs in such a way that Quasi-Newton method can

only be trained by batch [6]. According to [7], for a small-scaled network, Quasi-

Newton method would be a good algorithm to use.

One batch is equivalent to one epoch, which is set to be the path distance

minus the preview points. The MATLAB command 'trainbfg' is applied to the

original coding. The one-dimensional minimization using backtracking method is set

as the search routine default. For all four paths, the initial learning rates, initial

weights, number of preview points, speed and path distances are similar to the

previous cases. Similar to the previous batch training, the transfer fimction used for

the network is 'purelin'.

4.2.2 Simulation Results

A. Sinus Path (at 20m/s, 40 preview points)

The maximum y-path error is 3xl0"3m, which is exactly equivalent to the

maximum error obtained from gradient (batch) method (Figure 4.9(i)). However, the

optimal controller has a slightly better performance than the neural controller. The

maximum steering wheel angle is also 0.2 radians as obtained previously (Figure

4.9(h)). However, it takes one epoch less with Quasi-Newton method as compared to

the gradient method for the controller performance to converge to the specified goal

(Figure 4.9(iii)). Table 4.5 summarizes the observations.

35



^^^^^^^^^^^^^^H}gfjggggg^^^^iS^S^i^KKKM
POINTS OF COMPARISON GRADIENT QUASI-NEWTON
Maximum y-path Error 3X10*' 3xl0_i m

Performance 1.02327e-011 1.20082e-011

Epoch to reach target 4 3

Learning Time (s) 8.051 8.011

Weight after lastepoch (at 10th
point)

-0.9812 -0.9812

Table4.5: Comparisonsfor Sinus Path between gradient and Quasi-Newton

B. LaneChange (at 20rn/s, 40 preview points)

The maximum y-path error is 0.0075 m, which is exactly similar to the

observation of the gradient method (batch training), and slightly smaller than the

result obtained through the online training. In comparison to the optimal controller,

the neural controller has a slightly better performance. Both batch simulations only

take less than one epoch to converge to the performance goaL Thetraining time for

the Quasi-Newton is however slightly greater than the gradient method (batch

training), but absolutely less than for theonline training. The final weight updated for

both batch simulations are almost the same, which results in similar network output,

which is the steeringwheelanglehistory. The summarized result is in Table4.6.

POINTS OF COMPARISON

Maximum y-path Error
Performance

Epoch to reach target

Learning Time (s)

Weightafter last epoch (at Iff1
point)

2.1 jne < hjngi-
GRADIENT

0.0075 m
7TT

1.64141x10

Less than 1

2.804

-0.9813

QUASI-NEWTON
0.0075 m

7TT
1.64141x10

Less than 1

2.894

-0.9813

Table 4.6: Comparisons^*Lane Change between gradient andQuasi-Newton
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C. Sudden Change ofDirection (at20m/s, 40preview points)

The maximum y-path error is similar for both batch training, and slightly less

than the previous online training. It takes less than one epoch for both batch

simulations to converge to theperformance goal. Thetime taken with Quasi-Newton

method is however greater than theprevious gradient (batch) method, but less than the

online training time. The final weights obtained for both batchsimulations are almost

the same, which results in almost similar network output Tlie summary is in Table

4.7 below;

J. Sudden C liangv irfDjrvctKiik
1 I* 4 Iftll % 1

\l\JM9Mt~nMlt vr i \jn

Maximum y-path Error 0.061 m 0.061 m

Performance 4.78561e-017 4.78561e-017

Epoch to reach target Less than one epoch Less than one epoch
Learning Time (s) 2.213 3.335

Weightafter last epoch (at ICr*
point)

-0.9813 -0.9813

Table 4.7: Comparisons/or Sudden Change ofDirection between gradient and
Quasi-Newton

D. Random Path (at 20m/s, 40 preview points)

The observations between both batch training methods are similar except that

it takes less training time for the Quasi-Newton method as compared to the gradient

method (both batch and online training). Another significant behaviour is that by

Quasi-Newton, the performance goal could be achieved within only one epoch, but

was unachievable with the gradient method (Figure 4.10). The neural controller has a

slightly better performance than the optimal controller. The observation summary is

as shown in Table 4.8.
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POINTS OF COMPARISON GRADIENT QUASI-NEWTON
Maximum y-path Error 2.3x10_i 3x10"J

Performance Performance goal is
not achieved

1.7641x10""

Epoch to reach target
- Less than one epoch

Learning Time (s) 8.242 8.102

Weigjit afterlast epoch (at l(f
point)

-0.9813 -0.9813

Table 4.8: Comparisonsfor Random Path between gradient and Quasi-Newton
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43 PERCENTAGE OF AVERAGE WEIGHT CHANGE

For all cases, the percentages of average weight change were calculated to see

how much the weights were updated at the last epoch. The formula used is as follows:

Average Weight Change -
i=i

W,NN(i) "OC(i)

w.
oc(i)

xl00%

n

(4.2)

where Wnn is the updated weight by neural network controller

Woe is the original weight ofthe optimal controller, and

n is total number ofweights

The summarized calculation ofthe percentage is as shown in the following

Table 4.9:

Quail-Vwtiin ' (.iddniLt (IS,ifrh) (.r.idicnl (Online)
r-i cm k**\

1) Sinus 46.7337 69.4258 7.6762

2) Lane Change 2.3245 2.3245 3.4057

3) Sudden Change 2.3245 2.3245 7.4521

4) Random Path 12.262 12.2544 3.6942

Table 4.9: Linear CarModel: Percentage ofAverage Weight Change

4.4 DISCUSSIONS

Through online training with gradient method, the final weight oscillates

before decreasing rapidly during the first epoch and later settles to some steady values

in the subsequent epochs. This is in parallel with the behaviour of the learning rates.

As the trial progresses, the learning rates will either jump up or oscillate, depending

on the type ofpath, before decreasing rapidly in the first epoch. For the next epochs,

the rate decreases slowly, which results in insignificant changes to the updated

weights. This in turn led. to similar network output (the steering wheel angle) for the
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successive epochs. However, through few iterations, the path following could be

improved, as proven through the sinus and random paths.

For batch training, although the path following error and the maximum angle

of the steering wheel are similar for gradient and Quasi-Newton methods, the training

time and the ability to converge to the performance goal makes the latter superior to

the former. This proves the theory that although Quasi-Newton requires more

computation in each iteration, it usually converges in fewer iterations.

The percentage of average weight change could be compared between the

three modes of training (gradient-online, gradient-batch and Quasi-Newton) for every

simulated path (Figure 4.9). Ideally, the best neural controller performance (in terms

ofhaving a smaller y-path error as compared to the optimal controller) would have the

highest percentage ofweight change. However, for lane change and sudden change of

direction, the maximum path errors conflict with the obtained average weight change

percentage. The neural controllers for both batch-training methods have better

performances than the gradient-online method. The conflict is due to the fact that

there were more epochs simulated for the online training method as compared to the

batch training methods.

The remark on the average weight change percentage is also inapplicable for

the sinus path. The neural controller with online training method has better

performance than the batch training methods, although the percentage of average

weightchangeof the former is smallerthan the latter. The reasonfor this behaviour is

that in some parameter space, the accumulated weight changes for batch training

become large. As written in [8], this leads batch training to use unreasonably large
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steps, which subsequently results to unstable learning and to the overshooting of

curves and local minima in the error landscape.

The use of batch training, for some paths, can improve the accuracy of the

controller. Apart from that, most ofthetime, batch training involves less training time

than the online training. These results are achievable as the network for the controller

is small scaled (judged by its number of weights).

4.5 CONCLUSIONS

In this chapter, a neural network controller has been implemented and trained

in three different conditions. Each of the three conditions has its own limitations and

capabilities. While it might take longer training time with online training, the

algorithm is able to find a good set ofweights and achieves a global minimum. On the

other hand, even if the batchtraining is proven to be faster and more accurate, it may

not perform very well if the controller network is upgraded to a larger scale.

So far, the car model has been trained with a low speed of 20 m/s, with not so

much effect on the lateral or yaw acceleration. In the next chapter, a new car model is

introduced and it will be trained with a higher speed to yield a non-linear behaviour of

the car.
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CHAPTER 5

NEURAL NETWORK STEERING CONTROL OF A NONLINEAR

CAR MODEL

This chapter is another advancement of works done by [2]. Previously a

nonlinear system was controlled by a non-linear network trained using the online

gradient method. Similar to the linear system discussed in the previous chapter, batch

training (Gradient and Quasi-Newton) is introduced for comparison. Updated weights,

learning rates and time taken after final epochs are considered in the study.

The first part of the chapter examines the learning processes using the

gradient method (online and batch training modes). The second part ofthe chapter

involves learning processes using the Quasi-Newton method. A comparison of

average weight change percentage for the three types oftraining is highlighted in the

third section. The next and final parts of this chapter discuss and conclude the

observation for controlling anonlinear system by nonlinear neural networks.

5.1 IMPLEMENTATION USING GRADIENT METHOD

5.1.1 Neural Network Controller Implementation

The controller is set to be a single processing neuron. As the system to be

controlled is nonlinear, the activation function ofthe neural network is replaced from

the MATLAB command 'purelin' (previously for linear system) to a tan-sigmoid

function Atan-sigmoid function will result in output value to fall within interval [-

1,1]. This function originates from hyperbolic tangent function, which has the same
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shape. As speed is important intraining neural networks, this function is a good trade

off.

As in the linear network, the input to the controller is the augmented state z =

[x yr] . The output of the neuron is the steering wheel angle, S^ which is

represented by:

<L = wi(k).z1(k)+w2(k).z2(k)+... .wn+5(k).zn+5(k) (5.1)

The vehicle performance is evaluated using the linear quadratic cost function

as in Chapters 3 and 4:

J(z(k), Sm (k)) = zT(k).Rvz(k) +<U*)^-<U*) (5.2)

From the equation, the partial derivatives of the cost with respect to the

augmented state {dJiztyXd^k)!dz(k)) and the partial derivatives of the cost with

respect to control variable (^(z(A%£w(*))/<?w(fc)) can beobtained. By knowing the

previous derivatives at time kT, the derivatives of the augmented state and the control

variable withrespect to the weighting vectorw at time(k+l)T canbe determined.

The sensitivity matrices of <£> with respect to the state vector elements,

(d<D/dz(k)) and control variable (d^Vdt^ (k)) have been included in [2], and will

not be repeated in the report. The derivatives of the side forces with respect to the

state vector elements and control variable can be obtained using the MATLAB

function 'diff.

As was done for the linear system, the initialweighting parameters W0 for the

neural controllers were taken from coefficients obtained from the optimal control

theory.

45



5.1.2 Simulation by Online Training

The network is trained for different numbers ofepochs depending on types of

path. For some paths, small number of epochs for network training would be

sufficient, but in some cases, it takes more epochs to improve the network

performance. For all cases, the speed ofthe vehicle issetto 40m/s.

A Sinus Path (40 preview points)

Initially, after the first epoch, the maximum steady-state path error is 1.5xl0'2

m(Figure 5. l(i)). By training the network up to three epochs, the maximum steady-

state path error is reduced to 1.2xl0"2 m(Figures 5.1 (ii)). The path errors during the

first and final epochs are significantly less than the errors generated by the optimal

controller. The learning rates become very small while the updated weights settle to

some constant values after certain epochs (Figures 5. l(iii, iv)). The maximum steering

wheel angle is 0.2 radians (Figure 5.1 (v). The observations for the sinus path are

summarized in the foDowing Table5.1:

I.Sinus Path

No ot Epochs

Initial Learning Rate
Path Distance

0.008

900m
Maximum y-pathError(first epoch)
Maximum y-path Error (final epoch)
Final Learning Rate
learningTime (s)
Final Weight (at 10)

1.5xl(T m

1.2x10-* m
2.869x10"'*

300.231

-0.8712

Table 5.1: Summarized Observationsfor Sinus Path Following
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B. Lane Change (40preview points)

Maximum y-path error decreases from 7xl0*2m in the first epoch to 6xl0_2m

in the final epoch) using the neural controller. However, the maximum y-path error

for the optimal controller is lower than the neural controller even after the final epoch

(Figures 5.2(i, ii).

In terms of yaw attitude angle, the neural controller has better performance

than the optimal controller (Figure 5.2 (iii)). Maximum steering wheel angle is 0.22

radians with neural controller as compared to0.3 radians with optimal controller. The

attitude angle following also has a better performance with the neural controller as

compared to the optimal controller (Figure 5.2 (iv)). The learning rates become very

small while the updated weights settle to some constant values after certain epochs

(Figures 5.2(v, vi)). Table 5.2 below summarizes the wholeobservations:

No ofEpochs 15

Initial Learning Rate
Path Distance

Maximum y-path Error (firstepoch)
Maximum y-path Error (final epoch)
Final Learning Rate
Final Weight (at 10)

0.05

300m

7xl0"2 m
6xl0"zm

1.472e-075

-0.8716

Table 5.2: Summarized ObservationsforLane Change Path Following

C. Sudden Change ofDirection (40preview points)

Judging from the maximum y-path error, the neural controller has better

performance as compared to the optimal controller. Theerror reduces from2.5xl0*2 m

at the first epoch to 2x10~2 mat the last epoch (Figures 5.3(i,ii)). The steering wheel

angle is lower with the neural controller man with the optimal controller (Figure

5.3(iii)). Towards the final epoch, the learning rate decreases to some small values
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resulting in insignificant changes to the updated weights (Figure 5.3(iv, v)). The

summary ofthe observation is as shown in Table 5.3:

3. '-itiduVn C nans? ol Dimlimi

No ofEpochs 5
Initial Learning Rate 0.1

Path Distance 300m

Maximumy-path Error (first epoch) 2.5xl0-2 m
Maximum y-path Error (final epoch) 2x10*2m
Final Learning Rate 6.5631xl0"ls
Final Weight (at 10) -0.8713

Table 5.3: Summarized Observationsfor Sudden ChangeofDirection

D. Random Path (40 Preview Points)

The y-path error decreases from 5xl0"3 mat thefirst epoch to 2xl0-3 m

at the final epoch using the neural controller. However, the errors are similar to the

ones obtained using the optimal controller (Figures 5.4 (i, ii)). The learning rates and

the updated weights posses similar behaviour as in previous cases (Figures 5.4 (iii,

iv)). The summary ofthe observation is as shown in Table 5.4:

4. KfHidnm Pali

No ofEpochs
i

3

Initial Learning Rate 0.1

Path Distance 900m

Maximum y-path Error (first epoch) 5x10*111
Maximum y-path Error (final epoch) 2xi0"zm
Final Learning Rate 3.9622X10"85
Final Weight (at 10) -0.8712

Table 5.4: Summarized Observationsfor Random Path
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Figures 5.1: Sinus Path at 40m/s, 40 preview points

(Dashed: Optimal Controller, Solid: NeuralController)
Y PATH FOLLOWING ERROR, first epoch

SOD

distance, m

LATERAL ACCELERATION at Mass center m/s2

distance, m

Figure 5.1(i) -top: Plot ofy-pathfollowing erroratfirst epoch
Figure 5.1(i) -bottom: Plot ofLateralAcceleration atfirst epoch

Y PATH FOLLOWING ERROR

4O0 SCO

distance, m

Figure 5.1(ii) -top: y-path errorat thirdepoch
Figure 5.1(ii) - bottom: YawAttitudeAngle Error

s

e

3

-I

j, 10"= Plot of i_»sir™r>s Rata

sV \ i \ \

Figure 5.1(iii): Plot ofLearningRate vs. No. OfEpoch
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Plot or Updatoa wBi Qln ws Ma. or 6.

Figure 5.1(iv): Plot ofUpdated Weight vs. No. OfEpoch
STEERING WHEEL ANGLE

ISO

distance, m
ATTITUDE ANGLE FOLLOWING

m> 500

distance, m

Figure 5.1(v) -top: Steering WheelAngle (Network Output)
Figure 5.1(v) -bottom: Attitude Angle Following
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Figures 5.2: Lane Change at 40m/s, 40 preview points
(Dashed: Optimal Controller, Solid: Neural Controller)

ŶPATH FOLLOWING ERROR, firet epoch

100 ^ 16° *»'distance, m
LATERAL ACCELERATION at Masscenter m/s2

-• -, — r

distance, m

Figure 5.2(i) -top: Plot ofy-pathfollowing error atfirst epoch
Rgure 5.2(i) -bottom: Plot ofLateralAcceleration atfirst epoch

YPATH FOLLOWING ERROR

«[U A___ / \ / \ j !

t».i

distance, m
YAW ATTITUDE ANGLE ERROR

100 1BD
distance, m

^Figure 5.2(ii) - top: y-path error atfinal epoch
Figure 5.2(iii) -bottom: Yaw Attitude Angle Error

STEERING WHEEL ANGLE

100 ISO

distance, m
ATTITUDE ANGLE FOLLOWING

DOS *--/-/-- - \SL- : •

distance, m

Figure 5.2(iv) -top: Steering WheelAngle (Network Output)
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Figure 5.2(iv) -bottom: Attitude Angle Following
F^lQri of Csaming Rate

No- of Epoch

Figure 5.2(v): Plot ofLearning Rate vs. No. OfEpoch
FMert of" Updstad Weighl vs tslo. of Epoch

Figure 5.2(vi): Plot ofUpdated Weight vs. No. OfEpoch
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Figures 5.3: Sudden Change of Direction at 20m/s, 40 preview points

(Solid: Neural Network, Dashed; Optimal Controller)

Y PATH FOLLOWING ERROR, first epoch

distance, m

LATERAL ACCELERATION at Mass center m/s2

distance, m

Figure 5.3(i) -top: Plot ofy-pathfollowing error atfirst epoch
Figure 5.3(i) - bottom: Plot ofLateralAcceleration atfirst epoch
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•am
>\

Y PATH FOLLOWING ERROR

u
m-

distance, m
YAW ATTITUDE ANGLE ERROR

distance, m

Figure 5.3(H)-top: y-patherror affinal epoch
Figure 5.3(H) -bottom: Yaw Attitude AngleError

53



•K -o'

STEERING WHEEL ANGLE

distance, m

ATTITUDE ANGLE FOLLOWING

distance, m

Figure 5.3(iu) -top: Steering WheelAngle (Network Output)
Figure 5«3(in) - bottom: Attitude Angle Following

F*loi of Learning Rate

WC-. of" Epoch

Figure 5.3(iv): Plot ofLearning Rate vs. No. OfEpoch
Pin, or Updated W«Ja>il •«'=• *JO- <" EP""1

lO -11

r^io. of ^po = t>

Figure 5.3(v): Plot ofUpdated Weight vs. No. OfEpoch
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Figures 5.4: Random Path at 40m/s, 40 preview points

(Solid: Neural Network, Dashed: Optimal Controller)
Y PATH FOLLOWING ERROR, first epoch

mo soa

distance, m

LATERAL ACCELERATION at Mass center m/s2

400 soa

distance, m

Figure 5.4(i) -top: Plot ofy-pathfollowing erroratfirst epoch
Figure 5.4(i) - bottom: Plot ofLateralAcceleration atfirst epoch

"Bto

Y PATH FOLLOWING ERROR

300 4QO 500 600

distance, m

YAW ATTITUDE ANGLE ERROR

mo soa

distance, m

Figure 5.4(H)- top: y-patherrorat third epoch
Figure 5.4(H) - bottom: Yaw Attitude Angle Error
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Figure 5.4(iii): Plot ofLearning Rate vs. No. OfEpoch
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Figure 5.4(iv): P/of ofUpdated Weight vs. No. OfEpoch

4.13: Simulation by BatchTraining

The simulation is set in the similar manner as in the linear system The batch

size is the total distance ofpath minus the number ofpreview points. The maximum

number ofepochs is 10, and the performance goal is IxlO*10. The preview points are

arbitrarily setto 40 for all cases. The training will stop when the maximum number of

epochs is reached or theperformance goal is achieved.

For all four types ofpaths, the observations are similar. Ahhou^i the obtained

maximum y-path errors are small, the maximum errors are the same between the

neural controller and the optimal controller. Apart from that, the performance goals

are unachievable even if the maximum number of epochs is increased to 20. Tables

and Figures 5.5-5.8 summarize and illustrate the observations obtained from the

training.
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I.Sinus Pain

Initial Learning Rate
Path Distance

Maximumy-path Error
Performance

Epoch to reach target
Learning Time (s)
Final Weight (at ltf" Point)

0.008

900m

0.035 m

0.00108494

Performance goal is not achieved
41.029

-0.8712

Table 5.5:Summarized Observationsfor Sinus Path Following

2.1 iinrCh.iugc

Initial Learning Rate
Path Distance

Maximum y-path Error
Performance

Epoch to reach target
Learning Time (s)
FinalWeight (at l(f Point)

0 05

300m

7xl0'z m
1.25186e-005

Performance goalis notachieved
11.587

-0.8711

Table 5.6: Summarized ObservationsforLane Change Path Following

Initial Learning Rate
Path Distance

Maximum y-path Error
Performance

Epoch to reach target

200m

0.055 m

1.30427e-006

Performance goal is not achieved
6.849

-0.87112
Learning Time (s)
FinalWeight (at 1CT Point)
Table 5.7: Summarized Observationsfor Sudden Change ofDirection

4. Kjnilom PjiIi

Initial Learning Rate

Path Distance

Maximum y-path Error
Performance

Epoch to reach target

0.1

900m

5x10^ m
1.09739e-009

Performance goal is not achieved
47.138

-0.8712
Learning Time (s)
Final Weight (at 1(T Point)

Table 5.8: Summarized Observationsfor Random Path
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Figures 5.5: Sinus Path at 40m/s, 40 preview points

Y PATH FOLLOWING ERROR

distance, m

YAW ATTITUDE ANGLE ERROR

distance, m

Figure 5.5(i) -top:y-path error atfinalepoch
Figure5.5(i)- bottom: Yaw AttitudeAngle Error

STEERING WHEEL ANGLE

403 an gop

distance, m

ATTITUDE ANGLE FOLLOWING
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ZITIISZI

«» 500

distance, m

Figure 5.5(H) - top: Steering WheelAngle (Network Output)
Figure 5.5(ii) - bottom: Attitude Angle Following
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Figures 5.6: Lane Change at 40m/s,40 preview points

Y PATH FOLLOWING ERROR

1G0 160

distance, m
YAW ATTITUDE ANGLE ERROR

distance, m

Figure 5.6(i) -top: y-path error atfinal epoch
Figure 5.6(i) -bottom: Yaw Attitude AngleError

STEERING WHEEL ANGLE

1BO 150

distance, m

ATTITUDE ANGLE FOLLOWING

1BB 15D

distance, m

Figure 5.6(ii) - top: Steering WheelAngle (Network Output)
Figure 5.6(ii) - bottom: Attitude AngleFollowing
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Figures5.7:Sudden ChangeofDirectionat 40m/s, 40 preview points

oca

50 am

TSQEM
c
us
as DtC

Y PATH FOLLOWING ERROR

40 BO BO

distance, m
YAW ATTITUDE ANGLE ERROR

GO

distance, m

Figure 5.7(i) - top: y-path error affinal epoch
Figure 5.7(i) -bottom: YawAttitude Angle Error

STEERING WHEEL ANGLE

60

distance, m
ATTITUDE ANGLE FOLLOWING

60

distance, m

Figure 5.7(ii) - top: Steering WheelAngle (Network Output)
Figure 5.7(ii)- bottom: Attitude Angle Following
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Figures 5.8: Random Path at 40m/s, 40 preview points

Y PATH FOLLOWING ERROR

403 fiOO 603

distance, m

Figure 5.8(i) - top: y-path erroraffinal epoch
Figure 5.8(i) - bottom: Yaw Attitude Angle Error

STEERING WHEEL ANGLE

403 600

distance, m
ATTITUDE ANGLE FOLLOWING

distance, m

Figure 5.8(H) - top: Steering WheelAngle (Network Output)
Figure 5.8(ii) -bottom: Attitude Angle Following
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5.2 IMPLEMENTATION USING QUASI-NEWTON METHOD

5.2.1 Neural Network Controller Implementation

To implement the controller, all details described in the previous section are

adopted. The MATLAB command 'traingda' for the gradient-batch training is

switched to 'trainbfg', which is the command for BFGS Quasi-Newton back

propagation. According to the MATLAB toolbox [6], this command can train any

network provided that its weights, net inputs and transfer functions have derivative

function. Similar for the linear system in the previous chapter, the line search

algorithm to locate the minimum point is the one-dimensional minimization using

Backtracking method.

The maximum number of epochs is set to 10. One epochis exactly one batch,

which is equivalent to the path distance minus the preview points. Forall four paths,

the initial learning rates, initial weights, number of preview points, speed and path

distances are similar to theprevious cases. Similar to the previous batch training, the

transfer function used for the network is tan-sigmoid.

5.2.2 Simulation Results

For all four types of paths, the observations are similar to the previous

gradient-batch method. Although the obtained maximum y-path errors are small, the

maximum errors are the same between the neural controller and the optimal

controller. However by training the network using the Quasi-Newton method, the

performance targets are achievable. Tables and Figures 5.9-5.12 summarize and

illustrate the observations obtained from the training.
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Initial Learning Rate
Path Distance

Maximum y-path Error
Performance

Epoch to reach target
Learning Time (s)

1 Sums P.ilh

0.008

900m

0.035 m

2.531 le-015

47.178

-0.8712FinalWeight (at 10*Point)
Table 5.9: Summarized Observationsfor Sinus PathFollowing

Initial Learning Rate
Path Distance

Maximum y-path Error
Performance

Epoch to reach target
learning Time (s)

2 I jih t hangi
0.05

300m

Txlff2 m
4.77988e-019

1

13.018

-0.8711FinalWeight (at IP"1 Point)
Table 5.10: Summarized Observationsfor Lane Change Path Following

3. Sudden (lunge <>t Duvrdon
Initial Learning Rate

Path Distance
Maximum y-path Error

Performance
Epoch to reach target
Learning Time (s)
Final Weight(at l(f Point)

0 01

200m

0.055 m

1.30427e-006

1

7.14

-0.87112

Table 5,11; Summarized Observationsfor Sudden Change ofDirection

Initial Learning Rate
Path Distance

Maximum y-path Error
Performance

Epoch to reach target
Learning Time (s)

4. Rjudom P.iflt
U.l

900m

5x10*^ m

4.40456e-013

41.41

-0.8712Final Weight (at 10* Point)
Table 5.12: Summarized Observationsfor Random Path
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Figure 5.9: Sinus Path at 40m/s, 40 preview point
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Figure 5.9(i) -top: y-path erroratfinal epoch
Figure 5.9(i) - bottom: Yaw Attitude Angle Error
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distance, m

ATTITUDE ANGLE FOLLOWING

distance, m

Figure 5.9(ii) -top: Steering Wheel Angle (Network Output)
Figure 5.9(i) - bottom: Attitude AngleFollowing

Performance is 2.S311 B-01 5. Goal is 1a-010

1rS
3 Epochs

Figure 5.9(iii): Training Result
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Figure 5.10: Lane Change at 40m/s, 40 preview point
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YAW ATTITUDE ANGLE ERROR

distance, m

Figure 5.10(i) - top: y-patherror affinal epoch
Figure 5.10(i) - bottom: Yaw Attitude Angle Error
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Figure 5.10(ii) - top: Steering Wheel Angle (Network Output)
Figure 5.10(H) - bottom: Attitude Angle Following

Rerfoi-mance is 4.7"7r9BSe-019. Goal is 1e-010

o.a o.s o.e
One Epoch

Figure 5.10(iii): Training Result
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Figure Mis Lam Change at 40m/s, 40 preview point
Y PATH FOLLOWING ERROR

distance, m
JTAW ATTITUDE ANGLEERROR

distance, m

Figure 5.11(i) -top: y-path error atfinal epoch
figure 5.11(i) -bottom: Yaw Attitude Angle Error

STEERING WHEEL ANGLE

distance, rn
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distance, m

Fi^wi«;A°P;*"** "****& (XetworkOutput)Figure 5.11(a) -bottom: AttitudeAngle Following
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Figure 5.11(iii): TrainingResult
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Figure 5.12: Lane Change at 40m/s, 40 preview point
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distance, rn

YAW ATTITUDE ANGLE ERROR

dietaries, m

Figure 5.12(i) -top: y-path error affinal epoch
Figure 5.12(i) -bottom: Yaw Attitude Angle Error
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distance, m

Figure 5.12(H) - top: Steering Wheel Angle (Network Output)
Figure 5.12(H) - bottom: Attitude Angle Following

Parfoimanca is 1.85268«-026. Goal is 1e-0"lQ

O.S O.B O.T OB 0.9
On» Epoch

Figure 5.12(iu): Network Output
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5.3 PERCENTAGE OF AVERAGE WEIGHT CHANGE

To determine weight changes between the original weights obtained through

the linear optimal control theory and the weights at the final epochs, the percentages

of average weight change were calculated. The obtained percentages are useful in

determining whether the networks have experienced 'good' or 'bad' learning.

Learning is considered 'good* if the obtained percentage is high and the neural

controller has better performance than the optimal controller. On the other hand,

learning is 'bad' when the percentage is high but the performance of the neural

controller is similar to or worse than the optimal controller.

The calculation formula is similar as with the linear systems:

"Wo "OC(i>

Average Weight Change =
i=i W,OC(i)

x!00%

n

(5.3)

where Wnn is the updated weight by neural network controller

Woe is the original weight ofthe optimal controller, and

n is total number ofweights

The summarized calculation ofthe percentage is as shown in the following

Table 5.13:

1) Sinus

Qu.iM-Vwtou

(%1
10.4643

(.i.iUu'ritfB.Uch)

10.3694)

(iiiHlirrkl (Online;

r«>
10.5278

2) Lane Change 5.3685 4.5638 37.7701

3) Sudden Change 2.3992 2.2801 25.7712

4) Random Path 8.8116 12.5952 2.9375

Table 5.13: Nonlinear Car Model: Percentage ofAverage Weight Change
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5.4 DISCUSSIONS

From the obtained plots and percentage calculations, it seems that network

training by batch method is not really suitable for nonlinear systems. According to

Barto [12], nonlinear models can generate error surfaces with many local minima.

This makes it impossible for the network to achieve global convergence. Linear

systems, on the other hand, do not face this complexity becauseno matter what fixed

presentation is used, its mean square error is a quadratic function of the parameters

with a unique minimum.

Another reason that may have contributed to inability of batch training to

produce betterresults is due to the behaviour of the method of training itself In batch

training, large accumulated weights after one epoch can lead to unreasonably targe

steps. This in turn will result in unstable learning and to the overshooting of curves

and local minima in the error landscape.

In contrast to the observation obtained in the previous chapter, the

percentages of average weight change tally with the observed plots. Higher

percentage indicates better performance of the neural controller. This means that the

particular network has experience a 'good' training, as have been observed with the

lane change and sudden change of direction.

However, for sinus path, although the percentages of average weight change

vary a little between the three modes of training (gradient - online, gradient - batch

and Quasi-Newton), the controller performances differ. While the maximum y-path

error generated by the neural controller is less than the one generated by the optimal

controller using the online training method, there seems to be no network learning

with the batch mode. The maximum y-path errors between both controllers are the
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same. This is because for an oscillating type of path, network training in batches

accumulates large weight, which results in inaccuracy to follow curving gradient

throughout each epoch. This makes learning become inefficient. While it is safer to

use a higher learningrate for online training, the controller performance generated by

batch training will suffer even more.

Another observation that is worth mentioning is the inability of the vehicle to

follow the path for speed greater than 40 m/s. Many trials on reduction of learning

rate, reduction of sample time and increment of preview points have been done, but

no improvement was achieved. A sensible solution for this matter is probably to

introduce a multilayer network that incorporates tan-sigmoid transfer function in

hidden layer and linear transfer function at the output layer. This will make the

network become more capable with nonlinear system, and the network outputs can

take on any value without limitation to any range.

As observed in the previous chapter, the behaviour of the updated weight is

parallel with the behaviour of the learning rates. Depending on type of path, the

learning rates will either jump up or oscillate, before decreasing rapidly in the first

epoch. In the successive epochs, the rates decrease slowly, having little influence on

the updated weights. This means that as training progresses, the weight changes will

eventually settle to a constant value.
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5.5 CONCLUSIONS

In this chapter, the implementation and the simulation results of a single

processing neuron to control a nonlinear car model have been discussed thoroughly.

Similar to the linear system, the controller has been trained in three different

conditions and compared to the optimal controller.

The simulation by online training gives a better performance than the optimal

controller in terms of maximum y-path errors, maximum steering wheel angle and

yaw attitude angle error. On the other hand, although simulation by batch training

produces acceptable results and shorter training time, there are no performance

improvements when being compared with the optimal controller.

The maximum allowable speed to ensure the vehicle follows the paths in both

modes oftraining is considerably low. Itmight be possible to implement amechanism

that allows the network to reduce speed when the vehicle could notfollow curvatures

and sharp turns, and return to the original speed when the path is smoother.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 CONCLUSIONS

This thesis emphasized comparisons of neural controllers trained in two

different modes: online training (Gradient method) and batch training (Gradient and

Quasi-Newton methods). The neural controllers were implemented to operate both

linear and nonlinear cars, moving on simulated paths. The study also puts much

exposure on behaviour of learning rates and updated weights.

Thecapabilities and limitations of the two modes of training depend on factors

suchas vehicle type (linear or nonlinear), typeof path, sizeof learning rate as well as

number of epochs. A controller that is trained in batch mode can perform really well

in a linear system in such a way that it produces smaller maximum errors (as

compared to the optimal controller) and shorter training time (as compared to online

training).

On the other hand, in nonlinear system, the capability of online training

surpasses the capability of batch training. The neural controller trained by online

training has smaller maximum errors than the optimal controller. The batch training

experienced 'bad learning' in nonlinear system because the performance of the neural

controller remains similar as with the optimal controller, even though the network

weights are updated and changed throughout the epochs. To date, the implemented

neural controller is still unable to deal with the nonlinearity of the car regardless of

different algorithmsused (Gradient and Quasi-Newton methods).
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For both linear and nonlinear systems, the controller performances depend

heavily on suitable selection on learning rates, which enable the updated weights to

converge to the best minimum

6.2 PROPOSALS FOR FURTHER WORK

Several recommendations on future works for expansion and continuation of

the project are as follows:

6.2.1 Additional neural control of the forward speed

This additional feature will enable the car to move in non-constant speed. This

way, the network will reduce the velocity of the car when moving at sharp curves or

turns and return to the original velocity when the path is smoother. Thus better path

following will be achieved.

6.2.2 Improvement of neural network efficiency

The improvement could be achieved by adding extra layers to the network.

Although this addition will increase the network's complexity, it will probably work

very well, because, as written by Tsoukalas and Uhrig [13], the multi-layer networks

have greater representational power than the single-layer network for nonlinear

systems. Apart from that, different search routines for the Quasi-Newton method

could be tried out to improve the efficiency of the network.
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6.2.3 Implementation of different learning process

So far, two types of learning process havebeentried out: Gradient descent and

Quasi-Newton method. It is possible to use other different learning process to

improve the performance of the controller such as conjugate gradient method or

Newton's method.

6.2.4 Implementation of different types of path

It would be interesting to see the car models able to follow paths that have

obstacles suchas holes on the road, children crossing the roador heavy truck ahead of

the car, to name a few.

Taken from[2],otheropportunities for farther research may include:

• Car model could be improved by decoupling right and left wheels on one axle as

well as considering aerodynamic forces.

• Other parameters for performance index J could be introduced such as lateral or

yaw acceleration.

• The sample time and the number of preview points can be decoupled to allow a

suitable selection ofpreview points.
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APPENDIX 1: MATLAB CODE

Neural Control of Linear Car Model (Online Training)

%%%%%%%%%%%%%%%%%%%%%%%%%
% LinearNN.m %

%%%%%%%%%%%%%%%%%%%%%%%%%

dispC —— — --')
dispC One SingleProcessingElement,LinearCar Model ')
disp(« . ')
disp(")
clear all;close all;clc

% forward speed
u=input('which speed ? (using 20 par (default))');
if isempty(u), u=20; dispCUsing u=20m/s (default)'), end

% sampling period T
T=0.05;

% number ofpreview points
n=inputChow many preview points(using20 par (default))');
if isempty(n), n=2/T; disp('Using a number corresponding to lsecahead (default)*), end

%car parameters definition
Cf=120000;
Cr=80000;
a-0.92;
b=L38;
M=1200;

G=17;
Iz=1500;

%%%%%%%%%%%%%%%%%% Road Model Matrices%%%%%%%%%%%%%%%%

D=[zeros(n,l) eye(n); zeros(l,n+l)];
E=[zeros(n,l); 1];
%E=[0;0;0;0;0;0;0;0;0;1];

%%%%%%%%%%%%%%%%%%%Linear Car Model

%%%%%%%%%%%%%%%%%%%

Linear_car_model
disp(")

%%%%%%%%%%%%%%%%% Linear control gain calculaton
%%%%%%%%%%%%%%%
%cost prioritites(Priorityis on PATHFOLLOWING)
Q=[100 0;

0 1];
R2=l;
%compute the LQG gain Kt
LQRgain

77



%%%%%%%%%%%%%%%%%%%%Linear cost parameters

%%%%%%%%%%%%%%%
%the cost to be minimised is the folowing one :
%J=Z(:,k)'*Rlcost*Z(:,k)+delta(k)'*R2cost*delta(k)

Rlcost=Rl;
R2cost=R2;

tic % Start a stopwatch timer
disp(' Loading path information ')

%%%%%%%%%%%%%%%% %%%Path information
%%%%%%%%%%%%%%%%%%%
for epoch =1:5 %Setting iteration to 5times

if epoch = 1
circuits_2
else

circuit_iterations
end

[K,nb] =size(yref) %Array size for yref

%%%%%%%%%%%% State definition &initialisation %%%%%%%%%%%%%%
%At each tiime step, a new global frame is defined
%The state is based on aframe comprising the local xand y-axes ofthe vehicle

% Z=[ local lateral displacement v ]
% [ vdot ]
% [ local angle phi ]
% [ phidot ]
% [ local lateral preview errors ]

%The notations Aand Brepresents the optimal controller and
%the single processing element respectively.

ZA = zeros(4+n+l,K-n-l);
ZA(l,l) = yref(l);
ZA(3,1) = (yref(2) -yref(l))/(ii*T);
ZA(4+l:4+n+l,l) =yref(l:n+l)';

ZB = zeros(4+n+l,K-n-l);
ZB(l,l) = yref(l);
ZB(3,1) = (yrefi:2) - yref(l))/(u*T);
ZB(4+l:4+n+l,l) = yref(l:n+l)';

%augmented E matrx

Ebis=[zeros(4,l);E];

%%%%%%%%%%%%%%%% Paramaters Initialisation %%%%%%%%%%%%%%%%
%sensitivity functions initialized to 0

dzdw = zeros(n+5,n+5); %
dudw = zeros(l,n+5); %
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dJdw = zeros(l,n+5); %tobemultiplied with gama toobtain deltaw for gradient
mtd

prevdJdw= zeros(l,n+5);
deltaw = zeros(l,n+5); % to beadded to w to obtain w(k+l)
prevdeltaw - zeros(l,n+5);

%other parameters
phiA(lHyref(2)-yref(l))/(u*T);
phiB(l)=(yref(2)-yref(l))/(u*T);

deltaA(l)=0;
deltaB(l)=0;

lateral_accelerationA(1)=0;
lateral_accelerationB(l)=0;

global_positionA(l)=ZA(l,l);
globalj>ositionB(l)=ZB(l,l);

ZinitA = zeros(4+n+l,l);
ZinitB = zeros(4+n+l,l);

ZstepA = zeros(4+n+l, 1);
ZstepB = zeros(4+n+l, 1);

%%%%%%%%%%%%%%% Neural network implementation%%%%%%%%%%%%%
disp(' neural network implementation ')

%choose an inputlayer with n+4 (number of states) neurons
input=[-50*ones(n+5,l)50*ones(n+5,l)];

%net=newfT(input,1,{'tansig'});
net=newlin(input,1);

%initialize thevector W(:) containing allweights and biases,
if epoch =1

forjg=l:4+n+l
W(jg)=Kt(jg); %Weight based coeff obtained from optimal Ctrl theory
W_init=W; %Storing the initial weight
end

%fixed learning rate
gama=0.1;
gama_imt=gama; %Storing the initial learning rate
gama_next(l )=gama;

else
W=WJast; %Last Updated Weight from Previous Epoch
gama=gamajast; %Last Updated Learning Rate from Previous Epoch
gama_next(l) = gama;

end

%initialize neural network weightings

net.IW{U}-W;
net.b{l}=[0];

toe % reads the stopwatch timer
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dispC mainloop ')
tic % starts another stopwatch timer

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MAIN LOOP %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fork=l:K-n-l

%definition ofa new global frame based onlocal x and yaxes ofthe car

% definition of the states of the car

ZinitA = ZA(:,k);
YdotA = ZA(2,k);

ZinitB = ZB(:,k);
YdotB = ZB(2,k);

ifk>l
ZinitA(2) =ZinitA(2)-u*sin((phiA(k)-phiA(k-l))); %the local y-axis

changed
ZinitB(2) = ZinitB(2)-u*sin((phiB(k)-phiB(k-l)));
%ZinitC(2) =ZinitC(2)-u*sin((phiC(k)-phiC(k-l)));

else

ZinitA(2)- 0;
ZinitB(2)= 0;
%ZinitC(2)= 0;

end

% due to thechoice oftheframe, absolute positions become zero
ZinitA(l) = 0;
ZinitA(3) = 0
ZinitB(l) = 0
ZinitB(3) = 0

% absolute to relative roaddata transformation

local_yrefs = yref(k:k+n+l);

forj = l:(n+2),
local_yrefsA(i) = local_yrefs(j) - global_positionA(k)-...
(j-l)*phiA(k)*u*T;
local_yrefsB(j) = local_yrefsQ - global_positionB(k> ...
(j-l)*phiB(k)*u*T;

end

%definition ofthe remaining states (preview path errors)
ZinitA(4+l:4+n+l) = local_yrefsA(l:n+l);
ZmitB(4+l:4+n+l) = local_yrefsB(l:n+l);

% %%%%%%%%%%%%%%% %%%%state error
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epsA=ZinitA;
epsB=ZinitB;

%%%%%%%%%%%%%%%%%%% steer angle
%%%%%%%%%%%%%%%%%%%%

deltaA(k) = -Kt*epsA;
deltaB(k) = sim(net,-epsB);

%state update

ZstepA = A*ZinitA+ B*deltaA(k) + Ebis*local_yrefsA(n+2);
ZstepB = A*ZinitB+ B*deltaB(k) + Ebis*local_yrefsB(n+2);

%%%%%%%%%%%%%%%%%%%%%%%
% Weighting update %

%%%%%%%%%%%%%%%%%%%%%%%%

%dudw(k) calculation
dudw= -(ZstepB1 + W*dzdw);

%dJdw(k) calculation and keeping theprevious derivative ofthe cost
prevdJdw=dJdw;
dJdw=2*ZstepB'*Rlcost*dzdw+2*deltaB(k)*R2cost*dudw;

%dzdw(k+l) calculation
dzdw=A*dzdw+B*dudw;

%adaptive learning rate - to improve convergence speed and accuracy

if dJdw/prevdJdw<l % Cost ratio
gama=1.05*gama;

end

if dJdw/prevdJdw>l. 005
gama=0.7*gama;

end
deltaw=-gama*dJdw; % value fordeltaw
gama_next(k+l) = gama;

%weighting update
W=W+deltaw; % Incremental training
net.IW{l,l} = W;

%%%%%%%%%%%%%%% END OFWEGHTINGS UPDATE%%
%%%%%%%%%%%%

%lateral_acceleration calculation
lateral_accelerationA(k+l) =(ZstepA(2,l)-YdotA)/T+u*ZstepA(4,l);
lateraLaccelerationB(k+l) =(ZstepB(2,l)-YdotB)/T+u*ZstepB(4,l);

%update absolute positions
global_positionA(k+l) =global_positionA(k) +u*T*phiA(k) +ZstepA(I,l);
global_positionB(k+l) - global_positionB(k) +u*T*phiB(k) +ZstepB(U);
phiA(k+l) =phiA(k) +ZstepA(3,l);
phiB(k+l) = phiB(k) + ZstepB(3,l);
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%store the state

ZA(:,k+l) = ZstepA;
ZB(:,k+l) = ZstepB;

end

if epoch ==1
plot_plot
end

toe

gama_last = gama_next(K-n);
gama_end(epoch) = gamajast;
W_last = W;
W_end(epoch,l:4+n+l) = W_last(l,l:4+n+l);
end

Ws = W_init+0.0001;
xyz=[];
forr=l:jg;

% xyz(r)=(W_lastB(r)-W_initB(r));
xyz(r)=abs((netIW{l,l}(r)-Ws(r))AVs(r))*100;

end

weight_change=(sum(xyz))/jg;

%%%%%%%%%%%%%%%%%% END OF MAIN LOOP

%%%%%%%%%%%%%%%%%

figure(2)
Plot(gg)
xlabel('No. ofEpoch');
ylabel('Learning Rate');
title('Plot ofLearning Rate')
grid on

figure(3)
wwl=W_end(:,10)'
ww = [Winit(lO) wwl];
figure(3)
plot(ww)
xlabel('No. of Epoch);
ylabelfWeight');
title('Plot of Updated Weightvs No. of Epoch')
grid on

Plottings2inoneshot

%%%%%%%%%%%%%%%%%%%END OF LinearNN.m

%%%%%%%%%%%%%%%%%

82



APPENDIX 2: MATLAB CODE

Neural Control ofNonlinear Car Model (Batch Training)

%%%%%%%%%%%%%%%%%%%%%o/0o/oo/oo/oo/o

% NonLinearCarNN.m %
%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(' >\
disp(' NN with 1neuron, NON Linear Car Model ')
disp(' »\
disp(");
clear all;close all;

% forward speed
u=input('which speed ? (using 20par(default))');
if isempty(u), u=20; disp(*Using u=20m/s (default)'), end

% sampling period T
T=0.05;

% numberof preview points
n=inputChow many preview points (using 20par (default))');
ifisempty(n), n=2/T; dispfUsing anumber corresponding to 2sec ahead (default)'), end

%car parameters definition
Cf=0.8*282240;
Cr=0.8*188160;
a=0.92;
b=1.38;
M-1400;
G=17;
Iz=3040;

%Magic Formula Parameters
bm=17.5; %magic formula stifmess parameter, one tyre
cm=1.68; %magic formula shape parameter, one tyre
dmfM).8*4800; %=3840
dmr=0.8*3200; %=2560
em=0.6; %magic formula curvature parameter, one tyre

%%%%%%%%%%%%%%%%% Road Model Matrices
%%%%%%%%%%%%%%%%%%

D=[zeros(n,l) eye(n);
zeros(l,n-M)];

E=[zeros(n,l); 1];

%%%%%%%%%%%%%%%%%%Linear Car Model
%%%%%%%%%%%%%%%%%%%
Linearcarmodel

%dispC)
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%%%%%%%%%%%%%%%%% Linearcontrol gaincalculaton
%%%%%%%%%%%%%%%
%cost prioritites
Q=[100 0;

0 1];
R2=l;

%compute the LQGgainKt
LQRgain

%%%%%%%%%%%%%%%%%%%% Linear cost Parameters
%%%%%%%%%%%%%%%
%the cost to be minimised is the folowing one :
%J=Z(:,k)'*Rlcost*Z(:,k)+delta(k)'*R2cost*delta(k)

Rlcost=Rl;
R2cost=R2;

tic

disp(' Loading path information ')

%%%%%%%%%%%%%%%%%% pathinformation
%%%%%%%%%%%%%%%%%%%%
circuits_2
[K,nb] = size(yref) %Array size for yref

%%%%%%%%%%%%% %%%% State definition &initialisation
%%%%%%%%%%%%%%

%The augmented state comprises the states of the car and the states ofthe road model
%The notations Aand Brepresents the optimal controller and
%thesingle processing element respectively.

ZA = zeros(4+n+l,K-n-l);
ZA(l,l) = yref(l);
ZA(3,1) = (yref(2) - yref(l))/(u*T);
ZA(4+l:4+n+l,l) = yref(l:n+l)';

ZB = zeros(4+n+l,K-n-l);
ZB(l,l)=yref(l);
ZB(3,1) = (yref(2) -yref(l))/(u*T);
ZB(4+l:4+n+l,l) = yref(l:n+l)';

%augmentedE matrix
Ebis=[zeros(4,l);E];
%%%%%%%%%%%%%%%%% Paramaters Imtialisation
%%%%%%%%%%%%%%%%%

dzdwB = zeros(n+5,n+5);
dudwB = zeros(l,n+5);
dJdwB = zeros(l,n+5);
prevdJdwB = zeros(l,n+5);
deltawB = zeros(l,n+5);
prevdeltawB = zeros(l;n+5);
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%other parameters
phiA(l)=(yref(2)-yref(l))/(u*T);
phiB(l)=(yref(2)-yref(l))/(u*T);

deltaA(l)=0;
deltaB(l)-0;

lateral_accelerationA(1)=0;
lateral_accelerationB(1)=0;

global_positionA(l)=ZA(l,l);
global_positionB(l)=ZB(l,l);

ZinitA = zeros(4+n+l,l);
ZinitB = zeros(4+n+l,l);

ZstepA = zeros(4+n+l, 1);
ZstepB = zeros(4+n+l, 1);

%%%%%%%%%%%%%%%partial derivative ofthe side forces
%%%%%%%%%%%%%%%

syms varl % symbolic steer angle
syms var2 % symbolic local speed
syms var3 % symbolic rate

%slip angles
alphaf=var1/G-atan((var2+a*var3)/abs(u));
alphar=-atan((var2-b*var3)/abs(u));

%front and rear lateral forces

Fyf=2*dmf*sin(cm*atan(bm*alphaf-em*(bm*alphaf-atan(bm*alphaf))));
Fyr=2*inr*sm(cm*atan(bm*alphar-em*(bm*alphar-atan(bm*alphar))));

%partial derivatives
dFyfdu-difE(Fyf5varl);
dFyfdx2=diff(Fyf,var2);
dFyfdx4=diff(Fyf,var3);
dFyrdx2=difRTyr!var2);
dFyrdx4=diff(Fyr,var3);

%%%%%%%%% Neural network implementation: single processing element
0/ 0/0/ 0/ 0/ 0/ 0/ 0/ 0/
/o /o /o /o /o /o /o /o /o

dispC neural network implementation ')

%choose an input layer with n+5 (number ofstates) neurons
inputB=[-50*ones(n+5,l)50*ones(n+5,l)];

net=newff(inputB, 1,{'tansig'},'trainbfg');
nettrainParam.searchFcn = 'srchbac';
net.trainParam.lr = 0.008;
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net.trainParam.epochs = 20;
net.trainParam.show = 1;
net.trainParam.goal = le-10;

%initiaUze the vector W(:) containing all weights and biases.
forjg=l:4+n+l
WB(jg)=Kt(jg);
W_init=WB;
end

%initiaUze neural network weightings
net.IW{l,l}=WB;
netb{l}=[0];

toe

dispC main loop ')
tic

% MAIN LOOP %
%%%%%%%%%%%%%%%%%%%%%%%%%^^^

fork=l:(K-n-l)
%Weight_nextB(k,4+n+l)=WB(l,4+n+l);

%definition ofanew global frame based on local xand y-axes
% definition of the states of the car

ZinitA = ZA(:,k);
YdotA = ZA(2,k);

ZinitB = ZB(:,k);
YdotB = ZB(2,k);

if k>lZinitA(2) =ZinitA(2)-u*sin((phiA(k)-phiA(k-l))); %the local y-axis changed
ZinitB(2) =ZinitB(2)-u*sin((phiB(k)-phiB(k-l)));

else
ZinitA(2)=0;
ZimtB(2)= 0;

end

%due tothe choice ofthe frame, absolute positions become zero
ZinitA(l) = 0;
ZinitA(3) = 0;
ZinitB(l) = 0;
ZinitB(3) = 0;

%absolute torelative road data transformation
local_yrefs = yref(k:k+n+l);

forj = l:(n+2), . . Ans
local_yrefsA(i) = local_yrefs0 -global_positionA(k)-...
(j-l)*phiA(k)*u*T;
local_yrefsBG) = locaLyrefsQ -global_positionB(k>...
(j-l)*phiB(k)*u*T;
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end
% definition of the remainingstates (previewpath errors)

ZinitA(4+l:4+n+l) = local_yrefsA(l:n+l);
ZinitB(4+l:4+n+l) = local_yrefsB(l:n+l);

%%%%%%%%%%%%%%%%%%%% state error
%%%%%%%%%%%%%%%%%%%%

epsA=ZinitA;
epsB=ZinitB;

%%%%%%%%%%%%%%%%%%% steer angle %%%%%%%%%%%%%%%%%%%%
deltaA(k) = -Kt*epsA;
deltaB(k) = sim(net,-epsB);

%%%%%%%%%%%%%%%%%%%%%%%%0/«%0/°%
% Weighting update single processing element %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

net.IW{l,l}=WB;

%dF3du calculation

dF3duB=[0;
(T/M)*subs(dFyfdu, {varl,var2,var3}, {deltaB(k),ZnutB(2),ZimtB(4)}) ;

0;
(T/Iz)*a*subs(dFyfdu, {varl,var2,var3}, {deltaB(k),ZimtB(2),ZimtB(4)});

zeros(n+1,1)3;

%dF3dz calculation

F3B= [IT ° °'

0 l+(T/M)*(subs(dFyfdx2, {varl!var2,var3}, (deltaB(k),ZinitB(2),ZinitB(4)}) ...
+ subs(dFyrdx2, {var2,var3}, {ZinitB(2),ZimtB(4)})) 0 (T/M)*(

subs(dFyrdx4, {var2,var3}, {ZinitB(2))ZinitB(4)})...
V J +subs(dFyfdx4, {varl,var2,var3},

{deltaB(k),ZinitB(2),ZinitB(4)})) ;

oo l T;

0 (T/Iz)*( a*subs(dFyfdx2, {varl,var2,var3}, {deltaB(k),ZinitB(2),ZinitB(4)}) ...
-b* subs(dFyrdx2, {var2,var3}, {ZinitB(2),ZinitB(4)» ) 0

1+(T/Iz)*( a*subs(dFyfdx4, {varl,var2,var3}, (deltaB(k),ZinitB(2),ZinitB(4)})...
V VV -b* subs(dFyrdx4, {var2,var3},

{ZinitB(2),ZinitB(4)})) ];

dF3dzB=[F3B zeros(4,n+l); zeros(n+l,4) D ];
dzdwB=dF3dzB*dzdwB+dF3duB*dudwB;

%%%%%%%%%%%%%%% END OFWEGHTINGS UPDATE
%%%%%%%%%%%%%%
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%side forces

%Fl=2*dm*sin(cm*atan(bm*alpha-em*(bm*alpha-atan(bm*alpha))));

front„SLip^angleA=deltaA(k)/G-atan((ZinitA(2)+a*ZinitA(4))/u);
Z13A=bm*front_slip_angleA-atan(bm*front_slip_angleA);

FyfrontA=2*dmf*sin(cm*atan(bm*front_slip_angleA-em*Z13A));

rear_slip_angleA=-atan((ZinitA(2)-b*ZinitA(4))/u);
Z25A=bm*rear_slip_angleA-atan(bm*rear_sIip_angleA);

FyrearA=2*dmr*sin(cm*atan(bm*rear_slip_angleA-em*Z25A)); .

front_slip_angleB=deltaB(k)/G-atan((ZinitB(2)+a*ZinitB(4))/u);
Z13B=bm*iront_slip_angleB-atan(bm*front_slip_angleB);

FyfrontB=2*dnif*sin(cm*atan(bm*front_slip_angleB-em*Z13B));

rear_slip_angleB=-atan((ZinitB(2)-b*ZimtB(4))/u);
Z25B=bm*rear_shp_angleB-atan(bm*rear_slip_angleB);

FyrearB=2 *dmr*sin(cm*atan(bm*rear_slip_angleB-em*Z25B));

%acceleration equations
%dirTerential_equation & state update

ZstepA(l)=ZinitA(l)+T*ZinitA(2);
ZstepA(2)=ZinitA(2)+T*((l/M)*^yfrontA+FyrearA));
ZstepA(3)=ZinitA(3)+T*ZinitA(4);
ZstepA(4)=ZinitA(4)+T*(l/Iz)*(a*FyfrontA-b*FyrearA);

ZstepB(l)=ZinitB(l)+T*ZinitB(2);
ZstepB(2)=ZinitB(2)+T*((l/M)*(FyfrontB+FyrearB));
ZstepB(3)=ZinitB(3)+T*ZinitB(4);
ZstepB(4)=ZimtB(4)+T*(lAz)*(a*FyfrontB-b*FyrearB);

%lateral_acceleration calculation
lateral_accelerationA(k+l) = (ZstepA(2,l)-YdotA)/T+u*ZstepA(4,l);
lateraI_accelerationB(k+l) = (ZstepB(2,l)-YdotB)/T+u*ZstepB(4,l);

%update absolute positions
global_positionA(k+l) = global_positionA(k) + u*T*phiA(k) + ZstepA(l,l);
global_positionB(k-i-l) = global^ositionB(k) + u*T*phiB(k) + ZstepB(l,l);

phiA(k+l) = phiA(k) + ZstepA(3,l);
phiB(k+l) = phiB(k) + ZstepB(3,l);

%store the state

ZA(:,k+l) = ZstepA;
ZB(:,k+l) = ZstepB;

end
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net = train(net,-epsB);
toe

Ws = W_init+0.00001;
xyz=[];
forr = l:jg;

xyz(r)=abs((net.rW{l,l}(r)-Ws(r))/Ws(r))*100;
end
weight_change=sum(xyz)/jg;

%%%%%%%%%%%%%%%%% END OF MAIN LOOP
%%%%%%%%%%%%%%%%%%

Plottings2inoneshot

%%%%%%%%%%%%%%%%%%END OF NonLinear CarNN
%%%%%%%%%%%%%%
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