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ABSTRACT 

Medical imaging has been contributing to dermatology by providing computer-based 

assistance by 2D digital imaging of skin and processing of images. Skin imaging can be more 

effective by inclusion of 3D skin features. Furthermore, clinical examination of skin consists 

of both visual and tactile inspection. The tactile sensation is related to 3D surface profiles and 

mechanical parameters. The 3D imaging of skin can also be integrated with haptic 

technology for computer-based tactile inspection. The research objective of this work is to 

model 3D surface textures of skin. A 3D image acquisition set up capturing skin surface 

textures at high resolution (~0.1 mm) has been used. An algorithm to extract 2D grayscale 

texture (height map) from 3D texture has been presented. The extracted 2D textures are then 

modeled using Markov-Gibbs random field (MGRF) modeling technique. The modeling 

results for MGRF model depend on input texture characteristics. The homogeneous, spatially 

invariant texture patterns are modeled successfully. From the observation of skin samples, we 

classify three key features of3D skin profiles i.e. curvature of underlying limb, wrinkles/line 

like features and fine textures. The skin samples are distributed in three input sets to see the 

MGRF model's response to each of these 3D features. First set consists of all three features. 

Second set is obtained after elimination of curvature and contains both wrinkle/line like 

features and fine textures. Third set is also obtained after elimination of curvature but 

consists of fine textures only. 

MGRF modeling for set I did not result in any visual similarity. Hence the curvature of 

underlying limbs cannot be modeled successfully and makes an inhomogeneous feature. For 

set 2 the wrinkle/line like features can be modeled with low/medium visual similarity 

depending on the spatial invariance. The results for set 3 show that fine textures of skin are 

almost always modeled successfully with medium/high visual similarity and make a 

homogeneous feature. We conclude that the MGRF model is able to model fine textures of 

skin successfully which are on scale of~ 0.1 mm. The surface profiles on this resolution can 

provide haptic sensation of roughness and friction. Therefore fine textures can be an 

important clue to different skin conditions perceived through tactile inspection via a haptic 

device. 
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ABSTRAK 

Imej medik memainkan peranan penting di dalam bidang perubatan dermatologi dengan 

menyediakan bantuan berasaskan komputer yang melibatkan imej dijital 2 dimensi dan 

pemprosesan imej. Sistem berasas imej untuk dermatologi didapati akan lebih efektif apabila 

karakteristik 3 dimensi daripada kulit turut disertakan di dalam analisis. Pemeriksaan 

klinikal terhadap kulit terdiri kepada pengamatan secara visual and sentuhan. Sensasi 

sentuhan terhadap kulit berhubung kait dengan parameter permukaan 3 dimensi dan 

parameter mekanikal. Imej 3 dimensi daripada kulit juga dapat digabungkan dengan 

teknologi 'haptic' untuk pemeriksaan secara sentuhan berasaskan komputer. Objektif 

penelitian ini adalah untuk menghasilkan model 3 dimensi tekstur permukaan kulit. Proses 

pengambilan imej 3 dimensi dilakukan pada ketelitian yang tinggi ( -0.1 mm). Sebuah 

algoritma digunakan untuk mendapatkan informasi grayscale 2 dimensi (informasi 

ketinggian permukaan) daripada data 3 dimensi. Tekstur yang diekstrak kemudiamiya 

dimodelkan menggunakan teknik 'Markov-Gibbs random field modeling'. Hasil pemodelan 

menggunakan MGRF bergantung kepada karakteristik tekstur masukan. Pola yang seragam 

telah beljaya dimodelkan. Dari pengamatan terhadap contoh kulit sihat dan luka yang 

didapatkan dari pesakit, kami telah mengklasifikasikan 3 parameter utama kulit kepada 

lekukan, kerutan, dan tekstur mulus kulit. Contoh kulit dikelompokkan kepada tiga 

kelompok untuk mendapatkan gambaran akan tindakbalas MGRF model terhadap setiap 

parameter tersebut. Kelompok pertama terdiri kepada tiga parameter. Kelompok kedua 

didapatkan setelah menghilangkan informasi lekukan dan hanya menyisakan informasi 

kerutan dan tekstur mulus kulit. Kelompok ketiga juga didapatkan setelah menghilangkan 

informasi lekukan, namun hanya menyisakan informasi tekstur mulus kulit. 

Model MGRF untuk kelompok pertama tidak menghasilkan kesamaan secara visual. 

Lekukan tidak dapat dimodelkan dengan baik dan selalu menghasilkan tekstur yang tidak 

seragam. Pada kelompok kedua, kedutan dapat dimodelkan dengan menggunakan persamaan 

'low/medium visual' bergantung kepada perbezaan 'weak/moderate spatial' karakteristik ini. 

Hasil dari pemodelan kelompok ketiga menunjukkan bahwa tekstur kulit yang mulus sentiasa 

dapat dimodelkan dengan baik menggunakan persamaan 'medium/high visual' dan dapat 
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disimpulkan sebagai karakteristik yang seragam. Kami menyimpulkan bahawa pemodelan 

tekstur mulus kulit dalam skala -0.1 mm dapat digunakan pada algoritma pembentukan 

tekstur untuk aplikasi 'haptic'. Karakteristik permukaan pada tingkat ketelitian ini 

menyediakan sensasi 'haptic' atas tingkat kekasaran dan geselan. Oleh itu tekstur merupakan 

informasi penting bagi kondisi kulit yang berbeza yang dirasakan melalui sentuhan 

menggunakan alat 'haptic'. 
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Chapter 1. Introduction 1 

Chapter 1 

Introduction 

1.1 Background 

Medical imaging has been contributing to dermatology by providing computer-based 

assistance in detection, classification and monitoring of skin diseases. It generally involves 

digital imaging of skin lesions (diseased skin) and their processing. The major topic of the 

research in this context has been the early detection of skin cancer and its classification from 

other similar looking diseases as skin cancer poses life threats in its later stages. Several 

techniques have been developed over the period of last fifteen years for the 2D images 

obtained in infra-red and monochromatic light in addition to normal RGB images. This prior 

research concentrates on analyzing the color content of 2D images for extraction of color, 

texture and edge/border features to draw conclusions about skin condition. For example, 

Figure 1-1 shows two examples where 2D images have been analyzed based on color and 

texture characteristics to segment diseased and healthy skin. However, the skin color is not 

the only feature changed by the presence of a disease. Several other features e.g. skin surface 

texture, roughness/softness, hardness/smoothness are also effected. For example, the skin is 

inflamed in diseases liker allergies, eczema, psoriasis. It is damaged or removed in skin 

bums, wounds and ulcers. The overall skin texture is changed due to ageing, sunlight 

exposure or usage of cosmetics. In addition skin can also get hard or soft in several skin 

conditions. Although these features of skin surface and hardness are important clues to the 

precise condition of skin, the conventional 2D imaging of skin is not able to capture them. 
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Figure 1-1: Results for region detection and segmentation of psoriasis lesions from 2D images (Taur 
2002, Taur 20031 

2 

An important advancement in skin imaging is the 30 imaging techniques. Skin features like 

surface textures and roughness are related to surface height profiles 1 which can be obtained 

by 3D imaging and incorporated in analysis to make precise conclusions about skin 

conditions. Several attempts have been made towards 30 image analysis for dermatology e.g. 

monitoring the severity of skin diseases like ulcers and psoriasis which alter the normal skin 

surface. Figure 1-2 shows an example of 3D skin images acquired with laser scanning. 

However, these systems are less in number to those based on 2D imaging and mostly depend 

on extraction of 3D features indirectly, e.g. stereo imaging and image sequences taken from 

different illumination angles, which may result in less precision. It is generally understood 

that the image based systems for dermatology can be more effective if 3D features of skin, 

captured with high precision, are included in the analysis for skin condition. 

(a) (b) (c) (d) 

Figure l-2: (a) Laser scanner (b) surface geometry of skin lesion (c) 2D image (d) combined surface 
geometry & 2D image (reproduced from (Callieri 20031) 

1 In this thesis, the terms 'surface texture' and 'surface profile' are used interchangeably where both terms 
denote the surface heights of an object (skin, in this case) in 3D. 
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Where most of the current computer-based expert systems for dermatology are based on 

visual data, the visual examination of skin is not the only mode of clinical inspection of skin 

diseases. In many cases the tactile inspection i.e. touching the skin is helpful in assessing the 

overall condition of disease. The analysis of skin images for extraction of parameters related 

to tactile inspection still remains unaddressed. It is readily understood that the touch of skin 

is related to its 30 surface profile and other mechanical parameters where color information 

plays no role. The skin surface, its elasticity, stiffness and moisture give the overall sense of 

touch to the examiner. lienee, it can be deduced that the accurate capturing and processing of 

30 surface profiles of skin can not only improve the current image-based systems but also 

provide necessary data for tactile inspection. This data would be critical in any computer­

based application targeting the assistance in tactile inspection of skin condition. 

This thesis proposes the computer-based tactile inspection of skin suggesting the integration 

of haptic technology from virtual environments with 30 imaging of skin to serve the 

purpose. Haptic technology is applied along with virtual environment where it allows 

interaction with virtual objects through devices calted haptic devices/interfaces (See Figure 

1-3 below for examples). 

Figure 1-3 Examples of virtual environments and user Interactions via haptic devices 

ln a haptic virtual environment the user can touch/deform the surface/shape of the virtual 

object as well as move and collide with it to feel the feedback force. The haptic technology 

has been used in medical applications for surgical simulations and long-distance surgery. 

This thesis suggests that the virtual skin can be reconstructed in a virtual environment using 

the 3D surface profiles and mechanical parameters. Thus an expert would be able to touch 

and sense the virtual skin through haptic device. This will make the computer-based tactile 
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inspection possible in situations where the skin cannot be touched directly. In addition, the 

skin features of 3D surface profiles and mechanical parameters can also be an input to 

analysis for non haptic applications to examine the skin condition. Several future haptic 

applications in dermatology can be envisaged based on this computer-based tactile inspection 

of virtual skin. For example, the tete-dermatology can be more comprehensive with inclusion 

of haptic applications where the dermatologists would be able to touch patient's diseased 

skin even though the patient is absent or at distance (See Figure 1-4). It can allow the 

computer assisted training where the tactile inspection of case studies of skin diseases would 

be possible. Similarly it can provide with the tactile inspection of infected or injured skin 

where the direct contact with effected skin for inspection is not possible. Moreover it can also 

enhance the realism of virtual environments containing human objects. For example, in a 

recent piece of work synthetic artificial skin was constructed with tactile characteristics 

similar to real skin to be used with haptic evaluation systems and robots [Shirado 2006]. 

Figure 1-5 shows the envisaged applications of haptic technology for dermatology in future. 

Dermatologist 

Hapbcs 
Devtce 

TACTILE 

Communication Link 

• ... 
Image acquisition 

Figure 1-4: Tele-dermatology with inclusion of Haptic technology 

Patient 
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Haptic applications consist of three major sections, a haptic device, virtual environment 

where the virtual objects are presentwith appropriate haptic display properties (e.g. shape, 

------

Figure 1-S: Envisaged Applications of Haptic technology in dermatology 

surface, friction) and an interaction paradigm to calculate and apply the interaction forces 

between the both. Thus several virtual environments can be created for the same haptic 

device and interaction paradigm. Where many research efforts are targeting the improvement 

in the designs of haptic devices and performance of haptic interaction algorithms (or haptic 

rendering algorithms), the haptic display of real objects with varying shapes and materials in 

a virtual environment with high interaction quality (realism in this case) demands extensive 

research. For example, the haptic displays of organic tissues and fabric like materials have 

been reported [Govindaraj 2003, Acosta 2001]. Similarly, the virtual representation of skin 

with haptic display properties is essential for any haptic application incorporating skin. It 

requires the 30 shape and surface profiles of skin as well as the mechanical parameters of 

surface friction and stiffuess to completely define the skin material. Evidently, these 

properties are to be captured from real human skin and displayed accurately for realistic 

virtual representation. The parameters of friction and stiffness for skin can be obtained 

through mechanical experimentation. However, the capturing of 30 shape and surface 

profiles of skin with high accuracy and their representation for haptic display are challenging 

and has been the main topic of this work. Once gathered from real human skin accurately and 



Chapter 1. Introduction 6 

processed, this 3D data can be used for virtual skin representation and rendered with haptic 

device. 

1.2 Problem Statement 

As discussed above, haptic rendering of skin is a vast, relatively new field with research 

potential in many dimensions where the focus of this work is the 3D geometry of skin. It is 

observed that the overall, large-scale shape feature in 3D for skin is due to the underlying 

limb and is not altered by skin diseases or other factors e.g. ageing, sun exposure, etc. Also, 

the sensation of touch is due to local surface of skin and not the shape of limb. For this 

reason, the shape oflimb in skin geometries is ignored and the local 3D skin surface profiles 

(or skin surface textures) which are altered by skin conditions have been considered. 

However, skin surface textures are viable to change at very small scale in addition to large 

scale, easily perceived wrinkles, wounds, lesions, etc. This will require high-tech 3D image 

acquisition set up able to capture skin surface texture details on this much small scale, at 

resolution as high as -0.1 mm. 

Another aspect of the problem is the representation of skin surface textures in virtual 

environments to be integrated with haptic device. The 3D data are to be processed in a way to 

be integrated with haptic applications. An overview of current haptic technology (Chapter 3) 

tells us that out of key haptic display properties of virtual objects (shape, surface textures, 

friction and stiffness) surface textures are the most difficult to render but most critical for 

realistic perception of touch. This is due to the requirement of force updates at very high 

rates for real time haptic rendering. The surface textures require enormous number of 

calculations with their small scale geometry details and pose a problem in high rate force 

updating. Until now, the popular haptic texture rendering algorithms, ensuring fast force 

calculations, have been similar to bump mapping in computer graphics for texture rendering. 

These algorithms are called 'force mapping'. Hence, any skin surface texture representation 

should also be compatible to these fast rendering algorithms. 

Third and most important aspect of the problem is that how accurately the real surface 

textures of skin, captured by 3D image acquisition set up, can be represented virtually for 
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haptic rendering i.e. to bridge the 3D skin texture acquisition and force mapping algorithms 

with as much accuracy as possible. A similar problem of modeling 3D skin textures can be 

found in computer graphics and animations where skin textures are considered for realistic 

skin rendering or for cosmetic industry to assess the effectiveness of cosmetics. However, 

such applications consider the approximations of real skin textures only which are then 

modeled on animated objects for real-time rendering. For this work, the approximations will 

not suffice as dermatology applications will require detection of minute skin surface changes. 

Therefore this work not only concentrates on 3D image capturing of skin surface textures and 

their modeling for fast haptic rendering algorithms but also on as much accuracy as possible. 

1.3 Research Objectives and Scope of Work 

The objective of this work is to model real 3D skin surface textures which can be used for 

future haptic applications in dermatology. As discussed in last section, the acquisition of 

surface textures should fulfill the requirement of high resolution 3D surface details keeping 

in view the dermatological applications. And the modeling should maintain the accuracy of 

surface details while being compatible to fast haptic texture rendering algorithms. 

First of all, the acquired, high-resolution surface textures are in 3D whereas fast haptic 

texture rendering algorithms (force mapping algorithms) require texture inputs in the form of 

2D grayscale textures called as 'height maps'. In a height map the gray level in 2D 

corresponds to the height in 3D. Therefore, a processing algorithm is presented which 

extracts 2D grayscale textures from acquired 3D images of skin while filtering unnecessary 

geometry details. The 2D grayscale textures extracted from 3D surface textures through this 

algorithm present high visual similarity to real skin. For example, in Figure 1-6 the high 

visual resemblance of extracted 3D surface texture to the original skin can be observed. 
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(a) 3D surface texture without 
skin color 

(b) 2D grayscale texture 
(height aap) 
without skin color 

Figure 1-6: 2D grayscale textures extracted from 3D skin texture 
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The next step is to model the 20 grayscale skin textures using a technique which preserves 

the accuracy of details. The integration of model with haptic applications leaves us with two 

approaches for handling the 20 grayscale textures i.e. deterministic or stochastic. The input 

to haptic rendering algorithms can be both deterministic and stochastic. However, the 

stochastic approach has been basis for fast haptic texture rendering algorithms. The 

stochastic approach involves the drawing of similar texture samples from a given stochastic 

process. It has been proposed that the device need not follow the surface texture exactly (as 

in deterministic approach) for the reason that on such a small scale a user is not able to 

determine exact details of surface textures but only perceives overall roughness and surface 

irregularities. Thus, only an accurate haptic perception to the user is sufficient. A given 

grayscale surface texture can be modeled as stochastic process and rendering any sample of 

the corresponding process will give the similar haptic perception [Fritz 1996, Sirra 1996]. 

In this work, skin textures are modeled using Markov-Gibbs random field (MGRF) modeling 

technique. As it has been discussed before, accurate representation of textures is necessary 

and the modeling should be able to reproduce texture samples with high visual similarity. 

Skin textures pose a type of natural textures and Markov-Gibbs random field modeling has 

been shown to model natural textures successfully [Gimel 1999]. This thesis will present the 

modeling results of skin texture using MGRF model developed by Gimel eta/ [Gimel 1999]. 
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For stochastic modeling, a skin texture is treated as a umque stochastic process with 

corresponding probability distribution. Modeling involves analysis of given texture sample to 

estimate parameters of probability distribution. The model parameters can be stored or 

transmitted to synthesize similar texture samples. 

In this thesis, key features of 3D skin surface textures, namely curvature, wrinkles/lines and 

fine textures, observed from wide variety of skin textures obtained from patients have been 

enlisted as well as results of MGRF modeling for skin textures have been presented. The 

characteristics of these 3D features when appearing in 2D grayscale textures and the 

accuracy with which these skin features are modeled using the Markov-Gibbs random field 

modeling technique have also been discussed. 

According to the above outlined research objectives, the scope of work for this thesis 

includes the following: 

I. Acquisition of 3D surface profiles of skin at high resolution with high accuracy (This 

involves set up for laser scanning and selection of real case studies in collaboration 

with dermatologists) 

2. Extraction of 3D skin surface textures by processing raw 3D data obtained from laser 

scanner and its conversion to 2D textures 

3. Assessing the modeling of2D textures using the technique of Markov-Gibbs Random 

Field Modeling 

4. Developing the programming routines for extraction of skin surface textures and 

MGRF modeling in MATLAB™ 
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1.4 Thesis Organization 

This thesis consists of six chapters. The literature survey is presented in chapters 2 and 3. 

This work is an effort to integrate the existing technologies of Skin Imaging, 3D Computer 

Graphics and Haptic Technology. Hence the literature survey reviews the aspects of these 

areas relevant to this research work. In Chapter 2, 3D imaging and modeling techniques for 

skin have been reviewed. A brief introduction on psoriatic and healthy skin is also included. 

Chapter 3 is devoted to an overview of haptic technology in general and looking into details 

of haptic rendering of surface textures. In Chapter 4, the mathematical background of the 

proposed stochastic modeling technique for this work, Markov-Gibbs random field modeling, 

has been reviewed. Chapter 5 concentrates on the work done for modeling of 3D skin surface 

textures. It also presents the overall framework of modeling, data acquisition and 

preprocessing. The results of modeling the 3D skin textures and their analysis are covered in 

Chapter 5. Finally, Chapter 6 concludes the thesis, presents the contribution of this work and 

discusses possible avenues for further research work. 
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Chapter 2 

Skin Imaging and Modeling 

This chapter gives an overview of skin imaging and modeling techniques. Skin imaging and 

modeling analyze color and surface characteristics of skin and has applications in 

dermatology, computer graphics and cosmetic industry. The literature review shows that 3D 

image analysis of skin is not as much developed as 2D imaging and that the modeling of skin 

for computer animation is based on approximations of skin textures only. 

The first section of chapter describes the structure of healthy and, under scope of this work, 

psoriatic skin. The structure and physiology of healthy and psoriatic skin are covered in 

sections 2.1 and 2.2. Section 2.3 overviews imaging techniques of skin, both 2D and 3D, and 

their applications in both dermatology and cosmetic industry. Several important image 

acquisition problems for 2D are also discussed which can be avoided by applying advanced 

3D imaging. Apart from capturing of skin imaging, modeling and re-construction of skin 

features are also important for computer animation. Modeling of 3D features of skin on 

animated characters provides with more realistic rendering and has been addressed 

extensively in recent years. Section 2.4 discusses some of the work done in 3D modeling of 

skin features for computer graphics. 
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2.1 Healthy Skin 

Human skin is the largest organ of human body. It makes around 10% of body mass and 

regulates the inflow and outflow of different materials from body e.g. heat and water. It also 

protects body from harmful chemicals and microorganisms by blocking them. The structure 

and function of human skin are categorized into four main layers (Figure 2.1 ). 

Figure 2-1: Structure of healthy skin 

1) The Subcutaneous Fat Layer/ Hypodermis 

EPIDERMJS 

}

. SUBCUIANEClJS 
TIS$UE 

The subcutaneous fat layer, or hypodermis, bridges between the overlying dermis and the 

underlying body constituents. This layer principally serves to insulate body and to provide 

mechanical protection against physical shock. It also carries the principal blood vessels and 

nerves to the skin. 

2) The Dermis/ Corium 

The dermis (or corium) is typically 3 to 5 millimeter thick and is the major component of 

human skin. It is composed of a network of connective tissue, predominantly collagen fibrils 
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providing support and elastic tissue providing flexibility. The dermis has numerous structures 

embedded within it; blood and lymphatic vessels, nerve endings, hair follicles, sebaceous 

glands, and sweat glands. 

3) The Epidermis 

The epidermis is a complex multi-layered membrane. It contains four histologically distinct 

layers (Figure 2-1 ). The stratum corneum, comprising dead cells, provides the main barrier 

and hence is often treated as a separate layer. 

The cells of stratum basale or basal layer are similar to those of other tissues within body and 

are metabolically active. This layer thus contains the only cells (keratinocytes) within 

epidermis that undergo cell division. On average, dividing basal cells replicate once every 

200 to 400 h. In addition to the keratinocytes, the stratum basale contains Melanocytes which 

synthesize the pigment melanin. One other specialised cell type is found within the basale 

layer, the Merkel cell. These cells are found in greatest numbers around the touch sensitive 

sites of the body, such as the lips and fingertips and are associated with nerve endings and 

cutaneous sensation .. As they pass from the stratum basale to the stratum granulosum (or 

granular layer), the keratinocytes continue to differentiate, synthesize keratin and start to 

flatten. This granular layer is only one to three cell layers thick. The stratum lucidum is the 

layer in which the cell nucleus disintegrates and there is an increase in keratinisation of the 

cells with further morphological changes such as cell flattening. 

4) The Stratum Corneum/ Horny Layer 

The stratum corneum (or horny layer) is the final product of epidermal cell differentiation, 

and though it is an epidermal layer, it is often viewed as separate. The stratum corneum 

serves to regulate water loss from body whilst preventing the entry of harmful materials, 

including microorganisms. Typically, it takes 14 days for a daughter cell from the stratum 

basale to differentiate into a stratum corneum cell, and the stratum corneum cells are 

typically retained for a further 14 days prior to shedding, thus making a 24-28 days cycle of a 

normal skin cell division. 
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2.2 Psoriasis 

Psoriasis [pronounced sore-EYE-ah-sis] is a common skin disease worldwide. It appears on 

skin as raised, red patches or lesions covered with silvery white buildup of dead skin cells, 

called 'scales' (Figure 2-2). The disease does not pose fatal threats like skin cancer but it 

results in disfiguring lesions on skin and the quality of social life of patients is deteriorated 

badly. 

Psoriasis can be well-defined as a 'non contagious, chronic, lifelong, immune-mediated, 

genetic' disease. Non contagious means that the disease is not spread by physical contact 

with patients. Chronic means continual; symptoms may go away, but the underlying disease 

remains and the symptoms may return. And since the disease remains it is lifelong, patients, 

once diagnosed, have to be monitored for the symptoms for the rest of their lives. Chronic 

also means incurable, as the disease and its causes are not cured. Therefore, in successful 

treatments of psoriasis, symptoms are controlled to create an effective cure, even if not a 

permanent one. Immune-mediated means that the disease works through the immune system. 

It is not a disease of immune system, such as HIV, in which immune system is affected or 

destroyed. Instead, the disease is working through immune system. A particular part of the 

immune system is triggered into improper activity by the disease. This improper activity 

causes skin cells to grow much faster than normal (3-7 days from new cell to flaking off 

rather than the normal 28-30 days), at about the rate the body normally uses to heal a skin 

wound. The result is a build up of skin cells that also are not properly developed, leading to 

flakiness, the redness of inflammation, and all the other symptoms of psoriasis. Genetic 

means the disease is rooted in the genes. Patients get the disease only through inheritance or 

environmental factors causing the right mutation in genes for psoriasis [Psoriasis Treatments 

2006]. 

Statistics 

Psoriasis is a common, life altering disease worldwide, affecting all ethnic groups. However, 

severity of symptoms of disease varies among regional environmental conditions and skin 

properties of different ethnic groups. Psoriasis affects an estimated 2-3 percent of the world's 
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population making 125 million patients. RefetTing to the genetic origin of disease, if one 

parent has psoriasis, a child has about a 10 percent chance ofhaving psoriasis. If both parents 

have psoriasis, a child has approximately 50 percent chance of developing the disease 

[Bowcock 2004]. About 10 percent to 30 percent of people with psoriasis also develop 

psoriatic arthritis, a disease of joints. There are five types of psoriasis namely Plaque, 

Guttate, Erythroderrnic, Inverse and Pustular psoriasis which appear on skin in the fmm of 

skin lesions. Plaque psoriasis is the most prevalent form of the disease making about 80 

percent. For this reason, major portion of research work in psoriasis concentrates on plaque 

psoriasis. It is characterized by raised, inflamed, red lesions covered by a silvery white scale. 

Figure 2-2 below shows an example of inflamed plaque psoriasis lesions with silvery 

patches. 

Figure ~2: Examples of plaque psoriasis lesions on knees 

In addition to threats of possible disabling posed by psoriatic arthritis it affects quality of 

social life of patients badly. Most of the patient reported their disease to be a large problem in 

their everyday life whereas patients with psoriasis covering more of their body (more 

extensive skin disease) experience a greater negative impact on their quality of life. The 

impacts on quality of life in women and younger patients are even worse [NPF 2006]. 
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Psoriatic Skin 

The physiology of psoriatic skin involves malfunctioning of immune system. A normal 

immune system protects body against invaders by destroying bacteria, viruses and other 

foreign proteins. In patients having specific genetic pattern responsible for psoriasis, immune 

system is triggered by some external factors into this malfunctioning. The immune system 

gets over-active, sends false signals to skin cells, similar to skin healing from a wound or 

reacting to a stimulus such as infection accelerating growth of skin. Cells are created and 

pushed to the surface in as little as 2 to 4 days, and the skin cannot shed the cells fast enough. 

The excessive skin cells build up and form elevated, scaly lesions. The white scale (called as 

'plaque') that usually covers the lesion is composed of dead skin cells. The redness of the 

lesion is caused by increased blood supply to the area of rapidly dividing skin cells, blood 

vessels expand and multiply, and blood flow to the skin increases ending in redness. Figure 

2-3 below shows cross-section of structures of both healthy and psoriatic skin [Psoriasis 

Treatments 2006]. 

plaque 

b'"-.;,1"-o-_ ce 11 growth 
layer \1~.i~Qb·~N~U!.~- cell growth 

follicle layer 

gland 

Figure 2-3: Comparison of structure of healthy skin (left) and psoriatic skin (right) 

Psoriasis is incurable with genetic origin and several treatments are there only to cure the 

symptoms i.e. skin lesions and arthritis. Clinical treatment of psoriasis involves 

experimentation with available treatments to find the best one for every patient. For this 

reason monitoring plays an important role in determining the best treatment for a specific 

patient [Psoriasis Treatments 2006]. Monitoring, for lesions of any skin disease, is defined as 

'keeping temporal, objective and quantitative records for the severity of disease' . For scoring 

and monitoring of psoriasis, Psoriasis Area and Severity Index (PASI) has been the leading 

[Louden 2004]. When using PASI, psoriatic lesions are graded based on area and severity. 
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Severity of disease includes further three criteria: redness (R), thickness (T), and scaliness 

(S). PASI has been the most widely used standard to assess the severity of disease in clinical 

trials and research. However, in every day visits, it comes up with some complexities mainly 

due to its being cumbersome in calculations. The situation becomes even worse when 

subjectivity is introduced in PASI scores owing to the traditional ways of scoring i.e. visual 

inspection, taking notes/images/drawings for recording. These non-objective methods often 

cannot serve monitoring purposes enough to find the best treatment. The result is variations 

of scores from examiner to examiner, unfit for record-keeping purposes for a patient. 

Realizing this limitation of P ASI in every day use, researchers have tried to automate P ASI 

scoring, mainly for the purposes of objectivity and speed, to make monitoring in daily trials 

more fruitful for a patient. Several studies have targeted the different aspects of monitoring 

of psoriasis and PASI [Delgado 2003, Delgado 2004, Juha 1999]. These studies propose 

some sort of automated computer-based system, analyzing images of disease lesions and 

calculating some features objectively e.g. area, P ASI scores for area, scaliness, and thickness. 

A detailed overview of these is following in section 2.3. It should be mentioned that these 

systems cover different aspects of monitoring of psoriasis. So far none has been developed 

that is a combination of all these aspects of psoriasis i.e. capturing the area, scaliness, 

thickness, redness of disease and their scoring, in one integrated comprehensive system. Such 

system should also keep temporal and objective records of P ASI scores for a patient to 

monitor the progress of disease for a treatment as has been done for monitoring of skin ulcers 

[Callieri 2003]. 

2.3 Medical Imaging in Dermatology 

Medical imaging is the process by which physicians evaluate an area of the subject's body 

that is not externally visible. Medical imaging may be clinically motivated, seeking to 

diagnose and examine disease or, alternatively, it may be used by researchers in order to 

understand processes in living organisms. Medical imaging often involves the solution of 

mathematical inverse problems. This means that cause (the properties of living tissue) is 
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inferred from effect (the observed signal). It includes several techniques to have images of a 

subject's body e.g. Radiography (X-Rays), Fluoroscopy, Tomography, Ultrasound, Magnetic 

Resonance Imaging (MRI) and Electron Microscopy. In dermatology, medical imaging 

mostly consists of digital imaging of the diseased surface, or the immediate underlying 

layers, with visible, infra-red or monochromatic light. These images are later used for 

computer-based image processing for different applications or just for record keeping. The 

applications mainly include diagnosis, monitoring and scoring the severity of skin diseases. 

Imaging of lesions with infra-red light has been used for early diagnosis of Malignant 

Melanoma [Cotton 2002]. Monochromatic light of different wavelengths has also been used 

for the same purpose [Patwardhan 2005]. Recently, with the development in 3D imaging 

techniques, 3D imaging of skin has been applied for dermatology. 3D imaging is more 

promising than conventional 2D imaging to give information about skin features. Section 

2.3.1 below presents an overview of popular image acquisition techniques for skin. 

2.3.1 Image Acquisition 

The human skin tends to change slowly and gradually because of its inherent physiological 

function of cell regeneration. It responds in the same manner to any of the treatments applied 

for different purposes e.g. healing of skin lesions and improvement in overall skin texture for 

cosmetic purposes. For this reason, dermatologists and other skin researchers have to keep 

track of the very slow responses of skin. Sometimes, very small and minute differences in 

skin conditions are an indication of the positive response of skin to the applied therapy. 

Imaging systems in dermatology, assisting the experts, are required to be sensitive to these 

minute details of variation in skin to draw conclusions for diagnosis, monitoring, etc. Most of 

the current computer-based image analysis systems for dermatology are based on 2D images. 

The 2D image acquisition of skin apparently seems straightforward. However, the image 

acquisition setups, often, are not able to capture small variations because of skin's drastically 

changing appearance with changing illuminating environment factors. This results in 

overshadowing of actual, minute changes in skin conditions by those due to improper 

imaging. The restriction to 2D skin features only worsens the situation when 3D surface 

geometries, important for evaluating skin textures, are not considered. This situation leads to 



Chapter 2. Skin Imaging and Modeling 19 

inaccurate input images, depicting actual state of the skin poorly, and erroneous results by 

image processing systems. Therefore, it is indispensable for an image processing system to 

have reliable input images for making precise and accurate decisions and to incorporate 30 

skin features in as much detail as possible. 

Illumination of skin for image acquisition: Image acquisition has been a significant 

problem in digital imaging of skin because of the typical illumination problems posed by the 

unique texture and optical properties of human skin. The main reasons of inaccurate 

acquisition are reflectivity of skin and limitations of illuminating/capturing equipment. The 

typical reflectivity of skin is because of its surface texture and optical characteristics. Human 

skin exhibits very specific response to the illumination and imaging because of its 

reflectivity. There is a great variation in color and texture of skin when illuminated and 

viewed from different angles of light as shown in Figure 2-4. 

Figure 2-4: Variation in texture and color of skin with different light directions (reproduced from (Cula 
20041) 

Specular and diffused reflections, and shadows are typical with skin which create this 

variation. Specular reflections are caused by smoothness of skin whereas the diffused 

reflections by its roughness. Whenever the light rays, in parallel, are incident on an oily skin, 

it will produce the bright spots (specular reflections) in the captured image. Skin presents 

diffused reflections and shadows from within the furrows and wrinkles of the specific texture 

of skin on very small scale. Shadows are also present owing to the structure of skin on large 

scale e.g. at curvatures of limbs and on junctions of fingers, visible bones on specific portions 

of human body. Figure 2-5 shows the specular and diffused reflections from skin. 
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Figure 2-5: Specular and Diffused Reflections on Skin (reproduced from I IIIias 20051) 
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The limitations of illuminating and capturing equipment add to the problems posed by the 

reflectivity of skin. The source of light should be of high luminous flux (See Appendix A) to 

illuminate the scene with enough brightness. The orientation of light source in the scene is 

important as it determines the angle of incidence of light rays over the skin. Uniform 

illumination of skin is required to eliminate shading i.e. variation of brightness across the 

field of view. It is achieved when illuminance (See Appendix A) is equal all over the 

imaged area. The angle of incidence of rays may also enhance the distortion posed by 

reflectivity of skin. As mentioned in previous section, it can give rise to specular and diffused 

reflections, and shadows of skin in captured images, leading to variation of color and textures 

of skin. Then light source should be able to capture the 'true color' i.e. the color seen in the 

natural day light and captured same in the same conditions. CRI (Color Rendering Index) and 

Color temperature are used to define the color rendering quality of light source in capturing 

true colors. (See Appendix A) 
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Figure 2-6: Same Object captured from two light sources of different CRI and Color Temperature 

To render true colors, light sources of high color temperature and high CRI are preferred with 

wavelengths of emitted light in full visible spectrum. Low color temperature or CRI will 

result in imprecise skin colors and textures. The typical problems with camera are the 

resolution, color calibration and noise (IIIias 2005]. The textures of healthy and diseased skin 

are on the scale as small as 0.1 mm requiring high resolution camera. The color calibration of 

camera allows the capturing of same color irrespective of the illumination condition. Noise 

can be both due to limitations of camera hardware and unwanted skin elements e.g. hair, 

scars, moles. 

A proper imaging system targets to capture reliable images by eliminating both reflectivity 

problems and limitations of equipment and requires proper engineering of scene. Delgado et. 

al. (Delgado 2003] used the integrating sphere illuminating the target area of skin with 

diffused light as shown in Figure 2-7. Light rays from three halogen light sources placed in 

equilateral triangle positions are reflected internally within the sphere, forming 

homogeneous, diffused illumination i.e. light coming from all angles and not from a certain 

angle. This eliminates the problems of specular reflections and shadows. However, the 

sphere assumes the captured object to be planar and cylindrical portions of body pose the 

non-uniform illumination errors which are corrected mathematically in an illumination 

correction scheme (Maletti 2003]. The CCD camera is used for capturing images after color 

calibration of the camera has been done using calibration sheets. 



Chapter 2. Skin Imaging and Modeling 22 

Figure 2-7: Integrating sphere and illumination geometry for image acquisition in (Delgado 20031 

In the image acquisition system proposed by Illias, the internationally established 

illumination and capturing geometry for color measurements is utilized [Illias 2005]. A light 

source with high color temperature and relatively smooth color spectrum is used. The light 

rays are incident on skin at an angle of 45° and collected at 0° to eliminate most of the 

specular reflections and shadows on small scale. Figure 2-8 shows the geometry for 

acquisition used in their system. The remaining reflections are eliminated using polarizers on 

camera and light source. The high resolution CCD camera is used for capturing images. The 

color calibration, shading corrections and noise removal are achieved by software 

corrections. 

----~~~~! "'·'··~~, II tull·am···l 
Figure 2-8: Illumination geometry used for image acquisition system in (IIIias 20051 

Patwardhan et a/ [Patwardhan 2005] presents an imaging system called 'Nevoscope' for 

early diagnosis of skin cancer which is based on transilluminace rather than normal ROB 

acquisition. Figure 2-9 shows the basic schematic of a Nevoscope apparatus. The 
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surrounding skin of lesion is illuminated by visible light at an angle. The light penetrates 

through skin to reach the underlying layers of skin lesion and its unabsorbed portion 

contributes to diffused reflectance after scattering. The diffused light is captured from above 

and provides information from underlying skin layers which are affected by skin cancer in 

initial stages. An extension of suggests that, in addition to correct detection, the depth of skin 

cancer lesions can also be obtained from trans-illuminated images if the monochromatic light 

is used instead of visible light [Patwardhan 2005]. Based on the optical properties of skin, 

monochromatic light has variable penetration depth based on its wavelength. For this reason, 

it can be used through nevoscopy to gather information from underlying skin layers at 

different depths. Several wavelengths of monochromatic light, more sensitive to underlying 

skin structure caused by skin cancer, have been sought out through Monte Carlo simulation 

of light interaction with skin. The voxel-based model of skin lesions is constructed where 

every voxel has different light interaction properties based on the optical properties of skin 

layer it represents. The lesions are constructed from voxels in cylindrical shape with different 

sizes. From Monte Carlo simulation of incident light of various wavelengths interacting with 

voxel-based skin lesions and correlation analysis of reflectance of voxel based skin layers, 

the representative wavelengths are selected and used for further analysis. The reflectance of 

skin is observed at the selected wavelengths as a function of lesion depth. It is shown that at 

certain wavelengths, around 495 mm and above 600 mm, the absorption is low and light can 

penetrate the depth of skin lesions. Thus the monochromatic light at this wavelength can be 

used in Nevoscope in real cases to gather the depth information of lesions. The combined 

surface information from visible light illumination and depth information from 

monochromatic illumination increases the effectiveness of N evoscope based diagnosis of 

skin cancer lesions. 
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Figure 2-9: Nevoscope schematic - Transilluminating light incident at an angle and captured from above 
[Patwardhan 20051 

Cula et. al. (Cula 2004] presents the 'bidirectional imaging' in which both illumination and 

capturing angles are parameterized to take images of skin textures from different angles. 

Multiple images of same skin texture, taken from different angles of light and camera, 

present skin more clearly. The apparatus includes a light source and camera planted on an arc 

and tripod which are able to give different azimuthal and polar angles of a hemisphere for 

both camera and light as shown in Figure 2-10 The apparatus does not target to eliminate the 

skin reflections and non-uniform skin color/texture appearance. However, a series of images 

of same skin area, with different angles of illumination and capturing provides a better 

picture of actual skin appearance. 
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Figure 2-10: The light source and camera planted on arc and tripod moving in a hemisphere (reproduced 
from [Cula 20041) 
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The 2D imaging does not capture 3D surface textures (height profiles) of skin, instead, these 

features cause varying color and texture appearance under illumination conditions. As 

discussed above, some acquisition systems target to eliminate these variations. However, 3D 

skin features provide critical detailed information about skin condition and for this reason the 

work by Cula et. al. [Cula 2004] above incorporates them by bidirectional imaging. The 

straightforward way to capture skin surface profiles is 3D imaging techniques which can be 

classified mainly in two categories 1) there are methods which construct the 3D skin height 

profiles by processing a set of 2D images e.g. stereo imaging 2) the information of height 

profile is directly captured by the capturing equipment and no processing of 2D images is 

required e.g. laser scanning. A review of some of 3D capturing techniques used for skin 

imaging follows. 

Stereo imaging (Stereoscopy), based on binocular human vision, is a popular technique to 

extract 3D information from 2D images [Moon 2002]. The human vision system views the 

same object with small difference in viewing angles of two eyes. The small differences in 

two images of two eyes arising from different viewing angles are called 'disparity'. The 

human brain produces depth information of the scene by processing this disparity map. 

Similarly, in stereo imaging, the object is imaged with two cameras which are placed at small 

distance from each other. Figure 2-11 shows the typical set up to capture a pair of such 

images. The disparity in two images is then analyzed to give the depth/height information of 

the object. 
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Figure 2-1 1: A typical set up for acquisition of stereo images. Two cameras placed at small distance to 
view the object surface with small difference in viewing angles. 

Stereoscopy has been used for acquisition of 3D features of skin [Park 2004, Moon 2002). A 

combination of stereo microscope and two CCD cameras is used to take stereo images of 

small scale features of skin. A disparity map is obtained by stereo matching of two images. A 

height map of skin called topograph, constructed from the disparity map, gives the skin 

structure in 3D (Figure 2-12). The topograph is analyzed to evaluate features for cosmetic 

and dermatology applications. 

Figure 2-12: (Left) The organization of SOT (Right) Two stereo images, disparity map and 30 height 
view (Reproduced from !Moon 20021) 

In the work by Yamada, 3D skin features are extracted from 2D images [Yamada 1998). In 

this case the 2D images for input are taken from three light sources placed at angle 
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differences of 120° which are then moved to get an image sequence. These resulting images 

have multiple shading patterns arising from height fluctuations, specular reflections and inter 

reflections. The shading patterns contain sufficient information to extract 30 skin surface 

features. The intensity data from three images of three light sources taken at one point can 

give 30 information. However, it becomes impossible due to the noise added from skin 

shading and reflections. The images in sequence solve this problem by providing sufficient 

data to get the intensity value at every surface point. Figure 2-13 shows the arrangement for 

acquisition of image sequences and an example of 30 reconstruction of surface profiles. 
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Figure 2-13: 3D reconstruction of skin surface from image sequence [Yamada 19981 (Left) arrangement 
to capture images from different angles (Right) captured images and reconstructed 3D surface profile 

Apart from 2D images, 30 volumetric images have also been used to extract skin surface 

profiles [Wang 2003]. The volumetric images are obtained using confocal microscope which 

obtains slices of skin at different depths. The slices are combined together to give the 

volumetric image of skin (Figure 2-14). The volumetric data is made up ofvoxels where each 

voxel presents the intensity value in confocal microscope, representing external and internal 

layers of skin. This work mainly targets to extract the boundary layer between internal skin 

layers dermis and epidermis. The active contour model based on energy minimization for 

edge detection is extended in 30 to extract the open surface corresponding to this boundary 

between two layers. The same approach is used to extract the skin surface (upper epidermal 

surface) which gives the skin contour in 30. 
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Figure 2-14: (Left) organization of a confocal microscope (Right) volumetric skin image and extraction of 
upper epidermal skin surface (reproduced from [Wang 20031) 

Laser scanning is an advanced and widely used technology to capture depth information and 

provide 3D surface profiles of objects. The laser particles are reflected back from the surface 

of object and thus provide depth measurements. Instead of processing 2D/volumetric data, 

laser scanning provides the surface information directly with high resolution and accuracy. 

The application of laser scanning for skin has been reported by Calleiri et al [Callieri 2003] 

to build an integrated system for monitoring of skin lesions. The depth information and 2D 

images of skin are captured simultaneously by laser scanner. The captured surface geometry 

is in the form of mesh model which is combined with 2D image to give the overall model of 

skin. The system has been used successfully to monitor the healing of skin ulcers. Laser 

scanning is an advanced 3D imaging technique with high resolution and accuracy and has 

been used for our work. 
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(a) (b) (c) (d) 

Figure 2-15: (a) Laser scanner (b) surface geometry of skin lesion (c) 20 image (d) combined surface 
geometry & 20 image (reproduced from [Callier! 2003)) 

2.3 .2 Segmentation 

After image acquisition the next step, for most of applications, is to separate the diseased 

skin portions (lesions) from healthy skin. The process is called 'segmentation'. The 

segmented skin lesions are then analyzed to draw conclusions about skin condition 

depending on the type of application. Several segmentation schemes have been proposed 

which take into account the color/texture characteristics of the diseased vs. healthy skin. 

One of the segmentation schemes for skin lesions of psoriasis is based on bi-modality of 

color features of 20 images and consists of several processing steps [Savolainen 1997, Juha 

1999]. The main segmentation is done by variable thresholding of color features in sub­

images. The variable thresholding overcomes the illumination variations on different portions 

of skin. The variable thresholding of sub images, based on the statistics of Gaussian 

distributions of grayscale levels, is completed in several passes which eventually label pixels 

with more than two strict labels of diseased and healthy skin. The labels demonstrate the 

confidence with which the pixels can be assigned to two different classes of diseased and 

healthy skin. The labeled image is then classified into healthy and diseased skin by 

thresholding the labels. Some post processing steps improve the classification and result in 

segmented lesions. The image of psoriasis lesions and results of this segmentation scheme 

are shown in Figure 2-16. 
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Figure 2-16: 2D Image of psoriasis lesions and segmentation results for scheme used in (Savolalnen 1997, 
Juha 19991 

A more advanced segmentation scheme is proposed by Taur eta/ [Taur 2002, Taur 2003] 

involving color as well as texture characteristics of psoriasis lesions. The color characteristics 

consist of two-dimensional Hue-Saturation space which is derived from three-dimensional 

RGB color space. Texture is analyzed by fuzzy texture spectrum which describes the inter­

pixel gray level relationship. The homogeneous regions based on these color/texture features 

are detected from training image by comparing feature vectors in small windows. The 

smaller distance than a threshold among the feature vectors in the selected small window 

implies the homogeneous region in that window. This results in several homogeneous 

regions which are then combined to result in overall two regions corresponding to healthy 

and diseased skin. Figure 2-17 shows the detected homogeneous regions and their combined 

region for a psoriasis lesion. These two regions are then used to train the Neuro-fuzzy 

classifier using clustering scheme which segments any given image in two classes of healthy 

and diseased skin. 

Figure 2-17: Results for homogeneous region detection and segmentation of psoriasis lesions for Neuro­
Fuzzy scheme in (Taur 2002, Taur 20031 
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The segmentation scheme described by Maletti et al [Maletti 2005] also considers the color 

characteristics only. In the first step the green background is separated from skin by 

thresholding in red band. In second step, psoriasis skin lesions are separated from healthy 

skin. After applying the linear discriminant analysis for finding the discriminating feature in 

ROB space, the value of Green-Blue band is used to separate the skin lesions. In both steps 

the discriminating features for background, healthy skin and skin lesions are assumed to be 

Gaussian distributions of different parameters which are estimated with an expectation 

maximization algorithm. The diseased skin is then segmented by discriminant analysis based 

on the estimated parameters. Figure 2-18 shows segmentation results for nine psoriasis 

images. 

Figure 2-18: Segmentation results for psoriasis images for system in rMaletti 20051 

A comparison of several segmentations schemes for skin lesions of malignant melanoma and 

dysplastic nevus has been reported in the work by Illias et al [Illias, Kosmopoulos 2003, 

Illias 2003, Illias, Pavlopoulos 2005]. Again, the segmentation techniques are based on RGB 

color characteristics of healthy and diseased skin. These include thresholding, usage of 

weighted functions, region growing, Principal Component Transform, CIELab color 

transform and spherical coordinates transform. The segmentation results for different 

techniques are compared with the manually segmented lesions by physicians and found to be 

acceptable (Figure 2-19). 
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Figure 2-19: Segmentation results for different schemes proposed in [IIIias 2005) 

After segmentation, skin lesions are processed by analyzing different features depending on 

the application. The applications of images processing for skin can mainly be categorized as 

diagnosis, classification, monitoring and scoring of severity. However, for different diseases 

different problems need to be addressed. For example, early detection of skin cancer and its 

classification from other diseases is important. For skin diseases like psoriasis, vitiligo and 

ulcers, monitoring of healing to evaluate the treatment's efficacy is the main issue. In next 

sections some of applications for dermatology are reviewed. lt is worth being noted that 

some of the techniques do not require segmentation of skin lesions and diseased area can be 

separated and analyzed as a single step e.g. in optical modeling of skin for detection of skin 

cancer [Cotton 2002, Patwardhan 2005]. 

2.3 .3 Diagnosis 

As discussed above, early diagnosis of skin lesions is the main concern of some diseases; the 

most important of which has been skin cancer. The early diagnosis of skin cancer is crucial 

for patient's life and classification of pigmented skin lesions of cancer from other diseases in 

early stages has been main topic of research for last decade. Any computer-based diagnosis 

system is based on some of critical features of skin lesions. And diseases are classified by 

discriminating the values of these features. In this section some of the systems for detecting 

skin cancer as an example of diagnosis applications in dermatology have been discussed. 
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The system by Illias et al [Illias, Kosmopoulos 2003, Illias 2003, IIlias, Pavlopoulos 2005] 

classifies the skin lesions in two groups of malignant melanoma and dysplastic nevi. The 

classification is based on features derived from border-shape and color descriptors. The 

border-shape descriptors are based on the area and perimeter of skin lesions. The color 

descriptors are based on RGB, HIS and color variegation measurements of the skin lesions. 

After segmentation, the values of above descriptors are measured from pixels of known skin 

lesions to get the typical values of features corresponding to the two classes. Two different 

methods, discriminant analysis from statistical modeling and neural networks from artificial 

intelligence, are then used for classification based on typical values. It was shown that the 

lesions of skin cancers can be classified successfully from other diseases. 

Another example of diagnosis system for skin cancer based on optical properties of skin 

layers is presented by Cotton et al [Cotton 2002]. The system interprets the color images of 

skin lesion in terms of histological parameters namely melanin, hemoglobin and thickness of 

papillary dermis. Once interpreted, the abnormalities in these parameters give clue to the 

presence of skin cancer. For the interpretation in between RGB color and skin parameters, a 

model of tissue coloration based on the optical properties of skin tissues is first constructed 

once. Kubelka-Munk theory of light interaction with matter is applied for this purpose. The 

skin is assumed to be structured in layer, each layer having its own reflectance and 

absorption properties. By providing the optical properties of layered skin and spectral 

composition of incident light, the spectral composition of reflected light from skin, as a 

function of wavelength, is computed from Kubelka-Munk theory. This spectral response is 

then convolved with suitable spectral response functions to get the RGB value of skin color. 

The model gives one-to-one mapping between RGB values of skin image and histological 

parameters which is used later to interpret the skin color in images to derive parameter 

values. Figure 2-20 shows the one-to-one mapping between RGB values and histological 

parameters. 
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(a) (b) (c) 

(d) (e) 

Figure 2-20: (Left) Tissue coloration model- RGB values to histological parameters (Right) A color 
image of skin lesion (a) and its parametric maps showing total melanin (b) dermal melanin (c) thickness 

of papillary dermis (d) and blood (e) (Reproduced from !Cotton 2002,1) 

The tissue coloration model is used to detect the melanin deposits in skin lesions. The 

deviation of parameter values from those of normal skin indicates the presence of skin 

cancer. An extension of this work [Preece 2004] improves the parametric mapping by 

replacing typical RGB spectral response filters by optimal spectral filters and has been shown 

to reduce error in recovered histological parameters. 

2.3.4 Monitoring 

For some skin diseases e.g. psoriasis, skin ulcers and vitiligo, the monitoring of skin lesions 

is more important than detection. The skin lesions for these diseases can be detected easily 

but keeping track of slow evolution of lesions with time is challenging. Several treatments 

are available for these diseases and accurate monitoring of lesions plays a critical role in 

selection of the best treatment for a patient. For this reason, computer-based systems 

regarding these diseases mostly target monitoring of lesions with time. Following is an 

overview of some of monitoring and scoring systems for psoriasis. 

As mentioned in section 2.2, the severity of psoriasis is graded by giving PASI scores for 

involved area, redness, scaliness and thickness. The record of PASI scores with time gives 

clue to evolution of skin lesions. Deladgo eta/. [Delgado 2003] proposes a general imaging 

system to capture and analyze images of psoriasis lesions for scoring the severity and a 
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further piece of work scores the scalincss of psoriasis lesions specifically [Delgado 2004]. 

Scales appear as white flaky patches on psoriasis lesions and can be analyzed by color 

properties. Lesions are segmented from healthy skin and analyzed to detect the scales within. 

A technique based on watersheds and clustering is applied to segment the scaly area. The 

automated scoring is based on area of scales incorporating decision trees and is mostly in 

agreement with the physician's scoring (Figure 2-21). 

Figure 2-21: Psoriasis Lesions with white scales (Top) Lesions with segmented scales (Bottom) using the 
technique in [Delgado 20041 

The general pattern of time evolution of psoriasis lesions has also been sought out in addition 

to scoring for severity (Maletti 2004, Gomez 2004]. The images of same psoriasis lesions are 

captured on the duration of four weeks. The lesions in images are segmented and aligned for 

comparison. A statistical technique Multi-variate Detection (MAD) Transform, which is 

invariant to both linear and affine scaling, is used for temporal analysis (Maletti 2004] to 

detect the changes within lesions. The absolute value of first MAD component shows 

magnitude of the overall change between images whereas a correlation analysis between 

image color bands and MAD components shows the contribution of each color band to the 

overall change. The results for few cases show the pattern of time evolution of psoriasis 

lesions i.e. at initial stages the changes occur mostly in the center which are gradually shifted 

towards border and that the blue and green bands contribute more to the temporal changes. 

The work by Gomez et al [Gomez 2004] analyzes similar images a different statistical 
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technique Mulit-set Canonical Correlation Technique (MCCA) to track changes within 

lesions with treatment. 

In contrast with all above 2D imaging based systems an interesting integrated system called 

'derma' is based on 3D imaging and also targeted for monitoring [Callieri 2003]. It is an 

integrated tool to monitor evolution of several types of skin lesions. The system consists of 

laser scanning for 3D image acquisition and a database to monitor the progress of skin 

diseases by managing the corresponding data of patients. The data of patients recorded in 

timely manner aids dermatologists for in best effective treatment of disease. 

2.3.5 Cosmetic Industry 

The 3D images of healthy skin provide more comprehensive information about skin features 

e.g. wrinkles, fine lines, smoothness. The analysis of these features has significance in both 

cosmetic industry and computer graphics in addition to dermatology. The changes in skin 

features indicate the effectiveness of topical agents in cosmetic industry. For computer 

graphics, these skin features when modeled on skin of animated objects, constitute more 

realistic animation. Section 2.4 will review the modeling of 3D skin features for computer 

graphics. 

The skin contours with ageing have been analyzed to quantify the ageing process [Uchida 

1996]. An apparatus based on laser scanning is used to capture the surface profile of skin. At 

high resolution the patterns on skin appear to consist of longitudinal, transverse and oblique 

ridges. The Fourier analysis quantifies these patterns as spatial frequency characteristics and 

gives clue to the changes in skin with ageing process. It is concluded that the dominant 

spatial pattern on skin changes from high frequency ridges to low frequency ridges with 

increasing age. The work by Moonalso targets to quantify the ageing contours of skin 

captured through stereo imaging (Section 2.3.1) [Moon 2002]. Five new parameters namely 

mean surface roughness, mean depth of roughness, three-dimensional length, three­

dimensional area and three-dimensional volume, are defined on three coordinates to quantify 

the surface features of skin. It was observed that some of parameters increase with ageing 
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indicating the increasing roughness of skin. It was also proposed that the 3D acquisition 

system and the set of defined parameters can be used to evaluate the skin response to topical 

agents and cosmetics as well as to monitor the skin diseases like psoriasis, ulcers and 

ichthyosis. Accordingly, a further piece of work uses this system to evaluate the severity of 

psoriasis quantitatively [Park 2004]. 

2.4 3D Modeling of Skin 

The 3D structure of skin surface has been studied for computer graphics more than for 

cosmetics/dermatology, however, with a different perspective in this case. The healthy skin 

surface features are analyzed to be modeled on human characters in computer animations for 

a more realistic look. The goal is not only the accurate capturing of patterns from skin 

surface and their synthesis but also the fast rendering of these patterns. The complexity of 

surface detail increases largely and fast rendering becomes difficult. The modeling of 3D 

skin features and its fast rendering has been an active area of research in computer graphics. 

In this section, it is discussed to review the modeling of3D surface features of healthy skin. 

The 3D structure of skin can be categorized in two types, wrinkles and fine lines/fine texture. 

The wrinkles can be localized on body portions (e.g. on fingers, elbows) or expressive (e.g. 

facial wrinkles on forehead, cheeks) or due to ageing process present on most of the body. 

Fine texture of skin is present on the whole body with patterns varying locally. The modeling 

techniques for rendering attempt to synthesize these skin structures on animated object as 

well as reproduce their dynamics with body movements. 

In the work by Wu et al [Wu 1996], both wrinkles and fine textures on human skin and their 

dynamics are modeled. The fine lines pattern, based on observation of microscopic 

photographs of skin is modeled as triangular mesh with several layers. Delaunay 

triangulation is used to create the layered triangular pattern. A hierarchical triangulation with 

different levels of triangulations creates the pattern similar to fine lines on human skin. The 

edges of triangles are then raised/lowered to create bulges. The resulting height field is used 

for bump mapping on human skin in animation. The pattern of triangulation and height can 



Chapter 2. Skin Imaging and Modeling 38 

be changed for different portions of body by changing input parameters. Figure 2-22 shows 

the microscopic pattern found on human skin, hierarchical triangular mesh with bulges and 

bump mapping of this mesh on skin. 

(a) (b) (c) (d) 

Figure 2-22: Modeling of fine texture of skin rwu 19961- (a, b) microscopic triangular patterns on skin 
(c) hierarchical triangular mesh (d) bump mapping on skin 

For modeling of wrinkles, the 'constrained' Delaunay triangulation is applied which 

maintains the location of large scale wrinkles determined interactively while triangulating 

fine scale texture (Figure 2-23). For the bulges of skin in between wrinkles several shape 

functions are applied. The combination of pattern and bulges of both wrinkles and fine line 

texture gives more realistic skin model of human skin appearance for rendering. This work 

does not follow the actual patterns of skin completely. However, the simplification by 

assuming the overall triangular pattern of skin structure results in fast rendering. 

(a) (b) (c) 

Figure 2-23: Modeling of wrinkles of skin [Wu 19961 -(a) constrained triangulation for wrinkles (b) 
bump mapping on skin (c) rendering of hand skin with fine lines and wrinkles 

The work by Boissieux addresses large scale wrinkles where effects of aging are also 

incorporated [Boissieux 2000]. Two approaches, namely image-based and model-based, have 

been proposed that depend on both visual and biomechanical properties of skin. The image­

based method is simple, incorporating no biomechanical properties, and producing wrinkles 
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due to aging only. A 2D texture image of a subject's face is transformed to incorporate the 

aging effects by darkening effect. From pre-computed masks of aged faces (2-24), the 

wrinkles are darkened in the texture images which are then used for bump mapping the 3D 

meshes for rendering. During rendering the wrinkle depth is increased with age .. 

Figure 2-24: Typical ageing masks used for darkening subject' s faces for ageing effects [Boissieux 20001 

The model based method is complex, considering physical biomechanical properties of skin, 

and models formation of wrinkles due to mechanical deformation of skin layers. In this 

method the 3D mesh of skin is deformed directly instead of bump mapping. Skin is 

considered to be composed of two layers with different thickness and mechanical properties. 

Temporary wrinkles are produced by deforming the two layers according to their mechanical 

properties. The permanent wrinkles (due to aging) are produced by introducing the 'shape 

memory' as the rest shape. The rest shape is changed gradually with each deformation. This 

slow adaptation depicts skin history as permanent wrinkles and also guides the pattern of 

further wrinkles. 

Bando et a/ [Bando 2002] addresses the modeling of both large scale wrinkles and small 

scale fine lines. The model of small scale fme lines is based on observation of photographs of 

real skin like the work by Wu et al [Wu 1996] to provide more user control over patterns of 

skin structure. However, in this case the fine lines are assumed to be more complex than the 

simple triangular mesh i.e. the fine lines run parallel locally in two directions and end at their 

intersection point. The pattern created according to these observations achieves more visual 

similatity but requires user interaction. A user will define local directions of fine lines at 

selected points of object which are interpolated to produce complete direction field. An 

algorithm based on this height field creates the pattern of furrows in 2D texture image which 

is then used as height field for bump mapping (Figure 2-25). 
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(a) (b) (c) (d) 

Figure 2-25: Modeling of fine lines of skin In (Bando 2002) - (a) pattern of floe lines on skin (b) direction 
fields on hand specifled by user interaction (c) interpolated height fields (d) the hand after bump 

mapping 

In this work the large scale wrinkles are also modeled and validated by comparison with the 

actual wrinkles on skin. A user identifies the location and shape of the wrinkle in 20 texture 

space by drawing a cubic Bezier curve. An exponential shape function gives the bulges and 

depressions due to large scale wrinkles on skin by deforming the 30 mesh. Figure 2-26 

shows the wrinkles drawn on 30 mesh and the corresponding real wrinkles captured by a 

digital camera. The deformation in wrinkles and fine lines produced by shrinkage of skin due 

to movements of the object is also rendered. This is achieved by modulating their amplitudes 

by calculating the shrinkage of skin on vertices of mesh. 

Figure 2-26: (Left) wrinkles captured by digital camera (Right) wrinkles rendered by modeling scheme in 
[Bando 20021 

The capturing, modeling and rendering of skin structures discussed above do not follow the 

actual patterns on skin exactly and in every case some simplification is applied for fast 

rendering. Haro et al. [Haro 200 I] addresses this problem by capturing patterns from skin 

samples directly. Their attempt is to model fine textures by following real physical patterns 

and to render them efficiently. The first step is to obtain skin patterns. Silicone molds of skin 

record fine details of skin. A set of images is taken from the mold with different light source 

positions. The 'shape from shading' algorithm gives surface normal at every pixel of image 
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by solving simultaneous linear equations in light vectors and intensity. Several normal maps 

are captured for a face. However, these samples are quite small in size. The stochastic 

modeling (by Markov random field) of fine scale textures yields synthesis of larger samples 

which are joined together by applying multi-resolution splines on random curves. The 

resulting multi-texture model for face gives the normal map used for more realistic skin 

rendering (Figure 2-27). 

Figure 2-27: (Left) silicone mold with skin pattern on it (Middle) Normal map captured from images of 
silicone mold (Right) bump mapping of mesh model (reproduced from (Haro 20011) 

2.5 Summary 

For dermatology, the 3D images provide information about diseased skin whose surface 

features deviate from healthy skin. Many diseases cause inflammation of skin e.g. psoriasis, 

eczema while skin ulcers, wounds, burns can result in removal of upper layers of skin. In this 

chapter, within scope of this work, an overview of healthy and psoriatic skin was given. The 

structure of healthy skin was described and then how the psoriasis can alter this healthy 

structure to create psoriatic lesions. It is seen from different types of psoriasis that all of them 

result in some sort of inflamed, scaly, red and thick skin lesions. It was mentioned that 

psoriasis is a worldwide prevalent disease which cannot be cured because of its genetic 

origin. The only way to treat it is to get rid of the symptoms, skin lesions in this case. 

Experimentation is done with treatments while monitoring the evolution of skin lesions to 

find the best one. For monitoring purposes, it was mentioned that several characteristics of 

the lesions (e.g. redness, thickness, roughness, scaliness) are important which also involve 

the 3D features of skin lesions such as thickness and scaliness. The dermatologists examine 

these 3D characteristics visually and sometimes by tactile (touch) inspection also to perceive 
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the roughness and hardness of the skin lesions. Therefore, any computer-based system 

targeting to aid dermatologist in inspection/monitoring of the diseases must not overlook 

these 3D features of skin lesions. But what can be found from this literature review of skin 

imaging is that the majority of computer based systems for dermatology are based on 2D 

images. The 3D imaging techniques for skin are mostly indirect i.e. the 3D skin surface 

profiles are extracted from some sort of processing of 2D images. Laser scanning is the only 

imaging tool capturing skin geometries directly and with high precision. It can also be 

observed that, in case of modeling of 3D skin features, the research efforts mostly target 

computer animation for more realistic look. For this reason, 'approximations' of wrinkles and 

fine textures of healthy skin are modeled and rendered only. The capturing and modeling of 

actual skin features faithfully has not been the main concern in these attempts. Only the work 

in by Haro et al [Haro 200 1] follows real skin textures and that also through an indirect 

technique of recording it through a synthetic mould and then processing 2D images of the 

mould. This research work follows a similar approach i.e. modeling of skin based on real 

textures of skin but incorporates more advanced 3D imaging techniques for high precision 

and including both healthy and diseased skin textures. The 3D imaging system will be 

described in Chapter 5 which involves laser scanning [http://www.konicaminolta-3d.com] for 

capturing purposes. 
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Chapter 3 

Haptic Technology 

The word 'haptic' means pertaining to the sense of touch. The sense of touch, haptics, 

provides a unique bidirectional communication among all five human senses. The human­

computer interaction has been limited to visual and auditory display of information. Haptic 

technology takes this interaction one step further by allowing the haptic manipulation of 

virtual objects in computer by user. At present, the technology is incorporated in applications 

like medical/surgical simulations/training, tele-surgery, digital sculpting, painting and CAD, 

scientific visualization, assistance for the visually impaired, museum displays, tele-robotics, 

neurological rehabilitation and military [Taylor 2005, McLaughlin 2001]. Haptic 

technology aims to provide virtual environments allowing user interaction with virtual 

objects or data in computer through haptic devices. A virtual environment has three key 

components namely the haptic (and sometimes graphic) display of virtual objects, haptic 

display interface/haptic device and rendering algorithms for haptic display properties of 

objects which connect the first two. The user interaction can be of several types. A user can 

merely feel the shape/surface/volume properties of virtual objects or, as advanced 

interactions, can move/deform the virtual objects. All these interactions are mainly based on 

'force feedback' through haptic devices which provide user with accurate forces for the 

haptic feelings of shape, surface roughness, deformation, movements and even the strong 

forces of collisions. Calculation of these forces based on user movements on haptic device 

and transmission of updated forces to haptic device as a response is called 'haptic rendering'. 

Haptic rendering has been a main area of research in last decade. The main problem is the 

provision of realistic haptic perception. Humans are expert at haptics and any abnormal 

interaction with haptic device gives unrealistic haptic perception. For this reason, forces have 

to be calculated and updated at as high rate as I kHz and that also following the user 
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interaction accurately to give the stable perception. The research has been focusing on force 

calculation algorithms which are fast and efficient in calculating stable and realistic force 

feedback. Section 3.2 will review some of the haptic rendering techniques for realistic, fast 

rendering. 

Haptic Display Properties: The virtual objects can have several haptic display properties 

e.g. 3D shape, stiffuess, friction, surface texture and volumetric properties. The detail of 

haptic properties depends on the requirement of application. For some applications e.g. 

visualization for the blind, only the shape would suffice whereas for others e.g. surgical 

simulations, shape as well as surface details are required. However, the rendering algorithms 

have to be altered to reflect every haptic display property in force feedback and therefore 

detailed object properties are difficult to render. Specially, the display of surface textures 

poses a significant problem, the reason being the high frequency details present on the 

surfaces. For example, a small virtual cube can be presented by only six faces in a mesh but 

the same cube with textures surface having small variations in surface heights may required 

hundreds even thousands of faces. The calculation of user interaction with so many 

components (faces) in the virtual object will be computationally too expensive to be updated 

at high rates. On the other hand, textures are crucial for realistic display of virtual objects. 

That is why, rendering of surface textures make an active area of research as well and many 

algorithms are being proposed and improved. Section 3.3 concentrates on reviewing the 

rendering techniques for surface textures. Currently most of the haptic devices are probe 

based having pen-like user tools. The perception of roughness arising from exploration of 

surface textures via these tools becomes an addressable topic. Section 3.4 discusses some 

work done in this area. Finally, as examples of applications of haptic textures, section 3.5 

discusses the scientific visualization through haptic textures and the haptic display properties 

of materials like skin and cloth. 

3.1 Haptic Display Interfaces 

Haptic display interfaces or haptic devices provide the bidirectional communication m 

between user and computer. The user exerts force on haptic device and feels the response 
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force according to the virtual object's properties. On the other side, the computer application 

monitors the movement of user and provides the response forces through device. Thus the 

major task of device is to sense user movements and to exert response forces at high rates. 

Tactile and Kinesthetic: Haptics mainly deals with two types of touch perception namely 

tactile and kinesthetic. Tactile is related with the skin stimuli. A user perceives the spatial 

distribution of forces through skin stimuli when he touches some surface with the finger tip. 

This distribution results in perception of roughness and other surface details. Kinesthetic, 

however, is related with the net force on a muscle. This gives the perception of one's own 

position. Interaction with objects like moving and colliding are result of kinesthetic 

[Salisbury 1997]. Several haptic devices have been developed by research laboratories, many 

of which have been commercialized as well. These devices vary in their design and 

performance. Most of them are targeted for kinesthetic and very few provide the tactile 

perception. Currently no device is available commercially dealing with tactile perception. 

Degrees of Freedom DOF: Another important property of haptic devices is 'Degrees of 

Freedom' or DOF. Degrees of freedom for an object describe the set of independent 

displacements the object can move. For example, an object in 3 dimensions has 6 DOF 

including three translations in three dimensions and three axes of rotations. The DOF of a 

haptic device determines the user movements on device based on its design. For some 

devices, which are combination of more than one moving part, the combined DOF is the sum 

of individual DOF of all moving parts. 

Sensable Technologies [Sensable Tech.], FCS Robotics [FCS robotics], Force Dimension 

Technologies [FD Tech.], Quanser Incorporation [Quanser Inc.], Immersion Corporation 

[Immersion Corp.], Virtual Technologies [Virtual Tech.] and Cybemet Systems Corporation 

[Cybemet Corp.] are some of the commercial manufactures of haptic devices. The haptic 

devices mostly differ in designs and specifications. Users can work through pen/stylus-like 

probes (e.g. PHANToM devices [Sensable Tech.]) in applications like virtual painting, 

surgical simulations, data visualization, where the probe may replace the real tool or is used 

to explore the surface features. Some devices allow plate/ball/thimble like exploration tools 
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(e.g. Pantograph Quanser Inc.], DELTA [FD Tech]) . Users can also work through 

gloves/grasps (CyberGrasp/CyberForce/CyberGlove) [Immersion Corp.] which allow force 

feedback through several degrees of freedom through fingers. Figure 3-1 shows some of 

commercially available haptic devices. Some larger haptic devices are in progress to provide 

force feedback at arms and shoulders. The user working area is determined by DOF. The 

haptic devices range from 2 DOF to 6 DOF for single portion device and more than that for 

multiple joint devices. Lower DOF usually allows movements in coordinates but higher DOF 

allows the rotations as well. An appropriate device is selected according to the application's 

requirements which determine the shape of the exploration tool and degrees of freedom. 

(a) (b) (c) (d) 

Figure 3-1: Haptic Devices with different designs and working area (a) Phantom (b) Pantograph (c) 
DELTA (d) CyberGrasp 

The performances of different haptic devices are probable to vary for the same application 

and their comparison becomes addressable before selecting a specific device for the 

application. For this reason, research studies target to compare them in different aspects as 

well. For example, Yu et al [Yu 2002] compared two haptic display interfaces, SensAble 

PHANToM [Sensable Tech.] and Logitech WingMan force feedback mouse 

[http://www.logitech.com/] , in presenting graphical data to the visually impaired in a 

multimodal condition. The WingMan mouse is much cheaper device than PHANToM. Their 

application presents data as bar graph in both haptic and audio modes to the blind 

participants. The participants can touch bars through the devices. The results of experiments 

show that the participants ' perception of data, in multi modal condition, is almost the same for 

both WingMan and PHANToM. Therefore, in a combined haptic and audio feedback 

application, the inexpensive WingMan can replace PHANToM. 
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Penn et a! [Penn 200 1] investigated the perception of roughness from 'virtual textures' using 

two haptic devices, IE3000 [Immersion Corp.] and PHANToM, and compared them with the 

prior work about perception of roughness from 'real textures'. In the experiments, both 

sighted and blind participants rated the roughness of several virtual textures using stylus and 

thimble endpoints. It was shown that both devices gave similar results in perception of 

roughness as function of groove width i.e. perceived roughness decreases with groove width. 

This result was in contrast with earlier experiments with real textures for which the perceived 

roughness increased with groove width. The authors conclude this as a result of differences 

in exploration endpoints i.e. thimble/stylus (in virtual textures) vs. finger point (in real 

textures). The similar results for two devices strengthen authors' guidelines for future 

applications based on virtual textures. A similar work investigated the perceived size and 

angularity of virtual objects though a similar procedure involving blind and sighted 

participants [Penn 2000]. Again, the results did not show significant differences in perception 

through two haptic devices. 

Salisbury et al [Salisbury 1997] discusses the PHANToM haptic interface in detail and 

presents the results of haptic rendering of several virtual objects through different rendering 

algorithms. The performances of potential field rendering for small spheres and thin 

composite objects, constraint-based and ray-based rendering for polyhedral solid objects of 

many shapes, and implicit-based rendering of shapes have been analyzed. Based on the 

device characteristics, several haptic and multimodal (including haptic, auditory and visual 

channels) applications e.g. medical training, educations, entertainment, have also been 

proposed. 

Tactile Haptic Devices: Although tactile devices have not been commercialized yet, their 

development and rendering capabilities are in progress. Tactile is a vital portion of human 

haptics sensing small surface details of objects and hence, their incorporation in current 

haptic technology is inevitable in future. Several tactile display interfaces are being 

developed and investigated in research laboratories worldwide. For example the STReSS 

Tactile Display (McGill University) provides the stretch stimuli to fingertip skin by sending 
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strain signals through an array of miniature actuators. The MORPHEOTRON Haptic 

Interface (McGill University) is another device. Its first version has been used to study the 

tactile cues by implying a finger pad. The studies will serve as basis for developing a state­

of-the-art tactile device. A haptic device consisting of both force feedback and tactile display 

PbilaU Haptic Device has been developed at Philadelphia University. It makes use of an 

array of pins and has been used to simulate fabric textures. A similar device was also 

developed at university of Kalsruhe. Figure 3-2 shows several tactile haptic displays which 

resemble each other through a working pad for fi nger-tip and an array of actuators. A survey 

of tactile interface design techniques has been presented by Khoudja et al [Khoudja 2004]. 

(a) (b) (c) (d) 

Figure 3-2: Tactile Haptic Displays (a) STReSS (b) MORPH EOTRON (c) PhiiU Tactile device (d) Tactile 
Device Kalsruhe 

3.2 Haptic Rendering Techniques 

Haptic rendering means to display haptic properties of virtual objects in real time via haptic 

device. The haptic properties are displayed by computing the feedback forces based on object 

properties and user movements on haptic device. As discussed earlier, haptic feedback forces 

are to be calculated and updated at as high rates as - 1 kHz for realistic haptic interaction. For 

this reason haptic rendering algorithms targeting less computational time have been proposed 

in most of the haptic related research studies. Generally, any haptic rendering algorithm has 

two portions to be addressed a) how the object properties are displayed b) the type of virtual 

haptic cursor (exploring virtual object) and how the forces are calculated based on this haptic 

cursor and object properties. The algorithm keeps track of haptic cursor movement which is 

moved by user movements on haptic device. Once a collision between haptic cursor and 
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virtual object is detected, the resulting force and torque is calculated by some force model 

and applied on user hand via the device. Figure 3-3 below shows a schematic of overall 

haptic interaction schematic. The rendering algorithm includes collision detection, and fast 

updates of collision response forces depending on object properties and user movement. 
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Figure 3-3: A schematic of haptic interaction paradigm 

The initial haptic rendering algorithms were simple and interacted with simple shapes. For 

example, in a point-based penalty method [Ho 1999], the end-point of probe is considered as 

a virtual point which can penetrate the virtual object whereas actual probe cannot penetrate 

the real object. The response force is calculated from the penetration depth of the virtual 

point. The model works well with simple objects but has limitations for complex interactions 

and objects. Figure 3-4 illustrates the calculation of response forces based on penetration 

depth. Small darker sphere shows the user movement in virtual environment which can 

penetrate the virtual sphere. Response force is dependent on its penetration depth (R- r). 
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Figure 3-4: Point-based penalty method for haptic rendering 

After the simple point-based methods, more sophisticated constraint-based methods have 

been developed which allow the rendering of more complex generic polygon meshes. In 

constrained-based methods, the haptic cursors are accompanied by some 'proxy/god' cursors. 

After a collision with the virtual object, the haptic cursor can penetrate but the proxy cursors 

are constrained to remain on the surface just like the real probes. The algorithm then tries to 

calculate the force by minimizing the distance between haptic cursor and its proxy cursor in 

some efficient way depending on the polygonal display of virtual object. Figure 3-5 shows a 

general schematic of constrained based haptic rendering. While the haptic cursor (blue 

sphere) can penetrate the object's surface, proxy/god objects are constrained to the surface. 

Both are tied with each other virtually and the response force depends the separation 

distance. Several improved versions of this general algorithm have been proposed over time. 

For example, Ho et al [Ho 1999] presents a more sophisticated form by introducing 

neighborhood-watch. The polygonal data of virtual object primitives (polygon, vertex, edge) 

is stored in a database along with its neighbor primitives. The database based on neighboring 

data results in a reduced search space. For every force computation, the algorithm looks for 

neighboring primitives only instead of every polygon of the object. This way force 

computations are no longer dependent on polygon count of virtual objects and result in more 

computational efficiency. 
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Figure 3-5: Constraint-based method for haptic rendering incorporating haptic and proxy cursors 

The above algorithms have 3D objects presented as geometrical polygon data. Kim et al 

[Kim 2002] uses a different Implicit-based surface representation for 3D objects. The 

geometrical, polygon-based surface of object is changed to an implicit surface. The implicit 

surface is in the form of implicit equation and gives location of co-ordinate points (inside, 

outside or on the 3D object) as the sign and value of potential function. This representation 

reduces the complexity of collision detection problem, which traditionally tried to search the 

whole polygon space, by changing it to a simple inside/outside property. After fast collision 

detection, the force is calculated following the constrained-based approach. An extension of 

this work combines the geometric and implicit surface representations as 'Hybrid surfaces' 

and presents haptic editing algorithms for haptic decoration of objects, editing of material 

properties locally and engraving/embossing of objects [Kim 2004]. 

3.3 Haptic Display of Surface Textures 

The haptic display of virtual objects is getting more complex and realistic by inclusion of 

more haptic properties than polygonal or implicit shape representation. Friction, stiffuess and 

surface textures are the other detailed haptic display properties critical to the realistic feeling 

of touch. 

Friction: The haptic property of friction allows user to distinguish between slippery and 

resistive surfaces e.g. ice, glass, wood. A popular way of modeling friction is to use lateral 

forces in addition to normal constraint forces on probe [Ho 1999, Kim 2002, Kim 2004]. 

Static and dynamic friction coefficients in lateral force calculations can be changed to present 
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different frictional surfaces. The simulation of stick-slip phenomenon to model static and 

dynamic friction respectively adds more realism to haptic interaction [Ho 1999]. 

Stiffness: Stiffuess of virtual objects is needed in applications which allow the deformation 

of virtual objects by user interaction e.g. sculpting. The stiffuess distinguishes the rigid 

bodies like metals and woods from easily deformable bodies like skin, fabric and clay. 

Stiffuess is modeled as elasticity of the object surface and the spring-based mechanical 

model provides the appropriate force feed-back to give the feeling of surface deformation 

and stiffuess. Different stiff and elastic surfaces can be modeled by changing the values of 

spring constants [Kim 2004]. 

Surface Texture: The textures of surfaces add high resolution detail to the surface of a 

virtual object. Surface textures result in haptic feelings of bumpy surfaces and roughness of 

the virtual object. As mentioned earlier, surface texture is the most challenging haptic display 

property due to its computational cost and high update rate requirements of haptic 

application. If the texture is added by changing the geometry of object explicitly i.e. 

changing the polygon mesh, the resulting mesh will result in enormous number of polygons 

and the real-time rendering will be impossible (Figure 3-6). Instead, alternative techniques 

are used to incorporate textures in feed-back forces. Most of these techniques are similar to 

those for texture rendering in computer graphics e.g. bump mapping. Following is a review 

of some of popular texture rendering techniques. 

Figure 3-6: A simple texture results in enormous number of polygons 
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3.3.1 Haptic Rendering of Surface Textures 

The most popular way of haptic texturing is 'force mapping' inspired by bump mapping for 

texture rendering in computer graphics. In force mapping, based on height fields (grayscale 

images), the magnitude and direction of calculated normal forces are modulated some 

appropriate way by height field values. For example, the position of proxy cursor is changed 

by adding height, thus changing the penetration depth and modulating the magnitudes of 

normal forces [Ho 1999]. Figure 3-7 illustrates force mapping. Small sphere shows the 

position of penetrated haptic cursor. The height from texture H is added to the penetration 

depth d. The direction of forces is also changed by the bump mapping algorithm. The 

algorithm perturbs the surface normals of the normal forces according to the height fields and 

thus produces the feelings of bumps in an otherwise smooth surface. The height fields for 

textures are either obtained from 2D image data or from synthesized textures generated from 

mathematical functions (procedural approach). 
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Figure 3-7: Force mapping- original surface vs. textured surface [Ho 1999] 

Theoktisto proposes a new algorithm 'height field rendering' and compares it with the force 

mapping technique mentioned above. The algorithm allows triangles in mesh models to have 

different textures. Forces are calculated the same way as in penalty-based method but the 

collision detection is different. The collision detection includes surface textures based on 

height fields by building virtual triangles over mesh triangles according to the height field 

values (Figure 3-8). Collision of probe with these virtual triangles triggers the force feedback 

[Theoktisto 2005]. 
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Figure 3-8: Height-field collision mapping using virtual triangles (shown in pink) ITheoktisto 20051 

The experiments show that the proposed technique is better in perception of shape like 

textures but for high resolution textures, giving the feeling of roughness, it docs not 

outperform force mapping. Figure 3-9 shows examples of shape like textures in one polygon 

and high resolution textures. 

Figure 3-9: (Left) shape like texture in one polygon (Right) high resolution texture 

Mercier et al [Mercier 2005] also uses the 20 texture images for haptic texture rendering. 

However, the texture images are not used simply to perturb the forces as is done in bump 

mapping. The algorithm computes the height/elevation map from luminance/brightness 

values at every pixel of texture image and raises the asperities on virtual object's surface in 

actual polygon mesh accordingly (Figure 3-1 0). The magnitude and direction of forces are 

then calculated by taking into account these small asperities due to texture. 
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(a) (b) 

Figure 3-10: Surface rising from texture images in [Mercier 20051 - (a) 20 texture Image (c) heightened 
surface 

Aside from image based textures and the corresponding height fields, synthetic textures can 

be generated from mathematical models as well in procedural haptic texturing and are mainly 

used in data visualization applications. Sirra presented the idea of stochastic modeling of 

surface textures for less computational cost and real-time haptic rendering [Sirra 1996]. It 

was proposed that the device need not follow the texture exactly and only an accurate haptic 

illusion to the user is required. Thus a texture can be modeled as stochastic process and 

rendering any sample of the corresponding probability distribution will give the similar 

haptic perception. By using the statistics of a random texture field, the heights and forces can 

directly be generated on the object space and the computations of conversions from texture 

space to object space can be saved which increases the overall efficiency of algorithm. The 

method was shown to produce realistic and real-time haptic textures. Fritz et a/ [Fritz 1996] 

also discusses several stochastic models (Figure 3-11) to generate perceivable synthetic 

haptic textures whose parameters can be tuned by data values. Several sampling techniques 

in 2D and 3D are presented to convert the desired stochastic textures from texture space to 

object space for rendering. Aysal et al [Aysal 2006] uses several stochastic and harmonic 

models to create pseudo haptic textures for data visualization. 
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Figure 3-11: Stochastic textures used In [Fritz 19961 - (Left) mixture of Gaussian distributions (Right) 
sinusoids with noise 

Apart from defining appropriate models for haptic textures and techniques to integrate them 

in haptic rendering, a recent work presents developed user-programmable modules to 

integrate procedural textures with current haptic applications [Shopf 2006]. The modules 

consist of texture programming procedures with several input parameters like stiffness, 

damping, and friction. These modules are executed after every collision detection event to 

output the resulting forces based on surface texture properties. The application provider can 

shade every object in virtual environments by changing input parameters to these texture 

shading procedures. 

3.3 .2 Performance Issues in Rendering 

The surface textures play very important role in giving users the realistic haptic experience of 

vittual objects. In addition to the computational costs required at this high resolution of 

details, the realism provided by surface textures becomes an addressable issue. For this 

reason, along with the work found on efficient rendering of surface textures, attempts have 

also been made to validate the realism of haptic experiences of surface textures from 

different aspects. Since almost all of the commercial haptic devices available today are point 

based devices, the perception of surface textures and resulting roughness through single point 

based probes poses a fundamental question. Lederman and Klatzky conducted extensive 

research on roughness perception of 'real' surface textures (made of metal plates) through 

probes [Ledetman 1999, Klatzky 2003]. Their experiments are based on real texture stimuli, 

metal plates with equally spaced grooves cut or etched lengthways into them. The user can 

explore these textures through a pen-like probe (Figure 3- 12). The experiments study the 
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effect of several factors e.g. exploration speed, mode of touch, probe shape and surface 

geometries on the perceived roughness. These experiments provide guidelines for roughness 

perception through probes which can be considered in virtual environments where 

exploration of virtual textures is done through pen-line probes. In contrast with these 

experiments with real textures and probe, work is also done in roughness perception of 

virtual textures via probe-based haptic devices to study the effects of different factors on 

roughness perception [McGee 2001, Penn 2001]. 

Figure 3-12: The apparatus used by Lederman to study perception of reaJ textures with probe-like 
exploration tools (Lederman 1999) 

Choi et al [Choi 2003, 2004] presents extensive research work to determine instabilities in 

perception of haptic textures through point based devices. Several types of instabilities 

arising from haptic rendering of simple textures have been identified by their experiments 

and corresponding causes are investigated. The work reports three major types of 

instabilities namely buzzing, aliveness and ridge instability. These instabilities are caused by 

instable control of haptic devices and inaccurate modeling of virtual environment dynamics. 

The underlying reasons have been studied point out the discrepancies in current rendering 

algorithms. 

A further piece of work investigates the limits a haptic device will pose on rendering of 

textures due to its inherent mechanical properties e.g. device resolution and structural 

dynamics [Campion 2005]. Instead of discrepancies in psychological perception of textures, 

the work concentrates on limitations in texture rendering due to mechanics of devices. 
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Certain limitations have been identified on the design of gratings in a texture beyond which 

the textures cannot be rendered accurately. These limitations are shown to arise from 

characteristics of device, noise injected due to sampling and constraints imposed by feedback 

dynamics loop. 

3.3.3 Applications 

The addition of surface textures greatly increases the realism of user interaction with a haptic 

device e.g. adding textures to wood, fabric like surfaces. However there are applications 

where haptic textures are used stand-alone. The most popular of these are scientific 

visualization for blind users. In any visualization application, the haptic texture is generated 

using some mathematical model with input parameters. The input parameters are turned by 

data values to modulate the textures. The visually impaired user can perceive the data by 

feeling the haptic textures. 

Data Visualization: Wall and Brewster et al [Wall 2003] presents the idea of data 

visualization via scaling of haptic display properties rather than visualizing through haptic 

display of traditional visual counterpart like bar charts, graphs, etc. It is argued that the 

traditional visualization methods require blind users to keep track of 'temporally' varying 

clues e.g. how high the bar was, placing short-term memory demands. For this reason the 

shape and size of charts, graphs cannot be perceived as good via haptic device as can be done 

visually. Therefore, scaling other richer haptic properties like stiffuess and textures would be 

more effective alternative. Their experiments include the user perception of haptic properties 

of friction, stiffuess and spatially periodic texture. The results show that users are well able to 

discriminate among different levels of haptic properties and their magnitudes. However, the 

friction was concluded to be the better perceived property. The work provides basis for future 

work in data visualization through tuning of haptic properties of textures. 

Accordingly, the work by Asysal concentrates on synthesizing pseudo textures for data 

visualization [Aysal 2006]. The textures are similar to the procedural approach where a 

texture is derived from some mathematical model. In this work several stochastic, harmonic 
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and half-toning models are presented which can be tuned to the input data values to generate 

the scaled haptic textures. The changes in input parameters required to produce perceivable 

texture changes are determined through psychophysical experiments. It is shown that the 

stochastic and harmonic models make good choice for data discrimination as well as to 

present boundary/edge based data to the blind users. Figure 3-13 shows synthesized textures 

from different models used for data visualization. 

t 
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Figure 3-13: Different models used for pseudo-texture synthesis - (a) stochastic (b) correlated (harmonic) 
(Aysal 20061 

Apart from using textures for data visualization, systems have also been developed which 

exploit other display properties of haptic environment to train the visually impaired. For 

example, Tzovaras presents a prototype system for the training of blind people which mostly 

concentrates on complete 30 object manipulation rather than concentrating on one haptic 

property only [Tzovaras 2004]. Several applications can be built to train users for different 

purposes. The system composes of a software consisting of interactive application 

(interacting with haptics device) and 30 modeling application to create the 30 virtual 

environments. CyberGrasp [immersion] is used as haptic interface to allow users more 

degrees of freedom by using all fingers of hands. The system allows many types of 

applications and has been tested for object recognition/manipulation and cane simulation to 

train users with virtual cane. 

Materials: Although rendering of haptic textures, different models for pseudo haptic textures 

and their applications have been studied, not much work is done to incorporate the materials 

found in real world completely to the haptic environment. Any such attempt would require 

the scanning of surface texture profiles of real objects, capturing of their mechanical 

properties i.e. stiffness and friction and their integration in virtual environment. This will not 
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only allow a user to feel a textured surface but also to differentiate between materials like 

cloth, wool, skin, wood, glass, clay, etc. A significant attempt to scan the physical interaction 

of real objects, recording their response and its modeling in virtual environment has been 

presented by Pai et a/ [Pai 2001]. A highly robotic measurement facility has been used to 

record several aspects of physical interaction. The features of an object modeled are 

geometrical shape, stiffness, surface textures and contact sounds. The models of measured 

features can be incorporated in virtual environments for more realistic interactions. Figure 3-

14 illustrates apparatus and scanning of the objects. 

(a) (b) (c) 

Figure 3-14: The physical interaction scanning setup - (a) shape/texture and stiffness measurement (b) 
sound measurement (b) scanned and modeled objects in virtual environment [Pai 2001 I 

A different type of work attempts to develop a virtual handling experience of fabric 

[Govindaraj 2003]. Surface profiles (textures) and friction are two properties incorporated to 

give tactile feedback of fabric to user. A system of highly sensitive touch response 

transducers captures the surface profile and friction of the fabric. A new tactile device, PhiiU 

(Figure 3-2), instead of traditional point-based haptic devices, is developed for thorough 

touching experience of fabrics. 

Finally, the human soft tissues have also been considered to be incorporated in haptic 

applications. However, they pose a significant challenge for the reason that their elasticity 

and surface properties vary greatly. The presentation of surface properties of soft tissues is 

believed to improve the current experience of users in medical haptic applications to great 
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extent. For this reason, the measurement of in vivo tissue properties, their mathematical 

modeling and simulation for virtual environments has become a major research topic in 

recent years. However, it will take time to reach a perfect representation of human tissues in 

virtual environments. Acosta et al [Acosta 200 I] presents an alternative approach to 

incorporate haptic properties of soft tissues in virtual environments. Instead of following the 

typical modeling of physical parameters of human tissues, they use a heuristic approach in 

which the user can define and store the haptic properties of different portions of human body 

heuristically. The users should be experts from anatomy and surgery who are well familiar 

with the haptic sensation of different tissues in the human body. The Virtual Body Structures 

(VBS) system allows to select any of the human body portions from database of human body 

and to view it in 3D. The user can then tweak the haptic parameters of selected portion of 

body while sensing the resulting change with haptic device. This feedback eventually results 

in proper tuning of biomechanical properties of tissue to give the haptic sensation suited best 

to user's knowledge of real tissues. Initially the system tunes the parameters of stiffness, 

damping and friction. 

Shirado et al [Shirado 2006] also presents an indirect approach to consider skin for haptic 

applications. They have developed the artificial synthetic skin structure (Figure 3-15) which 

possesses human skin like surface textures and elastic properties and can be used for haptic 

evaluation systems or to produce robot skin. The structure consists of multi layers of rubber 

sheet having different elasticity and hexagonal surface patterns. A cognitive model of skin 

based on different physical parameters is also built to correlate the tactile perception of real 

skin with the parameters involved in synthetic skin. However, the integration of real skin, 

with all the haptic properties of surface textures and elasticity, in virtual environments still 

remains unaddressed. 
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Figure 3-15: Structure of synthetic human-like skin proposed in [Shirado 2006] 

3.4 Summary 

In this chapter an overview of haptics technology including haptic devices and rendering has 

been presented while focusing on haptic rendering of textures. From recent rendering 

techniques of surface textures, it can observed that most of rendering algorithms require 3D 

surface texture information to be presented as 2D grayscale images. These images are used 

for perturbing the haptic forces the same way as is done for bump mapping in computer 

graphics. 

In regard with complete virtual representation of soft tissues found in body, the research 

work is only in its initial stages. For this reason a heuristic approach was proposed by Acosta 

et al [Acosta 200 1] for haptic representation. Similarly virtual presentation of human skin in 

a haptic environment is challenging requiring several physical characteristics to be modeled 

including surface features, stiffness and friction for a realistic touch experience. As was 

mentioned section 2.5, 3D surface features play an important role in determining the 

condition of skin. This work concentrates on the modeling and representation of 3D textures 

of skin. In Chapter 5, the 3D features of skin will be detailed which are modeled as 2D 

texture images and can be used as bump maps for haptic texture rendering techniques. In 

Chapter 4 the theoretical background of modeling techniques used for this purpose will be 

detailed. 
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Chapter 4 

Image Textures and Markov-Gibbs 
Random Field Modeling 

This chapter reviews the theoretical background of the modeling technique used in this work 

for grayscale textures obtained representing 3D skin textures. Any probabilistic image 

modeling targets the generation/simulation of random samples having visual resemblance to 

the training image. For this purpose, a suitable probabilistic model is selected and its 

parameters are estimated from the given training image to identify the model completely. The 

random samples of this identified model correspond to the synthesized images with visual 

similarity. Several sampling algorithms are available for synthesizing images from the 

identified model. Therefore, parameter estimation and image synthesis are the integral parts 

of probabilistic image modeling techniques. 

For this work, Markov random field modeling is applied as a probabilistic modeling 

technique. Chapter 5 will describe in detail the modeling scenario in context with this work 

whereas this chapter presents detailed description of the modeling technique. 

4.1 Markov Random Fields 

Markov random field (MRF) is a popular probabilistic modeling technique. It is a non-causal 

extension of Markov chain (see Appendix B) in a two dimensional lattice. Every site of the 

lattice is associated with an event and random variable (see Appendix B). As with Markov 

chain, these sites in 2D lattice are dependent on their neighbouring sites only. Markov 
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random field modeling deals with the probabilities associated with these random variables. 

The same probability distribution function, also called image model, is associated with all 

sites and random variables in the image lattice. Modeling involves complete identification of 

this distribution function for the given image and producing similar images from the 

identified function. 

4.1.1 Image Probabilities 

A random field is a set of random variables defined on a two dimensional lattice. Consider a 

lattice of MxN dimensions R = {i = (x,y): 0 s x < M,O s y < N} where every site (or a pixel 

for a digital image) i is associated with a random variables,. The result is a family of 2D 

random variables called random field denoted by S = {s,, i E R}. The random variable at 

every site takes the signal value from signal space Q. A digital image G = {g,, i E R} can be 

~onsidered as a realization (sample) of the random fieldS. For example, Figure 4-1 shows 

2D lattice and associated random field with a realization sample. A set of all possible 

realizations of the random field S for lattice R is denoted by U . 

fhe probability of the random variable s, at site i having signal value g 1 is denoted as 

P(s, = g 1). The random variables in the random field are considered statistically dependent 

md their joint probability distribution is given as P(S =G) representing the probability of 

)bserving the digital image G out of realization space U for the random field S . The 

;onditional probability of observing signal value q E Q at site i given signal value q' E Q at 

;ite i' is denoted by P(s, = q Is,'= q') or shortly as P(q I q'). 
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Figure 4-1: A random field defined for a digital image 

4.1.2 Neighbourhood system and cliques 
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Consider the random field S associated with lattice Rand a given realization G of it. Let S 1 

denote the random field excluding the random variable s1 at site i and G 1 as the signal 

values in the realization excluding the signal value g 1 at site i. A pixel i'e R is called the 

neighbour of a pixel i e R if the conditional probability P(s1 I 8 1
) of signal value s1 depends 

on the signal value s1'. A collection of all the neighbours of the site i in the lattice R forms 

the 'neighborhood' of the pixel i denoted by N1 • A set of all the neighbourhoods in the 

lattice N5 = {N, : i e R} is called the neighbourhood system for random field S [Gimel 

1999]. For a neighbourhood system the following properties hold. 

l) A site is not neighbouring to itself i fl!: N 1 

2) The neighbouring relationship should be mutual, i eN,. <:::> i'e Nt> i.e. if site ( is present 

in neighbourhood of site i then site i must be present in neighbourhood of site ( 



Chapter 4. Image Textures and Markov Gibbs Random Field Modeling 66 

Given a neighbourhood system N s a clique c c R is a single site or a subset of sites in 

which every pair of distinct sites is the neighbour of each other under the neighbourhood 

system. The number of sites in a clique defines the order of neighbourhood system and the 

statistical dependence between neighbours of a clique is called the 'pixel interaction'. Figure 

4-2 shows two examples of simple 2"d order pair-site neighbourhood systems and their 

cliques. 

··------------------, 
I I ··: 

neighbourhood 
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cliques 

I 
I !,. __ 

I 
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Figure 4-2: Two examples of2"d order neighbourhood systems and their cliques, sites i and i' are 
neighbours of each other under given system 

4.1.3 Markov Random Fields 

The random field S is a Markov random field under the neighbourhood system N s if and 

only if the following two conditions are satisfied. 

1) For every sample G in the image configuration space U, the joint probability is strictly 

positive i.e. P(S =G)> 0. 

2) For every site in the image lattice, P(s; I S1
) = P(s, Is,. : i 1

E N;). 
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The first property is called positivity and is trivial for the probability distributions. The 

second property is called markovianity. It describes the local characteristics of random fields 

and suggests that the signal value at a site is dependent on the signal values in its 

neighbourhood only, that is, pixel interactions are present among neighbouring sites only. 

Let the cardinality (number of elements in a set) of the neighbourhood of a site i be denoted 

by I N, I . Then the order of MRF is given by maximum cardinality present in the 

neighbourhood system i.e. max IN 1 I· Markovianity also means that each component of a 
iER 

MRF is independent of some other components. Therefore, the cardinalities of 

neighbourhoods in N s should be less than that of the lattice given by I R I· Thus the order of 

MRF can be in between 1 and I R 1-2 including both values. The field of maximum order 

I R 1-1 will be considered as the non-Markov random field. Since the computational 

complexity of random field image modeling depends on the cardinalities of the 

neighbourhood system, the MRFs of small order are more popular as image models. 

4.1.4 Gibbs Random Fields 

A random field S is a Gibbs random field (GRF) on lattice R under neighbourhood system 

N s if and only if its probability distribution obeys the Gibbs Probability Distribution (GPD) 

as follows 

1 -U(G) 
P(S =G)= -exp{ } 

Z T 
(4.1) 

where Z is a normalizing constant called partition function and is given by 

(4.2) 

T is a constant called temperature and is assumed to be 1 unless stated otherwise. U (G) is 

an energy function defined in terms of cliques. The partition function sums over the energy 
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functions for all possible realizations in the set U . As discussed above, the sites in cliques 

are statistically dependent. Their pixel interaction is given as a function called clique 

potential denoted by V,(g1 : i E c) and depend on the signal values of sites in the clique. The 

energy function in Gibbs distribution is a sum of clique potentials over all the possible 

cliques in GRF and is given by 

U(G) =-IV,(g,: i E c) (4.3) 
<EC 

where C is the set of all cliques in GRF. The clique potentials are also called Gibbs 

potentials. A GRF is homogeneous if clique potentials are independent of relative positions 

of cliques in lattice. 

Gibbs probability distribution was first introduced in statistical physics to describe the 

equilibrium states of a large statistical system of interacting particles like atoms, molecules, 

etc at an overall system temperature. For image modeling, an analogy is established between 

the interacting particles of the physical system and the pixels of an image. The famous 

Hammersley-Clifford theorem proves the equivalence of Markov and Gibbs random fields 

[Li 1995]. 

4.1.5 Markov-Gibbs Equivalence 

The Markov random field is defined on a lattice R and is characterized by its 'local' 

property describing the neighbourhood interactions (Markovianity) whereas Gibbs random 

field is characterized by its 'global' property describing the probability distribution of 

~quilibrium states of a system of particles (Gibbs Probability Distribution - GPD). 

Hammersley-Clifford theorem establishes equivalence of the two systems. It states that a 

'andom field S is a MRF on lattice R with respect to neighbourhood system N 8 if and only 

'f S is a GRF on lattice R with respect to neighbourhood system N 8 (See [Li 1995] for 

Jroof). The theorem implies that, under the positivity condition, the joint probability 
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distribution P(S) of a MRF over the parent population can be represented as the GPD in 

equation ( 4.1) where the potential functions of random variables are supported by cliques in 

neighbourhood system of MRF describing the pixel interactions. 

The theorem has the practical value that it provides a simple way of specifying the joint 

probability function for a MRF through Gibbs probability distribution function. Thus, the 

local interaction function in MRF (the conditional probability P(s, = q Is,'= q')) can be 

specified in terms of global function, the joint probability function and clique potentials in 

GPD in equation (4.1). In this case, the conditional probability of a site in MRF P(g, IN,) 

can be written in the form of GPD where the conditional probability depends on the cliques 

containing the site itself only (denoted bye,) and rest of the cliques have no effect [Li 1995]. 

For a simple model, cliques having only two sites i, i' are considered. 

(4.4) 

z, = L exp{LV,(g,,g,. :i,i'Ec"i,ci')} 
KiEQ CiEC 

(4.5) 

4.2 Texture Modeling 

A.s mentioned previously, the goal of a probabilistic image (texture) modeling is to 

generate/simulate random samples (images) from a given joint probability distribution P(S) . 

fhe joint probability distribution P(S) is called the 'image model' which determines how 

likely a texture image can occur. By modeling we mean to select the joint probability 

iistribution such that it tends to favor the desired class of textures. For MRF, the modeling 

Jrocess addresses the problem of selecting the neighbourhood system and corresponding 

;onditional probabilities for the lattice. Under Markov-Gibbs equivalence this process means 

:o select the forms and parameters (clique potentials) of the joint probability distribution 
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}PD for desired system behavior. The resultant GPD is then called the image model. 

)efining the functional forms of clique potentials and estimating its parameters to completely 

iefine GPD is what is done under MRF modeling [Gime11999, Li 1995]. 

The Markov random field modeling has been used for texture synthesis [Chee and Derin 

1988, Derin and Elliot 1987], classification and segmentation [Lakshman 1989, Chee and 

)erin 1987]. For texture synthesis applications, the parameters of MRF are estimated from 

raining texture sample and similar samples are generated by sampling the corresponding 

::JPD. For texture classification and segmentation applications, the MRF parameters 

;orrespond to the texture features. Based on MRF parameters estimated from image (texture 

features), textures are classified by some decision rule/classifier or segmented by performing 

labeling. Several MRF models have been used for the above applications, the most popular 

being auto-models with lowest order constraints on two sites neighbourhood. They are 

simple and have computationally less cost. 

4.2.1 MRF Models 

The auto-models are the simplest MRF models where only two sites are considered in a 

neighbourhood. The corresponding GPD contains pair-site clique potentials and the energy 

function takes the following general form [Li 1995] 

U(G) = L,gJn,(g,) + L,g,g, .. J3,,,. (4.6) 
iER (i,i')EC 

The first term contains the arbitrary function depending on signal value g, at site i and 

second term reflects the pair-site interactions between site and its neighbours i,i'through 

constants J3,,,. depending on signal values at the neighbouring sites. C is the set of all pair-

site cliques in lattice R. Equation ( 4.6) is a general expression for auto-models. These 

models are further classified depending on the form the function fn, (g, ) takes and the 

values of constants jJ, , .. 
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An auto-model is reduced to auto-logistic/Ising model when the signal values take the 

discrete values from the set g = {0,1} and the function fn,(g,) takes the form of the constant 

a, . For Ising model the neighbourhood system contains only nearest pair-site neighbours ( 4 

nearest neighbours on a 2D lattice). The energy function for an Ising model is given by 

U(G) = Ig,.a, + Ig,g, .. /3,,,. 
ieR (i,i')eC 

whereas the conditional probability takes the following form 

P(g, IN,)= -
1 

exp{LV,(g,,g,.: i,i'E c;,i * i')} 
Zi c1eC 

(4.7) 

1\nother popular auto-model is auto-binomial model. For auto-binomial model the 

;onditional probability distribution takes the form of binomial distribution. The signal value 

g1 at lattice sites can take values from the discrete set of signal values Q = {0,1,2, ... , Q -I} . 

fhe probability of taking value has the conditional probability of Q trials having probability 

Jf success q . The conditional probability is given as 

(4.8) 

n this case the signal values at neighbouring sites play their role in determining the 

Jrobability of success q which is given by 
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(4.9) 

For this model the parameters to be determined are the sets {a}, {P .} . 
I 1,1 

The most popular auto-modal until now has been the auto-normal or Gaussian model based 

on two-site neighbourhood only. For auto-normal model the conditional probability 

distribution takes the form of normal or Gaussian distribution instead of binomial 

disbtribution. The signal value g, at lattice sites can take values from the discrete set of 

signal values Q = {0,1,2, ... , Q -1} . The conditional probability of signal value has the 

Gaussian distribution whose form depends on the signal values at neighbouring sites. The 

conditional probability is given as 

(4.10) 

The conditional mean for this Gaussian distribution IS g1ven as 

f.l(g, IN,)= f.1,- L,P.,,.(g,.- f.1,.) and the conditional vanance as CY. Here the set 
i'ENi 

{P,,,.} makes the model parameters for a specific class of textures. 

4.2.2 Model Identification 

As discussed earlier, modeling incorporates selection of a suitable underlying mathematical 

model as well as finding its parameters. In section 4.2.1 we reviewed some of popular MRF 

models for different image texture applications. Once a suitable MRF model has been 

selected including its Gibbs distribution and neighbourhood system, the next step is to find 

its parameters. A model is completely identified only when its form is selected and all of its 

parameters have been estimated. 
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4.2.2.1 Bayes Estimation 

MRF modeling is characterized as optimization problem like other problems in computer 

vision. The reason is the non existence of exact or perfect solutions [Li 1995]. For example, 

in texture segmentation, it would be impossible to find the perfect segmented image of the 

two texture regions and only the closest solutions can be targeted. Similarly in texture 

modeling, only an approximated version of the texture in the actual image can be 

synthesized. Therefore, the search for optimal solutions through some optimization algorithm 

becomes the natural choice in these situations. In texture modeling scenario, the search for 

the parameters of the selected probability distribution (model GPD) which can represent the 

training image is posed as an optimization problem. The set of parameters maximizing the 

model GPD P(S), or in other words, minimizing the corresponding energy U(S) for the 

given image is considered to be the optimal solution and is estimated. 

Let B denote the set of model parameters to be identified and s be the given image. Let B' 

ienote the optimal estimate of parameter set. As mentioned above, the optimization will 

rield a solution closest to the unique exact solution. Bayesian estimation from statistical 

heory provides the basis of many optimization algorithms in computer vision to find the 

>ptimal estimates. In Bayesian estimation a risk function 'Bayesian risk' is assigned to the 

:stimated quantity and is defined as 

R(B') = fcco· ,B)P(B I s)dB ( 4.11) 

vhere C(B' ,B) is the cost function and determines the cost of estimate B when the truth is 

? ' . Thus the risk function R( B') in equation ( 4.11) determines the overall cost associated 

vith optimal solution B 'when the posterior distribution (See Appendix B) of parameters is 

:iven asP(B Is). In Bayesian estimation, the optimal solution is reached by minimizing the 

isk. In other words, that value of B' is considered to be the optimal solution which 

1inimizes the risk R(B') given the cost frmction and posterior probability of parameter set 
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B. The solution of equation (4.11) (Refer to [Li 1995] for detailed derivation) for different 

cost functions results as 

R(B') = 1- vP(B Is) (4.12) 

where v is a constant. From above equation it is evident that minimizing the risk function in 

Bayesian estimation results in maximizing the posterior probability. Hence, the optimal 

estimate of parameters can be found as 

B' = argmaxP(B Is) 
e 

(4.13) 

According to Bayes rule (See Appendix B), the posterior distribution can be computed by 

following 

P(B Is)= P(s I B)P(B) 
P(s) 

(4.14) 

where P( B) is the prior probability of parameters, P( s I B) is the conditional probability of 

observing data (signal values) given the parameters set, also called 'likelihood function' (see 

Appendix B) of B for s fixed, and P(s) is the probability function for observing data. 

Considering that P(s) is constant when s is given as training image, the equation (4.14) 

reduces to 

P(B Is) oc P(s I B)P(B) = P(s,B) (4.15) 

B' = argmax{P(s I B)P(B)} (4.16) 
e 

Equation (4.15) and (4.16) imply that the optimal solution for the parameter set can be 

obtained by maximizing the joint probability P( s, B) . Bayes estimation of the optimal 
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Jlution leads to the 'maximum likelihood estimation' which has been a popular optimization 

:chnique for parameter estimation in MRF modeling. 

·.2.2.2 Maximum Likelihood Estimation (MLE) 

'he goal of parameter estimation is to find the values of underlying model parameters given 

training image. It was discussed in last section that according to Bayesian estimation, those 

1arameter values are optimal solution which maximize the joint 

1robability P( s, B) = P( s 1 B)P( B) . However, in most cases the distribution of parameter set 

P( B) is considered to be flat. Hence, the probability P( B) can be ignored and Bayes 

:stimation reduces to what is called maximum likelihood estimation. 

B' = argmaxP(s I B) 
e 

(4.17) 

[he ML (Maximum Likelihood) estimate B' maximizes the likelihood of B i.e. it searches 

'or those values of parameter set B which maximize the GPD P(S) for the given image s. 

fhe concept of maximum likelihood can be understood by following example. Figure 4-3 

;haws the probability distribution of data with values of two parameters fixed. Figure 4-4 

;haws the likelihood of one parameter w with the observed data and the other parameter 

tixed. The graph shows the value of parameter w which would maximize the probability of 

Jbserving data y=7 with parameter value n= 10 fixed. 

Figure 4-3: The probability distribution of data y with two model parameters n,w given 
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Figure 4-4: The likelihood function of parameter w for observed data y=7 and parameter value n=lO 

fthe function P(s I B) is differentiable the search for ML estimate B' reduces to solving the 

'Ollowing equation 

oP(s I B) 

aB 0 (4.18) 

;everal approximation techniques e.g. Pseudo-likelihood, Coding method, Mean field 

tpproximations (See Li [1995]) and MCMC algorithms (Section 4.3.3.1) have been utilized 

o solve the above for finding ML estimates. 

4.2.3 Texture Synthesis 

)nee the Markov/Gibbs model of a training image has been identified i.e. its form and 

Jarameters completely estimated from the training image, the texture images similar to the 

raining one can be synthesized (simulated) from the identified model. The process of 

;ynthesizing images from an identified model is called sampling. In other words, the 

;ynthesized images correspond to the samples of underlying GPD P(S). Sampling of GPD 

;an be understood best on the basis of its two major components a) Markov Chain Monte 
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:::arlo (MCMC) algorithms for sampling probability distributions and b) Simulated Annealing 

ligorithm for global optimization. The process of sampling with optimization through 

;imulated annealing is called stochastic relaxation which is defined as a process of 

?enerating Markov chain of samples that has the given distribution P(S) in the equilibrium 

~tate .. 

4.2.3.1 Markov Chain Monte Carlo (MCMC) algorithms 

These algorithms start with a random image and generate a sequence of samples which form 

a Markov chain. As the definition of Markov chain implies, every sample g' in the sequence 

depends only on the previous sample gt-I. A Monte Carlo procedure randomly selects the 

next sample in the sequence from sample space U with the conditional probability that 

depends only on the current sample indicating the Markov property of the chain which is 

given mathematically as 

P(g' I gx where x *f)= P(g' I g'-') (4.19) 

The conditional probability P(g' I gt-I) defines the transition probability of the Markov 

chain. The MCMC algorithm updates the Markov chain based on this transition probability 

until, after sufficient iterations, the chain reaches the equilibrium state when the joint 

probability distribution of the sample P(g') approaches the stationary desired model 

GPD P(S) . In other words, the MCMC algorithms generate a sequence of random images 

whose joint probability distribution approaches the given GPD gradually until, in equilibrium 

state, the generated image has high visual resemblance to the training image. Two sampling 

algorithms Metropolis Sampler and Gibbs Sampler are well-known MCMC algorithms to 

generate a sequence of images. 
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l\IIETROPOLIS SAMPLlNG ALGORITHM:-

(1) initialize g to a random image 

(2) repeat 
(3) for all i E R do 
(4) choose g; at random from Q to generate g' 

(5) let p =min( l,P(g')l P(g)) 

(6) where P is the given Gibbs distribution 
()) replace g by g' with probability p 

(8) until equilibrium is attained 

Figure 4-5: Metropolis algorithm for sampling probability distribution P(g) 

GffiBS SAl\IIPLING ALGORIT:If&.1:-

(1) initialize g to a random image 

(2) repeat 
(3) for all i E R do 
(4) calculate p, = P(g; = q IN;) for all q E Q 

(5) where P is the given Gibbs distribution 
CJ) replace g; by the signal value q with probability p, 

(8) until equilibrium is attained 

Figure 4-6: Gibbs algorithm for sampling probability distribution P(g) 

In both algorithms, every iteration consists of visiting all sites in the lattice and updating their 

values. After sufficient number of iterations, the sequence of images converges to the 

equilibrium with visual similarity to training texture. However, the samplers differ in 

updating scheme of the individual site values. The Metropolis algorithm follows a random 

walk, in which the next state is selected randomly whereas in Gibbs sampler the next state is 

selected after calculating the local conditional probability p q for every signal value q . 

Gibbs sampler computes I Q I exponentials at each step and is computationally costly in 

comparison with Metropolis sampler which calculates one exponential only but Gibbs 

sampler converges to equilibrium faster in less number of iterations. 
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U.3.2 Simulated Annealing 

Simulated annealing is a simulated version of physical annealing process in which substances 

tre melted and slowly cooled down to reach the lowest energy state. Similarly, it is used in 

)ptimization problems to reach the lowest energy state or optimal solutions. In case of 

:exture synthesis via MCMC algorithms, the goal is to reach the equilibrium state with 

naximized probability (GPD) P(S) which minimizes the energy U (S). Figure 4-7 shows 

:he Metropolis algorithm including simulated annealing. 

METROPOLIS SAMPLING ALGORITIIJ.IJ: WITH SIMULATED ANNEALING: -

(1) initialize g to a random image and initialize T 

(2) repeat 

(3) for all i E R do 

choose gi at random from Q to generate g 1 

(4) M <c- E(g')- E(g) 

(5) let p = min( 1, exp(- Ao/r)) 

(6) replace g by g' with probability p 

\1) reduce T 
(8) until T --» 0 

Figure 4-7: Metropolis algorithm for sampling probability distribution P(g) with simulated annealing 

Simulated annealing algorithm makes sure that the MCMC sampling algorithm does not get 

stuck in local minima and reaches the global minimum. The samplers in Figure 4-6 and 4-7 

try to reach the equilibrium by random search of the sample space for GPD P(S). Simulated 

annealing controls this search with a temperature parameter T. The step ( 5) in algorithm 

demonstrates that at higher temperatures, large increase in system energy may be accepted 

whereas, with the gradual decrease of T, small increases are accepted only, until near 

freezing T, no increase in energy are accepted at all. The procedure is similar to the physical 

cooling process. Therefore, in initial iterations, the sampler does not get stuck in local 

minima following the greedy approach. The accepting of large increases in energy allows the 
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mmpler to deviate from greedy approach and searching the whole sample space which 

~nables it to reach the global minimum. 

fhe decreasing scheme for temperate named as cooling schedule is important in determining 

the convergence of sampling algorithm towards global minimum. Slow cooling schedules 

~nsure the global minimum but are practically too slow to be of use. For this reason heuristic 

faster cooling schedules are applied for annealing. For example, following are two cooling 

;chedules for temperature T at iteration t . 

c 
T(t)---

ln(l + t) 
(4.20) 

T(t) = KF(t - 1) ( 4.21) 

.vhere cis set around 3 or 4 and typical values for K are around 0.8, 0.99. 

Figure 4-8 and 4-9 below show examples of texture synthesis via Metropolis algorithms 

Jsing cooling schedule in equation ( 4.21 ). The different textures are synthesized using 

iifferent values of parameters for the 2"d order and 3rd order neighbourhoods shown. For 

:extures in Figure 4-8 multi-level logistic model is used whereas the textures in figure 4-9 are 

~enerated using auto-normal model. 

Figure 4-8: Texture samples synthesized using 2"d order neighbourhood and multilevel logistic model 

• 
Figure 4-9: Texture samples synthesized using 3rd order neighbourhood and auto-normal model 
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4.3 Markov-Gibbs Random Field (MGRF) Modeling 

For this work the general Markov-Gibbs random field (MGRF) model with 'pairwise pixel 

interactions' has been used to model skin surface textures [Gimel 1999, 2005]. This section 

ietails the steps involved in MGRF modeling. The mathematical description of model 

>tructure, based on pairwise pixel interactions and its parameters, identification of significant 

pixel interactions from training image, estimation of parameters through MLE and then 

image synthesis through MCMC algorithm are the main steps in modeling and have been 

~overed. 

The generic MGRF model is dependent on pairwise pixel interactions present in the texture 

image. As discussed in section 4.1.3 Markov models depend on pixel interaction among 

aeighbourhood pixels in a training image under a given neighbourhood system. For this 

reason the usual practice for different models of MRF is to assume a neighbourhood system 

of a specific order (as shown in Figures 4-8 and 4-9) beforehand and to estimate the model 

parameters from training image accordingly. Gimel et al [Gimel 1999] argues that in general 

the auto-models of MRF, borrowed from physical systems, may not describe the pixel 

interactions in a texture image adequately. The assumed pixel interactions in pre-defined 

aeighbourhood system do not necessarily represent the actual pixel interactions in a training 

image. Furthermore, as has been discussed for auto-binomial and auto-normal models of 

MRF, the estimation of model parameters pose computational difficulties for the reason that 

estimation techniques have been developed for image modeling specifically and are not 

adopted from physics like the MRF models. This results in MRF models and parameter 

estimation techniques which may not be flexible enough to adapt to wide range of training 

texture images. 

On the other hand, the general Markov-Gibbs random field model generalizes Gibbs 

distribution rather than using pre-defined binomial or normal distributions. An arbitrary 

structure of pixel interactions is estimated from training image allowing more flexible znd 

order neighbourhood systems. The estimated pairwise interactions are represented as cliques 
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n corresponding Gibbs distribution. The values of clique potentials are also estimated from 

:he training image. This model offers simplification and generalization over image textures. 

4.3.1 Pairwise Pixel Interactions 

fhe general MRGF is based on an arbitrary 'interaction structure' (or neighbourhood system) 

.vhich incorporates important pixel interactions in the training image. Pixel interaction means 

:he probabilistic dependence of signal value at a pixel on another pixel in the neighbourhood 

;ystem. For the simple znd order system, these interactions are limited to pairs of pixels only. 

[n contrast with traditional MRF models, the pixel interactions need not to be short -range 

Jnly in MGRF model. Figure 4-10 below shows an example of pairwise pixel interactions of 

:lifferent ranges. 

eoooooooe 
0 00000 • 
00 000 0 
000 0 00 
000 0000 
000.00000 
000000000 
000000000 
000000000 

Figure 4-10: Multiple pair wise pixel interactions, short-range and long-range 

An interaction structure represents all significant long range and short range interactions in a 

training image. The general MGRF model is defined only for strictly homogeneous or 

piecewise homogeneous texture image. This category of images ensures the translation 

invariance of pairwise pixel interactions i.e. the same pixel interactions are observed 

throughout the image lattice. The MGRF model determines the characteristic neighbourhood 

(interaction structure) for a given image as well as the strength of pixel interactions (as Gibbs 

potential functions) to recover the texture image precisely. 
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\ pairwise pixel interaction is given as a clique c p,v = { (i, i'): i, i'E R} where (,u, v) denotes 

he spatial offsets between pixels of the pair. As implied by the translation in variance quality 

Jf the homogeneous texture, all cliques present in image under the same offset possess more 

Jr less the same combination of signal values. The group of all cliques present in lattice is 

·epresented by the clique family ep,v = {(i,i') I i,i'E R,i'-i = (,u,v)} for the offset(,u,v). The 

;haracteristic interaction system for the image consists of significant clique families of image 

lenoted by eN ={ep,v :(,u,v)EN}, where N={,u,,v, :n=0,1,2, ..... ,N}denotes the 

Jairwise offsets of the neighbourhood system. 

fhe interaction strength of the members of a clique family is represented by clique potential 

Vp,v (g;o gr : (i, i') E e p,v) corresponding to Gibbs potential in GPD in equation ( 4.1) where 

(g,,g,.)are signal values at the two sites in a clique. A sum of all clique potentials for a 

:lique family is denoted by partial interaction energy for that family given as E p,v (G I V,,,v). 

A. sum of partial interaction energies for all clique families results in total interaction 

~nergy E(G). 

Ep,v(G I vp,J = 2:V,.v(g,,g,.: (i,i') =c) (4.22) 
cecp,v 

E(G) = LEp,v(G IVp,v) (4.23) 
p,veN 

The general MGRF model takes into account the interaction structure N, its clique families 

eN, their clique potentials vp,v(g,,g,.), and partial interaction energiesEp,v(G I v,,v)' 

Overall, the GPD for MGRF model can be written as following 

1 
P(G) = z exp(E(G)) 

1 
= -exp( IEp,v(G I vp,J) 

Z .u,veN 
(4.24) 
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fhe value of clique potential shows the significance of clique families. The higher potential 

falue for a family represents high interaction energy and thus influences more on texture 

)attems. However, the interaction structure N consists of significant clique families only. 

U.2 Model Parameters 

=<or a given training image, the signal co-occurrences of pairs are gathered for different 

;lique families and given in the form of Grey Level Co-occurrence Histograms (GLCH). Let 

Hp,v(G) = {Hp,v(q,q'l G): (q,q') E Q2
} denote the vector of grey level co-occurrence 

1istograms gathered for the clique family C p,v . The histograms are then normalized to get 

grey level co-occurrence probabilities' for that specific clique family. 

F (G)= Hp,v(G) 
p,v IC I p,v 

(4.25) 

L(q,q')eQ' (Fp,v(q,q'l G)= I (4.26) 

\s discussed in last section, the clique potentials vp,v(g;,g;,)depend upon signal values 

:q,q') at the two sites in cliques determining how probable the signal values are to appear in 

hat specific type of cliques throughout the image. This allows the partial interaction energies 

>f clique families to be written in terms of GLCHs. 

cECp,Y 

= LVp,v(q,q'IG)Hp,v(q,q'IG) (4.27) 
(qA')e]QJ2 

=ICp,v I LVp,v(q,q'IG)Fp,v(q,q'IG) 
(q,q')e]Q]z 

=I R I Pp,v LVp,v(q,q'l G)Fp,v(q,q'l G) 
(q,q')e]Q]z 
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where the constant p, v = I C p.v I denotes the relative cardinality of every clique family. 
"' IRI 

fhus the GPD for general MGRF in equation can be written in the form ofGLCHs. 

P(G)= ~ exp( L I cp,v I L:vp,v(q,q'l G)Fp,v(q,q'l G)) 
,u,veN ceC11,v 

(4.28) 

fhe above expression has two important constituents for Gibbs energy. Gray level co­

occurrence histograms are gathered from the training image and form the sufficient statistics 

for the model (see Appendix B). The potential vector V = (Vp,v I (p, v) EN) forms the model 

parameters and is to be estimated from the training image. The next step in modeling is to 

estimate the model parameters through MLE. 

4.3.3 MLE Parameter Estimation 

Let L(V I G) denote the logarithm of the likelihood function for the MGRF model called 

log-likelihood function given as 

L(V I G)= ln(P(G IV)) (4.29) 

It has been shown that the log-likelihood function for GPD meets the requirements for strict 

log-concavity or unimodality [Gimel 1999]. Unimodality implies a unique finite maximum 

v· where the gradient of log-likelihood is equal to zero. The desired MLE for parameters of 

log-likelihood v• is achieved in two steps. The first step involves analytic approximation of 

parameters by analyzing log-likelihood function. In second step, a stochastic relaxation 

algorithm refines analytic approximation of potentials as well as synthesizes the texture 

[Gimel 1999]. 

The analytic approximation involves expansion oflog-likelihood into truncated Taylor series 

(See Appendix B) around the zero pointY= 0. The point corresponds to the Gibbs 
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listribution, Independent Random Field (IRF), where all signal values are equiprobable and 

;ite signals are independent. The truncated Taylor Series expansion of log-likelihood 

function around point is obtained as follows. 

L(V I G) "'L(O I G)+ v. ar(;~ G) I V=O + ~ .vr az r~;~ G) I V=O v (4.30) 

The marginal probabilities (See Appendix B) of signal co-occurrences for cliques in IRF 

rre F,,1 (q, q') = I~ l2 • Let Var;if = F,if (1- F,if) be the variance of signal co-occurrences for 

IRF. It can be shown from quadratic approximation of above truncated series that the first 

analytic approximations of clique potentials are given by 

( 4.31) 

which leads to the following expression for interaction energy of each clique family in 

equation (4.27) [Gime11999]. 

Ep,v(G I Vp,v) =I R I A0Pp,v ~)Fp,v(q,q'l G) -F,if )Fp.v(q,q'l G) 
(q,q')eiQI1 

(4.32) 

The scaling factor A0 is same for all clique families and can be derived from the statistics of 

Independent Random Field (IRF) as follows 

(4.33) 
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;vhere ~ v(q,q')=F (q,q')-F,,.,.. The equation (4.31) shows that pairwise pixel 
Jl, J..l,V 'J 

nteractions for every clique family, given by Gibbs potentials, depend mainly on signal co­

Jccurrences in training image and that how far these deviate from those of the IRF. 

U.4 Most Characteristic Interaction Structure 

<\n interaction structure or characteristic neighbourhood for MGRF contains significant 

;lique families only which implies that in most cases a small proportion of clique families 

;vould be making major contribution to the texture pattern. Thus, the reduced number of 

;lique families reduces the computational complexity of model while still preserving the 

mderlying texture pattern of the training image. The clique families are filtered based on 

heir interaction energies. The clique families with weak interaction energies are excluded by 

;etting their Gibbs potentials to zero. The procedure for finding the most characteristic 

nteraction structure is outlined by Gimel et al [Gimel 1999]. A search window is selected 

;overing a large range of possible pairwise pixel interactions. The relative partial interaction 

mergies of each clique family in search window are calculated and compared. A 2D relative 

Jartial energy function graph 'interaction map' presents visually the clique families in search 

;vindow and their relative energy contribution. Figure 4-11 below shows an example 

nteraction maps with 40x40 window width where darker clique families show higher 

nteraction strength. 
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Long range cliques with 
high interaction energies 

Short range cliques with 
high interaction energies 

Cliques with low 
interaction energies 

Figure 4-11: Interaction Map on large scale (reprodnced from [Gimell999]) 

The characteristic neighbourhood is found by proper thresholding of interaction map. The 

:hreshold is chosen as a function of mean interaction energy & and standard deviation t/Je of 

nteraction energy in interaction map as follows 

B = &+ct/Je 

fhe constant c is selected heuristically and typically holds a value in between 3 and 

~ 

4.3.5 Synthesis via Simulated Annealing 

(4.34) 

fhe stochastic relaxation algorithm Simulated Annealing (SA) is used for texture synthesis as 

well as refinement of approximates of Gibbs potentials. The characteristic interaction 

;tructure and first analytic approximations of Gibbs potentials are used by SA to synthesize 
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1e sample images. The algorithm generates a Markov chain of synthesized texture images 

rith gradually changing potential estimates which are refined to desired MLE estimates 

nally. At each iteration t of SA, the texture image g' is synthesized from the previous 

nage in Markov chain g'-1 using current GPO P(g I v'-1
) using Metropolis or Gibbs 

lmpling algorithm. The GLCHs are gathered from current image and Gibbs potentials are 

~fined by changing current potential approximates in line with the difference between 

lLCHs of current texture image and the training image g 0 [Gimel 1999]. 

(4.35) 

be scaling factor A,' for each iteration determines a step along the current approximation of 

he gradient for Gibbs potentials. The scaling factor is reduced gradually along the 

efinement of Gibbs potentials as follows where c0 , ci> c2 are the parameters used 

1euristically. 

A,' =A.' c, + 1 
c1 +c2t (4.36) 

The algorithm achieves visual similarity by reducing differences between GLCHs of 

ynthesized texture and training texture by refining potential estimates and changing GPO 

:radually [Gimel 1999]. 

1.4 Summary 

n this chapter, the main concepts of Markov random field modeling and the pairwise pixel 

node! (MGRF) are discussed in detail. Model identification, parameter estimation and 

exture synthesis for MGRF have also been covered. These are the main modeling steps for 

v!GRF modeling for any 20 textures and, accordingly, modeling of skin textures also 

ollows these steps. However, 3D skin textures have to be converted to 20 grayscale textures 

or modeling. Chapter 5 will detail the acquisition and pre-processing steps for 30 skin 

extures. We will also see that how MGRF is applied to skin textures in context of this work. 
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2hapter 5 

Modeling of 3D Surface Textures of Skin 

fhis chapter discusses the acquisition of 3D skin textures and their modeling for this work. 

\n overall frame work of the system is described in section 5 .I. A detailed description of 

tcquisition set up for 3D skin data from patients using laser scanner is described in section 

) .2. The data requires some pre-processing to be input as 2D texture images to modeling. 

lection 5.3 details these pre-processing steps. The general types of 3D skin features found in 

Joth healthy and diseased, observed from the acquired data, are discussed under section 5.4. 

<inally the modeling of skin textures is given in section 5.5 followed by analysis of results 

md discussion. 

5.1 Overall framework for Modeling 

fhe goal of this research work is modeling of 3D surface textures of skin. In Chapter 2, it 

.vas showed from image acquisition techniques that the 3D acquisition is mostly based on 

Jrocessing of 2D images and may not be very accurate. It was also observed that 3D 

nodeling of skin is mostly focused on computer animation applications. For this reason skin 

;extures are considered for healthy skin only and that some approximation of textures is 

1ssumed. The framework of modeling for this work includes accurate 3D image acquisition 

oased on laser scanning which has been the most advanced 3D capturing technique until 

aow. The modeling is based on real texture samples which are gathered from case studies 

(patients). 
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\.s discussed earlier, the complete haptic realization of a material object, skin in this case, 

equires several display properties. This work covers the 3D surface textures of skin which 

olay a vital role in differentiating skin conditions. Then for fast texture rendering through 

1aptic devices, 3D textures are handled as height maps (2D grayscale textures). Section 3.3.1 

letailed many fast 'force-mapping' haptic texturing techniques based on height maps. Since 

1aptic rendering involves the surface variations only, in this work 2D color textures of skin 

1re not considered. The framework for this modeling consists of following important stages. 

;tage 1: 3D image acquisition of skin through laser scanning 

;tage 2: Pre-processing of 3D data to get 2D grayscale surface textures 

;tage 3: Modeling of2D textures with MGRF technique 

Stage 1 

2D 
texture 
ima2e 

Stage2 Stage3 
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5.2 3D Data Acquisition 

This work requires an accurate 30 acquisition system and variety of skin samples to look 

into real textures found on human skin. The acquisition involves laser scanner capturing 30 

surface information at high resolution of - 0.1 mm. The set up consists of laser scanner 

Konica Minolta VIVID 910 [VIVID 910]. The equipment's working principle is based on 

'laser triangulation' and provides non-contact measurement of depth. Figure 5-1 shows the 

laser scanner with laser beam source and CCO capturing camera. 

CCDCamera 

• 

Laser Em1tter 

Figure 5-1: The laser scanner used for 30 data acquisition [VIVID 9101 

The object, the laser source and CCD camera makes a triangle. Figure 5-2 shows the working 

principle of the laser scanner. The object is exposed to a laser beam. The camera looks for 

the laser beam dot on the surface of the object and measures the angle CCO camera makes 

between laser dot on object and laser emitter. From this angle and other known parameters of 

this triangle i.e. distance and angle between laser emitter and CCD camera, the distance 

between scanner and object is calculated accurately. A laser stripe rather than only one laser 

point allows fast scanning. 
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, 
, M urei 

Ob I 

Figure 5-2: Working principle of laser scanner ' laser triangulation' 

The depth information of object surface is collected in the form of 'point cloud' which 

represents the distance calculated at every laser point seen by CCD camera. The data in the 

form of point clouds is further processed by a reconstruction algorithm. The algorithm 

transforms points in 3D to a triangular mesh called as 'mesh model'. Figure 5-3 shows 

examples of point clouds and mesh models of three skin samples taken from trunk, leg and 

arm respectively. 
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(e I tbl t 

1•11 (b)) 

Figure S-3: 30 data for skin acquired from laser scanner- {a) point clouds {b) mesh models with color 
texture wrapped 

The reconstruction or triangulation process connects the neighbouring points in point cloud 

to construct triangular mesh by some fast algorithm. The laser scanner is operated via 30 

scanning software, rapidfonn2006 [Rapidfonn]. The triangulation and some of the pre­

processing of 30 data is done via this software (Section 5.3). Figures 5-4 and 5-5 show some 

screen shots from the software showing point clouds and triangulated mesh model. 
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Figure S-4: Screenshot from rapldform2006 showing point clouds for a skin sample 
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Figure 5-5: Screens hot from rapldform2006 showing segmentation of a skin sample manually 

Skin textures of both healthy and diseased skin are considered in this work and for diseased 

skin conditions psoriasis lesions are selected. Psoriasis makes an active area of research in 
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skin imaging because of its ubiquity, impact on patient's life and incurability. The most 

common type of psoriasis namely 'plaque psoriasis' appears in the form of inflamed, scaly 

patches on the surface of skin. The typical surface textures of psoriatic lesions are important 

for clinical inspection of disease. These skin textures resulting from inflammation of skin 

provide insight of types of textures which may be present on skin. The case studies for this 

work include 9 male patients ofpsoriasis with age range 18-45. The severity of disease varies 

among case studies with different level of thickness, scaliness and overall pattern of lesions. 

In addition, overall skin condition due to ageing also results in diversity of textures in both 

healthy and diseased skin. Following the PASI standard (Section 2.2), skin samples were 

captured for psoriatic lesions from areas of the arms, legs and trunks of patients. The set up 

for capturing 3D images is shown in Figure 5-6 below. The 3D scanner captures the surface 

profiles of patient's skin while the body limb is held straight facing to the scanner. 

Figure S-6: Set-up for capturing 3D images from patients 

5.3 Data Pre-processing for Texture Extraction 

The next step after acquisition of data, which is in the form of 3D mesh models after 

triangulation, is to extract 3D surface textures from mesh models and convert them to 2D 

grayscale textures. In this pre-processing of data for texture extraction, color information of 

skin is discarded, and only 3D surface profile (height) is considered. The technique is similar 

to ' height maps ' in computer graphics where gray level represents the height in third 

dimension. The pre-processing steps are depicted in Figure 5-7 followed by explanation. 
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(a) 20 image (b) 3D image (c) Segmented Lesion 

(f) vertices and faces in mesh model (e) Alignment of mesh model 

Figure 5-7: Pre-processing steps to extract 20 grayscale texture from 30 mesh model 

1) The mesh model (Figure 5-7b) is segmented manually to extract the representative 

portions of healthy skin and lesions (Figure 5-7 c and Figure 5-7 d). 

2) The segmented portion is aligned with x-y plane so that height is along z-axis (Figure 

5-7e). 

3) The mesh models are in the form of vertices and faces which are projected on regular 

lattice for conversion to 2D grayscale textures. The projection is achieved by 

conversion of vertices and faces (Figure 5-7t) to 3D parametric surfaces using cubic 

interpolation (Figure 5-8a). 

4) After interpolation, data is defined as points in three dimensional space on regular x-y 

grid where z presents the height values. The heights on regular grid are scaled to 

grayscale which can be viewed as a grayscale texture (Figure 5-8d). 

5) In certain investigations, the curvature of body is eliminated to extract fine textures 

on skin. The algorithm for elimination of underlying body curvature is simple (See 

Appendix C for MA TLAB code). It is achieved by fitting a 2D surface among the 

data points of interpolated surface after step 3 above. The difference between the 
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fitted surface, representing curvature of body, and interpolated parametric surface, 

representing actual skin surface profile, gives the fine textures of skin. These steps are 

shown in Figure 5-8. The fitted surface to the vertices in interpolated parametric 

surface is shown in Figure 5.8b. Figure 5-8c shows the difference between actual 

parametric surface (Figure 5-8a) and fitted surface 5-8b which represents find texture 

on skin. This texture image is scaled to obtain a gray scale image as shown in Figure 

5-8d. 

(a) Interpolated parametric surface 

(d) surface texture as grayscale image (c) difference of above representing surface texture 

Figure 5-8: Elimination of body curvature to extract surface texture 

Figure 5-9 shows some examples of skin textures where the curvature has been eliminated 

using the surface fitting. 
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(al) (a2) (a4) (aS) 

(bl) (b2) (b3) (b4) (bS) 

Figure 5-9: Examples of surface textures for curvature elimination using surface fitting - (a) Original 
skin textures with curvature (b) Skin textures after elimination of curvature 

5.4 3D Skin Surface Features 

1\s discussed in Chapter 2 (Section 2.4) the skin surface profiles are mainly caused by large 

5cale and small scale wrinkles. The wrinkles on large scale arc due to ageing and body 

location (e.g. elbows, forehead, and fingers). The small scale fine lines or fine texture 

remains same locally but varies from location to location on body. For example, the fine 

textures found on hands are very different from those found on upper arms. When diseased 

skin (psoriatic skin for this study) is considered, the inflammation of skin resulting in 

thickness and scaliness of skin lesions also adds to diversity of these textures. The patterns of 

lesions also change with the location on body. For this reason, it is important to observe the 

diversity of grayscale textures produced by skin surface profiles, both healthy and diseased. 

As seen from Chapter 2, not much work has been done to observe this variety of real textures 

of skin. The research work done in skin animation for computer graphics includes 

approximation to real textures only and does not take into account this much diversity of 

textures. 

For this work, the samples of skin have been taken from real case studies (9 patients), and 

include diversity of skin textures from healthy and diseased skin and from various ages and 

locations of body. These samples give interesting clues about the appearance of skin features, 

wrinkles, etc. mentioned above, when observed in 3D height profiles. From the observations 
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,f large number of extracted grayscale texture samples, the 3D skin features are mainly 

:ategorized in three types, irrespective of the skin condition (healthy or psoriatic). 

a) body curvature - large scale non-repetitive feature, appearing as gradual grayscale 

change similar to illumination vatiation, due to the curvature of underlying limb 

b) wrinkles/lines - large scale feature, repetitive but mostly without any pattern, can be 

caused by both wrinkles/lines on skin and inflammation on diseased skin 

c) fine lines/texture - small scale feature, repetitive and mostly with pattern, due to fine 

scale locally varying texture of skin both on healthy and diseased skin 

ligure 5-l 0 shows the three features on a texture of skin lesion. 

... 
..... ... ... 
Curvature 

.... ... 
... ... 

From underlying 
portion of body 

I 
I 
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Wrinkfes/linc-like features 

\ 
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\ 

" Fine lines/Fine scale texture 

Figure 5-10: General 3D features found on skin and observed from extracted 2D grayscale texture 

'or this work, all skin features are given as input to the modeling. However, to observe the 

esponse of model to the features individually, the input textures are categorized as three sets. 

• Set 1: Textures consisting of all three features of curvature, wrinkles/lines and fine 

texture 
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• Set 2: Textures consisting of wrinkle/lines and fine texture. The curvature IS 

eliminated by surface fitting and differencing procedure outlined in section 5.3. 

• Set 3: Textures consisting of fine textures only. These textures are taken from the 

body portions where wrinkles/lines are not present on skin. Again, the curvature is 

eliminated by surface fitting and differencing method as for above set. 

"he texture images consisting of curvature or wrinkles only are not considered for modeling 

1ecause of the fact that such skin profiles do not exist in reality. The wrinkles are always 

(mnd with fine textures whereas the curvature of body is also found with wrinkles and/or 

ine textures. However, fine textures are found without any wrinkles on most of the body. 

~igure 5-11 explains the distribution of 3D surface features of skin into three sets of input 

extures. 

Set1 

• Curvature 

• Wrinkles/lines 

• Fine 
lines/ texture 

r-------------------------------------------
I 
I Curvature Elimination- Surface fitting & differencing 
1--------------------

Set2 

• Wrinkles/lines 

• Fine 
lines/ texture 

Set3 

• Fine 
lines/texture 

Figure 5-11: Distribution of 3D skin features into three sets for input to modeling 
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'he healthy and diseased skin samples in three sets are obtained from nine patients. The skin 

~xtures include 10 samples for set I, 15 samples for set 2 and 13 samples for set 3. The 

10deling results are presented in Section 5.6 including 5 samples of set I, 8 samples of set 2 

nd 5 samples of set 3 for analysis and discussion. The rest of the samples pose similar 

~sults and have been presented in Appendix F, Appendix G and Appendix H respectively for 

1ree sets. 

;,5 MGRF Modeling Algorithms 

n Chapter 4, Markov random field modeling in general and pairwise pixel interaction model 

the MGRF model) were reviewed. This section details the MGRF modeling for skin 

~xtures. The input to the modeling should be in the form of2D grayscale textures. In Section 

.3, the pre-processing steps which convert the 3D surface textures to 2D grayscale textures 

vere discussed. In Section 5.4 the important observations regarding the 3D skin surface 

eatures found on skin were presented. It was also mentioned how the skin textures are 

ategorized in three input sets to observe the model response to these textures. The next step 

> to input these texture sets to the model and see how successfully the MGRF model can 

nalyze and reproduce the visual skin textures. An overview of different steps of MGRF 

nodeling is shown in Figure 5-12. 
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Statistics Gathering 

Parameter Estimation 

Texture Synthesis 

Figure 5-12: Overview ofMGRF modeling for skin textures 

viodeling of textures is completed in two main steps, analysis and synthesis. The analysis of 

nput textures is to identify the underlying model parameters and, for MGRF, consists of 

tatistics gathering, parameter estimation and interaction structure thresholding steps in 

1bove diagram. Once the model has been identified completely in analysis steps, the 

.ynthesis then reproduces the output texture samples incorporating the identified model. The 

~ay-level co-occurrence histograms form the sufficient statistics for the model and their 

~athering is the fundamental step in analysis. From GLCH, the gray level co-occurrence 

,robabilities (equation 4.25), Gibbs potentials (equation 4.31) and interaction energies 

equation 4.27) for clique families are derived. Following is the pseudo-code for the analysis 

,f textures under MGRF modeling. The detailed MA TLAB code can be found in Appendix 

). 
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.NALYSIS ALGORITHM FOR MGRF MODELING: -

nput: 
) a gray-level image g={g[i,j]: i = 1, ... ,M; j =1, ... ,N]) 
) Q=15 or 31 for 16 or 32 gray levels 
) search window dimensions [Di, Dj] 
) value of 'sigma' in range 3, ... ,4 for thresholding interaction map 

tutput: 
) a set of K most characteristic Gibbs potentials represented each by a 2D table 
k = (Vk[q,s]: q=O, ... ,Q-1;s=O, ... ,Q-1]); k=1, ... ,K 
) and their corresponding gathered co-occurrence probabilities from input image 
·eq_image_k[q,s] : q=O, ... ,Q-1;s=O, ... ,Q-1]); k=1, ... ,K 
) Calculated value of 'lambda_O' 

iray level co-occurrence histograms (GLCH) gathering: 

.. Quantize given image into Q gray levels if it has higher signal resolution 

~. Collect co-occurrence histograms 

:OOC(di,dj) = (COOC(di,dj)[q,s]: q=O, ... ,Q; s=O, ... ,Q) for all inter-pixel shifts (di,dj) in search 
1indow 
each pair ((i,j),(i+di,j+dj)) is a clique of the clique family with this shift) 
N=((di,dj): if dj=O di=1, ... ,Di; else di = -Di, ... ,O, ... ,Di; dj=1, ... ,Dj): 

Za) Initialise each COOC: for all di,dj,q,s: COOC(di,dj)[q,s]=1 

Zb) Collect histograms: 
for j=1 step 1 until N 

for i=1 step 1 until M 
q = g[i,j]; 

for dj = 0 step 1 until Dj 
for di = ( if dj is equal to 0 then 1 else -Di ) step 1 until Di 

if ( i + di is in the range [1,M] AND j+dj is in the range [1,N] ) then 
s = g[i+di, j+dj] 

increment COOC(di,dj)[q,s] by 1 
end for dj 

end for dj 
end fori 

end for j 

iray level co-occurrence probabilities calculation: 

1. Normalise histograms to get relative frequencies: 
for each ( di,dj) in W: 

freq( di,dj)[q,s] = COOC( di,dj)[ q,s]/sum_( q'=O, ... ,Q-1,s'=O, ... ,Q-1)COOC( di,dj)[ q',s'] 
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nteraction energies calculation: 

~. Find relative energies for all clique families: ReiEne(di,dj) = variance(freq(di,dj)): 
variance(freq( di,dj) = sum_( q=O, ... ,Q-l;s=O, ... ,Q-1 ){freq( di,dj)[q,s]-mean_freq( di,dj)}" 2 
where mean_freq(di,dj) = sum_(q=O, ... ,Q-1;s=O, ... ,Q-1){freq(di,dj)[q,s]}/(Q"2) 

"hresholding and Interaction Structure Extraction: 

;, Select K top-energy clique families by thresholding the energy distribution 
(all cliques with energies ReiEne(di,dj) above mean_ energy+ (sigma)*standard_deviation 

libbs Potentials Learning: 

;, Collect the gray-level histogram GLH for g, normalise it similarly to COOCs and 
:ompute the scaling factor 'lambda_ a' 

'·Compute potentials for the selected K clique families: 
'OT(di,dj)[q,s] = lambda_O * (freq(di,dj)[q,s]- mean_freq(di,dj)) 
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I. Output potentials and co-occurrence probabilities for selected clique families where Vk[ q,s] = 
'OT(di,dj)[q,s] and freq_image_k[q,s] = freq(di,dj)[q,s] for the selected familiy 

[he input image is scaled down in range 0-Q provided by input parameter Q. For this work 

16 gray levels or Q=l5 has been used. Although 16 gray levels pose much faster modeling, 

he quality of texture images is not compromised and skin features can still be perceived 

;]early. For example Figure 5-13 below shows the same skin texture scaled down to different 

!fay levels. 

Q=15 (16 gray levels) Q=31 (32 gray levels) Q=255 (256 gray levels) 

Figure 5-13: Skin texture scaled down to different number of gray levels 
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.nother important thing is the dimensions of search window [Di, Dj]. The interaction map and 

Jnsequently clique families are symmetric around center, as can be observed from Figure 4-

0. The reason for this is the gray level co-occurrences which are gathered from texture 

nage. Hence, for computational efficiency, only half of search window is scanned in step 2 

rhere the dimensions [di, dj] are determining the actual search window. For example, when 

1put dimensions [Di, Dj] are 80x80 pixels, the actual dimensions for search window [ di, dj] 

rould be [81, 40]. The half window dimensions also enable the algorithm for GLCH 

athering to consider gray level co-occurrence only once during 'raster scanning' of image. 

'he resulting half of interaction map and clique families can be mirrored around centre to get 

1e complete interaction map. As an example Figure 5-14 and 5-15 show the half of the 7x7 

nd 9x9 pixels wide search windows respectively considered during analysis. 

0000000 
0000000 
0000000 
oooeooo 
0000000 
0000000 
0000000 

Oj=1,2, ... ,4 

Oi=1,2, ... ,7 

Figure 5-14: Only half of the 7x7 search window will be considered during analysis resulting in 24 clique 
families 
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000000000 
000000000 
000000000 
000000000 
ooooeoooo 
000000000 
000000000 
000000000 
000000000 

Dj=l, ... ~ 
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Di=l, .. ,9 

~igure 5~ 15: Only half of the 9x9 search window will be considered during analysis resulting in 40 clique 
families 

'he dimensions of search window are set around 40x40 to 50x50 depending on sample 

mage size to gather most of the pixel interactions. In this case, the texture images are 

xtracted from segmented portions of 3D mesh models and their pixel dimensions depend on 

ile vertices present in the segmented mesh models. Hence image size varies from image to 

mage and window dimensions are adjusted accordingly. The input parameter 'sigma' stands 

or constant c in equation 4.34 and has been set to 3.5 heuristically for thresholding. 

'he algorithm outputs the estimated Gibbs potentials for selected clique families in [Di, Dj] 

earch window. Non-significant families are filtered by setting their Gibbs potentials to zero. 

'or every clique family, Gibbs potentials are in the form of QxQ tables, giving co­

•ccurrences of Q gray levels in that clique family. Figure 5-16 shows a sample texture image 

long with its interaction map and thresholded cliques. Table 5-1 and 5-2 show the gathered 

:lLCHs and estimated Gibbs potentials for the clique family with offset (0,2) for the texture 

mage shown in Figure 5-16(a) respectively. It can be noticed that both GLCHs and Gibbs 

•otentials form the 16x16 matrices which correspond to the 16 gray levels selected for 

:rayscale 20 textures. 
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• 
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(a) Texture (b) Interaction Kap (c) Cliques 

Figure 5-16: (a) Texture sample (b) Interaction Map (c) Thresholded clique families 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
10 62 57 13 15 9 4 1 1 3 1 0 1 1 0 0 
72 504 405 176 127 77 32 25 21 7 8 3 10 4 2 0 
54 461 519 294 249 163 77 31 23 38 8 10 16 7 2 1 
27 212 333 307 299 208 90 62 42 43 23 29 15 11 3 1 
8 116 257 304 347 298 181 105 81 65 35 46 50 29 8 3 
12 66 152 195 299 273 176 143 132 80 64 65 49 26 15 4 
3 40 89 123 160 186 130 83 102 79 37 53 51 35 18 0 
3 13 49 65 105 105 101 62 66 45 30 45 51 29 9 8 
3 18 43 52 103 120 94 75 81 50 36 52 59 28 22 4 

~ 2 11 28 52 78 77 63 46 61 45 30 55 47 33 11 5 

1 1 5 9 30 29 47 52 28 37 38 21 35 29 21 6 2 

2 0 9 13 36 61 62 73 56 50 37 20 51 45 41 16 3 

3 0 6 12 33 51 66 61 41 61 39 36 49 55 41 17 7 

4 0 3 13 13 28 42 47 24 43 27 23 32 33 35 14 5 

5 0 0 1 12 7 18 17 10 14 19 8 18 20 12 8 4 

5 0 1 2 1 3 7 3 7 4 4 0 8 3 3 3 3 
Table 5-1: GLCH for for the clique family With offset (0,2) for the texture giVen m Figure 5-16(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 -1.0571 0.3245 0.1989 ·0.8234 ·1.0571 ·1.1618 ·1.3292 ·1.3883 -1.3083 ·1.3292 ·1.3292 ·1.3292 ·1.3292 -1.3292 -1.3292 -1.3292 
2 0.471 11.5652 10.7907 2.313 1.2246 0.1151 ·0.8896 ·1.1618 ·1.1618 ·1.2873 ·1.2455 ·1.3292 ·1.3083 ·1.3292 -1.3292 ·1.3292 
3 0.1361 10.0371 11.6071 7.4415 4.3644 1.9781 1.8618 -0.3035 -0.3245 -0.8268 -1.1408 -1.1408 -1.3292 -1.2246 -1.2455 -1.3292 
4 -0.9734 3.1294 6.3949 7.1485 70438 3.7574 1.1618 -0.3035 -0.3245 -0.8268 -1.1408 -1.1408 -1.2246 -1.2455 -1.3292 -1.3292 
5 -1.0571 1.2455 4.2847 6.5414 8.3207 6.7089 3.6109 0.9943 0.3454 -0.1361 -0.9524 -0.785 -1.078 -1.1837 -1.3083 -1.3292 
6 -1.2246 0.0733 1.9572 3.255 6.0809 6.353 4.1551 2.2502 1.4339 0.6803 -0.4291 -0.2198 -0.7222 -1.0571 -1.2873 -1.3292 
7 -1.2036 -0.764 0.0942 1.5176 2.8364 3.1609 2.5852 1.3711 1.2036 0.2617 -0.3245 -0.0942 -0.5756 -0.9734 -1.2664 -1.3292 
8 -1.3083 -1.099 -0.7431 -0.0533 0.9524 1.1618 1.1827 0.6384 0.9315 0.2826 -0.3873 -0.3035 -0.3873 -1.0152 -1.2455 -1.3292 
9 -1.3292 -1.1827 -0.8896 -0.4999 0.2826 1.2664 0.8687 0.7645 1.0362 0.8059 -0.0115 -0.0523 0.0105 -0.6594 -1.1827 -1.3292 
10 -1.3292 -1.1827 -1.099 -0.8888 -0.157 0.45 0.1361 0.0523 0.5547 0.1151 -0.3873 0.0733 0.1361 -0.6175 -1.2036 -1.3292 
11 -1.3292 -1.287 -2.2455 -1.078 -0.4082 -0.5338 -0.471 -0.5756 -0.5966 -0.0305 -0.7222 -0.3454 -0.3245 -0.764 -1.078 -1.3083 
12 -1.3292 -1.3292 -1.2246 -1.0123 -0.6384 -0.3245 -0.1899 -0.5966 0.157 -0.1361 -0.2617 0.0345 0.5128 -0.2617 -0.8268 -1.2873 
13 -1.3083 -1.2873 -1.618 -1.0343 -0.8098 -0.3454 -0.45 -0.5338 -0.1989 -0.4919 -0.6803 0.6803 0.3665 0.1779 -0.4919 -1.099 
14 -1.3292 -1.3083 -1.2873 -1.223 -1.099 -0.8687 -0.9106 -1.078 -0.8686 -0.764 -0.8059 -0.3873 0.0733 0.3035 -0.471 -1.0152 
15 -1.3292 -1.3292 -1.2873 -1.3090 -1.2455 -1.1408 -1.1827 -1.2644 -1.1827 -1.1827 -1.1618 0.9943 -0.5128 -0.6384 -0.9524 -1.0362 
16 -1.3292 -1.3292 -1.3292 -1.367 -1.3292 -1.2664 -1.3292 -1.2873 -1.3292 -1.3292 -1.3083 -1.2664 -1.0571 -1.1618 -1.078 -1.1618 

Table 5-2: Gibbs potentials for the clique family with offset (0,2) for the texture given m Figure 5-16(a) 
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he GLCH's for clique families in search window are gathered in step 2. The gray level co­

ccurrence probabilities are calculated in step 3 (equation 4.25). The interaction energy for 

very clique family is calculated from the co-occurrence probabilities in step 4 (equation 

.32). Thresholding of interaction energies to find the significant clique families is done in 

:ep 5 (equation 4.34). Step 6 calculates the value of lambda_O (equation 4.33). And finally 

rst analytic approximations of Gibbs potentials are calculated in step 7 (equation 4.31) 

rhich are output in step 8. 

be analytic approximations of Gibbs potentials and selected clique families are input to the 

ynthesis algorithm along with the value of lambda_ 0 which synthesizes the texture samples. 

'he pseudo code for synthesis algorithm is as follows (See Appendix E for detailed 

I[ATLAB code). 

iYNTHESIS ALGORITHM FOR MGRF MODELING: -

nput: 
) K most characteristic Gibbs potentials Vk gathered from analysis algorithm 
.) lambda_O 
:) Gray level co-occurrence probabilities for selected K families of sample image freq__image_k 

lutput: synthesized gray-level image g=(g[i,j]: i = 1, ... ,M; j =1, ... ,N]) with Q 

itochastic Relaxation: 

l. Initialize output image with equa-probable gray level values 

or j=l step 1 until N 
for i=l step 1 until M 

g[i,j] = random_number (Q); 

nitialize lambda_t = lambda_O; 

;imulated Annealing: 

t. Initialize temperature T 

J. repeat for sufficient number of macro steps t 

Ja. select a random trace over the image lattice 
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;b. for each selected random point [i,j] in random trace 
let g' = random_number(Q) 
calculate delta_E = e(g' I POT(di,dj))- e(g[i,ill POT(di,dj)) 

if ( delta_E > = 0) 
g[i,j] = g'; 

else 
accept g' with probability exp( delta_E * T) 

end for 

lpdate Gibbs Potentials for selected K clique families: 

.• Collect Gray level co-occurrence histograms COOC( di,dj) from current sample g[i,j] 
(step 2b of analysis algorithm for selected K clique families only) 

;, calculate Gray level co-occurrence probabilities freq(di,dj) from COOC(di,dj) above 
(step 3 of analysis algorithm for selected K clique families only) 

;. reduce lambda_t 

'. update Gibbs Potentials 
POT(di,dj)[q,s] = POT(di,dj)[q,s] +lambda_t * (freq(di,dj)[q,s]- freq_image(di,dj)[q,s]) 

.. Reduce temperature T 

ntil T approaches zero 

1. Output g[i,j] 
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I where the function random_number(x) in step 1 and 3b generates random number in range [O,x) 

I and the energy function e(g' I POT( di,dj)) in step 3b calculates the interaction energy of a 

I pixel according to the given Gibbs potentials 

I e(g' I POT(di,dj)) = POT(di,dj) [g', g[i+di, j+dj]] + POT(di,dj) [g[i+di, j+dj], g1 

~he algorithm is similar to simulated annealing with Metropolis sampler in Figure 4-5 with a 

light change in calculation for energy function. In this case the energy is calculated under 

VIGRF model in step 3b. Energy function e(g' I POT(di,dj)) calculates the energy based on 

~ven interaction structure and Gibbs potentials. The energy at a given pixel is considered 

elative to all cliques in the interaction structure and compared with the old energy. The gray 

eve! with higher energy is selected. The temperature T gives the simulated annealing and is 

educed with every iteration using the schedule given in equation 4.21 for cooling. 
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he additional step here in this synthesis algorithm is the refining of Gibbs potentials from 

teir initial analytic approximations (equation 4.35). Step 4 and 5 calculate the GLCH and 

:ay level co-occurrence probabilities from current image respectively. The potentials are 

1anged in line with the difference between GLCHs of sample texture and current texture in 

ep 7. The value of lambda_ 0 is reduced in step 6. The updated Gibbs potentials are then 

sed for next iteration. Gradually the potentials are refined to MLE estimates after sufficient 

umber of iterations and synthesized image is given as output. 

1.6 Results of Modeling 

his section presents modeling results for three sets of input textures. The textures are given 

s input to the analysis algorithm outlined in section 5.5 above. The algorithm analyzes input 

:xtures and calculates analytic first approximations of Gibbs potentials which are then input 

> synthesis algorithm. The synthesized output textures are then rated for high or low visual 

imilarity with the input textures. Following are figures for modeling results of skin texture 

1mples taken from case studies including both healthy and diseased skin. The results include 

) the actual 3D mesh model with color texture wrapped for better visualization b) the 3D 

1esh model wifu color information eliminated c) the 2D grayscale texture obtained after pre­

rocessing used as input d) the interaction maps gathered during analysis e) the selected 

lique families after thresholding f) the synthesized textures. The results also include the real 

imensions of skin sample in millimeters, dimensions of interaction map and the location on 

atient' s body where the samples have been taken from. 

i.6.1 Skin Textures- Set 1 

'he input skin textures in set 1 contain all three features of skin. However, it is observed 

rom these samples that the curvature of underlying body appears as gradual, non-repetitive 

:ray level change and overshadows most of the fine scale details. The reason for this is the 

thysical dimensions of body curvature versus those of finer details. The body curvature for 

he segmented samples tends to be on scale of 1 mm whereas the fine details are on scale of 
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0.1 mm. Therefore, when scaled down to 16 levels of grayscale, the curvature mostly 

dominates other features. It can also be seen that interaction maps show patterns which can 

be related to the curvature patterns in input texture samples and that the synthesized textures 

do not show visual similarity. These results will be analysed in detail in section 5.7. Figures 

5-18 to 5-22 show modeling results for 3 healthy and 2 diseased skin samples for set I (See 

Appendix F for more results of set I). 

(a) 3D skin saaple with color 

(c) gray scale texture 
( 125:.:129 pizels) 

(e) interaction aap 
(40x40 pixels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
(120x120 pixels) 

(f) thresholded cliques 
(131 faailies) 

Figure S-17: Set l- Patient 1 - Trunk healthy sample# l (24.61mm x 22.56mm x 1.76 mm) 
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r-- I I 
I I I I 

I II 
II 
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I 
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(a) 3D skin saaple vith color (b) 3D skin saaple vithout color 

(c) gray scale texture 
(119x116 pixels) 

• 

(e) interaction aap 
(50x50 pixels) 

(d) synthesized iaage 
(120:a:120 pixels) 

(f) thresholded cliques 
( 77 faailies) 

Figure 5-18: Set 1 -Patient 1- Arm healthy sample# 1 (20.72mm x 20.6mm x 1.26 mm) 
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(a) 3D skin sa•ple vith color (b) 3D skin sa•ple vithout color 

(c) gray scale texture 
(107x120 pixels) 

• 

(e) interaction •ap 
(50x50 pixels) 

(d) synthesized i•age 
(120x120 pixels) 

• 

(f) thresholded cliques 
( 77 fa•ilies) 

Figure 5-19: Set 1- Patient 1 - Arm diseased sample# 2 (22.01mm x 16.86mm x 2.llmm) 
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(a) 3D skin saaple with color (b) 3D skin saaple without color 

(c) gray scale texture 
( 107xl03 pixels) 

(e) interaction aap 
(40x40 pixels) 

(d) synthesized iaage 
( lOOxlOO pixels) 

(f) thresholded cliques 
( 62 faailies) 

Figure 5-20: Set 1 -Patient 1 - Arm diseased sample# 3 (22.30mm x 17.72mm x l.08mm) 
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(a) 3D skin saaple with color (b) 3D skin saaple without color 

(c) gray scale texture 
( 86x91 pixels) 

(e) interaction aap 
(40x40 pixels) 

(d) synthesized iaage 
( lOOxlOO pixels) 

, .,... 

• 

(f) thresholded cliques 
( 279 faailies) 

Figure 5-21: Set 1 - Patient 2- Trunk healthy sample# 2 (18.23mm x 16.39mm x 1.64mm) 
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i.6.2 Skin Textures- Set 2 

'or skin textures in set 2 the body curvature has been eliminated. These samples contain 

rrinkles/lines and fine textures where wrinkles are prominent among the underlying fine 

~xture. The interaction maps for these samples do not show identifiable pattern, as for those 

f set I. Secondly, for almost all of them, the high interaction energy is concentrated in short 

mge cliques, as can be seen from darker shades around the center for these maps. For this 

eason, these centered cliques are included in thresholded families for these samples. When 

ynthesized textures are observed, they show mixed level of visual similarity with the input 

~xtures. The wrinkle/line-like features are totally lost (or filtered) in synthesized textures for 

1ese samples. The reasons behind this varying response of modeling will be discussed in 

etail under analysis in section 5.7. Figures 5-23 to 5-30 show modeling results for 1 healthy 

nd 7 diseased skin samples for set 2 (See Appendix G for more results of set 2). The types 

.f wrinkle/line like features present in skin sample (partially present/completely present) and 

1e level of visual similarity (Low/Medium) have also been mentioned in figures. 
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a) 3D skin saaple with color (b) 3D skin saaple without color 

(c) gray scale texture 
(119x116 pixels) 

(e) interaction aap 
(50x50 pixels) 

(d) synthesized iaage 
(120x120 pixels) 

• 

(f) thresholded cliques 
( 11 faailies) 

Figure S-22: Set 2- Patient 1- Arm healthy sample# 3 (24.61 mm x 22.56mm x 1.76 mm) 
Wri1tkles are prese1tt tltrougltout image but spatially varia Itt - Low visual similarity 
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a) 3D skin saaple with color (b) 3D skin saaple without color 

(c) gray scale texture 
(107x120 pixels) 

(e) interaction aap 
(50x50 pixels) 

(d) synthesized iaage 
(120x120 pixels) 

• 

(f) thresholded cliques 
( 14 faailies) 

Figure 5-23: Set 2 - Patient 1 - Arm diseased sample# 2 (22.01 mm x 16.862mm x 2.11 mm) 
Wriukles are prese11t partially i11 image - Low visual similarity 
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(a) 3D skin saaple with color (b) 3D skin saaple without color 

(c) gray scale texture 
(107xl03 pixels) 

(e) interaction aap 
(40x40 pixels) 

(d) synthesized iaage 
( lOOxlOO pixels) 

• 

(f) thresholded cliques 
( 7 faailies) 

Figure 5-24: Set 2 - Patient 1 - Arm diseased sample# 1 (22.30mm x 17.72mm x 1.08mm) 
Wri11kles are prese11t throughout image but spatially varia11t - Low visual similarity 
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a) 3D skin sa•ple with color (b) 3D skin sa•ple without color 

(c) gray scale texture 
( 195x196 pixels) 

(e) interaction •ap 
(40x40 pixels) 

(d) synthesized i•age 
( 120x120 pixels) 

• 

(f) thresholded cliques 
( U fa•ilies) 

Figure 5-25: Set 2- Patient 2 - Arm diseased sample# 2 (22.89mm x 20.7Smm x 3.49mm) 
Wrinkles are prese11t partially itt image- Low visual similarity 
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a) 3D skin s a•ple with color 

(c) gray scale tezture 
( 120x120 pizels) 

(e) interaction aap 
(40x40 pi:~rels) 

(b) 3D skin saaple without color 

F .. \ ._ ., ·. 1 

. \ , 

~ .. '\' ~ ; \ 
·~ ~: ~\ . ~ t. 

~. : 
(d) synthesized iaage 

( 120z120 pixels) 

( f) thresholded cliques 
( 28 fa•ilies) 

Figure 5-26: Set 2 - Patient 4 - Leg diseased sample# 2 (20.53mm x 15.07mm x 1.77mm) 
Wri11kles are prese11t tllrougllout image a11d spatially i11 varia11t - Medium visual similarity 
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(a) 3D skin saaple vith color (b) JU sk~n saaple without color 

(c) gray scale textu.re 
( 201x206 pixels) 

(e) interaction aap 
(40x40 pixels) 

(d) synthesized iaage 
( 120x120 pixels) 

• 

(f) thresholded cliques 
( 26 faailies) 

Figure 5-27: Set 2- Patient 3 - Arm diseased sample# 1 (23.9Smm x 16.56mm x 3.1 Smm) 
Li11es are prese11t tltrougltout image but spatially varia11t - Low visual similarity 
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a) 3D skin saaple with color 

(c) gray scale texture 
( 190x180 pixels) 

(e) interaction aap 
(40x40 pizels) 

( b ) JV sk~n saap!e without color 

(d) synthesized iaage 
( 120x120 pixels) 

( f) thresholded cliques 
( 9 faailies) 

Figure S-28: Set 2 - Patient 4 - Arm diseased sample# 1 (23. 76mm x 20.45mm x 2.83mm) 
Lines are present tltrougltout image but spatially variant- Low visual similarity 
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(a) 3D skin saaple with color (b) JU sk1n saaple without color 

--. ~ ... ... .. ~ 

" , ;r·· ·•. 
' 

"w ,, \ 
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I .. . 
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.. ., 

(c) gray scale texture 
( 183x173 pixels) 

(e) interaction aap 
(40x40 pixels) 

(d) synthesized iaage 
( 120x120 pixels) 

• 

(f) thresholded cliques 
( 26 faailies) 

Figure 5-29: Set 2- Patient 4 - Arm diseased sample# 2 (20.09mm x 17 .32mm x 2.91 mm) 
Li11es are prese11t partially ill image - Low visual similarity 
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.6.3 Skin Textures - Set 3 

Jr skin textures in set 2 the body curvature has been eliminated and in contrast with set 2, 

ese samples contain only fine texture. However, it can be observed from the following 

suits that these textures, though very minute in scale ( -0.1 mm) present significant 

triation in their patterns. As it has been indicated before, this is owing to the fact that the 

1e textures, though homogeneous locally, vary a lot from one portion of body to another. 

gain the interaction energy for these samples is concentrated around centered cliques which 

tve been thresholded. As the results illustrate, the synthesized textures for these samples 

ostly show high visual similarity with the original ones. Figures 5-31 to 5-35 show 

odeling results for 2 healthy and 3 diseased skin samples for set 3 (See Appendix H for 

ore results of set 3). The level of visual similarity (Medium/High) has also been mentioned 

figures. 
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(a) 3D skin saaple vith color (b) 3D skin saaple vithout color 

(c) gray scale texture 
(125x129 pixels) 

(e) interaction aap 
((Ox(O pixels) 

(d) synthesized iaage 
(120x120 pixels) 

• 

(f) thresholded cliques 
( 10 faailies) 

Figure 5-30: Set 3- Patient t- Trunk healthy sample# 3 (24.61mm x 22.56mm x 1.76mm) 
Medium visual similarity 
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a) 3D skin saaple with color (b) 3D skin saaple without color 

(c) gray scale texture 
( 86x91 pixels) 

(e) interaction aap 
(-lOx-lO pixels) 

(d) synthesized iaage 
( 120x120 pixels) 

• 

(f) thresholded cliques 
( 77 faailies) 

Figure 5-31: Set 3 - Patient 2 - Trunk healthy sample# 2 (18.23mm x 16.39mm x 1.64mm) 
High visual similarity 
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s) 3D skin saaple with color 

(c) gray scale texture 
( 1Ux155 pixels) 

(e) interaction aap 
(40x40 pixels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120:d20 pixels) 

.. 

(f) thresholded cliques 
( 14 faailies) 

Figure 5-32: Set 3 - Patient 3- Leg diseased sample# 1 (22.01 mm x 22.78mm x 1.3mm) 
Higll visual similarity 
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(a) 3D skin saaple with color (b) ~U sk1n saaple without color 

(c) gray scale texture 
( 132x163 pixels) 

(e) interaction aap 
(40x40 pixels) 

(d) synthesized iaage 
(120x120 pixels) 

• 

(f) thresholded cliques 
( 15 faailies) 

Figure 5-33: Set 3 - Patient 4 - Leg diseased sample# 2 (31.57mm x 30.8mm x 3.03mm) 
Medium visual simJiarlty 
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a) 3D skin saaple vith color (b) ~U sk1n saaple without color 

(c) gray scale texture 
( 158x98 pixels) 

(e) interaction aap 
(40x40 pixels) 

(d) synthesized 1aage 
( 120x120 pixels) 

• 

(f) thresholded cliques 
( 10 faailies) 

Figure S-34: Set 3 - Patient 5 - Leg diseased sample# 1 (26.85mm x 25.83mm x 2.89mm) 
High visual similarity 
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. 7 Analysis of Results 

previous section, the modeling results for a wide range of skin texture samples were 

esented. The results show high to low visual similarities for the three input sets. In this 

ction a detailed analysis of these results will be presented. 

s discussed in Chapter 4 (section 4.4.1), the MGRF model works for the homogenous 

Ktures where pairwise pixel interactions remain constant throughout the image. The 

:finitions of homogeneous and inhomogeneous textures are given by Gimel et al [Gimel 

199]. Both texture types represent repetitive grayscale patterns. However, for 

homogeneous textures, the overall gray level for patterns changes throughout image. These 

:tterns can be regular (made from texels) or natural (without regular texels). Figure 5-36 

ows examples of both types of textures. The model has been tested on these regular and 

:tural textures and results in high visual similarity for homogeneous regular and natural 

Ktures [Gimel 1999]. Skin also poses natural textures and has been modeled by MGRF 

odeling. 
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J!>J. 

(d) (e) ( f ) 

Figure 5-35: Homogeneous Textures- (a)-( c) Regular Textures (made from texels) 
(d)-(1) Natural Textures 
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ased on the analysis of modeling results, skin features (and resulting textures) are 

taracterized as homogenous/inhomogeneous following the example by Gimel et al [Gimel 

199]. The successfully modeled homogeneous textures are identified from set of natural 

xtures and named as 'stochastic' textures. For example Figure 5-37 shows two classes of 

ttural textures, the textures which are homogeneous and modeled with high visual similarity 

e classified as 'stochastic textures', and the textures which result in limited visual similarity 

1ly. 
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saaple 

aodelled 

(a) 

saaple 

aodelled 
(e) 

saaple 

aodelled 

(b) 

saaple 

aodelled 
(f) 

• aodelled 

(c) 
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saaple 

aodelled 

(d) 

saaple 

aodelled 
(h) 

Figure 5-36: Natural textures- (aHd) Stochastic textures modeled successfully (e)-(h) non-stochastic 
textures modeled with limited visual similarity 

~e model's response to skin textures can be explained on the basis of gray level co­

:currences for clique families in sample images. The collection of GLCHs is critical from 

hich the conditional probabilities of gray level co-occurrences, first approximations of 

ibbs potentials, and interaction energies for clique families in the search window are 

)rived. The model is successful for homogenous textures because of the spatially in variance 

f characteristic pixel interactions. The gray level co-occurrences for these interactions 

:main similar throughout sample image and hence appear as clique families with high 

1ergies in interaction map. As a result, when these clique families are thresholded, most of 

te pattern present in sample image is maintained and textures with high visual similarity are 

!produced. Following this reasoning it can be concluded that the two factors are essential for 

1ccessful modeling a) the gray level co-occurrences remain almost constant for a clique 

tmily to represent a characteristic interaction in texture b) the family possesses high 
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teraction energy so that it is thresholded and contribute in the synthesis process. The 

alysis of results is based on these important observations about the MGRF model. 

~t 1: The analysis of results for set I is the most complicated. It is a failure scenario with 

most non-existent visual similarity between training and synthesized textures. However, it 

ves comprehensive insight of the working of model and the structure of 3D skin features. 

1e textures in set I present the most realistic picture of 3D skin height profiles for the 

ason that all 3D skin features (curvature, wrinkles/lines and fine texture) are present. For 

me samples the curvature dominates other features completely whereas for the rest other 

atures are visible but overshadowed by curvature. For example Figure 5-38 below shows 

e grayscale textures for the sample skin sample with and without curvature. It can be seen 

Figure 5-38(a) that the curvature dominates completely the underlying wrinkle/fine texture 

ilich are observed only after curvature elimination in texture Figure 5-38(b ). However in 

gure 5-38(c) the underlying features are not dominated by the curvature and can be 

1served easily. 

(a) (b) (c) (d) 

Figure 5-37: (a)-(b) Curvature dominates wrinkles/fine texture (c)-(d) Curvature is only partially 
overshadowing wrinkles/fine texture 

Jr MGRF, only the pixel interactions with consistent gray level co-occurrences among 

petitions throughout image appear as characteristic clique family in interaction map. The 

:in samples in set I present two types of repetitive 3D skin features i.e. wrinkles with less 

1mber of repetitions and more frequent fine texture. But the pattern in fine texture cannot be 

entified in grayscale texture because it is overshadowed by wrinkles and curvature. The 

tttem in wrinkles is identifiable but its grayscale level varies across the image because of 

.e curvature. The human eye can easily perceive the curvature and the gradual changes in 
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rinkle pattern because of the curvature. However, for MGRF model, the curvature appears 

spatially variant gray level co-occurrences creating an inhomogeneity in the image. 

1e corresponding interaction maps can be observed to have somewhat visual resemblance to 

e skin texture samples demonstrating that the MGRF model indeed captures the pixel 

teractions for 3D features during analysis but these interactions do not end in high visual 

milarity during synthesis. The reason lies in the gathered GLCH for every clique family 

hich record the gray level co-occurrences. Although the gray level co-occurrences for these 

ique families deviate from those oflndependent Random Field (equation 4.32) and result in 

gh interaction energy in map, these vary drastically within same clique family. The result is 

at their GLCHs are averaged out during synthesis and do not present any characteristic 

~ttem. Figures 5-39 and 5-40 explain this with two examples. The interactions for 

edium/long range wrinkle/lines and for short range fine textures are marked in 

orresponding interaction maps. It can be seen that these repetitive patterns appear in map as 

ique families of high interaction energy but the gray levels vary for same clique family and 

mce fail to pose any significant gray level interaction for that family. 

Short range interactions with varying gray levels 

Long range interactions with varying gray levels 

Figure 5-38: The multi range pixel interactions for a sample texture from set 1 
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Short range interactions with varying gray levels 

line like features 

Long range interactions with varying gray levels for wrinkles 

Figure 5-39: The multi range pixel interactions for a sample texture from set 1 

1e further validation of this reasoning is provided by including more clique families for 

nthesizing textures. The inclusion of more clique families is supposed to improve the 

nthesized pattern by providing more information about pixel interactions in sample image. 

or set I, even the inclusion of more clique families does not improve the visual similarity. 

1is observation proves the inconsistency of gray level co-occurrences for these clique 

milies which fails to capture any significant pattern. Figure 5-41 shows the results for the 

me texture sample with 253 and 577 clique families. It can be observed that the visual 

nilarity does not improve by including more clique families. 
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saaple texture interaction •ap 

...... 
0 • 

jja. ' 

253 clique faailies 577 clique faailies 

synthesized iaage synthesized iaage 

Figure 5-40: Synthesis with different number of clique families (visual similarity is not improved) 

om this analysis it is concluded that the curvature creates a noticeable visual 

~omogeneity in skin samples and cannot be modeled successfully. So it would be 

leresting to eliminate curvature and observe the model's response to other features. 

:cordingly, the samples in set 2 and set 3 are modeled without any curvature present. The 

alysis of MGRF modeling for set 2 follows. 

·t 2: The second set is obtained by eliminating curvature through pre-processing of set 1 

d the underlying line-like or wrinkle-like features (along with fine texture) become 

parent. The modeling results for set 2 presented in section 5.6 show mixed results with 

~h and low visual similarity. Again, the results can be explained on the basis of spatial 

riance of pixel interactions in sample images. 

te interaction maps for set 2 show the short range interactions only and the long-range 

:eractions appearing due to curvature are mostly eliminated. As it was shown in figure 5-

, the line-like features cause short to medium range interactions only. These short-range 

que families are thresholded and contribute to the synthesis. However, most of the results 
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set 2 show poor visual similarity (Section 5.6). The reason lies in the pattern of 

rinkles/lines affecting the overall synthesis. The pattern of wrinkles/lines can be roughly 

tegorized into three types i.e. partially present in the image (Figure 5-42a,b ), covering the 

ilole image but spatially variant (Figure 5-42c,d), covering the whole image and spatially 

variant (Figure 5-42e). Figure 5-42 shows the examples for three types and their synthesis 

suits. For first two types, the gray level co-occurrences for wrinkles and lines do not remain 

nstant throughout the image and the averaging out in GLCHs results in the loss of pattern. 

~nee, in synthesized samples somewhat spatially invariant short-range texture patterns 

tochastic) appear but wrinkles/lines are completely filtered. For the third type (5-42e) the 

.ttern is present in complete image and is almost spatially invariant. The corresponding 

art-range clique families are well able to maintain the pattern which appears visibly in 

nthesized texture (Figure 5-42e ). 

:al) partial 
wrinkles 

(aJ) 

(bl) partial 
lines 

(bJ) 

(cl) spatially 
variant lines 

(c3) 

(dl) spatially (el} spatially 
variant wrinkles invariant lines. 

•rinkles 

(e2) 

(e3) 

Figure 5-41: Three types of patterns in set 3 for wrinkle/line like features & their modeling results­
(a) Texture with wrinkles present partially (b) Texture with lines present partially 

(c) Texture with spatially variant lines (d) Texture with spatially variant wrinkles 
(e) Texture with spatially invariant wrinkles/lines 
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can be concluded from above analysis that MGRF model is able to reproduce the 

inkles/line like features of skin (both healthy and diseased) provided that their pattern 

mains spatially invariant. However, as the results show, these features of skin are more 

ten inhomogeneous and are filtered during the synthesis. 

't 3: The set 3 is obtained after elimination of curvature and consists of patterns due to fine 

{ture of skin only. The wrinkles and lines are excluded completely to see the MGRF 

Jdel's response to fine texture. These are small scale patterns homogeneous locally but 

rying for different parts of the body. As these samples range around the size of 1.8xl.8 em, 

~se patterns remain almost the same throughout the corresponding sample images with 

·ongly invariant gray level co-occurrences. The exceptions occur when the fine texture is 

dly distorted due to wrinkle/lines/diseased surface irregularities. It can be anticipated that 

~model should be able to reproduce these fine textures with high visual similarity. 

te interaction maps for set 3 show the short-range blob-like pixel interactions near center. 

te long range interactions of curvature or the medium range interactions due to 

inkles/lines are absent. Since fine texture remains almost the same throughout sample 

tage, the gray level co-occurrences of pixel interactions remain spatially invariant. 

terefore, the pattern in sample image is well preserved in GLCHs for clique families and 

~ thresholded clique families result in synthesis of textures with high visual similarity. 

te consistency in GLCHs and the consequent visual similarity can be further verified by 

obing into the modeling results for set 3. The synthesized images for set 3 in section 5.6 

ow that the sample images strongly invariant pattern result in high visual similarity 

1ereas the others with some overall local variance of pattern result in medium visual 

nilarity only. Figure 5-43 shows examples of texture samples resulting in medium and high 

mal similarity. However, the modeling results in overall high visual similarity for set 3 and 

can be concluded that fine textures of skin make a spatially invariant, homogeneous 3D 

1ture. 
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te interaction maps for set 3 (Figure 5-43b) show high interaction energies around centre 

d hence centered clique families are thresholded only to contribute to synthesis. The 

mber of these clique families ranges around 20. These interaction structures demonstrate 

rious configurations of short-range neighbourhoods which deviate from the fixed 

lditional neighbourhood systems. Thus the MGRF model improves the recovery of accurate 

ighbourhood system even for typical short-range interactions present in natural textures of 

m. 

I visual appearance: Another important aspect to be noted is overall 3D appearance of 

tture features. The 3D features of skin can be perceived by human eye to have 3D 

rve/groove/ridge like appearances. The MGRF modeling only addresses the capturing of 

1y scale co-occurrences where 3D appearances may not appear visually as accurately as in 

nple images. Hence it can be observed that successfully modeled images of set 2 and set 3 

not mimic the 3D appearances of curves, grooves or ridges noticeably (Figure 5-43). 

>roove like features 

(al) 

0 
(bl.) 

(cl) 
llediua 

(a2) 

0 
(b2) 

(c2) 
High 

Ridge like features 

(a3) 

(b3) 

(c3) 
High 

Ridqe like feature5 curves 

• 
{b4) 

(c-1) 
High 

(aS) 

\ 
(b5) 

(cS) 
Kediua 

Figure 5-42: Modeling results for set 3 with medium and high visual similarity- (a) skin sample (b) 
zoomed interaction structures (c) synthesized samples 
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tis work is targeted towards modeling of 3D skin features for haptic applications where 

ese features are on the scale of O.l-1mm. On this small scale the surface irregularities on 

in give rise to the tactile perception of roughness only and their curve/groove like 

pearance cannot be perceived by human finger. For this reason the poor visual perception 

·3D appearances does not pose a significant drawback . 

. 8 Summary 

this chapter, the overall set up for 3D data acquisition was presented. The laser scanning 

uipment used for data acquisition is discussed. The algorithm for pre-processing of 3D data 

extract the 2D grayscale textures has been presented. The variety of surface textures 

thered from case studies provide information about 3D surface features found on skin at 

gh resolution of 0.1-1 mm. These features are arranged in different input sets to observe 

e MGRF model's response to each of them individually. The pseudo code for analysis and 

nthesis under MGRF model and results of modeling for these input set are presented. 

nally, the detailed analysis of modeling results enables us to conclude about the patterns 

eated by skin features on skin surface and the extent to which these can be reproduced 

ccessfully by MGRF model. 

1e investigation on MGRF modeling of skin images shows that the 3D features of skin can 

categorized as naturally stochastic/homogeneous or inhomogeneous patterns. The 

tmogeneous features are modeled successfully by MGRF model. Where the curvature of 

tderlying limb always creates non-homogeneity, the fine texture on skin is almost always 

nsistent locally and results in homogeneity in grayscale textures. Hence, the fine textures 

l skin can be reproduced with high visual similarity and the curvature always fails to be 

produced in synthesis. The wrinkles and line-like features of skin usually do not occur as 

tmogeneous patterns and therefore are not modeled successfully. 
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~hapter 6 

~onclusion 

.1 Summary & Contribution 

edical imaging for dermatology or skin imaging mainly covers the 2D or 3D image 

quisition of skin and analysis of images to draw conclusions about skin condition for 

fferent applications e.g. detection, classification and monitoring of skin diseases. The 

nventional 2D imaging captures color information of skin which is incorporated in 

mputer-based image analysis systems. However, in addition to color, other skin 

1tures like surface textures and roughness are also altered by skin diseases, ageing, etc. 

tese surface features can be obtained by 3D imaging and incorporated in image analysis 

stems to make more precise conclusions about skin condition. 

:m imaging (both 2D and 3D) mainly targets to assist dermatologists in visual 

;pection of skin. However, there are two modes of clinical inspection in dermatology 

. visual inspection and tactile inspection. In several diseases, the tactile inspection of 

in gives important clues to the state of diseases. The computer-based tactile inspection 

: dermatology remains unaddressed. In this thesis, it was proposed that haptic 

:hnology from virtual environments can provide the computer-based tactile inspection. 

te real skin can be modeled and represented in a virtual environment as virtual skin. A 

er can then touch the virtual skin through a haptic device. Where a dermatologist 

anot touch the skin directly (tele-dermatology or severe skin conditions) or an objective 
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:cision about skin condition has to be made, the virtual skin along with a haptic device 

n provide the necessary tactile inspection. 

1e virtual skin requires several skin parameters to be modeled. The friction and stiffness 

1ke mechanical parameters whereas the surface profile can be obtained from 3D 

1aging. The research objective of this work was the modeling of 3D surface textures of 

in for haptic applications. For this objective, the 3D images of skin were acquired using 

gh resolution ( -0.1 mm) accurate laser scanning equipment. The images were captured 

Jm nine patients of psoriasis and included both healthy and diseased skin samples from 

ms, trunk and legs. Since fast haptic texture rendering algorithms require input textures 

be in 2D grayscale images (height maps), the 3D data were transformed to 2D data and 

Jdeled with Markov-Gibbs Random Field (MGRF) modeling. Following is a summary 

·results for modeling presented in detail in last chapter. 

rst of all, skin samples show us typical skin surface profiles found on healthy and 

>eased skin. These 3D surface profiles are created by curvature of underlying limb, 

inkles/line like features of skin and fine local textures of skin which make key 3D 

1tures of skin. These 3D features appear in both healthy and diseased skin samples. 

1e next step is to observe MGRF model's response to each of these features separately 

observe that which features can be modeled successfully. For this reason, skin samples 

:re distributed in three sets. In first set, the texture samples consisted of all three 

1tures where curvature dominated the other two. Second set of textures was obtained 

:er elimination of curvature and contained both wrinkle/line like features and fine 

'tures. The textures in third set were also obtained after elimination of curvature but 

nsisted of fine textures only. 

1e MGRF model's response is determined by visual similarity of synthesized images 

th the sample images. The MGRF model works best for strongly homogeneous natural 

'tures with spatially invariant pixel interactions [Gimel 1999]. Therefore, the 

nthesized images for homogeneous textures present high visual similarity to the sample 

:ages. Based on this, the visual similarity in synthesized images can be used to conclude 
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the homogeneity/inhomogeneity of the features present in sample texture image. 

milarly, the MGRF model's response for three input sets determines the homogeneity 

3D skin surface features in skin texture images. In set 1 curvature of underlying limb 

minated. The results of MGRF modeling for set 1 showed no visual similarity between 

nthesized and sample textures (Figure 6-1 ). Hence, it can be concluded that curvature 

tkes an inhomogeneous 3D skin feature with no spatial invariance of texture pattern 

d cannot be modeled successfully. 

te set 2 consisted of skin samples where both wrinkle/line like features and fine textures 

:re present. The modeling results of set 2 (Figure 6-2) showed low/medium visual 

nilarity. Thus wrinkle/line like features can vary between inhomogeneous to 

mogeneous features. This implies that, since the fine texture is almost homogeneous 

; shown by results of set 3), the wrinkle/line like features are the main inhomogeneous 

dure features. This shows us that the pattern of wrinkle/line like features do not 

cessarily always appear as spatially invariant on skin. 

te set 3 consisted of fine textures only and its modeling results almost always presented 

~dium/high visual similarity (Figure 6-3). Thus, the fine texture of skin can be 

ncluded as homogeneous 3D feature implying that local fine textures on skin are 

~stly spatially invariant. 

able 6-2 presents an overview of modeling results. 
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(at - diseased) (a2 - diseased) (a3- healthy) (a4-heal· 

• 

(b 1) (b2) (b3) 

• 

(cl) (c2) (c3) 

(dl) (d2) (d3) 

Figure 6-1: Modeling results for set 1 (skin textures including curvature) - (a) Training images of 
skin textures (b) Interaction maps (c) selected cliques (d) Synthesized images 

(b4) 

• 

(c4) 

(d4] 
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L 1-diseased) (a2-diseased) (a3-diseased) (a4-heal t : 

(bl) (b2) (b3) 

• • 

(cl) (c2) (c3) 

(dl) (d2) (d3) 

lgure 6-2: Modeling results for set 2 - (a) Training images of skin textures (b) Interaction maps (c) 
selected cliques (d) Synthesized images 

(b4) 

• 

(c4) 

(d4) 
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(at - diseased) (a2 - healthy) (a3 - diseased) 

(bl) (b ·2 ) (b3) 

• • • 

(cl) (c·2) (c3) 

(d 1) (dJ2) (d3) 
ure 6-3: Modeling results for set 3 - (a) Training images of skin textures (b) Interaction maps (c) 

selected cliques (d) Synthesized images 

) Skin Feature Interaction Range Visual Similarity Comments 

Curvature 
Short range Long 

None Inhomogeneous 
range 

Short range Low Inhomogeneous 
frinkles/Lines 

Medium range --------- ·---- --- ----- ---
Medium Homogeneous 

Medium Homogeneous 
:fine Texture Short range ---·-- -----------

High Homogeneous 

Table 6-1: Summary of modeling results for 3D skin features using MGRF modeling 
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was observed that the curvature of underlying limbs is a large scale feature whereas 

1nkles/lines/fine textures are small scale features on the scale of 1-0.1 mm. The 3D 

rface profiles at this small scale give the tactile feeling of roughness. The object of 

Jdeling is the integration of 3D skin profiles for haptic applications where a user can 

1ch and feel the surface of skin through haptic device. The tactile feeling of skin is 

Jstly dependent on high resolution, small scale features. Hence the successfully 

Jdeled fine textures of skin can be integrated in a virtual environment for haptic feeling 

roughness. The curvature of underlying limb is not a skin feature contributing to the 

:tile inspection of disease for the reason that skin diseases do not alter curvatures of 

1bs. Therefore, the poor modeling of curvature through MGRF does not pose a 

:nificant draw back. The successfully modeled fine textures can be superimposed on 

y arbitrary curvature to present the virtual skin of a body part. 

e mixed results of modeling with low/medium visual similarity for wrinkle/line like 

ttures of skin were also observed. These features, present in both healthy and diseased 

n, do play an important role in tactile inspection. Most of wrinkle/line like features 

:sent inhomogeneous patterns and MGRF model cannot reproduce them successfully. 

nee, if incorporated in virtual skin, the reproduced wrinkle/line like features will be 

s accurate than reproduced fine textures of skin. 

·erall, the research work presented in this thesis provides the following. 

1. 3D Skin Surface Features: A variety of skin surface textures have been 

acquired from healthy and diseased skin of patients. It has been proposed after 

observation of these textures that the diversity of textures is composition of three 

basic 3D skin surface features namely curvature, wrinkle/line like features and 

fine textures. 

2. MGRF Modeling for Natural Textures of Skin: The capability of recently 

proposed MGRF, pairwise-pixel model of Markov/Gibbs random fields, 

modeling has been tested in modeling the natural textures as skin. The model has 
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been shown to work successfully for natural textures such as wood, stones, 

fabric, etc. However, the inclusion of skin textures to the set of these natural 

textures varies the results and it can be concluded that not all natural textures can 

be modeled successfully by MGRF and some improvements may be inevitable. 

3. Simulated Annealing for Optimization: The optimization algorithm Simulated 

Annealing has been applied to refine initial analytic approximations and to 

synthesize texture images. The simulated annealing algorithm reaches global 

maxima in this case where Gibbs Probability Distribution is maximized . 

.2 Future Work 

1is work proposed haptic applications for dermatology to assist tactile inspection. The 

mprehensive virtual representation of materials, including human tissues and skin, for 

ptic applications is an extensive field of research as was reviewed in Chapter 3. This 

>rk presents a starting point for this virtual presentation where the necessary 3D skin 

rface profile information has been modeled. From the diversity of skin textures 

tained, the important information of key 3D skin features and their texture 

aracteristics (long-range/short range, homogeneous/inhomogeneous) were determined. 

1is information can aid in developing more advanced modeling techniques for computer 

1phics or haptic rendering of skin. Later, 3D surface profiles can be integrated with 

1er mechanical properties for a complete virtual skin model. This work can be 

tended in following possible dimensions to improve the modeling technique and to 

egrate this model with applications in haptic technology, 3D animation or image 

alysis. 

• Improved Modeling for Skin Surface Textures: The modeling technique can be 

improved to include the inhomogeneous features of wrinkle/lines and other 

surface irregularities as well. In addition the sample space for 3D skin surface 

textures can be increased from healthy and psoriatic skin to other diseases. 
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• Haptic Applications: The 3D surface textures can be integrated in a haptic 

application for haptic rendering. The MGRF model can be applied to synthesize 

grayscale height maps corresponding to real skin surface textures. The height 

maps can then be incorporated with mesh models of limbs for haptic feeling of 

roughness. In addition the mechanical properties of friction and stiffness can be 

added for more comprehensive virtual skin model. 

• 3D Animation: Until now, modeling of human skin has been limited to 3D 

animation purposes in computer graphics. And that also the capturing of patterns 

from real skin samples is not covered mainly and only approximations to skin 

textures are made basis of modeling. This work includes modeling of real skin 

covering both healthy and diseased skin. In this attempt of looking into real skin 

patterns of wide range, the 3D data is obtained from patients in collaboration with 

dermatologists. Thus the successfully modeled surface textures for healthy skin 

can be used for more accurate skin rendering in computer animations. 

• 3D Image Analysis: The 3D skin surface profiles obtained can also be used for 

image analysis apart from haptic applications for dermatology. The high 

resolution and accurate 3D surface profile features can be quantized in terms of 

parameters (for example see Moon et al [Moon 2002]) which can be used along 

with 2D features to offer improved skin analysis results. 
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.. ppendixA 
minous Flux (lumens): visible power, or light energy per unit of time from source 

1minance (lux): luminous flux incident on a surface per unit area, measured in lux, 

nen per square meter, foot-candle (fc ), or lumen per square foot 

'lor Temperature (Kelvin): the temperature to which one would have to heat a 

metical "black body" source to produce light of the same visual color as that of the 

1rce 

w color temperature implies warmer (more yellow/red) light while high color 

nperature implies a colder (more blue) light. Daylight has a rather low color 

nperature near dawn, and a higher one during the day. 

lor Rendering Index CRI: How well colors are rendered by different illumination 

1ditions in comparison to a standard (i.e. a thermal radiator or daylight). CRI is 

culated on a scale from 1-100 

ecular Reflection: Reflection off from smooth surfaces such as mirrors or a calm body 

water or typical oily skin 

ffused Reflection: Reflection off from rough surfaces such as clothing, paper, 

·es/wrinkles of a non-oily skin 
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Lppendix B 

ndom Variable: In probability theory a random variable (r.v) is a quantity whose 

lues are random and therefore the random variable can be assigned with a probability 

:tribution function. Random variables are used to describe the random events e.g. 

ling of a dice, raining at a particular day, outcome of a test experiment, etc. 

int Probability Distribution: Given two random variables X and Y representing two 

Ierent events, the joint probability distribution of X and Y is the distribution of X and Y 

~ether i.e. how probable the two events are to occur together and can be denoted by 

:x=xandY=y) orP(XnY). 

mditional Probability Distribution: Given two events X and Y, the conditional 

)bability is the probability of event X given the occurrence of event Y and is denoted by 

:x 1 Y). In terms of joint probability distribution, it is defined as 

P(X I Y) = P(X n Y) 
P(Y) 

Lrdinality: The cardinality of a set A is a measure of the number of elements of set A 

d is denoted by jA 1. 

arkov Chain: A Markov process or Markov chains is a sequence (chain) of events 

fined in temporal domain. Markov chain can be represented as a sequence of random 

riables xn defined for states in time n = 0,1,2, ... and has the property 

1ich implies that the current state is dependent on past state only or in other words, 

ven the present state, past and future states are independent. 
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trginal Probability: It is the probability of one event P( X) , regardless of the other 

~nt Y. Marginal probability is obtained by summing (or integrating, more generally) 

:joint probability P(X n Y) over the unrequired event Y. 

:or Probability: A prior probability P(X) is a marginal probability, interpreted as a 

>cription of what is known about a random event in the absence of some evidence. It 

presses uncertainty about the event X before the data are taken into account thus 

ributing uncertainty rather than randomness to the uncertain event. 

sterior Probability: The posterior probability of a random event X is the conditional 

Jbability P( X I Y = y) that is assigned when the relevant evidence or data Y = y is 

'en into account. 

kelihood Function: If probability allows us to predict unknown outcomes based on 

own parameters, then likelihood allows us to determine unknown parameters based on 

own outcomes. In this sense, likelihood works backwards from probability: given Y, 

~ use the conditional probability P(X I Y) to reason about X, and, given X, we use the 

:elihood function L(Y I X) to reason about Y. Thus, it is a conditional probability 

11ction P(X I Y) considered as a function of its second argument with its first argument 

ld fixed at X= x. 

L(Y I X = x) = aP(X =xI Y) 

tfficient Statistics: In statistics, a statistic is sufficient for the parameter (), which 

dexes the distribution family of the data, precisely when the data's conditional 

obability distribution, given the statistic's value, no longer depends on (). Intuitively, a 

fficient statistic for () captures all the possible information about () that is in the data. A 
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tistic T(X) is sufficient for 0 precisely if the conditional probability distribution of the 

taX, given the statistic T(X), is independent of the parameter 0, i.e. 

P(X =xI T(x) = t,B) = P(X =xI T(x) = t) 

ylor Series: The Taylor series is a representation of a function as an infinite sum of 

ms calculated from the values of its derivatives at a single point. The Taylor series of a 

tl or complex function/that is infinitely differentiable in a neighbourhood of a real or 

mplex number a, is the power series 

f'(a) . f"(a) f(3l(a) 
f( a). + --· (.r- a)+ · (.r- al. 2 + (.r- a) 3 + ... ·' 1! ' 2! ·' 3! .• 

tich in a more compact form can be written 

x pnl(a) 
L . 1 (x- a)n' 
n=O n. 

tere n! is the factorial of n andf"\a) denotes the nth derivative off at the point a; the 

roth derivative off is defined to befitselfand (x- a)0 is defined to be 1. 
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lppendix C 

lATLAB code for 2D texture extraction and surface 
tting 

156 

********************************************************************* 
his function extracts the 2D grayscale textures from 3D vertices 
ven for the surface texture information of skin 
nput: An array of vertices having x,y,z co-ordinates of the vertices 
utput: The Q level grayscale images for skin with curvature (skin) % 
nd without curvature (texture) along with the dimensions of image 
dimensions) in millimeters and in pixels 
NOTE: The portion of this code having implementation of function 
gridfit' has been obtained from MATLAB CENTRAL 
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objec 
Id=8998 I 
********************************************************************* 

nction {texture skin dimensions] = getTexure (vertices); 

xtract the co-ordinate information 
x vertices(:,l); 
y = vertices(:,2); 
z = vertices(:,3); 
lengthx max(x)-min(x); 
lengthy max(y)-min(y); 
lengthz max(z) - min(z); 

ubic interpolation to interpolate vertices to a 3D surface at regular 
rid 

sz=size(vertices); 
samples= uint8(sqrt(sz(l,l)))+5; 
xlin = linspace(min{x),max(x),samples); 
ylin = linspace(min(y),max(y),samples); 
[X,Y] = meshgrid(xlin,ylin); 
surface2=griddata(x,y,z,X,Y, 'cubic'); 

.urface fitting to eliminate curvature 
surfacel=gridfit(x,y,z,xlin,ylin, 'smooth',15); 

surf(X,Y,surfacel); 
colormap ( 'hot ' ) ; 
hold on; 
grid on; 
mesh(X,Y,surface2); 
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ubtract the fitted surface from interpolated surface to eliminate 
rvature 
diff = surface2~surfacel; 

figure; 
surf(X,Y,diff); 

he texture is cropped manually to get a rectangular representative 
mple 

mn ~ min(min(diff)); 
mx ~ max(max(diff)); 
z ~ ( (diff-mn) I (mx-mn)) * 256; 
Z ~ uintB(Z); 
figure; 
[cropped rect] ~ imcrop(Z); 
rect=uint8(rect); 
figure; 
imshow (cropped) ; 

he cropped sample is output for skin and texture information 
texture = 

ff (rect (1, 2) : rect (1, 2) +rect (1, 4), rect (1, 1) :rect (1, 1) +rect (1, 3)); 
skin = 
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rface2 ( rect ( 1, 2) : rect ( 1, 2) +rect ( 1, 4) , rect ( 1, 1) : rect ( 1, 1) +rect ( 1, 3) ) ; 
figure; 
mn ~ min(min(skin)); 
mx ~ max(max(skin)); 
z ~ ( ( skin-mn) I (mx-mn)) * 256; 
z ~ uintB (Z); 
imshow(Z); 
dimensions ~ [lengthx lengthy lengthz size(texture)] 



pendixD 

.ppendix D 

[ATLAB code for analysis of 2D grayscale textures for 
[GRF parameter estimation 
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********************************************************************* 
* 
he function retrieves the interaction structure and corresponding 
bbs 
8tentials for a Q-level input grayscale image under MGRF modeling 

nput' a gray-level image image=(g[i,j]' i = 1, ... ,M; y=1, ... ,N] I 
~=15 or 31 for 16 or 32 gray levels 
earch window dimensions [Di, Dj] should be [40, 40] to represent a 
uadrant of [80, SO]search window 
igma = 3 ... 4 for interaction structure thresholding 

Output: a set of K most characteristic Gibbs potentials represented 
ch by a 2D table Vk = (Vk[q,s], q=O, ... ,Q-1;s=O, ... ,Q-1] I; k=1, ... ,K 
and their corresponding gathered co-occurrence probabilities from 
put image freq_image_k [q, s] : q=O, ... ,Q-l;s=O, ... ,Q-1]); k=l, ... ,K 
alculated value of 'lambda 0' 
********************************************************************* 
* 

nction [RelEnergy POT freq lambda_O] 
ndowWidth, sigma) 

= grayLevels; 
= windowWidth; 

= w(1, 1); 
= w(1, 2); 

age=double(image); 

GibbsPots(image, grayLevels, 

. Quantise a given image into Q gray levels if it has higher signal 
solution 

min(min(image)); 
= max(max(image)); 

= round(((image-mn)/(mx-mn))*Q); 
show(g, [0 Q] I; 
gure; 

= size (g) ; 
sz(1,1); 

=SZ(1,2); 

ray level co-occurrence histograms (GLCH) gathering: 
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. Collect co-occurrence histograms COOC(di,dj) = (COOC(di,dj) [q,s]' 
J, • • • 1 Q-1 i 
=0, ... ,Q-1) for all inter-pixel shifts (di,dj) in a search window 
>ch pair ((i,j), (i+di,j+dj)) is a clique 

159 

E the clique family with this shift) W=((di,dj)' if dj=O di=1, ... ,Di; 
se di = -Di, ... ,0, ... ,Di; dj=l, ... ,Dj): 

2a) Initialise each cooc, for all di,dj,q,s' COOC(di,dj) [q,s]=1 

JC = zeros(Q+1,Q+1,2*Di+1,Dj+1); 
H = zeros(1,Q+1); 
eq = COOC; 
r = freq; 
nm = ones(2*Di+l,Dj+l); 
an_freq = zeros{2*Di+l,Dj+l); 
riance_freq=mean_freq; 
lEnergy=variance_freq; 
teractMap = zeros(2*Di+1,2*Dj+1); 
lectedCliques = interactMap; 
an_Energy=O; 
D = 0; 

2b) Collect histograms 
r j =1 'N 

for i=l:M 
q = g(i,j); 

for dj = 0 ,Dj 
sdi=O; 

if(dj == 0) 
sdi=l; % sdi=1 (and not sdi=O because di=sdi=O and dj=O 

uld be the pixel itself and not the clique) 
else 

sdi=-Di; 
end 

for (di=sdi,Di) 
if((O<i+di && i+di<M+1) && (D<j+dj && j+dj<N+l)) 

S=g(i+di,j+dj); 
COOC(q+l,s+l,di+Di+1,dj+1) 

OC(q+l,s+l,di+Di+l,dj+l) + 1; 

end 
end 

end 

end 
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Gray level co-occurrence probabilities calculation: 
Normalise histograms to get relative frequencies: 

for each (di,dj) in W: 
freq(di,dj) [q,s] ~ COOC(di,dj) [q,s]/sum_(q'~O, ... ,Q­

s'~O, ... ,Q-l)COOC(di,dj) [q' ,s'] 

% i.e. TO GET frequencies from histograms we have to divide 
3togram 

l 

% vector for every clique family by the total number of cliques 

% in an image under that clique which is ~ leal and leal~ sum of 

%possible combinations of q,s computed under that family, thus 
% leal ~ sum_(q'~O, ... ,Q-l,s'~O, ... ,Q-l)COOC(di,dj) [q' ,s'] 

)Interaction energies calculation: 
ind relative energies for all clique families: RelEne(di 1 dj) = 

ciance(freq(di,dj)): 
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>riance(freq(di,dj) ~ sum_(q~o, ... ,Q-l;s~o, ... ,Q-1) {freq(di,dj) [q,s]­
>n freq(di,dj)}'2 
~ere mean freq(di,dj) ~sum (q~o, ... ,Q-l;s~o, ... ,Q­
{freq(di,dj) [q, s] }/ (Q'2) 

r- i=l:2*Di+l 
for j~l:Dj+l 

%THE VALUES OF summ ARE ZERO FOR +VE Y AXIS IN THIS CASE SO 
AVOID 'divide by zero' WARNING 

summ(i,j)~ sum(sum(COOC(:,: ,i,j))); 
if(summ(i,j)~~o) 

sumrn(i,j)=l; 
end 
freq (: , : , i, j) ~ COOC ( : , : , i, j) I summ ( i, j ) ; 
mean_freq(i,j)~ mean(mean(freq(:,:,i,j))); 
variance_freq(i,j) ~ sum(sum((freq(:, :,i,j)-

m _ f req ( i , j ) ) . '2) ) ; 
end 

i 

91Energy=variance_freq; 

~omplete the whole interaction map 

teractMap(1:2*Di+l,Dj+1:2*Dj+l) ~ Re1Energy(l:2*Di+l,l:Dj+l); 

~irroring along y-axis 

c j~l:Dj 
interactMap(:,j)~interactMap(:, (2*Dj+2)-j); 



oendixD 

i 

~irroring along x axis 

r i==l:Di 

i 

temp=interactMap(i,1:Dj); 
interactMap(i,1:Dj+1)=interactMap((2*Dj+2)-i,1:Dj+1); 
interactMap((2*Dj+2)-i,1:Dj)=temp; 

3how the interaction map 

= min(min(interactMap)); 
= max(max(interactMap)); 

teractMapiM = round(((mx-interactMap )/(mx-mn)) * Q); %shows the 
teraction map in reverse color 
show(interactMapiM, (0 Q]); 

5) Thresholding and Interaction Structure Extraction: 
oalculate statistics for independent random field IRF 
::rs irf = 1/ ( (Q+1) '2); 
r irf = M_qs_irf * (1-M_qs irf); 

= M*N; 
nom = sum {sum ( 
urn = sum (sum ( 

(variance_freq) .*((summ/r) .'2) )) 
(variance_freq) .*((summ/r) .'3) )) 

calculation of lambda_O (equation 4.33) 
nbda 0 (denom)/(var_irf*neum); %rhos are splitted here leal and 

I 

Select K top-energy clique families by thresholding the energy 
stribution 
e.g. all the clique with energies above mean_energy + 
3 .. 4)*standard_deviation 

an_Energy =mean (mean(interactMap)); 
D = std(std(interactMap)); 
eta = Mean_Energy+sigma*S_Di 

Gibbs Potentials Learning 
r i=1:2*Di+l 

for j=1:2*Dj+1 
if(interactMap(i,j) >theta) 

selectedCliques(i,j) = interactMap(i,j); 
end 

if(j<Dj+2) 
if (RelEnergy(i,j)<=theta) 

RelEnergy(i,j)=O; 

else 

161 
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POT(:, :,i,j) lambda 0 *(freq(:, :,i,j)-mean_freq(i,j)); 

end 
end 

end 
j 

show selected clique families (retrieved interaction structure) in a 
figure 
~ min(min(selectedCliques)); 
~ max(max(selectedCliques)); 

:rure; 
lectedCliquesiM ~ round(((mx-selectedCliques )/(mx-mn)) * Q); 
3how(selectedCliquesiM, [0 Q]); 
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,ppendix E 

ATLAB code for synthesis of 2D grayscale texture using 
mulated annealing 

~******************************************************************** 

rhe function synthesizes the texture images by sampling Gibbs 
obabili ty 
jistribution under MGRF model. The Metropolis sampler with simulated 
~nnealing is used. 
Input: 
l) K most characteristic Gibbs potentials Vk gathered from 
~lysis algorithm 
2) lambda 0 
3) Gray level co-occurrence probabilities for selected K families 
sample image freq_image_k 

Jutput: synthesized gray-level image g~(g[i,j]: i ~ 1, ... ,M; j 
, ... ,N]) withQ 
********************************************************************* 

nction image 
put image ) 

CSA(cliques, GibbsPots, freq, lambda_O, im range, 

m_range is Q ~ 15/31 
ibbsPots is a 2w x w array as is calculated in GibbsPots file 

~ size(cliques) 
ze1 ~ [120 120] 
~ sz (2) -1; 
eq_new = freq; 

Start with a random image 
~ round(im_range*rand(size1(1),size1(2))); 

Start with an initial uniform energy field 
erg~ -1000 *ones (size1(1),size1(2)); 

Initialize temperature T and lambda t 

mbda t ~ lambda o 
. 9; 

cl = 1; 
c2~.001; 

cooc zeros(size(freq)); 
summ = zeros(sz); 

FIRST PUT THE NEIGHBOURHOOD IN REDUCED DATA STRUCTURE 
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iex=l; 

i 

(wl l:sz(l)) 
for (w2 ~ l:sz(2)) 

end 

if (cliques(w1,w2) -~ 0) 
x ~ (wl-1-w) ; 

end 

y ~ (w2-l); 
cliques_red (index,l) x; 
cliques_red (index,2) y; 
cliques_red (index,3) wl; 
cliques_red (index,4) w2; 
index=index+l; 

'e (cliques_red) 

~peat for sufficient number of macro steps t 

r macro_step ~ 1 : 200 

lambda t ~ lambda_O/((c1+c2*macro_step)); 
random = 1; 
visit~ zeros(sizel(l),sizel(2)); 

% select a random trace over the image lattice 

while(random < (2*sizel(l))*(2*sizel(2))) 
i ~ floor(sizel(l)*rand(l,l))+l; 
j ~ floor(sizel(2)*rand(l,l))+l; 
random = random+l; 

if(visit (i,j) ~~ 0) 
visit(i,j)~l; 

new~ fix((im_range+l)*rand(l,l)); 
new_energ = 0; 

Calculates the pixel energy associated to the new configuration as: 
% Checks every pixel in the image in turn and calculated its 
associated energy for a new gray level value based on its 
neighboors. If the new energy is smaller accept the change. If it 
is higher, accept the change with a probability based on system 
mperature 

for (index~ l:size(cliques_red,l)) 
x = cliques_red(index,l); 
y = cliques_red(index,2); 
wl cliques_red{index,3); 
w2 ~ cliques_red(index,4); 
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if ((O<X+i && X+i<~size1(1)) && (O<j+y && 

r<~size1 (2))) 
new_energ 

)bsPots(new+l,a(x+i,y+j)+l,wl,w2); 

end 

new_energ + 

if ( (O<i-x && i-x<~size1(1)) && (O<j-y && j-
osize1 (2))) 

new_energ = new_energ + GibbsPots(a(i-x,j-
l-l,new+l,wl,w2); 

end 
end %for 

diff = new_energ- energ (i,j); 
r ~ exp(diff); 

% Accept the change if the new enegy is lower 
if (diff >~ 0) %CHANGES > TO >~ 

a(i,j) =new; 
energ{i,j) = new_energ; 

elseif (rand(1,1) < r*T) 

a(i,j) =new; 
energ(i,j) = new_energ; 

end %if 
% else reject the change 

end %if (visiting) 
end %while(visiting) 

% Collect Gray level co-occurrence histograms COOC(di,dj) from 
rrent sample g[i,j] 

COOC = zeros{size(freq)); 
for i~1,size1(1) 

for j~1,size1(2) 

q ~ a(i,j); 

for (index~ 1'size(cliques_red,1)) 
x = cliques_red{index,l); 
y = cliques_red{index,2); 
di cliques_red(index,3); 
dj ~ cliques_red(index,4); 

if ( (O<i+x && i+x<size1 (1)) && (O<j+y && j+y<size1 (2))) 
s = a(i+x,j+y); 
COOC(q+1,s+1,di,dj) ~ COOC(q+1,S+1,di,dj) + 1; 
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end 
end 

end 
end 

%Calculate Gray level co-occurrence probabilities freq(di,dj) from 
%COOC(di,dj) above 
r=(sizel(l)*sizel(2)); 
for (index= l:size(cliques_red,l)) 

di cliques_red(index,3); 
dj = cliques_red(index,4); 

summ(di,dj) = sum(sum(COOC(:, :,di,dj))); 
freq_new(:, :,di,dj) = COOC(:, :,di,dj)/summ(di,dj); 

%update Gibbs Potentials 
GibbsPots(:, :,di,dj) = GibbsPots(:, :,di,dj) + lambda t * 

"mm(di,dj)/r)*(freq(:, :,di,dj)-freq_new(:,:,di,dj)); 

=nd 

disp('iteration='); disp(macro_step); 

% Reduce the temperature for convergence 

T = T /log((lOO+macro_step))*log(lOO); 
if (mod(macro_step,25) == 0) 

figure; 
imshow(a, [0 irn_range]); axis image; 
drawnow; 

end 
d %macrostep 
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MGRF Modeling results for Set 1 

(a) 3D skin saaple with color 

(c) gray scale texture 
( 201x 206 pixels) 

(e) interaction aap 
(40z40 pixels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120:.:120 pixels) 

(f) thresholded cliques 
( 154 faailies) 

Set 1 -Patient 3- Arm diseased sample# 1 (23.95mm x 16.56mm x 3.15mm) 
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(a) 3D skin saaple •ith color 

(c) gray scale teKture 
(186:11:196 piKels) 

(e) interaction aap 
(40z40 pizels) 

(b) 3D skin saaple Yithout color 

(d) synthesized iaage 
( 120K120 piKels) 

(f) thresholded cliques 
( 167 faailies) 

Set 1- Patient 3 - Leg diseased sample# 1 (20.9Smm x tS.Smm x 2.Smm) 
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(a) 3D skin saaple with color 

.. 

:~,·· .... 
L' 0 "'"! ~ . 1 

(c) gray scale tezture 
( 12b121 pi:lr:els) 

• 

(e) interaction aap 
(40:.40 pi:aels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120z120 pizels) 

(f) thresholded cliques 
( 95 faailies) 

Set 1- Patient 4 - Trunk diseased sample# 1 (12.10mm x tO.SOmm x 1.30mm) 
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oendix F 

(a) 3D skin sa•ple vith color 

(c) gray scale texture 
( 180x156 pixels) 

(e) interaction •ap 
(40x40 pixels) 

-
(b) 3D skin sa•ple vithout color 

(d) synthesized i•age 
( 120x120 pixels) 

(f) thresholded cliques 
( 27 fa•ilies) 

Set 1 - Patient 5 - Trunk Sample# 2 (28.66mm x 30.58mm x 3.61 mm) 
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pendix F 

(a) 3D skin saaple with color 

(c) gray scale tezture 
( 132d63 pizels) 

• 

(e) interaction aap 
(40z40 pizels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120:d20 pizels) 

• 

(f) thresholded cliques 
( 76 faailies) 

Set 1 -Patient 4 - Leg diseased sample# 2 (31.S7mm x 30.81 mm x 3.03mm) 
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Appendix G 

Appendix G 

MGRF Modeling results for Set 2 

(a) 3D skin saaple with color 

(c) gray scale tezture 
(200x239 pixels) 

(e) interaction •ap 
(40x40 pixels) 

(b) 3D skin sa•ple without color 

(d) synthesized i•age 
( 120x120 pizels) 

(f) tbresholded cliques 
( 30 fa.ilies) 

Set 2- PatientS - Arm diseased sample# l (40.33mm x 39.44 x 11.29mm) 
Liue like features partially preseut i11 image- Low visual similarity 
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oendix G 

(a) 3D skin saaple with color 

(c) gray scale texture 
(180a156 pixels) 

• 

(e) interaction aap 
C40x40 p1xels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120x120 pixels) 

(f) thresholded cliques 
( 85 faailies) 

Set 2- Patient 5- Trunk diseased sample# 2 (28.66mm x 30.58mm x 3.61 mm) 
Wri11kles prese11t throughout image but spatially varia11t- Medium visual similarity 
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'endix G 

(a) 3D skin saaple with color 

(c) gray scale texture 
(123:d26 pixels) 

(e) interaction aap 
(40x40 pixels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
(120x120 pixels) 

• 

(f) tbresholded cliques 
( 30 f-ilies) 

Set 2- Patient 6- Arm diseased sample# 3 (20.61mm x l9.94mm x 2.21mm) 
Wri11kles prese11t partially i11 image- Low visual similarity 
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(a) 3D skin saaple with color 

(c) gray scale te•ture 
(181•189 pi•els) 

(e) interaction aap 
(40•40 pi•els) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120•120 pi•els) 

• 

(f) thresholded cliques 
(13 faailies) 

Set 2- Patient 6 - Leg diseased# 1 (34.14mm x 34.80mm x 4.41mm) 
Li11e like features prese11t throughout image but spatially varia11t - Medium visual similarity 
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1endix G 

(a) 3D skin saaple with color 

(c) gray scale teature 
(212a217 piaels) 

(e) interaction aap 
(40a40 piaels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120d20 piaels) 

• 

(f) thresholded cliques 
( 16 faailies) 

Set 2- Patient 7- Leg diseased sample# 3 (43.57mm x 35.28mm x 7.18mm) 
Li11e like features partially prese11t ill image - Medium visual similarity 
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?endix G 

(a) 3D skin saaple with color 

(c) gray scale tezture 
(178z188 pizels) 

(e) interaction aap 
( 4 Oz4 0 pizels) 

(b) 3D s k in saaple without color 

(d) synthesized iaage 
( 120d20 pizels) 

• 

(f) thresholded cliques 
( 10 faailies) 

Set 2- Patient 8 - Leg diseased sample# 1 (27.12mm x 23.86mm x 4.00mm) 
Li11e like features prese11t throughout image but spatially varia11t - Low visual similarity 
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(a) 3D skin saaple with color 

(c) gray scale tezture 
( 149z198 pizels) 

(e) interaction aap 
(40z40 pizels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120z120 pizels) 

(f) thresholded cliques 
( 10 faailies) 

Set 2- Patient 9 - Trunk diseased sample# 1 (25.68mm x 22.71mm x 2.07mm) 
Wri11kles prese11t tltrougltout image but spatially variaut - Low visual similarity 
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Appendix H 

Appendix H 

MGRF Modeling results for Set 3 

(a) 3D skin saaple vith color 

(c) gray scale texture 
(1SBx98 I pixels ) 

(e) interaction aap 
(40x40 pixels) 

(b) 3D skin saaple vithout color 

(d) synthesized iaage 
(120x120 pixels) 

• 

(f) thresholded cliques 
( 10 faailies) 

Set 3 - Patient 5 - Leg diseased sample # 1 (26.85mm x 25.83mm x 2.89mm) 
Medium visual similarity 
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1endix H 

(a) 3D skin saaple with color 

(c) gray scale tezture 
( 128:11119 pizels) 

(e) interaction aap 
(40z40 pizels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120z120 pizels) 

(f) thresholded cliques 
( 7 faailies) 

Set 3- Patient 6 - Arm diseased sample# 1 (20.48mm x 18.04mm x 2.15mm) 
Medium visual similarity 
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1endixH 

(a) 3D skin saaple with color 

(c) gray scale texture 
( 106:.:126 pixels) 

(e) interaction aap 
(tox40 pixels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120x120 pixels) 

(f) thresholded cliques 
( 13 faailies) 

Set 3- Patient 6 - Trunk diseased sample# 5 (47.15mm x 50.91 mm x 8.69mrn) 
High visual similarity 
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Jendix H 

(a) 3D skin saaple with color 

... ... .. . .. "' 
.. 

"· .. .... .. 
• " 

., 
... ·~ 

(c) gray scale tezture 
( l19Sz171 pizels) 

(e) interaction aap 
(40.40 pizels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120z120 p1zels) 

(f) thresholded cliques 
( 20 f-ilies) 

Set 3- Patient 6 - Trunk diseased sample# 6 (53.83mm x 33.59mm x 7.90mm) 
High visual similarity 
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(a) 3D skin saaple with color 

(c) gray scale tezture 
(139d39 pizels) 

(e) interaction aap 
(40d0 pizels) 

(b) 3D skin sa•ple w1thout color 

(d) synthesized iaage 
( 120d20 pizels) 

(f) thresholded cliques 
( 6 faailies) 

Set 3- Patient 7 - Arm healthy sample# 2 (17.58mm x 17.96mm x 1.66mm) 
Medium visual similarity 
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(a) 3D skin saaple with color 

(c) gray scale tezture 
(226z202 pixels) 

(e) interaction aap 
(40z40 pizels) 

(b) 3D skin saaple without color 

'.<~"'-~ J..' ·~ •.• -·'!'?-- . .;~·. 
4 • .•. •::.:, ...... 
~.,...,. .. 'tt :, :,.. I 

• •Af•' . , 
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• ' i~. ~ ... · ... 

. 'I· .......... ...... 
~---_ ......... t. '~ (\'~ .... 
··">~: " • l . .,.,_ ._·. • . M..J~~. • -~, , 

(d) synthesized iaage 
( 120z120 pizels) 

(f) tbresbolded cliques 
( 5 faailies) 

Patient 7- Leg healthy sample# 1 (44.66mm x 34.75mm x 3.76mm) 
Medium visual similarity 
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'endixH 

(a) 3D skin saaple vith color 

(c) gray scale texture 
(156x156 pixels) 

(e) interaction aap 
(40x40 pixels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
( 120x120 pixels) 

(f) tbresholded cliques 
( 6 faailies) 

Patient 8- Trunk healthy sample # 1 (19.54mm x 17.67mm x 0.99mm) 
Medium visual similarity 
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>endix H 

(a) 3D skin saaple with color 

(c) gray scale tezture 
( U3xH6 pizels) 

(e) interaction aap 
(40x40 pixels) 

(b) 3D skin saaple without color 

(d) synthesized iaage 
(120x120 pixels) 

(f) thresholded cliques 
( 12 faailies) 

Patient 9- Arm healthy sample# 1 (16.24mm x 16.3lmm x l.SSmm) 
Metlium visual similarity 
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