Investigation of the Hydrodynamics of Fixed Bed Reactor: Co-current Upflow

by

Syamsina Rashid

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

JULY 2005

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Investigation of the Hydrodynamics of Fixed Bed Reactor: Co-current Upflow

by

Syamsina Rashid

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Chemical Engineering)

Approved by,

Mrs. Nurhayati Bt. Mellon Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

July 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

suning SYAMSINA RASHID

ABSTRACT

The main objective of this project is to investigate the hydrodynamic characteristics of co-current upflow of gas and liquid in a fixed bed reactor. This is an experimental based project utilizing the packed bed reactor for residence time distribution (RTD) studies. In this project, the RTD of a bench-scale multiphase was studied using air as a gaseous phase and water as a liquid phase. The ranges of air and water velocities are kept at such levels as to simulate the hydrogen/oil ratios of typical bench-scale hydroprocessing units. The experiments are conducted in upflow mode of operation in the reactor, with increasing gas/liquid ratio. The effects of gas and liquid velocities on different hydrodynamic parameters such as pressure drop and operating liquid holdup are investigated. Operating the fixed bed reactor in upflow mode showed increase in pressure drop, and decrease in operating liquid holdup. Three moments analysis, which are mean residence time, variance, and skewness, are evaluated in order to characterize the RTD. These three moments analysis revealed an increase in mean residence time, and also increases in variance and skewness with increasing gas/liquid ratio. Other parameters such as bed Peclet number of liquid and stagnant zone volume were also investigated with variation of gas and liquid velocities as to measure the efficiency of the reactor. Decreasing Peclet number and stagnant zone volume suggested the decreasing efficiency of the reactor, with increasing gas/liquid ratio. The discrepancies in experimental results suggested that there are conditions to be altered in order to eliminate the inconsistency.

ACKNOWLEDGEMENTS

The author would like to be grateful to The Most Merciful, Allah S.W.T, for giving the chance to conduct and successfully complete this final year research project.

The author's outmost appreciation is for the project supervisor, Mrs. Nurhayati bt. Mellon, who has given the trust and supervision to conduct such outstanding experiment for this final year research project.

To Universiti Teknologi PETRONAS, the author is thankful for all the equipment provided in order to complete the experiments. Also to laboratory technicians, who have helped in various ways in providing sufficient assistance and supports.

To supportive colleagues and families, the motivations and advises are mostly appreciated by the author.

Also to all individual involved directly or indirectly in this project, the author is thankful for the contribution in progression and completion of this final year research project.

iv

TABLE OF CONTENTS

LIST OF FIGU	RES AI	ND TABLES1
ABBREVIATIO	ONS AN	ND NOMENCLATURES
CHAPTER 1:	INTE	RODUCTION5
	1.1	BACKGROUND OF STUDY5
	1.2	PROBLEM STATEMENT6
	1.3	OBJECTIVE AND SCOPE OF STUDY7
CHAPTER 2:	LITE	CRATURE REVIEW / THEORY8
	2.1	PRESSURE DROP AND OPERATING LIQUID
		HOLDUP IN PACKED BED REACTOR8
	2.2	RESIDENCE TIME DISTRIBUTION (RTD) STUDY IN
		REACTOR11
	2.3	RTD ANALYSIS ON AXIAL DISPERSION AND
		STAGNANT ZONE VOLUME21
CHAPTER 3:	мет	HODOLOGY / PROJECT WORK27
	3.1	GENERAL EXPERIMENTAL EQUIPMENT27
	3.2	EXPERIMENTAL GAS AND LIQUID FLOW RATES30
	3.3	PROCEDURE IDENTIFICATION
CHAPTER 4:	RES	ULTS AND DISCUSSIONS
	4.1	EFFECT OF GAS/LIQUID RATIO ON PRESSURE
		DROP AND OPERATING LIQUID HOLPUP
	4.2	EFFECT OF GAS/LIQUID RATIO ON MOMENTS OF
		RTD

	4.3	EFFECT	OF	GAS/LIQU	ЛD	RATIO	ON	AXIAL
		DISPERSI	ON A	ND STAG	NANT	T ZONE	VOLU	ME BY
		RTD ANA	LYSI	S				45
CHAPTER 5:	CONC	LUSIONS	AND	RECOMM	END	ATIONS	•••••	47
	5.1	CONCLU	SIONS	3	•••••			47
	5.2	RECOMM	1END	ATIONS	•••••			50
REFERENCES		••••••						53
APPENDICES	••••••				•••••			54

κ.

LIST OF FIGURES AND TABLES

- *Figure 2.1* RTD Measurements.
- Figure 2.2 RTD in different reactor situations.
- **Figure 2.3** The Cumulative Distribution Function, F(t).
- *Figure 2.4* Variance for matching theoretical curves.
- Figure 2.5 The spreading of tracer according to the dispersion model.
- *Figure 2.6* Representation of the dispersion (dispersed plug flow) model.
- Figure 2.7 Non ideal flow patterns which may exist in process equipment.
- Figure 3.1 Process Diagram for RTD Studied in Tubular Reactor (BP 112).
- *Figure 4.1* Effect of gas/liquid ratio on pressure drop at constant liquid flow rates of 0.05 LPM.
- *Figure 4.2* Effect of gas/liquid ratio on pressure drop at constant liquid flow rates of 0.10 LPM.
- *Figure 4.3* Effect of gas/liquid ratio on pressure drop at constant liquid flow rates of 0.15 LPM.
- *Figure 4.4* Effect of gas/liquid ratio on operating liquid holdup at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.
- *Figure 4.5* Buchanan correlations on effect of gas/liquid ratio on operating liquid holdup.
- *Figure 4.6 E* curves for gas/liquid ratio of 150.
- *Figure 4.7 E* curves for gas/liquid ratio of 200.
- *Figure 4.8 E* curves for gas/liquid ratio of 250.
- *Figure 4.9 F* curves for gas/liquid ratio of 150.
- *Figure 4.10* F curves for gas/liquid ratio of 200.
- *Figure 4.11* F curves for gas/liquid ratio of 250.

- *Figure 4.12* Effect of gas/liquid ratio on mean residence time of liquid at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.
- *Figure 4.13* Effect of gas/liquid ratio on variance at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.
- *Figure 4.14* Effect of gas/liquid ratio on skewness at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.
- *Figure 4.15* Effect of gas/liquid ratio on liquid Peclet number at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.
- *Figure 4.16* Effect of gas/liquid ratio on stagnant zone volume at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.
- Table 3.1Experimental gas and liquid flow rates for gas/liquid ratio of 150, 200and 250.

ABBREVIATIONS AND NOMENCLATURES

LPM	Liter p	er minute

- d_c Column diameter
- d_p Particle diameter
- ΔP Pressure drop
- H_{o} Operating liquid holdup
- L_c Height of column
- ε Fractional void volume
- μ_{g} Absolute viscosity of gas
- μ_l Absolute viscosity of liquid
- U_{g} Superficial gas velocity
- U₁ Superficial liquid velocity
- D_p Effective particle diameter
- G_g Mass flow rate of gas
- G_l Mass flow rate of liquid
- ρ_g Density of gas
- ρ_l Density of liquid
- g Gravitational acceleration
- Re Reynolds number
- D Axial dispersion coefficient
- *L* Distance between the tracer injection point and conductivity measurement probe
- *u* Mean real liquid velocity
- t_m Mean residence time
- σ^2 Variance of the *E* curve

3

<i>s</i> ³	Skewness of the <i>E</i> curve
$\sigma^2_ heta$	Variance of the E curve for dimensionless time units
С	Concentration
C_i	Concentration at time t_i
HRT	Hydraulic retention time
	5
T_d	Theoretical mean residence time
T_d Q	Theoretical mean residence time Volumetric flow rate of liquid

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND OF STUDY

Simultaneous gas-liquid flow through packed beds is frequently encountered in chemical process equipment and is practiced as countercurrent flow, co-current downflow (trickle bed) or co-current upflow. Countercurrent flow is preferred for mass transfer operations, while the co-current flow of gas and liquid phases is frequently adopted in multiphase reactors, since the throughput is not limited by flooding.

Multiphase packed-bed reactor with two-phase upflow is used in gas-liquid and gasliquid-solid processes that require a high ratio between the liquid and gas flow rates. It is also used for processes with relatively large liquid residence time in order to achieve the necessary degree of conversion. It is also used when the heat of reaction is high, due to the large liquid holdup and their improved radial liquid mixing and radial heat transfer. The upflow operation is also advantageous in cases where the ratio of column diameter over particle diameter, d_c/d_p is relatively small, because then the liquid-solid contact is more effective than in trickle-bed operation. A ratio of the column to the catalyst diameter smaller than 15 inch the other types of fixed-bed reactor such as trickle beds, cause unsatisfactory liquid distribution due to wall bypassing. One of the drawbacks of the upflow fixed-bed reactors is that the flow behavior of the liquid is non ideal and that backmixing is considered to be more important than in trickle beds. This may give better heat transfer, but larger axial mixing would give poorer conversion.

Considerable work has been reported in literature on co-current downflow of phases; very little however has been reported on co-current upflow in spite of the specific

advantages of the downflow model; i) the liquid distribution is radially uniform; this promote efficient distribution of heat and its transfer to and from the wall when desired and prevents the formation of dry spots, ii) the larger liquid holdup gives higher production rate for a given size of reactor, and iii) liquid-side mass transfer coefficients are higher.

Few reports are available comparing the hydrodynamics of the two modes of operation. It is concluded that the superiority of any mode of operation depends on whether the reaction is liquid- or gas-limited, i.e. the performance of trickle bed reactor is superior for a gas-limited reaction, whereas upflow fixed bed reactor gave advantages for liquid-limited reaction.

1.2 PROBLEM STATEMENT

1.2.1 Problem Identification

Hydrodynamics study in a fixed bed reactor is vital in obtaining relevant data for reactor scale up as well as investigating the performance of the reactor. Co-current upflow arrangement received considerable interest due to the fact that almost complete catalyst particle wetting is achieved which enhance the reaction rate of the process. However, the continuous liquid phase and dispersed gas phase will probably result to non-ideal flow and possibility of stagnant zone in the reactor, thus resulted poor reactor performance.

1.2.2 Significant of Project

The RTD of a bench-scale multiphase reactor has been investigated mainly for industrial scale-up purposes. The successful design of commercial reactors involved generation of reliable data in laboratory-scale reactors and scaling up of these data for larger units. The study of effects of gas and liquid flow rates on various hydrodynamics parameters utilizing the RTD technique using tracer is important for the performance of the reactor. Future work may be based on the development of this study.

1.3 OBJECTIVE AND SCOPE OF STUDY

1.3.1 Objectives

- To investigate the effect of gas/liquid ratio on pressure drop and operating liquid holdup.
- To characterize residence time distribution (RTD) of reactor by three moments analysis (mean residence time, variance, and skewness).
- To perform the residence time study (tracer study) in order to analyze the effect of gas/liquid ratio on the axial dispersion and stagnant zone volume.

1.3.2 Scope of Study

The scope of this project is to utilize the existing laboratory experiment on RTD study in packed bed reactor, at the Reaction Teaching Lab. However, few modifications are done in order to study the hydrodynamics of the packed bed reactor. The modifications are mainly on the variation of the gas and liquid flow rates, to suit the scaled down of commercial reactors. These variations are analyzed based on the response of hydrodynamics parameters.

1.3.3 Feasibility of the Project within the Scope and Time frame

This experiment is conducted as nearly similar to the existing procedures. Due to time constraint, the RTD study may not be extended to the effect of different catalyst particle and diluent size, or effect of different packing.

The experiments emphasized mainly on the investigation of the hydrodynamic characteristics of co-current upflow of gas-liquid reactor. With the available equipment, the RTD study can be conducted to evaluate the three moments analysis, to evaluate the effects of gas/liquid ratio on axial dispersion and stagnant zone volume. Consecutively, the effect of gas/liquid ratio on operating liquid holdup and pressure drop are also investigated.

CHAPTER 2 LITERATURE REVIEW / THEORY

2.1 PRESSURE DROP AND OPERATING LIQUID HOLDUP IN PACKED BED REACTOR

2.1.1 Pressure Drop Correlation

The pressure loss accompanying the flow of gas through packed columns has been the subject of many theoretical analysis and experiment investigations to try to find a suitable mathematical expression to predict the pressure drop caused by both kinetic and viscous energy losses.

A very successful attempt is that of Ergun [1] which is included in the Perry's Handbook. The Ergun equation is;

$$\frac{\Delta P}{L_c}g = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu U_g}{D_p^2} + 1.75 \frac{1-\varepsilon}{\varepsilon^3} \frac{G_g U_g}{D_p}$$
(1)

The Ergun equation gave very good results in the whole range of Reynolds numbers from 1 to 100,000. Also, it should be noted that the effective diameter is equal to real diameter only when the particles are spherical; for all other shapes the D_p is define as $D_p = 6V_p/A_p$, where V_p is the volume of particles and A_p is the external surface of particle. Ergun equation assumed equivalent pressure drop regardless of any type of flow regimes.

Turpin and Huntington [2] also gave a single relation for pressure drop valid for all the regimes, in terms of a dimensionless parameter, $Z = \operatorname{Re}_{g}^{1.167}/\operatorname{Re}_{l}^{0.767}$. On the other hand, Varma et al. [3] developed an empirical equation for predicting the transition from one flow regime to another. It presented typical variation of frictional pressure

drop with liquid and gas flow rates respectively for bubble flow, pulse flow and spray flow. It is seen that though the pressure drop increases with the gas and liquid rates in all the regimes, its variation differs for the different flow regimes. For example, the pressure drop increases rapidly with the gas rate in the spray flow as compared to its increase in pulse flow and in bubble flow.

However, it is noted that the transition between the flow regimes is not sharp and occurred over a small range in gas and liquid flow rates. Thus, all flow regimes in cocurrent upflow can be assumed equivalent in this experiment, as in Ergun [1] principle, which has been used widely in several researches.

In experiment, pressure drop is directly obtained from the differential pressure reading at control panel or via the Data Acquisition System (DAS). The pressure drop reading is taken at time interval of one minute, and readings are averaged for one value of pressure drop for every variation of gas and liquid flow rates.

2.1.2 Operating Liquid Holdup

Liquid holdup may well be considered as the basic liquid-side dependent variable in packed tower operation. Holdup has a direct influence on factors such as liquid-phase mass transfer, loading behavior, and gas-phase pressure gradient. Researchers measured holdup, with or without gas flow, and have produced empirical description of their results. Only the correlation of Buchanan [4] is in dimensionless form and can claim any generality over a wide range of Reynolds numbers (from 0.01 to 1000). This correlation is appropriate for experimental research. It applied to ring packing operating below the load point and correlated all literature data to about $\pm 20\%$. The Buchanan equation is consisted of two dimensionless terms, the 'Film number' and 'Froude number';

$$H_{o} = 2.2 \left(\frac{\mu_{l} U_{l}}{g \rho_{l} D_{p}^{2}} \right)^{\frac{1}{3}} + 1.8 \left(\frac{U_{l}^{2}}{g D_{p}} \right)^{\frac{1}{2}}$$
(2)

Experimentally, the operating liquid holdup of liquid is the portion of liquid that is drained out of the catalyst bed when both gas and liquid flows are stopped. The

operating liquid holdup is an important parameter influencing the rate of reaction in a gas-liquid-solid multiphase reactor. The operating liquid holdup of liquid is defined as the ratio of the volume of the free-drained water to the total volume of the packed bed.

Chander et al. [5] determined the effect of liquid space velocity on holdup and proved that the operating liquid holdup increased with liquid space velocity. Thus, higher liquid flow rate could increase the reaction rate. Also, the studies also showed that liquid holdup for the upflow mode of operation was reduced when smaller size of particles was used. Stiegel and Shah [6] also have reported the decrease of liquid holdup with the decrease in particle size for the upflow mode of operation. It is also observed that studies by Chander et al. [5] showed that when catalyst bed was diluted with smaller size of particles, the effect of space velocity on operating liquid holdup was very small or negligible.

Chander et al. [5] also studied the effect of gas/liquid ratio on operating liquid holdup, which resulted that the liquid holdup decreased with increasing gas flow rate for the upflow mode when the bed was packed with a larger size of diluent.

10

2.2 RESIDENCE TIME DISTRIBUTION (RTD) STUDY IN REACTOR

The RTD of a reactor is a characteristic of the mixing that occurs in the chemical reactor. There is no axial mixing in a plug-flow reactor (PFR), and this omission is reflected in RTD which is exhibited by this class of reactors. The CSTR (constant stirred type reactor) is thoroughly mixed and possesses a far different kind of RTD than the plug-flow reactor. The RTD exhibited by a given reactor yields distinctive clues to the type of mixing occurring within it and is one of most informative characterizations of the reactor.

2.2.1 Measurement of the RTD

The RTD is determined experimentally by injection of an inert chemical, molecule, or atom, called a tracer, into the reactor at some time, t = 0 and then measuring the tracer concentration, C, in the effluent stream as a function of time. In addition to being a non-reactive species that is easily detectable, the tracer should have physical properties similar to those of the reacting mixture and be completely soluble in the mixture. The latter requirements are needed so that the behavior of tracer will honestly reflect that of the material flowing through the reactor. The two most used methods of injection are pulse input and step input;

2.2.1.1 Pulse Input

In a pulse input, an amount of tracer N_o is suddenly injected in one shot into the feedstream entering the reactor in as short a time as possible. The outlet concentration is then measured as a function of time. Typical concentration-time curves at the inlet and outlet of an arbitrary reactor are shown in *Figure 2.1*. The effluent concentration-time curve is referred to as the *C* curve in RTD analysis. The injection of a tracer pulse shall be analyzed for a single-input and single-output system in which only flow (i.e. no dispersion) carries the tracer material across system boundaries. First, an increment of time Δt is chose to be sufficiently small that the concentration of tracer, C(t), exiting between time t and $t + \Delta t$ is essentially constant. The amount of tracer material, ΔN , leaving the reactor between time t and $t + \Delta t$ is then

$$\Delta N = C(t) v \Delta t \tag{3}$$

where v is the effluent volumetric flow rate. In other words, ΔN is the amount of material that has spent time between time t and $t + \Delta t$ in the reactor. If the term is divided by the total amount of material that was injected into reactor, N_o , then

$$\frac{\Delta N}{N_o} = \frac{vC(t)}{N_o} \Delta t \tag{4}$$

which represents the fraction of material that has a residence time in the reactor between time t and $t + \Delta t$.

Figure 2.1 RTD measurements.

For pulse injection, it is defined

$$E(t) = \frac{vC(t)}{N_o} \tag{5}$$

so that

$$\frac{\Delta N}{N_o} = E(t)\Delta t \tag{6}$$

The quantity E(t) is called the residence-time distribution function. It is the function that describes in a quantitative manner how much time different fluid elements have spent in the reactor.

If N_o is not known directly, it can be obtained from the outlet concentration measurements by summing up all the amounts of materials, ΔN , between time equal to zero and infinity. Writing equation (3) in differential form yields,

$$dN = vC(t)dt \tag{7}$$

and then integrating,

$$N_o = \int_0^\infty vC(t)dt \tag{8}$$

The volumetric flow rate is usually constant, so E(t) can be defined as

$$E(t) = \frac{C(t)}{\int_{0}^{\infty} C(t)dt}$$
(9)

The integral in the denominator is the area under the C curve.

An alternative way of interpreting the residence-time function is in its integral form:

It is known that the fraction of all the material that has resided for a time t in the reactor between t = 0 and $t = \infty$ is 1; therefore,

$$\int_{0}^{\infty} E(t)dt = 1$$
(11)

The principal potential difficulties with the pulse technique lie in the problems connected with obtaining a reasonable pulse at a reactor's entrance. The injection must take place over a period which is very short compared with residence times in various segments of the reactor or reactor system, and there must be a negligible amount of dispersion between the point of injection and the entrance to the reactor system. If these conditions can be fulfilled, this technique represents a simple and direct way of obtaining the RTD.

There are problems when the concentration-time curve has a long tail because the analysis can be subject to large inaccuracies. This problem principally affects the denominator of the right-hand side of equation (9), i.e. the integration of the C(t) curve. It is desirable to extrapolate the tail and analytically continue the calculation. The tail of the curve may sometimes be approximated as an exponential decay. The inaccuracies introduced by this assumption are very likely to be much less than those resulting from either truncation or numerical imprecision in this region.

2.2.1.2 Step Tracer Experiment

The meaning of the RTD curve is previously discussed, now a more general relationship between a time varying tracer injection and the corresponding concentration in the effluent will be formulated. It should be stated without development that the output concentration from a vessel is related to the input concentration by the convolution integral [7].

$$C_{out}(t) = \int_{0}^{t} C_{in}(t-t')E(t')dt'$$
(12)

The inlet concentration most often takes the form of either perfect pulse input (Dirac delta function), imperfect pulse injection (see *Figure 2.1*), or step input.

Step input in the tracer concentration will be analyzed for a system with a constant volumetric flow rate. Consider a constant rate of tracer addition to a feed which is initiated at time t = 0. Before this time, no tracer was added to the feed. Stated symbolically,

$$C_o(t) = 0 \qquad t < 0$$
$$C_o(t) = \text{constant} \qquad t \ge 0$$

. .

The concentration of the tracer in the feed to the reactor is kept at this level until the concentration in the effluent is indistinguishable from that in the feed; the test may then be discontinued. A typical outlet concentration curve for this type of input is shown in *Figure 2.2*.

Because the inlet concentration is constant with time, C_o , the integral is taken outside the integral sign, i.e.,

$$C_{out} = C_o \int_0^t E(t') dt'$$

Dividing by C_o

$$\left[\frac{C_{out}}{C_o}\right]_{step} = \int_0^t E(t')dt' = F(t)$$
(13)

This expression is differentiated to obtain the RTD function E(t):

$$E(t) = \frac{d}{dt} \left[\frac{C_{out}}{C_o} \right]_{step}$$
(14)

The positive step is usually easier to carry out experimentally that the pulse test, and it has the additional advantage that the total amount of tracer in the feed over the period of the test does not have to be known as it does in the pulse test. One possible drawback in this technique is that it is sometimes difficult to maintain a constant tracer concentration in the feed. Obtaining the RTD from this test also involves differentiation of the data and presents an additional and probably more serious drawback to the technique, because differentiation of data can, on occasion, lead to large errors. A third problem lies with the large amount of tracer required for this test. If the tracer is very expensive, a pulse test is almost always used to minimize the cost.

2.2.2 Characteristics of the RTD

Sometimes E(t) is called the exit-age distribution function. If the 'age' of an atom is regarded as the time it has resided in the reaction environment, the E(t) concerns the age distribution of the effluent stream. It is the most used of the distribution functions connected with reactor analysis because it characterizes the lengths of time various atoms spend at reaction conditions.

Figure 2.2 illustrates typical RTDs resulting from different reactor situations. **Figure 2.2** (a) and (b) correspond to nearly ideal PFRs and CSTRs respectively. In **Figure 2.2** (c), it is observed that a principal peak occurs at a time smaller than the space-time, $\tau = V/v$ (i.e. early exit of fluid) and also that fluid exits at a time greater than space time τ . This curve is representative of the RTD for a packed-bed reactor with channeling and dead zones. One scenario by which this situation might occur is shown in **Figure 2.2** (d). **Figure 2.2** (e) shows the RTD for the CSTR in **Figure 2.2** (f) which has dead zones and bypassing. The dead zone serves to reduce the effective reactor volume indicating that the active reactor volume is smaller than expected.

2.2.2.1 Integral Relationships

The fraction of the exit stream that has resided in the reactor for a period of time shorter than a given value t is equal to the sum over all times less than t of $E(t)\Delta t$, or expressed continuously,

$$\int_{0}^{t} E(t)dt = \begin{pmatrix} \text{Fraction of effluent} \\ \text{which has been in reactor} \\ \text{for less than time } t \end{pmatrix} = F(t) \quad (15)$$

Analogously,

$$\int_{t}^{\infty} E(t)dt = \begin{pmatrix} \text{Fraction of effluent} \\ \text{which has been in reactor} \\ \text{for longer than time } t \end{pmatrix} 1 - F(t) \quad (16)$$

Because t appears in the integration limits of these two expressions, equation (15) and (16) are both functions of time. Danckwerts [8] defined expression (15) as a cumulative distribution function and called it F(t). F(t) can be calculated at various times t from area under the curve of E(t) versus t plot. The typical shape of the F(t) curve is shown for a tracer response to a step input in **Figure 2.3**.

Figure 2.2 (a) RTD for near plug flow reactor; (b) RTD for near perfectly mixed CSTR; (c) RTD for packed-bed reactor with dead zones and channeling; (d) packed-bed reactor; (e) tank reactor with short-circuiting flow (bypass); (f) CSTR with dead zone.

The F curve is another function that has been defined as the normalized response to a particular input. Alternatively, equation (15) has been used as a definition of F(t), and it has been stated that as a result it can be obtained as the response to a positive-step tracer test. Sometimes the F curve is used in the same manner as the RTD in the modeling of chemical reactors.

Figure 2.3 The Cumulative Distribution Curve, F(t).

2.2.2.2 Mean Residence Time

A parameter frequently used in analysis of ideal reactors is the space-time or average residence time τ , which is defined as being equal to V/v. It can be shown that no matter what RTD exists for a particular reactor, ideal or non-ideal, this nominal holding time τ , is equal to the mean residence time, t_m .

As is the case with other variables described by its distribution functions, the mean value of the variable is equal to the first moment of the RTD function, E(t). Thus, the first moment is the mean residence time,

$$t_{m} = \frac{\int_{0}^{\infty} tE(t)dt}{\int_{0}^{\infty} E(t)dt} = \int_{0}^{\infty} tE(t)dt = \frac{\int_{0}^{\infty} tC(t)dt}{\int_{0}^{\infty} C(t)dt} = \frac{\sum t_{i}C_{i}\Delta t_{i}}{\sum C_{i}\Delta t_{i}}$$
(17)

Chander et al. [5] determined the effect of liquid hourly space velocity on mean residence time of the liquid. It is reported that the mean residence time of the liquid decreased with increase in liquid space velocity. However, the mean residence time was a stronger function of space velocity for the upflow mode of operation. The higher mean residence time in the upflow mode could definitely provide a better utilization of catalyst. At the same time, the liquid would also spend undesired longer residence time when not in contact with the catalyst. As a result, a number of undesirable thermal reactions would take place during this period.

Chander et al. [5] also studied the variation of liquid mean residence time with gas velocity at constant liquid hourly space velocity. The study showed that when a larger size of diluent was used, the mean residence time increased with gas/liquid ratio for the upflow mode of operation. The increased gas flow rate in the upflow mode perhaps induced circulatory motion of liquid inside the catalyst bed so that the liquid spent more time in the reactor.

2.2.2.3 Other Moments of the RTD

It is very common to compare RTDs by using their moments instead of trying to compare their entire distributions.

The second moment commonly used is taken about the mean and is called the variance, or square of the standard deviation. It is defined by

$$\sigma^2 = \int (t - t_m)^2 E(t) dt \tag{18}$$

alternatively,

$$\sigma^{2} = \frac{\int_{0}^{\infty} (t - t_{m})^{2} C(t) dt}{\int_{0}^{\infty} C(t) dt} = \frac{\sum (t_{i} - t_{m})^{2} C_{i} \Delta t_{i}}{\sum C_{i} \Delta t_{i}}$$
(19)

The magnitude of this moment is an indication of the 'spread' of the distribution as it passes the vessel exit and has units of $(time)^2$; the greater the value of this moment, the greater a distribution's spread.

It is particularly useful for matching experimental curves to one of a family of theoretical curves. *Figure 2.4* illustrates these terms.

Figure 2.4 Variance for matching theoretical curves.

The third moment is also taken about the mean and is related to the skewness. The skewness is defined by

$$s^{3} = \frac{1}{\sigma^{3/2}} \int_{0}^{\infty} (t - t_{m})^{3} E(t) dt$$
(20)

The magnitude of this moment measures the extent that a distribution is skewed in one direction or another in reference to the mean.

Rigorously, for complete description of a distribution, all moments must be determined. Practically, these three (t_m, σ^2, s^3) are usually sufficient for a reasonable characterization of an RTD.

2.3 RTD ANALYSIS ON AXIAL DISPERSION AND STAGNANT ZONE VOLUME

2.3.1 Axial Dispersion

Suppose an ideal pulse of tracer is introduced into the fluid entering a reactor. The pulse spreads as it passes through the vessel, and to characterize the spreading according to dispersion model (*Figure 2.5*), it is assumed a diffusion-like process superimposed on plug flow. This is called dispersion or longitudinal dispersion to distinguish it from molecular diffusion. The dispersion coefficient D (m²/s) represents this spreading process. Thus

- large D means rapid spreading of the tracer curve
- small D means slow spreading
- D = 0 means no spreading, hence plug flow

Also, $\left(\frac{D}{uL}\right)$ is the dimensionless group characterizing the spread in the whole vessel.

D or D/uL is evaluated by recording the shape of the tracer curve as it passes the exit of the vessel. In particular, t_m (mean time of passage, or when the curve passes by the exit) and σ^2 (variance, or a measure of the spread of the curve) are measured.

Figure 2.5 The spreading of tracer according to the dispersion model.

These measures, t_m and σ^2 , which are earlier mentioned, are directly linked by theory to D and D/uL.

Consider plug flow of a fluid, on top of which is superimposed some degree of backmixing, the magnitude of which is independent of position within the vessel. This condition implies that there exist no stagnant pockets and no gross bypassing or short-circuiting of fluid in the vessel. This is called the dispersed plug flow model, or simply the dispersion model. *Figure 2.6* shows the conditions visualized. Note that with varying intensities of turbulence or intermixing the predictions of this model should range from plug flow at one extreme to mixed flow at the other. As a result, the reactor volume for this model will lie between those calculated for plug and mixed flow.

Figure 2.6 Representation of the dispersion (dispersed plug flow) model.

Since the mixing process involves a shuffling or redistribution of material either by slippage or eddies, and since this is repeated many, many times during the flow of fluid through the vessel, these disturbances are considered to be statistical in nature, somewhat as in molecular diffusion. For molecular diffusion in the *x*-direction, the governing differential equation is given by Fick's law;

$$\frac{\partial C}{\partial t} = \mathscr{D} \frac{\partial^2 C}{\partial x^2} \tag{21}$$

where \mathcal{D} , the coefficient of molecular diffusion, is a parameter which uniquely characterizes the process. In an analogous manner, it can be considered that all the contributions to intermixing of fluid flowing in the x-direction to be described by a similar form of expression, or

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$
(22)

where the parameter D, which is called the longitudinal or axial dispersion coefficient, uniquely characterizes the degree of backmixing during flow. The terms longitudinal and axial are used because it is to distinguish mixing in the direction of flow from mixing in the lateral or radial direction, which is not the primary concern. These two quantities may be quite different in magnitude. For example, in streamline flow of fluids through pipes, axial mixing is mainly due to fluid velocity gradients, whereas radial mixing is due to molecular diffusion alone.

In dimensionless form where z = (ut + x)/L and $\theta = t/t_m = tu/L$, the basic differential equation representing this dispersion model becomes

$$\frac{\partial C}{\partial \theta} = \left(\frac{D}{uL}\right) \frac{\partial^2 C}{\partial z^2} - \frac{\partial C}{\partial z}$$
(23)

where the dimensionless group $\left(\frac{D}{uL}\right)$, called the vessel dispersion number, is the parameter that measures the extent of axial dispersion. Thus

$$\left(\frac{D}{uL}\right) \to 0 \qquad \text{negligible dispersion, hence plug flow}$$
$$\left(\frac{D}{uL}\right) \to \infty \qquad \text{large dispersion, hence mixed flow}$$

The dispersion model usually represents quite satisfactory flow that deviates not too greatly from plug flow, thus real packed bed and tubes (not long ones if flow is streamline).

The bed Peclet number (henceforth only Peclet number) of liquid is the reciprocal of the dispersion number, $\left(\frac{D}{uL}\right)$, i.e.

$$Pe = \frac{1}{D/uL}$$
(24)

which the dispersion number is also defined by

introduce a tracer at the inlet or some point within the reactor. Then, at some point along the reactor or at an exit, the tracer is collected to measure the concentration subsequent time interval. In order to illustrate the RTD of the actual flow, the stimulus-response experiment can be conducted with an appropriate choice of tracer. The packed bed reactor presumably behaves as a plug flow reactor. However, deviation from the ideal plug flow can occur due to short-circuiting, channeling or an existence of dead zone (*Figure 2.7*). Arrangement of packing and adequate distribution of liquid can disrupt the ideal behavior of plug flow due to the channeling of liquid.

Sata et al. [10] considered an ideal plug flow behavior in which the tracer should emerge in the exit until $T_i = T_d$ at the same concentration of the entrance. The mean residence time, t_m is calculated from RTD analysis, previously mentioned.

Figure 2.7 Non ideal flow patterns which may exist in process equipment

The mean residence time can be determined by the equation:

$$t_m = \frac{\sum (t_i C_i \Delta t_i)}{\sum C_i \Delta t_i}$$
(27)

The mean residence time can also be defined as the reactor volume-volumetric flow rate ratio:

$$T_d = \frac{V}{Q} \tag{28}$$

The stagnant zone volume can be estimated based on the ratio of actual, t_m and theoretical HRT, T_d :

$$V_{stagnant} = V \left(1 - \frac{t_m}{T_d} \right)$$
⁽²⁹⁾

Study by Sata et al. [10] have reported that if the tracer peak emerged earlier than the predicted theoretical HRT, this meant that the effective volume of the reactor is reduced due to a form of channeling in the packing media, which will give low t_m/T_d ratio.

It is also observed that the peak of higher flow rate will appear first, which indicated the phenomenon of channeling. Another deviation is the tailing effect of the tracer toward longer time, which indicated recycling effect and tracer accumulation in the reactor.

CHAPTER 3 METHODOLOGY / PROJECT WORK

3.1 GENERAL EXPERIMENTAL EQUIPMENT

The SOLTEQ RTD studies in Tubular Reactor (Model BP 112) is utilized for this experiment and is designed for experiment on residence time distribution (RTD) in a packed bed reactor. Process diagram of this experimental instrument is illustrated in *Figure 3.1*. The unit consisted of a reactor, a system for feeding controlled and measured amounts of gas and liquid, tracer injection, and conductivity measurement instrument for detecting the concentration of the tracer. The liquid phase is de-ionized water and the gas phase is air.

Figure 3.1 Process Diagram for RTD Studied in Tubular Reactor (BP 112).

a) Reactor

A column made of borosilicate glass packed with 8 x 8 mm Raschig rings. Column OD: 100 mm; ID: 82 mm; Height: 1500 mm. Top and bottom caps made of stainless steel fitted with appropriate inlet and outlet ports. A differential pressure tapping is also provided on both caps.

b) Feed Tank

20-L stainless steel cylindrical tank, equipped with circulation pump. The tank is fitted with a level switch to protect the pump from dry run.

c) Dosing Tank

20-L stainless steel cylindrical tank equipped with a metering pump.

d) Waste Tank

50-L rectangular tank made of stainless steel.

e) Instrumentations

Air Flowmeter;

Fluid	:	Compressed air (0.34 Mpa)
Range	:	0 to 50 LPM
Output	:	0 to 5 VDC
Display	:	LCD digital display

Liquid Flowmeter;

Fluid	:	De-ionized water
Range	:	0 to 5 LPM
Output	:	0 to 5 VDC
Display	*	LCD digital display

Conductivity Meter;

Sensor Range	:	0 to 200 mS/cm
Sensors	:	CT2 (Co-current Upflow)
Output	:	4 to 20 mA
Display	:	Conductivity controller with digital display

g) Data Acquisition System (DAS)

DAS is consisted of a personal computer, ADC modules and instrumentations for measuring the process parameters. A flowmeter with 0 to 5 VDC output signal is supplied for feed flowrate measurement. Conductivity sensors with controller are provided for monitoring the tracer concentration in each reactor. All analog signals from the sensors are then converted by the ADC modules into digital signals before being sent to the personal computer for display and manipulation.

3.2 EXPERIMENTAL GAS AND LIQUID FLOW RATES

The gas and liquid flow rates used in the experiment are maintained close to those typically used for testing different hydroprocessing catalysts in a bench-scale unit. The level of these flow rates depend on the type of catalyst to be tested.

For atmospheric gas oil hydrotreating catalyst, gas/liquid ratio (hydrogen/oil ratio) of approximately 150 - 250 (v/v) is required. The values of gas/liquid ratio are used in this experiment, which is summarized in *Table 3.1*.

Gas/Liquid Ratio	Gas Flow Rates	Liquid Flow Rates
(LPM/LPM)	(LPM)	(LPM)
150	7.5	0.05
	15.0	0.10
	22.5	0.15
200	10.0	0.05
	20.0	0.10
	30.0	0.15
250	12.5	0.05
	25.0	0.10
	37.5	0.15

Table 3.1 Experiment gas and liquid flow rates with specified gas/liquid ratio.
3.3 PROCEDURE IDENTIFICATION

3.3.1 General Start-up Procedure

- 1. A quick inspection is performed to ensure that the equipment is in proper working condition.
- 2. 10 liter of 0.2M NaCl solution is prepared for tracer solution.
- 3. The system is flushed with de-ionized water until no traces of salt is detected.
- 4. The equipment is ready to be run.

3.3.2 Determination of Experimental Pressure Drop and Liquid Holdup

- 1. General start-up procedure is performed.
- 2. Valves are set appropriately for co-current upflow mode.
- 3. Gas and liquid flow rates are adjusted to obtain desired gas/liquid ratio.
- 4. Conductivity reading is observed and stabilized at low value.
- 5. The system is maintained approximately 30 minutes to attain steady state, which the flow rates did not change after 30 minutes of operation.
- 6. The pressure drop is obtained from the differential pressure reading at control panel or via the DAS.
- 7. The liquid holdup is determined as follows;
 - a. After attaining steady state, the gas and liquid flows are stopped simultaneously.
 - b. The total free liquid in the reactor is drained in a liquid collector and measured.
 - c. The liquid holdup is expressed as (Volume of Liquid) / (Volume of Column).
- 8. Gas and liquid flow rates are varied to obtain required gas/liquid ratio as per commercial reactors.
- 9. Data are recorded in Appendices.

3.3.3 Residence Time Distribution (RTD) Analysis

- 1. The general start-up procedure is performed.
- 2. The valves are set appropriately for co-current upflow mode.
- 3. Gas and liquid flow rates are adjusted to obtain desired gas/liquid ratio.
- 4. Conductivity reading is observed and stabilized at low value.
- 5. Tracer is introduced in the system for two minutes. The conductivity reading is recorded at 1 minute interval, until the reading is constant.
- 6. Experiment is stopped by closing the inlet and outlet valves simultaneously.
- 7. From the concentration-time data from experiment, *E* curve and *F* curve are constructed.
- The values of hydrodynamics parameters are determined by utilizing the RTD analysis. Mean Residence Time (t_m), Variance (σ²), Skewness (s³), Axial Dispersion (expressed by Peclet number of liquid, Pe) and Stagnant Zone Volume (V_{stagnant}) are calculated as outlined in Chapter 2, and summarized in Chapter 4.
- 9. The experiment is repeated with different gas and liquid flow rates.
- 10. Data are recorded in Appendices.

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 EFFECT OF GAS/LIQUID RATIO ON PRESSURE DROP AND OPERATING LIQUID HOLPUP

4.1.1 Effect of Gas/Liquid Ratio on Pressure Drop

Pressure drop analysis across the reactor is done by investigating the effect of gas/liquid ratio, as well as comparing the experimental value with Ergun [1] correlation. The pressure drop throughout the experiment is recorded and the result is shown in *Figure 4.1*, *Figure 4.2* and *Figure 4.3*. For all constant liquid flow rates, the pressure drop increases with increasing gas/liquid ratio, both experimentally and theoretically.

Figure 4.1 Effect of gas/liquid ratio on pressure drop at constant liquid flow rates of 0.05 LPM.

Figure 4.2 Effect of gas/liquid ratio on pressure drop at constant liquid flow rates of 0.10 LPM.

Figure 4.3 Effect of gas/liquid ratio on pressure drop at constant liquid flow rates of 0.10 LPM.

Observing the values of pressure drop for every constant liquid flow rates of 0.05, 0.10 and 0.15 LPM, the pressure increases with increasing variation of liquid flow rates, for both experimental value and Ergun [1] correlation.

However, there is a small deviation between experimental values and the values calculated from Ergun [1] correlation. This may be due to experimental error involved in data gathering. However, the results obtained in this experiment is in strong agreement with results obtained by Varma et al. [3], who shows that the pressure drop increased with the gas and liquid flow rates in all the regimes in upflow mode of operation.

4.1.2 Effect of Gas/Liquid Ratio on Operating Liquid Holdup

Figure 4.4 Effect of gas/liquid ratio on operating liquid holdup at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.

Figure 4.4 shows that the operating liquid holdup decreases with increasing gas/liquid ratio. This is similar to the findings by Chander et al. [5]. Also, as the liquid flow rates increase, the operating liquid holdup decreases. Thus, higher liquid flow rates could increase the reaction rate.

However, Buchanan [4] correlation does not agree with the experimental results. From *Figure 4.5*, it is observed that operating liquid holdup is increasing with increasing liquid flow rates, and it is rather constant for gas/liquid ratio. For liquid flow rate of 0.05 LPM, the operating liquid holdup is approximately 0.03, regardless of the gas flow rate. This can be due to the basis of this correlation which only emphasized on only liquid phase in equation (2), and not both gas and liquid phases. Also, it might be because the correlation has used different condition against the condition being used in this experiment during that time. This can also be true if the correlation agrees with Chander et al. [5], which proved that the effect of gas flow rate on liquid holdup in upflow mode could be removed, if the catalyst bed was diluted with a smaller size of diluent. However, Buchanan [4] correlation might not be appropriate in this experiment; thus, results would be only based on the experiment.

Thus, from the experimental results, operating the packed bed reactor at lower gas/liquid ratio (150) with higher gas and liquid flow rates (L = 0.15 LPM) is more desirable.

Figure 4.5 Buchanan correlation on effect of gas/liquid ratio on operating liquid holdup.

4.2 EFFECT OF GAS/LIQUID RATIO ON MOMENTS OF RTD

For this experiment, RTD experiment with pulse input is used. An amount of tracer (NaCl) is injected in one shot into the feedstream entering the reactor in as short time as possible. The outlet conductivity is then measured as a function of time. The effluent concentration-time curve is referred as C curve in RTD analysis. However, the consideration is more to the E curve, F curve and the three moments of RTD.

4.2.1 E Curve

All three E curves (*Figure 4.6*, *Figure 4.7* and *Figure 4.8*) showed that at any gas/liquid ratio, with low liquid flow rate, which in this case is 0.05 LPM, the E curve exhibited deviation from ideal plug flow reactor and approached mixed flow behavior. However, as the liquid flow rates are increased, the E curves approach the behavior of a plug flow.

Figure 4.6 E curves for gas/liquid ratio of 150.

Figure 4.7 E curves for gas/liquid ratio of 200.

Figure 4.8 E curves for gas/liquid ratio of 250.

4.2.2 F Curve

F curve is used to determine the percentage of molecules spent at specific time or less in the reactor. For this experiment, comparison at constant liquid flow rate of 0.15 LPM for all gas/liquid ratios is investigated.

From *Figure 4.9*, approximately 94.8% [F(t)] of the molecules spend 100 minutes or less in the reactor and 5.2% of the molecules [1 - F(t)] spend longer than 100 minutes in the reactor. As in *Figure 4.10*, 92.7% of the molecules have spent 100 minutes or less and in *Figure 4.11*, 89% of the molecules have spent 100 minutes or less in the reactor.

Thus, from the F curve interpretation, as gas/liquid ratio is increased, the longer the molecules would spend in the reactor. This is desirable as the molecules would have more contact with catalyst thus utilizing the catalyst. However, this statement is true for constant liquid flow rates of 0.10 and 0.15 LPM, and this is not the case for constant liquid flow rate of 0.05 LPM. This is an indication that the molecules would spent consistent time at any gas/liquid ratio, may be due to low liquid flow rate, which has no effect in the mixing rate of the molecule in the reactor.

Figure 4.9 F curves for gas/liquid ratio of 150.

Figure 4.10 F curves for gas/liquid ratio of 200.

Figure 4.11 F curves for gas/liquid ratio of 250.

4.2.3 Three Moments Analysis of RTD

4.2.3.1 First Moment Analysis: Mean Residence Time, t_m

Figure 4.12 Effect of gas/liquid ratio on mean residence time of liquid at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.

Experimentally, it is observed that there is a considerable increase in mean residence time as the gas/liquid ratio is increased, illustrated in *Figure 4.12*. Also, the mean residences time is increased with decreasing variation of liquid flow rates. These results are also agreed with Chander et al. [5], which proved that the mean residence time is increased with gas/liquid ratio for upflow mode of operation. The increasing gas flow rate maybe induced circulatory motion of the liquid inside the bed so that the liquid would spend more time in the reactor.

The analysis shows that the mean residence time for this reaction is high. Furthermore, the peak of the *E* curves (*Figure 4.6*, *Figure 4.7* and *Figure 4.8*) occurs earlier than the mean residence time. This is an indication of the possibility of stagnant zone in the reactor. This could be due to excessive liquid holdup inside the catalyst bed. According to Chander et al. [5], the higher mean residence time would provide a better utilization of catalyst or the liquid would also spend undesired longer residence

time when not in contact with the catalyst. In this case, the emerging peak of E curves which is earlier than the mean residence time suggests that there would be insufficient contact with catalyst and also, excessive thermal reaction would not likely to occur.

4.2.3.2 Second Moment Analysis: Variance, σ^2

Figure 4.13 Effect of gas/liquid ratio on variance at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.

Experimentally, from *Figure 4.13*, the variance increases as the gas/liquid ratio increases. The variance is also increased with decreasing variation of liquid flow rates. These results are also consistent with the E curve in *Figure 4.6*, *Figure 4.7* and *Figure 4.8*; the E curve for highest constant liquid flow rate (0.15 LPM) has the highest peak among the other constant liquid flow rates for all gas/liquid ratio, which indicates smaller variance, and vice versa. Thus, it is proved that the smaller the variance, the smaller the distribution's spread.

In order to achieve plug flow characteristic, smaller variance is required. Thus, from this experiment, it is proved that operating packed bed reactor at high gas/liquid ratio (250) with lower gas and liquid flow rate (L = 0.05 LPM), would result smaller variance, with approaching plug flow behavior.

4.2.3.3 Third Moment Analysis: Skewness, s³

Figure 4.14 Effect of gas/liquid ratio on skewness at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.

From *Figure 4.14*, it is observed that the skewness increases as the gas/liquid ratio increases, and the skewness also increases as variation of liquid flow rates decreases. Again, these results are reflected by the *E* curve in *Figure 4.6*, *Figure 4.7* and *Figure 4.8*; the *E* curve for highest constant liquid flow rate (0.15 LPM) is not skewed far from the reference of mean compared to other constant liquid flow rates for all gas/liquid ratio, which indicates lowest skewness, and vice versa. Thus, it is proved that the lower the skewness, the less skewed the distribution is, from its mean.

In order to achieve plug flow behavior, it is desirable to have smaller value of skewness, which also meant that the distribution is not skewed much from the reference of the mean. Unlike *E* curve for lower flow rates which has high value of skewness and skewed more towards the left, it is preferred to operate packed bed reactor at higher gas/liquid ratio (250) with lower gas and liquid flow rates (L = 0.05), which will result lesser skewness and will approach the plug flow behavior.

4.3 EFFECT OF GAS/LIQUID RATIO ON AXIAL DISPERSION AND STAGNANT ZONE VOLUME BY RTD ANALYSIS

4.3.1 Effect of Gas/Liquid Ratio on Axial Dispersion

Figure 4.15 Effect of gas/liquid ratio on liquid Peclet number at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.

Another analysis in RTD study is the degree (intensity) of liquid-phase axial dispersion. This axial dispersion is conveniently expressed as Peclet number in the analysis.

Experimentally, the Peclet number relatively decreases with increasing gas/liquid ratio, as well as increasing variation of liquid flow rates, as illustrated in *Figure 4.15*. These results agrees with studies done by Chander et al. [5], who also reported that the Peclet number is a very strong decreasing function of gas/liquid ratio for upflow mode. This might due to the increase of circulatory motion of liquid causing backmixing with increasing gas flow rate. Study by Cassanello et al. [9] also agrees that the gas velocity affects the Peclet number value for upflow mode of operation. Thus, the reduction of backmixing can be achieved at low gas/liquid ratio (150) with lower gas and liquid flow rates (L = 0.05 LPM).

4.3.2 Effect of Gas/Liquid Ratio on Stagnant Zone Volume

Figure 4.16 Effect of gas/liquid ratio on stagnant zone volume at constant liquid flow rates of 0.05, 0.10 and 0.15 LPM.

From experiment, it is observed that stagnant zone volume can be reduced if the gas/liquid ratio is increased, as illustrated by *Figure 4.16*. Also, the stagnant zone volume reduces with increasing variation of liquid flow rates. This is with agreement with the theoretical HRT proposed by Sata et al. [10] in equation (28) and (29), which is only influenced by liquid flow rate.

At low gas/liquid ratio with low liquid flow rate, the mean residence time is lower than the predicted theoretical HRT, which means that the effective volume of the reactor is reduced due to a form of channeling in the packing media, which will give low t_m/T_d ratio. Another deviation is the tailing effect of the tracer towards longer time, which indicated recycling effect and tracer accumulation in the reactor.

Thus, to reduce stagnant zone volume effectively, the packed bed reactor must be operated at higher gas/liquid ratio (250) with higher gas and liquid flow rates (L = 0.15 LPM).

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Experimentally, pressure drop, ΔP can be reduced with decreasing gas/liquid ratio. Thus, gas and liquid flow rates should be maintain low as to reduce pressure drop across the reactor. Also, the theories introduced in this project are considered parallel with the experimental results.

Operating liquid holdup, H_o , is decreasing with increasing gas/liquid ratio in experiment. Also, the liquid holdup is decreased with increasing liquid flow rates. Thus, for a desirable process, liquid holdup must be maximized, which can be achieved at low gas/liquid ratio (150) with low gas and liquid flow rates (L = 0.05 LPM). However, the theory neglected the effect of gas flow rate and thus constant for same liquid flow rate. Thus, the theory used in this project is considered inappropriate and required the need of other theories in future.

Mean residence time, t_m is increased with increasing gas/liquid ratio. This can be explained by the induced circulatory motion of liquid with higher flow rates. This is desirable for better utilization of catalyst. However, too high mean residence time would also result undesirable thermal reaction. Mean residence time is also increased with decreasing variation of liquid flow rates. Thus, the desirable operation can be done at high gas/liquid ratio (250) with lower gas and liquid flow rates (L = 0.05 LPM).

Variance, σ^2 is decreased if the gas/liquid ratio is decreased. Also, the variance is decreased with increasing variation of liquid flow rates. Variance reflects the spread of distribution. The more the distribution spread, the higher the value of variance,

which also results more towards mixed flow behavior. Small variance is desired for a fixed bed reactor to behave more towards plug flow, which can be achieved at low gas/liquid ratio (150), but with higher gas and liquid flow rates (L = 0.15). This is also reflected in the *E* curves of all gas/liquid ratios.

Skewness, s^3 measured the extent that the distribution is skewed in one direction or another in reference to its mean. From the experiment, skewness can be decreased as the gas/liquid ratio is decreased and with increasing variation of liquid flow rates. Skewness is undesirable because the higher the value of skewness, the further the distribution is skewed from the mean, which will also deviate from plug flow characteristics. Thus, lower value of skewness is preferred to operate the packed bed reactor towards plug flow behavior. This can be done at lower gas/liquid ratio (150) with higher gas and liquid flow rates (L = 0.15 LPM).

Axial dispersion of liquid, expressed by Peclet number, Pe can be increased with decreasing gas/liquid ratio and decreasing variation of liquid flow rates. The increase of circulatory motion of liquid can cause backmixing which is due to the increasing gas flow rates. Thus, it is proved that backmixing can be reduced if this packed bed reactor is operated at low gas/liquid ratio (150) with lower gas and liquid flow rates (L = 0.05 LPM).

Stagnant zone volume, $V_{stagnant}$, can be reduced with higher gas/liquid ratio, as well as higher liquid flow rates. This is mainly because the mean residence time is lower than the predicted HRT. Thus, the effect of non ideal reactor, which is caused by channeling, dead zones, or short-circuiting, can be reduced at higher gas/liquid ratio (250) flow rates with higher gas and liquid flow rates (L = 0.15 LPM).

As overall conclusion, in order to be an ideal reactor, certain requirements must be fulfilled. From the experiment;

 Higher gas/liquid ratio (250) with higher gas and liquid flow rates (L = 0.15 LPM) is desired to reduce the stagnant zone volume.

- Lower gas/liquid ratio (150) with lower gas and liquid flow rates (L = 0.05 LPM) is desired to reduce pressure drop, to increase operating liquid holdup, and to increase the Peclet number (axial dispersion).
- However, there are cases where high gas/liquid ratio (250) is preferred but with lower gas and liquid flow rates (L = 0.05 LPM), in order to increase the mean residence time.
- There are also cases where low gas/liquid ratio (150) is required, but with higher gas and liquid flow rates (L = 0.15 LPM), to obtain lower variance and lower skewness.

5.2 RECOMMENDATIONS

Recommendations outlined here is based on studies that can be done or extended for future development of RTD analysis, or rather the investigation of hydrodynamic characteristics of fixed bed reactor or packed bed reactor.

5.2.1 Comparative Study between Co-current Upflow and Downflow Mode of Operation

Trickle bed reactors with co-current downflow of gas and liquid have found wide application in oil industries for the hydroprocessing of petroleum fractions. However, there are several drawbacks for scaling up and scaling down of commercial reactor. Owing to the differences in the hydrodynamics, a small-scale reactor cannot be treated as an exact replica of a commercial unit.

Two approaches can be recommended to overcome the drawbacks during the testing of commercial catalysts in small reactor. The first one is to use these catalyst particles in a downflow trickle bed reactor but diluted with non-porous inert fine diluent particles. The second approach is to operate the fixed bed catalytic reactor in the upflow mode where wetting of the catalyst is almost complete. However, these two approaches differ in their basic nature and performance; in the upflow mode of operation, liquid is in continuous phase and gas remains in the dispersed phase, whereas the situation is reversed in downflow operation. The upflow mode of operation, though it ensures almost complete wetting of catalyst, suffers from serious drawback of non-ideal flow of liquid and formation of a stagnant zone inside the catalyst bed.

Thus, there is a need to compare the hydrodynamic behavior of a fixed bed reactor in the upflow and downflow modes of operation. There are several theories regarding this comparative study. For example, the downflow mode provided much lower residence time to the liquid as compared to that for the upflow mode of operation, probably owing to channeling of liquid in the former case. On the other hand, the upflow mode of operation gave a much higher liquid holdup as compared to the downflow mode. It is predicted that higher liquid hourly space velocity reduced the channeling of liquid in downflow operation and reduced backmixing in upflow mode. Also, a higher liquid holdup at higher liquid hourly space velocity may be obtained in the downflow mode of operation.

5.2.2 Effect of Diluent Size

When the catalyst was loaded with smaller size of diluent, the values of mean residence time, Peclet number and liquid holdup is expected to increase for the downflow mode. As a result of this, the hydrodynamics behavior for both upflow and downflow modes of operation can be improved.

Since the project study did not discuss the effect of diluent size, future study can be made on investigating the change in the behavior of the upflow mode on using a smaller size of particle as diluent in the catalyst bed. The use of smaller size of diluent can increase the value of Peclet number and moderate the excessive liquid holdup, and thus eliminated the limitations of the upflow mode of operation. The differences in the nature of E curves for the two modes of operation under similar operating conditions of liquid and gas velocities can also be eliminated for the smaller size of diluent. The values of mean residence time, Peclet number and liquid holdup are predicted nearly the same for the two modes of operation. Thus, the use of a smaller size of diluent could remove the drawbacks of both upflow fixed bed and trickle bed reactors, which will provide suitable tools for generating reliable data for scale-up and scale-down activities.

The use of a smaller size of diluent can also decreased the porosity of the bed, which in turn reduced the excessive mean residence time of liquid in the upflow mode of operation. This could help in the reduction of undesirable non-catalytic reaction in the upflow mode.

UNIVERSITI TEKNOLOGI PETRONAS

5.2.3 Effect of Packing Types

The hydrodynamics comparison between different packing types can be done with same variation of gas and liquid flow rates. The effect of packing type can be investigated by RTD analysis to study the hydrodynamics of the reactor at different types of packing.

The comparison can also made by the estimation of stagnant zone volume or by investigation of the effect of packing types on nature of E curve. The E curve can be a direct indication whether there is non-ideal behavior in the reactor. It is seen if any peak of E curve emerges first compared to others, which can be attributed by to the channeling.

Moreover, different types of packing introduced different types of distribution in the reactor. As an example, Raschig rings and Pall rings have different shapes and sizes, which in turn affect the distribution. Also, the different packing types can be studied against pressure drop, which also an effect of the different distribution in the reactor.

REFERENCES

- Ergun, S.: Fluid Flow Through Packed Columns, Chemical Engineering Program, 48, 89-94 (1952)
- 2. Turpin, J.L.; Huntington, R.L.: Prediction of pressure drop for two phase two component concurrent flow in packed beds, AIChE J., 13 (1967) 1196
- 3. Varma, Y.B.G.; Khan, A.A.; Khan, A.: Flow regime identification and pressure drop in co-current gas-liquid upflow through packed beds, Bioprocess Engineering 16 (1997) 355–360 Ó Springer-Verlag (1997)
- 4. Buchanan, J.E.: Industrial Engineering, Chemical, Fundam., 6, 400 (1967)
- 5. Chander, A.; Kundu, A.; Bej, S.K.; Dalai, A.K.; Vohra, D.K.: Hydrodynamics characteristics of co-current upflow and downflow of gas and liquid in a fixed bed reactor, Fuel 80 (2001) 1043-1053
- 6. Stiegel, G.J.; Shah, Y.T.: Industrial Engineering Chemical Process Design Dev., 16 (1), 37 (1977)
- 7. Levenspiel, O.: Chemical Reaction Engineering, 3rd Edition, John Wiley, New York, 270 (1999)
- 8. Danckwerts, P. V.: Chemical Engineering Science, 2, 1 (1953)
- 9. Cassanello, M.; Martinez, O.; Cukierman, A.L.: Chemical Engineering Science, 53 (5), 1015 (1998)
- 10. Sata, S.A.; Mohd, A.R.; Kamarudin, A.: Hydrodynamics in the packed bed reactor, 15th Symposium of Malaysian Chemical Engineers (2001)
- 11. John, J. McKetta; Unit Operation Handbook, Volume 1, Marcel Dekker Inc., 273-277 (1993)
- Fogler, H. Scott: Elements of Chemical Reaction Engineering, 2nd Edition, Prentice Hall International Series, New Jersey, 711-725 (1992)

APPENDICES

RTD Analysis for Gas/Liquid Ratio of 150 (7.5 LPM / 0.05 LPM) Appendix 1 RTD Analysis for Gas/Liquid Ratio of 200 (10.0 LPM / 0.05 LPM) Appendix 2 Appendix 3 RTD Analysis for Gas/Liquid Ratio of 250 (12.5 LPM / 0.05 LPM) RTD Analysis for Gas/Liquid Ratio of 150 (15.0 LPM / 0.10 LPM) Appendix 4 RTD Analysis for Gas/Liquid Ratio of 200 (10.0 LPM / 0.10 LPM) Appendix 5 RTD Analysis for Gas/Liquid Ratio of 250 (25.0 LPM / 0.10 LPM) Appendix 6 RTD Analysis for Gas/Liquid Ratio of 150 (22.5 LPM / 0.15 LPM) Appendix 7 RTD Analysis for Gas/Liquid Ratio of 200 (30.0 LPM / 0.15 LPM) Appendix 8 RTD Analysis for Gas/Liquid Ratio of 250 (37.5 LPM / 0.15 LPM) Appendix 9

					_	_	_		_	_		_	_	_	_	_	_	_	_	_	_		-		-		-	_	_	_	_	_	-	_							-	-	-	-	-	-	-	-		-		-					-		-
•		0 0	-0.122875913	-0.180170357	-0.232856383	-0,282047444	-0.327855402	-0.634855197 -1 222244550	BC0407877'1-	-2.588964163	-3.069715191	-3,48619254	-3.896631202	-4.265247077 4 B444E0082	-5.376261375 .5.376261375	-5.411510304	-5.652638029	-5.657206149	-5.651509737	-6,635960731	-5.81105752	-5,577289953	-0.0001383355 6.1774989856	-5.214711081	-5.066573606	4.828966086	4.744963837	4,581662432	-4,440149405	Cacoacacaca:+-	-3.840597387	-3.781576354	-3,805872225	-3.435411647	-2.270695136	2,967507973	-2.606838942	-2.662770763	HORELOZZCZ-	-2.27 UCOCOCO	-2.087307843	-1.955471069	-1,829841208	-1,710228529	-1.100000000-1-	-1.385588228	-1.288185236	-1.196870723	-1 005844784	-0.947792845	-0.874158358	-0.804781217	-0.7394981.83	0.620590851	-0,566660396	-0.616212733	-0.469101952	-0.420104960 -0.384321665	0.34637484
•	٩	#DIV/0	2558.738485	9364,200886	9171.663284	8981.125682	6792,588079	8808.050477 8494 840874	4/0710,1240 CTrata 00/0	20201-01201-0220	7879,800067	7703.362465	7528.624862	7356.29726 74 05 74 0657	7017.212055	6850.674453	6636.13885	6523.589248	6365.061645	6204.524043	6047.988441	5850.448638	362119.0476 6690 979699	5441 R38031	5295 208429	5150,760826	5008.223224	4867.685621	4729.148019	4082/01041/	4325,535212	4194.997609	4068,480007	3939.922405	3815.384802 3607 8477	3672.309587	3453.771895	3337.254392	3222103678	201901-0110 2000 601586	2891,083363	2764.54638	2880.008778	25/7.471176	2478305375	2261.858369	2187.320768	2094,783164	1945 707959	1829.170358	1744.632754	1662.095152	1581.557549 1503 019947	1426 482944	1351.944742	1279,40714	1206.666537	1140,361500	1009.25873
	F (t)	D	0.000122643	0.000245286	0.000408811	D.000613216	0.000858502	0.001349075	17706770000	0.005784231	0.008462381	0.011651105	0.015330401	0.01960027	0.024405896	0.035694459	0.042311906	0.048834839	0.055802859	0.062915965	0.070274657	0.077878436	0.085/2/601	0.101871218	0.10876567	0.117941883	0.128199859	0,134539597	0.142361098	0.101423474 0.45005741	0.188470885	0.177055909	0.185632757	0.194201429	0.202761925	0.219858388	0.228384355	0.23691397	0.245417232		0.270485504	0.278694422	0.286829755	0.294891502	0.302879902	0.318635228	0.326402629	0.334098447	0.0411/190/0	0.356736363	0.364135856	0.371481743	0.378714045 0.366800764	0 102002805	0,400029434	0.406987362	0.413871754	0.42068255	0.434083365
	(t-tm) ¹ =E*At	0	-28.30300108	-111.1348738	-143.6330512	-173.9756255	-202.2313976	-391.6600915 756 200915	-7.05.260694	411.11/12004 .1508.053607	-1667.327385	-2155.843344	-2403.563182	-2630.836906	24612.0062-	-3337 087675	-3485.681064	-3488.538888	-3486.026781	-3476.435671	-3461.074597	-3440.245712	-3414.245284	2010.012408	3119.05543	-3022,451309	-2926.640983	-2832.280037	-2738.622085	-20141/19109	2002200.1002-	-2332.563777	-2224.080846	-2119.088632	-2017.466988	-1824.282798 -1824.282798	-1732,579738	-1842.479743	-1565.680219	-1462,1261	-1287.516324	-1206.195308	-1128.702905	-1054.920854	-964./328563 048 0098777	-816.0233/1/2	-794,5826739	-737.6502138	-000/1/000	-564.6260717	-539,208648	-496.4140568	-456.1 454585 - 44 8 2057837	1001000101	349.5337368	-318,4160511	-269.3568576	-262.2673142 -247 net6446	213.054539
	{htm) ²⁺ C*AI	•	46775,36045 OKER7 38480	50000, 200408	183433.2857	224528.142	263777,6424	516363.0286 444444 5 45	1010581.545	1236046.291	2600367.022	3004311.361	3387971,188	3751706.503	4311449.794 Abatete 35e	4047485 RD6	5215186.743	5284115.381	5344971.782	5397835.917	5443187.797	5480B07.42	5511274.786	15 TOD 747	5242745 444	6150760.826	6058306.458	4965039.334	4871022.48	4753351.751	46/00/85/ / 2/	4404747.49	4265716.647	4129038.68	3994707.988	3362715.171 3733065 529	3605737,963	3477398,237	3351604,662	3206574.122 apertato ne	29266688.075	2795684,666	2666608.734	2541388.579	2418964.101 rstoret 3	2188302.175	2077964,728	1971190.957	106/6003003	1671861.708	1578892.642	1489237,256	1402841.546	010/1000101	1162672.478	1088775.476	1017868.15	949896.5016 Peakson: 5008	0040001.0430 822544.2349
	C⁺M	0	σ Ş	ΞŔ	2 8	52	90	ន	<u>8</u>	150	385	390	450	510	009	086	082	810	840	870	006	069	88	0/6	200	1000	1010	1020	1030	1035		9 9 9	1040	1048	1047	1046 1045	4 <u>0</u>	1042	<u>8</u>	1031	2701 E101	1004	385	995	116	999	8	5	2	776	596	868	287	dra ean	800	851	842	833	815 815
	rc-At	0	<u>چ</u> م	3 4	7 ₽	125	180	420	225	1350	3630	4680	6860	71.40	0006		14040	15380	16800	18270	19800	21390	23040	24250	004027	20000	29290	30600	31930	33120	34320	00000	37764	38776	38766	40794	42804	43764	44720	45364	40690	47188	47760	48314	48650	49308	50350	50814	51260	BDB LC	52490	52864	53220	0.000	54070 541BD	54484	54730	54978 econe	55420 55420
	E (1/min)	0	4.08811E-05	8.1 /6215-UD	0.000163624	0.000204405	0.000246286	0.000490573	0.000981146	0.001226432	0.002696151	0.003168723	0.003679236	0.004169869	0.004905726		D D06377447	0.006622733	0.00666802	0.007113305	0.007358592	0.007603879	0.007849165	0.007980927	D.000012068	0,000000000000000000000000000000000000	0.008257978	0.008339736	0.0084215	0.008452381	0.008503262	D PROSPERIO	0.008576848	0.008568672	0.006560496	0.00866232	0.006535967	0.008519615	0.006503262	0,008429676	0.008435408	0.006208919	0.008135333	0.008081747	0.007988161	0.007914575 D.007840090	0.007767403	0.007643817	0.007620231	0.00/546545 0.007474700	0.007366473	0.007325888	0.007252302	BLAY LOOT	0,007031544	0.006967958	0.006664372	0.006610786	0.006863614
	Anie		25	7.5	125	225	27.5	\$	8	135 212	200	280	420	480	8	8	97 J	795	825	865	885	915	945	8 1	875 095	200 H	1005	1015	1025	1032.5	1037.5	1042.5	1049.5	1048.5	1047.5	1048.5	1044.5	1043	1041	1035.5	1028.5	1008.5	3669.5	980.5	981.5	972.5 069 E	964.5 964.5	845.5	930.5	927.5 040 E	808'E	900.5	884.5	882.5 010 C	5/3.5 684 5	866.5	848.5	637.5 **** =	878.5 819.5
-1	C-250	•	чо :	2 4	<u>e</u> 5	3 8	30	ĝD	120	5 1	0/7	98	450	510	800	8	120	940	940	870	906	830	960	0/8	8	046	101	020	1030	1035	1040	1045	1049	1048	2901	1048	5 TI	1042	1040	12	201	1004	335	996	118	896 906	093	841	832	228	#1# 505	88	887	878	508	19	842	633	824 B15
	C (mS)	250	8	8		275	280	310	370	9	520 580	3 8	700	780	860		0/6	1090	080	1120	1150	1150	1210	220	98 9	1,240		1270	1280	1285	1280	1285	1299	1298	1297	1286	977	1292	1290	1281	1272	1254	1245	1236	1227	1218	1200	1191	1182	21	1155	1146	1137	1128	1119	101	1092	1083	1074 1065
	E (min)	0	-	6		1 47	0	7	Ð	ch (ę :	<u>- 6</u>	13	44	\$ <u>5</u> :	έ	÷ •	2 9	2 2	1 20	ន	52	24	ន	8	5		8	8	32	8	x :	8 8	37	8	8 :	D4 4	24	4	4	- 	8 ta	8	4 9	8	5	3 8	5 .	99 20	9 1	298	. 8	00	5	02 69 69	3	92	8 (88

0.361405533	0.383407727	0.429307363	0.453178689	0.477638153	0.502874515	0.5543996611	0.581041501	0.608179603	0.635/6/315	0.682310791	0.721172988	0.750397658	0.778954836	DECEMBRICAL DECEMBRICAL	0.870302674	0.900864779	0.231580478	0.862442171	1.026217775	1.063414287	1.09694387	1.13477882	79079001111	1.243626523	1.280568319	1.317503248	1.00405/96	1.428828762	1.46801338	1.503174937	1.540275333 4 ET777EE4	1.61.4135.450	1.650814212	1.667269652	1.723458605 1.7723458605	1.812461296	1.857302766	1.947539056	1.992880847	2.03833532	2.083674372 2.1754660961	2.175090608	2.220708401	2.200261568	2,357230763	2,402521469	2.447849007	2.537278612	2.58171108	2.825841291	2.669632785	2.713048577 2.758051018	2.799601823	2,840652069	2.802152201	2.963500704	3.00319678
1783.474152	Electric scores	2045,881345	2137.323742	2230.78614	2326,248537	2623.173333	2624.63573	2728.099128	2633,660025	3050.48532	3161.947718	3275.410118	3390.672513	119402.30000	3749.259706	3872.722104	3998.184501	4125,646339 4746 470206	4388.571694	4520.034062	4855,498489	4702.958887	1071747084	5217.34608	5362.808477	5510.270875	5059.733272 504 40557	5064.658068	6120.120465	6277,S82863	8437.04526 4806 6077658	800/00'0900	6927.432453	7084.894851	7264.357246 7445 810648	7809.282043	7784,744441	/902/200028	83Z3.131634	8506.594031	8692.056429 8470 51 8477	9068,981224	9260.443622	9453,906019 0640 369417	9846.830815	10046.29321	10247.75581	10656.6804	10854.1428	11073,8052	11/285,0676	11498.53	11931.45478	12150.91719	12372.57585	12821,30438	13048.76678
0.786675388	0.759602472	0.775358527	0.778187497	0.780963762	0.783747322	0.789176328	0.791841774	0.784474515	0.797074551	0.802176508	0.80487843	0.807147645	0.808584158	0.611987905	0.816897454	0.619003156	0.621276143	0.823515426	0.827907053	0.830065573	0.832199565	0.834309028		0.840490248	0,842501594	0.844488414	0.848450706	0.650301702	0.652190406	0.854054584	0.855894232	0.055/105052	0.881266005	0.863007538	0.864724543 0.864754543	0.868109496	0.860777443	0.871429039	0.674863172	0.87628571	0.877871895	0.680996209	0.682532337	0.884063113	0.887045607	0.888517325	0.869872691	0.891411705 0.892834366	0.894240675	0.895630631	0.897004235	0.898361487	0.901026932	0.902336127	0.9038205655	0.906161536	0.907404379
222 9261 506	238,4977971	264,810119	279.5334606	294.6220516	310.0852577	341.9690532	358,4044492	375.1440737	392.1733677	427.038804	444,8419038	462.3685581	481.1003735	499.5179915 549 114 2000	536.823727	555,691303	574.6339487	565.664231	1.214 23956771	665.946260	677,8627196	596, \$PE6552	177.2416/UV	767.2308415	16230005-984	B12.576934	835.5211073	800.418U.312	904,2825972	827.2050005	950.089677	972.91.25356 COLE AABRAGE	1018.273492	1040.760463	1063.083308 4000 44774	1117,982435	1145.642047	1173.42082	1229,270619	1257.308551	1285.398453	1341.083461	1369.801932	1475 0000	1454,013167	1481,949891	1509.785948	1537.5004489	1562.479617	1619.700465	1646.712439	1673.492848 +200 04780	1726,264548	1752.208615	1777.82569	1627.979301	1852.485074
645617.6429	00307B/2847	716051.4706	738514.0148	762928.8588	786272.0056	8130647.1907 8130647.1907	865631.248	876447.5871	901072.247 012484 1078	945650.4494	987556.0017	969173.8549	1010460.009	1031450.464	1072288.276	1092107.633	1111495.291	1130427.25	11400/3.01	1183288	1215084.584	1236563.393	120/10/121	1209119,174	1318250.865	1338886.823	1358335.985	13/1203.3/4	141,3747,827	1431288.663	1448335.184	1484966.7	1496325.41	1511212.603	1525515.022 AF 44650 And	1567512,101	1588067,866	1608965.781 46789978 847	1647980.064	1667262.43	1686258.947 470 4067 645	1723106.433	1740963.401	1758428.52	1792123.208	1808332.77B	1524100.489	(1509414.359 1864060 343	10044202.562	1682512.884	1695801.358	1908755.979	19/22006.678	1944148.75	1954835,975 1964651 749	1874480.875	198341 2.55
362	8 i	, Ø	348	342	338		8	8	318	310	306	302	Ř	z i	8	282	278	274	196	i ș	261	568	8	78 78	248	243	240	127	ន	82	\$1	22.2	216	213	210	8 8	5 2	202	nv.	196 2	<u>\$</u>	8	188	188	5 5	180	178	178	t E	170	168	8 <u>5</u>	ž Š	<u>8</u>	\$ <u>8</u>	5 <u>5</u>	152
51404	51194	50750	50516	50274	50024	49/66	97269	48844	49054	48050	47736	47414	47084	46748	404UU	45684	45314	44636	06294	4088	4364B	43602	2322	42828	42558	42282	42000	41712	4118	40812	40500	40182	BACHARE	39192	38850	38622	38362	82,188	37818	37632	37442	37050	36648	36642	36218	36000	36775	36552	35088	34850	34608	34362		33600	33338	32602	32528
0.002958769	0.002927085	0.00288458	0.00282897	0.002796205	0.00276356	0.002730865	0.0028865446	0.002632741	0.002600038	0.000554676	0.002501921	0.002489217	0.002438512	0.002403807	2011/2200/0	0.002305682	0,002272987	0.002240283	0.002207570	0.00215852	0.002133982	0.002109463	0.002084935	0.002020000	0.002011349	0.00196682	0.001962291	0,001987768	0.001808705	0.001864177	0.001839648	0.001815119	0.001766062	0.001741534	0.001 71 7005	250001/10000 0.00168443	0.001667948	0.001651585	0.00161869	0.001602536	0.001596185	0.001563481	0.001537128	0.001520776	0.001488071	0.001471718	0.001455368	0.001439014	0.001422651	0.001369856	0.001373604	0.001357251	0.001340856	0.001309194	0.001291842	0.001259137	0.001242784
757	38			345	340	8	2 R	324	320	315 317	808	304	300	98		287	280	278	272 704 E	205.5	202.5	269.5	258.5	2005	247,5	244 B	241.5	238.5	232.5	229.5	228.5	223.5	2005	214.6	211.5	607 242	18	8	10. 86	197	195	193	180	187	180	100	179	Ē	21 21	6	169	167	8 <u>8</u>	161	<u>8</u>	155	1 5
362	88 1	1	; ,	342	336	334	8 88	ឆ្ព	318	344	306	302	R	Ż	8	282	278	274	272	284	12	253	58 88	202	246	243	240	237	97 HZ	528	52	82 :	219	243	210		ĝ	52	80 1	1 8 5	154	192 1	8	188	<u>a</u> 2	1 2	178	178	2 5	1 22	168	168	<u>\$</u>	18	158	8 2	ŝ
612	808	908 808	8	285	889	785 1	578	572	568	3 5 5	200	225	548	544	095	8 8	528	524	225	514 514	511	508	505	8	8	483	490	487	484 1484	878	475	472	469	¥ \$	480	8 V	1	482	50 87	3	4	442	84	964	197 197	1 8	428	8	6	18	418	416	414	410	<u>\$</u>	\$ \$	402
142	143	44	1	<u>5</u>	148	149	151 151	152	153	ž ž	156	†\$7	158	160	1 <u>5</u>	19 143	181	28 29	185 2	186	1	169	170	Ē	12	174	175	\$	171	178	180	181	鼓	3 ¥	185	8 ¢	9 8	<u>8</u>	<u>8</u> į	192	193.	ģ	ġ	197	\$ <u>3</u>	80	201	20 I	203	202	206	207	208	210	21	5 5	214

6.806834126	6.8261612	6.843/24144	6.873540266	6.885733961	6.898084562 a an 4404 m	6.910974012	6.915470835	6.917940507 6.918341221	6.516630848	6.912766944	6.906706744	6.898407158 9.862874617	6.874915971	6.8096385865	6.841942336	6.821798621 e 30043016	6.773921 844	6.746118247	6.715873124	6.682540313	Profession account	6.56654835	6.522196795	6.474919406	6.424671191	6.345064676 6.345064526	6.255608207	6.192984072	6.127142062	6.056032997	5.90960639 5.90960639	5.830593366	5.747808245	5.681696266 5 57404 4 460	5.478498547	5.381407875	5.280683512	5,175973193 c. nurrerranao	4,955180054	4.836869121	4.718598005	4.594245856	4.333153456	4.196299915	3,0001001442	3.759835443	3.005523473	3.4467042	3.2033199009 3.115312565	2.942623817	2.786194997	2,582967115	2.395880866 2.395880866	2.006894455	1.804874088	1.597754052 • 2054754477	1.167976459
35430.9842	35808.4486	8067/8105 92126 93/345	30952.83379	37338.29619	37725.75859	38506.88338	38900.14578	30295.60818	40092.53297	40493.99537	40897.45777	41302.92016	42,119.84496	42531.30736	42944.76975	43360.23215	44197.15695	44618.61934	45042.08174	45/467.54/414	ACCOUNTS ACCOUNTS	46755.03133	47188,39373	47624.65613	48062.31853	48001./10082 48049 74332	49369.70672	49632.18812	50279.63051	50729.09291	51634.01771	52089.4801	52546,9425	53008.4049	6/00//100002	54398.79209	54664.25449	55333.71689 555353.71689	562718.64168	56754.10408	57231,56848	57711.02888 70102.02105	58675.95367	59181.41607	SUBCHERT BY TEAPY ANY TRANSMERS	80629.80328	51123.26566	61618.72806	62116.19045 67645 66785	60117.11525	60620.57765	B4128.04004	64833.50244 ee140 ce4a4	05654,42724	66167,08963	66083,35203 67700 Bi 442	67720.27683
0.976076399	0.978697791	0.977311007	0,97851291	0.978101598	0.978682109	0.980818803	0.561374585	0.961922391 0.067463001	0.962963475	0.963516753	0.984031855	0.98453878	0.985528102	0.99660104698	0.986484719	0.998850763	Diservation 1	0.985299835	0.998733177	0.969158341	0.000004130	0.990384773	0.980777231	0.991161513	0.961637819	0.961905548	0.962616879	0.99296028	0.993295505	0.983622553	0.983941425 0.984952122	0.994654842	0.994848985	0.996135153	0.885413144	0.995944598	0.998158061	0.998443347	0.996906391	0.997130149	0.997342731	0.997547136	0.987831418	0.998111295	0.998282995	0.9424601367	0.998749039	0.996668035	0.999018854	0.8992555855	0.999362255	0.99946037	0.999650308	0.909705656	0.999771066	0.9998283	0,968918238
4198.72844	4210.600633	4221.421.666	4239,813176	4247.334626	4253,706862	4262,903474	4265,677254	4267.200625	4266.362786	4264.00941	4260.27129	4255,151854	4240.081754	4231.23696	4220.322591	4207.891092	41363,5114/11	4161,215316	4142,435819	4121.998471	4099.674542	4050.451025	4023.082891	33951,931,463	3962,936706	3930.078991	3858,653485	3620.024873	3779.411761	3736.762959	3692.107475 3645 354072	3596.491146	3545,487142	3492,310149	3436,928097	3319,419562	3257,227962	3192,701067	3126.509	2964,7771399	2310.576609	2833.673573	2672.82367	2588.408151	2501.352828	2310 182309	12223.596891	2126.034229	2026.253722	1815 101 789	1705.65818	1593,254361	1477,853751	1/05/1914848	1113.30241	985,5448919	720.44441655
2728185.783	2721441.841	2714083.175	2607556.867	2668357.326	2678528.96	20000005.4439 20556361.153	2845209,913	2032805.748	2606014,643	2691615.704	2576539.839	2560761.05	2527190.698	2508347.134	2400796.646	2471533.233	2451550.895 3497843 637	2409406.445	2387230,332	2364312,235	2340045.333	2291040.635	2285090.699	2236366,238	2210896.652	2182580.142	2123828.346	2092961.061	2061464.851	2029163.718	1996041.057 4060400 872	1927310.764	1891689.53	1855224.171	181 7907/488	1740697,347	1700791,889	1660011.507	15755801.159 15755801.967	1532360.81	1468020.728	1442775.772	1349548,934	1301561.153	1252628.448	1202/2021	1100218.782	1047518.377	963859.0473	BURKED RITES	827067.5094	769512.4805	710968.6269	001428.0404 590889.8451	528543.1171	486783.4842	405204.0000
4	78	¥2	t p	22	н	28	8	£9	8 19	2	83	6	5 8	3 8	8	عا	88	3 3	8	25	5	R 9	4	47	\$	đđ ;	4 9	794	4	4	g 9	8 16	8	8	র গ	3 8	٦.	8	8 8	1 17	8	9 8 2	នេ	z	5	8 9	a 8	17	8 i	ġ Ç	± 5	12	= !	2 0	. 00	2	1 0 m
22176	21964	21/50	21315	21096	20874	20650	20196	16966	19/34	19264	19026	18786	18544	18054	17606	17556	17304	16794	16536	16276	16014	15/30	15216	14845	14874	14400	14124	13506	13284	13000	12714	12/36	184	11550	11254	10556	10354	10050	9744 94%	86	6014	8500	2882	7546	4021	680 1	50/4 6246	5016	6584	2220	4576	4236	3894	3550	2856	2506	2154
0.00029569	0.000621392	0.000613215	0.00000044	0.000588687	0.000580511	0.000672335	0.000555983	0.000547806	0.00053963	0.000523278	0.000515101	0.000506925	0.000498749	En euseponou n	0.00047422	0.000466044	0.000457868	0.00044516	0.000433339	0.000425163	0.000416987	0.000408811	0.000382458	0.000384282	0.000376105	0.00036795	0.000359753	0.000343401	0.000335225	0.000327049	0.000518872	0.00050252	0.000294344	Q.000286167	0.000277991	0.000269815	0.000253463	0.000245288	0.00023711	0.000220758	0.000212582	0.000204405	0.000138053	0.000179877	717100000	0.000163524	0.000147172	0.000138896	0.000130818	0.000122643	0.000114467	9.81146E-05	8.993845-05	8.17621E-05 7 ****59E-05	6.54097E-05	6.72335E-05	4.00573E-05 4.03811E-05
77.6	76.5	75.5	74.5	72.5	71.5	70.5	04.5 68.5	67.5	68.5 A	645 645	63.5	62.5	61.5 Mr	5 10 10 10 10 10 10	595	67.5	561.5	5 B	585	525	51.5	505 49 E	197	47.5	4 8.6	46.5	4.6 5 1 6	5.4	415	40.5	365	32.00 37.5	8	35.5	34.5	335 20 E	315	30.5	252	27.5	26.5	255.5	23.5	22.6	21.5	999 787	1910 1910	17.5	18.5	5.5 	14.5	12.5	11.5	10.5 8.8	7 42 C	7.5	8.5 5.5
-	. P.	22	z 1	2 12	7	28	3 8	87	8 I	8 2	8	8	51	8 9	3 88	태	98	83	5 23	25	51	ន្ល	\$ S	4	â	£	4 4	8 8	4 5	\$	<u>ଟ</u> ୍ଟ :	8 6	5 8	8	8	នន	5 B	ន	នារ	85	8	8	3 8	ន	ы	8	5 E	2 6	16	5 1 :	4 ¢	2 Ç	=	ę a	n 60	~	<u>ت</u> ن
202	326	328	325		i i i i i i i i i i i i i i i i i i i	8	319 318	317	316	310 214	313	312	,		808	307	306	8	5 8	208	58	8	1	792	8	16	2	8	1	8	289	200	ě X	285	282	88 s	281	280	279	2/12	278	275	274	212	271	270	58	81 FR	280	265		202	381	8	6 13	192	28 28
	285	290	191	282	1	295	208	8	299	300	305	303	304	305	2 2 2	306	309	310	312	313	314	315		318	319	320	321	322	326	325	326	82 82	900	330	331	332	334	335	336	128	88	340	81 22	ţş	344	35	346	i I	348	350	351	353	354	365	250	356 .	360

Pressure Drop (Experimental)				
4.635452	5.068604	3,054474	5.367691	5.229691
5.104828	7.23613	5.071835	4.660141	4.768363
4,3331155	5.06955	6.039062	5,119049	5.211441
5.096954	7.775055	5,110628	3.077271	4.731842
3.617859	5.001949	4,578529	5.213854	5.181519
4.481323	3.801087	5.105362	5.779465	4,707352
4,828395	7.695175	4.6082	5.188477	5,065857
4.781616	5.087738	5.099121	5.06638	5.10553
4.327133	7.777344	4,539585	5.186707	4.570145
7,320694	6,08493	5.312195	5,065857	5.198318
6.045746	4.373611	4.890639	8.034546	5.998842
6,968079	5.080902	5.078845	5.068359	5.094589
5.058549	4.742294	5.263565	5.807861	5.377365
7.55573	E.176529	4,830389	5,107758	7.725021
5.068192	4,710388	6.251297	6.631646	4,207138
7,539017	5.161453	4.779327	5.068148	5.114594
5.087749	4.689621	5.06836	4.249008	7,532806
7,773592	4.689621	5.104752	5.104875	5,114428
5,678276	5.09404	7,483215	5.081833	7.483215
7.668152	4,712616	3.524872	4.350418	5.09407
5 078590	5.08049	3,369638	5.079514	3.326508
4.874435	4.391449	4.004829	4.721619	5.095612
6.151352	5.066803	5.678263	5.182033	4.453613
4.72139	5,399551	5.15879	4.696167	4,184413
5,136071	5.068903	5.07547	5.148209	5.089447
4,702484	5.335236	5.642731	4.715286	7.602005
5,12735	4.907776	4,687363	5.147096	5,086777
4.308075	5.30658	5,513784	4.711731	4,38736
4.711168	4,647687	6.102402	5.550888	4.336928
5,115952	5,28635	5.614969	5,058868	4.713043
4,056433	4.792038	5.052628	5.48848	4.618439
5.454071	5.226837	5.465591	5.064804	3.675293
5.028122	4.749847	5.006803	5.031906	4.486343
4,968307	7.779368	7.603226	5.086803	5.131653
5.077713	6.42453	5.076324	6.039474	5.074968
6.915482	5.06636	5.283249	6.060684	5.118904
6.620331	5.065903	5.074081	5.082474	1.421328
7.278048	5.080276	5.93985	6.771489	5.109436
7.278048	5.067703	5.072281	6.381805	4.404485
7,622604	7.382753	5,082784	5.070435	5.101318
5.098587	5.119446	5,052933	6.646499	3.861715
4.326172	7,532806	5.114349	6.06965	
5:080368	5.481552	4,031729	5.072021	
5.273804	5.008192	5.106064	5.08403	
2.633221	5.420746	4,404419	7.774155	
5.247253	4.960819	5.100852	5.076233	
5.073288	7.398727	4.985123	5.093597	
5.21463	5.066603	4.010583	4,474762	
4.741089	5.097687	4,8396	5.08812	
6,143234	5.072891	5,0731B1	4,41124	

= (ulu) =	98.7688012		
	5250,75376	72.46208498	
Ĩ Ĥ	49562.25046 me	an real liquid vetocity, u (m/s) 0.000	000157798
	704,4771792 dis	(anos, L (m)	1.8
	Ŀ	0.275	279493102
· (lb/ft ²) =	7,66605071 (1.4	([th/h.s)	1,23E-05
(N/m ²) =	306.5724138 U _a	(10'8) 7	7.77E-02
(mbter)	5 233567863 D _a	(fi) = 6V ₄ /A ₆	6.75E-03
(Nhar) =	523.3557853 G.	(kg/m.s ³)	010576879
1	L.		4.9212
	1		
	0.03042068	(br/ft.e) 6	6.55E-04
	2	(lt/t)	5.18E-04
	14	us (lb/h ²)	62.2608
	2	minai paciding size (riting diamater), d (fi)	0.026246
	Ğ	No ²)	32.17
	0.6	ruts ²)	3.80665
(Exp) =	0.720506998		
, (m ³)	6.80E-03		
они (Ш ¹)	9,44E-03		
meres (m ³)	0.00444936		
(min)	188.756		

Appendix 1

	8,	U -0.058370177	-0.108195004	-0.158848867	-0.179673631	-0.248770656	-0.602571822	-0.933796456	-1.243165507	-1.859644572	300425 VBB C	ELTRUBAR EL	-3.634390201	4,342614837	-4.728801225	-5,081461185	-5.152257574	-5.450002473	-5.486761151	-5.50838032	-5.52145359	707670770'0-	-0.51313028 E EETTIOOEG	-0.001 / 00000 A ARENDATAR	-5.388491142	5.163216336	-5,001389578	4,82305599	4,648198873	-4,47084021	-4.306969664	-4.1 440000//		-3.62307278H	-3.45323184	-3.285412134	-3.123325791	/TORODOOS/2-	Difference and the company of the co	-2.50568463	-2.364126975	-2.228397111	/00000017-	-1.854873191	-1.731037088	-1.813604575	-1.502168256	-1.390524525 1.390524525	-1.201814854	-1.112358704	-1.027913583	-0.948292767	-0.873312971	-0.744114969	0.684949185	-0.626232552	-0.576837904	00002332070-	0.43484772	-0.39687399889	-0.355517946
	مع	10(V)U#	9680.927017	9485 143613	8281,360209	9099,576305	8909.793401	8722.008997	8536.226593	8352.443189	09/509/0/10	7843.000017	7637,309573	7463,520159	7291,742765	7121,959362	6954.175958	6788.392554	6824.60915	8462.825748	6903.042342	6145.256658	5989.470034 5995 2001 3	00001090100 000000000000000000000000000	5534.125322	5396,341918	5240.558514	5098.77511	4954.991706	4815.208302	4877,424898	4541.641485 4407 sepret	180000, 10mp	4148.291283	4018.507879	3892.724475	3768.941071	3647.157667 acor 374063	0276-12'1702 020022-04760	3293.807455	31 80.024051	3068.240647	2858.457243 1960 873979	2000.01 2008	2641,107031	2539.323628	2439.540224	Z341.75682	2152.190012	2060.408608	1970.623204	1882.8398	1797.056398	1634 499582	1551.706184	1473.92278	1398.138376	1324.3039/2	1182.789164	1115,005761	1049.222357
	FØ	0 3 80500E 04	0.000110518	0.000254045	0.000348872	0.000534168	0.000994658	0,001731442	0.00274452	0.004310186	0.006152145	0.006546634	0.0144963553	0.01932159	0.024203352	0.029837134	0.035347209	0.041609873	0.04814883	0.054964082	0.062055627	0.069423467	0.0770676	071080680.0	1001222010	0 151009423	0.118557745	0.12707681	0.135641923	0.144253085	0.152910297	0.161613557	0007000/L/G	0.187815436	0.196527906	0.205221956	0.213897587	0.2225554798	0.231166961	0.248250135	0.256723153	0.26515012	0.273531037	0,201605405	0,298351446	0.306456069	0.314468596	0.322989022	0.00011.0001 Tranformer	0.345587716	0.353149751	0.360606689	0.367977528	0.375250109 n 34264743	0.389749493	0.396896208	0.403087843	0.41100571	0,424820409	0.431617241	0.438340394
	(1-tm) ³ *E°A(0	-26.1/1001/3	atrendor col-	-115.4774391	-159,8865571	-367.2769218	-600.1571989	-798.9907475	-1195.141645	-1360.397576	-1710,46869	-2035.329043 - 7335 846778	2784 027487	104-170-1817-	-3265,685634	-3311.390244	-3502.752873	-3625,728767	-3540,915411	-3548.674982	-3549,363103	-3543.328749	-3671.971403	-3012.40040 2 AED 184006	-2400.004480 7076/7	-9214 432806	-3099.810195	-2967.428426	-2677.285008	-2769.416344	26677.07.133	-2560.443365	-2441.329636 -2328 572065	-2219.415094	-2111.556252	-2007.38228	-1908.62055	-1804.010805	1610.420194	-1519.440148	-1432.20685B	-1348.619704	-1268,586359	-1112.549061	-1037.074403	-965,4535841	-897,5554832	2012102.008-	-714.9203447	660.646903	-609.4740744	-561.2840609	-518.5737369	-4/0.24/0440	404,4119505	-370.737561	-338.2300857	-279,4785248	-253.0582352	-228.4837507
	(t∿tm)²*C*∆t	•	39514,84168 77447 44843		4077-120011	161901 5361	445489.67	697760,7898	936934.9252	1419915.342	1634131.957	2077627.858	2500159.753	111/1000	500/000 BBB	4204958.023	4311589.094	4516106.936	4703472.498	4782491.052	4853342.603	4918207.15	4871264.683	5077052.153	5058678.766	BUGBUCH, U43	00070000785	4714516.077	4808142.287	4502219,763	43967779.405	4291851.212	4187485.188	4053718.803 2020547 BAS	3801508.453	3674731.904	3550342.488	3428328.207	3298094.936	3170919,489 3046771 R96	2825622.127	2807440,192	2692196.091	2579859.825	24/0401.032	2234604.792	2122399.9965	2013810.865	1808077.403	1210137 484	1615911.027	1525100,238	1437845.117	1360338.756	1285013.785	1143764.077	1076587.32	1009159.251	944439,/1155 RB07460 7167	822874,2513	785932,3203
	C*At	0	4 0	n (2	ţź	8	8	110	170	200	8	8	200	470	000	5	88	01/	740	022	800	630	870	880		c la	900 1926	006	835	940	945	850	348	ī	48	342	ĝ.	505	630 3/2	20	915	90	906	006	880	870	880	850	040	920	810	909	794	788 :	176	710	762	754	f B	130
	PC*At	0	4	₽ 1	88	92	2 00	98	880	1530	2000	2860	3840	4940	6580			12240	13480	14800	18170	17600	19090	20880	22250	23660	24705	20100	27900	28965	30080	31185	32300	33180	34062	36872	36738	37600	38335	0900E	40480	41175	41860	42535	43200	44000	44370	44720	45050	45380	+2000	48170	46400	46846	47280	48112	48510	48768	49010	49446	49640
	E (1/min)	Þ	3.68362E-05	7.36784E-05	0.000110618	/28921000/0		SPORTER DATE	0.001013078	0.001565686	0.00184196	0.002394548	0.002947138	0.003499724	0.004328606	0.004661184	0,0004030/04		D ONREGREET	0.006815251	0.007091545	0.007387639	0.007644133	0.008012625	0.006196721	0.008380917	0.008426965	0.0084/3015	0.008565113	0.008611162	0.008657211	0.00870328	0.008748309	0.00873059	0.00872/08	D. MINRRADS	0.008675631	0.008657211	0.006611162	0.008565113	0.000473015	0.008426966	0.006380817	0.008334888	0.006288819	12/061900/U	0.008012525	0.007920427	0.007628529	0.007736231	0.00/644135	0,007459937	0.007367839	0.007312581	0.007267322	0.007146804	0.007091545	0.007017867	0.006944189 ^ ^^earthere	0.006796832	0.006723153
	Ann		2	9	6	ç, i	17	R H	8	140	185	230	280	350	425	8	000	000	200	775	1 12	785	815	850	880	006	912.5	917.5	922.5	0325	937.5 2	942.5	B47.5	849	347.5	C-104-08	8 9	8	937.5	932.5	927.0 C20 E	917.5	912.5	907.5	B02.5	895 895	875 875	365	865	345	835 976	815	805	787	791	8 ²	773	768	756	092 <i>j</i>	
-	C-250	0	4	63	5	14	8	8 8	8 01	. 021	8	380	320	360	470	23	8	83 83	8 5	072		009	630	870	068	810	915	88	6	5		945	096	846	2548	946	1	040	936	830	50	900 016	010	305	8	Se	028	960	850	840	8	and And	200	784	788	782	011	782	754	746 174	730
0	C (mB)	982	Ā	852	262	264	270	8		NOC P	450	20	570	630	720	290	840	870	8	8	nee USU	1050	1080	1120	1140	1160	1165	1170	1175	0911	1180 1180	196	1200	1198	1187	1196	4811 0011	1190	1185	1180	1175	11/1	1160	1155	1150	1140	1130	1110	1100	0601	1080	0/01	1050	1044	1038	1032	1026	1012	1004	8	
	t (mim)	0	-	2	9	4	v	eg :	~ •	• •	, 2	: F	9	13	14	\$	16	17	ŧ,	≛ €	2 2	- R	8	2	2	92	22	58	8	81	55	18	. इ	8	38	10	*	6 9		42	5	4 4	3		ţ	4 9	ŝ	5 8	53	\$	55	85	89	8	8	5	88	2	\$9	8	28

0.317927383	0.338080221	0.368882035	0.300320000		0.446418307	0.472335411	0.49694244	0.521925936	0.547571418	0.600485225	0.627719424	0.655447347	0.683649351	0.712304759	0.741391965	0.1/1000/80	0.83101082	0.861587009	0.892470963	0.923634543	0.955049061	1.018500794	1.055120713	1.09226709	1.120902781	1.188100594	1.20675419	1.245874181	1.200442464	PSCPander F	1,406634085	1.447781022	1.489281128	1.531111366	1.573228101	Second road (Second	1.701108865	1.744161448	1.76738087	1.830740103	1.91776328	1.06136309	2.004994548	2.048811363	2.082180567	2.179080999	2.222332841	2.265408397	2.31614213	2.41510918	2.465294136	2,516560279	2.566942139	2.6100001/3	2.717219583	2.767619295	2.817959635	2.06821204	2.91834/426	3.018148248	3.06775254
1731.250465	1815,467061	1901.683657			CIPCCASA0400	2362.766637	2460.963233	2561.199629	2863.41 6425	2/16/16550/22	2982.056214	3082.28281	3204.499406	3318,716002	3434,932598	3053,14,8194	3796 582386	3048.786982	4046.015578	4174.232174	4304.44877	4670 981067	4707 098558	4845,315155	4005.531751	5127,748347	6271.964943	6416.181539	5566.396135	10/6/10/01/2	6023.047923	6179.264519	6337,481115	6497,697711	6659,914307	6824.130903 enery 347400	7158,564095	7326.780691	7500.967287	7675.213664 TRE4 APAda	8020.847078	8209.863672	8392,080298	8575,296984	8762,51346 Advin 7300646	9140.846652	9333.1632.48	9527.379844	9723.59644 2004 24 3026	10122.02963	10324.24623	10528.46282	10734.67942	10942.69602	11365.32921	11579.5458	11796.7624	12013.979	12234,19559 12455,41219	12680.62679	12906.84538
0.762239768	0.766748757	0.766630116	0.771263846	0.774008847	0.776708418	0.782022472	0.784638055	0.787228008	0.769766333	0.792319027	605105282.0	0.799751335	0.802173513	0.80456806	0.806864979	0.609274268	1720001107D	0.846126368	0.81835513	0.820558272	0.822729784	0.0524675005	0.52009037548	D.83117517	0.833236165	0.835282741	769902723.0	0.638216833	0.84130585	0.843278547	0.8407.62387	0.84807902	0.850976239	0.862855038	0.854715417	0.856557377	0.4401690295	0.861972739	D.86374102	0.865450882	0.001/2/2020	0.67062995	0.672306134	0.673963596	0.675603242	0.878826672	0.880410757	0.881976423	0.883528274	0.866505577	0.688100639	0.889597532	0.851080309	0,892649272	0.884004421 0.805445754	0.896873273	0.898286977	0.669686867	0.901072942	0.903803647	0.906148278
204,3340456	217.286409	230.6558729	244.4377604	258.6257674	273.2168727	200.2014201	319.3238443	335.445275	351.8277956	368.7615332 286 Adestro	Ama departing	421.2603736	438.3859691	457.803011	478,4974878	496,454805	5) 4.0050046 Fait hore bee	553 7477088	573.5969779	593.0260701	613.8163901	634.1480818	654,6030204	2001/001/001/001	728.2153271	750.7462854	775,5888518	600.7316309	826.1621851	851.9680346	817.6301579 cont peanoi 1	930,5049283	57.1.773217 2017	984.0554811	1011.124175	1008.367728	1005.770025	1120.684175	1148.761585	1176.6288653	1204.567652 • 200 66026	1280.584329	1268.623343	1315.556162	1344,662248	13/2/5/2023	1428.308113	1455.983059	1487.95726	1520.033815	1584,460954	1618.780193	1849.148065	1881.547961	1713.962756	1778.767346	1811,121418	1843,418973	1875,641321	1907./024436	1971.865238
535255.1432	553717,4535	574306.4644	594990.1757	615714,5673	636493.6994	210/399/2012	69601a.2363	719697.1521	740429.7663	761099.0809	(6106/.USC	822547.2274	1642783.3437	B62866.1605	882777.6777	902499.8953	822014,8133	941304.4317 060850.7506	079135.7696	997841 4696	1015849.91	1033743.03	1051302.051	10/3210.4/1	11167561112	1138360.133	1159832,267	1181163.575	1202341.997	1223365.552	1244192.241	12645287.02	1200E621 11	1325630.333	1345302.69	1364826.181	1384088.805	1421 783.454	1440191.479	1458290.608	1476068,93	1510614.518	1627358.609	1643733.435	1559727.396	1575328.49 **************	1605304.079	1619654,574	1638426	1856842.777	1603176.381	1710875.209	17/28/283.387	1745391.515	1782191.793	11/100/11	1810549.529	1826124,808	1841246.437	1856005.416 1870302.746	1884399.426
ŝ	306	302		887	583	8		8	278	275	22		18	8	192	254	ži ž	24B	042	82	236	ñ	230	5 F		5	1 23	218	216	214	212	210		2	202	200	1 96	B	192	ĝ	<u>8</u>	8 2	58 58	180	178	<u></u>	4 E	5	158.5	167	100.0	162.5	161	159.5	158 1	1363	8 5	152	150.5	- 48 - 47 R	-48
40736	43815	43488	43355	43218	43071	12824	20/24	42431	9523	42075	41888	41406	41291	41080	40863	40640	40451	40176	00800	30435	30178	3891	35540	38622	PUCCE .	284.BA		37832	37800	37664	37524	37380	3/25/	36824	36764	30900	36432	0EZBC	36504	36720	36532	30340	annua Arbert	34740	34532	34320	34104	33660	33531.5	33400	332055.5	32997 F	32844	32697.5	32548	32395.5	32240	31920	31765.5	31588	31244
0.000856618	0.00080969	0.002781359	0.00275373	0.002726101	0.002698471	0.002670842	0.002643212	0.002587954	0.002560324	0.002532895	0.002505066	0.002477436	100600000	0.002384548	0.002386818	0.002336286	0.00231166	0.00228403	0.0022506401	CF11022000	0.002173513	0.002145883	0.002118254	0.002069634	0.002081415	0.002002000	n onterestation	0.002007736	0.001989317	0.001970397	0.001952477	0.001934068	0.001915638	41279810000 0.000878787000	0.001860379	0.00184196	0.00182354	0.001805121	0.001708281	0.001749862	0.001731442	0.001713023	CUOPPERTUNU	0.001657764	0.001639344	0.001620925	0.001602505	0.001585866	0.001551851	0.001538036	0.001524222	1040101010 0.0000140000	0.001482778	0.001466963	0.001455148	0.001441334	0.001427519	0.001389689	0.001386075	0.00137226	0.001344631
-	206.5	303.5	300.5	287.5	294.5	2,162	289.5 Tet c	200.D	279.5	276.5	Z73,5	270,5	2010	1945	268.5	200.5	252.5	248.6	248.5	240.5	207.5	2345	231.5	220	121	52 1	627.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	217	215	213	211	202	ŝ i	3 8	Ŕ	8	197	8 8 	; ē	189	187	<u>8</u> 5	2 1 2	<u>62</u>	177	85 é	2	169.25	167.75	168.25	194.75	161.75	180.25 15	158.75	157.28	155.75	162.75	151.25	149.75	146.75
-		30	8	586	582	290	287	55 F	67 E	275	272	観	88			1	52	248	245	747	1 90 1	82	83	83	82	R.	8	e la	216	214	212	210	38	8	55 S	18	198	1 <u>98</u>	<u>2</u> 5	<u>8</u>	1 81	8	<u>a</u> 1	20 E	82.1	178	174	221	189.5	167	165.5	ž	162.5 161	169.5	158	156,5	165 1	152 152	150.5	149	147.5
-			548	3	3	540	153	ž i	5 S	225	522	519	518 11	513	507 507	ŝ	23	88	495	6 2	804 1987	183	8 4	478	9/18	474	£ :	914 994	¥ 8	484	1	460	458	S≩ i	ž į	¥ 5	84	84	444	044	438	438	4 4	754	3 8	426	424	ដ្ ម	460	417	415.5	4.4	4125	1995	406	408,5	\$	403,5	400,5	336	397.5 396
-	142	8	Ē		147	148	149	\$ 5	19 19	153	154	165	5 <u>5</u>	167	158	e u	ŧ	162	163	184 	591 997	i 6	18	169	170	171	12	ę į	ž į	1	12	178	179	180	181	2 E	ā	165	88 14	187	3 6	<u>19</u>	191	<u>8</u> 8	5	195	198	197	<u>8</u> 8	200	501	202	202	ť ž	206	207	208	209	12	212	213

6,677337927	5.672484204 6.872484204	5.656367655	5.645056891	5.631612267	5.615688704	5.577024221	5.554082024	5.528098429 5.578007550	5.58490614	5.610912847	5.636428024	5,681123883	5.684884465 6 707885638	5.720606097	5.750320266	6.770108799	5.788847576 F 90651 9704	E ROMANDI	5.83853519	5.852843704	5.865965894	5.8267/33/31/	5.898175042	5.90841165	5.913360848	5.81 B998222	5.923290582 5.125200582	10201000	5.927926655	5.926627331	5.823863906	5.819610608 5.612644578	5.906530219	6.897850322	5.887175231	5,87507/817 5,8613329/925	5.843610181	5.828784843	5.808928718 5.7804417	6.786913363	5.742898409	5,716641067 5,888243045	5.658885849	5.627130813	5.523419098 E.EETTOLODE	5.52000942	5.480252921	5.438422675	5.394488972 5 348401 054	5.300191576	5.249767623	5.18711971	5.142217279 5.0050706	5.025625772	4.963674721	4.899445202 4.832/805797	4,763724916
36196.87349	36573.09009 16064 30666	36331,52328	36713.73667	37067.85647	37484.17307	3/8/2230800	38064.62285	38048.03945	309440-20000	40243.68924	40645.90583	41050.12243	41456.33903	41004.00002	42666,99881	43101.20541	43517.42201	44466 5667	44778.07178	45202.20639	45629.50499	40058.72158 464395 02818	49019.15478	47353.37137	47789.58797	48227.80458	46668.02116	ACKER ASACT	50000.67095	50448.86754	50699.10414	51351.32074	52261.75393	52719.97062	Sa180.18712	53642,40372 54106 franta	54572.8369M	55041.0535	55511.2701 55002 4697	56457,70329	56833.01969	57412,13648 57200 35306	58374,56366	5858.78627	59345.00287	000017100000	60815.65266	61309,96925	61806.08585 87304 30744	62804.51904	63306.73564	63610.95223	64317,16883 arene anexa	053355. B0202	65847.81882	06362.03621 66378 264.85	67396.46841
0.972186406	0.972729784	0.973786911	0.07430486	0.974811198	0,975308528	0.975759648	0.976745257	0.977205747	0.977601632	0.976556567	0,979001858	0.979430123	0.979871984	0.980300239	0.961142836	0.961557377	0.981967213	0.9623/2444	0.983159002	0.983560508	0.98394732	0.984329527	O DERMENT OF	0.985448517	0.985812304	0.968171486	0.986526064	0.0000000000	0.987562166	0.987898324	0.968229877	0.988556824	0.566673107	0,585510029	0.585818567	0.58012248	0.980716522	0.991006631	0.991292135	0.964849275	0.982121017	0.992398101	0.992808455	0.963161724	0.993410389	0.000000000000	0.994128753	0.9943533996	0.894584638	U 1000049870	0.996233929	0.995441149	0.985643765	0.996035181	0.996223962	0.996408178	0.996762756
3648.862665	3845.730509	3625 36515 3625 36515	3628.11571	3619.410-426	3609.240517	3597.576981 3584 300507	3569.651921	3553.331268	3571,474312 Tean A7A734	3606 106771	3622.568531	3638.442009	3653,713056	3868.367559	20152/2000 /01/52/2000	3708.46734	3720,530877	3731.B85015	3762_465437	3761.661414	3770.109181	3777.789807 2764 501 050	200140/00/0	3798.00009	3800,55845	3804.179564	3806.94344	3608.831974	3000.018.0000	3809.062843	177306771	3804.573185	3600,865319	3790.459126	3783.726715	3775.951854	3757.205363	3748,199824	3734,079867	3/0830/22	3690.5705	3674.123273	3637.00361	3616,594437	3584,927693	3571.984734 3647.346904	3622.195038	3485.310457	3467.073976	3437.406397 34me att8447	3374,060602	3340.223436	3304,83726	3226.938872	3150.16679	3148,90905	3081.677718
2111812.409	2088812.315	20050175,768	20566669.423	2040387.606	2024145.348	2007236.852 *00046E EDE	1971396.966	1852451.972	1952540,174	10020301.133	1961003.48	1949880.815	1948447.334	1946701.836	19446599.522	1909554.243	1836525.279	1803168.059	10/18/284/9//01	1821087.257	1916307.208	1911353.946	1B005864,455	1804134.855	1887688.725	1860884.378	1873718.815	1865189.035	1858282.038 1850/04 875	1841384.395	1832367.749	1822971.896	1813153.807	1202478.898	1761536.268	1770198.323	17504030.781	1733783,185	1720848.373	1707496.344	1679650.637	1864951.958	15466322.053 1674407 051	1618816.622	1602315.077	1565560.316	1569798.143	1532746.731	1514249.103	1486303.258	14/3800.18/ 1456054.92	1435748.425	1414977.714	1393745.787 1372047.642	1349880.282	1327240.704	1304120.91
8	52	5	5 5	8	5	ន	207	ន	49.5	₽ ¥	2 4	47.5	47	48.5	4 ¥	¥	44.15	4	43.5	425	74	41.5	म । म	°.	38.5	8	38.5	8 į	37.5	6 8	8	35.5	ន	19 19 19	33.5	2	9.72 9.72	315	91	30.5	इ	8	5 F	27.5	22	285	8 %	19	24,5	24	502 802	25	8	215	205	53	18.5
082/11	17061	10620	10001	18/15	15676	15635	15/47	14800	14800.5	14700	14080.0	14392.5	14288	14182.5	14076	138001	13750.5	13640	13528.5	13302.5	12188	13072.5	12866	12838.5	12800.5	12480	12358.5	12236	12/12.5	11968	86211	11808.5	11480	11350.5	11089.5	10956	10822.5	10552.5	10418	10278.5	10000.5	0996	9718.5 2526	9432.5	9526	9142.5	8996 2048 5	8700	8550.5	8400	8248.5 anne	7942.5	7788	7632.5 7476	7318.5	7190	7000.5 6840
0.000552588	0.000543378	0.000534168	0.0006249549	0.000506539	0.000497329	0.000488119	0.00047881	0.00046049	0.000455885	0.00045128	0.00044887/5	0.000437465	0.000432861	0.000428256	0.000423661	0.000418040	0.000409836	0.000405231	0.000400628	0.0003960L21 0.0003801.416	0.000386812	0.000582207	0.000377602	0.000372867	D DOCUMENTAL	0.000359182	0.000364577	0.0003499772	0.000345367	0.000340763	0.000331553	0.000326948	0.000322343	0.000317738	0.000308528	0.000303923	0.000299318	0.000200109	0.000285504	0.000260899	0.000276294	0.000267084	0.000262479	0.000253269	0.000248865	0.00024405	0.000239455	0.000230245	0.00022564	0.000221035	0.00021643	22202000.0	0.000202616	0.000198011	0.000188801	0.000184196	0.000179681 0.000174996
8 05	50.5	585	615 201	0.00	54.5	53.5	52.5	505 205	49.75	49,25	48.75 48.2%	47.75	47.25	48.75	46.25	5.25 25.24	44.75	44.25	43.75	8 9 19	5.26	41.75	4.25	40.75	67.124 X: 14	30.25	38.76	38.25	31.75	37.25		8.8	36,25	87.96 19	30.75	33.25	32,75	31.75 31.75	31,25	30,75	83 85 85 85 85 85 85 85 85 85 85 85 85 85	28.25	28.75	97.12 97.12	27.25	28.75	8.8		24.75	24.25	223	2.22	222	21.76	20.75	20.25	19,75 19,25
	8	3	ដ	। इ. स	3 25	8	53 i	5 8	49.5	8	48.5 #1	47.5	47	48.6	\$	45.5	4 S 4	4	43.5	54 ¹ 2	- C	41.5	41	40.6	8 g		38.5	8	37.5	37	200 K	8 8	×	345	5 S	8	32.5	8 1	ੇ ਨੂੰ ਲ	30.5	នដ្	8	28.5	21.69	72	28.5	8	ą ×	24.5	57	535	28	8	21.5	21	28	19.5 19
25	502	308	307	908 308	8	800	302	108 908	2000.5	552	298.5	200	297	296.5	296	2061.5	284.5	282	200.5	283	C'7982	231.5	231	230.5	290	1) F027	286.5	208	287.5	287	59902 2860	205.5	285	284.5	142	88	282.5	282 284 E	2 8	280.5	280	287 787	278.5	278	311	276,5	276	276.5	274.5	274	273.5	273	272	271.5	21	012	269.5 289
-	286	280	291	292	887	285	206	297	589	30	301	302		36	306	307	906 906	310	311	312	215	315	316	317	316	319	2	226	828	324	328	328	328	329	330	32	333	334	3 8	337	338	946	341	57 57 57	4	Ş	346	347	1	350	12	255	1 3	355	95 G	388	359 360

													_						-									_																			
E DENATIS	LOLLO Y		0,00000	5.08493	4.722841	FUZ73018	6.26915	5.24771	4.364029	5.063894	5.068192	5.070526	5.090454	5.009695	5,062106	5.090729	5.277481	5.120834	5.068192	3,467255	5.081345	5.284424	5.077133	4.757828	5.086411																						
A NECEN	2005/0/0	1000001	D.Ur.3009	6.194977 K 194977	5 DATABA	E 415BS	4 148759	A FRORDE	4.89502	5.066849	6.568893	5.068406	5,196081	5.086803	5.090985	4.714861	6.11853	5,92305	6.758743	5.10614	5.620773	5.108215	5,621002	5.06459	5,518188	6.087352	6.067785	5.077087	5.082108	5.075058	4,579117	0.01407 4 RMB5725	5.114105	5.014297	4.539413	5.102844	4.608354	5.220673	4,767929	5,087494	5.696121	5.341095	4.859824	5.060822	0.005049	5,104813	5.081249
	6.214005	4.732634	5.068237	4.840209	A DOMAN		0000014.9	B 651733	4 701141	674725	5.947822	5,871277	5.08139	4.447952	5.068192	5.085052	5.076721	5.084579	5.076455	5.408508	5.075056	5.875214	5.073868	4.237377	5.108231	4.476898	5.104845	4,60316	5.098267	4,5354	4.882141	4,620618 8,762634	S DRADE	5,192459	6,972244	4,772049	5.190186	5.87615	5.722672	5.655197	5.081284	4.355042	5,068192	5,068165	5.078354	4,380364	avoranus Antonio 2
	4.849426	6.255814	4.805893	4.320602	0.037.000	ormoon c	7.00000	DIOCIO'I	7 379100	A Shore R	5.242325	4,769318	5,197632	4.735188	3.926224	7.615409	7,605057	5.067307	7.299545	4.790237	5.195945	4.775024	3.141037	6.018524	4.713943	4.718246	5.636437	S.658412	5.512711	5.038147	5.443488	5,85553	0.009000 6.067740	6.682922	5.067307	7.380681	5.066895	7.603851	5.073669	6,259648	5.072327	4.112381	5.071381	4, 148521	5.097046	3.646822	3.100642
essure Drop (Experimental)	6.148209	5.069595	7.569382	5.069565	2730197	4.00000/	5.068182	009775*0	017175/C		ZIRADZC	5.0823	4 9666019	5.086197	7.534805	5.414017	5.385437	5.311096	4.875717	5.20944	4.408401	5.090012	5.099121	5.080475	4.921768	6.269501	5.086406	7.397049	5.33638	5.290558	4.822495	5.236969	4.3//525 c Annang	4 697637	7.718506	7.409088	6.345581	4,891113	5.277267	4.825195	5.236786	4.369431	5.099411	7,652369	5.067307	7.412796	5.067307

= 553.46 A770505 N.4.4.4600 = - 453.46 A770505 N.4.4.4600 = - 453.46 A76005 N.4.4.4600 = - 734.43 49400 N.4.4.4600 (Rith") = - 2.20245337 Lund") N.4.4.4600 (Rith") = - 2.20245337 Lund (Nite) N.4.4.4600 (Rith") = - 2.20245335 Lund (Nite) N.4.4.4600 (Rith") = - - Lund (Nite) N.4.4.4600 (Rith") = - - Lund (Nite) N.4.4.4600 (Rith") = - - Lund (Nite) Lund (74.47488066 D
cd::10.1.000 cd::10.1.000 r: 724.3246356 deamond. L. (m) r: 2011 r: 2012 cold extension. L. (m) cold extension. L. (m) <th>ō</th>	ō
Tot. 394560 Other All (m) (AM ⁺) = 2.2245337 (AM ⁺) = 9.2245337 (AM ⁺) = 9.2245337 (AM ⁺) = 9.2245337 (AM ⁺) = 9.22453306 (AM ⁺) = 6.22453306 (AM ⁺) = 5.2754563006 (AM ⁺) = 5.275456300 (AM ⁺) = 5.2754500 (AM ⁺) = 2.275456300 (AM ⁺) = 2.2554500 (AM ⁺) =	ð
(Min*)= 5.22245327 Len (Infin*) - (Min*)= 9.222453251 Len (Infin*) - ((Min*))= - 4400 528561 Len (Infin*) - ((Min*))= 5.2734505061 Len (Infin*) - ((Min*))= - 5.273450506 Len (Infin*) - ((Min*)) - 0.02004506 Len (Infin*) - ((Min*)) - 0.0200450 Len (Infin*)	0
(a)(if) 5.2243223 C (b)(if) ¹ 5.22432331 Lu,(ib) (b)(if) ¹ 410.6133331 Lu,(ib) (b)(if) ¹ 5.272452361 Lu,(ib) (b)(if) ¹ 5.27245205 Lu,(ib) (if)(if) ¹ 5.27245205 Lu,(ib) (if)(if) ¹ 5.27245205 Lu,(ib) (if)(if) ¹ 5.27245205 Lu,(ib) (if)(if) ¹ 5.27245205 Lu,(ib) (if) (if)(if) Luxue (if) (if) Luxue (if) Luxue (if) (if) Distribute (if) Luxue (if) (if)	Ő
(Rinf) = 9.2024337 Institution (Initial Initial Initia I	
(Neth*)= 44.0.8136851 Up, (100) La (mate) = 6.2725458560 U(1) 0.0 La (mate) = 6.2725458560 U(1) 0.0 La (mate) = 6.2775462660 U(1) 0.0 La (mate) = 2.275452660 U(1) 0.0 La (mate) = 0.00041080 U(10) 0.0 La (mate) = 0.00041080 U(10) 0.0 La (mate) = 0.00041080 U(10) 0.0 La (mate) = 0.00041080 0.0 0.0 La (mate) = 0.00041080 0.0 0.0	
(BDD) = 0.775452000 (b, ff) = 51/24, ພ_ (Nam ³) = 52.75452000 (b, ff(g/m e ³)) = 0.00042000 (b, ft(g/m e ³)) have (th) h have (th) h have (th) h = 0.00911200 g (m ³) = 0.00911200 g (m ³)	
me. 22.7.5452000 Care (19/11 w) co. 22.7.5452000 Care (10/11 w) co. 0.000412000 Description co. 0.000412000 Description co. 0.000412000 Description co. 0.000412000 Description co. 0.0004110 Description co. 0.0004110 Description co. 0.0004110 Description co. 0.0004110 Description	
الالالالالالالالالالالالالالالالالالا	ð
= 0.03942060 [pass (b), head (b), head (b) head (b) head (b) (b) 1000 [passing size (ing damate), d (f) 1000 [passing s	
= 0.0304.2060 [type: (bf) 4.5) (bype: (bf) (bype: (bf)) (bype: (bf)) (bype: (bf)) (bype: (bf)) (cf))(cf))	
(by any (the)) (by any (the)) Avec (the) (by any (the)) Avec (the) (by any (the)) Avec (the) (b) (f(t)) (f(t))	
Description Description Description Description 10(Pa) Description	
borningi pasting ster (ing diameter), d (it) g (fits) = 0,70811208 	
9(06') 9(m*) (fep)= 0.70841420 	
(Exp) = 0,70911208	
(Exp) = 0.705911208	
(m ³) 6.70E-03	
arm (m ³) B.44E-09	

	¢,	0 APPA BALAE	-0.0000000-0-	-0.17556552	-0.226981064	-0.275049565	-0.319847444	-0.619696507 -0 900178923	-1.846050129	-2.248842588	-2.808995916	-3.41868436 2.60000054	7408778052 0.5	-4.744061751	-5.039389509	-5,231979781	-5.331582714	-5.552382425	-5.54981 2286 c #774937444	-1.0507030.00.0- 45.616310038	-5.486341241	-5,448167827	-5,283063685	-5.191644189	-5.087353138	-4.932116408	4.626474747	4,476240475	4.327837702	4,161804296	-3.981977409	-3.822915631	-2.040230402 .3 479094561	-3.312192708	-3.150827415	-2.88952052	-2.831368052	-2.57928484 .2 533412501	-2.382745381	-2.247086238	-2.087423364	-1.936412108	-1.694030523	-1.509646341	-1.490306218	1.304845792	-1.218273047	-1.136039474	-1.05782259	-0.912958414	-0.846069622	-0.78272452	-0.722808096 0.469650469	COLO7020010-	-0.553058048	-0.503574728	-0.457396781 -n.45739678104	-0.374377582
	م م	#DIV/0	CIED OR DEPARTMENT	9595.170528	9400,260645	9207.350752	9016.44086	8827.530997 8640 671115	8455.711232	8272.801349	8091.891457	7912,981584	7581 181819	7388,25,1938	7217.342054	7048.432171	6861.522288	6716.612406	6553.702523 5300 702523	10267/19200	6076.972875	5922.062993	5769.15311	5818.243227	5489.303345	5322.423462	5034 603697	4893.693614	4754.783631	4617.874049	4482.964166	4350.054284	4000 234518	3963.324636	3838,414753	3715.50487	3594.594968	3475.685105 3458.775773	3243.86534	3130.955457	3020.045575	2011.135692	2089.315927	2596.409044	2495.496162	2200.876396	2204.766514	2111.856631	2020.946748	1845,126983	1760.217101	1677.307218	1586,387335	7922540401	1385.667887	1292.757805	1221.847922	1096.028157
	F (1)	0	4.000840E-00	0.000240358	0.000400593	0.000800889	0.000841245	0.001321955	0.003405039	0.006327885	0.007811561	0.010636186	U.U14041021	0.02359492	0.028962745	0.034571165	0.040580058	0.047069663	0.053799623	0.067090611	0.075431639	0.083123022	0.090804524	0.098826263	0.106918239	0.115090334	0.131874879	0.140087329	0.148579898	0.157112527	0.16566919	0.174241878	0.162000545	0.188903838	0.208428474	0.216921043	0.225373553	0.233766003	0.250490725	0.25874294	0.266834816	0.274709655	0.200389777	0.298121219	0.305812803	0.321076191	0.328646367	0.336177543	0.34306863	0.358530625	0.365901534	0.373232384	0.380523174	0.304964700	0.401914834	0.40888515	0.415775348	0.428015387
	(1-tm) ³⁻ E*Af	0	-77 RE201010	112.0544966	-146.0404149	-176,9600613	-206.7819047	396.6973473 570 1570148	-1069.027786	-1446.849467	-1607.881607	-2190.419438	245001.0042-	3052.790586	-3242.224529	-33661,1256895	-3430.214383	-3572.265002	-3570.611438	CIUCI/ 2000-	-2629,775743	-3606.208547	-3405.438572	-3340.174983	3273.076704	-3173.200602	20262-0-1-0-2-	-2679.601889	-2784.423329	-2677.601557	-2568.339155	-2459.569004	2040.180012	-2130.982552	-2027.22847	-1923.383281	-1821.631909	-1723.785218	-1539,432973	-1445.725287	-1342,896367	-1245.839473	-1050,940009	-1022.867664	-958.6280203		-783,8066317	-730,6995628	-680.5767914	-587,3734902	544.3401894	-503,5855233	-485.0364948	-420.24901B1	-366.8225288	-323.0874775	-294.2777333	-240.8652414
	(I-Im) ²⁺ C*At	0	49554.55145 07000 0045	143627.5579	168006.2129	230183.7691	2770486.2284	529651.8598 777ese prove	608/002/1/1/	1986472.324	2508486.355	3088062.818	007.757.1055	4432951,182	4763445.755	5004388.841	5161141.716	5440458.049	5505110.119	780.6271800 CB1 0.004 483	F9611594 774	5685180.473	5596078.517	5562060.795	5524026.578	5428671.931	106:0000000	6138378.505	5040070.967	4916035,862	4767805.73	465-4558.082	005.052010P	4224804.082	4084073.297	3838435.183	3782297.712	3649469.38 12/00/2014 09	3373619.954	3224884.121	3060246,03	2882024.335	21/46141.283	2505531.833	2395676.315	21000128-000022	2063504.355	1985145,233	1885585.21	1796794,285	1618399.733	1534736.104	1452721.575	1365/385/07	1201767.565	1124699.29	1050788.213	91/2263.6518
	C*∆t	0 1	o 5	5 fi	2 8	8	Ŗ	នទ	170	97	310	390	2 4	800	660	710	052	810	078	8/0	100	08	870	086	1010	1020	0001		1080	1085	1068	1070	1069 1069	990 990	<u>1</u>	1060	1065	1050 1045	10401	1030	1010	080	0966 U26	596	960	505 040	945	940	335	930 975	820	915	910		88	870	098 1	840 048
	rc*at	0 1	n (ब स	8	5	180	8	1530	2400	3410	4880	0996	0008	10560	12070	13500	16390	16800	18270	00001	23040	24250	25740	27270	20500	0/967	05562	33620	8145	36312	37450	38484	31050 AUSOR	41496	42400	43255	44100	45780	46350	46480	48530	47040	48250	48960	49080	51030	21700	52360	53010	54280	D0675	55510	66800	00010	56550	56750	58950
0.05	E (timin)	D	4,00593E-055 a aviande Ac	5.011585-455 n.re04:20578	D,000180237	0.000200296	D.000240358	0.000480711	0.000/2105/	0.001622846	0.002463676	0.003124624	0.003606336	0.004607115	0.005287826	0.005688413	0.006008633	0.006480605	0.00672996	0.006970316	0.007454098	0.007681382	0,007771502	0.007931739	0.008061975	0.008172095	CE220290010	0 000000000	0.006492569	0.008532628	D.000556864	0.008672688	0.008564676	D.D.BERADEA	0.008524816	0.008492569	0.00845251	0.00841245	0.0000302302	0.006252213	0.006081876	0.007831739	0.00785152	0,007731443	0.007691363	0.007851324	0.007571205	0.007531148	0.007491087	0.007451028	0,007370909	0.00733085	0.00729079	0.007210672	0.007050435	0.006870316	0.006890197	0.00672996
6	Area		25	7.5	17.5	22.5	Z7.5	14 H	8 F	205	512	350	84 84 84	555	8	885	730	780	525	885	200	545	965	986	1000	1015		t tub	1065	1062.5	1066.5	1069	1069.5	1068.5	1065	1062	1057.5	1052.5	10425	1035	1020	1000	986 974	967.5 2667.5	962.5	957.5 Den e	947.5	942.5	937.5	902.5 077 5	9225	917.5	912.5	306	88	875	365	8 55 845
=	C-250		μ, i	- -	<u>n</u> 02	5	œ	8	58 52	202	310	330	52 52	3 5	8	710	750	810	840	870	3	2 2	070	880	1010	1020	0601	040) 140)	080	1065	1068	1070	1069	990) 9909	1064	1080	1055	1050		1030	1010	083	8	396	096	998 199	24 24	940	335	028	226	815	810	8	88	019	980 19	850
12.5	C (mS)	X	ß i	20 J	220	275	280	310	8	≩ 5	38	640	8	, 190 192	010	ģ	1000	1060	1090	120		1310	82	1240	1260	1270	1280	0023	1310	1315	1318	1320	1319	1318	2151	1310	1305	1300		1280	1260	1240	1230	1215	1210	1205	1195	1190	1185	1180	241	1165	1160	1150	18	1120	1110	1100
1	t (min)	0	- I	~ ~	ν 1	- 63	8		00	» ⊊	: =	1	ព្	4 ŕ	, ta	: 5	81	49 	ន	ត	3 8	3 8	5 83	58	27	8	8	8.8	5 S	8	8	38	81	6 8	8 8	4	4	42	4 1	4	48	47	8 9 4	7 8	5	8 1	3 3	22	8	57	3 8	60	9 10	ទ	3 2	8	8	20 89

0.31516113	0.333208684	0.351594519	0.3/028609	0.1004677007	0.4/17/8/2/27	0.447486076	0.467177391	0.486875513	0.506517345	0.548450785	0.568147231	0.585697064	0.605048221	0.624146844 ^ ecretetten	ULCOLOGIO 101-004 CLEAT PROJECT	0.711712624	0.742201383	0.7715528237	060000000000000000000000000000000000000	0.870453483	0.904045842	0.938228871	U.B/288449	1.044218199	1.080652143	1,117616388	1.165096865	1.231547263	1.27048606	1.309878845	1.348708561	1.38895/55/	8/6000001	1.513034713	1.554772333	1.590631998 1.630162460	1.681331907	1.724727878	1.767657348	1.811190000	1.696407457	1.942228639	2 0301/2487	2.074241318	2.118337862	2.206499853	2.25050688	2.294423986	2.53658520981	2.426327752	2.408572959	2.51156885 2.ee4ma4.man	2.506675715	2.638717711	2.680371434	2,762368732	2.802636148	2.842370971
1684.696843	1767.78698	1862.877077	1838,967195	215/30/8202	214014140	2308.327664	2405,417762	2504,507889	2005,596016	2/105/35/135	2920.868368	3029,958486	3141.048603	3264,138721	3309.223925	3605,409073	3726.49919	3849.508307	3874.578425 401 760547	4230.85966	4361.949777	4495.039394	4530,130012 4787 920190	4906.310246	5047.400364	5190.490481	5335.580595	01/01/07/04/04/04/04/04/04/04/04/04/04/04/04/04/	5782.850851	5035.941068	6091,031165	6248,121303	2011/2/1042	5731,391655	6696.481772	7063.57189	7408.752124	7576.842242	7751.932359	7929.022477 8108.112594	111202,20271	8472.292829	8857.382946 8944 473063	2033.563181	9224.853296	9612,633533	3809.92385	10009.01377	10210.10389	10618.28412	10825.37424	11034.46435	11245.05447	11673.73471	11890.62482	12109.91494 12331.00606	12654.0951B	12779.18529
0,768417258	0.771301526	0.774137724	0.77582585	0.7799655906	0.16236168	0. reptoreds	0.790145415	0.792645115	0.765096743	0.7975003	0.602163202	0.804422545	0.808633818	0.80879702	0.810944197	0.815190482	0.617269586	0.619372672	0.621438731	8/15/28/28/0	0.827544768	0.628647731	0.831534671	0.625450492	0.837396351	0.835322197	0.841228019	0.843119617 0.844004507	0.640853343	0.64869607	0.850522774	0.862333454	0.85412611	0.857668361	0.859415826	0.86(146497	0,80,2001034	0.868242038	0.867908505	0.809556947	0.872611761	0.874414133	0.875000481	0.879125105	0.860863362	0.883691864	0.885182069	0.886656251	0.888114409 0 800556244	0.690962654	0.682392741	0,893786804	0.895164844	0,897872852	0.699202822	0.900516765 0.900514765	0.903096583	0.904362455
202 7658466	214,3781944	226.2071842	238.2341641	250.4383263	282.7977175	275.2892184	300.5703344	313.3079548	328.0736972	339.8366802	384.2450722	376.6223494	289.2730033	401.5605837	419.9173092	458,896232	477.5133423	497.540188	517.9717629	560.0781566	Sel .6406498	603.6338051	525.000496	040 F224 F23	095,2847592	719.0466364	743.1506451	767.5973503	142.34084327 PH 7.900H PBH	B42.7435279	868.3689788	894,284183	920.4173983 040 H454077	973.4469696	1000.30191B	1027.362062	1054.615/738 40a0 naseo.e	1109.647096	1137.395526	1165.278961	1221.308225	1249,581686	1277.845511	1334,515365	1362.685566	1391.256162	1447.820124	1476,175428	1504.353318	1560,395681	1568.218554	1815.880914	1643.361 1470 energy	1697.585463	1724.484434	1751.010321	1803.147802	1628.710914
ET BECO DAAA	638409.3056	655918.4854	675108.5838	1009.752528	712369.5363	730358-3906	76402224545	781406.4645	797312.993	612606.4401	62/250.0054 8417410 no01	854448.253	866929.4145	878617.4546	902963.3296	927360.8421 951827 9952	976342.7878	1000883.22	1025467,292	1074638 354	1088211.344	1123756.974	1148272.243	11/2/30.152	1221470.888	1245717.715	1269866.182	1263010.289	1317832.035	1341921,423	13887555.11	1412075.414	1435215.358	1400102.841 1400006 164	1503433,026	1525731.528	1547789.67	1581136.871	1612401.931	1633578,63	1674418.948	1894458.565	1714161.823	1752511.257	1771138.433	1788371.249 48/77210 70/4	1824845.799	1641556.533	1858238.907	1890054.573	1906265.886	1019906.798	1834235,369 40 American Ed	1981187,431	1373876.921	1986026.05	2008655.228	2019111.276
	8	758	346		338	8	976 348	312	306	8	Ř 8	8	276	270	268	8 ¥	282	8	52	ŝ	5 8	790	248	8	240	240	2362	236	2	222	83	228	*a	1000	215	216	214	212 210	508	208	2 S	8	9 <u>5</u>	<u>8</u> 2	55	8 8	8 8	ž	182	180	921	174	5 i	170	1 8 <u>5</u>	164	8	. 8
- Logo	51480	50976	50460	499322	49392	46840	48276	47112	46512	45900	45278	09004	43332	42660	42612	42560	10021	42380	42312	42240	42164 23084	42000	41912	41820	41724	41520	41412	41300	41184	41054 40040	40812	40680	40544	40404	40112	39960	39804	30644	38312	39140	36964	36600	38412	02285 02000:	37824	37620	37412	19886	36764	36540	211000	35844	35604	35350	34860	34504	34344	30812
	0.00252234	0.002636198	0.002768126	0.002740056	0.002691564	0.002643913	0.002555842	0.0024897	0.002451628	0.002403557	0.002355486	0.002307415	0.002211273	0.002163202	0.002147178	0.002131154	CUELEZ/00/0	0.002083083	0.002067059	0.002051036	0.002035012	0.002002964	0.001996941	0.001970917	0.001954893	0.001922848	0.001906822	0.001890798	0.001874775	0.001868751	0.001828704	0,00181068	0.001794656	0.0017778632	0.001762505	0.001730561	0.001714538	0.001696514	0.001588465	0.001650443	0.001634419	0,001602372	0.001586348	0.001570324	0.001538277	0.001522253	0.001506229	0.001474182	0.001458158	0.001442134	0.001440010	0.001394063	0.001378039	0.001362016	0.001328968	0.001313945	0.001287521	0.001265873
	8 8	8 G	361	345	335	303	321	221 246	505	202	287	5	8	e: E2	209	267	592	8 8	82	221	38	1	249	247	245	200	239	237	235	81	82	1 🕅	16 2	8	ត ៖	217	215	213	888	207	205	201	1961	79 24	2 E	191		ă 8	8	181	E F	Ē	173	12	18 19	\$	81 8	<u>5</u> 8
•	385	R 3	348	245	336	330	324	318	308	30	284	582		82	88	599Z	ā.		1 52	B 22	254		248	246	77	242 240	1	236	752	8	230	1 8	72	8	8	91Z	214	212	210	8	204	202	9 <u>5</u>	<u>8</u>	1 Ş	<u>ě</u>	8	192 782	- 1	180	821	174	172	£ 1	188 188	164	162	<u>3</u> 8
	616	610		265	588	88	574	88 S	200	6	544	28	8	8	815	516	514	512	805	506	702	206	8	486	26 1	482	1	88	484	482	99 120	878	474	472	ŝ	84 84	\$	482	2 2 2 2 2 2 3	7 \$	454	 년 년	4 4	448	444 644	440	1	436	18	630	624	27 ² 3	8	8	418	414	412	408 408
	142	1	ŧ į	941	4	148	149	5	ē \$	15	154	155	ŝ (15/	150	180	181	162	8 18	165	186	187	99 198	170	121	<u>5</u>	212	175	176	177	51 12	671 1980	5 5	182	183 2	184 186	8	187	186	8 8	191	192 192	2 2	185	96 196	96 96	198	200	202	203	204	502	207	208	209	312	212	214 214

6.030306128	6.0613	1/0007100/0	6.147656666	6.174138578	6.198420347	6.223472672	6.246265965	6.267770482 a 2677770482	6.306792608	6.324249432	6.340295627	6.354900793	6.388033089 e 1704e1 717	6.369753519	6.398277977	6.405202415	6,4104 044	6414121254	0.410050005	6.41499071	6.411315521	6.408118244	6.399054771	6.390090752	6.379191602	96187750005°0	6.3345339	6.315543567	6.294441581	6.271191918	6.245758319	2076010120	6.155987704	6.121450967	6.084545402	6.045233315	6,0034/16/7 4 ck0027505	5.912477375	5.863157461	5.81123896	5.700062745 5.60044944	5.639488444	5.578792908	5.511289744 5.4moutoene	5.371731995	5.297596041	5.274136006	6.249004862 E-2004872E00	5.193626664	5.163332941	5.131264774	5.097399455 6.097399455	5 (12418/7783	4,984751288	4.943432275	4,900184351	4.85459065	4.758600195	4,707389005	4,654074303
34985.65398	35360.9441	35736(0342)	2011/11/2400	30480.21440 36881.30457	37266.39468	37653.4848	38042.57492	38433.86504	38221.84527	30618,93539	40018,02551	40419.11562	40822.20574	102627-17714	42043.47609	42484,56821	42867.65633	43282.74844	430964.630555	44540 0168	44963,10691	45368.18703	45815.28715	46244.37727	40675,46738	4/108.56/5	47040504702 47040773774	48419.82785	48680.91797	45304.00809	49749.0982	50(56:18832 streads 27844	51096.36556	51549,45567	52004,54879	52461,63891	52920.72903 52920.72903	53844,90526	54309.99936	54777.0895	55246.17961	58190.35985	56865.44997	57142,54008	SPACE SOUCH	58585.81043	59070.90065	59667.98067 200 rg 200 rg	60536.1709	61031,26102	61526.35114	62023,44126	10100122020	63626.71161	64031.60173	64538,89184	65047.59196 AFEREN,07208	66072.1622	66587.25231	67104.34243
0.970171854	0.970758322	0.971338381	0.91191205	0.9/24/8206	0.97359452	0.974142531	0.974684133	0.976219325	0.8/0/4910/	0.976786444	0.8777295598	0.877789143	0.978295678	0.9/5/60204	410756160 0 979747878	0.880218724	0.980683411	0.98114169	0.981583558	U.Sezenceson 6	0.90001920900	0.963336930	0,96375676	0.984170172	0.984577174	0.964977767	0.80520190	0.568141089	0.986516044	0.985664589	0.967246725	0.967602452	80/106/08/0	0.688831174	0.996961263	0.999284942	0.969602211	0.960217522	0.990515563	0.990807195	0.991092417	0.991642633	0.981909625	0.98216821	0.992422365	0.992906506	0.923145856	0.9933762	0.986/96/06/287	0.864051156	0.094267516	0.99447963	0.994699136	0.9966062737	0.996289028	0.995481312	0.995869591 n contrigeoped	0.596034131	0,996210391	0.996382648
3879.749246	3899.660634	3918.932431	3837.458483	39655.249684 16270 167473	0812.201410 30005 553136	4004,027805	4018,692457	4052.527916	4045.514653	4068.86507	4079.186923	4088.585385	4097.034368	4104,51565	411.000/14	4120,94821	4124,352041	595369'92.15	4127,927319	4128.05445	4124.09051	4121.537432	4116.962968	4111.225741	4104.213498	4096.633833	4068.364165	40F3 263933	4048,687439	4034.729183	4018.365837	4000.573916	3961.328785 Property	3638,386573	3014,845449	3669,353028	3662.487904	3803.941152	3772,209944	3736.806869	3706.706754	3628.313829	3587.9701	3545,626991	3501,858657	3408.341768	3383,248163	3377.07941	3369.619352 ***** 451779	3321.960223	3301.32636	3279.539611	3266.57734	3207,065209	3180,481594	3152,656953	3123,574169 amos at 6008	220017/0905	3028,604346	2004.315899
2688953.194	2688421.108	2687433.677	2685886.102	2684073.563	22010001.322	2675468.36	2571678.064	2567368.824	2562565.84 Prec7nex 242	2551459,439	2545148,422	2638320.461	2630976.756	2623110.506	2014/10/313	2496728 493	2486324.067	2475773.097	2484670.782	2453012.323	2440792.92	2414952 082	2400724,047	2306209.067	2371113.743	2365427.875	2039147.463	2011/10222202	2286690,961	2287984.372	2248659,239	2228710.781	2208134.14	2165077.264	2142587.41	2118450.212	2095680.869	20/1214.565	2020331.977	19038361.058	1986763,894	180,080,087	1681292.939	1851418.299	1820843.514	1757574.313	1742591.588	1727181.729	1711341.802 +arreed 796	1676359.678	1661211.481	1643621.153	1625585.816	1507102.340	1568779.142	1548833.404	1528627.576	1507555.055	1484919.551	1442743.362
74	73.2	72.4	71.6	70.8	8	1984 1984	67.6	66.8	8	50.2 F4 4	88	62.8	62	81.2	60 4 7 7		8	57.2	56.4	56.8	54.B	5 g	52.4	51.6	50.8	8	49.2	48.4	88	48	45.2	44.4	43.6	428 64	42	40.4	3,95	898	37.2	36.4	35.6	9 3 8	33.2	32.4	31.6	8000 Sec. 50	5 83 83	8	28.5	21 E	12	26.5	8	265 X	245	24	23.5	8	22	21.5
21312	21154.8	50006	20835.6	20873.6	20510	20178	20008.8	19829.6	19665	19494.B	19143.6	18905.6	18785	18604.8	18422	1823/ 15 8 1906 1	17864	17874.5	17484	17291.6	972021	105002	area a	16305.6	16103.6	15900	15694.8	15488	15060 6	14858	14644.8	14430	14213.6	13995.6	13554.8	13332	13107.6	12881.5	12424.8	12184	11961.6	11727.6 	11254.8	11016	10775.6	10533.6	10148	10005	9661	91/6	5276	9275	9126	8976 8876	8673	6520	8366	8211	7898	7740
0.000592877	0.000566468	0.000580058	0.000573649	0,00056724	0.00056083	0,000554421	0.000545802	0.000535152	0.000528783	0.000522373	0.0000103000	0.000503145	0.000496735	0.000490328	0.000483916	0.000477507		0.000458278	0.000451869	0.000445459	0.00043905	0.00043264	0.000420231	0.000413412	0.000407002	0.000400653	0.000394183	0.000387774	0.000361364	D monthese as	0.000362136	0.000355726	0.0003483317	0.000342908		0.000323679	0.00031727	0.00031086	0.000304451	0.000291632	0.000285222	0.000278813	D. OCOUZY 2404	0.000259684	0.000253175	0.000246765	0.00029535	0.000232344	0.000228338	0.000224332	02002200000	0.000212314	0.000208308	0.000204302		0.000192285	0.000188279	0.000184273	0.000180267 0.000176261	0.000172255
74.4	73.6	72.8	2	71.2	70.4	8.8	900	61.2 61.2	5 8.4	85.6	848	1 2	62.4	61.6	808	8	282	57.5	56.5	8	55.2	4.45	88	2 22	512	50.4	49.6	48.8	\$ f	1 H	88	44 .8	4	2.54	474 4 6	40 80 8	Ş	382	384	36.8	8	36.2	34.4	87.8	23	31.2	4 K 8	2 12	28.75	29 32 21 32	E1.12 30.70	12.97	26.25	SE 75	9 H	24.25	23.75	23.25	22.25	21.75
74 N	5 E	72.4	21.6	70.8	ę	69.2	587 2	0.70 8.83	8	66.2	844	878 878	3	6 1.2	80.4	59.8	58.8	8 62	1 12	55.6	54.8	3	832	11/2 4 E1 6	508	8	49.2	48.4	47.5	92 9	\$ 년	44,4	43.5	42.8	¥ :	7.14	395	38.6	83 f	798	35,6	34.8	a j	32.4	31.6	30.8	នដ្	. 8	28.5	82	27.5	26.5	8	25.5	8	C#7	23.5	ន	25	24 S
Fab	324	1004	321.6	320.8	320	319.2	318.4	317.5	348	315.2	314.4	313.6	312.0	311.2	310.4	309,6	308.8	200	308.4	305.6	304.8	304	306.2	302.4	0.106 8 ms	300	2399,2	268.4	8,162	2596.6	1	294.4	263.6	292.8	55. 55.	2012	2002	2889.5	288	7: / 98C	285.6	284.8	an a	283.2	281.6	280.8	280	278/2	278.5	276	277.5	2/15	276	275.5	275	C/4/2	\$'ELZ	SZ Z	2725	2715
i		100	8	282	82	284	2962	8	238	299	300	901 191	202	100	305	308	207	806	806 U40	31	312	313	314	315	315	318	318	320	321	32	22	325	326	327	328	88	100	332	333	334	955	337	338	989 987	5 5	342	5	al s		347	348	348 350	198	362	353	35	356	367	356	360

Pressure Drop (Experimental)				
5.077988	7.648407	4.7677	6.022018	4.701447
5.067749	5.067749	7.36618	4, 893474	5,080475
4,451098	7.372406	7.090973	5,370941	4,406262
5,001555	4.982315	4.707258	9,233353	5.094177
5.41806	5.301651	5.211044	4,437576	5.090729
4.978486	5.068649	4,736298	5.427582	5.071381
4,916382	7.863589	5.184288	5.126639	5.082153
4,848755	5.069672	4.709717	5.088192	4.539996
3.31826	5.067307	5.161896	5.14238	5.068192
7.529683	5,199142	4.690964	5.067307	4,300339
5.078765	7.376473	4.68722	5.158264	4.745118 6.070016
3.648408	5.193485	5.860996	5.00/3U/ c 120270	0.000000
5.067749	4.730225	4,805055	0/0907/0	5.074002
4,457,413	8077110	7 55520	5.068649	6,421432
4.690001	5 075912	5.068893	5,077133	5.071747
5 047740	5.073334	5.090454	7,610184	6.629712
3.294662	6.616953	5.085922	6.305771	5.070938
5.081619	6.143997	5.094513	5.00636	4,781275
3.83493	5.086849	5.228271	8.065536	5.069672
5.078308	5,308157	4.753113	5.08636	3.705167
5.108063	4.70401	4.723358	5.132141	5.094579
5.067307	5,153915	4.703842	6.107773	3.191727
4.900543	4.719818	5.673462	3.718543	5.068138
5.0784	6.12328	5.119858	5.088318	6.842682
4.758577	4.898659	6,259277	4.391129	5.067307
\$,067307	4.646376	6,124176	5.089905	4,00/005
3.911392	7.275177	6.725784	4.438385	
6.238666	5.067749	5.114258	0.0488223	_
5.207092	7.423065	201202.4	F NROTAG	
D60000.5	AUGLED S	3 FEOD40	4.345901	
7.640877	HZCODE 2	5.096624	5.080048	
5.075455	4,927083	3.700653	4.314941	
5.067307	7.199463	5.069138	5.076859	
922662017	5.08676	7,530197	4,221,686	
4,887848	6.004745	6.068237	5.074845	
5.153458	7.858068	/1/2014/1	2000/010	
5,063817	7.794128	0100011	0.0039000 R 708783	
3,19,5054		F 176058	6.810287	
4.004Z13	5.085151	7,603134	5,066406	
4 788434	7.788696	4,684036	6.343094	
5.075058	5.068192	5.08371	5.096405	
5.073425	7,474167	5.115891	6.062988	
2067307	5.067749	6.075958	5.066406	
3.218491	7.808963	E.5399993	5.847244	
5,083237	5.067307	4.526703	5.093246	
7.77.2491	5.067749	5.114471	4,6622661	_
5 078768	4.967482	3.475327	3,090652	

t _{in} (min) =	100.9549413		
0 =	5554.168062	74.52829511	
Pa =	46854.74799	mean real liquid velocity, u (mis) 0.0	0.000157798
	600.9695384	distance, L (m)	1.8
		20	0.300684482
<u> 4P (lb/ft[*]) = </u>	10.40387168	н _{ен} (lu/th.s)	1.236-05
AP (Mm ²) =	498.1303301	U (f/ts)	1.295-01
AP (inter) e	5.313289683	D, (ft) = BV,/A,	8.75E-03
AE (NIm ²) =	531 3769683	G (ka/m s)	0.017628131
		(U)	4.9212
	0.03042086	ua- 4 (lb/ft.s)	6.56E-04
		UL. A (MA)	5,18E-04
		The first state of the first sta	62.2608
		naminai peotéina size (rina diameter), d (ft)	0.026246
		g (ft/s ²)	32.17
		g (m's ²)	9,80665
H _o (Exp) =	0.698315518		
V _{must} (m ²)	6.60E-03		
Veenn (m ³)	8.44E-03		

т, (m
		a	-0.020263343	-0.03854412	-0.054940834 0.060580173	-0.082489008	-0,234450982	-0.665681134	-1.0496395	44 TUNOU20, 1-	-2.411430059	-2.653123116	-2.968368417	-3.179111062	-3.302876632	-0.0842/4047	-3.377141742	-3,323612755	-3.158528656	-3,05569273	-2.881949973	-2.675034484 5 54 00754 07	12 10/1001012-	-2.198263821	-2.070877674	-1.915534512	-1.752833965	-(,587994621	-1.25621148	-1.121502697	-0.988000395	-0.873310821	-0.771488266 0.67608256	-U.C/DBCUCS	-0.514050574	-0,442623396	-0.378553947	-0.32289267678 -0.2722892636	-0.227673309	-0.186448107	-0.15080305	-0.120520348	-0.073281652	-0.065500928	-0.04103304	-0.029471035		-0.008715582	-0.004987682	-0.002631276		-6.90688E-06	-9.2424E-07	9.59452E-06 0.000430E7	0.000537258	0.001365078	0.002768474	0.00484U212 0.007751726	
		10//IO#	3637.710155	3518.083291	3400.456426 3134 Proce	3171.202695	3068.57583	2949.948965	2842.322099	2738,695234 2577 AB0380	2531,441504	2431.814638	2334.187773	2238.560606	2144.864042	111100.0002	1878.053447	1790.426581	1706.799718	1625.172851	1545.645988	1487,91912	1392.282256	1247,038524	1177.411659	1109.784794	1044.157929	980.5310634 24 5 5 110634	B15.5041501	B01.6504678	746.0236023	692.396737	640.7698718	591.1430065 547 E4 64 44 2	497,889276	454.2624107	412.0355454	373.0086801 315.341.81.40	299.7549488	266.1280843	234,5012191	204,8743538	151 6206233	127,983758	106.3668927	B8.74002744	0311310210 52 ABPODD1	39,85942164	28.23258637	18.6057011	10.97883583 c 144070456	1,725105286	0.098240017	0.471374747	7.217644207	13.59077894	21.98391367	32.3370484 AA 74018913	C100101.1 %**
	ΕŴ	0	2.69232E-05	B.07696E-05	0.000181539	0.000403847	0.000807695	0.002019237	0.004036473	0.007134635	0.016826872	0.023288628	0.030961628	0.039711653	0.048403889	0.01600348655 270244 M20.0	0.083596395	0.096384893	0.109442823	0.123036616	0.136769625	0.15063505	0.164789706	760217621.0	0.208654448	0.223758339	0.236902612	0.253879579	0.200052030	0.2027505089	0.311729745	0.326702883	0.338568287	0.353299086	0.30605080	0.363710751	0.406876174	0.419933904	0.4556576	0.458164783	0.470414819	0.4623956222	0.494107195 0.505540535	0.516722644	0.527628522	0.536261168	0.548761198	0.566222786	0,578915131	0.588472851	0.59776134 o.enerenene	0.615665237	0.624415263	0.633057595	0.641536369	0,657557886	0.665392304	0.673085403	0.080524Urs
	(tum)**E*At	0	-5.907015136	-11.2360876	-16,01596156	-20.2/4/354/	-68.34536009	-164.1154968	-305.9828926	-443.284998	-563.8334624 -702 9616781	-774.6772119	-865.3155128	-926.7501795	-962.8294345	-989.472955	-960.0829117 -084.47967240	-968.8450614	-920.7495735	-890.7722127	-834.2938036	-779,8056274	-734,3123951	-669.7340000	-803.6884472	-558.4019946	-510.9727706	-462, 9200886	-408.7217984	-300.2011/db	-288.0143922	-254.5809024	-224,8983855	-197.3480113	-172.2804478	-129,0301926	-110.3631561	-94.06890545 	-re.3/305/54	-00.00000000	-43,890105	-36.13317112	-27.53684609	-16,17920684	-11.9618388	-8,591171188	-6.032977391	-2 540702794	-1.4539861	-0.78704944	-0.337893218	-0.1110/123/ -0.02013/00/5	-0.000269428	0.002796923	0.040686242	0.387937146	0,806461289	1.410981863	2.25972392
	(Intro) ² eOrAl	0	7275.420312	14072.33316	20402.73855	26278.63648	91767.2749	265495,4068	426346.3149	629439,9038	816251.1943	1167271,026	1330487.031	1465084,59	1544352,511	1622112.67	1669128.285	1700005 262	1 PEEEBE 725	1641424.579	1578456.005	15/1956.894	1461906.888	1410371.967	13405UU 1005	1245178.539	1174677,67	1098184.791	1001605.576	928019.5195 ecritee 0003	2000,0001,100	718707,813	659982.3879	602965.6686	548851.3026 449865 DE46	449719.7886	403557.5634	361618.4197	321966.5423	247400.1184	213396.1093	182338.1749	154205.315	106234.8191	86157.1831	68524.62168	53905.2085	41164.44802 20004 57373	20327.44778	13210.04778	7575.39672	3585.820273	63,8580108	302.6225675	1792.040971 4220 598524	F18.659573	12782,99775	18432.11759	25104,76783
	1111	0	2	4	9	e, (00	8	150	230	310	480	0/5	650	720	790	850	Sec.	0000	1010	1020	1030	1050	1070	0901	1122	1125	1120	1090	1080	1070	1036	1030	1020	1010	2001	876 876	016	888	090	96	850	870	09 68	810	790	780	770	021	212	690	670	292 292		630	6	582	570	561.5
	11000	0	. 61	æ	18	8	06 1	630	1200	2070	3100	0104	7410	8100	10300	12840	14450	16200	DCD01	21210	22440	23690	25200	28750	28080	91716	32625	33600	33780	34560	35310	10/CE	37080	37740	36380	39078	40038	40740	41280	41800	41880	41830	41760	41650	41310	41080	41340	41580	40320	40470	40020	36530	399600	39804	39680	38400 38360	38412	36190	38182
0.1		E (1/min)	2.69232E-05	5.384835-05	B.07695E-05	0.000107693	0.000134616	0.001211542	0.002019237	0,003086163	0.004173089	0,005519247 0.00046467	0.0004613096	0.008750025	0.009662336	0.010634646	0.011442341	0.01211542	0.012706455	0.01305100	0.013730809	0.013885425	0.014134656	0.014403888	0.014538503	0.014942351 P.04 E40380	0.015144274	0.015076967	0.014673119	0.014538503	0.014403888	0.014134656	0.013865425	0,013730808	0.013596193	0.0134885	0.01345423	0.01305773	0.012823114	0.012788498	0,012250035	0.011980804	0.011711572	0.011442341	0.0100000000000000000000000000000000000	0.010634645	0.01050003	0.010365415	0.010096163 n nnaero22386	0.00856772	0.009288438	0.009019257	0.008884641	D.008642333	0.008480784	0,008076948	0.007834538	0.007673099	0.007556676
		Area		- 0	2	7	e [2	8	190	270	8	\$ č	610	562 566		820	875	8		1015	1025	1040	1080	1075	1095	0111 1124 E	1122.5	1105	1085	1075	1080	1 <u>5</u>	1025	1015	1008	88	874	36 65	9655	95 S	205	980	0990	840 820	000	785	775	760	512 215	200	680	665 acc	545	636	615	595	578	500°.75
		es S				ø	t0 ::	R 8	3 <u>5</u>	82	310	410	8 (010	22	780	850	900	56	016	101	1030	1050	1070	1080	1110	81 21	8	1080	1080	1070	<u>8</u>	501 102	020	1010	1002	0 6 6	010	196 0	950	830 849		870	850	053	010	180	012	760	07/	690	670	989	000 243	89	009	2850 2851	570	561.5
15		C (mS)	ន	27	5 5	8	Ŧ	8	<u>8</u> ê	<u>s</u> 82	- OVE	440	510	009	082	820	980	830	086	1000	1040	1000	1080	1100	1110	1140	1152	1150	1120	1110	1100	1080	1088	10501	1040	1032	1020	1000	8	000	960	046	005	880	88	2	99	009	280	740	82	200	88	223	88	630	620	1008	591.5
		t (min) -	0	- •	v .	o 4	ю.	60 I	~ •	• •	¢ 5	4	13	51 ;	4 ų	ίęΣ	17	ŧ	6	ន	5 8	3	3 2	1 13	58	27	8	8 9	3 25	8	ន្ត	¥	8 :	8 5	8	ŝ	\$:	5 9	4	4	\$	\$:	¥ 9	49	8	5		t at	56	85	8	8	8	58	18	\$	92 92	6 6	; 63

2.0861269	2.114317453	2.140/093/4	2.167640577	> 2012057044	the second	2.241664805	2.254813085	2.265322762	2.273064687	2.277907497	2.27971761 • • • • • • • • •	2.332496778	2.366953211	2.441706384	2,496729599	2.552001605	2.607496594	2.603189207	2.775083082	2.83(190874	2,887409267	2,943690231	3.0000499	00047000000000000000000000000000000000	3 (FPREZIDET	3.225009185	3.281043401	3.336927696	3,392629503	3.448115707	3 55530605	3.612941201	3.687222724	3,72111474	3,774580806 a entretentra	4.000730.00 1.0007000	3.93205055	3.583437311	4.034207586	4.084321615	4,182419095	4,23032024	4.277400626	4.323617415	4,413288078	4.458654004	4.496980837	4.540223268	4,618270917	4.656962745	4.603423393	4.728544781	4.752286274 A.704604694	4, 825504268	4,854856731	4.862641221	4.906806334	4,933300111 A pren770039	4,877063048	4.896225522	5.013503279
6510.322153	6672.696269	10001.10004420	1001 PT 17 17 17 17 17 17 17 17 17 17 17 17 17	2004-07-717	120/01/2HC/	7600,054062	7865.307231	8043.680386	8224.0535	6406.426635	11927.0638	STATE SHORE	8155,918174	8346.282309	9542.865444	8739.038578	9937,411713	10137.78485	10544 53117	10750.90425	10959.27739	11 168.65052	11382.02308	11598.39679	1012/0000	12261.5162	12473,888333	12096.26248	12824.6956	13153.00673	12353.36167	13850.12814	14086,50127	14324.87441	14565.24754	14607.02065	15051.96361 15398.36655	15548.74006	15797.11322	16049.49835 ****** ****	167401202945	14818,60675	17078.97889	17341.35202	17872.09826	18140.47143	18410,84456	18683.2177	19229 96397	19512.3371	19792.71024	20075.06337	20359.45651 There proces	20634,20278	21224,57591	21516.94905	21811.32218	22107.19631	2/27/06 44150	23008,81472	23313,18785
0.938342133	0.940472905	0.9415/0/35	1355203295.U		0.944726764	0.84572292	0.047834484	0.948548852	0.549438316	0.950269857	0.951134474	0.9513442109	0.9537368	0.954324868	0.85610564	0.95587968	0.966846399	0.957407509	0.656151415	0.953648922	0.960382578	0.961109503	0.961823698	0.962543161	0.9002490444	0.564645167	902626900	0.966003517	0.966862596	0.967346944	0.906008562	0.969307804	0.969847029	0.970579723	0.971205686	0.971824919	0.97243742	0.973042232	0.874234541	0.97482012	0.5753566607	0.976636471	0.977055126	0.977847061	0.978797245	0.87926244	0.979787442	0.660305712	2000/02110000510	0.98182014	0.982311487	0.982796104	0.98327399	D.06420957	0,964867263	0.985118226	0,985562458	0.96566996	0.3809430/3	0.987272079	0.987682857
608.1323652	616.3496799	624.0432512	531.17895/	1.20026	843.6470409	648.807836	000.4/ 300/ 0	660.3696544	662,6264614	564.0382003	B64.5658706	004.213900056 0000 001466000	0/8.50105U0	711.7873086	727.8275489	743.9400218	760.1174873	776.3525825	192.5377232	BURL STOT AND	841.7155112	656.1220692	674.5385478	890.8583334	B02/3882.206	223.7610135	946/1404428	972.7556823	968.8534481	1005,168363	1021.27081	1007.250213	1069-D40767	1084.750956	1100.336975	1115.78804	1131.063203	1140.241.000	1176.021392	1190.630251	1205.038052	1233.150055	1248.815141	1260.387536	1273.596477	1299.169746	1311,508541	1323.53122	1335.224412	1357,568051	1368.190951	1378.429289	1388.26863	1387(180), 1380 1406 R04150	1415.250765	1423.350267	1430.977741	1438.11738	1444.7550855	1456.461515	1461.498195
559487.7052	560506.4042	560639-6107	580275.3246	559401,545	558008.27/48	556077,5112	SEARCH EARS	546970.2049	542787.531	538011.3047	532629.5857	526630.3743	533448.9883 540409 7243	546875 1001	553474.5057	559994,7183	568432.4678	572784.8439	579048.847	714, 122085 GPAT OPP LOD	597260.6176	603161.1262	608938.2658	614006.0299	620170.4211	625618.4391 earces nea	DOUBDO.UO4	641262.2545	646221.78	661073,\$2223	655786,7116	000364.1177 April 1576	BORPUBLI CUO	673269.0972	677284,0107	681150,5511	684865.7184	689426.5126 604870 0136	695072,9815	698152.0563	701065.8679	714412000000	708777,6239	710995.433	713031.8689	716548 0214	718022.638	71 (3003.8614	720388.4516	7212666 4778	722433.9236	722709.0014	7/22780.706	722604.0374	721635.581	720817.793	718773.6319	718500.0977	716394,1904	713273.2583	711052,2295
8	84	8	8	78	78	74	2 4	2 8	3 8	2	53	8	50.5 57	29.62	, e	22	57	58.5	53	55.5 35.5	8 1	} 3	53.5	8	62.5	8	5 G	5	. 8	49.5	\$	6 5 6	\$;	c 14	46.5	8	45.5	8 1	0 4	43.5	\$	42.5	4 1 5	4	40.5	5 F	} 88	38.5	8	37.5	5 F	8	35.5	8	6 2	335	8	32.5	ន	31.5	30.5
12212	12012	11808	11600	11388	11172	10962	10728	10000	10230	9792	9548	3300	9282	9263		11/20	1118	9153	8216	5162		19168	8998	8967	5269	8892	8858	4208 70070	arer R750	8712	8073	8633	8582 1750	1050	8463	8418	8372	8325	HZF F	6178	8127	8075	2002	7913	7857	0082	2482	7623	7362	7500	ELEZ	80E/	7242	715	7017	1000	6897	6825	6752	9678 6603	1259
O DOM STROM	0.001130772	0.001103849	0.001076826	0.001050003	0.00102308	0.000996157	0.000969234	0.00094231	/90001A000/0	0.000861541	0.000834618	0.000807685	0.000800964	0.000794233	205/B/00010	1/2 00/00/00	0.00078731	0.000760579	0.000753848	0.000747118	0.000740367	0.00005/UUD.U	0.000720194	0.000713484	0.000706733	0.000709002	0.000693271	0.00068554	0.00067961	0.000686348	0.000659617	0.000852688	0.000646156	0.000639425	0.0006255963	0.000619233	0.000812502	0.000806771	0.00053904	0.000685579	0.000578848	0.000572117	0.000000000	0.000551925	0.000545194	0.000638463	0.000531732	0.000518271	0.00061154	0.()00504809	0.0004800000	0.000484617	0.000477886	0.000471155	0.000484424	0.0004570053	0.000444232	0.000437501	0.00043077	0.00042404 0.000417309	0.000410578
-	5 83	8	81	79		75	R	E I	88	i i	3 13	8	59.75	59.25	58.76 1		0.75 K (1)	56,75	56.25	56.75	約 8	54.75	57.75 157.75	63.25	52.75	52.25	51.75	61.25	50.75 50.75	40.75	48.25	48.75	48.25	5,5	40,75	40.26	46.75	45.25	14.15 15.15	21-54 21-54	49,25	42.75	50 H T	2 IS	40.75	40.25	20.22 20.25	12.188	52°86	37.76	37.25	2 8 8 8	36.75	38°39	512	9 F	6 %	32.75	32.25	12.15 15.15 15.15	30.75
2	3 2	8	8	78	76	74	22	R :	8	83	5	8	56.5	2	68.5	8	57.5	01 1665	\$	55.6	8	54.5	5 g	1 23	52.5	52	51.5	a	50.5	2 4	4	48.5	8	47.5	47 46.5	1	45.5	45	44.5	43 E	\$	42.5	4	41.0	40.6	8	395	8 8	8	37.5	37	0 a	36.5	ĸ	25.0	я <u>-</u>	33.5 M	32.5	8	31.5 21	30.5
-	116	112	\$	ŝ	3 2	ą	<u>1</u>	<u>10</u>	8	88 2	3 8	18	89.S	89	88.5	8	87.5	0/ 285	8	85.E	Х.	52.5	3 1		82.5	8	et.5	81	80.5 	8 4	52	78.5	78	77.5	14	6.07 87	755 255	22	74.5	24 242	R	72.5	2	715	70.5	22	88 S	28 ag	8	67.5	61	1985 20	8 9 9 9	8	64.5	2	58 s	8 2	8	61.5 21	60,5
-	142	144	[\$	1	2 3	145	149	150	151	152	153	155	166	157	168	158	16 0	181	71 S	1 8	165	166	167	201 501	Ē	ţ,	172	173	174	175	44	178	179	180	<u>1</u>	ja j	3 2	185	188	187	8 5	ŝ	191	26	28 78	185	8	197	ģ	200	201	202	202	38	208	207	208	208	21 2	212	33

Pressure Drop (Experimental)					
7.797363	7.601151	4 460037	5.590317	6,535507	
5.085434	5.086436	5.085411	5.072470	5.104263	
3.380219	7.789276	4.348206	5.071838	5.08696	
5.061863	5.090683	7.636032	3.859406	5.06955	
4.336528	7.793864	7.614716	8,467178	5,088669	
5.078659	5,085683	7.611343	5.068315	5.092712	
4.309998	5.081253	5.075821	5,070404	7.55513	
5.075956	4.750208	7.601268	5.081519	5.102722	
4.28627	5.20372	5,073746	5.070847	5.067749	
5,075867	4.72767	5,862518	5.067281	5.087703	
5,030319	5.178132	5.072769	7.039508	5.330139	
6.121811	4.702454	6,30879	5.067307	5.265844	
5.063843	4.275148	5.071838	7.815738	4.872528	
4.544342	7.189675	6,869797	5.076187	5,086777	
5.056976	7.205658	5,107162	7.605515	4,800735	
5.022761	7.071472	4,481827	5.073792	5,218094	
5,232712	5,105164	5.099777	5.06636	4.344879	
6.603226	7.494308	3.545746	6.717651	5.079147	
6.228134	5.038465	5.782257	5.178238	4,313431	
7.314826	7,16243	5.62262	5.162861	5.158629	
5.069081	5.069092	5,089539	4.707306	4.287537	
5.266281	7.634415	5.496316	5.155158	4,517212	
5.224548	5.088192	5.043015	4,688171	5.992447	
6.150024	5.084061	5,405441	5.141883	4.49556	
5.065803	5.079941	4,961803	5.030899	5.065503	
5.965627	7,374313	5,102661	5.02243	6.484722	
5.088726	7.315872	4.502167	4.52388	5.065903	
7.546829	5.26593	4.917496	7,580383	5.168228	
5.058649	4.787599	4.836162	5.072769	4.723053	
BCCC281.1	5.225837	3,390106	5.069092	4.706421	
5.084885	4.74855	3,558411	5.074127		
3.234436	5.194122	5,080948	5.068192		
5.221039	4.715141	7.612981	7.509548		
4.756653	4.72197	5.076599	5.068192		
5.184769	4,935043	5.848651	5.083664		
4.722015	6.032562	5.06636	6.067749		
5.170654	5.752715	5.06635	5.067703		
4.69841	5,114227	3,575228	5.067307		
4.745941	6.637421	5.076416	5.252838		
5.12735	5.070847	5.06546	5.081833		
4.715851	6.24559	5.076167	4.344131		
5.062408	5.065903	5.335785	5.181839		
5.021439	5.062188	5,074158	4.751144		
5.134636	5.132141	5.073624	6.177704		
5.270126	5.118548	5,06636	4.715103		
5.226683	5,107193	5.169098	5.158737		
4.358537	5,022673	3.992722	4.693832		
5.080002	5.371109	5,16069	5,138847		
5.075867	4,536392	4.733414	4.904205		
A FOORBS	5 092345	5 137245	4.700592		

. (min) =	61.31343263		
	1932.699647	43.96475459	
u	33659.16765 т	sen resi liquid velocity, u (m/s)	0.000315598
1	480.7151941 di	etance, L (m)	1.8
	5		0.334560688
= (lb/m ²) =	8.573250897 He	*** (lb/ft.e)	1.23E-05
o (Ním ²) =	410.4880478 U	(\$44) **	1,656-01
e (mber) =	5.324202374 D	, (ft) = 8V_/A ₂	8,756-03
2.44 (N/m ²) =	532.4202374 G	(kū/m.s ²)	0.021153757
	<u> </u>	ann (f)	4.9212
	0.039627784	ues (lb/ft.s)	8.55E-04
	3	(t/t)	1.04E-03
	14	and (Ib/R [*])	62,2606
	Ĕ	ominal pacidng size (ring diameter), d (ft)	0.026248
		(Nvs ¹)	32.17
		(mts ²)	9.80665
, (Exp) =	0.665409311		
(m)	6.28E-03		
centre (m ²)	9.44E-03		
15unt	0.00206467		

Appendix 4

	هم ا	U 11 11 12 12 12	-0.033760892	-0.053488117	-0.071148723	-0.241168918	-0.886045251	-1.435108713	-1.976972077	-2.159885896	-2.451807557	-2.69598781	3.310083026	-3.377386077	-3.318016802	-3.390487206	-3,302084187	-3.205743404	-3.102512635	C 107205657-2-	-2.760673479	-2.636927566	-2.422486114	-2.21884278	-2.032440067 -4 act4 fisho	-1.652461378	-1.538050894	-1.383604752	-1.258755598	-1.132886458 -1.0004638635	-0.89540745	-0.791106369	-0,696789021	-0.60890311	-0.53003564 -0.458703601	-0.394452484	-0.336543265	-0.286446434	-0.12086380229 -0.1980989197	-0.162489685	-0.13167933	-0,105254504	-40,042(51504/ 0,045000055	-0.048382883	-0.035665147	-0.025490719	-0.017458161 -0.0113886446	-0.006871862	-0.00391152	-0.001\$33355	-0.000761126	-2.362555E-05	1.06416E-08	3.44418E-05	0.000246442	0.001762573	0.003376671	0.005876642
	<i>و</i> ړ	10/012	3591,389844	3472 533531	3355,677117	3240.820704	3127.964201	2008.251485	2801.395052	2696.538639	2663.982225	2492.625612 7103 060300	2287.112066	2202.256573	2109.40016	2018.543748	1929.667333	1842.63092	1757.974507	15/5,115084	1515 406267	1436.548854	1363.692441	1290.836026	1219.979615	1084,266769	1019,410375	956.5539622	865.697548	835.8411359 770 0847777	1221-004/221	672.2718964	821.4154832	572.5580701	525.7028569 480.8482438	902986306	397.1334175	358.2770043	3/21,4/2009/11 2986 56/2178	263.7077648	222.0613517	193.9948385	167.1305253	119.425899	96.56928588	79.71267272	02.85045958 48.0000464	36.14363324	24,28722009	15.43080683	8.574393769 3 747060014	0.861567453	0.005154285	1.148741137	4.282327979	16.57950168	25.772308851	36.86667535
	F()		6.25201E-05	0 00014067	0.00025006	0.000640831	0.001813084	0.000345793	0.01033145	0.01484231	0.020490971	0.027448334	0.044463066	0.054251837	0.064486506	0.07566496	0.087308353	0.099422627	0.112004802	0.125055877	0.152564735	0.16702261	0.181402139	0.195703617	0.209961331	0.238345467	0.252471108	0.266552203	0.280568752	0.29457763	100025000000	0.335700241	0.349126438	0.362411964	0.37555682	0.401424521	0.414147368	0.426729541	0.439124156 0.45133439	0.463350704	0.475182637	0.48682701	0.498283823	0.520634767	0.531528898	0.54223547	0.55270759	0.57294848	0.662717255	0.592251568	0.001551437	0.618447822	0.628044339	0.635408405	0.644890322	0.860633954	0.666369819	0.675950384
	(t-tm) ³⁺ E*∆t	0	- 10000200000-	-15.96187967	21.28807224	-72.09121629	-205.0755005	597.7.1581.782- 428.9696668	-590.964718	-645.6420748	-732.9314183	-865.6807245 040 8664070	CHTTRA 2947787	-1009.582297	-981.6363863	-1013.498541	-987.0667643	-956.2741551	-927.4159842	-894,7782684	SUPPORT SOL	-788.8392164	-724.1398275	-563.2657149	-607.5454404	-500,1000/30	-459.7805689	-416.5821302	-376.2724502	-338.5471327 	-307.0034500	-238.4814048	-207,9821703	-182.0158512	-158,4404588	-117,9113774	-100.6905914	-85.32653675	-71.42390116	48.57209275	-39,35213309	-31,46311432	-24.75689684	-14,48281264	-10.56117397	-7.819791704	-5.218666125 3 404640604	-2.084057984	-1,169247815	-0.577926526	-0.233487341	-0.007082236	3.18109E-06	0.010295487	19223687361	D.233315227	1,009368399	1.696885495
	(I-Im) ²⁻ C*AI	0	3/12/24636/	295362551	23469.73982	81020.51781	234587.3218	346967,406 506044 0060	714355.7382	705478.8984	920757.1B	1109307.486	14274630 062	1376410.368	1361657,105	1443258.779	1437617.063	1428153.963	1415189.478	1398723.608	10/ SUCCESS	1330657,89	1254597.046	1181114.986	1112865.405	10400501.444 3423066.27705	921262.1267	861759.4845	604361.1839	748972.8166	691066.4643 antrost cost	1200,0000000000000000000000000000000000	533795,9001	4806775,2098	442115,8345	4000455.6306 360455.6306	323268.8018	288412.9885	254886.5288 2000 era	185101.2711	169698.4732	144626.2292	122512.5391	100000-0000000000000000000000000000000	68702.78225	54603.31781	42113.8279	22491 00528	15179.51255	B412.782226	5101.764293	2106.428/00	2.834862415	614.5765085	2274, 833829	4859.498133 0777 84034	12732.92881	17880.33754
	C*At	0	- «	о и	-1 6	Я	75	15	255	8	365	445	210	973 625	655	715	745	775	8	835	8	925	920	915	912.2	408.4	903.75	6.006	898.05	355	988 198	ere Bee	659	850	841	250	814	805	783	682	757	745	E	1Z/2	687	685	670	000		610	585	1983 1983	092	635	530	515	495	485
	PC*At	0	- 0	- ų	2 82	25	450	508	22065	995	3905	5340	D0000	BUCOL BESTE	10480	12155	13410	14725	16100	17535	Teldu	00222	23000	23790	24829.4	25463.2	27112.5	27927.9	28737.6	20535	30124	30050	34783	32300	32796	1922EE	34188	34815	34892	06100	36579	35760	35917	30050	36244	36305	36160	30020	35625	35380	35105	34800	34100	33705	33920	33475	33165	32980
10	E (1/mhr)	0	1.5636-05	4,00501 E-UD	0.00010941	0.000390751	0.001172252	0.001797454	0.002/05/20010	0.004810859	0.005548861	0.006855384	0.008048486	0.000451/200 0.000769760	0.01023767	0.011175472	0.011644373	0.012113274	0.012582175	0.013051076	7/66/02/00	8/0000001000	0.014379628	0.014301478	0.014257714	0.01421395	0.01412584	0.014081095	0.014036549	0.013665678	0.013848207	0.013707637	0.013426197	0.013285526	0.013144856	0.013004186	0.012722845	0.012582175	0.012384615	0.01220/054	0.011631933	0.011644373	0.011458813	0.011269252	0.010894132	0.010706571	0.010472121	0.01023787	0.000268768	0.009634319	0.009289866	0.009065418 0.00683062	0.006596517	0.008362067	0.006283916	0.008049466	001580/00/0	0.007580665
	Artea	2	0.5	7	4 0	5	ŝ	8	145	215	52	400	\$:	88			561	2622	250	629	55	010	9225	817.5	913.6	910.8	905 175	902.325	899.475	898.525	890.5	361.5	803.5	864.5	B45.5	836.5 07 E	818.5 B18.5	809.5	58 ,2	787	203	761	662	127		691	877.5	802.5 847 c	12/140 12/140	617.5	602.5	507.5 572 5	557.5	542.5	532.5	52.5	010	8
-	ŝ	0			4 63	- 19	75	115 	175	8	19	445	515	575	9 4	202	745	775	805	835	385	98 X	026	916	812.2	909.4	0/0/0 0/3 7/5	8008	898.05	969	886	119	958 1	850	841	832 843	9759 B14	508	793	781	757	745	733	2	50/	885	670	999 11	040 876	10	595	280	000	926 926	630	515 	505 191	199
20	C (m8)			e o !	6 t	<u>1</u> 8	6	8	180	087	88	450	520	88 88	630 680	8	150	780	810	340	870	00	909	026	917.2	914.4 	8/1/6 2/2	50005 RVE 9	903.05	86	891	58	200	122	B46	837	818	810	796	- 198 1	760	1992	362	126	714	1 98	675	990	545	815	60	562	0/6	8	203	520	510	\$ 8
"	2 (mim)	•	•••	7	e .	1 107	\$	~	ao (a 9	2 ₽	5	13	a (<u></u>	2 :	- 2	4B	22	21	នា	ន	5 %	87	27	R :		3 8	5 23	33	đ	81	8 5	- R	ŝ	\$:	4	1 17	4	¥	\$ 5	; \$	Ş	8	5 5	18	z	81	8:	8	89	8	55	2 5	3	59	8	. 2

2.1635/7858	2.201077079	2.272107023	2.30543913	2.337180235	2.367226012	2.421804228	2.448117874	CF9C2030F72	2.505803423	2.520692061	2533378406 2533378406	5206190055-C	2.60181779	2.863465507	/ Re/ GBM/ / 7	2.607321026	2.858111547	2.908586805	3.008423212	3.057696319	3.10649606	3.15474159	3.202419194 1 246472482	3.205854202	3,34151671	3.386411066	3.430487941	3.516987796	3.56730617	3.597605848	3.636827646	3.014419020	3.747484804	3.781 865963	3.814884218 * 048404807	3.876629653	3.906239567	3.532260847	3.96129449	4.003183164	4.023236027	4.041.30535	4.071738707	4.063803522	4.063706362	4,106755363	4,109764344	4.110336834	4.106402301 4.403000660	4,0967,267.48	4.088840837	4.074158419	4.108426908 4.13771345	4,167983537	4,19719967	4.255326368
6411.482102	6672.635668	6900.922862	7068.066449	7237.210036	7408.353623	7/59.840796	7833.764363	8112.82797 8204 071557	8477.215144	8662.358731	8849.502317 2020 045004	90393.845804 0229 780401	9422.833078	9618.076865	707077.9108	10215,50743	10418,85101	94623.7546	11040.0817	11251.22536	11464.36865	11679.51253	11896.65612	12336.04329	12550,08688	12785,23047	13012.37405	13241.51704	13705.80481	13040.9484	14178.09189	14659 37016	14901.52275	15148.68634	15393.80092	15894.0971	16147.24068	16402.38427	16918.67144	17179.81503	17442.96362	1/1/08/10/22	18244.38938	18515.53296	18788.67655	18340.86373	18620.10731	19801.2509	20184.38448	20766.68166	21045.82525	21336.96863	21630.11242 21925.25601	22222.39859	22521.54318	22822_68677 23125,83035
0.93678434	0.938019112	0.940413633	0.941573381	0.942708122	0.943817854	0.945962294	0.946967002	0.946006702	0.948051078	0.950885754	0.951795422	0.5525500081	2000082799570	0.966230902	0.1606062/4Z	0.957697321	0.958500705	0.95929471	0.960654556	0.981620459	0.982376953	0.983124068	0.963661806 0.0e64501165	0.965309146	0.90001875	0.966718875	0.967409623	0.968755363	0.969426097	0.970079432	0.970723369	0.9/13/00/909	0.9725989933	0.973205438	0.973802505	0.874968505	0.975537439	0.978096894	0.9775020	1505177716.0	0.978241434	0.976754059	0.9797512565	0.980235828	0.980710979	0.981170/04	0.98209017	0.98261761	0.99429400 0.009462960	0.983774465	0.384174594	0.384565344	0.364851211 0.965337150	0.90570829	0.986073504	0.966445833
546.7456945	657.9551177	679.157684	689.151456	608.6396262	707.8210478	723,8357954	731.2037612	737.834205	749.0451841	753.5555427	757,2880308	760,2060505	777,7461,862	783,1848485	5/57/1909 5/57/1909	839.1780805	854.3585942	669.4469683	500,2500524 500,25005524	314.0199025	928,6037429	943,0284808	967,2804685	B65.2104768	899.6600706	1012.280084	1025.455727	1058,372007 1051,0137	1003,365358	1075,411307	1067.13565	1058.522553	1120.216678	1130.491107	1140.361062	1158.818324	1167.370458	1175.447772	1150.02014	1156.648166	1202.642451	1206.066918	12/7.141074	1220.747539	1223.707737	12205-0014555	1228.507855	1229.578997	1Z24.007.25	1224.610603	1221.855465	1217.064384	1227,510215	1245,910979	1254.844447	1263,052134
516756.2634	518238.2194	523069.663	524450.5306	526421.4486	525983.1072 Energite contro	525900.246	526216.5262	52409611469 500608 5081	0000109025	518009.0521	515041.0343	511587.3552	512607.5594	517452.5248	522169.7174 6700166 6970	531206.3861	535518.862	530888.7658	542713.0969 547596 0559	551310.0426	554875.457	556280.6991	561522.1889 Estens Ass	567468.3915	570227.9444	572/78,3249	575146.3332	5775300.1692	581126.1241	582731.6432	584137.3856	500309./1644 500335 1.605	587119.9963	567690.6536	568043.539	2001.67.0000 508081.58226	587759.5609	587205.3569	200415.3505 Rectain 032	564113.711	582584.8178	500625.7523 578607 0145	576622.7043	573981.5219	571175.7872	504756101.6401	561135,0661	567235.0252	503052 4059 Execto entro	543825.0595	538773.1263	533424.2206	533953,4004	534728.4902	534868.6505	534606.7211 534784.8269
30.6	61	75.8	742	72.6	F 8	67.B	66.2	64.B	61.4 6	56.8	582	999 79	54.4	53.6	53.2 53.6	23	51.4	50g	202 496	9	48.4	47.8	47.0 8 40	2 2	45.4	44.6	42	43.6 23	424	41.6	42	99 9	2 F 2	38.8	38.2	a: 10 37	36.4	36.8	2.8	ম	33.4	328	31.6	31	30.4	R 67	28.6	28	27.4	262	25.6	25	24.6875 24.4375	24,0625	23.75	23.4375 23.125
11445.2	11297	10201	10633.2	10872.2	10508	10170	9996.2	9619.2 octo	9455.6	6926	9079.2	8896.2 Alenn	B649.5	8608	8565.2 9511 A	8476	8429.6	5362	6333.2 Anes o	8232	8179.6	97.58	5071.2 Inters	20100 2005	7659.6	7840	7778.2	717.2	7589.6	7524	7457.2	2,999.7	7249.6	2178	7106.2	(031.2 6856	6679.6	6802	5/23/2 5/67/3	6562	6479.6	6396 Rati / 2	6225.2	6138	6049.6	5990 5090	5171.2	5684	5089(5 540.4	5397.2	5299.2	6200	51599.66875 5148.7m	5077.1875	5035	4992.1875 4848.75
0.00125576	0.001234772	0.001184756	0.001158748	0.00113474	0.001109732	0.001059716	0.001034708	0.0010007	0.000959684	0.000934676	0.000309668	0.00088486	0.000850274	0.000840696	0.000831518	0.000612762	0.000803384	0.000784008	0.000784828	0.000765872	0.000756403	0.000747115	0.000757737	0.000718981	0.000709603	0.000700225	0.000690847	0.000684188000.0	0.000662713	0.000853335	0.000643857	0.000634579	0.000815823	0.000606445	0.000597067	0.000578311	0.00055588333	0.0005595655	0.000556177	0.000531421	0.000522043	0.0005120605	0.000493909	0.000484531	0.000475153	0.000465/75 0.000466907	0.000447019	0.000437641	0.000428263	0.000405607	0.000400129	0.000390751	0.000385866	0.000376098	0.000371213	0.000361444
81.4	78.8	76.6	ĸ	73.4	71.8	70.2	65	85.4 27 2	62.2	60.6	8 j	57.4	54.7	54.1	53.5	523	51.7	51.1	505	684	48.7	48.1	47.5	48.3 6.3	45.7	45.1	44.5 	43.9	57	12	415	808	2 F 8	30.1	38.5	976 976	36.7	36.1	335	34.3	39.7	199	31.9	31.3	30.7	19	28.9	283	27.7	285	25.9	25.3	24,84375	24,21675	23.90625	23.56375 23.28125
80.6	62	75.8	742	72.6	≂ ;	4 80 4 82 8 78	68.2	2	3 25	59.8	58.2	988 988 9	8 5	839	68.2 2.6	878 878	51.4	808 -	50.2 49.6	1	48,4	47.8	47.2	\$ \$	45.4	44.8	64 .2	43.5 4	1 1 1	41.8	41.2	40B	¥ 8	38.8	38.2	37.6 37	36.4	36.8	825 8	75	33.4	878 6	31.6	ल	30.4	888	28.6	58	27.4		25.6	ĸ	24.6875 24.3875	24.0625	23.75	23.4375 23.125
85.6	94	82.4 80.8	79.2	77.6	78	74.4 8.77	712	878 8	884	64.8	6 3.2	619 61 18	20 T	58.6	5875 1	9 Ja	56.4	55.8	56.2 F46	i s	58.4	52.8	52.2	21	50.4	49.8	48.2	40.6	47.4	46.8	46,2	\$2.8 1	6 4	43.8	43.2	42.8	41.4	40.8	40.2 38 8	8	38.4	37.8	1 9 98	8	35.4	er er	33.6	88	24		30.6	8	29.8875 29.975	23.0625	28.75	28.4375 28.125
142	143	4 4	148	147	148	<u>6</u> 5	ţ.	Ş 2	<u>3</u>	155	<u>8</u>	25	8 5	160	161 191	28 181	184	185	1 <u>8</u>	89	189 189	170	Ē	1	44	175	178	11 12	2 <u>8</u>	1 80	181	<u>8</u> 1	3 2	185	188	187 188	188	180	181	193	185	1 <u>8</u>	6 ja	198	<u>8</u>		202	203	2	80	202	208	209	211	212	213 214

	8 ¹	0	-0.025(253)U1	COLOR 1040.04	-0.0000/10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	-0.208072053	-0.395678104	-0.845762315	-1.337929827	-1.776218817 2 4 2021 2000	-2.606815798	-2.796346245	-3.047306361	-3.256133637	-3.431368706	-3.512627094	495022000025- 3159000025-	-3 ABSR75201	-3 335048865	-3.158585565	-2.986320055	-2.854081508	-2.681620913	1017cocot-7-	-2.150641862	-1.999670242	-1.855494515	-1.892685474	00908797051-	-1.262009737	-1,132975794	-1.000800654	-0.89224563	-0.792491659	-0.4178/2791	-0.541440773	-0.472363157	-0.406855294	4000000000-0-	-0.25788204	-0.217122884	-0.181228867	-0.149819005 -0.1224706108	-0.098997222	-0.07869273	-0.06188726	-0.04/868/222	-0.026418498	-0.018902041	-0.013023739 0.004448744	-0.006279842	-0.002892282	-0.001486948	-0.000617772	-2.14507E-05	2.81098E-11	2.190536-05	0.000552467
	ه	10//10#	4094,804491	187070' JOSE	3842,046104	3596.691718	3479.713524	3362.735331	3247.757138	3134.778944 2006 PD0764	2914,822558	2807.844364	2702.806171	2599.087978	2498.809784	2359.901561	2302.302.305346		2024 018818	1935.040625	1848.002431	1763.084238	1080.106045	1520140658	1443.171465	1368.193271	1205.215078	1224.236885	1.0002.0011	1023.302305	960.3241115	899,3458162	840.3677249	763.3865316	128.41133855 8755 4931 45	624.4549516	575,4767583	528.498585	403,3203784	399.6639961	360.5857916	323.8075985	288.6294052	224,6730185	195.6948252	168,7186319	143.7384538	99.78205199	80.80365868	63.82586537 40 8474300	35 86007875	24,89108544	15.91289212	8,534698814	0.978312186	0.000118883	1.021925572	4.043732282
	FΦ	0	3.511545-05 2.2004.052.45		0.000120000	0.000737424	0.001439733	0.003019828	0.005653586	0.008340708	0.020121148	0.026968659	0.034869834	0.043824072	0.053831973	0.06471775	0.076461433		O 1152RODOR	0.128803441	0.142406484	0.156544841	0.170825933	0.104/7/450	0,21,3201195	0.227698526	0.242191204	0.256688535	0.284064.812	0.298007989	0.312878588	0.326398034	0.338741902	0.352910192	Change and a second sec	0.391361601	0.403827583	0.418117988	0.440172068	0.451926739	0.463488719	0.474831007	0.485962502	D.607583714	0.518096231	0.528382058	0.538450138	0.557984374	0.567465543	0.576771135 A 55500145	O ROASSERRE	0.503634448	0.612237732	0.820685438	0.626994118	0.644895093	0.65262049	0.06017031 0.067544553
	{htm) ³⁺ E*At	0	-9.200598456		COD/FROM	-75.80801168	-144.1595347	-308,141139	-487,4552158	-847.1393675 T00 0457074	-950.4830094	-1018.807887	-1110,241538	-1187.053447	-1250.169403	-1278.847213	-1300.081778		-1015 078314	-1150.784489	-1068.022068	-1039.842888	-969.7226811	-904,55/04/4	-783.5548317	-728.6234856	-676.0223096	-618.708658	-008,454/228 .Eng.0507687	458,7848041	412,7831727	-364.627165	-326.0780665	-268.7327637	-255.4258868	-197,2660329	-172.0949694	-148.3247865	-125.5005504	-83.95555244	-78,10554668	-66.02806893	-54.5843651 44 externer	36.06813068	-28.74341335	-22.54771858	-17.3676845 42 00454504	-1-0.09404001 -8.625193731	-6.886682393	-4.745008992 * 415008992	-1 4234843767	-1.090194288	-0.548118774	-0.225076038	-0.007815237	1.02414E-08	0.007960961	0.061391775 0.201263361
	(t-tm) ²⁺ C*∆t	¢.	4094.604491	1809-00-00	11527.84431 + acces 24065	35986.91718	69594,27048	151323.0898	243581.7853	329151.7891	501348,4799	547529.051	808144.8885	D82871.4343	712169.2886	743878,7932	771469.3083 Tohor 4076		760177 1508	744990.6404	720744.3482	705233.8952	673722.5238	6444483.5241 815880 8115	567370.7861	580959,2413	534823.8272	501537.1227	467878.77 498677 0407	408320.5219	378328.024	346248.1785	319339.7365	263771.0743	260612.1962	224803.7828	204294.2492	184974,4978	100814.5282	133853,835	118632.7255	104525.2543	91496.52144 There energy	68525,27065	58512.75274	49433.97315	41262.93188	27440.0643	21817.04184	16913.B0132		6222.771359	3499.058571	2144.327715	929.7787834 225.0118045	0.028748658	224.8238259	869.4024363 1903.76318
	C*At		- (n u	, 2	8	\$5	75	105	22 24	38	225	255	205	310	335	000 01	045	365	390	99	401	204 704	24	410	413	410	5 5	2 8	365	365	360	375	370	200	365	350	200	. 8	329	323	317	305	562	82	282	275	270	285	200	220	245	8	8	225	220	215
	rc-At	0	•	47 (50 8	3 6	120	315	800	845 2000	265	2340	23625	3570	4275	4960	5685		OURL	8085	8580	0028	9624	10075 10E30	10969	14480	11977	12300	12555	13200	13430	13475	13680	13875	14080	8 00141	14555	14700	14835	15075	15134	15181	15216	15250	15249	15236	15211	151.25	15120	15105	10000	15000	14945	14680	14805	14625	14520	14405
0.1	E (1/min)	0	3.51154E-05	7.028096-05	0.000106346	0.000155154	0.000702309	0.001580195	0.002633658	0.003687121	0.006/38856	0.006847511	0.007900974	0.006964438	0.010007901	0.010885787	0.011763673	2000001210.D	60357551010	0.013519445	0.013695022	0.014046177	0.014081292	0.014151523 0.014004754	0.014291985	0.014397331	0.014502678	0.014397331	0.014221754	0.014046177	0.0136706	0.013619445	0.013343868	0.013168291	0.012892714	0.01261/136	0.012465982	0.012290405	0.012114827	0.011763673	0.01155288	0.011342288	0.011131595	120120100	0.010499517	0.010288825	0.010078132	0.009656747	0.009481169	0.009305592		0.008778861	0,006603263	D.D08427706	0.006252129	0.007900974	0.007725397	0.007374243
	Area		0.5	10, 1 1	25	4 F	ŧφ	32.5	8	66	120	183.5	210	240	270	297.5	3225	000	0700	362.5	387.5	365	400.5	204	5	408.5	411.5	411.5	407.5	2104	307.5	300	302.5	3775	372.5	17/88 11 CMC	357.5	352.5	347.5	337.5	282	326	320	100	302	8	30	278	272.5	207.5	2070	252.5	247.5	242.5	237.5	227.5	222.5	217.5 212.5
Ľ	3		+- 1	61 -	en 1	o ĉ	2	\$	75	8	89 12	: <u>1</u> 8	53	256	285	310	8	8 1	010	1	390	400	1 01	403	24	410	413	410	5 <u>5</u>		58	5 FS	380	375	8	8 F	1	350	355	ł	825	323	317	305	588	283	287	275	270	265	8	8	245	240	226	225	220	215 210
R	C (ms)	s S	e I	-	æ ;	5 5	2 22	53	80	110	ŝ È	200	230	88	280	315	88		5/5	8	395	1 05	8	6 <u>6</u>	014 C14	415	418	415	410	9 1	3 3	38	385	380	5 <u>5</u>	3/0	3 8	355	350		334	328	322	0.05	304	88	282		275	570	8 5	 8 8	S	245	240	230	225	215
0=	t (min)	-	-	7	• 7 •	4 V		2		a '	₽ ₽	: 12	ũ	\$	ŧ	1 6		<u>p</u>	2 5	। । ম	22	52	24	¥۲. 18	8 6	1 18	8	8	5 5	38	3 2	5	8	37	ន	8 9	8 4	7 4	5 1 2	: 4	: Ş	47	87 S	₽ 5	5	52	8	¥ 8	8	<i>1</i> 3	8 5	8 8	5	8 : 8	83	19	8	69

1.6727731	1.693029132	1.711434839	1.121010122	1.80755071	1.840915445	1.886886784 1.024/30552	1.962489272	1.999892525	2.0365915565	2.108644608	2.148379623	2.1772719 7.240050034	2.242278201	2.273263725	2.303140069	2.331669843	2.365636322	2.41034258	2.433703325	2.455544495	2.494372024	2.511206851	2.526219439	2.538331129	2.550402108	2.568456694	2.620600585	2.675129344	2.73003048 9.75500048	SIDECTOBULE 1	2.896836244	2.963083636	3.009655531	3.06650729 3.1236242724	3.181021294	3.238853175	3 28661 4249 5 35 400001 1	3.412860065	3.471312131	3.526628033	3,568660/7	3.706536634	3.765684432	3.824857805	3.843357136	4.002845214	4.06193316	6.180429713	4 239698125	4.296060014	4.357672555	4.47625689	4.533811587	4,582178768	4.650336159	4,765931077	4.823322623
5930,679234	6085.701041	6242.722847 8 404 7 4467	100841/10440	6725.768267	6860.810074	7057.831881 7776 863687	7397.875494	7570.897301	7745.919108	8101.962721	82382,564525	8468.006334 sore cost 44	8836.049948	9027.071754	\$216.093561	9411.115368	9603.156961	10002.18079	10203.20259	10408.2244	10818,26801	11027.20982	11236.31163	11451.33343	11668.35524	12102.39685	12323.42066	12546.44247	12771.46427 17708_46406	12980.40000	13458.52069	13601.5515	13928.57331	14163.59511 14402 61602	14643.63873	14886.66054	15131.08234	15627.72596	15878.74776	18131.76957	16546,79136 16543,81318	10902.63499	17183,8568	17428.8786	17958,92222	18227,94402	18486,86583	10/11/00/044	18324.03125	1903.05306	19684.07486 20147 Poest	20452.11848	20739.14026	21028.16209	21319.1839	21907.22751	22204,24932
0.916934422	0.918233863	0.518497849	C26982107570	1622816260	0.924306565	0.925467474	0.92773242	0.928838557	0.929827135	0.99205162	0.893087525	0.834105873	0.538059696	0.93705657	0.\$38003687	0.\$38934248	0.940740962	0.941620578	0.942460906	0.943323677	0.944056545	0.945746842	0.948519162	0.947/274164	0.948011586	0.948433763	0.950131693	0.950825213	0.961514353	on institios:n	0.950555428	0.954227021	0.964894215	0.965657019 0.058945439	0.856859459	0.957519094	0.95816434	0.953441664	0.960073742	0.960701431	0.96132473 0.96194764	D.96255816	0.963168291	0.963774032	0.964972347	0.98556482	0.966153103	0.96723162902	0.967891318	0.968481944	0.96902818	0.970147495	0.970700653	0.57/1249232	0.971793521	2528983220	0.973400053
609.4504321	616.8304212	623.5362716	628-02604655	668,6546846	672.8966504	687.0985675 Tot 4.410466	715.0042852	728.8680473	742.1116836	796.2539671	780.9090045	783.2571969	BHB 0412927	828,2304154	639,1190318	849.5326962	PERCENCION 100	878.1732385	896.8842392	894.8417501	100/10/10/100	S14.9215161	920.381133	\$25,1681,658	\$29.2236563	932.5278613 935.051.0618	954,777524	974,8442507	994.0405957	1014.750025	1055.419849	1075.91653	1096.524008	1117.237115 1118.050070	1156.958519	1179.955953	1201.036789	1242.190334	1264.721843	1208.07769	1307.48701.3	1350-440662	1371.672089	1380.531043	1438.704543	1458.305287	1478-905983 4Ered Jonnaeo	15254778470	1644.635617	1506.163425	1587,654311	1690.100000	1051.627962	1673.093221	1604.262017	1736.397336	1757.307107
226365.8109	225170.9385	224738.0225	2240.180422	228678.8011	230842.1375	232508.4521	236732.0158	5992 E8M8022	240123.4923	243053.8616	244348.0436	245514.1837	247465,3885	248244.4732	246886.5261	248394.5572	240000 5500 50000 2400000 5554	250054,5197	245976,4536	249749.3856	249004,2009	248114,021	247242.8558	246203.6688	244883.4601	24200912295	244827.9856	247792.2387	250639,9664	252470.4765	255076,6366	261850,9225	264504,8929	267337,8578	272737.113	275403.2159	278044.663	280252 5329	205817.4597	288355.381	2000005.6409	205730.6123	266222.0116	300613.6656	306301/6777	307596.5554	309857.6776	312004.2944	316431.0117	318549,6122	320630.7072	32201330401	326841.4594	328565,0326	330447.3504 330047.6504	334065,2196	335839.2709
38	37	8	8 7) R	33.5	ន័	27 C	31.5	31		20.5	R :	697 87	27.5	27	25.5		18	24.5	24	57 K	225	8	21.5	21	2015 2015	19.875	19.75	19.625	19.5	19.25	19.125	đ	18.875 18.875	18625	18.5	18,375 	18.755	₽	17,875	17.75	17.5	17.375	17.25	17	16.875	16.75	16.025	16.375	16.25	16.125 10	15 15 875	15.75	15.825	15.5	15.375	16.125
2396	5291	5184	5075 5047	4886	4958	4917	4832	4783	4743	4850	4602	4553	5165	0044	4347	4253	4239 4629	4126	4067	4008	20040C	3626	3762	3696	363	3567	3458	3485.75	3483.25	505550 11 10550	3487.5	3480.75	3477	3473 2469 YE	3464.25	3459.5	3454.5	3449.25	3436	3432	3425.75 3410 75	3412.5	3406.5	3389.25	3363	3375	3068.75	3356.25 2340 F	3340.5	3331.25	3321.75	3312	3291.75	3261.25	3270.5	3269.5 3749.25	3236.75
0.001334387	0.001299271	0.001284156	0.00122304	0.001183825	0.001176367	0.00115681	0.001123694	0.005106136	0.001088579	0.00105465	0.001035906	0.001018348	2/000100/0	0.000665675	0.000948117	0.000830559	0.000913001	0.000677866	0.000880328	0.000842771	0.000825213	0.000790097	0.00077254	0.000754982	0.000737424	0.000719867	0.000687919	0.00068353	0.000889141	0.000684751	0.000680362	0.000671583	0.000667153	0.000602804	0.000654075	0.000849636	0.000845248	0.000636467	0.000632078	0.000627689	0.000623296	0.00061452	0.000610131	0.000605741	0.000696963	0.000682573	0.000538184	0.000583794	0.000575015	0.000570626	0.000666237	0.000551547	0.000553068	0.000548679	0.000544289	0.0005355	0.000631121
38.5	37.5	397	36.5 24 H	2 2	38.75	33.25	e 83	31.75	97 (92	2 8	20.75	50 K	22.52 56.42	27.75	27.25	28.75	49 ¥ 89 ¥	20	24.75	24.25	23.15 24 25	27	22.25	21.75	21.25	12.12 12.12 12.12	18.9375	19,8125	10.6875	19,5625	19,4375	19.1975	19.0025	18.8375 4 B 64:25	19.0120	18.5825	18.4375	18.3125 18.1875	18.0625	17.8375	17.8125	17,5625	17,4375	17,3125	17,0625	16.9375	18.8125	10.5575	18.4375	18.3125	18,1675	16.00(2)	15,8125	15.6875	15.5625	15,4375	15,1475
88	37	8	8 2	, s	385	ន	6 6 7	31.5	31	5	3 8	8		27.5	27	26.5	8 7	8	24.5	75	322	22	8	21.5	21	205	19.875	19.75	19.625	19.5	19.375	19.125	19	18.875	0/.81 Annes	18.5	18.375	18.25 18.125	48	17.875	17.75	17.5	17.375	17.25	17.142	16.875	18.75	10.625	16.375	16.25	16.125	18 45 876	15.75	15.625	15.5	15.375	15.125
8	4	41	4 2	1. BO	385	ន	e ve	30.5	8	35.5 ac	345	8	33.5	3 2	ន	31.5	ភរុ	3,8	385	8	382	21.5	22	26.5	8	ŝ	24.875	24.75	24,625	245	24.375	24 122	23	228.875	2.12	23.5	312.62	20122	8	22.875	22.75	225	22.375	22	2 2	21.875	21.75	21.625	21.375	24.25	21.125	21	20.75	20.625	20.5	20.375	20.125
142	145	4	ŝ	24	8 4	4 4	15 15	152	<u>1</u>	¥	<u>8</u> 8	ţ;	8 8 9	2	161	162	183	t ä	99	167	89 4		171	172	173	174	<u>e</u> <u>e</u>	171	178	<u>p</u> (ŝ	- 2	183	184	ē á	59	188	89 191	1 2	<u>192</u>	8	ŧ ŝ	196	187		200	201	52 52	5	205	508	207	802	210	54	32	214

4.329423797	4,225410092	4,117548891	4.005763379	3.890057599	3.770314442	3.646496654	3.518548636	3.386406439	3.250017768	3.108321982	2.864260092	2.B14772762	2.660800309	2.502282705	2.339169571	2,171370185	1.996853476	1.621548026	1.638392071	1.4523235	1.260279853	1.063198326	0.861015765	0.653668673	0.441093201	0.223226157	0
48733,86301	50160.88452	50629.90962	51080.02843	51533.95024	51988.97204	52445.99385	52905.01568	53366.03746	53829,05927	54284.08108	54761.1028B	55230.12489	55701.1485	56174,1683	56649.19011	57126.21192	57805.23372	58086.25553	56568.27734	59054.29914	39541.32085	60030.34278	60521,36458	61014.38637	6150B.40818	62008.42998	#DIV/01
0.998151172	0.998288122	0.996419805	0.998546221	0.999667369	0,99678325	0.996883864	0.99893921	0.999098289	0.999194101	0.996283645	0.869367622	0.899446832	D.999620674	0.929589149	0,999652357	0.909710298	0.999762671	0.999810377	0.899852515	0.8593386	0.99982099	0.988947327	0.999968396	0.999834198	0.898994733	-	+
1577.362288	1539.466415	1500.163639	1459.448631	1417.285635	1373.668965	1328.547784	1281.531045	1233.787696	1164.096476	1132.836023	1079.984843	1025.521319	968.4237062	911.6701336	852.2386039	781.1068832	726.2530515	663,6544022	597.2885422	528.1328421	458.1845461	387,3607719	213.6985108	238.1548278	160.7058613	B1.32B82361	0
201422.1452	195705.4508	189882 1498	163691,3424	177782.1283	171563.8077	165204,8806	158715.047	152093.2088	145338.48	138449.9067	131426.8469	124267,7806	116972.4076	109539.6282	101988.5422	94258.24966	86407.65059	78415.44497	70283.13281	62007.0141	53587.18888	45022.75707	36312.61674	27458.47387	18452.82245	B300.96443B	0
4.05	3.6	3.75	3.6	3.45	3,3	3.15	. ന	2.85	2.7	2.55	2.4	225	2.1	1.95	1.8	1.65	1.5	1.35	12	1.05	0.9	0.75	9.6	0.45	5.0	0.15	0
1186.4	1127.1	1087.5	1047.6	1007.4	6,896	1 228 1	885	843.6	801.9	759.9	717.6	875	632.1	588.9	545,4	501.6	457.5	413.1	369.4	323.4	278.1	232.5	186.6	140.4	850	47.1	c
0.000140018	Superior of	Constant Aug	0.0001556416	0.000134148	0.000155831	n 000110814	1 000106346	62000100010	9.48117E-05	B.95444E-05	8.42771£-05	7.90097E-05	7.37424E-05	8.84751E-05	8.32078E-05	5.79405E-05	5.267326-05	4.740586-05	4 213865-05	3.68712E-05	3 160396-05	2 633666-05	2 10603F-05	1 68019E.05	1 DESARE-DE	5 26732E.06	
1176	2016	D/Ap	2.020		02010	576/6	1270	2000	2776	2.825	2.475	2.325	2175	2.026	1875	1 775	1 575	207 I	1 275	1 1 75	9760		0.675		0.075	3000	0.025
27	3	115		010 2 10	, . ;	2.0	200			1 1 1 1 1 1 1	40	, K				191	3	i t	<u>i</u>	τĘ	0		200	, ii	2	200	P10
5	en i		e7.8	9 H H	€ G	1.0	61.10	0 10			1 V	200	14		100				6°0	9.2 9.05	0.0		0.0	0 L	0.40	5 G	10 L
-	R	割	780	a :	1 1	282	a l	R I	5	i i	900		3	3	1	3		9	9	10 P	8	5			212	FLE	314

A-6

240138.2398

74103206.11

28477.5

1860727

28477.5

	30		-0.061151806	-D DR1206051	-0.113022484	-0.314006876	-0.463667639	-1.305652018	-1.582893821	-1.955363559	-2.070850015	-2.345262803	-2.311248408	-2.166709576	-2.102706967	-1.964248696	-1.846331525	-1,70401,2040 4 EEM0410	-1 377440607	6/0///922-1-	-1,04276827	0.88887933	-0.751685281	PC2089520/0-	-0.415552611	-0.337518905	-0,200046583	-0.209019648	-0.161122205 0.101100005	-0.0579917778	-0.061664227	-0.041448241	-0.0284105	-0.015678042 .0 006439677	-0,003906948	-0.001397493	-0.000314509 -1.47706F.06	5.83462E-06	0.000206826	0.000865072	0.00200.0	0.009815988	0.015980171	0.024161544 n.massasa	0.045332683	0.059984479	0000011000	0.094509232	0.133271311	0.154020096	0.175174288	0.225968111	0.254079969	0.282833075	0.316983273	0.398652903	0,434190661
	9	#DIV/0	1512.433348	719C21 4241	1565.99725	1487,851884	1411.708518	1337,561151 1265 #15785	1 195.270419	1127.125063	1060.979686	998.8343201 014 #880539	874.5436876	818.3962214	760.2528551	706.1074888	653.9621226	000/019/000	SCOLOV 138 EVG KONDOR	465.3806575	423 2352912	343.069925	344,9445587	303.79419255	242.5084599	212.3650837	184.2177274	158,0723611	133,9269949	111./810/200	73,49069608	57.34552982	43.20016355	31.06478729 21.06478729	12,76406476	6,618888497	2.473332233 n mmesor	0.152596706	2.037233442	5.891867178	11.74550001	29.45576829	41,31040212	56.16603586	80.67430333	108.7288371	130.5835708	154,4382045	208.147472	238.0021058	269,8587395 ana 71137a5	30015 SUBS	377,4208407	417.2752744	459.1299082	548.8391756 548.8391756	598.6938094
	F (t)	0	0.000110604		0.000818466	0.001813898	0.003472862	0.007122869	0.019731676	0.029132579	0.040082731	0.05369697	0.064877175	0.10179952	0.120049108	0.139085042	0.15820277	0,160106643	0.2016/4536	0.245894758	0.267483658	0.289051353	0.310397841	0.331301916	0.351542307	0.391403891	0.410880722	0,430115138	0.445028348		0.503777112	0.521141871	0.538064216	0.554544147	D,586176767	0.601108248	0.615818522	0.84369062	0.666631237	0.668908232	0.680964021	0,703748355	0.714098108	0.725428853	0.74556502	0.755179012	0.764580215	0,773539203	0.789908531	0.797540177	0.804729408	0.61169(433	0.824571688	0.830610642	0.838472631	0.842224015 0.847964798	0.853284373
	(h-bm) ³⁺ E*At	0	-8.534187635 -41 12554588	- 11.12004000	-20.56254509	-57.12828382	-87.998865249	-178.5473997 -263 0464737	-287,8445824	-365.751068	-378.4120158	428,1825759	420.4928781	-364.7422823	-382.5517157	357,3621017	-336.272917	-310.1520551	-282.5080235 ner ennts	200,200,200	-189.7178338	-161.7165839	-130.7572557	-113.4344963	-82.12848491 -75. AM387707	-61.40590325	-48.94851458	-38.02761869	-28.3134825	-22.09080154 14 mmeron7	-11.2187717	-7.540812232	4.804947397	-2.851992878	-0.711167222	-0.254250482	-0.057219651	-0.0050/8/80 0.001061511	0.037628437	0.175578575	0.485353754	1.785854319	2.907324101	4.395767722	B.247521207	10.90853114	14.02881074	17.19426949	24,2484785	26.02137284	31.87002322	36,85067811	41.1084058	51.47482707	57.66978945	64.6780409 72 52420466	78,99370765
	(h-tm) ²⁺ C*Δ1	0	9062.166745 12008-01588	200010/96021	23489 95875	66653.33478	105877.9888	220897.59 3374614 0353	376510.182	479028.1474	525184.9448	613053.1069 220045 0430	BLAU BLAU	624544.0393	627206.6054	607958.5479	594451.5894	570606.8347	541779.6063	AUT06511334	416886,7619	373512.6769	332871.4982	231815.2369	251309.251 24 0420 4 mm	180488.895	163032.6687	136732.5924	114507.5806	94455.47617 75500 04 843	/0006/81040	45018.24091	33048.12512	23135.82398	15158.33/48 8008.885856	4467.621485	1644,785935	Enclose 112	1191.781564	3289.996284	6401.842998	10250.55069	20448.64905	26755.04239	350/241.140305 366%40 0%406	47297.08782	55498.01759	62547.47284	0212873.82729	82110.72648	67703.44033	96689.06257	100651.1041 107584 8826	113916.1499	121669.4257	130775.8909	146169.9833
	C*AI	0	60 1	- :	5 5	8	75	165 251	200	425	495	815	6/6	765	825	861	606	945	975	886 200	585	975	395	945	915 Ore	2 La	588	965	865	845 2015	425	185	202	745	705	675	665	992 1	286	555	545	272 272	485	485	465	436 	42 25	405	365	345	325	315	in the second	8 EZ	265	280	245
	rc*∆t	0	υ	<u>4</u> (8 5	525	450	1155	2004U	1 2	5445	7380	c1/0	11475	00261	14637	16362	17955	19500	20885	22866	23400	24125	24570	24705	Checks Elitable	26550	26815	27360	27885	28050	26260	28905	28310	28275	27675	27930	27735	20326	26630	25615	25200	24750	24735	24180	23490	23375	22680	21375	20355	19500	19215	18414 4 7065	17472	17225	17160	16660
2	E (\$/muh)	0	0.000110804	0.000154845	0.000221207	0.000896432	0.001659053	0.003649918	0.000640/62	0.008401303	0.010949753	0.013804238	0.014931491	0.016922345	D.016240586	0.018045834	0.020107728	0.020904074	0.021567595	0.021768902	0.01212220.0	0.021567696	0.021346486	0.020904074	0.020240452	0.020018245 n n4 0842570	0.019676831	0.019134417	0.018913209	0.016692002	0.016240588	0.017384759	0.016922345	0.016479631	D.016037517	0.014831481	0.014710274	0.01426786	0.012040617	0.012276886	0.012065788	0.011613374	0.010948753	0,010728546	0.010295131	0.00962251	0.006401303	0.008966889	0.008296267	0.007831645	0.007188232	0.006968025	0.006569852	0.008038955	0.005861989	0.005751385	0.005419575
	Ana		25	Ð	8.5 12 E	8	9	8	210	016	034	555	845 745	992		4	885	-126	0296	88	200	88	026	926	8	910	198	876	098	850	835	795	775	755	52 F	060	670	998 99	009	570	200	535 215	202	490	475	<u>8</u>	63	415	980 186	5 BS	335	320	\$ i	6 27	788	282.5	520 520
_	C-15	0	¥0	~	₽ ;	<u>0</u> 19	75	185	255	er 53	1 <u>8</u>	615	519	8 14 1	2 2	5	806	945 945	975	58 1		900 81/8	366	945	915	85	1988	38	855	845	828	818 785	765	745	82. JI	675	965	8	515 585	1 85	545	525	88	485	2 <u>8</u>	₹ ₹	\$24	20 4	375	28. 28.	325	315	787		192	260	8 8
225	C (mS)	15	R	53	5	3 2	3 8	180	270	330	510	630	88	26 J	097	876	924	026	005	1000	0201	8	006	960	88	8	215	88	670	900	2	aro aro	1 22	780	740	12	680	8	88	220	560	240	510	200	8	480	4	420	360	8 8	340	330	312	300	260	275	2002
	1 (mini)	0	-	7	n .	4 4		*	a) (2 5	덛	13	¥ ¥	2 #	2 12	5 5	ŧ	8	5	81 8	2	18	58	22	81	R. 5	3 8	ទ	ŝ	3	88	: 6	8	g :	₹ 4	4	\$	4 #	84	47	48	75	5	22	5 2	5 23	8	45	8 9	8	61	នេះ	83	99	8	22 89

1.69272668	4202666227.1	1.814211619	1.855337101	1.896756257	1.936462664 1.0304457	2.022672278	2.065151178	2.107801817	2.193823368	2.23724608	2,280744128	2.365206626	2.4121 40539	2.45618672	/ Leconos:2	2.500857432	2.6331 69791	2,677573513	2/21901143	2.810706836	2.855028534	2.899291395	2.943478504 7 087554856	3.031536361	3.075371799	3.119050917	3.162653332	3.206858377	3.291792285	3.334378254	3.376691323	3.460349613	3,501670108	3.5428172	3.623295312	3.662984873	3.70220331	3.778137685	3.816803828	3.853902258	3.926293182	3.961533547	3.998101942 4.000071570	4.063115352	4.095505903	4.127115558	4.15/916353 4.187880027	4.216978065	4.245181569	4.272481511	4.2983/05391	4.348463665	4.371752159	4.363966822 4.4507606.4	4.435051414	4.453858709
9687.936706	10085.84597	10287.50061	10491.35524	10697.20387	10905.06451 1114 61914	11328.77378	11540.62841	11756,48304 11674,33766	12194,19231	12416.04694	12639.90158	12003.01085	13323.46548	13555,32011	13/08/1/4/5	14262.88401	14502.73865	147/44,58328	14998.44792 15734.30755	15482,15718	15732.01162	15963.96645	16237.72106 16406 57577	16751.43035	17011.28499	17273,13962	17538,89425	17802.84869 18070 70252	18340.55815	18612.41278	18886.26742 404en 4000e	19430.97660	19719.83132	20001.68596	20054-00022	20659.24966	2/149.10449	21734.81376	22030.66839	22328.52303	22030.23229	23234,08686	23539,94156 74647 7000	24157,65083	24469.50546	24783.3601	20066.214/3 25417.06006	25736.924	28058.77863	26382.63326 Antra 4870	25708-8579 27776 Sanses	27366.19717	27699.0518	28031.90843 28267 78107	28705.6157	29045.47033
0.978797297	5059676260	0.979752912	0.980067026	0.560378928	0.980689618	0.981301362	0.981804415	0.981905257	0.982500304	0.98279451	0.983068503	0.963663854	0.983949211	0.984232358	0.555135590	0.585068519	0,985342816	0,585614301	0.585864773	0.988417882	0.588681119	0.988942143	0.967200956	0.987711944	0.98796412	0.586214064	0.968461836	0.996707376	0.96918162	0.969430723	0.989687415	0.990134162	0.990364218	0.590622061	0.5500617152	0.991262318	0.991481314	0.991912667	0.992125026	0.552335173	0.99274683	0.992952341	0.983153639	0.9935496	0.993744262	0.663556713	1000210000	0.994500791	0.594684393	0.994665783	0.995504496	0.96535968	0.996569221	0.996739551	0.996073573	0.996237267
307.9632618	325 (1957) 1957	2230.0653722	337.5474038	345.0833483	352.6708057 240 2075675	367,981,2923	375.7196157	363,4501	399.1475556	407.0293963	414.9431366	430.6554709	438.8485095	446.8623371	4654.05940452	470,8961636	473.0685323	487.1395867	495.2151713 Erra Donvert	511.3609621	510.4245511	527.477436	536.6181755 541.6377750	52911021	569.512312	567.4589849	575.3735295	583.252156 591 0910615	566.8863796	B006,6334192	614.3305258 and ett.0000	629.552604	582.0701385	844,519775	6681,18872758 6681,1883501	588.4185541	873.553791	980/1990 982/2507099	694.4034328	9699731 101	714.3231842	720.7345775	7127.023717	730.2156829	745.1086004	750.8694469	781 0145749	767,2064226	772.3396825	2012/02/111	782.0824374	791,4300566	795.3659729	799.4085581	806.8832105	810.3048824
141443.8753	44204339/444	147111.2587	148977.2444	150830.6592	152670.9031 154407 3784	156308.4781	158106.6092	159999.1694 161453 5596	163402.177	165133.4244	166846.7008	170216.941	171872 7047	173506.0974	176122.5193	178286.0502	179833.9592	181356.4974	182859.0646 + 8.4345 0ene	185795,8962	187210.9406	188509.6241	186961,3367 101305,4783	192641.449	193928.6468	195166.4777	196414.3356	197611.6226	199912-0639	201014.0581	202063.0614	204119.7552	205086.2458	206017.3654	200912.514	208582.4986	200376.1346	210121-0005	211494.4168	212120.9688	213251.1803	213753,5997	21 4213.4682 21 4620 4660	215003.0924	215331.5481	215615.2328	21 5853.2457 21 FRAKE 19906	216150.1616	216287.8626	218337.5928	216538.752 24 8200 7403	218192.8576	216044.604	215845.6795 515545.6795	215282,1178	214936.4805
14.6	14.0	14.3	14.2	14.1	14	13.8	13.7	12.6 13.5	13.4	13.3	13.2	13.1	12.9	12.8	12.1	12.5	12.4	12.3	12.2	1 2	11.9	11.8	11.7	11.5	11.4	11.3	11.2	113	10.9	10.8	10.7	10.5	10.4	10.3	10.2	₽	6 i	8.7 8.7	3.6	95	1 0	9.2	9-1-0 -	, 6 .9	8.8	8.7	19 19 19	9.4	6.3	65	61	5.9	7.6	7.7	7.5	7.4
2073.2	20736	2073.5	2073-2	2072.7	2072	2070	2068.7	2067.2	2063.6	2061.5	2059.2	2006.1	2061.1	5048	7,8402	2037.5	2033.6	2029.5	2025.2	2016	2011.1	2000	2000.7	1989.5	1583.6	1977.5	1971-2	1964.7	1951.1	1944	1936.7	1221.5	1013.6	1905.5	1897.2	1880	1871.1	1852.7	1843.2	1833.5	1813.5	1803.2	7:321	1771.1	1760	1748.7	1737.2	17136	1701.5	1889.2	1878.7	1651.1	1638	1624.7	1597.5	1563.6
0.000322962	0.000000000	0.000316326	0.000314114	0.000311902	0.00030369	0.000305266	0.000303054	0.000300842	0.000296418	0.000294205	0.000291960	0.000287566	0.000285357	0.000283145	0.000280533	0.000276509	0.000274257	0.000272085	0.000289873	0.000265449	0.000263236	0.000261024	0.000258812	0.000254386	0.000252176	0.000248964	0.000247752	0.00024564	0.000241116	0.000238904	0.000236892	0.000232267	0.0002300555	0.000227843	0.0002256519	0.000221207	0.000218996	0.000214571	0.000212359	0.000210147	0.000205725	0.000203611	0.000201298	0.000196874	0.000194662	0.00019245	0.000190236	0.000165814	0.000183602	0.00018139	0.000179178	0.000174754	0.000172542	0.000170329	0.000165905	0.000163693
14.65	14,55	1436	14.25	14.15	14.05	13.85	13.75	13.65	13.45	13.35	13.25	13.15	12.95	12.85	12.75	255	12,45	12,35	12.25 to te	12.05	11.85	11.85	11.75	38	11.45	11.35	11.25	115 15	10.85	10.85	10.75	10.55	10,45	10.35	10.25	10.05	8 8	8 52 8	9.65	5 <u>6</u> 5	97.6 57.6	52'6	9.15 2.05	97.8 24.6	8.85	8.75	8.65 A.55	8.45	8.35	8.8 8.3	8.15 8.05	2,96	7.85	7,76	8.52	7.45
14.6	19,0 1,41	14.3	14.2	14.1	4 <u>6</u>	13.8	13.7	13.6 13.5	13.4	13.3	13.2	131	12.9	12.8	127	12.6	12.4	123	122	5	11.9	11.8	11.7	115	11.4	11.3	11.2	E #	10.9	10.8	10.7	10.5	10.4	10.3	10.2 10.1	9	6.6	6.7 2	9,6	3.5	5.8 8.3	8.2	91 1-0	9.8 9.8	8.8	8.7		8.4	6,8	82	er	9 7,8	7.8	1.7	1.5	24 24
998	9 PR	8	29.2	29.1	នទ័	198 198	28.7	988	18	2933	282	19. F	27.8	27.8	27.7	27.5	27.4	Z7.3	27.2	22	26.2	1997.	198	5183	26.4	28.3	2812	şi ×	e ge	25:15	193	998	212	253	28.2 26.1	19	24.0	24.7	24.5	24.5	24.3	24.2	24.1	*7 523	812	23.7	226	214	23.3	22	g s	1 8	22.8	22.7	9 S	22.4
24	143	1	148	147	8 1	196	191	5 5	<u>8</u> <u>8</u>	155		157	159	180	181	28	Į	185	8 Ç	2 2	169	170	Ē	2 6	174	175	176	Ēŝ	921	180	£ 1	2	ž	<u>5</u>	186 187	1 1 1 1 1	189	<u>1</u>	192	69 1	t ž	9 <u>6</u>	197	2 6	200	52	g ş	24	205	8 i	207	208	210	211	212	214

	T accel	1 50610	E 00017	E 110338
5.104141	5.487106	5.0740815	7.698364	5,096756
5,522079	5,13649	5.00638	5.06696	5,069045
5.067261	8.147858	5.184326	7.535904	6.913635
5.067307	5.122421	7.608871	5.089127	5,068148
7.616364	5,818116	5.161102	7.532089	5.483149
5.077454	5,110107	4.364609	5.103439	4.628983
5.075912	4.641693	5.150955	5.003998	5,106306
4.28598	5.102707	4.705505	5.068803	4.564392
5.074081	4.595169	5.133224	5.305496	5.101273
5.064331	5.096878	4.717051	5.280288	5.081858
5.05248	4.929611	5.132599	5.238602	5.133072
6.608616	5,290375	4,66391	4.353271	5.538322
7.469096	4.853561	5.470016	5.078559	5.443908
5.098832	5.206876	4.656464	5.076813	4.49942
7.778915	4,86345	5,46,9147	7.174133	5.104004
5.090683	5.234116	4.815524	4,837219	4.508347
7.79306	4.758674	4.546112	5,238342	5.092636
5.068192	5.066406	7.742968	4.784258	6.963587
5.081177	5.065903	5.085693	5.206955	5.086548
5.067261	4,394135	5.069882	4.743332	7.631655
5.075821	7.629379	5.083679	5.081299	5.107529
4,578004	4.420258	7.771194	4.308258	4,452927
6.052606	5.151169	5.067703	4,697021	5,10231
6.816971	5,132599	7.418922	4.749573	5.071335
7.085983	5.576477	5.066803	4.716995	5.093491
5.069892	5.004345	4.984207	Schender .	22/9/05
7.636429	5.507233	5.084488	6.106705	5.086181
5.094803	5,032,384	PURCHUR 1	177807.1	5 AREADO
5.081308	4.954391	3.150421	7.146835	4,603745
4.448807	5.392166	5.186981	5,068148	5,097733
5.252868	4.964417	4.712509	5,068146	5.144806
4.791443	5.343282	5.154251	7.777969	5.121155
5.210312	4.88295	5.066803	5,082428	5.065857
4.748581	4.807373	B.812592	6,087249	6.372375
5.198854	4.182541	5.225449	4.310425	4.637695
4.723145	5.15879	3.037186	4.334	5.152847
6.159851	4.716003	5,182802	4.941065	5.506185
5.06636	5.140488	4,721527	5.12344	5.13/634
5,89093	5.636246	6.079669	6.628387	107121.0
5.065803	5.0348-48	4.035221 E ATAET	9000/0/C	1411 IO-0
0.000186.0	50270G-0	0.01401	5 DBFact A	E DEDEDI
5.084190	5.419962	5.074081	6.295853	5,526749
5.082031	5.017151	7.26297	5,065414	
4.237685	7.391281	6.876863	5.065414	
4.929489	5.066803	7,2621	5.121826	
5,441711	7.395477	5.069092	5.123489	
5.454269	5.066757	7.381577	6.994186	

1030.896782	28046.7902 maan real liguid velocity, u (m(a)	431.98002322 distance, L (m) 1.8	Statesheets	= 9.7190163 (herr.e) 1.23E-05	= 4e5.3473e2 U ₄₄₆ (fbs) 2.33E-01	at) = 5.402167298[D ₂ (ft) = 0V ₂ /A ₂	7) = 540.2167288 (5, (1g/m. s ²) 0.031730636	4.9212 Leasens (1)	0.046610522 [Headed (Hith.r.s)	Umano (1.555-03)	(Awar (11217) 652 2503	nominal packing size (ring diameter), d (1)	(0 (t0/a ³) 32.17	g (m/e ²) 9.80665	0.631503105	5.96E-03	3. 8.446-03	1. D. 002971898
= (ulu) =	EI O	,		ہ (المالائ ²) =	s (۱۷۱۳) =	- (mbar) -	می (N/m ²) =		н						. (Exp) =	(m) ma	oum (m ³).	(m)

T_a (mh

	8		2F198289010-		-0.224489645	-0.458046821	-1.040709385	-1.388647237	1070H-005"1-	-2.830847217	-2.711820973	-2.762691652	-2.673427571	-2.578343068	TUDE TUDE 2-	I ICHCOLAR C.	-1.961907042	-1.702256351	-1.518394248	-1.31271069	-1.135825408	-0.976700443 0 smoss/207	7 HEHON770'D	-0.5692955	-0.466878585	-0.37671991	-0.303486814	-0.243654068 -0.106662646	-0.142622961	-0.108600276	-0.079296712	-0.056207232	-0.03821676 0.076648606	-0.05474000	-0.009451962	-0.004847703	-0.002155314	-0.000722541	1 20750FL05	1.512436-05	0.000230751	0.000919992	0.002257698	0.007838775	0.011954835	0.017586693	0.024487109	0.032744649 0.042335636	0.054309338	0.068117335	0.0820671	0.097117583	0.129847552	0.150880362	0.173531558	0.197739574 o 220420475	0.250487702	0.278842577	0.306333798
	مع 1		10///2/20000	1708 54044	1626.872919	1547.203093	1469.534868	1393.865842	113041-10201	1246.52//191	1111.18974	1045.520715	981.8518894	920,1826639	900,51,00094	747 175587A	6193.5065619	641.8376364	592,1685109	544.4994854	498.8304538	455.1814344	NCGREEGE CTR	306.1543579	300.4853324	266.8163069	235.1472814	205.4782558	152.1402048	128.4711783	108.8021538	87.13312833	68.48410282 59.70507730	53./800//32 An 17806181	28.45702831	18.7880008	11.1189753	5.448848791 • Tenchanan	Cathagen 1	0.442873277	2.773847772	7.104822267	13.43579676	30.00774575	44.42872025	58.75869474	75.09086924	93,42164373 113,7526182	136.0835927	160.4145672	186.7455417	215.0765162	277.7384852	312.0694387	348.4004142	386.7313687 477 Amonto 2	72022007/74	513.7243122	560.0552867
	F(0)	0	0.000164284		0.001842842	0.003484544	0.007445083	0.013194752	0.021892968	0.033538732	0.063320065	0.060833325	0.069587203	0.119489901	0,136962309		0.204702834	0.227268325	0.245963143	0.272224079	0.294191361	0.315863187		0.87734041	0.396853399	0.415378677	0.433510246	0.451348961	0.4900300111	0.500737137	0.516217013	0.53110718	0.545702492	0.558708094	0.598854734	0.599660617	0.612192245	0.624428719	D. BUTDENGO	0.658326729	0.66989828	0.680156273	0.690033908		0,71,7602831	0.726006192	0.734114639	0.74192835	0.756818517	0.764042459	0.770971547	0.777805778	0.78999968	0,725566776	0.801636444	0.607238685	0.512033434	0.623160843	0.828173375
	(t-im) ³⁺ E*At	0	-14.99650129	-2/./80410/1	-38.04342391 48.37008343	98.69432759	-224.2393314	-298.2087249	-417.2421903	-513.6100505 568 5243334	-584.3113132	-593.0947875	576.0374796	-555.5498337	-517.2846843		401.1809601	-366.7613816	-327.1650237	-282.8488462	-244.733769	-210,4474874	177 2618538	-122.8848325	-100.596853	-81.60183493	-85.38727482	-52.54269676	-40.150220151 -40.70410484	-23,36586.636	-17.08588577	-12.11064696	-8.448947756	-5.528058852	-3.404963096	-1.044523681	-0.464616102	-0.155684375	147135920.0- 0 000010-00000	-0.000450407	0.049718297	0.198228621	0.488461108	0.873156213	2.57588162	3.785056224	5.276182813	7.055455594	11.70191226	14.67709039	17.68281505	20.92570924	24.3712812	32,60985527	37.39045791	42.60650528	48.14119377	60.08158847	66.43569621
	(htm)**C*A1	0	11736.74997	22402.63712	32035.18146 40674 87297	B6086.21414	196367.2072	271803,8393	388458.061	493168.4776 cenner 0129	000001.01.00 084486.5111	622084.8254	623475.8228	621123.2982	598056.9787	2/4030.0982	5491/4.056/ 546665 3688	491005.7153	4555969,7534	411097.1115	371628.6926	334643.6543	265647.0723	209001/2014	196817.8927	169428.3548	144815.578	124314.3448	102240,3074	70016.78274	56071,13076	44002.2298	34384.7308	26562.86173	19653.51409	6172,780348	47/25.584501	2281.729183	721.274556	43.04002481 1 88 n7724787	1012,454437	2522.211905	4500.981915	7074.200868	13106 42247	16746.513	20649.93404	24756.73559 20006 04785	28000.81700 34020 80R18	38301.56897	43885.2023	48392.21615	52762.6105 FR036 38537	52413.B8794	57938.06077	73478.96385	79006.53719	89901.75463	95209.39873
	C*M	0	8.25	12.5	18.75 25	3 8	135	195	582	395	595	595	635	675	595	715	735		1	755	745	735	715	040	622 622	635	615	8	575	976 1975		505	495	475	486 14		425	415	8 1	390	365	365	335	8	100	285	275	5482		245	522	225	215		361	<u>8</u>	32	no 112	170
	rc*åt	0	6.25	8	88.88	275	610	1365	2380	3665	4/20 5885	7140	9328	9450	10425	11440	12495	14636		15855	16390	16905	17160	17375	17685	17780	17835	18150	17825	17985	17850	17875	17820	17575	17670	1//45	17425	17430	17415	17160	16790	16685	16080	15925	15/50 4 EA4E	14820	14575	14310	4224	13965	13630	13275	12500	12400	12285	12160	12025	11000	11560
0.15	E (1/mtn)	0	0.000184284	0.000368568	0.000652853	1011811010	0.00398054	0.005749668	0.006698216	0.011646764	209600410.0	0.01754388	0.018723279	0.015902698	0.020482407	0.021082117	0.021871827	1000051210	A MOVINGER	0.022261536	0.021966681	0.021671627	0.021082117	0,020482407	Disponentic).U	0.018723279	0.018133569	0.017838714	0.01695415	0.015354441	D.D15470476	0.014890167	0.014595312	0.014005602	0.013710747	0.013415853	0.012631328	0.012236474	0.011941619	0.011468337	0.0102622	0.010467345	0.009877/635	0.00856276	0.008287926	0.008403361	0.006108507	0.007813652	0.007518797 n.octo7e37	C ROTZZZADAC	0.006528067	0.000634233	0.006339378	0.0004492/3	0.005749068	0.005802241	0.005454814	0.005159959	0.005012531
	Ansa		3.125	9.375	15.625	21.873	7 88	165	245	345	435	565	815	959	635	105	8		787.6	762.5	750	740	22	705		3	929	610	280	600 EEN	236	515	500	2 5	470	450 Afr		420	410	397.5	e 700	360	345	330	8	~	380	270	<u>8</u>	5 767	240	230	82	210	187.5	182.5	187.5	182.5	172.5
	ŝ	0	6.25	12.5	18.75	83 H	8 <u>5</u>	, 26	58	385	475 535	38	33	675	665	715	735	ę i	8 6	2 12	745	736	715	88	675 855		815	505	575	200	8 3	305	485	475	465	88 f	3	415	ŝ	8	0/0 385	355	335	325	315	8 F	275	592	52	8 ¥	28	225	216	83 F	93 E	8	185	175	170
8	C (mS)	2	11.25	17.5	23.75	8 8	19 19	500	300	84	480	£ 8	048	880	700	720	740	8	2	120	750	740	720	200	88	1	8	610	680	200	700	10	82	480	ę	89		429	410	385	996	8	340	330	320	89	38	270	8	8	240	280	222	210	8 8	ŝ	8	185	175
0 = -	t (mila)	0	-	2	۳ ۲	4 1			æ	6 5	5 3	- 2	5	4	5		4	ŧ	2	8 6	: 8	ន	24	ង	59	- 	5	8	at	8	8 2	X #	8	37	8	8 S	4	4	43	4	\$	 	84	49	3	58	ះន	2	\$\$ 	8 1	5 1 3	22	8	ធ	3 8	3 25	58	88	: 8

2.804606291	2.825821636	2.861662961	2.675917971	2,887579065	2.896556742	2.908014054	2.906268087	2.603261511	2.887724517	2.874710792	2.906196739	2.964126227	3.001836373	3.049297009 3.0449297009	3.143346557	3.189872671	3.238023645	3.281766851	CI 800/70°C	3.416216059	3.452081845	3.503139484	3.545///3462	3.628953623	3.669476918	3.709230975	3.748201738 a TRANSAG	3.70632000	3.859908319	3.895281497	3.929859712	3.5052950505	4.026400003	4.058375324	4.085143899	4.11200010001	4.163769924	4.167270833	4.20834249G 4 ??xxx34667	4.246013824	4.268620139	4.202410498 4.70000000	4,309151219	4.318804286	4.326846805	4.335928696	4.344309825	4.345506437	4.34463818	4.341652711	4.329118303	4.319462217	4.307474622	4.276265194	4.256972272	4.235105663	4.210628592
9638.547369	9734.878374	10133.54032	10335.8713	10540.20227	10748.53325	11165,1852	11377.52617	11591.85714 11808.18812	12026.51909	12246.85007	12469.15104	12019, 84209	13148.17397	13378.50494	130(0,0000)	14081,48785	14319,82884	14560,15581	15046.82176	15293.15274	15541.48371	15791.81469	18044.14568 18064.47663	16664.80761	10813,13858	17073,46956	17335,80053	17600.13151 17868 46748	18134.79346	18405.12443	19677.4554	18(69.7/8636	19506.44833	19786.7793	20069,11028	20365,44125 209630,777233	20928.1032	21218.43418	21510.70515 24805 00612	22101.4271	22369.75807	22700.06905	23306.751	23613,08197	23921.41295	24231.74392 24544 07480	24868.40587	25174.73884	25493.06782	258813.338879	26460,06074	26786.39172	27114,72269	27777.38464	28(11.7156)	28448.04859	28788.37756
0.970573493	0.97120743	0.977820220	0.973020787	0.973595754	0.874155978	0.975232158	0.975748194	0.976249447 0.976736958	0.977207725	0.87766475	0.978107052 0.078544800	0.978378328	0.979407342	0.979831933	U.Statizaziur	0.981079160	0.981486066	0.961888545	D SACZZRACKAR	0.983069438	0.963454224	0.983834586	0.984210526	0.984949136	0.985311809	0.985870057	0.586023883	0.966373286	0.967056624	0,087394958	0.987772667	0.968053956	0.988695268	0.885005258	0.968318885	0.96962406	0.880221141	0.990513047	0.990800531	0.991362229	0.991636444	0.991906236	0.980/17/10/00	0.992669076	0.992841176	0.903198854	0.003670842	0.993906352	0.994135338	0.994360902	0.994798762	0.5955011057	0.99521893	0.995422379 0.995621405	0.995815011	0.996006192	0.99619195
604.3022659	605.6950358	613.00195422	619.6876347	622.1802311	624.1146248	626.4408443 626.1525645	626.2071066	826.5864374 824 2624 2624	622.2115648	619.4075266	615.8236075 ere 104 7723	636.51 89933	646.798962	657.0252282	557.191054 877 200476	687,314754	697.2588021	707.1149881	718.8781737 728 6961143	736.0844693	745.516752	754,8244294	763.9998223	781.8225482	790,6540121	799.2214539	807.5166736	B15.8313055	831.6854107	839.3076214	846.7150188	853.8987663	867.6594338	874,D181493	880.2158068	886.1450386 PD4 Troot	091.1582244 897.1582244	902.2219128	906.9776442	015.5266373	919.2975842	922, 7214445	ACCUTATION ACCUTATION	830.6001473	962.726972	934.2529348 045 2529348	936.0587544	B36.3165856	936.1295043	935.486231B	932,785471 932,785471	99569402,0055	928,121,9563	925.0248414 c24 4046398	500 140 175 2408285	912.528777	907.254757
209848.0428	209299.885	208597.3963	206717.4259	205533.9443	204184.1317	202064.9681	199106.708	197061.5715 404895 104	182424,3055	189826.175	187037.7156	180921.692	191305.9312	192850.4711	183854.4118 anonao ocoa	198436.8652	197813.636	198748.1514	199633.6266 200426 0706	201669.6161	202816.3624	203714,4094	204562.8572	00000000000000000000000000000000000000	206801.6046	207442.6551	208029.6064	208561.5584	208456.8644	209818.4185	210121.3733	210364,8288	2310547.865 210565.6419	210729.1996	210725.6579	210658,117	210525.0767 210327.4372	210062.4983	209729.9502	208658.4861	208317.7501	207706.8148	2081.120102	205433.8131	204528.0807	203548.6489	201353 0875	200139.1579	198845.923	197472.5009	196017.9733	192862,0204	191158.795	189370.8703 187.487 2467	15/48/.3463 16/6637 3234	183489.9005	161354.1786
a	21.5	3, 13	0 R	19.5	19	18.5	17.5	17	16.0	15.5	15 1. 01	14.85	14,65	14.4	14.25	1.4.1	13.8	13.65	13.5	13.2	13.05	12.9	12.75	12.6	12.3	12.15	12	11.85	11.7	4.14	11.25	111	10.55	10.65	10.5	10.35	10.2	6.6	9.75	976 576	9.3	9,15		8.7	8.55	8.4	67.9	7.95	7.8	7.065	7.15 7.35	72	7.05	6.9	6.75 6.8	6.45	6.3
3124	3074.5	3024	2020	2866.5	2812	2758.5	2842.5	2584 2584	2484	2402.5	2340	2001.45 7077 F	2313.45	2304	2284.25	2073.65	2263.2	2252.25	2241	22/16	2205.45	2188	21 80.25	2167.2	20212	2128.25	2112	2097.45	2082.6	2052	2038.25	2020.2	2003.85	1970.25	1953	1935.45	1817.6	1861	1882.25	1045.2	1804.2	1784.25	1764	17226	1701.45	1680	1658.25	10001	1591.2	1568.25	1545 1524 JR	1497.6	1473.45	1440	1424.25	1373.85	1348.2
0.000648681	0.000633928	0,000619195	0.000804452	0.000574967	0.000568224	0.000545481	0.0006153996	0.000501253	0.00049551768	0.000457025	0.000442282	0.000437859	0.000429014	0.000424591	0.000420168	0.000415745	0,0004069	0.000402477	0.0003B8054	0.0003930551	0.000384785	0.000380363	0.00037584	0.000371517	n monace/use	0.000358249	0.000353626	0.000348403	D.0003449B	0.000396134	0.000331712	0.000327289	0.000323866	D 00031402	0.000308598	0.000306175	0.000300752	0.000291906	0.000287463	0.000283061	0.000274215	0.000268792	0.000266369	0.000200946	0.000252101	0.000247678	0.000243255	0.00027441	0.000228987	0.000225564	0.000221141	0.000212256	0.000207873	0.00020345	0.000199027	0.000130161	0.000185759
225	21.75	21.25	52.02 52.02	20.25 10.75	19.25	18.75	18.25	17.25	16.75 16.25	15.75	16.25	14.825	14.625	14.475	14.325	14.175	13.875	13.725	13,575	13.425	13.125	12.975	12.825	12.875	12.505	12.225	12.075	11.925	11.775	11 475	11.325	11.175	11.025	C/8/01	10.575	10.425	10.275	9.975	9.825	9.875 0.575	3426	5,225	3.075	8.825 9 776	8.82E	B.475	8.325	6.175 a ME	7,875	7.725	7.575	7.275	7.125	6.975	6.825	6.525	6.375
22	21.5	77	202 57	8	ţ.	18.5	18 17.5	17	16.5	5 <u>1</u> 1	15	14,85	14.55	14.4	14,255	14.1	13.8	13,85	3.61	13.35	1975	129	12.75	12.6	12.45	12.15	12	11.85	11.7	90°11	1	11.1	10.95	10.8 10.85	10.5	10.35	10.2	670L	9.75	8-8- 	6 G	8.15	05	8.85 1		8.4	8.35	81 7 m	87.2 1.8	7,655	7,5	138	1.05	6.9	6.75 	6.6 6.45	6.3
27	265	83	26.5	5 3X	3	23.5	255	ន	37.8 73	20.5	8	19.85	19.7	19.4	19.25	19.1	16,90	18.66	18.5	18.36	18.2	17.9	17.75	17.5	11.45	17.15	17	15.85	16.7	16.05	16.25	16.1	15.85	15.8 42.00	16.5	15.35	16.2	14.B	14.75	14.6	14.45	14.15	4	13.85	13.55	13.4	13.25	13.1	12,80	12.65	12.6	12.35	12.05	11.B	11.75	11.65 11.45	11.3
	1 2	144	145	3 2	148	149	150 151	ä	163	t ŝ	166	157	158 158	160 161	161	182	183	1 2	166	<u>79</u>	168 89 1	2 E	171	172	173	1/4	24	t.	178	6/1	ž ž	182	1 63	2 3	196 1981	187	196	58 F	ŧ	192	26 12 12	195	196	197	89	300	201	502	507	502	206	28 8	209	210	12	212	214

- 64	_	_								_		_	-	_		-										_	_	-		_		_																	_	-
	5.082291	7.780633	5.047119	5.065643	7.502777	4,7106663	5.114777	4.492554	6.420578	5.082897	5.071121	5.162373	5.068619	4.114243	6.063354																																			
	3.776785	5.063843	7.443069	4.952026	5.310822	4.440782	5.52855	5.040648	5.100601	7.354156	5.069275	6.522217	4.729568	4,684412	7.380413	4,778693	5.078476	5.076904	5.088488	7.794403	5.100693	7.486237	5.065643	5.830658	4.696457	5.118623	4.529178	5.160376	4.705139	5.129578	7.354645	5.089427	7.770523	5.063843	5,362488	4,492752	5,623254	5.377747	5.066363	5.068878	8.79776	5.067474	6.206438	5.0625	7,577545	6,743068	4.727588	5.077896	4/290009	5.321503
	7.342896	6.544952	5.0634	5.065796	5,140274	4.700682	4.865938	7.362137	7.274033	5.096329	5.746155	5.080536	5.516878	5.064851	5.391861	4.84936	5.708954	5.066803	5,499191	4.2366801	5,060589	5.665436	5.068298	4,718063	7,597382	4.828888	5.263815	4.760834	5.077087	5.312958	4.899292	5.084	5.054352	7.158836	5.066569	7.45311	5.101181	5.5556827	5.064779	4.069138	7.409164	5,085353	5.602234	5.056679	5.117386	4,23465	6.154556	4.663685	5,063843	4.755142
	5.955017	5.124023	4,115555	5.06842	5.677078	5,530396	4.636627	5.111954	7.420074	5.096551	5.128738	6.58374	5.08842	4,295837	5.292496	4,392136	5.085648	5.084789	5.333832	5.096237	5.039474	5.068589	5,887269	5.097214	5.738388	5.098404	5,52066	5.0365Z2	4.870265	7.767509	5.077/393	7.602148	5.063843	7.374094	4,857193	4,780889	7.524506	4.866257	5.072484	7.592224	5.069519	7,156647	5.0634	6.096802	5.062943	5,067586	6.63562	5.066574	B.059677	4.274582
	4.568787	6.727234	7.178773	5.067032	5.820114	5.068879	5.630829	5.054672	5.568115	5.05101	4.909103	7.541	5.54866	5.031647	5.432922	5.030289	5.315289	4.862259	4,792923	5.321472	4,028641	4.702988	5.070683	6.230408	5.069321	6.864197	5.06752	7.317261	5.066254	5.069809	6.638321	5.0674ZB	6.358248	4.294982	5.290253	7.798284	5.103485	5.068878	6.505127	4.712418	5,07683	4,277145	6.577103	6.225037	4,71875	5.147141	5.D18021	5.137885	4.502518	5.144272
ressure Drop (Experimental)	5.1482	5.139632	6.08812	5.12207	6.585052	5.068468	7.016888	5.067078	5.647809	5.104797	5.089874	5.238227	4.360626	5.07683	4,324962	5,076745	6.58287	5.0634	6.109497	5.063446	5.81443B	4.701263	5.122408	4,653976	5.10795	4.605255	4.517487	7.777435	5.077438	7.617584	5.074127	7.601791	5.07164	7.168274	5,063889	5.063446	4.683792	4.52977	5.084503	5.104858	5.008649	4,511536	5.088928	4.418671	5.082153	4.352005	5.078033	4.71833	5.162872	4.629575

(min) =	44.334512/5		
	1281.743917.	35,94083813	
	22384.82665	near real liquid velocity, u (m/s) 0.0	0.000473394
	455.0981181	Helence, L (m)	1.8
		0.3	0.365448999
ہ (اtb:/ft²) ہے	11.66870383	ees (1b/11.s)	1.23E-05
ە (الانس ²) =	569.232356	Jans (1765)	3.11E-01
Peer (mber) =	5.440068062	ν ^α (π) = 5V ₂ /Λ ₂	B.75E-03
a (Nhm ²) =	544.0066062	344 (Ku/m.s ²) 0.0	0.042307515
			4.9212
	•		
U	0.046610522	these (faction)	B.66E-04
		(t/té)	1.55E-03
		(IbH)	62.2608
		iominal packing alze (ring diemeter), d (ft)	0.028246
) (10/6 ²)	32.17
		l (mte ²)	3,80665
, (Exp) =	0.614550001		
аны (m ³)	5.80E-03		
column (m ³)	9,44E-03		
	PERFORMENT CONTRACTOR OF		

	5°	0	-0.023115914		-0.00E242891	-0.356145427	-0.747948573	-1.181667747	-1.857045414	-2.074022254 2.448600344	-2.696227367	-2.806780372	-2.828828277	-2.824323672	-2.753622518	-2.630614269	-2,601589834	-2.3395/11/26/	000002787175-	0HC/7/0CS/1-	-1.560855295	7905816221-	-1.209860243	-1.056053167	-0.916842879	-0.791333468	-U.D. SOCKUPAGE	-0.466878676	-0.364829496	-0.313961603	-0.253228598	-0,201633975	-0.15823133	-0.122124356 -0.002466846	PHODOHZED.D-	-0.04636588	-0.034480501	-0.023160743	-0.01517213 -0.moeanoan	-0 INECRAPHICS	-0.00264554	-0.001084815	-0.000301581	(3.77785E-05	A. 22050E-76	0.000242656	0.000800127	0.001840935	0.003478197	0.008868307	0.012724145	0.017377416	0.022816692	0.0280000044	0,04563844	0.055595824	0.055646945	0.076351125	0.104328848	0.118442548
	°0	I0///I0#	2306.024253		2026.097765	1837,855803	1850.81344	1785.771277	1682.728114	1601.886952	1445.602626	1370.560484	1297.518301	1226.476138	1157.433976	1090,391813	1025.34965	962.3074576 204 D0000	070007"INS	725 10/0004	730.1388369	677.0966742	626.0645115	677.0123488	529.9701982	484.9280235	441.6856666	361 8015254	324,7583727	288.7172101	256.0750474	225.6328847	196.590722	168.5485583 1 AA 6093068	CONTRACTOR	109.4220713	81.37990858	64.3377459	49.28658321 ne neu Annes	DOLDONALUUS	16.16808518	9.126932476	4.084760792	1.042607407	0.000000000	3.918119054	6.87385637	15.83176366	24.789631 36.74746333	48 70530563	63,66314285	80.62098026	99.57681756	120.5366549	168.4523285	195.4101688	224.3680042	255.3258415 one opportune	323.2415161	360.1993534
	F (0)	9	5.8823E-05 0.000470440		0.00035053	0.00176(514	0.00431865	0.008580277	0.015114925	0.023922493	0. DARTERIOA	DETAILADE	0.079893172	0.097792425	0.118628139	0.138716197	0.157456601	0.176765236		0.221/22442	0.264852118	0.266160752	0.307185271	0.327926875	0.348381984	0.368554138	0.388442187 200355004 0	D. 42962295608	D.444128761	0.461459784	0.478222576	0.494417138	0.51004347	0.525101571	7441609020 V 00042009V	0.58868494	0.579651675	0.591968825	0.60380146	0.001040010	0.6378865275	0.648407535	0.658351564	0.668011478	0.6/7367277	0.6947183	0.702867638	0.710912852	0.71858387	CPU620022 0	0.739692604	0.746427252	0.752677785	0.758644203	0.770150865	0.77569111	0.781089297	0.786317016	0.738261045	0.800977356
	(1-1m) ³⁻ E-21	0	-6.282455507		armacraat-	-96.9474661	-203.6014319	-316.2185064	-451.0695404	-564.5781165	-200.030/UJ	-764.042507	-770.1806152	-768.8180237	-749.5722403	-716.0877638	-680.9656314	-636.1014898	GEJ / 120 B/G-	-526.3859985	ACA PRESORS	375 4300018	3030000.025-	-287.4715519	-249.5768818	-215,4113706	-184.7380583	-125.04/000	-104.7556467	-85,45447485	-68.93215244	-54.88741B	-43.07264759	-33.24385484	-25.17069050	-13,4380,4131	-9.386045648	-5.304858524	-4.130053295 or 0.0003295	DCMCC/242/2-	275042500545 L-	-0.289666892	-0.082094445	-0.010283815	-8.78422E-08	ENTERPORTED U	0.21780522	0.501126727	0.948610814	1.010000010.1 1 A4 49 40 801	3.483679557	4.730361153	6.211085108	7.89673109 40.041544	12.42338314	15.13385946	18.1421745	21.32820629	24./5094503	32.24161838
	(I-bm) ²⁻ C*A1	0	2306.024253	4421.964181	6363.819/84 10/134 ABB833	34757 11205	63286.60479	132432.8458	193513.8482	248261.4775	200215./335	2/10/01/905	376280.3073	366339.5836	387740.3819	361637.1346	374252.6224	360865.3079	339777.0275	318202.5785	C0102 C0100	SEADLE OF OR	231640.1693	210609.5073	190789.267	172149,4483	154960.0513	1.362260.05/4	102000 2024	86363.74907	75719,13897	84305.37214	54D62,44855	44930.36822	30549.13114	28/500./3/32	18310.47943	13632.61537	10352.07247	7431-361Z08	5042,201509	1688.482508	714.8347135	177.2432082	0.07325763	040000001441	1286.723674	2216.451118	3346.600185		7639.577154	9271.41273	10953.58993	12656.34876	16945.23295	19052.49127	21314.9804	23489.97742	25657.24741	20896.54633
	C⁺∆t	0			ю ч	ρĘ	1 4	75	115	155	195	8	8	315	335	350	385	375	377	379	200 270	376	370	365	360	355	38		350 345	305	8	285	275	18	282 ·		3	215	20	52	500	8 19	175	021	<u>8</u>	8 4	<u>3</u> 3	140	135	130	<u> </u>	115	110	105 205		27.5	8	8	8. 5	88
	ro-∆t	0	÷	4	a (8 Ę	210	53	025	1395	1950	0007	3770	4410	5025	5600	6205	6750	7183	7580	026/		8880	<u>8125</u>	0962	3685	0088	99960	3/30 0766	0946	9735	0696	9625	9540	353	9210 5455	0008	8815	9620	8815	8800	8710 8510	8228	8160	8085	7750	0452	7420	0622	7160		04000	6490	6300	0003	6142.5	0809	5680	5874	5644
0.15	E (1/mm)	0	5.6823E-05	0.000113846	0.000170469	0.000264115	0.002657036	0.004261727	0.006534648	0.008807569	0,01108049	0.013353411	0.0166728577	0.017636253	0.019035713	0.019888059	0.020740404	D.021308634	0.02142228	0.021535928	0.021592749	0.0001000	0.021024519	0.020740404	0.020456289	0.020172174	D.019886059	0.019318628	0.018467483	0.01/085200	0.016762792	0.016194562	0.015626332	0.015056102	0.014488571	0.013021641	0.012265181	0.01221695	0.011932835	0.01164872	0.011364605	0.011106048	0.009944029	0.009653914	0.0083757589	0.008807569	0.008238538	0.007965223	0.007871108	0.007386983	0.00/10/8/6	0,006534648	0.006250533	0.005968418	0.00582446	0.005540245	0.005396187	0.005227718	0.005057249 0.005057249	0.004716311
	ATIA		0.5	1.5	25	4	325		8	135	175 25	215	90. 91.2	302.5	325	342.5	357.5	370	376	378	379.5	180	3/7	367.5	362.5	357.5	352.5	345	332.5	310	000	28	280	220	580	280	0#7	82	212.5	207.5	202.5	187.5	8	172.5	167.5	8	152.5	142.5	137.5	132.5	5/21 5/1	117.5	112.5	107.5	103,750 101 75	57101	96.25 9	33.5	90.5 2 5	676 872
	3	0	-	2	6 2		2	2 K	115	155	3 8	52	88 B	315	335	350	385	375	377	379	Se (8/9	9/6	385	360	366	350	340	325	908	8	8	276	285	¥3	245	38	12	210	205	200	96 28	175	0/1	165	ŧŝ i	150	9 9	135	8	1 2	120	110	105	102.5	878	25	53	68	88
37.5	C (mS)	5	8	7	Ð	₽ I	- 	3 6	12	160	82	240	270	388	35	365	370	980	382	384	385		320	100	18	99	365	345	8	8	300	8	280	012	2 8	52	540	N 22	215	210	205	8	ŝ	175	170	8	8 Ş	3 3	140	135	8	8 8	1	170	107.5	8 <u>5</u>	185	97	a a	5 8
9=	t (min)	0		2		-	10 Q	• •	. 10	0	10	F	5 G	<u>5</u> 4	: 12	뮏	17	18	1B	ន	2	ន	នារ	1 4	- -	27	38	29	8		3 8	1	5	8	37	R	g (7 7	4	\$	4	45	14	48	49	8	ភេះ	ន	ភ	5	81	57 192	1.85	8	5 19	21 2	3 2	ŝŝ	8 1	68

PLY BELOCK E	3.075423621	3.129932477	3.183696369	3.230853367	3.288728296	3.339962723	3.438962081	3.4867999887	3.533392941	3.622536762	3.6897777969	3.756878962	3.823600033	3.958930821	4.023053766	4.088822644	4,15418219	4.263548472	4.34744092	4.410745463	4,473413077	4,586637677	4.85708286	4.716707511	4.775428851 4.870045440	4.869976722	4.945693638	5.000299206	5.053736993	5.150874218	5.2064588255	5.254841288	5.301361309	5.346657847	5.432132528	5.472384821 6.510865034	5,547498054	6.582230636	5.81486037	5.674325313	5.700764151	5.724958402 # 348990000	5.766332135	5.783368235	5.797876964 5.800787417	5.819011399	5.82548967	5.820141803	5.827682601 5.827682601	5.822378858	5.813956168 c annany 448	5.78739266	5.769089626	5.747331008	5.72203416818 5.653116818	5.660496218	5.824084873
3645 0703+5	8832.037152	9020.994889	9211.952827	9404,310664	9599.868501	9796.826339 2007 To 4470	10196.74201	10389.68985	10804.85789	11020.57336	11231.5312	11444,48904	11659.44697	12065.36255	12316.32039	12539-27822	12764,23606	13220,15174	13451.10957	13684.06741	13918.02520	14394,94092	14635.89876	14878.8588	15123.81443	12019-7201	15870.68795	16123.64578	16378.80362	10000-00140	17155,47713	17418,43497	17983.39281	17960.35064 18219.30948	18490.26632	16763.22416 10055 15100	19015,13903	19584.08767	19875.05551 20120 20201	20442.97118	20629.92702	21018.88686	21602.60253	21897.78037	22184.7182	22704,63308	220097.50172	23402,54955	24018,46523	24329.42307	24842.3809	26274,29658	25680.25441	25914.21225	28682.12793	208889.08575	27218.0436
0.04064340	0.947851789	0.948846191	0.948626388	0.95056238	0.951544186	0.952481746	0.954314286	0.965209251	0.956090006	0.957806904	0.968052726	0.969488025	0.9603148	0.961942779	0.962743904	0.963536605	0.964320823	0.965863568	0.968822155	0.967372219	0.96811376	0.96957127	0.87028724	0.970994687	0.97189361	0.973065868	0.973739239	0.974404069	0.975060374	7c100/c120 0.876347416	0.976876152	0.977600364	0.978214062	0.978819218	0.960000978	0.990583572	0.881717192	0.982271218	0.982616717	0.583882149	0.98440208	0.684913487	0.985910731	0.980396568	0.960873881	0.987802998	0.988254581	0.9886979	0.96656769	0.960076418	0.990385544	0.991178225	0.001561781	0.591536813	0.98230532	0.993010768	0.983351706
orners and	B/00241220	852.0087572	600.0445383	881.0596961	866.2350661	909.151807	926.1306769	949.1527565	961.8359981	9/4.7555245 996.1021177	1004.406895	1022.67183	1040.888625	1/1440.6201	109512811	1113.031263	1130.625713	1148.038193	1163.430557	1200.062886	1217,721834	1251,255189	1267.721085	1263,949776	1299,834497	1310.0014/10	1346.282891	1381.147163	1375.693359	1.403.768929	1417,266521	1430.38242	1443.100224	1456.403315 1487 274873	1478.697866	1489.655072	1510.12804/ 1510.102154	1519.556547	1528, 474177	1544 655976	1561.822927	1558.408921	1569.571394	1574,309117	1578,258317	1584,011382	1565.774853	1586.769012	1586.873149 1586.366353	1584.927505	1582.635262	1575.404401	1570,422074	1564,499038	1567,612946 1540 74125	1540,861194	1530.94962
	120011-42/7	157267,4123	156906.1863	156663.4813	160797.7974	161847.6348	162431.4923 163147.8722	163795.2726	184372.1942	164877.1368 165309 6004	100768.2383	105233.9668	109044.952	171020.2279	173680.1174	174922.9312	176148.4578	178472.0484	179672.3128	140629.6596	181643.2796	162612-1516 182535-4968	184412.3244	185241.7646	188022.9175	100/34.0031 187435 7613	166067,6522	189848.6557	189172.8718	189845.4005 190063 3421	190425.7982	190731.8629	190960.6423	191171.2344 +04202.7304	191374,2564	191384.8884	19/1353./29 19/1719 6843	191042-4523	190800.5329	1904433.2261	160678.6505	189165.9817	187944.382	187225.8611	180435.0329	184838.5344	183625.8541	182539.8865	18/13/7.7315 18/0138 4860	178621.2555	177425.1425	1734302 6484	172754,4873	171033.8009	180229.7471	166367.0774	163308.2616
-	0 17 25	17.5	17.25	17	16.75	16.5	6 9 1	15.75	15.5	15.25	14.85	14.7	14.55	14.4	14.1	13.95	13.8	13.65 13.6	13,35	13.2	13.05	12.9	126	12.45	12.3	21.21 51	1.85	11.7	11.56	11.4	4 I I	10,95	10.8	10.65 10.5	10.35	10.2	10.05 9.4	37.8	3.6	9.45 0.3	9.15	а	0.00 8.7	8.55	84	6	7,85	7.8	7.65	7.35	72	50'J	6.75	6.6	6.45 8.45	8.15 8.15	8
-	2000. 2011. 201. 20	220	2501.25	2482	2482.25	2442	2421.25	2378.25	2356	2333.25	2301.75	2266.2	2284.35	2275.2	2256	2245.35	2236.5	22435	2202.75	2191.2	2178.35	216/2 245475	2142	2128.95	2115.6	2011202 Bank	2073.75	2069.2	2044.35	2029.2	1998	1981.95	1965.6	1948.95 1970	1914,75	1897.2	1878.35	1842.75	1824	1804.95 1745.6	1765.96	1746	1705.2	1684.35	1963.2	c/.1491	1597.86	1575.6	1552.95 1530	1506.75	1483.2	1458.35	1410.75	1386	1350.95	1305.65	1284
	0.001022614	C. DONGSALADO	0.000980197	0.000865991	0.000851785	0.000\$3758	0.000923374	0.000894963	0.000880757	0.000886651 0.000852345	0.000843822	0.000836298	0.000826775	0.000818252 r crineno726	0.000801205	0.000792681	0.000784158	0.000775634 0.000775634	0.000758587	0.000750064	0.00074154	7102220000	0.00071587	0.000707447	0.000896823	0.0006904	0.000673353	0.000684623	0.000656306	0.000847782	0 ODDRAVS	0.000622212	0.000613689	0.000605165	0.0005586118	0.000679686	0.000571071	0.000554024	0.000545501	0.000536978	0.000619831	0.000611407	0.000402884	0.000485637	0.000477313	0.000460786	0.000451743	0.00044322	0.000434696	0.000417649	0.000409126	0.000400602 n mreevante	0.000363555	0.000375032	0.000306509	0.000349452	0.000340938
-	18.125	17.070	375.71	17.125	16.875	16.625	16.375	15.875	16.025	16.375 16.175	14.825	14.775	14.625	14,475	14.175	14.025	13.875	13.725 13.575	13.425	13.275	13.125	12.875	12.675	12.525	12.375	12.225	11.925	11.775	11.625	11.475	11 175	92011	10.875	10.725	10.425	10.275	10.125	9.825	B.875	0.525 0.376	9.225	9.075	8.925 8.775	8.825	8.475	8.325	8.025	7.875	775	7.425	7.275	7.125	6.825	8.675	6.525	8.225 8.225	6.075
-	13	17.6	17.25	17	18.75	18.5	18.25 18	16.75	15.5	5 3	14,85	14.7	14,55	14.4	141	13,95	13.8	13.65 13.65	13.35	13.2	13.05	12.0	126	12.45	12.3	1215	1.85	11.7	11.55	11.4		10.95	10.8	10.85	50.01 26.01	10.2	10.05	8'E	9.6	9.45	9.15 9.15	8	8.85 A.7	8.56	8.4	6.29 18	812	7.8	7.05	557	7.2	7.05	6.75 6.75	6.6	8.45 2.45	6.5 0.15	2
-	8 1	6 1 2 1 2 1	23	ន	21.75	21.5	3,25	20.75	20.5	20.25	19.85 19.85	19.7	19.55	19.4	19.1	18.95	16.8	18.65 19.6	18.35	18.2	18.05	17.9	17.15	17.45	17.3	17.15	16.85	16.7	16.55	18.4	10.05	15.05	15.8	16.05	15.35	15.2	16.05	14.75	14.6	3 .6	14,15	14	13.85	13,55	13.4	13.25	12.05	12.8	12.65	12.35	12.2	12,05	11.75	11.6	11.45	11.15	=
	142	2	ŧ ž	146	147	148	148	2 F	152	ŝ	ţ	1 8	157	និ ខ្ម		191	162 1	8 j	1 ¥	\$	167		120	1	172	£ ;	1/4	176	177	178	8.4		182	8	48 58	186	187	<u>8</u>	8	5	56 56		201 201	197	196	100 100	20	202	38	505	206	207	8 8	30	215	213	214

Pressure Drop (Expensente)	- 2000 - 2000		- 10000	EMMAN	2001002
5./9138/ F.478333	4.328232 5.157481	6.0/0/08 4.2/05554	a 741272	5,064331	5.100235
E 000077	A TOPENSA		5, 162587	Shring 7	5 RIGEOR
5.473129	5 159164	5.087504	4.685715	7,53537	5.066589
5.064835	5.065643	5.271179	5.140808	5,050812	5.019756
7371307	5.129456	4.780594	4.703568	5.468552	
5.084835	4.646435	4.781754	5.065948	4.987244	
7.167786	6.105687	4.298845	5.030472	5.342789	
4.784481	4,313786	7.802676	8.135834	4.886932	
5.208869	7.765945	5.072495	5.063889	5.086197	
4.720184	7.769734	7.406799	5.795639	4.386168	
6.212448	7.652985	5.063889	4,716903	7.771606	
5.063889	5.073807	6.739138	5.1203	7.381516	
5,11261	7.61058	5,063934	4.657898	7.36840B	
5.092865	5.664789	5,178955	5.114197	4,898849	
7,654556	7.367509	4.599358	4.158158	5.245285	
5.067078	5.064377	4,772278	5.721648	5.063889	
7.781526	7.039261	5.808105	5.557404	5.202118	
5.085368	5,053889	8.509857	5.039076	4.718384	
5,777,184.8	5.067566	5.06842	5.413452	4,712483	
5.065735	5.38337	6.139771	4.977851	5.3816999	
5.064789	5.305283	5.067108	5.100847	5,169706	
5.070465	5.063834	5.829849	4.465393	6,813477	
6.892014	5.242584	5.101698	5.085297	5.097382	
6.343521	4.804825	5.580164	7.531815	7.368896	
5.966756	5.199417	4.646967	7.395142	5.06562	
5.084377	4.713455	7.527786	4.915222	7,50582	
5.748581	5,165359	5.068223	5.312103	5.066177	
5.101944	4.085883	7.537735	4.823578	7,536301	
5.575066	5.042221	5.065277	5.233597	5.065277	
5.055054	8.165314	7.53627	4.767738	5.065231	
5.483913	8.664474	5.0495	5.081619	4,701065	
5.008865	S.066786	5,468552	4.312912	4,639631	
4.498885	6.098175	4,987106	7.312812	4.650528	
4.380184	5.06633	4,903625	8.708572	5.082596	
5.128852	5.855255	5.077988	4.766144	7.195038	
5.93895	5.101944	4.005743	5.210373	5.208976	
5.110123	5,810138	5.078339	4.721619	5.173126	
6.843875	4.648346	7.768951	5,163727	4.035416	
5.098541	4.263184	5.074631	4,293655	5.149948	
3.918488	7.506507	7.606563	4.615658	4.606335	
5.091553	7.763808	5.064377	7,199654	5.073458	
5.085735	5.06287	5.064331	6.069731	5.638382	
7,381165	7.530548	5.063889	5.063889	4.31488	
7,557765	5.084331	5.102846	5.163696	4.695384	
6.913193	7.409027	5,063689	4.885089	5,362015	
5.063889	5.064835	6.918076	5.139191	7.367681	
6.348684	4:92186	5.067566	5.058888	5.231232	
4.733063	4.637036	5.067566	4,205603	4.789291	
5 156693	3.211319	5.065735	6,932963	4.617203	

u, (min) ≖	49.02108134		
o² =	1764,190396	42.002268655	
Pe =	16390.21714	nsan real liquid velocity, u (m/s)	0.000473394
=,=	538.250384	listance, L (m)	1.8
		0	0.396045689
<u>ک</u> P (الم ثار) =	14,53725069	but (bhfl.s)	1.236-05
AP (N/m ²) =	696.0449171	J ₄₄₄ (17/6)	3.88E-01
∆P _{ere} (mber) =	5.500418843	°(t) = 6V,/A	8.75E-03
∆P _{een} (N/m²) =	550.0419843	3 (kg/m.s ²)	0.052884383
		(u)	4.8212
۳°+	0.046610522	Jarwed ()br/fl.a)	8.55E-04
		J _{ense} (10 ¹⁶)	1.55E-03
		(Buff)	62.2508
		nominal packing size (ring diameter), d (fi)	0.026246
) (fits ²)	32.17
		j (m/s ²)	9.60865
H, (Exp) =	0.603954311		
V _{toxic} (m ³)	5.70E-03		
V _{rotern} (II ³)	9,44E-03		