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ABSTRACT

Today the ubiquitous distribution of high technology scanning and printing equipment enables the

"home" user to make counterfeits of high value documents like checks, tickets, licenses,

identification cards and other secure documents. High value documents have been and will continue

to be forged as long as the value realized from the counterfeiting is higher than the cost of

duplicating the original. There are no perfect counterfeits, and there are no p erfect d esigns fully

immune to counterfeiting. In the past, the hands of craftsman and a perfect eye were required to

make a high quality counterfeit. Today, highly sophisticated, state-of-the-art reprographic systems

do not require skilled professionals to operate them. They are widely available to the general public.

These devices are generally simple to use and create an "opportunity" for the "home counterfeiter".

It is becoming i ncreasingly difficult to spot alterations or counterfeits using only human sensory

evaluation. There is an ever-increasing demand for new technologies and methods of counterfeit

detection and forensic analysis to safeguard the integrity of high value documents. This is where

process of authentication comes in. The aim of the project is to produce a reliable system that offers

an easy and effective authentication technique of a currency. The objectives of Currency

Authentication are to design a system that will be able to evaluate the integrity of currency contents

relative to the original and of being able to detect, in an automatic way, malevolent currency

modifications. For these purposes system software must be developed based on current available

techniques and mechanisms.
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CHAPTER 1

INTRODUCTION

1.1 Background Study

1.1.1 Image recognition systems

Automated image recognition is an interesting computer vision problem with many

commercial and law enforcement applications. Mug shot matching, user verification and

user access control, crowd surveillance, enhanced human computer interaction and of

course in our case currency authentication all become possible if an effective image

recognition system can be implemented. While research into this areadates back a few

decades, it is only very recently that acceptable results havebeen obtained. However,

image recognition is still an area of active research since a completely successful

approach or model has not been proposed to solve the problem. The inadequacy of

automated image recognition systems is especially apparent when compared to our own

innate image recognition ability. We perform recognition, an extremely complex visual

task, almost instantaneously and our own recognition ability is far more robust than any

computer's can hope to be. We can recognize a familiar individual under very adverse

lighting conditions, from varying angles or view points. Scaling differences, different

backgrounds do not affect ourability to recognize. Furthermore, we are able to recognize

images or the objects that can number in several thousand which we saw during our

lifetime,



1.1.2 The difficulty of computer vision

Unfortunately it is not possible now, nor will it be possible in the foreseeable future to

make a computing machine that actually 'understands' what is sees. The level of vision

and understanding which is instinctive to us is still far out of the reach of our silicon

creations.
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Figure 1.1 image of Polypedates eques - frog.

The ability to understand that the above image is notjust a collection of pixels but is of a

camouflaged frog on a log and to be able to identify exactlywhere the frog ends and log

begins on the image is truly incredible. The fact that halfof a primate's cerebral cortex is

dedicated to visual processing underlies the difficulty of this task (Zeki, 1993), and it

would be naive of not impossible to think that we can enable computers to perform

similar tasks.

But technically, why are computer vision problems so hard to solve? After all, while

laudable results have been obtained in other artificial intelligence areas such as natural

language processing, game theory, forecasting, control and even speech processing,

computer vision seems to have lagged behind.



The main difficulty in vision problems is that almost all of them are ill-defined. For

example, while segmenting (dividing) our image of Polypedates eques into areas of

"frog", "log" and "background" is intuitive and an innate ability to us, it does not seem

possible to find a definite problem specification of this task that a computer would

understand.

Another factor is that even well defined computer vision problems may be ill-posed.

Hadamard (1923) defined a problem as well posed if

(1) a solution exists,

(2) the solution is unique,

(3) the solution depends continuouslyon the initial data (stability property).

Many computer vision problems are ill-posedbecause information is lost in the

transformation from the 3D world to a 2D image. Therefore, we cannot uniquely

reconstruct the 3D representation from the 2D image and multiple solutions are often

'correct',

The complexity of computer vision problems is exacerbated by the fact that we are

dealing with huge chunks of data. A typical gray-scale image has 640x480 pixels, each

with 8-bit (256) intensity values (gray-levels). Therefore, the size of the whole image is

640x480x8 bits = 2,457,600 bits. Any algorithm with high complexity would be

extremely slow in computer vision and we must therefore make an effort to solve these

problems using very simple processing techniques.

However, even with all these constraints it is possible to get useful results in computer

vision by reducing a problem's generality. The computer vision application's problem

domain can be restricted to a well-defined structured environment and assumptions could

be made about lighting, types of object, etc. Therefore, instead of trying to create a

system that is suitable for all vision problems the computer vision and artificial

intelligence communities have concentrated on obtaining useful results to real-world,



limited applications in vision. Automated image recognition has thus become the holy

grail of computer vision artificial intelligence. It is probably the most challenging and

ambitious of the computer vision projects that are being studied and is not just a

fascinating theoretical problem, but there is a real-world need for such a system.

1.2 Currency Recognition/Authentication

The recent proliferation of digital multimedia content has raised concerns about

authentication mechanisms for multimedia data. For example, consider digital

photography, which is fast replacing conventional analog techniques. In the analog world,

an image had generally been accepted as a "proofof occurrence" of the depicted event.

The proliferation of digital images and the relative ease, by which they can be

manipulated, has changed this situation dramatically. Given an image, in digital or analog

form, one can no longer be assured of its authenticity. This has led to the need for image

authentication techniques.

Currency recognition is a pattern recognition task performed specifically on currencies. It

can be described as classifying a currency either "authentic" or "unauthentic", after

comparing it with stored known images. Computational models of currency recognition

must address several difficult problems. This difficulty arises from the fact that

currencies must be represented in a way that best utilizes the available image information

to distinguish a particular currency from all other. Currencies pose a particularly difficult

problem in this respect because all of them are similar to one another in that they contain

the same set of features in roughly the same manner.



1.2.1 Existing Application for Currency Authentication

• microDAST CURRENCY DETECTOR

San Diego Magnetics' Document Authentication Security Technology ( DAST™)

sensors use proprietary technology to provide very sensitive and accurate reading

of magnetic security features in currency and documents.

1.3 Problem Statement

1.3.1 Problem Identification

Designing a system for automatic image contentrecognition is a non-trivial task that has

been studied for a variety of applications. Computer recognition of specific objects in

digital images has been put to use in manufacturing industries, intelligence and

surveillance, and image database cataloging to name a few. But perhaps an area involving

currency authentication is most important. Digital image application has become

important in daily life with the arrival of the digital era. With an ever advancing

technology the proliferation of a currency, is also becoming an easy task. A currency can

be forged without leaving any traces, using some image processing software.

1.3.2 Significance of the Project

A counterfeit is an imitation that is made with the intent to deceptively represent its

content or origins. The word counterfeit most frequentlydescribes forged money or

documents. Counterfeitingmoney is probably as old as money itself. However, the

introduction of paper money has made it an easier thing to do.

Traditionally, anti-counterfeiting measures involved including fine detail with raised

intaglio printing on bills which would allow non-experts to easily spot forgeries.
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In the late twentieth century advances in computer and photocopy technology made it

possible for people without sophisticated training to easilycopy currency. In response,

national engraving bureaus began to include new more sophisticated anti-counterfeiting

systems such as holograms, multi-colored bills, embedded devices such as strips, micro

printing and inks whose colors changed depending on the angle of the light, and the use

of design features such as the "EURion constellation" which disables modem

photocopiers, Software programs such as Adobe Photoshop have been modified bytheir

manufacturers to obstruct manipulationof scanned images of banknotes.

But still the ubiquitous distribution of high technology scanning and printing equipment

enables the "home" user to make counterfeits. These devices are generally simple to use

and create an "opportunity" for the "home counterfeiter". There is an ever-increasing

demand for new technologies and methods of counterfeit detection and forensic analysis

to safeguard the integrity of high value documents in this case a currency.

This currency authentication project is conducted as an initiative in helping government

to fight the counterfeiters. The project is focused on providing a currency authentication

system that will benefit government as well as other private sectors.

1.3 Objectives and Scope of Study

1.3.1 Objectives

A human eye cannot directly detect the tampered regions of a forged currency. Because

of that we need to develop an automated, reliable and computationally efficient

authentication system. A system that can provide means of ensuring the originality of a

currency by detecting anysignificant malicious manipulations.

A software using MATLAB must be developed to carry out tasks mentioned.

11



There are some subordinate objectives to successfully implement the tasks and achieve

the focal objectives:

I. to study the image recognition basics

II. to research different techniques applied to image recognition

III. evaluate the techniques based on their adaptability, stability and reliability

IV. to develop the currency authentication algorithm

1.3.2 Scope of study

The following problem scope for this project was arrived at after reviewing the literature

on image recognition, and determiningpossible real-world situations where such systems

would be of use. The following system requirements were identified:

• A system to recognize a given currency image.

• An implemented system must display a high degree of lighting invariance.

• A system must posses near real-time performance.

12



CHAPTER 2

LITERATURE REVIEW/THEORY

2.1 Basic Concepts

2.1.1 Overview

One of the major problems in the design of modem information systems is automatic

pattern recognition.

Recognition is regarded as a basic attribute of human beings, as well as other living

organisms. A pattern is the description of an object. According to the nature of the

patterns to be recognized, recognition acts can be divided into two major types:

• Recognition of concrete items. This maybe referred to as sensory recognition,

which includes visual and aural pattern recognition. This recognition process

involves the identification and classification of spatial and temporal patterns.

Examples of spatial patterns are characters, fingerprints, physical objects, and

images. Temporal patterns include speech waveforms, time series,

electrocardiograms and target signatures.

» Recognition of abstract items. On the other hand, an old argument, or a solution to

a problem can be recognized. This process involves the recognition of abstract

items and can be termed conceptual recognition.

13



2.1.2 Pattern Classes and Patterns

Pattern recognition can be defined as the categorization of input data into identifiable

classes via the extraction of significant features or attributes of the data from a

background of irrelevant detail.

A pattern class is a category determined by some given common attributes or features.

The features of a pattern class are the characterizing attributes common to all patterns

belonging to that class. Such features are often referred to as intraset features. The

features which represent the differences between pattern classes may be referred to as the

interset features.

A pattern is the description of any member of a category representing a pattern class. For

convenience, patterns are usually represented by a vector such as:

X,

X-

x =

X,

where each element x j, represents a feature of that pattern. It is often useful to think of a

pattern vector as a point in an n-dimensional Euclidean space.

2.1.3 Fundamental Problems in Pattern Recognition System Design

The design of an automatic pattern recognition system generally involves several major

problem areas:

14



First of all, we have to deal with the representation of input data which can be

measured from the objects to be recognized. This is the sensing problem. Each

measured quantity describes a characteristic of the pattern or object. In other

words, a pattern vector that describes the input data has to be formed. The pattern

vectors contain all the measured information available about the patterns. The set

of patterns belonging to the same class corresponds to an ensemble of points

scattered within some region of the measurement space. A simple example of this

is shown in Figure 2.1 for two pattern classes denoted by w 1 and w 2.

.v: - weight
4,

J

H'l

• '— * .V, -height

Figure 2.1.Two disjointpattern classes. Each pattern is characterized by two
measurements: height and weight. The pattern vector therefore is in the form of

•V ={*„*; V

« The second problem in pattern recognition concerns the extraction of

characteristic features or attributes from the received input data and the reduction

of the dimensionality of pattern vectors. This is often referred to as the pre

processing and the feature extraction problem. The elements of intraset features

which are common to all pattern classes under consideration carry no

discriminatory information and can be ignored. If a complete set of discriminatory

features for each pattern class can be determined from the measured data, the

recognition and classification of patterns will present little difficulty. Automatic

recognition may be reduced to a simple matching process or a table look-up

scheme. However, in most pattern recognition problems which arise in practice,

the determination of a complete set of discriminatory features is extremely

difficult, if not impossible.
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2.1.4 Outline of a Typical Pattern Recognition System

In Figure 2.2, functional block diagram of an adaptive pattern recognition system is

shown. Although the distinction between optimum decision and pre-processing or feature

extraction is not essential, the concept of functional breakdown provides a clear picture

for the understanding of the pattern recognition problem.

—j>

Obit? c:

Sensing

Contextuai analysis

Pre-processing
Feature extraction

Measurements Feature vecton

Estimation

Categorization —1>

rn

classe

Figure 2.2. Functional block diagram of an adaptive pattern recognition system.

Correct recognition will depend on the amount of discriminating information contained in

the measurements and the effective utilization of this information. In some applications,

contextual information is indispensable in achieving accurate recognition. For instance, in

the recognition o f cursive handwritten characters and the classification of fingerprints,

contextual information is extremely desirable. When we wish to design a pattern

recognition system which is resistant to distortions, flexible under large pattern

deviations, and capable of self-adjustment, we are confronted with the adaptation

problem.

2.1.2 Currency Recognition

Currency recognition is a pattern recognition task performed specifically on currencies. It

can be described as classifying a currency either "authentic" or "unauthentic", after

comparing it with stored known images. Computational models of currency recognition

16



must address several difficult problems. This difficulty arises from the fact that

currencies must be represented in a way that best utilizes the available image information

to distinguish a particular currency from all other. Currencies pose a particularly difficult

problem in this respect because all of them are similar to one another in that they contain

the same set of features in roughly the same manner.

2.2 Systems Overview

In order to successfully accomplish the project we have to have an efficient method for

image recognition task.

Automated image recognition is a well-studied problem in computer vision. With the

immense material on the web and also in scientific journals, it was hard to stick to one

method of approach in this vast field. Many applications for image recognition are used

today, especially with the current situation in the world. Reliability and adaptability can

be considered to be the primary concern of an image recognition system. Automated

recognition and authentication system will have a great use to fight the counterfeiters.

To this end, many image recognition techniques and methods have been proposed to

solve this problem. Mainly they are such asEigenfaces, Fisher Linear Discriminant,

Neural Networks, and Support VectorMachines. Success has been achieved with each

method to varying degrees and complexities.

Since most of them are heavily applied on biometrics, we will be basing our research on

that.

17



2.2.1 Eigenfaces

The eigenface representation method for face recognition is based on the principal

component analysis (PCA). The main idea is to decompose the face images into a small

set of characteristic feature images called eigenfaces, which may be thought of as the

principal component of the original images.

The algorithm for the facial recognition using eigenfaces is basicallydescribed in figure

2.3. First, the original images of the training set are transformed into a set of eigenfaces

E. Afterwards, the weights are calculated for each image of the training set and stored in

the set W. Upon observing an unknown image X, the weights are calculated for that

particular image and stored in the vector WX- Afterwards, Wx is compared with the

weights of images, of which one knows for certainthat they are faces (the weights of the

training set W). One way to do it would be to regard each weight vector as a point in

space and calculate an average distance D between the weight vectors from Wx and the

weight vector of the unknown image Wx. If this average distance exceeds some threshold

value 0 then the weight vectorof the unknown image WX lies too "far apart" from the

weights of the faces. In this case, the unknown X is considered to not a face. Otherwise

(if X is actually a face), its weight vector Wx is stored for laterclassification. The optimal

threshold value 6 has to be determined empirically.



trainingSet

>«t

W =weiQhts(E. training Set)

X is- a face

Store X ana Wi

unknown tmag®

W* ^ -wd^htiE.Xi

avg(dfetance(W, Wx)

.X.

f

™.X™,.,„.,„.,.,.,..

X 13 not a fsce

Figure 2.3 High-level functioning principle of the eigenface-based facial recognition
algorithm
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2.2.2 Neural Networks

A retinally connected neural network examines small windows of an image, and decides

whether each window contains a feature image. The system arbitrates between multiple

networks to improve performance over a single network. A bootstrap algorithm is used

for training the networks, which adds false detections into the training set as training

progresses. This eliminates the difficult task of manually selecting nonface training

examples, which must be chosen to span the entire space of nonface images.

Ii'.pv: V.T.fz-i j.iy:au:Kt r v' i.lii - Conec? lighting Hktojrraai et|«niizatioa ceptive field;

"repress*>ms Neural tter.von.':

Figure 2.4: The basic algorithm for neural-networks, used in this case for face

detection.

Hidden umi'j

2.2.3 PCA-Based and Fisher Discriminant-Based Image Recognition

One method of identifying images is to measure the similarity between images. This is

accomplished by using measures such as the LI norm, L2 norm, covariance,

Mahalanobis distance, and con-elation. These similarity measures can be calculated on

the images in their original space or on the images projected into a new space.

Fisher discriminants group images of the same class and separates images of different

classes. Images are projected from N-dimensional space (where N is the numberof pixels

20



in the image) to C-1 dimensional space (where C is the number of classes of images). For

example, consider two sets ofpoints in 2-dimensional space that are projected onto a

single line (Figure 2a), Depending on the direction of the line, the points can either be

mixed together (Figure 2b) or separated (Figure 2c). Fisher discriminants find the line

that best separates the points. To identify a test image, the projected test image is

compared to each projected training image, and the test image is identified as the closest

training image.

Figure 2.5 a) Points in a2-dimensional space, b) Points mixed when projected onto a

line, c) Points separated when projected onto a line

2.3 Eigenfaces for Recognition

Many techniques applied to the automated image recognition problem make arbitrary

decisions on which image characteristics are actually important for recognition. For

example, correlation-based techniques assume that all pixels ofan image are equally

important, when this is actually not the case at all. Another difficulty with other
techniques is that they presume some significance ofcertain image characteristics over

others with no grounds for this presumption.

Also there are some limitations on computing power for some algorithms for example,

Neural Networks. Pattern recognition is a powerful technique for harnessing the

information in the data and generalizing about it. Neural Networks learn to recognize the

patterns which exist in the data set. Neural Networks teach themselves the patterns in the

21



data. Major drawback for Neural Networks is that it can take time to train a model from a

very complex data set. Neural techniques are computer intensive and will be slow on low

end PCs or machines without math coprocessors.

We have focused our research toward developing a sort of pattern recognition scheme

that does not depend on excessive geometry and computations. Eigenfaces approach

seemed to be an adequate method to be used in currency authentication system due to its

simplicity, speed and learning capability.

The scheme is based on an information theory approach that decomposes currency image

into a small set of characteristic feature images called eigenfaces, which may be thought

of as the principal components of the initial training set of main image. Recognition is

performed by projecting a new image onto the subspace spanned by the eigenfaces and

then classifying that feature by comparing its position inthe face space with the positions

of known individuals.

2.3.1 How does it work?

According to Dimitri Passarenko the task of image recognition is discriminating input

signals (image data) into several classes (persons). The input signals are highly noisy

(e.g. the noise is caused by differing lighting conditions, pose etc.), yet the input images

are not completely random and in spite of their differences there are patterns which occur

in any input signal. Such patterns, which can be observed in all signals, could be - in the

domain of image recognition - the presence of some objects in any image as well as

relative distances between these objects. These characteristic features are called

eigenfaces in the image recognition domain (or principal components generally). They

can be extracted out of original image databymeans of a mathematical tool called

Principal Component Analysis (PCA).
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By means of PCA onecan transform each original image of the training set into a

corresponding eigenface. An important feature of PCA is that one can reconstruct any

original image from the training set by combining the eigenfaces. Remember that

eigenfaces are nothing less than characteristic features of the faces. Therefore one could

say that the original image can be reconstructed from eigenfaces if one adds up all the

eigenfaces (features) in the right proportion. Each eigenface represents only certain

features of the image, which may or may not be present in the original image. If the

feature is present in the original image to a higher degree, the share of the corresponding

eigenface in the"sum" of the eigenfaces should be greater. If, contrary, the particular

feature is not (or almost not) present in the original image, then the corresponding

eigenface should contribute a smaller (or not at all) part to the sum ofeigenfaces. So, in

order to reconstruct the original image from the eigenfaces, one has to build a kind of

weighted sum of all eigenfaces. That is, the reconstructed original image is equal to a

sum of all eigenfaces, with each eigenface having a certain weight. This weight specifies,

to what degree the specific feature (eigenface) is present in the original image.

If one uses all the eigenfaces extracted from original images, onecan reconstruct the

original images from the eigenfaces exactly. But one can also use only a part of the

eigenfaces. Then the reconstructed image is an approximation of the original image.

However, one can ensure that losses due to omitting someof the eigenfaces can be

minimized. This happens by choosing onlythe most important features (eigenfaces).

2.3.2 Overview over the algorithm

The algorithm for the image recognition using eigenfaces is basically described in figure

2,1. First, the original images of the training set are transformed into a set of eigenfaces

E. Afterwards; the weights arecalculated for each image of the training set and stored in

the set W. Upon observing an unknown image X, the weights are calculated for that

particular image and stored in the vector Wx. Afterwards, Wx is compared with the

weights of images, of which one knows for certain that they are faces (the weights of the

training set W). One way to do it would be to regard each weight vector as a point in
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space and calculate an average distance D between the weight vectors from Wx and the

weight vector of the unknown image Wx- If this average distance exceeds some threshold

value 0 then the weight vectorof the unknown image Wx lies too "far apart" from the

weights ofthe faces. In this case, the unknown X is considered to not a face. Otherwise

(ifX is actually a face), itsweight vector Wx is stored for later classification. The optimal

24



threshold value 0 has to be deteiTnined empirically,

Start

f=5= ~-

\

Original faces
trammgSet

elg&M'&c&sitr'mi rig$ er}

\ W ~ weights? E. training Set)

Input -unknown image

W* = weight(E.X}

| D - avckdistancetVV.Wx))

X is a fece X is not a face

Store X and V\6 !

Figure 2.1 High-level functioning principle of the eigenface-based facial recognition
algorithm
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2.3.3 Eigenvectors and eigenvalues

An eigenvector of a matrix is a vector such that, if multiplied with the matrix, the result is

always an integer multiple of that vector. This integer value is the corresponding

eigenvalue of the eigenvector. This relationship canbe described by the equation M x u =

\x u, where u is an eigenvector of the matrix M andXis the corresponding eigenvalue.

Eigenvectors possess following properties:

• They can be determined only for square matrices.

• There are n eigenvectors (and corresponding eigenvalues) inan^n matrix.

• All eigenvectors are perpendicular, i.e. at right angle with each other.

2.3.4 Calculation of eigenfaces with PCA

In this section, the original scheme for determination of the eigenfaces using PCAwill be

presented.

Step 1: Prepare the data

In this step, the faces constituting the training set (Ti) should be prepared for processing.

Step 2: Subtract the mean

The average matrix T has to be calculated, and then subtracted from the original faces

(Fi) and the result stored in the variable Oi:

1 M

<B,=r,-</
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Step 3: Calculate the covariance matrix

In the next step the covariance matrix C is calculated according to

i M

Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix

In this step, the eigenvectors (eigenfaces) u\ and the corresponding eigenvalues Xi should

be calculated. The eigenvectors (eigenfaces) must be normalized so that they are unit

vectors, i.e. of length 1. The description of the exact algorithm for determination of

eigenvectors and eigenvalues is omitted here, as it belongs to the standard arsenal of most

math programming libraries.

Step 5: Select the principal components

From M eigenvectors (eigenfaces) w,-, only M' should be chosen, which have the highest

eigenvalues. The higher the eigenvalue, the more characteristic features of a face does the

particular eigenvector describe. Eigenfaces with low eigenvalues can be omitted, as they

explain only a small part of characteristic features of the faces. AfterM' eigenfaces u\ are

determined, the"training" phase of the algorithm is finished.
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CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 The Eigenface Technique

The system being developed for Currency Authentication is mainly based on the

eigenface technique.

We have focused our research toward developing a sort of pattern recognition scheme

that does not depend on excessive geometry and computations, Eigenfaces approach

seemed to be an adequate method to be used in currency authentication system.

Astep-by-step eigenface approach is summarized from the methodology explained by

Turk and Pentland in their paper.

3.1.1 Approaching Eigenface Technique

1. The first step is to obtain a set S ofMimages. Each image is transformed into a

vector of size N and placed into the set.

2. Next, the images in the training set are normalized.
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3. The average image is obtained from the image set.

M1 M

4. Then we find the difference between the input image and the mean image.

5. Next we find a set of M orthonormal vectors, un, which best describes the

distribution of the data. The kth vector, uk, is chosen such that

i M

k M tt k n
is a maximum, subject to

\ ifl = k
u]uk = 5lk =

0 otherwise

6. After that, we obtain the covariance matrix C in the following manner
7.

1 M

M ,

= AA T

8. From step 6, we construct

Li — A /i where

n
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L = OrO
mn m n

9. Now we find the eigenvectors, vi and iij.

M

U t = Z v/a° * / = 1, , M
k -I

3.1.2 Eigenface Recognition Procedure

1. A new image is transformed into its eigenface components. First, we compare the

input image with our mean image and multiply their difference with each

eigenvector of the L matrix. Each value would represent a weight and would be

saved on a vector.

°>k =% (r-^) £? =[g\,(o2, g>m\

2. Now we determine which image classprovides the best description for the input

image. This is done by minimizing the Euclidian distance

2

£k n-n,

3. The input image is considered to belong to a class if k is below anestablished

threshold. Then the face image is considered to be a known. If the difference is

above the given threshold, but below a second threshold it canbe considered as an

unknown image. If the input image is above these two thresholds, the image is

determined not to belong to class image.
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3.2 Images Database

We need to have a database of pre-scanned currency images to perform the authentication

through eigenfaces technique. The database consists of images of currencies in different

conditions. Theyvary from new ones to really used, worn out types. Because it will be

useful to see the results if we use currency images that differ from each other.

It is conventional and because the computational power will be less, we convert the color

images to gray, 8-bit format. This task can be performed with an easy-to-use Wavel

Pic2Pic software.

3.3 Tools Used

3.3.1 MATLAB 7.0

MATLAB is a high-level technical computing language and interactive environment for

algorithm development, datavisualization, and dataanalysis.

We can use MATLAB in a wide range of applications including imageprocessing which

applies to our project. And since the project requires us to develop the code based on

MATLAB, it was used to perform the currency authentication.

3.3.2 High Quality Scanner

High quality digital scanner was used to get the currency images. It is crucial to capture

the details of those images because they vary greatly from each other.
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CHAPTER 4

RESULTS AND FINDINGS

4.1 Results

As it was stated in the objectives, a software using MATLAB mustbe developed to carry

out the currency authentication process.

There are some subordinate objectives to successfully implement the tasks and achieve

the focal objective:

1. to study the image recognition basics

2. to research different techniques applied to image recognition

3. evaluate the techniques based on their adaptability, stability and reliability

4. to develop the currency authentication algorithm

After reviewing the current techniques and algorithms we have focused our research

toward developing a sort of recognition scheme that does not depend on excessive

geometry and computations. Eigenfaces approach seemed to be an adequate method to be

used in currency authentication system due to its simplicity, speed and learning

capability. This approach was originally developed for facial recognition and biometrics.

But we are also using eigenfaces to see and test whether it really works for currency

authentication too.

4.1.1 Output of Currency Authentication System

The system was implemented using MATLAB 7.0 and tested on an Intel Pentium 4 with

256MB of RAM running Windows XP. This platform should be considered as the

optimum hardware requirement since the authentication algorithms could have been

modified for increased accuracy on a more powerful testing platform.
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10 different images of RMls were obtained to test the systems. The images can be

categorized as "in good condition" and "in bad condition". Theywould be used as the

known images in the authentication system.

1. The Menu Box

Figure 4.1 Currency Authentication Menu Box

It will appear when theprogram is executed andwill display four options for a

user to select.

1) Preprocessing - to read pre-scanned images and select input image,

normalize images and calculate the mean image.

2) Recognition - to show eigenfaces, after the input image is selected

to calculate its weight, find Euclidian distance and then calculate

Min/Max values

3) Help - when pressed will display the information about the

program, the following will appear

This software fries to determine the authenticity of a cunencj* through
Eigenfaces Technique. "Preprocessing" will read and show prescanned
images, normalize them and calculate mean image. "Recognition" wsll show
etgenface^ after theinput image k selectedwill calculate weight of
Input Image, find Euclidian Distance and then calculate Min/Max Values.

OK

Figure 4.2 Currency Authentication Help

4) Exit - to exit from currency authenticationsystem
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2. Preprocessing

When "Preprocessing" option is selected a new window will be displayed.

B X

Choose any set

! RM1 Set |

PM2 Set

RMS Set :

RMl 0 Set '

, ; RMSO Set '.

RMl 00 Set ;

Normalize

Get Mean

Exit 1

Figure 4.3 The "Preprocessing" Menu Box

This menu has options for each ringgit value. If RMl Set is selected it will display

the images of RMls in the database. The same goes for each set.

10 different images with variation in conditions were chosen to form the database

of known or authentic currencies. This would be our training set. The program

codes that would produce and display the training set are shown below. We are

using 10 images as samples; hence n in the code represents the number of

currency images.

read and show pre-scanned images ;
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S=[J; %img matrix

for i=J:n

str=strcat('C:\MA TLAB 7\work\test\set\rm IV,...

inl2str(i), 'Jpg'J; %concatenates two strings thatform the nameofthe image

eval('img~imread(str);');

[irow icol] =size(img); %get the number ofrows (Nl) and columns (N2)

temp=reshape(img\irow*icol,l); %createsa (NJ*N2)xJ matrix

S=[S temp]; %X is a NI *N2xM matrix afterfinishing thesequence

%this is our S

end

if FI == l

close;

for i=l :n

str = strcat('set\rml\',...

num2str(i),'.jpg');

figure(l);

eval('irng=imread(str);');

subplot(ceil(sqrt(n)),ceil(sqrt(n)),i)

imshow(img)

if i=3

title(TrainingsetVfontsize',18)

end

drawnow;

end

We are using the RMl images for the testing of system developed. And referring

to the source code in Appendices we can see that FI represents menu for selection

of RMl images. This portion of code will produce the following figure.
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Figure 4.4 Currency images displayed in the Training Set

3. Normalize

Very rarely will an image recognition system be presented with perfect lighting

conditions with ambient lighting not causing distinct irregular shadows on a

subject. It can be face, license plate recognition or in this case currency

recognition and authentication. Even though we are have scanned the images

there still could be some degree of lighting invariance. And if a currency

authentication system were to be used in real-world environments, under varying

light conditions, it must be able to overcome irregular lighting. Therefore

normalizing technique was used during the research to provide a degree of

lighting invariance. Lightening conditions would adversely affect the performance

of the whole system and therefore must be adjusted.
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Thus the following lines of code are used to perform normalization.

figure(2);

for i=l;n

str ~ strcat('set\rml\',...

int2str(i), '.bmp'J;

img=reshape(S(:,i), icol, irow);

normjmg=img';

eval('imwrite(normjmg,str)');

subpiot(ceil(sqrt(n)), ceil(sqrt(n)),i)

imshow(normjmg)

drawnow;

ifi==3

title('Normalized Training Set', fontsize', 18)

end

end

Output of the above normalization code is shown below.
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Figure 4.5 Normalized Training Set

4. Mean Image

We need to find the mean image of all currency images in the training set as it

will later be used to compare with input image and multiply their difference with

each eigenvector.

%mean image;

m=mean(S,2); %obtains the mean of each row instead ofeach column

tmimg=uint8(m); %converts to unsigned 8-bit integer. Values rangefrom 0 to

255

img=reshape(tmimg,icoUrow); %takes the Nl *N2xl vector and creates a

N2xNl matrix

mean_img=img'; %creates a NlxN2 matrix by transposing the image.
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for i=l:n

figured);

imshow(mean_img);

title('Mean Image', fontsize', 18)

end

The produced mean image is shown below.

File Edit: View Insert

Dili fc%

Desktop Window Help

*n ® •< a q a

Mean Image

'": •«#

Figure 4.6 The mean image.

After preprocessing is finished user can press "Exit" and canreturn back to main menu to

proceed with rest of the authentication process.

39



5. Recognition

When this option is selected the following window will appear.

.>;'.^;^
Authentication

Show Eigenfaces

*el!

Weight of Input Image

Find Euclidian Distance

Calculate MirvMax Values

Exit

Figure 4.7 The "Recognition" Menu Box

6. Show Eigenfaces

Any grey scale face image I(x,y) consisting of a NxN arrayof intensityvalues

may also be consider as a vectorof N2. For example, a typical 100x100 image

will have to be transformed into a 10000 dimension vector.

JTI3HBBKXII

7x7 im.iye

Figure 4.8 A 7x7 image transformed into a 49 dimension vector.

This vector can also be regarded as a point in 10000 dimension space. Therefore,

all the images to be recognized can be regarded as points in 10000 dimension

space. Recognition using these images is doomed to failure because all currency

images are quite similar to one another so all associated vectors are very close to

each other in the 10000-dimension space.
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irmiy© space

Figure 4.9 Image space.

Therefore classification of a new vector (image) would be a very sensitive process

since even a slight change in the image would cause it to be nearer another image

than the subject image in the database.

The original variables or vectors which described the subject image are highly

correlated. With PCA, we tried to find a better representation of images by

finding the specific vectors that account for the distribution of face images. These

vectors will define the subspace of face images (sometimes called 'face space').

The vectors that describe faces in face space are eigenfaces. These are in fact the

eigenvectors of the covariance matrix of a set of mean subtracted face images. If

an image used is 100x100 (therefore associated vectors 10000x1), and if there are

30 sample images in the training set for PCA, the covariance matrix C would be:

C = XXT

Here X is a 10000x30 matrix containing the mean subtracted face images.

Therefore, the covariance matrices dimensions would be 10000x10000.

Calculating this matrix would be an impossible task for most modern computers.

This is one of the problems of using PCA in pattern recognition since high

dimension vectors are used. A computationally feasible method must be found to

calculate eigenfaces. When calculating eigenfaces, the number of faces that are

used will always be less than the dimension of the images. Therefore instead of

calculating C=X X1, calculate

C-XT X,
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find c's eigenvectors, and thereby deduce the eigenvectors or eigenfaces of C. In a

PCA with 30 images, c will be 30x30 and can easily be calculated. Then the

matrix of eigenvectors (v) and matrix of eigenvalues (X) for c are a vectors and

scalars that satisfy,

cv^ilv

All the eigenvectors, which were calculated, need not be used. Further,

dimensionality reduction can be done by sortingthe eigenvectors according to

their associated eigenvalues and just taking eigenvectors with the largest

eigenvalues. These describe the greatest variation. Now that the eigenvectors of c

have been found, the eigenvectorsof C (eigenfaces) are in the matrix U where,

U=Xv

Any face can be described using these eigenfaces. For a detailed description of

Principal Component Analysis for face images the reader is encouraged to refer to

Turk and Pentland (1991a).

The following figure contains 10 eigenfaces calculated.

File Edit View Insert fools Desktop Window Help

D t-t &\ Q. f? §> V+S

Eigenfaces

Figure 4.10 Eigenfaces
Increasing the number of eigenvectors (or eigenfaces) that are used to describe an

image, as well as normalizing the face space vector, will improve the accuracy

and classification performance of the currency authentication system.
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7. Select Image

Select Image will enable user to select an input image to be compared to stored,

known images in the database. User is presented with a choice to select either

bitmap (.bmp) or jpg images. Selected images canbe known or unknown.

Rest of the options

As it was explained in the sections 3.1.1 and 3.1.2 we calculate the weight of an

input image. After that we determine which image class provides thebest

description for the input image. This is done by minimizing the Euclidian distance

2

** Q-Qk

"Find Euclidian Distance" option will calculate it and then print the results on the

screen. The input image is considered to belong to a class if k is below an

established threshold. Then the image is considered to be a known. If the

difference is above the given threshold, but below a second threshold it can be

considered as an unknown image. If the input image is above these two

thresholds, the image is determined not to belong to class image. These actions

are performed when "Calculate Min/Max" values option is selected. It will

display the values andresults box appears showing values and telling whether

input image is "authentic" or "unauthentic".
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4.2 Input image selection and results

The transformation of a face from image space (I) to face space (f) involves a simple

matrix multiplication. If the average face image is A andU contains the previously

calculated eigenfaces,

f=U*(I-A)

This is done to all the images in the database with known images and to the input image

which must be recognized. Thepossible results when projecting an image into face space

are given in the following figure.

Figure 4.11 The four possible results when projecting an image into faces space. The
face space is formed by just two eigenfaces (ui and 112) and contains three known
images (Hi, Cli and Q3)

There are four possibilities:

1. Projected image is "known" andis transformed near a "known" image in the

database

2. Projected image is "known" and is not transformed near a "known" image in

the database
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3. Projected image is not "known" and is transformed near a "known" image in

the database

4. Projected image is not a "known" and is not transformed near a "known" image

in the database

While it is possible to find the closest known image to the transformed image face by

calculating the Euclidean distance to the other vectors, how does one know whether the

image that is being transformed actually contains a currency image? Since PCA is a

many-to-one transform, several vectors in the image space will map to a point in face

space. The problem is that even non-currency images may transform near a known

image's faces space vector.

Turk and Pentland (1991a), described a simple way of checking whether an image is

actually belongs to a class. This is by transforming an image into face space and then

transforming it back or reconstructing into image space. Using the previous notation,

r = UT *U * (I - A)

Where 1' is the reconstructed image. Then the Euclidean distance between (I'+A) and I

can be calculated to find out if I actually is of a currency image. The following figures

describe this well.

100

15D
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W
•-f
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Figure 4.12 Currency image in image space.
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Figure 4.13 Reconstructed currency image in image space

We will select a known image, unknown image and a non-currency image as inputs and

check whether the desired results are produced.

First, a known image in the database is selected.
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Figure 4.14 Example of a known currency image
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Figure 4.15 Reconstructed currency image
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Figure 4.16 Weight of known input image
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Figure 4.17 Euclidian distance of known input image

4.2.1 Euclidean Distance

4.2.1.1 Introduction

If we want to characterize an image according to the objects it contains (i.e. important

feature points in currency image), it is necessary to define a mode of representation

which is capable of describing it completely in terms of objects and the relations between

them. Significant example can be found in the field of image recognition, pattern

matching etc.
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Whatever matching, recognizing or comparison techniques are used, if they consist of

object-matching the crucial point is still definition of a criterion for comparison. With this

aim in mind, it is necessary to identify a set of attributes, or features, such as to:

1) describe the obj ect

2) accept an appropriate measure of similarity, i.e., a distance

between the objects

3) act as a base for correct representation of the image

The features used over the years by researchers in this field are often used together in

order to obtain a better characterization of an object starting from an approximate

description. The simultaneous use of several features allows queries of the type "look for

all images with an object having a shape/feature similar to this one and with this

composition of color and texture". Information about the shape of an object is very often

accompanied by information about its color or texture because finding a definition for the

similarity between shapes which corresponds to the human concept of similarity is an

extremely difficult problem.

Once a representation for an object has been found by identifying an appropriate set of

features, a multidimensional feature space can be identified in which each object

corresponds to a point. To be able to search for an object in this space it is therefore

necessary to define a distance in it: this corresponds to defining a relationship of

equivalence for the set of objects, by means of which it will be possible to establish

whether two elements of the set are identical or not (exact matching), and a relationship

of order, by which to establish an order of similarity (nearest neighbor). This function has

to correspond, in the values supplied, to the criterion of similarity chosen, in the sense

that the distance between two objects has to be null if and only if they coincide, and the

distance between two different objects has to be proportional to the difference between

them. In addition, the measure has to avoid "false dismissals", i.e., it must not allow two

objects satisfying the similarity conditions to be considered different on the basis of the

distance calculated. Literature provides a variety of techniques one of which is Euclidean

distance.

50



4.2.1.2 Classifying the images

The process of classification of a new (unknown) image -1 mw to one of the classes

(known) proceeds in two steps.

First, the new image is transformed into its eigenface components. The resulting weights

form the weight vector Q new

®k=uTk(Ynew-W) k = \....M<

QL =K«2 *v]

The Euclidean distance between two weight vectors d(Qn Qj) provides ameasure of

similarity between the corresponding images i andy. If the Euclidean distance between

-*- new and other images exceeds - on average - some threshold value 9, one can assume

that * new is no currency image all. d(D,i, Qy) aiso allows one to construct "clusters"

of images such that similar images are assigned to one cluster.

4.2.1.3 Euclidean Distance

Let an arbitrary instance x be described by the feature vector

x = [a1(x),a2(x), an(x)]

where afx) denotes the value of the rth attribute of instances. Then the distance
between two instances xi and Xj is defined tobed(Xi, Xj)

d^Xi^j)^J^(aMi)-^r(Xj))
r=\
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Euclidian distance tells us how close the input image is to the images in the training set.

Using Euclidean distance we can determine the class of an input image and whether it is a

known or unknown image or not even a currency image at all. The determination depends

on the maximum and minimum Euclidian distance value. An example Euclidean distance

is shown in Figure 4.16.

For experimental purposes two training sets were used in this project. One training set

consists of 10 RMl images.

a
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Figure 4.18 Training set with 10 images.
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Resulting eigenface images are shown below

rj
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Figure 4.19 Eigenfaces, Training Set 1

Then test input image is selected to proceed with recognition. The input image is shown

in Figure 4.13. And resulting Eclidean distance is shown in Figure 4.16. Maximum Value

was calculated to be 46032 whereas the Minimum Value was found to be 40867.

To test the program face image is selected next, to see what results it produces.
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Figure 4.20 Test input face image
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Figure 4.21 The reconstructed image
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The input image produced the resulting Euclidean distance with Maximum Value of

53925 and Minimum Value of 51977.

a
File Edit View Ins*
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f Eucieciian distance of input image

10 14

Figure 4.22 Euclidean distance of face input image.

Overall, all the images were selected as input images and the resulting Euclidean

distances were recorded. As mentioned before there are two training sets. They are shown

in Table 4.1 below.
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Table 4.1 Resulting Euclidean distances for various inputs including "counterfeit" image.

Euclidean Distances of Images
(13 RM1 Images in Training Set)

Euclidean Distances of

Images
(10 RM1 Images in

Training Set)

Average

Image
Max

Value

Min

Value
Max Value Min Value Max Value Min Value

1 45809 40794 46032 40867 45952 41246

2 48126 40620 48024 40634

3 45973 40727 45578 40750

4 46502 40877 46252 40891

5 46789 40921 46567 40943

6 46907 40840 46699 40861

7 45088 40699 45271 40756

8 47514 41119 47398 41149

9 45854 40981 46228 41088

10 45615 40602 45777 40663

11 45360 40740 44008 41387

12 46898 40979 44619 42977

13 47554 40798 44923 43239

counterfeit 1 45721 41073

counterfeit 2 45619 41060

counterfeit 3 45784 41139

counterfeit 4 45606 41055

counterfeit 5 45575 41001

counterfeit 6 45706 40821 45931 40895

plane 50853 48946 50647 49071

frontside 60837 58293 60472 58156

face 54005 51934 53925 51977
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Designing a system for automatic image content recognition is a non-trivial task that has

been studied for a variety of applications. Computer recognition of specific objects in

digital images has been put to use in manufacturing industries, intelligence and

surveillance, and image database cataloging to name a few. But perhaps an area involving

currency authentication is most important. Digital image application has become

important in daily life with the arrival of the digital era. With an ever advancing

technology the proliferation of a currency, is also becoming an easy task. A currency can

be forged without leaving any traces, using some image processing software.

To detect such malicious tampering a system must be developed using MATLAB. A

system that can provide means of ensuring the originality of a currency by detecting any

significant malicious manipulations.

There are some subordinate objectives to successfully implement the tasks and achieve

the focal objectives:

1. To study the image recognition basics

Author believes that extensive research was conducted on this area. Basic

concepts of pattern recognition were presented in Chapter 2.

2. To research different techniques applied to image recognition

Since there are many different techniques and algorithms to do image

recognition, we needed to have a look at them. As a result of thorough research

and studies conducted on images and pattern recognition so far, an effective and

fairly reliable techniques and algorithms were evaluated.
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3. Evaluate the techniques based on their adaptability, stability and reliability

To this end, many image recognition techniques and methods have been

proposed to solve this problem. Mainly they are such as Eigenfaces, Fisher

Linear Discriminant, Neural Networks, and Support Vector Machines. Success

has been achieved with each method to varying degrees and complexities.

Since all of them have their advantages at some point evaluating them based on

their flexibility and reliability takes most of the time. Narrowing them down and

selecting most important issues has been very challenging indeed.

As it was stated before in Chapter 2 we have focused our research toward

developing a sort of pattern recognition scheme that does not depend on

excessive geometry and computations. Eigenfaces approach seemed to be an

adequate method to be used in currency authentication system due to its

simplicity, speed and learning capability.

4. To develop the currency authentication system based on chosen algorithm

The following system requirements were identified for the Currency

Authentication System:

• A system to recognize a given currency image.

» An implemented system must display a high degree of lighting

invariance.

• A system must posses near real-time performance.

Currency Authentication System was developed which can be used to verify a currency

image when compared to images in the database. Author believes that the main objective

was indeed achieved. The system was developed using the Eigenfaces Technique which

was chosen after evaluating the current methods. The process for this technique can be

described like this. First, we get the pre-scanned currency images to be our training set. In

this project two training sets were used to see how Euclidean distance changes as number

of samples increases. One set consists of 10 different RMl images while the second set

has 13 images.

Lightening conditions would adversely affect the performance of the whole system and

therefore must be adjusted. Therefore normalization technique is used to normalize
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images and to provide a degree of lighting invariance. After that the mean image is

obtained. An image is transformed into its eigenface components afterwards. Different

input images are selected to see what Euclidean distance is produced by the program. As

seen in Table 4.1 all the known images as well as image of a face, plane and most

importantly counterfeit currency image are introduced as inputs. All of them produced

different results. Range of Minimum Value for a set with 10 images is from 40634 to

41149 while Maximum Value ranges from 45271 to 48024. Minimum Value ranges from

40602 to 41119 and Maximum Value ranges between 45088 and 48126 for set having 13

images.

When counterfeit image is selected as input image the resulting Euclidean distance varies

very slightly. In fact the Euclidean distance of counterfeit image shows almost no

difference. Although Eigenfaces approach was proved to be very useful in face

recognition, it produces mixed results for currency image recognition and authentication.

Because the range of Euclidean distance can not be determined without strong results.

Counterfeit currency should be really poor or else highly skillfully forged and tampered

currency will pass as authentic and it would undermine the effectiveness of the program.

5.2 Recommendations and future work

To improve the accuracy of the results more samples of currency images in varying

degrees of quality should be obtained. Because when using Eigenfaces technique,

increased numbers of eigenvectors or eigenfaces that are used to describe an image will

improve the accuracy and classification performance of the Currency Authentication

System. Having different training sets could also produce dramatic change in the

threshold values hence affecting the results. But perhaps most important factor is number

of samples provided in training set. Eigenfaces technique was originally developed to

recognize faces which would require a set with hundreds if not thousands of face images.

The results would dramatically change when higher number of sample images is used.
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Currency authentication system will work best when specific feature points are focused

more on a currency image. Those feature points can be determined through effective

feature selection process which was also discussed earlier in the project.

For the time being, the currency is categorized as "known" or "unknown". System would

be more effective if not only it determines whether a currency if forged but also the

points that were tampered. A new function that determines such points should be added

in the future for this project to be more efficient.

The project could be expanded more to handle the recommended situations
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APPENDICES

Appendix A - Code Listing

%Currency Authentication using MATLAB
clear all

close all

clc

% number ofimages on your training set.
global n
n.^13; Yochange this ifnumber ofsamples is more

%Chosen std and mean.
%It can be any number that it is close to the stdand mean ofmost ofthe images.
um=JOO;

ustd=80;

%read and show images(bmp);
S=[]>' %iwg matrix
for i~l:n

str=strcat('C:\MATLAB7\work\test\set\rml\',...
int2str(i), 'Jpg'); %concatenates two strings thatform the name ofthe image
eval('img=irnread(str);');
[irow icol] =size(img); %get the number ofrows (Nl) and columns (N2)
tempereshape(img\irow*icol,1); %creates a (NJ*N2)xl matrix
S=[S temp]; %X is a Nl *N2xM matrix afterfinishing the sequence

%this is our S

end

%Here we change the mean and stdofall images. We normalize all images.
%This is done to reduce the error due to lighting conditions,
for i~l:size(S,2)

temp -double(S(:,i)) ;
m-mean(temp);
st=std(temp);
S(:,i)=(temp-m)*ustd/st+um;

end

%mean image;
m=mean(S,2); %obtains the mean ofeach row instead ofeach column
tmimg-uint8(m); %converts to unsigned 8-bit integer. Values rangefrom 0 to 255
img=reshape(tmimg, icol, irow); %takes the Nl *N2xl vector and creates a N2xNl
matrix

meanjmg~img'; %creates a NlxN2 matrix by transposing the image.
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%Change imagefor manipulation
dbx=[]; %A matrix
for i=J:n

temp~double(S(:, i));
dbx=[dbx temp];

end

%Covariance matrix C~A'A, L^AA'
A=dbx';

L=A*A';

vv are the eigenvectorfor L
dd are the eigenvaluefor bothL=dbx'*dbx and C=dbx*dbx';

[vv dd]=eig(L);
%Sort and eliminate those whose eigenvalue is zero

for i=l:size(vv,2)
if(dd(i,i)>le-4)

v-/v vv(:,i)];
d~[d dd(i,i)];

end

end

%sort, will return an ascending sequence
[B index]-sort(d);
ind—zeros(size(index));
dtemp^zerosfsizefindex));
vtemp=zeros(size(v));
len=length(index);
for i=l :len

dtemp(i)=B(len+1-i);
ind(i)=len+1 -index(i);
vtempf:, ind(i)) =v(:, i);

end

d=dtemp;
v=vtemp;

%

%

%Normalization ofeigenvectors
for i~l:size(v,2) %access each column

kk=v(:,i);
temp-sqrt(sum(kk.A2));
v(:, i) =v(:, i)./temp;

end

%Eigenvectors of C matrix
u-0;
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for i=l:size(v,2)
temp=sqrt(d(i));
u=[u (dbx*v(:,i))Jtemp];

end

%Normalization ofeigenvectors
for i—1:size(u,2)

kk=u(:,i);
temp -sqrtfsum (kk. A2));

u(:,i)=u(:,i)./temp;
end

%Selectfrom menu Preprocessing, Recognition orHelp
F=0;
possibility=4;
while F~=possibility,
F - MENU('Please choose any option', 'Preprocessing', 'Recognition', 'Help', 'Exit');
ifF==J

%close all

F1=Q;
possibility1-9;
while Fl~~=possibilityl;

%% Select Test Set
FI = MENUfChoose any set', 'RMl Set', 'RM2 Set', 'RM5 Set', 'RMIO Set', 'RM50
Set', 'RMl00 Set', 'Normalize', 'GetMean', 'Exit');
ifFl =- 1

close;

for i-l:n
str = strcat('set\rml\',...

num2str(i), 'jpg');
figure(l);
eval('img=imread(str);');
subplot(ceil(sqrt(n)), ceil(sqrt(n)), i)
imshow(img)

ifi==3
titlefTraining set',fontsize', 18)

end

drawnow;

end

e/seifFl ==2
for i=l:n
str = strcat('set\mio\',...

num2str(i), '.jpg');
figure(l);
eval('img=imread(str);');
subplot(ceil(sqrt(n)), ceil(sqrt(n)), i)
imshow(img)

ifi==3
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title('Training set', fontsize', 18)
end

drawnow;
end

elseifFl ==3
for i=l:n
str = strcat('set\rm5\',...

num2str(i), '.jpg');
figure(l);
eval('img=imread(str);');
subplot(ceil(sqrt(n)),ceil(sqrt(n)),i)
imshow(img)

ifi==3
iitleCTraining set',fontsize',18)

end

drawnow;
end

elseifFl ==4
for i=l:n
str = strcat('set\rmlO\',...

num2str(i), 'jpg');
figure(l);
eval('img=imread(str);');
subplot(ceil(sqrt(n)),ceil(sqrt(n)),i)
imshow(img)

ifi==3
title('Training set',fontsize',18)

end

drawnow;
end

elseifFl —~ 5
fori=l:M
str = strcat('set\rm50\',...

num2str(i), '.bmp');
figure(l);
eval('img=imread(str);');
subplot(ceil(sqrt(n)), ceil(sqrt(n)), i)
imshow(img)

ifi^=3
title(Training set',fontsize',18)

end

drawnow;

end

elseifFl ==6
for i=l;n
str=strcat('set\rmWO\',...

num2str(i), 'Jpg');
figure(l);
eval('img~imread(str);');
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subplot(ceil(sqrt(n))yceil(sqrt(n)),i)
imshow(img)

ifi==3
title('Training set', fontsize \18)

end

drawnow;
end

elseifFl==7
figure(22);
for i~J:n
str = strcat('set\rml\',...
int2str(i), '.bmp');
img=reshape(S(:,i),icol, irow);
normJ.mg=img';
eval('imwrite(norm_img,str)');
subplot(ceil(sqrt(n)), ceil(sqrt(n)), i)
imshow(normjmg)
drawnow;

ifi==3
title('Normcdized Training Set', fontsize', 18)

end

end

elseifFl==8
for i~l:n

figure(3);
imshow(meanjmg);
title(Mean Image', fontsize', 18)

end

elseifFl==9
close all;

end

end

elseifF=z=2
%close all

F2=0;

possibility2'=6;
while F2-~=possibility2;

%% Select Test Set
F2 = MENU('Authentication', 'Show Eigenfaces', 'Select Image', 'Weight of Input
Image', FindEuclidian Distance', 'Calculate Min/Max Values', 'Exit');
ifF2==l
°/o show eigenfaces;
figure(4);
for i=l :size(u,2)

img=reshape(u(:, i),icol,irow);
eigen_img=img,
eigen_img=histeq(eigen_img,255);



subplot(ceil(sqrt(n)), ceil(sqrt(n)),i)
imshow(eigenjmg)
drawnow;
ifi==3

titleCEigenfaces', fontsize', 18)
end

end

%Find the weightofeachface in the training set.
omega = [J;
for h-1 :size(dbx,2)

WW=[];
for i=l:size(u,2)

t = u(:,i)';
WeightOflmage = dot(t,dbx(:,h)');
WW = [WW; WeightOflmage];

end

omega - [omega WW];
end

elseifF2==2
figure(7);

[filename, pathname] = iugetfile('*.bmp; *.jpeg;*.jpg', 'Please select currency image),
iffilename~=0
inputimage^imread(strcat(pathname,filename));
imshow(inputimage);
title('Input image',fontsize', 18)
end

elseifF2==3
inimage=reshape(double(inputimage)',irow*icol,l);
temp=inimage;
me=mean(temp);
st-sid(temp);
temp=(temp-me)*ustd/st+um;
Normlmage = temp;
Difference = temp-m;

p = D;
aa=size(u,2);
for i - l:aa

pare = dot(NormImage,u(:,i));
p = [p; pare];

end

Reshapedlmage = m + u(:,l:aa)*p; %m is the mean image, u is the eigenvector
Reshapedlmage - reshape(ReshapedImage, icol,irow);
Reshapedlmage = Reshapedlmage';
Yoshow the reconstructed image.
figure(l2)
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imagesc(Reshapedlmage); colormap('gray');
title('Reconstructed image', fontsize', 18)

InlmWeight = [];
for i=l;size(u,2)

t = u(:,i)';
WeightOflnputlmage = dot(t,Difference');
InlmWeight = [InlmWeight; WeightOflnputlmage];

end

11 = l:n;
figure(13)
stem(11, InlmWeight)
title('Weight ofInput Image', fontsize', 14)
end

ifF2==4
% Find Euclidean distance

e=[];
for i=l:size(omega,2)

q = omega(:,i);
DiffWeight = InlmWeight-q;
mag = norm(DiffWeight);
e = [e mag];

end

kk = l:size(e,2);
figure(13)
stem(kk,e)
title('Eucledian distance ofinput image', fontsize', 14)
end

ifF2==5
MaximitmValue=max(e)
Minimum Value=min(e)

%Set threshold values
if(Maximum Value>47700)&&(Minimum Value>41000)&&(Minimum Value<42000)

errordlg(strcat('No Match! The input image is unknown.'));

end

if'(MaximumValue>48000)&& (MinimumValue>42000)
errordlg('No Match1. The input image is not currency image. ');

end

if (MaximumValue>46000) cM (MaximumValue<47700) &&
(MinimumValue<42000)&&(MinimumValue>41000)

helpdlg(strcat('The input image is a match.'));
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end

end

ifF2==6
close all;

end

end

elseifF==3
message1='This software tries to determine the authenticity ofa currency through

Eigenfaces Technique. ';
message2~' "Preprocessing" will readandshowprescanned images, normalize them

and calculate mean image. ';
rnessage3 =' "Recognition" will show eigenfaces, after the input image is selected.will

calculate weight ofInput Image, ';
message4='find Euclidian Distance and then calculate Min/Max Values.';
helpdlg(strcat(messagel,message2,message3,message4),'Help');

end

ifF==4
clc;

close all;
end

end
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Appendix B - Resuits
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The rest of test images are shown below.
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Euclidean Distances of Images
(13 RM1 Images in Training Set)

Euclidean Distances of

Images
{10 RM1 Images in

Training Set)

Average

Image
Max

Value

Min

Value
Max Value Min Value Max Value Min Value

1 45809 40794 46032 40867 45952 41246

2 48126 40620 48024 40634

3 45973 40727 45578 40750

4 46502 40877 46252 40891

5 46789 40921 46567 40943

6 46907 40840 46699 40861

7 45088 40699 45271 40756

8 47514 41119 47398 41149

9 45854 40981 46228 41088

10 45615 40602 45777 40663

11 45360 40740 44008 41387

12 46898 40979 44619 42977

13 47554 40798 44923 43239

counterfeit 1 45721 41073

counterfeit 2 45619 41060

counterfeit 3 45784 41139

counterfeit 4 45606 41055

counterfeit 5 45575 41001

counterfeit G 45706 40821 45931 40895

plane 50853 48946 50647 49071

frontside 60837 58293 60472 58156

face 54005 51934 53925 51977

Table 6.1 Euclidean distances for various input images including "counterfeit"

image.



Appendix C - Malaysian Ringgit

Features are the basic elements for object recognition. Therefore, to identify a currency,

we need to know what features are used effectively in the currency recognition process.

Because the variance of each feature associated with the recognition process is relatively

large, the features are classified into three major types as First-order features, Second-

order features, and Higher-order feature values.

Since the first step of identification is to extract the features from currency images and

also features being the basic elements for object recognition we list full features and

details found on the Malaysian currency.
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Figure 6.16 50 Malaysian Ringgit.

1. Watermark Portrait: The shaded watermark can be recognized by tints that are

lighter or darker than the surroundingpaper. This watermark portrait which

has a three-dimensional effect appears soft and shady without sharp outlines.

At the base of the watermark, the numeral 50 is clearly visible.
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2. Security Fibres: When viewed under ultra-violet light, the security fibres in

the paper become visible in three colors: red, yellow and blue.

3. Security Thread: The thread is embedded in the paper and appears on the

reverse side of the note as a silver colored dotted line [a]. When the note is

held against the light, it is seen as a continuous dark colored line and the

repeated text BNM RM50 can be read [b]. When viewed under ultra-violet

light, the thread is seen in various changing colors known as the "rainbow

effect".

4. PEAK® (Printed and Embossed Anticopy Key); When changing the angle of

view by shifting the note, the numeral 50 will be revealed in the centre of the

PEAK® square. The whole square will glow under ultra-violet light. When

held against the light, three open spaces on the obverse side will register

perfectly with equal printed markings on the reverse side.

5. LEAD® (Long-lasting Economical Anticopy Device): Its holographic design

represents the same motifs as used in the purple area with which the LEAD®

strip is partially overprinted as well as the words "RM50" and "BNM". The

colors of these elements change when the view angle is shifted. On both sides

of the strip, a dedicated print patternbecomes visible under ultra-violet light.

6. Intaglio Print: The intaglio print is a raised printing effect produced by

applying layers of tactile inks on various parts of the obverse and reverse sides

of the notes, such as the portrait of the First Seri Paduka Baginda Yang di-

Pertuan Agong, denomination figures, ornamental elements and the wordings

"BANK NEGARA MALAYSIA".
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7. Phosphorescence Square: When the note is held against the light, the hibiscus

flower on the obverse will register perfectly with the same flower on the

reverse of the note. This flower will also glowunder ultra-violet light.

8. PerfectSee-Through Register: When the note is held against the light, the

hibiscus flower on the obverse will register perfectly with the same flower on

the reverse of the note. This flower will also glow underultra-violet light.

9. Invisible Fluorescent Elements: Various elements of the background on the

obverse and reverse will fluoresce in different colors when viewed under

ultra-violet light.

10. Novel Numbering: The serial numbers increase in size to make it more

difficult to counterfeit. The numbers fluoresce under ultra-violet light.

11. Braille Feature: The diamond shape braille markings feature a layer of tactile

ink printed in intaglio that can be felt by touching.

12. Anti-Scanner/Copier Features: Thenote features certain areas, designed such

that these will change appearance when copied/scanned.

13. Modulated Micro-Letterings: In this tactile rectangle, the micro-letterings with

the text RM50 are all legible under a magnifying glass and collectively form

the word "BNM" if viewed from a distance.

14. Background Micro-Letterings: The pattern of the pink and bluish rectangles

contains legible micro-letterings of "BNM" when viewed under a magnifying

glass while some of the bluish rectangles will fluoresce under ultra-violet

light.



15. Micro-Letterings: Circles around the oil valve hand wheel contain legible

micro-letterings of the word "BANKNEGARAMALAYSIA" in light green

when viewed under a magnifying glass.

RM1 Security Features

(Actual size 120 x 65 mm)

J, v V-; "-••iur^ ff' /tv . ....
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Watermark Portrait (1)

The shaded watermark can be recognised by tints that are lighter or darker than the
surrounding paper. This watermark portrait which has a three-dimensional effect appears
soft and shady without sharp outlines. At the base of the watermark, the numeral 1 is
clearly visible.

Section 1 of the obverse of the note:
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Paper Colour

The paper is in a light shade of blue.

Security Thread (2)

The thread is embedded in the paper and appears on the reverse side of the note as a
silver coloured dotted line. When the note is held against the light, it is seen as a
continuous dark coloured line and the repeated text "BNM RMl" can be read. When
viewed under ultra-violet light, the thread is seen in bluish colour.

Section 2 of the reverse of the note:

Security Fibre (3)

When viewed under ultra-violet light, the security fibres in the paper become visible in
three colours: red, yellow and blue.
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Section 3 of the obverse of the note:

Intaglio Print (4)

The intaglio print is a raised printing effect produced by applying layers of tactile inks on
various parts of the obverse and reverse sides of the notes, such as the portrait of the First
Seri Paduka Baginda Yang di-Pertuan Agong, denomination figures, ornamental
elements and the wordings "BANK NEGARA MALAYSIA".

Section 4 of the obverse of the note:

PEAKi© (Printed and Embossed Anticopy Key) (5)

PEAKA® is a Printed and Embossed Anticopy Key security feature. When changing the
angle of view by shifting the note, the numeral 1 will be revealed in the centre of the
PEAKA® square. The whole square will glow under ultra-violet light.

Section 5 of the obverse of the note:
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[a] Normal appearance [b] When held at an angle

Perfect See-Through Register (6)

When the note is held against the light, the hibiscus flower on the obverse will register
perfectly with the same flower on the reverse of the note. This flower will also glow
under ultra-violet light.

Section 6 of the note:

m

Modulated Micro-Letterings (7)

In this tactile rectangle, the micro-letterings with the text "RMl" are all legible under a
magnifying glass and collectively form the word "BNM" if viewed from a distance.

Section 7 of the obverse of the note:

Background Micro-Letterings (8)

The pattern of the bluish and purplish rectangles contains legible micro-letterings of
"BNM" when viewed under a magnifying glass while some of the bluish and purplish
rectangles will fluoresce under ultra-violet light.

Section 8 of the obverse of the note:
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Micro-Letterings (9)

The lower left part of the kite at the back of the note contains legible micro-letterings of
the word "BANKNEGARAMALAYSIA1' in blue when viewed under a magnifying
glass.

Section 9 of the reverse of the note :

Invisible Fluorescent Elements (10)

Various elements of the background on the obverse and reverse will fluoresce in different
colours when viewed under ultra-violet light.

Section 9 of the reverse of the note:

[a] Normal appearance [b] When viewed under ultra-violet light

Anti-Scanner/Copier Features (11)
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The note features certain areas, designed such that these will change appearance when
copied/scanned.

Section 11 of the obverse of the note :

Phosphorescene Square (12)

In this square, the letters "BNM" and the numeral "1" will become visible under ultra
violet light.

Section 12 of the obverse of the note:

Braille Feature (13)

The diamond shape braille markings feature a layer of tactile inlc printed in intaglio that
can be felt by touching.

Section 13 of the obverse of the note:
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Novel Numbering (14)

The serial numbers increase in size to make it more difficult to counterfeit. The numbers

fluoresce under ultra-violet light.

Section 14 of the reverse of the note:

AA2345C

[a] Normal appearance [b] When viewed under ultra-violet light

Reference: http://www.bnTn.gov.my/index.php?ch=23&pg:=452&ac:==26&security-l



Appendix D - How To Detect Counterfeit Money (US doiiar)

The public has a role in maintaining the integrity of currency. You can help guard against
the threat from counterfeiters by becoming more familiar with United States currency.

Look at the money you receive. Compare a suspect note with a genuine note of the same
denomination and series, paying attention to the quality of printing and paper
characteristics. Look for differences, not similarities.

Portrait

The genuine portrait appears lifelike and stands out distinctly from the
background. The counterfeit portrait is usually lifeless and flat. Details merge
into the background which is often too dark or mottled.

Federal Reserve and Treasury Seals
On a genuine bill, the saw-tooth points of the Federal Reserve and Treasury
seals are clear, distinct, and sharp. The counterfeit seals may have uneven,
blunt, or broken saw-tooth points.

L -

Border

The fine lines in the border of a genuine bill are clear and unbroken. On the
counterfeit, the lines in the outer margin and scrollwork may be blurred and
indistinct.

Serial Numbers

Genuine serial numbers have a distinctive style and are evenly spaced. The
serial numbers are printed in the same ink color as the Treasury Seal. On a
counterfeit, the serial numbers may differ in color or shade of ink from the
Treasury seal. The numbers may not be uniformly spaced or aligned.

r
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Paper
Genuine currency paper has tiny red and blue fibers embedded r
throughout. Often counterfeiters try to simulate these fibers by printing \
tiny red and blue lines on their paper. Close inspection reveals, however,;
that on the counterfeit note the lines are printed on the surface, not ;
embedded in the paper. It is illegal to reproduce the distinctive paper
used in the manufacturing of United States currency.

Reference: http://www.secretservice.gov/money_detect.shtml
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