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ABSTRACT

Sump can be defined as a reservoir which is normally located at the downstream of
a process, from which water is pumped where solids accumulates. Sump is a
system which faces instability due to its dynamic behaviors. Application of control
strategies to the sump might add some advantages in handling the sump, where in
some process, sump plays a significant role especially when it involves in a process
that have highly hazardous stage. This project studies generally observe the
behavior of the sump by adapting control type such as the feedback, Smith
predictor, feedforward, and cascade control. In addition, the sump is adapted with a
neurocontrol from Neural Network Control strategics. The neurocontrol used is the
NARMA-L2 controller. The variation of simulation have resulted in a way that
majority of the controller are at highest performance when the percentage of solids
in is 80%. The application of neurocontrol to the system somehow does not meet
the target due to high error that the controller sustained. However, the neurocontrol
can be enhanced more by data training and this is recommended for further
research by using other neurocontrol that is available in the Neural Network control

strategies.
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CHAPTER 1
INTRODUCTION

1.1 Background of Study

Sump can be defined as a reservoir which is normally located at the downstream of a
process, from which water is pumped where solids accumulates. Alternatively, sump also
functioned as a recycle reservoir. It handles a combination of two main components,
which are water and solid. Sump is widely used in the industry such as mining and
minerals industry and even in hydrocarbons processing industry. Taking an example from
a nuclear plant where it signifies the importance of a sump in processing industry. In the
nuclear plant, sump is a part of the Emergency Core Cooling System which is required in
every nuclear plant. The sump play significant role in the cooling system collects reactor
coolant and chemically reactive spray solutions following a loss-of-coolant accident. The
sump serves as the water source o support long-term recirculation for the functions of
residual heat removal, emergency core cooling, and containment atmosphere cleanup.
This water source, the related pump inlets, and the piping between the source and inlets
are important safety components. In the hydrocarbon processing industry, a wet sump
lubrication are used to prevent the intrusion of aitborne contaminates commonly used on

sleeve or plain bearings and in gearboxes.

In the industry, many processes have an unstable integrator dynamics. Sump is one of the
processes that are unstable. The unstability relies on its level variation. Therefore it is
essential to ensure that the level of the sump is under a good and effective control in order
to avoid any occurrence of overflow of the sump tank. The adaptation of controt
strategies is important nowadays since the sump is one of the important components in

the safety criteria of certain processes.



1.2 Preoblem Statement

The main criteria that in stressed along the studies is the adaptation of the Advanced
Control Type to the sump system. This is in order for the system involving the sump to
have a better control of its crucial criteria, which is the level, Problems arise only when
the main control method used which is mainly the proportional-only control is too simple

and does not fully comply with nowadays requirement.

The behavior of the sump need to be determined since different process will require
different behavior of the sump. For example, reported by Gopinath, the petcentage sump
level varies under the controller is off and maintained steady at constant percentage level
with the controller is on. Even certain assumption must be made in order to simplify the

studies of the sump behaviors.

Prior to the completion of the study, several control strategies alternatives are made
available and tested its reliability and performance in the processing industry. The
recommended contro! strategies can be a reference in future for further enhancement of

the system involving the sump.

1.3 Objectives and Scope of Study

The obiectives of the studies are:
i. to study the behavior of a sump
2. to determine the problem of the existing control strategies of a sump
3. to identify possible type of advanced control strategies that could be
implemented on to a sump

4. to come out with a proper advanced control strategies of a sump

The scope of the studies is to enhance the control system of the sump. The main criteria
monitored when controlling the sump is the level. This can be done by applying the
advanced control strategies, In this study, the Advanced Control Strategies adapted are as

follow:



e Feedback Control System

e  Smith Predictor Control Method
e Feedforward Control System

¢ Cascade Control

¢ Neural Network System

The study will lead to the development of possible and feasible advanced control

strategies that could be implemented to the processes involving sump.



CHAPTER 2
THEORY AND LITERATURE REVIEW

2.1 Dynamic Modeling of a Sump

The assumption leading to the model is that the agitator suspends the slutry in the sump,
uniform mixing in the sump and no particle size change are assumed to oceur. The

dynamic behavior of the sump is as follows:

dm_,

solid _

dr = Myaiidin — Mlid o (1)

dam

water _
_dt__ = Moyater in — Mswaer out (2)
M orids — mscu‘:‘d,om (3)
m m

waler waler,out

Mgotidin 18 solid mass flow rate in, #oigen is solid mass flow rate out, My, im is Water

mass flow rate in and #,,qer o is Water mass flow rate out.

slurry volume in sump = Msotids M vater (4)
Psatia  Puaser
level = M
sump vol

The dynamic modeling for the sump studied is for two components in the sump, which is
the solid and the water. The dynamic modeling mass balance is an ordinary differential
equation (ODE). The various methods to solve the equation are by using integration,

numerical integration, algebraic solution and simulation in Matlab.



The first task in the model was to determine the mass of solid and the mass of water in
the sump, slurry volume and level in the sump. The equation was solved using
simultancous equation. The initial condition at time t = 0, the mass of solid and the mass
of water is 40 tonnes and 30 tonnes respectively. The specific gravity for the solid is 2.65

and the water was taken as 1,0. The sump volume is 50 m’.
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Figure 1: The diagram for modeling of the sump in manual mode in MATLAB
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Figure 2: The diagram for subsystem of the sump in MATLAB
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Figure 3: The'diagram for modeling of the sump in automatic mode in MATLAB '

2.2 Sump Controller Tuning Value

From the tuning done by M.N Ramli, the proportional and integral time value for the Pl
controller is determined. The tuning was done for the open loop tuning for unstable
processes. The studies were done by manipulating the pumping rate of the sump tank.
When the step change was made at the pumping rate of 1, the process variable (PV) falls
at a continuous rate and the PV trend behaves like a ramp. The shape has two important

criteria which is:

1. The slope of the process output is ramp

2. The time passes before the output starts to change



The process could be described using two parameters.
1. The unstable process gain ( Kunstable )
2. The dead time (Tp)

The unstable process gain is calculated as follows:

APV
Slope of PV | ATime
Kumtabn’e = AMV = AMV

The dead time is calculated as before but the response shows a small dead time. The

unstable gaing (Kynsave) are itlustrated on the following diagram:

&

Tune {(hr)

Figure 4; Relation between PV and MV with Time

The resuits from the tuning process done in this stage are listed as below, where three
percentage of amount of solids inside the sump tank were taken in to consideration. The

values obtained due to the tuning done are as follow:

For 40 % of Solid in,
Tuning Proportional Integral
1 1.0677 0.1111
2 1.8050 0.1250
3 1.0075 10,1333
4 0.9950 0.1667
5 1.0002 0.1429

Table 1: P-I Value for 40 % Solid in



For 60 % of Solid in,

Tuning Proportional Integral
1 1.000 0.1667
2 0.9949 0.1852
3 0.8062 0.1724
4 0.8021 0.1887

Table 2: P-I Value for 60 % Solid In

For 80 % of Solid in,
Tunin, Proportional Integral
1 1 0.2381
2 1.2533 0.3571
3 1.2520 0.3846

Table 3: P-T Value for 80 % Solid in

2.3 Controller Type

2.3.1 Feedback Controller

Feedback control starts as early as 250 B.C. The feedback controller was used by the
Greeks to control the level of water of their water system. The mode of operation is
similar to the level regulator in the modern life flush toilet. James Watt applied the fly-
ball governor to his new engine steam in 1788, where it played a significant role in the
development of the steam power. Here, feedback comtrol was essential for the
development of high-gain, operational amplifier that are widely used in electronic

equipment in the 1930s.

In the 1930s, the three-mode controller with proportional, integral, and derivative (PID)
feedback control action was commercially available. During this period also, the first
theoretical papers on process control were published. This is the starting point of the

enhancement of the usage of the controller application in the industries.



The three basic feedback control modes that are employed are proportional (P), integral
(1), and derivative (D) control. Consider the flow control system show below, where the
process stream is measured and transmitted electronically to the flow controller. The
controller will eventually compare the measured value to the set point value and hence,

taking the appropriate corrective action by sending the output signals to the control valve.

Flow Controller

—(

Flow Transtrlitter

é Control Valve

N N .
» l “J »

Process Stream

Figure 5: Example of Feedback Controifer

2.3.2 Smith Predictor Controller

Theoretically the Smith Predictor Control Method is a special control strategy that is best
to be used in order to improve the performance of time delay systems. Time delays
commonly occur in the process industries because of the presence of distance velocity
lags, recycle loops and the dead time associated with composition analysis. The presence
of time delays in the process limits the performance of a conventional feedback control
system. From a frequency response perspective, time delay add phase lag to the feedback

loop, which adversely affects closed-loop stability.

The Smith predictor is referred to as model-based controller, as is Internal Model Control
(IMC). This is because the control strategy utilizes the model parameters directly.
Various investigators found that the performance of Smith predictor for set-point change
can be as much as 30% better than a conventional controller based on an integral squared

error criterion.



The model-based controller like Smith predictor approach required a dynamic model of
the process. If the process dynamics change significantly, the predictive model will be
inaccurate and the controlfer performance will deteriorate to a point of instability. For
such processes, the controller should be tuned conservatively to accommodate possible
model errors. Schlek and Hanesian once performed a detailed study analyzing the effect
of model errors on Smith predictor for a first order plus time-delay model. They found
that if the assumed time delay is not within 30% of actual process time delay, the
predictor is inferior to a PI controller with no time-delay compensation. If the time-delay
varies significantly, it may be necessary to use some sort of adaptive controller to achieve

satisfactory performance.

Previously, the Smith predictor is seldom implemented as a continuous (analog)
controller due to the difficulty of approximating time delays with analog components.
However with the introduction of the digital version of Smith predictor, this problem can

be avoided.

2.3.3 Feedforward Controller

The main concept of the Feedforward control is to take corrective action before they
upset the process. The difference between feedback controls here is where the feedback
control does not take corrective action until after the disturbance upset the process.
Feedforward control will suppress the disturbance before it has had the chance to affect
the system's essential variables. This requires the capacity to anticipate the effect of
perturbations on the system's goal. Otherwise the system would not know which externat
fluctuations to consider as perturbations, or how to effectively compensate their influence
before it affects the system. This requires that the control system be able to gather carly
information about these fluctuations. For example, feedforward control might be applied
to the thermostatically controlled room by installing a temperature sensor outside of the
room, which would wam the thermostat about a drop in the outside temperature, so that it

could start heating before this would affect the inside temperature.
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In many cases, such advance warning is difficult to implement, or simply unreliable. For
example, the thermostat might start heating the room, anticipating the effect of outside
cooling, without being aware that at the same time someone in the room switched on the
oven, producing more than enough heat to offset the drop in outside temperature. No
sensor or anticipation can ever provide complete information about the future effects of
an infinite variety of possible perturbations, and therefore feedforward control is bound to
make mistakes. With a good control system, the resulting errors may be few, but the

problem is that they will accumulate in the long run, eventually destroying the system.

In majority practical application, feedforward controls normally were used together with
the feedback control. The pairing of these controllers will have the feedforward control to
reduce the effect of measurable disturbances while the feedback control will tend to trim
compensation for inaccuracies in the process model, measurement errors and unmeasured

disturbances.

2.3.4 Cascade Controller

Cascade control is a control strategy in which one control loop provides the set point for
another loop. It allows the process to reach quickly its set point while minimizing
overshoot. The two loops are commonly known as the master (primary) loop and the
slave (secondary) loop. The output signal of the master loop that will serves as the set
point for the slave loop. The cascade controller consists of two feedback control loops
where the two loops are nested with the slave loop located inside the master loop. The
slave controller controls another faster variable that affects the first variable. The master
controller positions the set point of the secondary controller and it, in turn manipulates
the control valve. The primary variable is slow, most commonly the temperature, while
the secondary variable is much as ten time faster, usually flow. The secondary loop is
introduced to reduce lags, thus stabilizing inflow to make the whole operation more
accurate and responsive. The secondary controller may be regarded as an elaborate final
control element, positioned by the primary controller in the same way a single controller

would ordinarily position the control valve. For example, the secondary controller is a

11



flow controller, then the primary controlier will not be dictating the prescribe flow (sct

point).

Cascade control can improve control system performance over single-loop control
whenever either:

» Disturbances affect a measurable intermediate or secondary process output
that directly affects the primary process output that we wish to control; or

» The gain of the secondary process, including the actuator, is nonlinear.

In the first case, a cascade control system can limit the effect of the disturbances entering
the secondary variable on the primary output. In the second case, a cascade control
system can limit the effect of actuator or secondary process gain variations on the control
system performance. Such gain variations usually arise from changes in operating point

due to set point changes or sustained disturbances.

Disturbances

&%

¥

Saturationé
Setpoint \y ol pID, PID,|— /" P2 »Cg P Py

lﬁ.ﬁ

Process

Tnner loop / Outer loop \‘

Figure 6: Fxample of Simple Cascade Controf Loop
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Figure 7: Example Showing the Control Performance of Cascade Controf Over Single Control and Simple
PID Contro!

2.3.5  Neural Network Controller (NARMA-L2)

The history of neural networks begins with the earliest model of the biological neuron
given by McCulloch and Pitts in 1943. This model describes a neuron as a linear
threshold computing unit with multiple inputs and a single output of either 0, if the nerve
cell remains inactive, or 1, if the cell fires. A neuron fires if the sum of the inputs exceeds
a specified threshold. In functional form, this gives f(x) = 1 for x greater than some
threshold, and f(x) = 0 otherwise (this is commonly known as the indicator function) [50].
In theory, such a "system” of neurons presents a possible model for biological neural
networks such as the human nervous system. The McCulloch and Pitts model was ufilized
in the development of the first artificial neural network by Rosenblatt in 1959. This
network was based on a unit called the perceptron, which produces an output scaled as 1
or -1 depending upon the weighted, linear combination of inputs. Variations on the
perceptron-based artificial neural nétwork were further explored during the 1960s by
Rosenblatt and by Widrow and Hofﬂ amongzothers.

According to Howard Demuth and Mark Beale in Neural Network Toolbox For Use in
MATLAB, Neural networks are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. As in nature, the network

function is determined largely by the connections between elements. Neural network can

13



be trained to perform a particular function by adjusting the values of the connections
(weights) between elements. Commonly neural .networks are adjusted, or trained, so that
a particular input leads to a specific target output. Such a situation is shown below. There,
the network is adjusted, based on a comparison of the output and the target, until the
network output matches the target. Typically many such input/target pairs are used, in

this supervised learning, to train a network.

Neural Network

— including connections Com are
{called weights} ‘ P

input betwesn neurons Output

Adjust
wetghts

Figure 8: How Neural Network Functions

Batch training of a network proceeds by making weight and bias changes based on an
entire set (batch) of input vectors. Incremental training changes the weights and biases of
a network as needed after presentation of each individual input vector. Incremental
training is sometimes referred to as “on line” or “adaptive” training. Neural networks
have been trained to perform complex functions in various fields of application including
pattern recognition, identification, classification, speech, vision and control systems.
Today neural networks can be trained to solve problems that are difficult for conventional
computers or human beings. Throughout the toolbox emphasis is placed on neural
network paradigms that build up to or are themselves used in engineering, financial and

other practical applications
The supervised training methods are commonly used, but other networks can be obtained

from unsupervised training techniques or from direct design methods. Unsupervised

networks can be used, for instance, to identify groups of data. Certain kinds of linear

14



networks and Hopfield networks are designed directly. In summary, there are a variety of

kinds of design and learning techniques that enrich the choices that a user can make.

15



CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 Simulation Procedure in MATLAB Programme

First stage of the study is to determine the dynamic equation for the sump. The equation
is then modeled in the MATLAB Simulink as a subsystem. The subsystem is next put
under masked. The input for the masked subsystem is the total flow rate into the sump.
The percentage solids in, volume, and pumping rate out of the sump, is modeled as

constant value inside the masked subsystem.

The out flow for the masked subsystem is the percentage of solids in the sump, the
percentage of level in the sump, the holdup for solid and water and the slurry volume
inside the sump. The main parameter that is monitored along the study is the percentage
level of the sump because as mentioned before, the main objective is to avoid any

overflow condition to the sump.

Then next step is the simulation of the sump system. The simulation was done by

implementing the control method to the sump system. The methods are as follow:

» Feedback Controf

> Feedforward Control

» Cascade Control

o Smith Predictor

> Neural Network Control

16



Generally, for all set of controller listed above, the work procedure is basically identical
to each other. The total flow rate of the sump was set at 100 tonnes/hr. The volume of the
sump was fixed at 50 m’ and the percentage solid in was 40%. The step size for the
manipulated variable was at § total flows and the step time was at 5 hour. The output of
the process, PV was obtained. The step size is then increased to 7.5 and the step time was
maintained. Again, the process output, PV obtained and the difference is compared. After

that the step size is further increased to 10 with the same step time as previous sample.

The procedure in manual mode was repeated for the percentage input of the solids in was
at 60% and 80% respectively. The value of the proportional gain and the integral was
input into the PID controlier and the controlier was put in automatic mode. After that a
step change in the total flow 1 set point at step time of 5 hr and the step size at 15 total
flows. The procedure was repeated for the percentage of solids in at 60% and 80%
respectively. Each of the system is stipulated with load changes to observe the controller

action due to the changes. Therefore the performance of the controller can be monitored.

3.2 Controller Tuning

The tuning for each controller done based on the literature tuning value obtained. The
tuning that was selected for the sump dynamic model, were the IMC method open loop
tuning for the unstable process. The process has unstable integrator dynamics for the
sump level. The IMC method calculates the tuning based on the characteristics plus the

controller time constants {Te:

7
X [rc + v]
Proportional Gain: 2
Integral Gain: A value determined to eliminate offsef afier disturbances

Derivative Gain: 0

17



The integral gain in set to a small value, as integral will tend to further destabilize these

Processes

3.3 Neural Network Procedure

The simulation procedure for Neural Network in MATLAB is somewhat quite different
from other conventional controller. Firstly, the type of network controller is chosen. In
this case study, the NARMA—L2 Controller is chosen and several simulations to the sump
system were done in order to observe the behavior of the network toward the sump

systen.

The plant identification of NARMA-L2 controller will require the user to determine some

parameters. Those parameters can be viewed from the {igure below.
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Figure 9: Plam Identification of NARMA-L2 Conrroller

The next step is to generatc the data that have been specified. The sump dynamic
modeling which has been modeled in the SIMULINK is included in the Plant
Identification as the SIMULINK Plant model. Once the data generation is done, the
system is taken to the next step of training the data. Two training functions were used
during the simulation of the sump system. The training functions used were the frainim
and traingdx. The training of the system is proceeded until the performance of the neural
network approaching its goal, whiéh is 0. The values in the Network Architecture of the
Plant Tdentification are manipulated in order to get the performance gradient closer to 0.
Then the simulation in the simulation workspace is done to observe the response of the

controller towards the sump system.
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3.4 Tool for Study

Since the study is about the simulation of the sump process control, the simufation tool
used in the study is the MATLAB Programme which applies the SIMULINK application,
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CHAPTER 4
SIMULATION RESULTS AND DISCUSSION

4.1 Simulation Results

Tuning values obtained from literature review were used as the basis for tuning the
controller type that will be discussed in this paper, which are the Feedback Controller,
Smith Predictor Method Controller, Feedforward Control and Cascade Control. The result
obtained is compared to each other with the value of the solids in varied (40 %, 60 %, and
80 %).

4,1,1 Feedback Controller

Hathp iR b Sung

* sump '[ l
TAHK % ofSoills b Stop

HiokhpafiiaE s bSwap

ShryoRme

Figure 10: Feedback Controller Diagram of a Sump Tank

The sump control loop in the diagram utilizes the application of the Feedback Control

Strategies. The process was put under simulation for three different values of Flow of
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solids in to the sump. The initial value is 40 %. The value is then further increased to 60
% and finally 80 % of solids flow in: The results of the simulation can be viewed in the
Appendices. From the results available, the best tuning for each set of data (40 %, 60 %,

and 80 %) is determined and compared to each other.

For 40 % of flow of solids in, the best tuned graph obtained was the graph of Tuning 4,
where the value of the PI controller is P = 0.9950, and 1 = 0.1667. The summary results

for Tuning 4 are as follows:

Selid 40 Step Time 5
Flow In 100 Step Size 5
Sump 50 Sump Solid 1.338
Volume Held Up

Flow of Selid 40 Sump Water 1.989
in Hold Up

Flow of i 60 Solid Density | 2.65
Water in

Vol, Flowrate 15,0943 Water 1
Solid Density

Vol. Flowrate 60 Load Time 10
Water

Residence 0.66582 Load Size 10
Time

Tabled: Result Data of Simulation for 40 % Solid in Flow (Feedback)

For 60 % of flow of solids in, graph of Tuning 4 is the best. The data of the result are as

follows:

Selid 60 Step Time 5
Flow In 100 Step Size 5
Sump 50 Sump Solid 2394
Volume Hold Up

Flow of Selid 60 Sump Water 1.597
in Heold Up

Flow of 40 - Selid Density 2.65
Water in

Vol. Flowrate 22.6415 Water 1
Solid Density

Vol. Flowrate 40 Load Time 10
Water

Residence 0.79819 Load Size i0
Time

Table5: Result Data of Simulation for 60 % Solid in Flow (Feedback)
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For 80 % of flow of solids in to the sump, the graph of Tuning 3 gives the best simulation

results compared to the other tuning values. The data results are as follows:

Solid 80 Step Time 5
Flow In 100 Step Size 5
Sump 50 ' Sump Solid 3.984
Yolume Hold Up '

Flow of Solid 80 Sump Water 0.997
in Hold Up

Flow of 20 Solid Density 265
Water in

Vol. Flowrate 30.1887 Water 1
Solid Density

Vol. 20 Load FTime 10
FlowrateWat

er

Residence (.9962 Load Size - 10
Time

Table6: Result Data of Simulation for 80 % Selid in Flow (Feedback)

4.1.2 Smith Predictor Controller
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Figure 11: Smith Predictor Controller Diagram of a Sump Tank

Figure 11 above illustrate the sump system where the Smith Predictor Controller Method

is applied. The manipulated variable is still the solids flow in to the sump. The step size is
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5 % of solid flow in with step time of 5 hours. The value for the PI controller was also
obtained from the literature. The initial value is 40 %. The value is then further increased
to 60 % and finally 80 % of solids flow in. |

For 40 % of flow of solids in, the best performing graph is the graph of Tuning 5.

Solid 40 Step Time 5

Flow In 100 Step Size 3

Somp 50 Sump Solid 1.333

Volume Hold Up

Flow of Solid 40 Sump Water 1.996

in Hold Up

Flow of 60 Selid Density 2.65

Water in

Vol. Flowrate 15.0943 Water 1
___ Solid Density _

Vol. Flowrate 60 Load Time i0

Water

Residence 0.66582 Load Size 1

Time

Table7: Result Data of Simulation for 40 % Solid in Flow (Smith Predictor)

For 60 % of flow of solids in to the sump tank, the best tuning is the graph of Tuning 4.

Selid 60 Step Time 5
Flow I 166 Step Size 5
Sump 50 Sump Solid 2392
Volume Hold Up

Flow of Solid 60 Sump Water 1.601
in Hold Up

Flow of 40 Solid Density 2.65
Water in

Vol. Flowrate 22.6415 Water 1
Solid Density

Vol. Flowrate 40 Load Time 10
Water

Residence 0.7982 Load Size 10
Time

Table8: Result Data of Simulation for 60 % Solid in Flow (Smith Predictor)
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For 80 % of flow of solids in to the sump, the best tuning obtained was from the graph of

Tuning 3.
Solid 80 Step Time 5
Flow In 100 Step Size 5
Sump 50 Sump Selid 3.985
Volume Held Up
Flow of Solid 80 Sump Water 0.997
in Held Up
Flow of 20 - Solid Density 2.65
Water in
Vol. Flowrate 30.1886 Water 1
Solid Density
Vol. Flowrate 20 ' Load Time 10
Water
Residence 0.9962 Load Size 10
Time

Table9: Result Data of Simulation for 80 % Solid in Flow (Smith Predictor)

4.1.3 Feedforward Controller
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L TANK .
» IR - - - P Hoidup of Water in Sump
. r VALVE
Step P} Eontroiler

Flows rata

Stumy Yolyma | g

Figure 12; Feedforward Controfler Block Diagram of a Sump Tank

Figure 12 above is the sample block diagram of a sump system using the feedforward
control type. In the simulation of the sump process using Feedforward controller system,

same procedure and step applies like the previous controls of feedback and the Smith
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predictor. The percentage of solids in is varied from 40%, increased next to 66% and
finally to the value of 80% solids in. Tuning values obtained from literature was again

applied to this control strategy.

When the systems is under operation value of 40% of solids in, the tuning value which is
the most suitable is when the setting is at P = 0.9950, 1 = 0.1667, and D = . The result

data of the simulation is shown below.

Solid 40 Step Time 5
Flow In 100 Step Size 5
Sump 30 Sump Selid 8.022 |
Volume ' Hold Up

Flow of Selid 40 Sump Water 12.03
in Held Up

Flow of 60 Selid Pensity 265
Water in

Vol, Flowrate 15.0943 Water 1
Solid Density

Vol. Flowrate 60 Load Time | 10
Water

Residence 066582 Load Size 10
Time

Table 10: Result Data of Simulation for 40 % Solid in Flow {(Feedforward Control)

For 60% of solids in to the sump system, the controller performed the best at the PID
values of P = 1.000, I =0.1667, and D= 0.

Solid 60 Step Time 3
Flow In 100 Step Size 5
Sump 56 Sump Solid 8.022
Volume Hold Up

Flow of Solid 60 Sump Water 12.03
in Hold Up

Flow of 4f) Selid Density 265
‘Water in

Vol. Flowrate 22.6415 Water 1
Selid Density

Vol. Flowrate 40 Load Time 10
Water

Residence 0.7982 Load Size i0
Time

Table 11: Resulf Data of Simulation for 60 % Solid in Flow (Feedforward Control)
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Finally, for this control strategy, when the value of solids in to the sump is 80%, the best
performing value for the controller is when P = 1.2520, I =0.3571, and D= 0.

Selid 80 Step Time 3
Flow In 100 Step Size 5
Sump 56 Sump Solid 8.005
Velume Hoid Up

Flow of Selid 80 Sump Water 12.01
in Hold Up

Flow of 20 Selid Density 265
Water in

Vol. Flowrate 30.1887 Water 1
Solid B Density

Vol. Flowrate 20 Load Time 10
Water

Residence 0.9962 Load Size 10
Time

4.1.4 Cascade Controller

Table 12: Result Data of Simulation for 80 % Solid in Flow (Feedforward Control)
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Figure 13: Cascaded Controller Block Diagram of a Sump Fank
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Figure 11 above illustrates the block diagram of the sump system with the application of
cascade control strategy. The system was again simulated with different value of
percentage of solids in to the sump (40%, 60%, and 80%). The tuning values from the

literature were used for the simulation matter.

For 40% of solids in, the tuning value of P=1.0077,1=0.1111 and D = 0 performed the
best. The settling time is faster and the overshoot the system undergoes afier disturbance
introduced is the smallest. Result data are as listed in table below.

Selid 40 Step Time 5
Flow In 100 Step Size 3
Sump 50 Sump Solid 9.32
Veolume ' Hold Up

Flow of Solid 40 Sump Water 13.03
in Hold Up

Flow of 64 Solid Density 2.63
Water in

Vol. Flowrate 15.0943 Water 1
Salid Density

Vol. Flowrate 60 Load Time 10
Water

Residence 0.66582 Load Size 10
Time .

Table 13: Result Data of Simulation for 40 %5 Solid in Flow (Cascade Confrol)

The following tables (Table 14(60%) and Table 15(80%)) show the result data for both
60% and 80% of solids in to the system. The best controller tuning vatue for both set of
simulations are P = 0.8062 , [ = 0.1724, and D = 0, for 60% of solids and; P = 1.2520, I =
0.3846 and D = 0, for 80% of solids in.
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Solid 60 Step Time 5
Flow In 100 Step Size 5
Sump 50 Sump Solid 9.55
Volume Hold tip

Flow of Scolid 60 Sump Water 13.98
in Hold Up

Flow of 49 Solid Density 2.65
Water in

Vol. Flowrate 22,6415 Water i
Solid Density

Yol. Flowrate 40 Load Time 10
Water

Residence 0.7982 Load Size i0
Time

Table 14: Result Data of Simulation for 60 % Solid in Flow (Cascade Control)

Solid 80 Step Time 5
Flow In 100 Step Size 5
Sump 50 Sump Selid 9.26
Volume Hold Up

Flow of Solid 80 Sump Water 14.01
in Hold Up

Flow of 26 Selid Density 2.65
‘Water in

Vol. Flowrate 30.1887 Water 1
Solid Density

Vol. Flowrate 20 Load Time 10
Water

Residence 0.9962 Load Size 10
Time
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Table 15: Result Data of Simulation for 80 % Solid in Flow (Cascade Conirol)




4.1.5 Neural Network (NARMA-L2 Controller Type)

. WARMALL Contralter. - -

Fandom Reference BU&P .
TANIC

Figure 14: NARMA-L2 Controller Biock Didagram of a Sump Tank

Figure 11 illustrates one of the Neural Network controller types, which is the NARMA-
L2 controfler, adapted to the sump system. For this neurocontroller, there are no required
PID values. The solids in was varied from 40%, 60%, and finally to 80%. From what can
be observed from the results® graphs, the system responded well towards changes in the
system but sustained a large number of errors. The magnitudes of the errors are the same
for every percentage of solids in to the sump. The results of the simulation using

NARMA-L2 controller are as follows, illustrates by Figure 15, 16 and 17.
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Figure 16: Result for 60% Solids In
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Figure 17: Resuit for 80% Solids In

4.2 Findings Based on the Simulation Done

4.2.1 Feedback and Smith Predictor

The simulation process was done by fixing the sump volume to 50 m>. The pumping rate
is specified at 10 % rate with full opening of the control valve. The process was simulated
with a set point change with the step size of 5 % solid flow that has the step size of 5
hours. Throughout the simulation for both Feedback and Smith Predictor Controller

Method, the step size and step time is maintained at the same value.

Generally, for all sets of data regardless the controller type, the residence time of solid
increased as the amount of solid flow in increased (40%-80%). This has also induced the

increment of the total solid and water hold up in the sump tank.

When a set point change was stipulated at t = 5, the system with Smith Predictor
Controller Method react vigorously compared to the Feedback Controller. Even though
the value shoots up to almost 98 % of the tank level, the process variable still maintained

at acceptable region and does not overflow the sump tank.
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However, when a small load change was introduced at t = 10 hours, a different behavior
can be observe&. The process values tend to increase when load change was introduced.
The Feedback Controller produces a higher “overshoot’ compared to the Smith Predictor
Controtler Method. This situation contradicts the earlier situation when there is a set point
change introduced. For the Smith Predictor Controller Method, the load changes have
small impact to the process value, but the set point have bigger impact to the controller,

and vice versa to for the Feedback Controller.

Generally, the tuning result obtained from the literature gave a good result where it
manages to meet the main requirement, not to overflow the sump and provide a constant

level for the sump.

Solid 40 %

Figure 18: Feedback Controller Method Figuve 19: Smith Predictor Controller Method

When the value of the solid flow in is at 40 %, the Feedback controller produces a better
response. The settling time of Feedback Controtler at this stage is faster than the Smith
Predictor Controller Method. The settling time for the Feedback Controller is
approximately 30 hours, while the settling time for the system with Smith Predictor

Controller Method is at 40 hours.
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Solid 60 %

Figure 20: Feedback Controller Method Figure 21: Smith Predictor Controller Method

For the 60 % solid flow in to the sump, the Feedback controller produces a better
controlling performance than the Smith Predictor Controller. The controller manage to
get the process value to settles at t = 22 hour, while the process value for Smith Predictor

Controller only settles at t =25 hour.

Solid 80 %

Figave 22> Feedback Controller Method Figure 23: Smitls Predictor Controfler Method

However, different scenario is exhibit for 80 % of solid flowing in to the sump tank,
where the Feedback Controller settles the process values at t = 20. This is somehow
identical to the settling time for the Smith Predictor Controller Method. In order to
determine the best controller performance, the index of Integral of the absolute value of
the error (IAE) is taken into consideration. The IAE at the minimum value is the

favorable in order to determinc the best coniroller performance. Obviously the Smith
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Predictor Controller Method has the smaller amount of IAE for the 80 % of solid flow.
Therefore, it performs better at this stage.

4.2.2 Feedforward Controller
For the feedforward control, same procedures applies, however, additional disturbance
was introduce to monitor the performance of this type of controller towards sump system.
For the system with 40% solids in, results shows that it performs the best when the value
of the controller are at P =0.9950 and I = 0.1667.

Figure 24: Tuning Result for Feedforward Controller with Value of P =~ 0.9950 and [ = 0.1667 at 40%
Solids In

There are two disturbances introduced at this stage where the first disturbance is at t = 30
hours and the second disturbance was simulated at t = 50 hours. The controller responded
quickly and the overshoot is not too high, therefore leads to a better stability in the
process. This is favorable due to the unstability of the sump itself when no controller

applied to it.

For 60% of solids in to the sump, Figure 25 illustrates the result, where there is no big
different comparing to the result obtained for the value of 40% of solids into the system.

The controller responded well at every time where the disturbances were introduced. The
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settling time is quite fast. However, the settling time is not as fast as the system where the
percentage of solids in is at 40%. The error also increase at this stage compare to the first

result obtained for the feedforward controller.

Figare 25: Tuning Result for Feedforward Controller with Value of P = 1068 and [ = 0.1667 at 60%
Solids In

Figure 26: Tuning Result for Feedforward Controller with Value of P = 1.2520 and I = 0.3571 af 80%
Solids In

Referring to the simulation result for 80% of solids in to the sump (Figure 26), the

controller seems to perform the best at this amount of solids in. resulis shows that when
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disturbance were introduced at t = 30h, the process setiles at t = 40h. This is the fastest
rate compare to other two results earlier for this feedforward controlier. The consecutive
disturbance also results in the process value to setiles faster compare to other two earlier
results. For the disturbance at t = 50h, the process starts to stables at approximately t =
61h. The result for the feedforward control shows that the controller performs better at
the percentage of solids in is at 80%.

4.2.3 Cascade Controller
The tuning result of cascade controller at same amount of solids in is illustrate by figure
25, where the system responded better with the application of this cascade control. In this
cascade environment, three disturbances were introduced instead of two in the
feedforward control strategy. The time is at t = 5, 30, and 50. At the start of the
experiment, a large number of overshoots occurred when the system starts to operate
under control. However, the controller manages to overcome the large deficit fast
manner. At t = 30 hours however, the system does not respond to the disturbance and
maintain its stability, and at t = 60 hours, the disturbance introduced results in a small

deviation of the process and the controller manage to settles the process value at fast rate.

37



Figure 27: Tuning Resuit for Cascade Controller with Value of P = 1.0077 and I = 0.1111 at 46% Solids
In

The result for the other values of solids in are ilfustrate as follow.

_: Tuing Result fo Cc’ade Controller with Value o = 0.8062 and I = 0. 1724 at 60% Solids
In
For this cascade control at the percentage value of 60% of solids, the controller responded

well at the disturbances introduces, however, the controtler fails to keep the level below

100 and it tends to overflow the system. Even though the settling time is fast, the
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controller is considered to fails its objective to avoid overflow. Therefore the controiler is

not suitable for this type of situation.

Figure 29: Tuning Result for Cascade Controller with Value of P = 1.2520 and I = 0.3846 at 80% Solids
in

At 80% of solids in, the controiler seems to be at its best performing state, where it
manages to keep the level intact. The overshoot after every disturbance is small and the
settling time is the fastest in this cascade control compared to the other two results
obtained earlier. Therefore, the controller is said to perform the best at 0% of solids flow

in to the sump.

4.2.4 Neural Network (NARMA —1.2 Controller)

The NARMA-L2 controller is one of the neuroconiroller types available in the neural
network toolbox in the MATLAB programming. It is also refer to as feedback
linearization control. It is referred to as feedback linearization when the plant model has a
particular form (companion form). It is referred to as NARMA-L2 control when the plant
model can be approximated by the same form. This controller manipulates the concept of
transforming nonlinear system dynamics into linear dynamics by canceling the

nonlinearities.
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From the results obtained from the simulation in the MATLAB shows that there are a big
error still occurs even though the performance goal during the network training
approached to zero. Referring to Figure 15, 16, and 17 (at the result of the simulation),
the process value responded well towards the change in system set value. The level is
maintained at specified value but the error is quite big. The error is constant for every

percentage of solids in. The error remains at 16 throughout the simulation.

This error can be eliminated by further training of the neural network and manipulating
the value of the network architect panel in the plant identification menu. The reason being
of the result is that there is no specific method in determining the value. Trial and error is
the recommended method. However experience with this type of controller is the best

advantage in obtaining the best possible results.
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CHAPTER 5
CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

Several conclusions that reflect the objective of the studies can be made towards the

completion of the simulation of the sump system using various controller strategies.

3.1.1 Feedback Controller

For this conventional feedback controller, the system performs the best when the system

handles a lower number of solids in to the system.

5.1.2 Smith Predictor Controller

The Smith predictor controller which is an enhancement to the feedback controller,
perform vice versa to the feedback, where it is better when handling the higher

percentage of solids in.

5.1.3 Feedforward and Cascade Controller

Both type of controller perform the best with handling high amount of solids in to the
sump. Both controlier have a better efficiency in term of time and overshoot. Comparing
both, cascade control manages to minimize error the best and have a faster rate of settling

time.

514 Neural Network (NARMA-L2 Centroller)

When the sump system was put under the neurocontroller of NARMA-L?2, the result is
quite poor due to lack of training of the data and inaccurate trail and error method. The
controller responded well towards any change in the system, however the error remain the

same for every disturbances introduced.
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APPENDICES

APPENDIX A: Feedback Controller Tuning Results
Tuning result for condition of 40 % of solid flow in:

Tuning 1 (P=1.0077,1=0.1111)

43



Tuning 3 (P = 1.0075,1=0.1333)

Tuning 4 (P = 0.9950,1=0.1667)

Tuning 5 (P = 1.0002, T =0.1429)
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Tuning result for condition of 60 % of solid flow in:
Tuning 1 (P=1.0000, 1=0.1667)

Tuning 2 (P = 0.9949, | = 0.1852)

Tuning 3 (P = 0.8062, I = 0.1724)
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Tuning 4 (P = 0.8021, I = 0.1887)

Tuning result for condition of 80 % of solid flow in:
Tuning 1 (P =1.0000, I = 0.2381)

Tuning 2 (P=1.2533,1=0.3571)
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Tuning 3 (P = 1.2520, 1 = 0.3846)

APPENDIX B: Smith Predictor Controller Tuning Results
Tuning result for condition of 40 % of solid flow in:
Tuning 1 (P=1.0077,1=0.1111)

Tuning 2 (P = 1.0050, I= 0.1250)
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Tuning 3 (P = 1.0075, 1=0.1333)

Tuning 4 (P =0.9950,1=10.1667)

Tuning 5 (P = 1.0002, I = 0.1429)
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Tuning result for condition of 60 % of solid flow in:
Tuning 1 (P = 1.0000, I = 0.1667)

Tuning 2 (P = 0.9949, I = 0.1852)

Tuning 3 (P = 0.8062, 1 = 0.1724)
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Tuning result for condition of 80 % of solid flow in:
Tuning 1 (P=1.0000, 1=0.2381)

Tuning 2 (P = 1.2533, 1= 0.3571)

Tuning 3 (P = 1.2520, 1= 0.3846)
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