
UNIVERS1TI

TEKNOIOGI

PETRONAS

Honeypot setup for education

By

Muhd Harith Fathillah Bin Shahabudin (2714)

Final Dissertation in partial fulfillment of
the requirement for the

Bachelor of Technology (Hons)
(Information System)

University Technology of Petronas
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

Soo5

,*&>,1

Approved by,

CERTIFICATION OF APPROVAL

Honeypot setup for education

By

Muhd Harith Fathillah Bin Shahabudin(2714)

A final dissertation submitted to the

Information Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirements for the

BACHELOR OF TECHNOLOGY (HONS)

(INFORMATION TECHNQLOGY)

(Mr. Low Tan Jung)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JANUARY 2005 ,

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MUHD HARITH FATHILLAH BIN SHAHABUDIN

Abstract

"Honeypot" is just a computer system or a network segment, loaded with servers and

devices and data. It may be protected with a firewall, although you want the attackers

to have some access. There may be some monitoring capability, done carefully so that

the monitoring is not evident to the attacker. The reason to setup honeypot varies from

avoid tampering to tracking and capturingthe attacker. The purpose for this project is

to set up an education tool for student to learn and know how honeypot works.

Because of the increasing rate of cyber crime, it is hope that with this, it can

encourage the student and the public generally to be more aware about the matter

concerning information technology security. The Honeynet Project made up of a

small group of security professionals dedicated to learning the tools and tactics of the

black-hat community and sharing those lessons learned with the securitycommunity.

Their contribution varies from how to setup a honeypot to how the attacker behaves

and what triggers them is shown in this paper and research. To design this particular

honeypot, I've use the waterfallmodel methodology as a guideline to build and design

it. Honeypot are interesting research topic and open up a new field of technology and

creative thinking.

Acknowledgement

I would like to acknowledge several people who contribute their effort and time to

help me in completing this final year project.

Firstly, I thank God for without His guidance and wisdom, I'll be utterly lost. Thank

you for giving me the strength and knowledge needed to finish this task.

I am greatly indebted to the project supervisor, Mr. Low Tan Jung, who had

continuously monitored my progress throughout the duration of the project. His

constructive comments, advice and guidance led to the final outcome ofthis project.

To my very family and friends who have given me the strengthto finish this project.

Your love and laughter will always be in my heart. To my IT and IS colleagues who

help me out through this whole process. I cherish you all very deeply.

To any of the person(s) not mentioned here, I would like to say "thank you" for your

support until the completion ofthis project.

u

TABLE OF CONTENT

ABSTRACT i

ACKNOWLEDGEMENT ii

LIST OF FIGURES iv

ABBREVIATION v

INTRODUCTION 1

Background of study 1

Problem statement 2

Objective and scope of study 2

LITERATURE REVIEW 4

METHODOLOGY 11

Waterfall model \\

RESULT AND DISCUSSION 17

Sebek server and Sebek Client 17

Client data capture 19

Client module hiding 20

Client packet export 20

Sebek protocol specification 24

Risk involve 25

CONCLUSION AND RECOMMENDATION 28

REFERENCE 29

APPENDICES 30

in

LIST OF FIGURES

Figure 2.1 Network Layout Diagram 6

Figure 3.1 Waterfall Model 10

Figure 3.2 Network Layout diagram 12

Figure 4.1 Representation of generate Sebek packet 20

Figure 4.2 Sebek protocol specification 22

Figure 4.3 Keystroke Example 23

Figure 4.4 System Overview 25

Figure 4.5 Keystroke Summary View 26

K

ABBREVIATION

TCP : Transmission Control Protocol

IP : Internet Protocol

UDP : User Datagram Protocol

IRC : Internet Relay Chat

IDS : Intrusion Detection System

DNS : Domain Name Server

RPC : Remote Procedure Call

IT: Information Technology

ICT : Information Communication Technology

SYN-FIN: Synchronize Finish

PC: Personal Computer

LKM : Loadable Kernel Module

MAC: Media Access Control

LAN : Local Area Network

MTU : Multicast Transmission Unit

Chapter 1

Introduction

Background of study

How do you catch a mouse? You set a trap with bait (food the mouse find

attractive) and catch the mouse after it is lured into the trap. This metaphor use to

describe the honeypot setup system.

In this ever changing information technology era, cyber crime has become an

increasing problematic issue. Because of this awareness, the honeypot method was

introduced. Honeypot has really no special features. It is just a computer system or a

network segment, loaded with servers devices and data. It may be protected with a

firewall, although you want the attackers to have some access. There may be some

monitoring capability, done carefully so that the monitoring is not evident to the attacker.

You put honeypot for several reasons:-

• To watch what the attackers do, in order to learn about new attacks (so that you

can strengthen your defense against these new attacks)

• To lure an attacker to a place in which you may be able to learn enough to

identify and stop the attacker.

• To provide an attractive nut diversionary playground, hoping that the attackers

will leave your real system alone.

Problem Statement

As said earlier, cyber crime rates have increased drastically during this past

decade. It seems that every time developer or researcher find a solution or a way to

prevent this from happening, hackers or sometimes call 'blackhat' community come out

with a way to counter this prevention method. Thus the battle continues. This situation

has inflicted million of dollars of losses and resources to big company such as Microsoft.

Security has been the main issues to prevent crackers (the terms use for individual who

hack to cause damage) from doing illicit activities thus endangering the whole

corporation

Honeypot is some of the alternative methods used to prevent this from happening.

This honeypot that I intend to do is not to be set up as a security measure, but merely as

an education tool for student. Therefore, no real hacking is necessary. The real problem is

to make sure that the system deploy in a mock up network can work or show similar

result as the real honeypot would do. For this to happen, a suitable network design must

be developed. Currently, there are some network designs for honeypots. From these

designs, I must choose a suitable and efficient design that can be implemented. The

failure to choose and implement a suitable design may affect the outcome of the project.

Objectives and Scope of Study

This honeypot is intended to be implemented in the lab.

The objectives of this Honeypot setup are:-

• As an education tool of how the system works and how it is implemented

• To generate general awareness to the public concerning the danger of cyber crime

and the need of a good security system

• If possible, to encourage and attract student more on the subjects concerning

network security

The scope of study will only be in University Technology Petronas. The lack of resources

in term of network devices in the lab, making me to find a suitable honeypot network

design is a challenge. Thus, this remains the most important obstacle en route to success.

Also considering that honeypot is still a new subject, to build one that actually work is a

big challenge.

Chapter 2

Literature Review

Honeypot has no definite definition. Thus the only conclusion that I come by

during my literature review is that honeypot is a computer systems or a network segment,

loaded with servers and devices and data. I also learnt that a combination of many

honeypots is called honeynet. There is an organization for discussing this purpose that is

known as the honeynet project. The Honeynet Project is a small group of security

professionals dedicated to learn the tools and tactics of the black-hat community and

sharing those lessons learned with the security community.

In one oftheir research paper call "Know Your Enemy: Honeynets" (14th January

2002), they discuss about how honeypot's work. In the paper is stated that conceptually,

Honeynets are a simple mechanism. We create a network similar to a fishbowl, where we

can see everything that happens inside it. Similar to fish in a fishbowl, we can watch and

monitor attackers in our network. Also just like a fishbowl, we can put almost anything

we want in the network. This controlled network, becomes our Honeynet. The captured

activity teaches us the tools, tactics, and motives of the blackhat community.

Traditionally, the greatest problem security professionals face in detecting and capturing

blackhat activity is information overload. The challenge for most organizations is

determining from vast amounts of information, what the production traffic and what is

malicious activity. Tools and techniques such as Intrusion Detection Systems, host based

forensics, or system log analysis attempt to solve this by using a database of known

signatures or algorithms to determine what is production traffic and what is malicious

activity. However, information overload, data pollution, unknown activity, false positives

and false negatives can make analyzing and determining activity extremely difficult.

Like all honeypots, the Honeynet solves this problem of data overload through simplicity.

A Honeynet is a network designed to be compromised, not to be used for production

traffic. Any traffic entering or leaving the network is suspicious by definition. Any

connection initiated from outside the Honeynet into the network is most iikely some type

of probe, attack, or other malicious activity. Any connection initiated from the Honeynet

to an outside network indicates that a system was compromised. An attacker has initiated

a connection from his newly hacked computer and is now going out to the Internet. This

concept of no production traffic greatly simplifies the data capture and analysis.

There are two critical requirements that define every Honeynet, they are the Data Control

and the Data Capture. If there is a failure in either requirement, then there is a failure

within the Honeynet. Honeynets are extremely flexible tools, they can built and deployed

a variety of different ways, as such almost no two Honeynets look the same. But they

must all meet the requirements of Data Control and Data Capture. Data Control is what

mitigates risk. It controls the attacker's activity by limiting what can happen inbound and

outbound. The risk is that once an attacker compromises a system within the Honeynet,

they can use that system to attack other non-Honeynet systems, such as organizations on

the Internet. The attacker has to be controlled so they cannot do that. They can attack

other systems within the Honeynet, but we have to protect non-Honeynet systems. Data

Capture is what collecting all the activity that happens inbound, outbound, or within the

Honeynet. This is how we learn, by capturing the attackers's activities. The trick to these

requirements is meeting them without the attacker knowing. Our goal is to both control

and capture all of the attacker's activity, without them realizing they are within a

Honeynet.

There is a third requirement, Data Collection, but this is only for organizations that have

multiple Honeynets in distributed environments. Many organizations will have only one

single Honeynet, so all they need to do is both Control and Capture data. However,

organizations that have multiple Honeynets logically or physically distributed around the

world have to collect all of the captured data and store it in a central location. This way

the captured data can be combined, exponentially increasing its value. The Data

Collection requirement provides the secure means of centrally collecting all of the

captured information from distributed Honeynets"

Switch

• n
syslog Sparc

Honeynet
172.16.1.0/24

Linux NT

Figure 2.1

Router

10.1.1.X

•

IDS

Log/Alert
Server

•
Fi rewall

>

^ 3CD =-

it
<"
CD

In figure 2.1 above, it shows an example of a network layout diagram of a honeypot

setup. This network diagram is said to be use in a big organization where it involves

complex configuration and expertise. The one that will be presented or create for this

project will similarly look like the network diagram shown in figure 3.2.

The main difference in the both of the design is the level of complexity and resources

involve. Figure 2.1 will show a working or real time networking environment. A hacker

will usually see nothing suspicious of any kind when stumbling into this type of

architecture. The honeypot that is implemented in this project is specifically use for an

isolated network and is use for an education tool where the design is not purposely to

attract hackers because there are no 'real' hacker involves.

In one of their paper they presented call "Know Your Enemy: Motives, the Motives and

Psychology ofthe Black Hat Community, (22nd July 2001) it discusses on their findings

and analysis of how hackers think and behave.

In the paper, it stated that,

"A honeynet is a network of various honeypots, designed to be compromised by the
black-hat community. While some honeypots are used to divert the attention of attackers
from legitimate systems, the purpose ofa honeynet is to learn the tools and tactics ofthe
black-hat community. Most of the information provided in this document has been
sanitized. Specifically, user identities and passwords, credit card numbers, and most of
the system names involved have all been changed. However, the actual technical tools
and the chat sessions themselves have not been sanitized. "

This paper also stated,

"What we have witnessed here are commonly used tools and tactics of the black-hat
community. Our black-hat randomly scanned the Internet for a known vulnerability (in
this case rpc.ttdbserv). Once identified, they quickly compromised the system and
installed a rootkit using commonly scripted tools. Once they had control, they installed a
bot, most likely to ensure they would maintain 'ops' on the IRC channels of their choice.
What is uncommon are the two weeks of IRC chat sessions that their bot capturedfor us.
In the next part ofthis paper, we discovered the motivations andpsychology ofthe black
hatcommunity, in theirownwords.
They also discovered that some ofthis individual involved in the black hat community has
very little knowledge of network. Often you will see them attempting to figure out the
mostfundamental of Unix skills. And yet, they are still able to compromise or damage a
large number ofsystems. This isnot a threat that's need to be taken lightly.
This paper not only shows how the black hat community works, it also emphasized on
theirbehaviour and intention that trigger theiractions. "

They have also made some quiet remarkable breakthrough in their research.

While researching the blackhat community, the Honeynet Project has been astonished to

see just how active the blackhat community can be. The findings are scary. Below are

some of the statistics we have identified from the eleven month period of data we

collected. The purpose of these figures is to demonstrate the active behavior of the

blackhat community. Keep in mind, these statistics represent a home network of little

value that was neither advertised nor made any attempts to lure blackhats. Larger

organizations that have great publicity or value most likely are probed and attacked in far

greater numbers.

Post attack analysis:

Between April and December 2000, seven default installations of Red Hat 6.2

servers were attacked within three days of connecting to the Internet. Based on

this, we estimate the life expectancy of a default installation of Red Hat 6.2 server

to be less then 72 hours. The last time we attempted to confirm this, the system

was compromised in less than eight hours. The fastest time ever for a system to be

compromised was 15 minutes. This means the system was scanned, probed, and

exploited within 15 minutes of connecting to the Internet. Coincidentally, this was

the first honeypot we ever setup, in March of 1999.

A default Windows98 desktop was installed on October 31, 2000, with sharing

enabled, the same configuration found in many homes and organizations. The

honeypot was compromised in less than twenty four hours. In the following three

days it was successfully compromised another four times. This makes a total of

five successful attacks in less than four days.

In May 2000, the first full month we archived Snort Intrusion Detection alerts, the

Honeynet recorded Snort 157 alerts. In February 2001, the Honeynet recorded

1,398 Snort alerts, representing an increase of over 890%. This increase may be

affected by modifications to the Snort IDS configuration file. However, we also

see an increase of activity in the Firewall logs. In May 2000, the first full month

we archived firewall alerts, the Honeynet firewall logged 103 unique scans (not

counting NetBios). In February 2001, the Honeynet logged 206 unique scans (not

counting NetBios). This represents an increase of 100%. These numbers indicate

blackhat activity has continued to grow, most likely the result of more aggressive,

automated scanning tools and their growing availability.

In a thirty day period (20 Sep - 20 Oct, 2000), the Honeynet received 524

UNIQUE NetBios scans, averaging 17 unique NetBios scans every day.

In the month of February, 2001, a total of 27 X86 exploits were launched against

the Honeynet. X86 means these attacks were designed for systems using the Intel

based architecture. Of these, 8 were launched against a Solaris Sparc system.

These exploit attacks cannot work against the Sparc system, as the system

architecture is not compatible. This indicates that some blackhats are not

bothering to confirm what operating system or what version of the service you are

running. Some blackhats have streamlined their scanning process to merely look

for a specific service. If they find the service, they launch the exploit without even

first determining if the system is vulnerable, or even the correct system. This

active approach allows blackhats to scan and exploit more systems in less time.

• From April 2000 through present, the most popular reconnaissance methods,

besides general scanning, was DNS version query, followed by queries to RPC

services.

• The most popular attack method was an overflow associated with rpc.statd for

Intel based systems.

• The most popular scanning method detected was the SYN-FIN scan to search the

entire IP range for specific ports (often in sequential order). This reflects the tactic

of focusing on a single vulnerability, and scanning as many systems as possible

for the vulnerability. Many blackhats only use a single tool or exploit that they

know how to use, or is the most effective.

15th May 2005 (New Straits Times), Nurris Ishak title "In Malaysia, it's a hackers

heaven", the writer talks about network security system and why most system are

vulnerable. Some of the hackers know more about network security than any average

person who are network literate. As far as they are concerned, the Internet security of

most organisations in Malaysia is far from secure. The system administrators of the

organisations orcompanies should pay attention to the latest in information technology.

It also stated that

"It is easy to hack a website and tofind weaknesses in the system. Even aprimary school
kid can do it.
"Ifa hacker ismalicious, he can do a lot ofdamage to a system orto individuals.
Hackers can re-create a bogus website that looks exactly like the real one andno one can
tell the difference.
"This is not such goodnews ifyou are a banking website, for example."

It does not even take a computer genius to hack, according to hackers. You can find

hacking software on the Internet, and downloading the programmes and using them

maliciously is just a click away. A hackercan download a port scanner,which looks for

an opendoor in a system. Usually, any system which can be accessed by the public has

some extra ports open so that the public can have access to it. AH a hacker has to do is to

find the openport and enter whatevercommands that they can create themselves, and

they are in the system."

Mosthackers said they do it just for the fun of it, but there is always the few who do it for

malicious reasons or profit. Even individuals can be a hackvictim, and anyone connected

to thevictim can be subjected to hackattacks. Youcan be a victim as easily as clicking

on a button to a website or opening e-mail.

Users should always be careful in downloading attachments, as there may be a

programme that is hidden in it that would allow a hacker to have access to their computer

system. Hacking incidents are preventable, but this would depend on the person's

awareness on the ways to protect themselves from it.

Online bankingusers, for example, are advisedto type the website address themselves,

instead of clicking on a link. This is because linkscan be quite deceiving.

A hackercan create a websitewhich may look exactly like an online bankingsystem

website, and the average user wouldn't be able to know the difference.

Any website address that begins with http:// is an insecure website, which means that

whatever information disclosed by the user would be open to whoever happens to be

hacking in. A secure website address would appear as https://.

Putting up a firewall may well be the best protection but it's only a matter of time before

a hacker can find the hole in the system. The best security is the Internet administrator

himself. If he keeps up with the technology, he would know the weakness in the system

and he would be able to patch it up.

10

ITeducation also plays an important partto prevent oneself from being a victim.

Inthis day and age, one should always beaware ofthecurrent technology. Education is

the key to safety.

According to the National ICT and Emergency Response Centre (NISER), asofthe first

quarter of2005, there were 300 reported hack incidents which comprised of intrusions,

hack threats and denial of service. A spokesman forthe centre confirmed that therehas

been a 100 per cent increase inhack incidents, compared to the fourth quarter of2004.

We would say any financial transactions overthe Internet are not 100 per cent secure

without dual (two-factor) authentication from client and server side, which is notbeing

implemented now. A user should always bewary of websites which requires them to

disclose personal information over the Internet. There is always a potential threat out

there.A user or anorganization can protect their machines orsystems from being hacked

byapplying several methods but it is a constant headache for corporations

11

Chapter 3

Methodology/Project Work

Because what the first intention is to create is a simple network model, thus there

is no certain guideline on how to build or a platform to build a network, thus, it was

decided to use a software model diagram to represent the project work flow. For this

project, the waterfall model was use as the methodology to setup the honeypot. It consists

of 5 steps. It is called as waterfall model because of the cascade from one phase to

another phase. Each step is dependent with one another.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Figure 3.1

12

Operation and
maintenance

The waterfall model consists of:-

• Requirement analysis and definition:

The require device network and the software thatwill be used for thishoneypot

will be determine and configure properly. The target result is determined here.

• System and software design:

What kind of network design that this particular honeypot will use. For this, it

was decided to choose a similar design to that of figure 3.2 .

• Implementation and unit testing:

Each device and software that is already configured is then tested one by one.

This is to test if network is working properly.

• Integration and system testing

The individuals device networkcomponent and software are integrated and then

tested wholly. If possible, this will be thepartwhere some hacking occurs. After

all, hacking is essential in this system to show if the system is working or not.

• Operation and maintenance

After all the device and software are working properly, the honeypot must be

maintained casually. Because this is aneducation tool, it should notbe hard to

maintain. Thepurpose of this project is to showhowthe system works.

13

Intruder

.Intruder uses SSH to protect communications

(...Copy ofintruder activity covertly exported onto LAN..,^. Honeywall
Gateway

Honeypot A Horeypot B Honeypot C

Figure3.2

Sebek Server

Figure 3.2 above shows the design of the honeypot intended for this project. The

network model that was decided to build are not 100percent copy of that from figure 3.2

but still carry the same or similar characteristics of it. The heart of the honeypot comes

from the Sebek system. Sebek have 2 components, there are; Sebek Client and Sebek

server. Honeypot A consists of a Sebek file which is very vital in a honeypot setup. This

Sebek file must be configured at the server and the client as well. Sebek will be discuss

and explain later in the result and discussion chapter. For the operating system, it is

decided that we use Fedora Core. It is basically a Linux base operating system and

because of the Unix nature involve in this project, it will fit perfectly with the

requirement needed. One more factor that was vital in considering implementing Fedora

Core is that because it is said to be more stable and effective when it comes to

networking area.

As mention earlier, the Sebek must be setup according to the specification and

instruction given.Because this topic is still very new, many Sebek version are sometimes

not stable and therefore, to get the require result is quiet a problem. One important factor

that is vital for the Sebeksetup is the kernelversion of the operating system. Most Sebek

installer for both client and server must always fit the kernel operating system

requirement. For this project, the kernel version that 1 used is 2.1.7. The setbackl of this

14

system is that it does not allow a higher version of the kernel in order to install it, thus,

we must be very specific and concise over this matter.

As shown in figure 3.2, the first step is to setup an isolated network. To do that,

four PC's were required located in the data communication lab. One will act as a server

for the network, 2 will act as the client for the network. The 4th PC was initially to be

setup as an external network but for the time being andbecause of the difficulties setup of

the honeypot, this pc is use for a spare tool for future use.

In the server side, Sebek server version 2.1.7 was installed. This server is equipt

with Fedora Core 2 operating system with a kernel version 2.1. As mentioned earlier,

because of the instability of the system, there still exists some error. It has been recently

discovered that Sebek doesn't seem to be unstable on some AMD systems. According to

the team that develops this installation, the problem can be triggered by running tcpdump

on a Sebek host. The kernel panics with the af_packet code tryingto call function using

a bad function pointer. They are still investigating the cause of this problem. Until this

report is written, this is the latest version of Sebek server setup posted in the

honeynet.org; the main website for honeypot research in the world. We will discuss this

in the result and discussion method.

As for the client side, Sebek client version 2.1.7 was installed. This Sebek client is

for Linux operating system that supports specifically 2.4 kernel version. As mention

earlier, there are 2 PC connected in the network excluding the server. The positive thing

about honeypots is that it gives the user freedom to set it anywhere you like. Bear in mind

there are still some factors to consider first if you want to setup it in the real world. For

example, in figure 3.2, both of the PC's have their own honeypot. Subsequently, they

have their own Sebek system in it. To build a successful honeypot, the attacker must be

able to penetrate and possible do malicious activities in the particular PC, without

knowing that they are actually being monitor by the Sebek client itself. If you setup a

honeypot where there is no probability of a hacker to attack, then the honeypot itself is a

failure. Thus, determining the psychology andthe intention of a hacker is also vital in the

15

success of a honeypot. One of the objectives of honeypot itself is for this purpose only.

With the data capture, the user can then make new counter measure and security to avoid

their real system or PCs being compromise from attack.

For the second PC in the network, a Window background was choose for its

operating system to install the Sebek client. Microsoft Windows XP was its operating

system because the Sebek client that is available for Windows in Honeynet organization

only supports this type of operating system. By using this, it was use to determined to see

or observe the difference the Sebek have between 2 PC using different operating system.

To my surprise, the PC that was initially choose for setup, after rebooting, encounter

some problem whereby, it takes quiet some time just for it to reach the Window interface.

The a strange message occur stating that the PC is encountering some low virtual

memory thus making the session from rebooting, waiting for the windows interface and

running the first application takes about half an hour to be process. The conclusion came

to this by the fact that before installing Sebek client, it was running perfectly okay and

smooth. Although it already has some programs and software installed, it was never

occurred that the system will encounter this type of problem. Because of the nature of the

Sebek itself is sometimes unstable, plus the factor that the Sebek will load itself before

the operating system starts for Windows version, it was somehow evident that during this

loading time and the transition from the Sebek program to Windows, some unexpected

bug happen. For example, your computer might act strangely although all the possibilities

of this problem have already been check. These act may varies from legging when

running a software to fail to execute simple application

16

Chapter 4

Result and discussion

The honeypot that is implemented consist of 2 vital parts. First is the Sebek server part

and the second is the Sebek client part. Sebek is a data capture tool. As with all data

capture tools, the goal is to capture data that will allow us to accurately recreate the

events on a honeypot. We want to determine information such as when an intruder broke

in, how they did it, and what they did after gaining access. This information can,

potentially, tell us who the intruder is, what their motivations are, and who they may be

working with

Sebek server and Sebek Client

Sebek has two components: a client and server. The client captures data off of a

honeypot and exports it tothe network they are collected by the server (refer Figure 3.2).

The server collects the data from one of two possible sources: the first is a live

packet capture from the network, the second is a packet capture archived stored as a

tcpdump formatted file. Once the data is collected it is either uploaded into a relational
database or the keystroke logs are immediately extracted. The communications used by

Sebek are UDP based and as such are connectionless and unreliable.

The client module is installed on the honeypot. The attacker's activity captured by

the honeypot is dumped to the wire (hidden to the attacker) and passively collected by the

Honeywall Gateway. The client resides entirely in kernel space on the honeypot and, in

the case of the Linux version, is implemented as a Loadable kernel Module (LKM). The

client can record all data that a user accessed via the read() system call. This data is then

17

exported to the server over the net in a manner that is difficult to detect from the

honeypot running Sebek. The server then gathers the data from all of the honeypots

sending data. Because there is a standard platform independent log format the server can

collect from any honeypot independent of Operating System type. Let us now take a

closer look at how the client actually captures the data.

To determine what an intruder did after gaining access, we often want data that

provides the intruder's keystrokes and the impact of the attack. When encryption is not

used, it is possible to monitor the keystrokes of an intruder by capturing the network

activity off the wire and then using a tool like ethereal to reassemble the TCP flow and

examine the contents of the session. This technique yields not only what the intruder

typed but also what the user saw as output. Steamreassembly techniques provide a nearly

ideal method to capture the actions of an intruder when the session is not encrypted.

When the session is encrypted, stream reassembly yields the encrypted contents of the

session. To be of use these must be decrypted. This route has proven quite difficult for

many. Rather than trying to break the encryption of a session, others have looked for a

way to circumvent encryption.

Information that is encrypted must at some point decrypted for it to be of any use.

The process of circumvention involves capturing the datapost decryption. The idea is to

let the standard mechanisms do the decryption work, and then gain access to this

unprotected data. The first attempts to circumvent such encryption took the form of

trojaned binaries. When an intruder broke into a honeypot, he or she would then log into

the compromised host using encrypted facilities such as SSH. As they typed on the

command line, a trojaned shell binary would record their actions. To counter the threat

posed by trojaned binaries, intruders started to install their own binaries. It became

apparent that the most robust capture method involved accessing the data from within the

Operating System's kernel. When capturing data from within the kernel, the intruder can

use any binary they wish, and we are still able to record their actions. Furthermore,

because user space and kernel space are divided, there is ample opportunity to improve

the subtlety of the technique, by hidingour actions from all users including root.

The first versions of Sebek were designed to collect keystroke data from directly

within the kernel. These earlyversions were the equivalent of a souped up Adore Rootkit

that used a trojaned sys_read call to capture keystrokes. This system logged keystrokes to

a hidden file and exported them over the network in a manner to make them look like

other UDP traffic, such as NetBIOS. This system allows users to monitor the keystrokes

of an intruder, but it was complex, easy to detect through the use of a packet sniffers and

it had a limited throughput. This last issue made it difficult to record data other than

keystrokes.

The next and current iteration of Sebek, version 2, was designed not only to

record keystrokes but all sys_read data. By collecting all data, we expanded the

monitoring capability to all activity on the honeypot including, but not limited to,

keystrokes. If a file is copied to the honeypot, Sebek will see and record the file,

producing an identical copy. If the intruder fires up an IRC or mail client, Sebek will see

those messages. A secondary goal was to make Sebek harder to detect, we focused on

switching from obfuscating the logging traffic, to completely hiding it from a Blackhat.

Now when a Blackhat runs a sniffer to detect suspicious traffic he or she is unable to

detect any Sebek traffic. Sebek is notjust an alternative to TCP session reassemble, to be

used only in the face of encryption. Sebek also provides the ability to monitor the internal

workings of the honeypot in a glass-box manner, as compared to the previous black-box

techniques. If an intruder wanted to install a piece of malware, and then log out, we can

now track the local actions of the malware even if it does not access the network.

Client Data Capture:

Data capture is accomplished with the use of a kernel module. With this module

we gain access to the kernel space ofthe honeypot. Using this access, wethen capture all

read() activity / data. Sebek does this byreplacing the stock read() function in the System

Call Table with a new one. The new function simply calls the old function, copies the

contents into a packet buffer, adds a header, and sends thepacket to the server. The act of

19

replacing the stock function involves changing one function pointer in the System Call

Table.

When a process calls the standard read() function in user space, a system call is

made. This call maps to an index offset in the System Call Table array. Because Sebek

modified the function pointer at the read index to point to its own implementation, the

execution switches into the kernel context and begins executingthe new Sebek read call.

At this point Sebek has complete view all data accessed with this system call. This same

technique could be used for any System Call that we may wish to monitor. Data that

remains encrypted is of little use; to view the data or act on it in some way it must be

decrypted. In the case of an SSH session the keystrokes are decrypted and send to the

shell to have actions performed. This act typically involves a system call. By collecting

data in kernel space, we can gain access to the data within the system call, after it has

been decrypted but before it has been passed to the process that is about to use it. Thus

we circumvent the encryption and capture the keystrokes, file transfers, Burneye

passwords, etc.

Client Module Hiding:

To make the presence of the Sebek module less obvious we borrow a few

techniques used in modern LKM based rootkits, such as Adore. Because Sebek is now

entirely resident in kernel space, mostof the rootkit techniques no longer apply, however,

hiding the existence of the Sebek module is one example of direct technological benefit.

To hide the Sebek module we install a second module, the cleaner. This module

manipulatesthe linked list of installed modules in such a way that Sebek is removed from

the list. This is not a completely robust method of hiding and techniques for detecting

such hidden modules do exist. There are 2 side effects of this removal. First, users can no

longer see that Sebek is installed. Second, once installed, users are unable to rmmod the

Sebekmodule. This hiding abilitycan be disabled by setting the "Testing" variableto "1"

in the sbk_install.sh install script.

20

Client Packet Export:

Once the Sebek client captures the data, it needs to send the data to the server

without the intruder detecting that the host is sending this data. Although using the LAN

network to send traffic to the server is not the most secure communication channel, it was

decided that because of its ubiquity, it would be used to send data to the server. If Sebek

were to simply send the data to the server over an UDP flow, an intruder could simply

check for the presence of such traffic on the LAN to determine if Sebek was installed.

Sebek does send data to the server using UDP, however, before it does this it modifies the

kernel in a few ways to prevent users from seeing these packets. First it modifies the

kernel such that system is unable to see Sebek Packets, not just the packets generated by

the local host, but any appropriately configured Sebek Packet. Next, when Sebek

transmits data onto the network, it ensures that the system cannot block the transmission

or even count the packets transmitted. We will get into the details of packet hiding

shortly.

If every honeypot on a LAN has Sebek installed, none of them can see any Sebek

data, however the server has full access to this data. By deploying in this manner we have

created a covert channel that allows the server gain access to the data captured by the

client. For every read() request, Sebek generates one or more log packets. Each packet

contains a bit of information about the context of the call made and the data that was

accessed with the call. Each packet contains one Sebek record. The record contain fields

that describe the Process that made the call, the time the call was made and the length of

the data recorded as well as the data itself.

These packets are generated entirely within Sebek without using the TCP/IP stack

to generate or send the packets. Because of this, the system is unable to see or block the

packets. After each packet is built, it is sent directly to the device driver, bypassing the

raw socket code path as wellas the packet filtering code path. Since packet sniffers are

21

libpcap based and libpcap uses the raw socket interface to collect packets, sniffers

installed ona host running Sebek are unable to see the Sebek packets generated. 2 Phrack

issue 61 has an article on detecting hidden kernel modules in its Linenoise section. The

article describes a brute force method for detecting hidden modules by looking for what

appearsto be the key module structure.

Linux 2.4.x Kernel

Socket Interface

TCP/IP Stack

Netfilter

Sebek Kernel Module

Data

•' '" • i|-,T"1 # ' |
Transmitter J

i
Packet Generator

Figure 4.1: Conceptual representation of Sebek packet generation. Note how
packets created by Sebek bypass the stack and go directly to the network device driver.
This makes it far more difficult for attacker to detect Sebek activity.

22

Because Sebek generates its own packets and sends them directly to the device

driver, there is no ability for a user to block thepackets with IPTABLES or monitor them

with a network sniffer. This prevents an intruder on a honeypot from detecting the

presence of Sebek by examining the LAN traffic. A secondary problem that must be

addressed is the need to keep honeypot A from detecting Sebek packets from honeypot B.

The use ofEthernet switching does not solve this problem. Sebek is naturally impervious

to ARP spoofing because it does not use ARP to obtain the destination MAC address that

corresponds to the destination IP address, however there are a couple of situations where

A would see B's Packets3. In these situations, an intruder would be able to detect the

presence of Sebek packets onthe LAN by running a sniffer onhoneypot A and would see

honeypot B's Sebek packets.

To solve this problem, Sebek installs its own implementation of the Raw Socket

interface. This new version is programmed to silently ignore Sebek packets. Sebek

packets are defined as those that have both a predetermined destination UDP port and the

proper magic number set in the Sebek header. If these two values match what is expected,

then we know this a packet to ignore. The implementation simply does nothing with

Sebekpackets; it drops them on the floor

23

Sebek Protocol Specification:

To ensure interoperability with all versions of Sebek, a common protocol has

been defined. The communication channel between the client and the server is

unidirectional, with packets originating from the client and destined to the server. This

channel is UDP based and is connectionless and unreliable. Each packet contains one

record. Records are variable length up to MTU, and have a fixed length header. Each

record has a 48 byte header.

0 24 32

Magic Value

Time Seconds

Process ID

File Descriptor

Command Name

Length

Figure 4.2
Sebek Record Header. This header comes after the IP/UDP header, and is followed
bythe data representing the activity on the honeypot (attacker keystrokes, files,
passwords,etc).

24

Risk Involve

For Sebek to be of use in a honeypot it must not be detected by an intruder. It is

possible to detect Sebek, or any covert tool of this type using techniques common to

rootkit detection. As a result, the decision to use this system must consider the increased

potential for detection by an intruder. In the linux client, this increased risk is caused by

the presence of kernel module support as well as the /dev/kmem feature. These facilities

are very powerful and make the linux kernel quite flexible. Just as we used them to install

Sebek, intruders can use them to detect and disable Sebek. Fortunately, by the time Sebek

has been disabled, the code associated with the technique and a record of the disabling

action has been sent to the collection server. Thus in the future one avenue to limit the

risk of detection will be to have the server detect when Sebek has been attacked and then

disable the client.

The current sebek file consists of some parts that is integrated together during the

installation. The first part is to monitor the keystroke activity on the host running the

sebek client from a command line prompt on the server.

[2003-07-23 20:03:45 10.0.0.13 6673 bash 500]whoami
[2003-07-23 20:03:48 10.0.0.13 6673 bash 500]who
[2003-07-23 20:03:50 10.0.0.13 6673 bash 500]su
[2003-07-23 20:03:57 10.0.0.13 6886 bash 0]cd /var/log
[2003-07-23 20:03:57 10.0.0.13 6886 bash 0]ls
[2003-07-23 20:04:01 10.0.0.13 6886 bash 0]mkdir ...
[2003-07-23 20:04:20 10.0.0.13 6886 bash 0]tcsh
[2003-07-23 20:04:20 10.0.0.13 6921 tcsh 0]0
[2003-07-23 20:04:20 10.0.0.13 6920 tcsh 0]vt
[2003-07-23 20:04:20 10.0.0.13 6920 tcsh 0]en
[2003-07-23 20:04:20 10.0.0.13 6920 tcsh 0]en
[2003-07-23 20:04:27 10.0.0.13 6920 tcsh 0]cd /tmp
[2003-07-23 20:04:28 10.0.0.13 6920 tcsh 0]ls
[2003-07-23 20:04:42 10.0.0.13 6920 tcsh 0]cd /usr/lib
[2003-07-23 20:04:42 10.0.0.13 6920 tcsh 0]ls

Figure 4.3

25

The expected result should look like those shown in figure 4.3. The output from the

command prompt is similar to what users see when on a terminal. However, we will only

see commands entered and not the output of those commands. Note that sometime a

hacker infiltrates a system using command prompt line. This is very common especially

in Unix command because of the vulnerability that exist in the system. Control characters

are escaped when present. For example, when a Backspace is present, it is replaced with

[BS].

Sebek now comes with a web based analysis interface. This interface provides

users with the ability to monitor keystroke activity, search for specific activity, recover

SCPed files and in general provides an improved data browsing capability. This interface

is implemented with PHP and only examines the data contained in the database; it does

not use data from other sources such as packet captures or syslogs. It is designed to

support the workflow of forensic investigation; however it does require a fair degree of

technical skill to understand. The intention was to make this a tool for Sebek data like

ethereal is for packet captures. The interface has 3 primary options: viewing keystrokes,

searching, and browsing.

• The Keystroke Summary view provides a summary of all keystroke activity.

• The Search view allows users the ability to query for certain information.

• The Browse view, or table view, provides a summary of all activity, including non

keystroke activity.

First of all, it is not the intention that this web interface will be use for this project, rather

just to show the expected and capabilities of these sebek file towards the honeypot setup.

26

ffiiia^fllPp^
10.0.1.13 200347-23 20:05:08 1209

Figure 4.4

Figure 4.4 shows an example of the system overview of the interface. It provides a list of

all the hosts we are monitoring and the last time we saw any activity from the host. By

clicking on the Keystrokes button we can get a summary of what most likely is humanly

derived activity.

27

P35T 1 IP""
10011?

^e||11md
13IS 0

cuMMAp-'d i • •- i^jgE^^^^^^^^^^^^

e sh 0
2WJ 07-13 20 04 MJrf - - * -*•
2«il»-i|7-23 20;04;521iCrr;..e|1;
2003-07-23 20:04:54k mttir...
2003-07-23 20:04:571^

e lo.ai.B 1323 0 less 3 2963-07-13 2ft04:35J#XJO0
2OT3-0?-3S2ft*fc»]#tt

© io a i.i3 1321 0 W 6 2003-07-23 20:04:0?I# -••<XO

e 10.0.1.13 1271 500 bash 0 IM®-«7-MJft«S.-2!»]i<'1^BS}(ffiir-4>.,
|2«3-»7-23 2M&33]#'*
tl«5-*7-23 2feft5:4S]* vir.a^w^

11863-07-23 2fc«*SZl# flJsal

9 io.ai.i3 1312 500 w 6 1003-07-23 20:0$:33]#-.'-'<:00

© io.ai.i3 1271 500 bash 3 lWI3-07-231ftW;34]#p3]EB3]

e 10.0.1.13 1304 500 tput 3 2003-07-23 20:03:24)* '#:/>

e io.ai.13 13(15 500 wc 0 jlMB-ftJ-232ft«S:241si psj

e 10CLI.lt 1307 500 tpiic 3 fZBftS-flr-ZS ZAOS24^ >V>~

e 10.0l1.13 1302 500 tput 3 J2M3-07-Z3 20-OS-2*]* OC-

6"

10 0113

10.(11.13'
101) 113

1252 0

UflS "a
"1264 500

mtnj,etly (1

o J

120U3-U7-2J >0 03 16|<< -la-. -"
|2fl«».07-EJ 29 «;07Jrf VV1 ^ ('!-•. .

20113 A7-23 20 V2 U'*)1'' '"-
24ii3 it? 23 20 02 0*1'' ><

6 100.1.13 1263 0 sshd 3 J2W3-<fl-23J0-M:Q*l* OC
0 sshd 4 JM03-«-23ifrM.(n]*5:::-:oc^i-.rn : =t

^3BH

Figure 4.5

The Keystroke Summary view in Figure 6 provides the last 5 or so lines of text from all

sessions on a host. Sessions are nothing more than activity on a specific File Descriptor

for a given process. The sessions are sorted by time of last activity, with most recent at

the top. Within each summary the keystroke logs are sorted in the order they occur

28

Chapter 5

Conclusion and Recommendation

For conclusion, honeypot is still a new concept in terms of security measure. Honeypot

subject itself is very interesting. It involves not only the technology aspect, but a more

detail research on individual psychology and their behavior. The main objective of the

project is to create an education tool for university student to show how honeypot works.

The main component for this honeypot is the Sebek server and Sebek client. So it is vital

or essential to explain this feature to understand the main concept of honeypot. The

operating system for this particular network will consist of mainly Linux product that is

Fedora Core operating system. Because it was intentionally built and test in a UNIX

environment, choosing Linux as the operating system is a safe way. For that reason, I

opted to choose Fedora Core 3 as the operating system. Because it support network and

can be setup as a server. As for the recommendation, it is hope that this honeypot setup

project will grow from an education tool, to a fully workable system for university

security. It is reported that university has the most fragile net security. Through out my

research and literature review, I've stumble upon some university where they setup their

own honeynet and the research, analysis, and statistic that they collect are use widely for

numerous reason.

Perhaps maybe, University Technology Petronas can be the pioneer for this field in this

region by using this project as a stepping stone.

29

References

1. Edward Balas 22 July 2001, Know Your Enemy: The motives andpsychology of

the black hat community, retrieved on January 13,2005

<http://proiect.honeynet.org/articlel.htm>

2. Edward Balas 14 January 2002, Know Your Enemy: Honeynet

What a Honeynet is, its value, how it works, andrisk/issues involved retrieved on

February 15,2005

<http://project.honeynet.org/article2.htm>

3. Pfleeger, C. and Pfleeger, S. " Security in computing' Third edition, retrieved on

February 15, 2005

4. William Stallings " Business Data Computing' Fourth Edition, retrieved on

February 15, 2005

5. Edward Balas 22 July 2001, Know Your Enemy: Sebek, A kernel base data

capturingtool, retrieved on January 13,2005

<http://project.honeynet.org/article3.htm>,

6. Nurris Ishak (New Straits Times), 15th May 2001 "In Malaysia, it's a hackers

heaven" retrieved on 2 June 2005

<http:www.mycert.org.my/press.htm>

30

Appendices

Appendix 1

User Space

ssizej read(int fd.void
*buf(sizej count);

Standard Library

31

Kernel Space

Linux 2.4.x Kernel

OriginalRead Original Write

Read Write

Syscall Table

Sebek Kernel Module

New_Read<» » Datalogger

Appendix 2: keystroke example

[2003-07-23 20:03:45 10.0.,0.13 6673 bash 500]whoami

[2003-07-23 20:03:48 10.0.,0.13 6673 bash 500]who

[2003-07-23 20:03:50 10.0.,0.13 6673 bash 500]su

[2003-07-23 20:03:57 10.0.,0.13 6886 bash 0]cd /var/log
[2003-07-23 20:03:57 10.0,,0.13 6886 bash 0]ls

[2003-07-23 20:04:01 10.0..0.13 6886 bash 0]mkdir ...

[2003-07-23 20:04:20 10.0..0.13 6886 bash 0]tcsh

[2003-07-23 20:04:20 10.0..0.13 6921 tcsh 0]0

[2003-07-23 20:04:20 10.0,.0.13 6920 tcsh 0]vt

[2003-07-23 20:04:20 10.0..0.13 6920 tcsh 0]en

[2003-07-23 20:04:20 10.0..0.13 6920 tcsh 0]en

[2003-07-23 20:04:27 10.0..0.13 6920 tcsh 0 3cd /tmp

[2003-07-23 20:04:28 10.0..0.13 6920 tcsh 0]ls

[2003-07-23 20:04:42 10.0 .0.13 6920 tcsh 0]cd /usr/lib

[2003-07-23 20:04:42 10.0 .0.13 6920 tcsh 031s

Appendix 3: Structure ofa Sebek packet sentbythe client

Field Name

Magic

Version

Type

Counter

Ttme_sec

Time_usec
pTd
UID

FD

Com

Length

Data Type
Unsigned 32 bit Int

Unsigned 16bitlnt

Unsigned 16bitlnt

Unsigned 32bit Int

Unsigned 32bit Int

Unsigned 32bit Int
Unsigned 32bit Int
Unsigned 32bit Int
Unsigned 32bit Int
12 Character Array

Unsigned 32bit Int

32

Description
Along with the DST Port, Magic is used
by Sebek to identify packets which
should be hidden

Sebek Protocol Version, current version
isT.

Type of record represented. Read data
is type 0, Write data is type 1- Currently
only Read is implemented.

PDU counter, used to identify when
packets are lost This counter restarts
at 0 when installed.

Seconds since UNIX epoch according
to the honeypot
Residual Microseconds

Process ID

User ID

File Descriptor
Records the first 12 characters of the
command's name.

Length in octets of the PDU's body.

Appendix 4: Sebek Record Header. This header comes after theIP/UDP header, and is
followed bythe data representing the activity onthe honeypot (attacker keystrokes, files,
passwords,etc).

Magic Value
Version Type

Counter

Time Seconds

Time Microseconds

Process ID

User ID

File Descriptor

33

Appendix 5

Number ofPort Scans per Day

Ti

C

3

"0
O

a.

o
U

Day number for the thirty days of November

7. Thenumbers of illegal port scanning for the entire November 2000 in the case

study from the paper entitle ' know your enemy: motive,

The motives and psychology of the black hat community'

34

Appendix 7 (Coding)

sbkkslog

use strict;
use 5.004;
useGetopt::Std;
use Time::gmtime;
use POSIX;
use FileHandle;
use Socket;

my$ks_read_length_limit = 100; # this is the maximum sizeof a read we
will consider to be kestroke based

yes, this approach does suck

sub main{

my %dat;
my $line;

#-— take records from sebeksniff via STDIN

while(read(STDIN,$line,52,0) > 0){

my Sip;
my Smagic;

my $ver;
my Stype;

my Scounter;
my $time_sec;
my $time_usec;
my $pid;
my $uid;
my $fd;
my Scorn;
my Slen;
my Sdata;

my $retura_code;

(Sip,$magic)$ver,$type,Scounter,$time_sec,$time_usec,$pid,$uid>$fd,$com,Slen)
unpack("NNnnNNNNNNal2N",$line);

read(STDIN,$data,Slen,0);

next if($type != 0 ||$len > $ks_read_length_limit);

Scorn =~ sA0//g;

my $tm = gmtime(Stimesec);

35

mySdatetime - strftime("%Y-%m-%d %H:%M:%S",$tm->sec,$tm->min,$tm->hour,$tm-
>mday,$tm->mon,$tm->year,$tm->wday,$tm->isdst);

$dat{$ip}{$pid}{$fd}{"data"} = Sdata;
$dat{$ip}{$pid}{$fd}{l,uid"}{$uid} = 1;

$dat{$ip}{$pid}{$fd}{"com"}{$com} = 1;

if($data=~ mAn|\r/){
my Slog;
my $uid_str;
my $com_str;
my $u;
my $c;

my Saddr = inet_ntoa(pack("N")$ip));
Slog = $dat{$ip} {Spid} {Sfd} {"data"};

map control characters
Slog =~ sAxlb\[A/[U-ARROW]/g;
Slog =~ s/\xlb\[B/[D-ARROW]/g;
Slog =~ sAxlb\[C/[R-ARROW]/g;
Slog =~ sAxlb\[D/[L-ARROW]/g;
Slog =~ sAxlb\[3~/[DEL]/g;
Slog =~ sAxlb\[5~/[PAGE-U]/g;
Slog =~ sAxlb\[6~/[PAGE-D]/g;
Slog =~ sAx7f[BS]/g;
$log=~sAxlb/[ESC]/g;

scrub other nonascii values

Slog =~ s/[A\x20Ax7e]//g;

my $x = 0;
foreach $u (keys %{$dat{$ip}{$pid}{$fd}{"uid"}}){

if(Sx++){
$uid_str = "/Su";

}else{
$uid_str - "$u";

}
}

$x = 0;
foreach $c(keys %{$dat{$ip}{$pid}{$fd}{"com"}}){

if($x++){
$com_str = "/$c";

}else{
$com_str .= "$c";

}
}

print "[Sdatetime Saddr Spid Scornjtr $uid_str]$log\n";

delete the record

36

undef $dat{$ip}{$pid}{$fd};

mam

sbkupdate

use strict;
use 5.004;
use Getopt::Std;
useTime::gmtime;
use DBI;
useDBD::mysql;
use POSIX;
use FileHandle;
use Socket;

my Sdbh;

my Sdatabase - "sebek";
my Sdbpasswd ="";
my Sdbuid = "sebek";
my Sdbserver = "localhost";
mySdbport -"3306";

sub main{

my $old_counter = 0;
my Stotal;
my Slost;

my Sip;
my Smagic;
my Sver;
my Stype;
my $counter;
my $time_sec;
my $time_usec;
my Spid;

37

my Suid;
my $fd;
my Scorn;
my Slen;
my Sdata;
my Sreturncode;

eval{
require DBI;

};
if($@){

print STDERR" $0: needs DBI\n";
exit 1;

}

get user input
my %opt;

getopts("u:p:d:s:P:h",\%opt);

if($opt{u}){
$dbuid = $opt{u};

}

if($opt{p}){
Sdbpasswd - $opt{p};

}

if($opt{d}){
Sdatabase = $opt{d};

}

if($opt{s}){
Sdbserver = $opt{s};

}

if($opt{P}){
$dbport = $opt{P};

}

if($opt{h}){
print "$0:(Loads Sebek records into specified mysql database)\n";
print "\t-u User ID\n";
print "\t-p Passwd\n";
print "\t-d Database Name\n";
print "\t-s Server Name or IP\n";
print "\t-P Port Number\n";
print "\t-h Help\n";
exit;

}

38

Sdbh = DBI-
>connect("DBI:mysql:database=$database;host=$dbserver;port=$dbport",$dbuid,$dbpasswd);

if(!defmed(Sdbh)){
warn "Unable to get access to database\n";
exit;

}
Sdbh->{LongReadLen} = 16384;

only need to create query and prepare it once.
mySsql = "INSERT INTO read_data (ipaddr, time, counter, command, filed, pid,uid, length, data)";
Ssql - " VALUES(?,?,?,?,?,?,?,?,?);";

my Squery= $dbh->prepare(Ssql);

my $line;

#— take records from sebeksniff via STDIN

while(read(STDIN,$line)52,0) > 0){

($ip,$magic,$ver,$type,$counter,$time_sec,$time_usec,$pid,$uid,$fd,$com)$len) =
unpack("NNnnNNNNNNal2N",$line);

read(STDIN,$data,$len,0);

nextif($type !=0);

$total++;

if($counter - $old_counter > 1){
Slost - Scounter - (Soldcounter +1);
warn " Slost records missing\n";

}
Soldcounter = Scounter;

Scorn =~ sA0//g;

my $tm = gmtime($time_sec);
mySdatetime - strftime("%Y-%m-%d %H:%M:%S",$tm->sec,$tm->min)$tm->hour,$tm-

>mday)$tm->mon,$tm->year,$tm->wday,$tm->isdst);

$query->bind_param(l,$ip);
Squery->bind_param(2,$datetime);
Squery->bind_param(3,$counter);
$query->bind_param(4,Scom);
$query->bind_param(5,$fd);
$query->bind_param(6,$pid);
$query->bind_param(7,$uid);
$query->bind_param(8,$len);
$query->bind_param(9,$data);

39

$return_code = $query->execute;

if(!$return_code){
sleep 2;
warn ("reconnecting to the datbaseW);
Sdbh = DBI-

>connect("DBI:mysql:database=$database;host=$dbserver;port=$dbport",$dbuid,$dbpasswd);
$query - $dbh->prepare($sql);

}

}

main();

40

