Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.



[img] PDF
Download (1580Kb)


Knowledge Discovery in Database and Data Mining use techniques derived from machine learning, visualization and statistics to investigate real world data. Their aim is to discover patterns within the data which are new, statistically valid, interesting and understandable. In recent years, there has been an explosion in computation and information technology. With it have come vast amounts of data. Lying hidden in all this data is potentially useful information that is rarely made explicit or taken advantage. New tools based both on clever applications of established algorithms and on new methodologies, empower us to do entirely new things. In this context, data mining has arisen as an important research area that helps to reveal the hidden interesting information from the rawdatacollected. The project demonstrates how data mining can address the need of business intelligence in the process of decision making. An analysis on the field of data mining is done to show how data mining can help in business such as marketing, credit card approval. The project's objective is identifying the available data mining algorithms in data classification and applying new data mining algorithm to perform classification tasks. The proposed algorithm is a hybrid system which applied fuzzy logic and artificial neural network, which applies fuzzy logic inference to generate a set of fuzzy weighted production rules and applies artificial neural network to train the weights of fuzzy weighted rules for better classification results. Theresult of this system using the iris dataset and credit card approval dataset to evaluate the proposed algorithm's accuracy, interpretability. The project has achieved the target objectives; it can gain high accuracy for data classification task, generate rules which can help to interpret the output results, reduce the training processing. But the proposed algorithm still require high computation, the processing time will be long if the dataset is huge. However the proposed algorithm offers a promising approach to building intelligent systems.

Item Type: Final Year Project
Academic Subject : Academic Department - Information Communication Technology
Subject: Z Bibliography. Library Science. Information Resources > ZA Information resources
Divisions: Sciences and Information Technology
Depositing User: Users 2053 not found.
Date Deposited: 30 Sep 2013 16:55
Last Modified: 25 Jan 2017 09:46
URI: http://utpedia.utp.edu.my/id/eprint/7616

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...