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ABSTRACT

Sump can be definedas a reservoir which is normally located at the downstream of

a process, from which water is pumped where solids accumulates. Sump is a

system which faces instability due to its dynamic behaviors. Application of control

strategies to the sump might add some advantages in handling the sump, where in

some process, sump plays a significant role especiallywhen it involves in a process

that have highly hazardous stage. This project studies generally observe the

behavior of the sump by adapting control type such as the feedback, Smith

predictor, feedforward, and cascadecontrol. In addition, the sump is adaptedwith a

neurocontrol from Neural Network Control strategies. The neurocontrol used is the

NARMA-L2 controller. The variation of simulation have resulted in a way that

majority of the controller are at highest performance when the percentage of solids

in is 80%. The application of neurocontrol to the system somehow does not meet

the target due to high error that the controllersustained. However, the neurocontrol

can be enhanced more by data training and this is recommended for further

researchby using other neurocontrol that is available in the Neural Networkcontrol

strategies.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Sump can be defined as a reservoir which is normally located at the downstream of a

process, from which water is pumped where solids accumulates. Alternatively, sump also

functioned as a recycle reservoir. It handles a combination of two main components,

which are water and solid. Sump is widely used in the industry such as mining and

minerals industry andeven inhydrocarbons processing industry. Taking an example from

a nuclear plant where it signifies the importance of a sump in processing industry. In the

nuclear plant, sump isa part of the Emergency Core Cooling System which is required in

every nuclear plant. The sump play significant role in thecooling system collects reactor

coolant and chemically reactive spray solutions following a loss-of-coolant accident. The

sump serves as the water source to support long-term recirculation for the functions of

residual heat removal, emergency core cooling, and containment atmosphere cleanup.

This water source, the related pump inlets, and the piping between the source and inlets

are important safety components. In the hydrocarbon processing industry, a wet sump

lubrication are used to prevent the intrusion of airborne contaminates commonly used on

sleeve or plain bearings and in gearboxes.

In the industry, many processes have an unstable integrator dynamics. Sump is oneof the

processes that are unstable. The unstability relies on its level variation. Therefore it is

essential to ensure that the levelof the sump is under a goodand effective control in order

to avoid any occurrence of overflow of the sump tank. The adaptation of control

strategies is important nowadays since the sump is one of the important components in

the safety criteria of certain processes.



1.2 Problem Statement

The main criteria that in stressed along the studies is the adaptation of the Advanced

Control Type to the sump system. This is in order for the system involving the sump to

have a better control of its crucial criteria, which is the level. Problems arise only when

the main control methodused which is mainly the proportional-only control is too simple

and does not fullycomplywith nowadays requirement.

The behavior of the sump need to be determined since different process will require

differentbehavior of the sump. For example, reported by Gopinath, the percentage sump

level varies under the controller is off and maintained steady at constant percentage level

with the controller is on. Even certain assumption must be made in order to simplify the

studies ofthe sump behaviors.

Prior to the completion of the study, several control strategies alternatives are made

available and tested its reliability and performance in the processing industry. The

recommended control strategies can be a reference in future for further enhancement of

the system involving the sump.

1.3 Objectives and Scope of Study

The objectives of the studies are:

1. to study the behavior ofa sump

2. to determine the problemofthe existingcontrolstrategiesof a sump

3. to identify possible type of advanced control strategies that could be

implemented on to a sump

4. to come out with a properadvancedcontrol strategies of a sump

The scope of the studies is to enhance the control system of the sump. The main criteria

monitored when controlling the sump is the level. This can be done by applying the

advanced control strategies. In this study, the Advanced Control Strategies adapted are as

follow:



• Feedback Control System

• Smith Predictor Control Method

• Feedforward Control System

• Cascade Control

• Neural Network System

The study will lead to the development of possible and feasible advanced control

strategies thatcould be implemented to the processes involving sump.



CHAPTER 2

THEORY AND LITERATURE REVIEW

2.1 Dynamic Modeling of a Sump

Theassumption leading to the model is thattheagitator suspends theslurry in the sump,

uniform mixing in the sump andno particle sizechange areassumed to occur. The

dynamic behavior of the sump is as follows:

dm
- msolid in msolid out ^ '

dt

dm
-2Ssl = m -m (2), "'water m '"swater out v '
dt

(3)msolick msolid,out
m m

water water,out

tnSoiid,m is solid mass flow rate in, msoUd,out is solid mass flow rate out, mwater,in is water

mass flow rate in and mwater,out is water mass flow rate out.

slurry volumein sump= msolids . mwater

r solid r1water

7 slurry vol
level =

sumpvol

The dynamic modeling for the sump studied is for two components in the sump, which is

the solid and the water. The dynamic modeling mass balance is an ordinary differential

equation (ODE). The various methods to solve the equation are by using integration,

numerical integration, algebraic solution and simulation in Matlab.

(4)



The first task in the model was to determine the mass of solid and the mass of water in

the sump, slurry volume and level in the sump. The equation was solved using

simultaneous equation. The initial condition at time t = 0, the mass of solid andthe mass

of wateris 40 tonnes and 30 tonnes respectively. The specific gravity for the solid is 2.65

and the water was taken as 1.0. The sump volume is50 m3.

< ••-- **

Figure 1: The diagramfor modeling ofthesump inmamtat mode inMA TLAB
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Figure 2: The diagramfor subsystem of the sump inMATLAB
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Figure 3: The diagramfor modeling of the sump inautomatic mode inMATLAB

2.2 Sump Controller Tuning Value

From the tuning done by M.N Ramli, the proportional and integral time value for the PI

controller is determined. The tuning was done for the open loop tuning for unstable

processes. The studies were done by manipulating the pumping rate of the sump tank.

When the step change was made at thepumping rate of 1,theprocess variable (PV) falls

at a continuous rate and the PV trend behaves like a ramp. The shape has two important

criteria which is:

1. The slope of the process output is ramp

2. The time passes before the output starts to change



The process could be described using two parameters:

1. The unstable process gain (Instable)

2. The dead time (Td)

The unstable processgain is calculatedas follows:

APV

K.unstable

Slope of PV

AMY

ATime

AMY

The dead time is calculated as before but the response shows a small dead time. The

unstable gains (Ratable) are illustrated on the following diagram:

Figure 4; Relation between PVandMVwith Time

The results ftom the tuning process done in this stage are listed as below, where three

percentage of amount of solids inside the sump tank were taken in to consideration. The

values obtained due to the tuning done are as follow:

For 40% of Solid in,

Tuning Proportional Integral

1 1.0077 0.1111

2 1.0050 0.1250

3 1.0075 0.1333

4 0.9950 0.1667

5 1.0002 0.1429

Table 1; P-I Valuefor 40 %Solid In



For 60% of Solid in,

Tuning Proportional Integral

1 1.000 0.1667

2 0.9949 0.1852

3 0.8062 0.1724

4 0.8021 0.1887

Table 2: PI Valuefor 60 %Solid In

For 80% of Solid in,

Tuning Proportional Integral

1 1 0.2381

2 1.2533 0.3571

3 1.2520 0.3846

Table 3; P-I Valuefor 80 %SoBdln

2.3 Controller Type

2.3.1 Feedback Controller

Feedback control starts as early as 250 B.C. The feedback controller was used by the

Greeks to control the level of water of their water system. The mode of operation is

similar to the level regulator in the modem life flush toilet. James Watt applied the fly-

ball governor to his new engine steam in 1788, where it played a significant role in the

development of the steam power. Here, feedback control was essential for the

development of high-gain, operational amplifier that are widely used in electronic

equipment in the 1930s.

In the 1930s, the three-mode controller with proportional, integral, and derivative (PID)

feedback control action was commercially available. During this period also, the first

theoretical papers on process control were published. This is the starting point of the

enhancement of the usage of the controller application in the industries.



The three basic feedback control modes that are employed are proportional (P), integral

(I), and derivative (D) control. Consider the flow control system show below, where the

process stream is measured and transmitted electronically to the flow controller. The

controller will eventually compare the measured value to the set point value and hence,

taking the appropriate corrective action by sending theoutputsignals to the control valve.

Flow Controller

Flow Transrr. liter

Control Valve

Process Stream

A

Figure 5: Example ofFeedbackController

2.3.2 Smith Predictor Controller

Theoretically the Smith PredictorControl Method is a special control strategy that is best

to be used in order to improve the performance of time delay systems. Time delays

commonly occur in the process industries because of the presence of distance velocity

lags, recycle loops andthe dead time associated with composition analysis. The presence

of time delays in the process limits the performance of a conventional feedback control

system. From a frequency response perspective, time delay add phase lag to the feedback

loop, which adversely affectsclosed-loop stability.

The Smith predictor is referred to as model-based controller, as is Internal Model Control

(IMC). This is because the control strategy utilizes the model parameters directly.

Various investigators found that the performance of Smith predictor for set-point change

can be as much as 30% better than a conventional controller based on an integral squared

error criterion.



The model-based controller like Smith predictor approach required a dynamic model of

the process. If the process dynamics change significantly, the predictive model will be

inaccurate and the controller performance will deteriorate to a point of instability. For

such processes, the controller should be tuned conservatively to accommodate possible

model errors. Schlek and Hanesian once performed a detailed study analyzing the effect

of model errors on Smith predictor for a first order plus time-delay model. They found

that if the assumed time delay is not within 30% of actual process time delay, the

predictor is inferior to a PI controller with no time-delay compensation. If the time-delay

varies significantly, it maybe necessary to use some sortofadaptive controller to achieve

satisfactory performance.

Previously, the Smith predictor is seldom implemented as a continuous (analog)

controller due to the difficulty of approximating time delays with analog components.

However with the introduction of the digital versionof Smith predictor, this problem can

be avoided.

2.3.3 Feedforward Controller

The main concept of the Feedforward control is to take corrective action before they

upset the process. The difference between feedback controls here is where the feedback

control does not take corrective action until after the disturbance upset the process.

Feedforward control will suppress the disturbance before it has had the chance to affect

the system's essential variables. This requires the capacity to anticipate the effect of

perturbations on the system's goal. Otherwise the system would not know which external

fluctuations to consideras perturbations, or how to effectivelycompensatetheir influence

before it affects the system. This requires that the control system be able to gather early

information about these fluctuations. For example, feedforward control might be applied

to the thermostatically controlled room by installing a temperature sensor outside of the

room, whieh would warn the thermostat about a drop in the outside temperature, so that it

could start heating before this would affect the inside temperature.

10



In many cases, such advance warning is difficult to implement, or simply unreliable. For

example, the thermostat might start heating the room, anticipating the effect of outside

cooling, without beingaware that at the same time someone in the room switched on the

oven, producing more than enough heat to offset the drop in outside temperature. No

sensoror anticipation can ever provide complete information about the future effects of

an infinite variety of possible perturbations, and therefore feedforward controlis bound to

make mistakes. With a good control system, the resulting errors may be few, but the

problem isthatthey wilt accumulate in the long run, eventually destroying the system.

In majority practical application, feedforward controls normally were used together with

the feedback control. The pairing of these controllers willhave the feedforward control to

reduce the effect of measurable disturbances while the feedback control will tend to trim

compensation for inaccuracies in the process model, measurement errors and unmeasured

disturbances.

2.3.4 Cascade Controller

Cascade control is a control strategy in which one control loop provides the set point for

another loop. It allows the process to reach quickly its set point while minimizing

overshoot. The two loops are commonly known as the master (primary) loop and the

slave (secondary) loop. The output signal of the master loop that will serves as the set

point for the slave loop. The cascade controller consists of two feedback control loops

where the two loops are nested with the slave loop located inside the master loop. The

slave controller controls another faster variable that affects the first variable. The master

controller positions the set point of the secondary controller and it, in turn manipulates

the control valve. The primary variable is slow, most commonly the temperature, while

the secondary variable is much as ten time fester, usually flow. The secondary loop is

introduced to reduce lags, thus stabilizing inflow to make the whole operation more

accurate and responsive. The secondary controller may be regarded as an elaborate final

control element, positioned by the primary controller in the same way a single controller

would ordinarily position the control valve. For example, the secondary controller is a

11



flow controller, then the primary controller will not be dictating the prescribe flow (set

point).

Cascade control can improve control system performance over single-loop control

whenever either:

> Disturbances affect a measurable intermediate or secondary process output

that directly affects the primary process output that we wish to control; or

> The gain of the secondary process, including the actuator, is nonlinear.

In the first case, a cascade control system can limit the effect of the disturbances entering

the secondary variable on the primary output. In the second case, a cascade control

system can limitthe effectof actuator or secondary process gain variations on the control

system performance. Such gain variations usually arise from changes in operating point

due to set point changes or sustained disturbances.

Disftubances

d2 dx

\\ *.Setpotnt s-y
PID^ -j^> - PID2 —» y —j—* Pi J SK P\

1

• . —

*o J\

I.._-...
Process

lonerloop / 0uter lo°P v

Figure 6: Example ofSimple Cascade Control Loop
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CurvjAiPID

Figure 7: Example Showing theControl Performance of CascadeControl Over Single Control andSimple
P1D Control

23.5 Neural Network Controller (NARMA-L2)

The history of neural networks begins with the earliest model of the biological neuron

given by McCulloch and Pitts in 1943. This model describes a neuron as a linear

threshold computing unit with multiple inputs and a single output of either 0, if the nerve

cell remains inactive, or 1, if the cell fires. A neuron fires if the sum ofthe inputs exceeds

a specified threshold. In functional form, this gives f(x) = 1 for x greater than some

threshold, and f(x) = 0 otherwise (this is commonly known as the indicator function) [50].

In theory, such a "system" of neurons presents a possible model for biological neural

networks such as the human nervous system. The McCulloch and Pitts model was utilized

in the development of the first artificial neural network by Rosenblatt in 1959. This

network was based on a unit called the perceptron, which produces an output scaled as 1

or -1 depending upon the weighted, linear combination of inputs. Variations on the

perceptron-based artificial neural network were further explored during the 1960s by

Rosenblatt and by Widrow and Hoff, among others.

According to Howard Demuth and Mark Beale in Neural Network Toolbox For Use in

MATLAB, Neural networks are composed of simple elements operating in parallel.

These elements are inspired by biological nervous systems. As in nature, the network

function is determined largely by the connections between elements. Neural network can

13



be trained to perform a particular function by adjusting the values of the connections

(weights) between elements. Commonly neural networks are adjusted, or trained, so that

a particular input leads to a specific target output. Such a situation is shown below. There,

the network is adjusted, based on a comparison of the output and the target, until the

network output matches the target. Typically many such input/target pairs are used, in

this supervised learning, to train a network.

input

Neural Network
including connections
(called weights)
between neurons

Adjust
weights

Figure 8: How Neural NetworkFunctions

Batch training of a network proceeds by making weight and bias changes based on an

entire set (batch)of input vectors. Incremental trainingchanges the weights and biases of

a network as needed after presentation of each individual input vector. Incremental

training is sometimes referred to as "on line" or "adaptive" training. Neural networks

have beentrained to perform complex functions in various fields ofapplication including

pattern recognition, identification, classification, speech, vision and control systems.

Today neural networks canbe trained to solve problems that aredifficult forconventional

computers or human beings. Throughout the toolbox emphasis is placed on neural

network paradigms that build up to or are themselves used in engineering, financial and

other practical applications

The supervised training methodsare commonly used, but other networks can be obtained

from unsupervised training techniques or from direct design methods. Unsupervised

networks can be used, for instance, to identify groups of data. Certain kinds of linear

14



networksand Hopfield networks are designeddirectly. In summary, there are a varietyof

kindsofdesignand learning techniques that enrich the choicesthat a user can make.

15



CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 Simulation Procedure in MATLAB Programme

First stage of the study is to determine the dynamic equation for the sump. The equation

is then modeled in the MATLAB Simulink as a subsystem. The subsystem is next put

under masked. The input for the masked subsystem is the total flow rate into the sump.

The percentage solids in, volume, and pumping rate out of the sump, is modeled as

constant value inside the masked subsystem.

The out flow for the masked subsystem is the percentage of solids in the sump, the

percentage of level in the sump, the holdup for solid and water and the slurry volume

inside the sump. The main parameterthat is monitored along the study is the percentage

level of the sump because as mentioned before, the main objective is to avoid any

overflow condition to the sump.

Then next step is the simulation of the sump system. The simulation was done by

implementing the control method to the sump system. Themethods are as follow:

> Feedback Control

> Feedforward Control

> Cascade Control

> Smith Predictor

> Neural Network Control

16



Generally, for all set of controller listed above, the work procedure is basically identical

to each other. The total flow rate of the sump was set at 100 tonnes/hr. The volume of the

sump was fixed at 50 m3 and the percentage solid in was 40%. The step size for the

manipulated variable was at 5 total flows and the step time was at 5 hour. The output of

the process, PV was obtained. The step size is then increased to 7.5 and the step time was

maintained. Again, the process output, PV obtained and the difference is compared. After

that the step size is further increased to 10 with the same step time as previous sample.

The procedure in manual mode was repeated for the percentage input of the solids in was

at 60% and 80% respectively. The value of the proportional gain and the integral was

input into the PID controller and the controller was put in automatic mode. After that a

step change in the total flow 1 set point at step time of 5 hr and the step size at 15 total

flows. The procedure was repeated for the percentage of solids in at 60% and 80%

respectively. Each of the system is stipulatedwith load changes to observe the controller

action due to the changes. Therefore the performance of the controller can be monitored.

3.2 Controller Tuning

The tuning for each controller done based on the literature tuning value obtained. The

tuning that was selected for the sump dynamic model, were the IMC method open loop

tuning for the unstable process. The process has unstable integrator dynamics for the

sump level. The IMC method calculates the tuning based on the characteristics plus the

controller time constants (Tc):

kp =-? r

Proportional Gain:

Integral Gain: A value determined to eliminate offset after disturbances

Derivative Gain: 0

17
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The integral gain in set to a small value, as integral will tend to further destabilize these

processes

3.3 Neural Network Procedure

The simulation procedure for Neural Network in MATLAB is somewhat quite different

from other conventional controller. Firstly, the type of network controller is chosen. In

this case study, the NARMA-L2 Controller is chosen and several simulations to the sump

system were done in order to observe the behavior of the network toward the sump

system.

The plant identification of NARMA-L2 controller will require the userto determine some

parameters. Those parameters can be viewed fromthe figure below.

18



Ptant Identification - NARMA-L2

File Window Help

Plant Identification - NARMA-L2

Network Architecture
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Generate or import data before training the neural network plant

Figure 9: PlantIdentification ofNARMA-L2 Controller

The next step is to generate the data that have been specified. The sump dynamic

modeling which has been modeled in the SIMULINK is included in the Plant

Identification as the SIMULINK Plant model. Once the data generation is done, the

system is taken to the next step of training the data. Two training functions were used

during the simulation of the sump system. The training fiinctions used were the trainlm

and traingdx. The training of the system is proceeded until the performance of the neural

network approaching its goal, which is 0. The values in the Network Architecture of the

Plant Identification are manipulated in order to get the performance gradient closer to 0.

Then the simulation in the simulation workspace is done to observe the response of the

controller towards the sump system.
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3.4 Tool for Study

Since the study is about the simulation of the sump process control, the simulation tool

used in the study is the MATLAB Programme which applies the SIMULINK application.
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CHAPTER 4

SIMULATION RESULTS AND DISCUSSION

4.1 Simulation Results

Tuning values obtained from literature review were used as the basis for tuning the

controller type that will be discussed in this paper, which are the Feedback Controller,

Smith Predictor Method Controller, Feedforward Control and Cascade Control. The result

obtained is compared to eachotherwiththe valueof the solidsin varied (40 %, 60 %, and

80 %).

4.1.1 Feedback Controller

ja

m o-—*H—*€> «s- * tfSoili B Stnp

tiraufjomaiiasiaf

*H

Figure 10: FeedbackController Diagramofa Sump Tank

The sump control loop in the diagram utilizes the application of the Feedback Control

Strategies. The process was put under simulation for three different values of Flow of
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solids in to the sump. The initial value is 40 %. The value is then further increased to 60

% and finally 80 % of solids flow in. The results of the simulation can be viewed in the

Appendices. From the results available, the best tuning for each set of data (40 %, 60 %,

and 80 %) is determined and compared to each other.

For 40 % of flow of solids in, the best tuned graph obtained was the graph of Tuning 4,

where the value of the PI controller is P - 0.9950, and I = 0.1667. The summary results

for Tuning 4 are as follows:

Solid 40 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

1.338

Flow of Solid

in

40 Sump Water
Hold Up

1.989

Flow of

Water in

60 Solid Density 2.65

Vol. Flowrate

Solid

15.0943 Water

Density

1

Vol. Flowrate

Water

60 Load Time 10

Residence

Time

0.66582 Load Size 10

Table4:ResultData ofSimulationfor 40 %Solid in Flow (Feedback)

For 60 % of flow of solids in, graph of Tuning 4 is the best. The data of the result are as

follows:

Solid 60 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

2.394

Flow of Solid

in

60 Sump Water
Hold Up

1.597

Flow of

Water in

40 Solid Density 2.65

Vol. Flowrate

Solid

22.6415 Water

Density

1

Vol. Flowrate

Water

40 Load Time 10

Residence

Time

0.79819 Load Size 10

Table5: Result Data ofSimulationfor 60 %Solidin Flow (Feedback)
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For 80% of flow of solids in to the sump, the graph ofTuning 3 givesthe best simulation

results compared to theother tuning values. Thedataresults areas follows:

Solid 80 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

3.984

Flow of Solid

in

80 Sump Water
Hold Up

0.997

Flow of

Water in

20 Solid Density 2.65

Vol. Flowrate

Solid

30.1887 Water

Density

1

Vol.

FlowrateWat

er

20 Load Time 10

Residence

Time

0.9962 Load Size 10

Tabled Result Data of Simulationfor 80 %Solid inFlow (Feedback)

4.1.2 Smith Predictor Controller

Figure 11: Smith Predictor Controller Diagram ofa Sump Tank

Figure 11 above illustrate the sump system where the Smith Predictor Controller Method

is applied. The manipulated variable is still the solids flow in to the sump. The step size is
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5 % of solid flow in with step time of 5 hours. The value for the PI controller was also

obtained from the literature. The initial value is 40 %. The value is then fiirther increased

to 60 % and finally 80 % of solids flow in.

For 40 % of flow of solids in, the best performing graph is the graph ofTuning 5.

Solid 40 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

1.333

Flow of Solid

in

40 Sump Water
Hold Up

1.996

Flow of

Water in

60 Solid Density 2.65

Vol. Flowrate

Solid

15.0943 Water

Density

1

Vol. Flowrate

Water

60 Load Time 10

Residence

Time

0.66582 Load Size 10

Tabte7: Result Data ofSimulationfor 40 %Solid inFlow (Smith Predictor)

For 60 % of flow of solids in to the sump tank, the best tuning is the graph ofTuning 4.

Solid 60 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

2.392

Flow of Solid

in

60 Sump Water
Hold Up

1.601

Flow of

Water in

40 Solid Density 2.65

Vol. Flowrate

Solid

22.6415 Water

Density

1

Vol. Flowrate

Water

40 Load Time 10

Residence

Time

0.7982 Load Size 10

TableS:Result Data ofSimulationfor 60 %Solid in Flow (SmithPredictor)
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For 80 % of flow of solids in to the sump, the best tuning obtained was from the graph of

Tuning 3.

Solid 80 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

3.985

Flow of Solid

in

80 Sump Water
Hold Up

0.997

Flow of

Water in

20 Solid Density 2.65

Vol. Flowrate

Solid

30.1886 Water

Density

1

Vol. Flowrate

Water

20 Load Time 10

Residence

Time

0.9962 Load Size 10

Table9: Result Data ofSimulationfor 80 %Solidin Flow (Smith Predictor)

4.1.3 Feedforward Controller

m

•

Holdup t>1 Solids In Sump
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l— -too
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Figure 12: Feedforward Controller Block Diagram ofa Sump Tank

Figure 12 above is the sample block diagram of a sump system using the feedforward

control type, in the simulation of the sump process using Feedforward controller system,

same procedure and step applies like the previous controls of feedback and the Smith
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predictor. The percentage of solids in is varied from 40%, increased next to 60% and

finally to the value of 80% solids in. Tuning values obtained from literature was again

applied to this control strategy.

When the systems is under operation value of 40% of solids in, the tuning value which is

the most suitable is when the setting is at P = 0.99S0,1 = 0.1667, and D = 0. The result

data of the simulation is shown below.

Solid 40 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

8.022

Flow ol Solid

in

40 Sump Water
Hold Up

12.03

Flow of

Water in

60 Solid Density 2.65

Vol. Flowrate

Solid

15.0943 Water

Density

1

Vol. Flowrate

Water

60 Load Time 10

Residence

Time

0.66582 Load Size 10

Table 10; Result Data ofSimulationfor 40 %Solid inFlow (Feedforward Control)

For 60% ofsolids in to the sump system, the controller performed the best at the PID

values of P - 1.000,1 = 0.1667, and O = 0.

Solid 60 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

8.022

Flow of Solid

in

60 Sump Water
Hold Up

12.03

Flow of

Water in

40 Solid Density 2.65

Vol. Flowrate

Solid

22.6415 Water

Density

1

Vol. Flowrate

Water

40 Load Time 10

Residence

Time

0.7982 Load Size 10

Table IV. Result Data ofSimulationfor 60 %SolidinFlow (Feedforward Control)

26



Finally, for this control strategy, whenthe valueof solids in to the sump is 80%, the best

performing value for the controller is whenP = 1.2520,1=0.3571, andD= 0.

Solid 80 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

8.005

Flow of Solid

in

80 Sump Water
Hold Up

12.01

Flow of

Water in

20 Solid Density 2.65

Vol. Flowrate

Solid

30.1887 Water

Density
1

Vol. Flowrate

Water

20 Load Time 10

Residence

Time

0.9962 Load Size 10

Table 12:Result Dataof Simulationfor 80 %SolidinFlow (Feeajorward Control)

4.1.4 Cascade Controller

•

Holdup rjESalidS in Sump

s'«p' GdliM r*B
ttflf Sgll&taSuttp

#£) —•[pic] •£)—P «*
PIO Controvert

-6
*•

Iflldup afWitai lit Sump

EH =
s>"^ em(gt

Figure 13: CascadedController BlockDiagramofa Sump Tank
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Figure 11 above illustrates the blockdiagram of the sump system with the application of

cascade control strategy. The system was again simulated with different value of

percentage of solids in to the sump (40%, 60%, and 80%). The tuning values from the

literature were used for the simulation matter.

For 40% of solids in, the tuning value ofP = 1.0077,1 = 0.1111 and D = 0 performed the

best. The settlingtime is faster and the overshootthe systemundergoes after disturbance

introduced is the smallest. Result data are as listed in table below.

Solid 40 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

9.32

Flow of Solid

in

40 Sump Water
Hold Up

13.03

Flow of

Water in

60 Solid Density 2,65

Vol. Flowrate

Solid

15.0943 Water

Density

1

Vol. Flowrate

Water

60 Load Time 10

Residence

Time

0.66582 Load Size 10

Table 13: Result Data ofSimulationfor 40 %Solidin Flow (Cascade Control)

The following tables (Table 14(60%) and Table 15(80%)) show the resultdata for both

60% and 80% of solids in to the system. The best controller tuning value for both set of

simulations are P = 0.8062 ,1 = 0.1724, and D = 0, for 60% of solids and; P = 1.2520,1 =

0.3846 and D = 0, for 80% of solids in.
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Solid 60 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

9.55

Flow of Solid

in

60 Sump Water
Hold Up

13.98

Flow of

Water in

40 Solid Density 2.65

Vol. Flowrate

Solid

22.6415 Water

Density
1

Vol. Flowrate

Water

40 Load Time 10

Residence

Time

0.7982 Load Size 10

Table 14: Result Data ofSimulationfor 60 %Solidin Flow (Cascade Control)

Solid 80 Step Time 5

Flow In 100 Step Size 5

Sump
Volume

50 Sump Solid
Hold Up

9.26

Flow of Solid

in

80 Sump Water
Hold Up

14.01

Flow of

Water in

20 Setid Density 2.65

Vol. Flowrate

Solid

30.1887 Water

Density

1

Vol. Flowrate

Water

20 Load Time 10

Residence

Time

0.9962 Load Size 10

Table 15: Result Data ofSimulationfor 80 %SolidinFlow (Cascade Control)
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4.1.5 Neural Network (NARMA-L2 Controller Type)

H
Random Reference

NfiRMA-U Controller

BUMP

TANK

0-i

tm
XC2VJ
Graph

Figure 14: NARMA-L2 ControllerBlock Diagram ofa Sump Tank

Figure 11 illustrates one of the Neural Network controller types, which is the NARMA-

L2 controller, adapted to the sump system. For this neurocontroller, there are no required

PID values. The solids in was varied from 40%, 60%, and finally to 80%. From what can

be observed from the results' graphs, the system responded well towards changes in the

system but sustained a large number of errors. The magnitudes of the errors are the same

for every percentage of solids in to the sump. The results of the simulation using

NARMA-L2 controller are as follows, illustrates by Figure 15, 16 and 17.
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Level indication

Sfotass Value(SumpLevel)

Figure 17: Resultfor §0%SolidsIn

4.2 Findings Based on the Simulation Done

4.2.1 Feedback and Smith Predictor

The simulation process was done by fixing the sump volume to 50 m3. The pumping rate
is specifiedat 10% rate with full openingofthe controlvalve.The processwas simulated

with a set point change with the step size of 5 % solid flow that has the step size of 5

hours. Throughout the simulation for both Feedback and Smith Predictor Controller

Method, the step size and step time is maintained at the same value.

Generally, for all sets of data regardless the controller type, the residence time of solid

increased as the amount of solid flow in increased (40%-80%). This has also induced the

increment of the total solid and water hold up in the sump tank.

When a set point change was stipulated at t = 5, the system with Smith Predictor

Controller Method react vigorously compared to the Feedback Controller. Even though

the valueshoots up to almost 90 % of the tank level, the process variable still maintained

at acceptable region and does not overflow the sumptank.
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However, when a small load change was introduced at t = 10 hours, a different behavior

can be observed. The process values tend to increase when load change was introduced.

The Feedback Controllerproduces a higher 'overshoot' compared to the Smith Predictor

Controller Method. This situation contradicts the earlier situation when mere is a set point

change introduced. For the Smith Predictor Controller Method, the load changes have

small impact to the process value, but the set pointhave bigger impact to the controller,

and vice versa to for the Feedback Controller.

Generally, the tuning result obtained from the literature gave a good result where it

manages to meet the main requirement, not to overflow the sump and provide a constant

level for the sump.

Solid 40%

Figure 18; FeedbackController Method Figure 19; SmithPredictor ControllerMethod

When the value ofthe solid flow in is at 40 %, the Feedback controller produces a better

response. The settling time ofFeedback Controller at this stage isfaster than the Smith

Predictor Controller Method. The settling time for the Feedback Controller is

approximately 30 hours, whilethe settling timefor the system with SmithPredictor

Controller Method is at 40 hours.
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Solid 60%

Figure 20; Feedback Controller Method Figure 21: Smith Predictor Controller Method

For the 60 % solid flow in to the sump, the Feedback controller produces a better

controlling performance than the Smith Predictor Controller. The controller manage to

get the process value tosettles at t = 22 hour, while the process value for Smith Predictor

Controller only settles at t = 25 hour.

Solid 80%

Figure 22.1 FeedbackControllerMethod Figure 23; SmithPredictorControllerMethod

However, different scenario is exhibit for 80 % of solid flowing in to the sump tank*

where the Feedback Controller settles the process values at t = 20. This is somehow

identical to the settling time for the Smith Predictor Controller Method. In order to

determine the bestcontroller performance, the index of Integral of the absolute value of

the error (IAE) is taken into consideration. The IAE at the minimum value is the

favorable in order to determine the best controller performance. Obviously the Smith
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Predictor Controller Method has the smaller amount of IAE for the 80 % of solid flow.

Therefore, it performs better at this stage.

4.2.2 Feedforward Controller

For the feedforward control, same procedures applies, however, additional disturbance

was introduce to monitor the performance of this typeof controller towards sumpsystem.

Forthe system with 40% solids in, results shows that it performs the bestwhen the value

of the controller are at P - 0.9950 and I = 0.1667.

Figure 24: Tuning ResultforFeedforward Controller with Value ofP = 0.9950 and 1= 0.1667 at40%
Solids In

There are two disturbances introduced at this stage where the first disturbance is at t = 30

hours and the second disturbance was simulated at t = 50 hours. The controller responded

quickly and the overshoot is not too high, therefore leads to a better stability in the

process. This is favorable due to the unstability of the sump itself when no controller

applied to it.

For 60% of solids in to the sump, Figure 25 illustrates the result, where there is no big

different comparing to the result obtained forthe value of 40% of solids into the system.

The controller responded well at every time where the disturbances were introduced. The
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settling time is quite fast. However, the settling time isnot as fast as the system where the

percentage ofsolids inisat40%. The error also increase atthis stage compare tothe first

result obtained for the feedforward controller.

Figure 25: Tuning ResultforFeedforward Controller with Value ofP - /.000 andI = ft1667 at60%
Solids In

Figure 26: Tuning Resultfor Feedforward Controller with Value ofP= 1.2520 andI = 0.3571 at 80%
Solids In

Referring to the simulation result for 80% of solids in to the sump (Figure 26), the

controller seems to perform the best at this amount of solids in. results shows that when
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disturbance were introduced at t = 30h, the process settles at t = 40h. This is the fastest

rate compare to other two results earlier for this feedforward controller. The consecutive

disturbance also results in the process value to settles faster compare to othertwoearlier

results. For the disturbance at t = 50h, the process starts to stables at approximately t -

61h. The result for the feedforward control shows that the controller performs better at

the percentage of solids in is at 80%.

4.2.3 Cascade Controller

The tuning result ofcascade controller at same amount of solids in is illustrate by figure

25, where the system responded better with the application of this cascade control. Inthis

cascade environment, three disturbances were introduced instead of two in the

feedforward control strategy. The time is at t = 5, 30, and 50. At the start of the

experiment, a large number of overshoots occurred when the system starts to operate

under control. However, the controller manages to overcome the large deficit fast

manner. At t = 30 hours however, the system does not respond to the disturbance and

maintain its stability, and at t = 60 hours, the disturbance introduced results in a small

deviation ofthe process and the controller manage to settles theprocess value at fast rate.

37



Figure 27: Tuning Resultfor Cascade Controller with Value ofP = 1.0077 and I - ft1111 at40% Solids

In

The result for the other values of solids in are illustrate as follow.

Figure 28: Tuning Resultfor Cascade Controller with Value ofP = ft8062 andI -0.1724 at60% Solids

In

For this cascade control at the percentage valueof 60%of solids, the controller responded

well at the disturbances introduces, however, the controller fails to keep the level below

100 and it tends to overflow the system. Even though the settling time is fast, the
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controller is considered to fails its objective to avoid overflow. Therefore the controller is

not suitable for this type of situation.

Figure 29: Tuning Resultfor Cascade Controllerwith Value ofP = 12520 and I = 0.3846 at 80%Solids

in

At 80% of solids in, the controller seems to be at its best performing state, where it

manages to keep the level intact. The overshoot after every disturbance is small and the

settling time is the fastest in this cascade control compared to the other two results

obtained earlier. Therefore, the controller is said to perform the best at 80% of solids flow

in to the sump.

4.2.4 Neural Network (NARMA -L2 Controller)

The NARMA-L2 controller is one of the neurocontroller types available in the neural

network toolbox in the MATLAB programming. It is also refer to as feedback

linearization control. It is referred to as feedback linearization when the plant model has a

particular form (companion form). It is referred to as NARMA-L2 control when the plant

model can be approximated by the same form. This controller manipulates the concept of

transforming nonlinear system dynamics into linear dynamics by canceling the

nonlinearities.
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From the results obtained from the simulation in the MATLAB shows that there are a big

error still occurs even though the performance goal during the network training

approached to zero. Referring to Figure 15, 16, and 17 (at the result of the simulation),

the process value responded well towards the change in system set value. The level is

maintained at specified value but the error is quite big. The error is constant for every

percentage of solids in. The error remainsat 16throughout the simulation.

This error can be eliminated by further training of the neural network and manipulating

the value of the network architect panel in the plant identification menu. The reason being

of the result is that there is no specific method in determining the value. Trial and error is

the recommended method. However experience with this type of controller is the best

advantage in obtaining the best possible results.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

Several conclusions that reflect the objective of the studies can be made towards the

completion of the simulation of the sump system using variouscontrollerstrategies.

5.1.1 Feedback Controller

For this conventional feedback controller, the system performs the best when the system

handles a lower number ofsolids in to the system.

5X2 Smith Predictor Controller

The Smith predictor controller which is an enhancement to the feedback controller,

perform vice versa to the feedback, where it is better when handling the higher

percentage of solids in.

5.1.3 Feedforward and Cascade Controller

Both type of controller perform the best with handling high amount of solids in to the

sump. Both controller have a better efficiencyin term oftime and overshoot. Comparing

both, cascade control manages to minimize error the best and have a faster rate of settling

time.

5.1.4 Neural Network (NARMA-L2 Controller)

When the sump system was put under the neurocontroller of NARMA-L2, the result is

quite poor due to lack of training of the data and inaccurate trail and error method. The

controller responded well towards any change in the system, however the error remain the

same for every disturbances introduced.
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APPENDICES

APPENDIX A: Feedback Controller Tuning Results

Tuning result for condition of 40 % of solid flow in:

Tuning HP-1.0077.1 = 0.1111)

Tuning 2 (P= 1.0050,1-0.1250)
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Tuning 3 fP = 1.0075,1 = 0.1333)

Tuning 4 (P =• 0.9950,1 = 0.1667)

Tuning 5 (P - 1.0002,1 = 0.1429)
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Tuning result for condition of60 % of solid flow in:

Tuning 1 (P - 1.0000,1 = 0.1667)

Tuning 2 (P - 0.9949.1 = 0.1852)

Tuning 3 (P = 0.8062,1 = 0.1724)
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Tuning 4 (P = 0.8021,1 = 0.1887)

Tuning result for condition of 80 % of solid flow in:

Tuning 1 (P = 1.0000,1 = 0.2381)

Tuning 2 (P= 1.2533,1 = 0.3571)
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Tuning 3 (P = 1.2520,1 - 0.3846)

APPENDIX B: Smith Predictor Controller Tuning Results

Tuning result for condition of 40 % of solid flow in:

Tuning 1 (P = 1.0077.1 = 0.1111)

Tuning 2 (P = 1.0050,1= 0.1250)
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Tuning 3 (P = 1.0075.1 = 0.1333)

Tuning 4 (P = 0.9950,1 = 0.1667)

Tuning 5 (P = 1.0002,1 = 0.1429)
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Tuning result for condition of 60 % of solid flow in:

Tuning HP= 1.0000.1 = 0.1667)

Tuning 2 (P = 0.9949,1 = 0.1852)

Tuning 3 (P - 0.8062,1 = 0.1724)
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Tuning result for condition of 80 % of solid flow in:

Tuning 1 (P - 1.0000,1 - 0.2381)

Tuning 2 (P= 1.2533.1-0.3571)

Tuning 3 (P = 1.2520,1 - 0.3846)
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