GENERAL PURPOSE MICROWAVE CIRCUIT ANALYSIS USING MATLAB

By

LEENA ARSHAD MOHAMMED AHMED
ELECTRICAL AND ELECTRONICS ENGINEERING FACULTY

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Engineering (Hons.)

(Electrical & Electronics Engineering Faculty)

June 2009

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31751 Tronoh
Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

GENERAL PURPOSE MICROWAYVE CIRCUIT ANALYSIS USING MATLAB

By
Leena Arshad Mohammed Ahmed

A project dissertation submitted to the
Electrical & Electronics Engineering Faculty
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
Bachelor of Engineering (Hons.)
(Electrical & Electronics Engineering)

Approved:

Professor Ellis, Grant Andrew
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

)

Cr.-/ ; L;-—_—_
Leena Arshad Mohammed Ahmed

ABSTRACT

The application of Computer Aided Design (CAD) is very crucial to microwave
circuit design and analysis. The initial design of any arbitrarily microwave circuit
must be simulated and verified prior to its fabrication. This eliminates the time-
consuming and costly changes on the fabricated circuit due to its limited ability to
incorporate any modifications. There are many commercially available CAD
packages that are used in industries and universities for fabrication and academic
purposes. These packages are very sophisticated and reliable. However, a licensed
microwave CAD package is very expensive for universities and colleges to obtain
and use, especially for academic purposes. In this final year project, an attempt to
develop a computer code that acts as a basis for an alternative CAD program for
microwave network design and analysis is incorporated. The CAD program is to be
developed specially to suit the learning requirements and outcomes of Microwave
Engineering courses at universities and colleges. This report gives a general review
on microwave circuits and their representations. In addition, it demonstrates the
method chosen to perform the analysis on an arbitrary connected microwave network:
Scattering Cormection Mairix method. The report also details the procedure followed
to develop the required computer code based on the chosen method. The computer
codes are developed using Mathematics Laboratory (Matlab) software package. A
detailed discussion and verification of the results obtained is also shown in this
report. The results are verified using a sophisticated microwave CAD package called
Advanced Design System (ADS) and compared with the results obtained from
implementing the developed computer codes. Comparison of both results shows an
acceptable accuracy between them and thus proves that the chosen method to analyze

microwave networks is very effective and reliable.

iv

ACKNOWLEDGEMENTS

Praise be to Allah, The Most Gracious and The Most Merciful for His endiess
blessings throughout my life and the success He granted me during my undergraduate
studies and this final year project.

My utmost appreciation and gratitude is towards my supervisor Prof. Grant A. Eliis
for his guidance throughout my final year project. His knowledge, experience and
support were very much helpful in passing so many obstacles that I faced. The trust

he had on me pushed me forward towards achieving my goals.

My appreciation is also extended to my family members for their continuous support
and sincere prayers. Special thanks to my friend Ibrahim Ali for his guidance and
support throughout my project. Last but not least, I thank my friends, Sameha
Abmed, Tihani Nasser, Mojdeh Rastgoo, Tajrul Shaheer, and everyone else who
encouraged and supported me throughout five years of undergraduate studies.

TABLE OF CONTENTS

AB ST RACT L. it e ar e s ea s bert ettt e e et e e rans iv
ACKNOWLEDGMENT L..iiiitiiiiitiiiiiieieaie i ee i catiiatesnnsnsaeaesennass v

LIST OF TABLES ...t escs s snss s ssenesssse s b s s ssassesssasasassssnans viti

LIST OF FIGURES. et s R s s EL b bo RSO A LSRR e R SR R e AR RO R RSO Y000 ix

LIST OF ABBREVIATIONS ...ttt trtentcene s e s sassanssasnsesnsassssnnsaneerenns xi

CHAPTER 1 INTRODUCTIONccorrcieteencirccnsnans wesererereseataraasaans 12

L1 Background of STdY ... sossssiessisisississsssmsnsenses 12

1.2 Problem Statement..........oeoriniivrenntccce s sssssesse e e es 13

1.3 Objectives and Scope of SIUAY ...cccvverererermrereerecnsensesrnssssssssserssensessssssesens 13

CHAPTER 2 LITERATURE REVIEWiiscicrtenrcsessncenenesnensrnasssssssssnssssans 15

21 Computer-Aided Design and Analysis...........cveeervrveecernseeseecnnnsesesessnnes 15

2.2 Microwave Circuit Representation............ococoveeeerreeccresessressssesensasencsnenes 16

2.3 Connection-Scattering Matrix Method.............covveveerecnrrnrevenrrerssresnessssans 18

CHAPTER 3 METHODOLOGY AND WORK FLOWocveirnivinrnsrerersnsessssasans 21

3.1 Overall Project FIOW........oivinisiiiriicacncnesssnssssssssssnesssescssessassussssssessanssenes 21

3.2 Development of Project Computer Code...........uvueeeeveercrnrirensecrsneeensensesessoses 23

3.2.1 Development of Matlab Code Algorithms..........cccoveenun.e. .23

3.2.2 Development of Graphical User Interface (GUT)ceeeveereveeneernnnee 25

3.2.2.1 Select Network Components.........cceevveecveenverenne e 26

3.2.2.2 Input Elements Parameters Values..........coeeseerceeeeervecsoreressransns 26

3.2.2.3 Select Frequency of Operation and Characteristic Impedance Zy:....27

3.2.2.4 Identify Elements Ports Numbers.............cocovveeveeiennrenrecrseriessensesnns 27

3.2.2.5 Calculate Scattering Parameters for the Network27

3.2.2.6 Smith Chart Simulationccececrceeecrrernrererscescnresesssressssereesesses 28

CHAPTER 4 RESULTS AND DISCUSSION.......coinirererrreissmrenienesssesenssssessanas 29

AL RESUIS .. oot snesssssstesn et e et saesesrese st ens bbb essertsas e besasansreserssnsannase 29

4.1.1 Single Series Inductor................. rereserreenveneeens veeseerenenees 30

4.1.2 Single Shunt Capacitor...........ccvvermsininnnisseessensrsnsssssssassesrssons 32

vi

4.1.3 Single Microstrip Coupled-Line Filter Section...

4.1.4 Single Microstrip Tee Junction..............

4.1.5 Single Open-End Microstrip Transmission Line
4.1.6 Microwave L-C Low Pass Filter Network
4.1.7 Microwave L-C High Pass Filter Network

-

...........

4.1.8 Microwave Microstrip Coupled-Lines Band-Pass Filter

4.2 DiSCUSSION ..+ eveevenrnnes

4.2.1 Analysis of Individual Network Elements

4.2.2 Analysis of Microwave Filter Networks

CHAPTER 5 CONCLUSION AND RECOMMENDATION
5.1 Conclusion

5.2 Recommendations

aaaaaa

.......................................

......................................

..........

--

.......................................

5.2.1 Number of Network Components..........

5.2.2 Analysis of Other Microwave Elements

5.2.3 Simulation of Microwave Networks

REFERENCES
APPENDICES

....................

........

......

vii

..

-

aaaaaaa

35
37

4
45
48
52
52
53
54
54
55
55
55
55
56

w37

LIST OF TABLES

Table 4.1: Matlab Scattering Parameters for Single Series Inductor Circuit.............. 31
Tabie 4.2: Matiab Scattering Parameters for Single Shunt Capacitor Circuit 34
Table 4.3: Matlab Scattering Parameters for Single Microstrip Coupled-Line Filter

Section CIrCUILevvireeeerrerrieseeriescsnserecsesesste s reresmessssessnerassaneressesasee .36

Table 4.4: Matlab Scattering Parameters for Single Microstrip Tee Junction Circuit 39

viii

LIST OF FIGURES

Figure 2.1: Incident and Reflected Waves in a Two-Port Microwave Network......... 17

Figure 2.2: A Simple Multi-port, Arbitrarily Connected Microwave Network........... 18
Figure 3.1: Overall Project Procedure Flow Chartc.coeemecnmrnmesoressissseresssorene 22
Figure 3.2: Computer Code Development Procedure Flow Chart.................... 24
Figure 3.3: Developed Graphical User INterfacecoevererecerenenerenrensscssnsesenenas 25
Figure 4.1: Single Series Inductor CIirCuitcoceeeeerceeceeerercensnsssennisscssenesssnenns 30
Figure 4.2: ADS Simulation Scattering Parameters for Single Series Inductor Circuit
... 30
Figure 4.3: ADS Simulation Smith Chart for Single Series Inductor Circuit............. 31
Figure 4.4: Matlab Smith Chart for Single Series Inductor Circuit.....c.coecvcvrcirennnnnn. 32
Figure 4.5: Singie Shunt Capacitor CirCUuit...........ceeceeereererrverescesmeressennans .32
Figure 4.6: ADS Simulation Scattering Parameters for Single Shunt Capacitor Circuit
... 33

Figure 4.7: ADS Simulation Smith Chart for Single Shunt Capacitor Circuit............ 33
Figure 4.8: Matlab Smith Chart for Single Shunt Capacitor Circuit 34
Figure 4.9: Single Microstrip Coupled-Line Filter Section Circuit...........coeeevereervenns 35
Figure 4.10: ADS Simulation Scattering Parameters for Single Microstrip Coupled-
Line Filter Section CirCULcoeeemirecrinrerr s rssssssnsesessnsnetessssasrsrsssssssssanssns 35
Figure 4.11: ADS Simulation Smith Chart for Single Microstrip Coupled-Line Filter
SECHON CHICUIL c..cuveeeercretsriiriisiesnssenecenracsssmesseresesssssnasseseonersatessassasasararansessssstsas 36
Figure 4.12: Matlab Smith Chart for Single Microstrip Coupled-Line Filter Section 37
Figure 4.13: Single Microstrip Tee Junction CirCuitccccvieereecivcorecsrseruesansaens 37
Figure 4.14: ADS Simulation Scattering Parameters for Single Microstrip Tee
JUNCHON CITCUIL..c.c.eee ettt sssnens st e semesesresetssssnssasansnssansanses 38
Figure 4.15: ADS Simulation Smith Chart for Single Microstrip Tee Junction Circuit
.. 38

Figure 4.16: Matlab Smith Chart for Single Microstrip Tee Junction Circuit............ 39
Figure 4.17: Single Microstrip Open-End Transmission Line Circuit......c.oeevevevennnne 40

Figure 4.18: ADS Simulation and Matlab Code Implementation Scattering
Parameters for Single Microstrip Open-End Line Circuit........ccoceveeceervecnnnnncnee. 40

ix

Figure 4.19: ADS Simulation Smith Chart for Single Open-End Microstrip Line

CHTCUIL coveurvveesenerrnessecrreerrsessarrssresssmsnsescensensenerrasssassasesst saeessasssnsns omsnsasensensessonins 41
Figure 4.20: Matlab Smith Chart for Single Open-End Microstrip Line Circuit........ 41
Figure 4.21; Microwave L-C Low Pass Filter Networkcoccoccvemnnninivcccinennnnne 42
Figure 4.22: ADS Simulation Scattering Parameters for Microwave L-C Low Pass

FAlEEr NEIWOTK ... overerenseranrasnnininssnsersorcsismesssnsnstssessessssnesssssesssessasonsnsssssasssassessrens 43
Figure 4.23; ADS Simulation Smith Chart for Microwave L-C Low Pass Filter

NEIWOTK ..ovverermerrieriiinneniieressecsnesssssss s sesserssssssssassesssnsssssessssssensns X
Figure 4.24: Matlab Scattering Parameters for Microwave L-C Low Pass Filter

INEEWOTK <.ttt ettt et srs e sn e sae b srest s e bu bt e e sn b e s nnaramses 44
Figure 4.25: Matlab Smith Chart for Microwave L-C Low Pass Filter Network....... 44
Figure 4.26: Microwave 1.-C High Pass Filter Network.........cocveevreervennisreeseanienns 45
Figure 4.27: ADS Simulation Scattering Parameters for Microwave [-C High Pass

FIer NEtWOTK. .. ovetiisiiriinecrenniressestssisinnsneerstssesseassassessssssencsssossassensssssassaness srees 46
Figure 4.28: ADS Simulation Smith Chart for Microwave L-C High Pass Filter

INEIWOLK ..ottt setse s sn e e s eb s st st nsa s e ra besass e b e s snenses 46
Figure 4.29: Matlab Scattering Parameters for Microwave L-C High Pass Filter

INEEWOTK .vveviniisisenieciree e e st ssrssesssseesme e e nesssstsbessesensssassnssnssssnsssessesssanssnsansasssssss 47
Figure 4.30: Matlab Smith Chart for Microwave 1.-C High Pass Filter Network47
Figure 4.31: Microstrip Coupled-Line Band-Pass Filter Networkcc.c.cevurvieneae 48
Figure 4.32: ADS Simulation Scattering Parameters for Microwave. Coupled-Line

Band Pass Filter NetWorkcovveeiriennninciiiiceninercss s, PR e 49
Figure 4.33: ADS Simulation Smith Chart for Microwave Coupled-Line Band Pass

Filter NetWOrK.....cocvomeeccviniiieieiniescssssssmenssenesssesasssessssssssssarassen praeerernarsriins 49
Figure 4.34: Matlab Scattering Parameters for Microwave Coupled-Line Band Pass

FHIter NEtWOTK....coiviiiiie it iratsstiniseneeeenissaserte e s sensessssssaantabeessesssssasssasens 50
Figure 4.35: Matlab Smith Chart for Microwave Coupled-I.ine Band Pass Filter

NEWOIK oo s sr bt sesases s senss e s e baen 50

Figure 4.36: ADS Forward Transmission Simulation for Microwave Coupled-Line
Band Pass Filter NEtWOTKc...ccuoreerrrereesssceseneansrsessssssssnesarsssssasssssssessees L ||

Figure 4.37: Matlab Forward Transmission Simulation for Microwave Coupl?ed-Line
Band Pass FIter NetWOIKcccococumrnininiiiiceccniinsssesisiseecinsscserosssessensgoresss 9 |

LIST OF ABBREVIATIONS

ADS Advanced Design System
CAE Computer-Aided Engineering
CAD Computer-Aided Design

GUI Graphical User Interface

MIC Microwave Integrated Circuit
MMIC Monolithic Microwave Circuit

Xi

CHAPTER 1
INTRODUCTION

1.1 Background of Study

The use of Computer-Aided Design (CAD) software packages for microwave
circuit design and analysis is very important and well established. There was a
significant progress in Monolithic Microwave Circuit (MMIC) technologies in
industry over the last decade that was highly achieved by using sophisticated

microwave CAD procedures and programs)

In CAD programs for microwave network analysis, the initial design of any
microwave circuit should be simulated and optimized prior to its fabrication. This
eliminates the time-consuming and costly experimental investigations on the circuit
afier fabrication. This is of a significant importance in the design and manufacturing
of modern microwave circuits because of the very limited ability to incorporate any
modifications on the fabricated circuit using Monolithic Microwave Integrated
Circuit (MIC) technology. Computer generated codes in CAD programs are not only
used to determine the nominal values of the components parameters, but also their
maximum permitted distributions in relation to a specific given condition. This is
most required when a certain tolerance for circuit response function is required when

a large amount of identical circuits are realized and fabricated .

12

1.2 Problem Statement

There are many commercially available microwave CAD packages that are
effectively used in industry and at universities for fabrication and educational
purposes. Most of these packages are very sophisticated and reliable but also very
expensive to obtain and use specifically for academic purposes. Furthermore, these
packages are closed source and specially designed to suit the fabrication requirements
of microwave integrated circuits. This makes them difficult to be modified and used

in an academic content.

Hence, an attempt to develop an easy to obtain and reliable open-source
computer code to analyze microwave circuits is incorporated in this project. The
required computer code is to be developed especially to suit the learning requirements
and outcomes of Microwave Engineering courses at universities and colleges.
Mathematics Laboratory 2007 (Matlab 2007) software package is chosen to develop
and implement the required computer code. This software package is well known and
widely used in many universities and engineering institutions.. Thus, the developed
computer code in this project can be easily accessed, modified and used to analyze

microwave networks as required.

1.3 Objectives and Scope of Study

The purpose of this project is to develop a detailed and practical computer
code that acts as a basis for a microwave network analysis and design CAD program.
This alternative CAD program is to be specially used for Microwave Engineering
courses at universities and engineering institutions. The required developed computer

code is intended to fulfill three main objectives:

i. To perform computerized analysis and simulation of arbitrarily connected,

multi-port microwave networks with accurate and reliable resuits.

13

ii. To be developed with a suitable Graphical User Interface (GUI) for an easy

and convenient usage and implementation.

ili. To be an open-source code that students can easily access and modify as

required.

The scope of study of this project involves examining various methods and
mathematical models available for analyzing microwave circuits. A detailed study of
microwave circuits and their representations is also required to further understand
those methods. Then based on the conducted analysis and study, the most appropriate
and applicable method is chosen to be implemented in this project. A computer code
that utilizes the chosen method is developed using Mathematical Laboratory 2007
(Matlab 2007) software package. The developed code is then applied to analyze and
simulate some sample microwave networks. A detailed verification of the results
obtained is achieved through comparison with the results obtained from Advanced
Design System (ADS) software packages used for analysis and simulation of

microwave networks.

14

CHAPTER 2
LITERATURE REVIEW

2.1 Computer-Aided Design and Analysis

Until the 1970s, RF and microwave circuit design was an art rather than a
science. The common believe among people was that component modeling was
inaccurate and complex. Therefore, design on the bench was the common practice in
most of circuit fabrication industries at that time P\, Computer-Aided Engineering
(CAE) and Computer-Aided Design (CAD) for electronic circuit were born in the late
1960s and slowly gained acceptance.

CAD for microwave circuits involves repeated analysis of the circuits. The
analysis consists of evaluation of the overall circuit performance parameters from the
characterization of the individual components. It involves procedures used to
stmulate the initial circuit design and test it for accuracy and optimization prior to
final circuit fabrication. RF and microwave CAD initially progressed only in the area
of small-signal, linear circuit design, focusing on the analysis and optimization of

discrete and hybrid microwave integrated circuits P!,

There are several methods and algorithms for analyzing microwave circuits
that have been implemented in the recently developed CAD programs. Most of these
algorithms are used to compute a certain number of response functions regarding
component parameters, circuit topology and independent excitation given. Since the

circuit components are usually multi-port connected, the analysis is greatly affected

15

by means of topological matrices that indicate the connected pairs of adjacent ports in
the network 1, Hence, any developed code for analyzing microwave circuit should

take into account the connection between the adjacent components ports.

There are a number of sophisticated CAD packages that have been developed
for the analysis and design of microwave circuits. Some of the early CAD packages
developed were SPEEDY, which was the precursor to Compact, CAIN-01, EEsoft
Touchstone which later was developed to Libra. The Engineers at Hewlett Packard
had their own CAD known as MDS. They later acquired EEsoft and eventually
merged Touchstone with MDS and developed a more accurate and sophisticated

CAD package known as ADS 1),

2.2 Microwave Circuit Representation

In order to characterize the behavior of an arbitrary connected n-port
microwave circuit, measured data of both its transfer and impedance functions must
be obtained). At low frequencies, the z, v, & or ABCD parameters are network
parameters used in the description and analysis of an arbitrarily connected n-port
networks. However, these parameters cannot be measured accurately at higher
frequencies (more than 1 GHz). This is because the required short- circuit and open-

circuit tests are difficult to achieve over a broadband range of microwave frequencies.

A set of parameters that are applicable for the microwave range of frequencies
{(1GHz and above) are the Scatfering Parameters (S-Parameters). S-Parameters are
defined in terms of traveling waves (incident and reflected waves) that enter and
leave the network. Incident waves are donated as a-waves and the reflected waves in
the network are represented as b-waves. These two waves represent normalized
traveling voltage waves. Figure 2.1 below shows a representation of the incident and

reflected waves in a two-port microwave network.

16

S— - S
a az
Two-port
zal b] NEtWOI’k bz zu2
- —»
e —— E— S21 S22 R ——
portl port2

Figure 2.1: Incident and Reflected Waves in a Two-Port Microwave Network

The S-matrix equation is formed to relate the incident and reflected waves as shown

below:
b1 =Sy a;+Spa, e (22.)

by=8x 21 +8Spa; (222

b1 Sll Slz a (2.2.3)
b2| |Sn Sz |a
In general, S-matrices are used for the characterization of microwave circuits.
Hence, two-port networks can be combined arbitrarily in series or parallel to yield

multi-port (n-port) microwave network. These networks can then be analyzed by

using any of the multi-port connection methods.

There are two main methods used to analyze arbitrarily connected n-port

microwave networks:

1. Analysis Using Connection-Scattering Matrix.
2. Multi-port Connection Method.
Regardless of the method used in the analysis, the S-matrix of the multi-port

connection is required.

17

23 Connection-Scattering Matrix Method

This method is chosen to develop the computer code for microwave network
analysis in this project. It is applicable when the network contains arbitrarily
interconnected ports of several elements and independent external input and output
ports (m components). A block diagram of such a network is shown Figure 2.2 below.
The arrows in the network represent the directions of the incident and reflected waves
at each element port or node on the network. The analysis involves evaluation of the
scattering parameters of individual elements of the circuit in connection with the
information on circuit topology and setting them up in the form of the connection
scattering matrix. Microwave circuits with any arbitrary topology may be analyzed

using this matrix formalism ™!,

C
casf Jco2
0 s C
BbgT 1363
Aal Ab2 Ba2 Bb4
1
A 2 B 4
O— P Oary 0

Abil Aa2 Bb2 Ba4

Figure 2.2: A Simple Multi-port, Arbitrarily Connected Microwave Network

To illustrate this method clearly, consider that the governing relations for all

the m components in the network can be put together in the form:

b=Sa+c . 23.1)

18

ER by] 1]
a= |a| b= 1b| , c= |e
[2 | b [

where a : Incident waves vector
b : Reflected waves vector

¢ : Network excitation vector

and
S, 0 0 |
s=10 ... S& ... o . (232)

The matrix in (2.3.2) is called Scattering Matrix and it represents a block
diagonal matrix whose sub-matrices along the diagonal are the scattering matrices of

various m components of the network and 0s represent null matrices.

In Figure 2, it is clearly shown that for a pair of connected ports, the outgoing
wave variable at one port must be equal to the incoming wave variable at the other

port. Assuming connected ports j and £, the incoming and outgoing waves satisfy:
a;= by ..(23.3)

au=b; - (234)

36 G

19

or

The matrix in (2.3.5) is known as the inverse of the S-matrix of the
interconnection. This relation can be written for all the interconnected ports in the

network in the form:
b =T a ... (2.3.6)

where I'is a Comnection Matrix describing the topology of the interconnected

network.

Hence, from (2.3.1) and (2.3.6):

F'a=Sa+c
or (I’-S)a=¢
Setting w=T -§
a=Wle (237

where W is called the Connection-Scattering Matrix.

The analysis of an n-port arbitrarily connected microwave network is
determined from equations (2.3.6) and (2.3.7). The solution of (2.3.7) gives the
incoming waves a at all the components ports in the network. Then the outgoing
waves b can be obtained from (2.3.6). According to (2.2.3), both @ waves and b

waves are then used to determine the overall S parameters for the overall network.

20

CHAPTER 3
METHODOLOGY AND WORK FLOW

3.1 Overall Project Flow

In order to develop the required computer code for microwave circuit analysis

and simulation, a set of procedures were followed:

1. Identify problem, Objectives and Scope: Conduct a research to examine and
understand various available methods and mathematical models for microwave

circuit analysis based on the problem statement, objectives and scope of the project.

2. Selecting Feasible and Reliable Method: Based on the conducted research, the
most feasible, applicable and reliable method which is the Connection-Scattering

Matrix method is chosen.

3. Develop Matlab Code: Based on the Connection-Scattering Matrix method
chosen, the computer code algorithms required are developed using Matlab 2007

software package.

4. Test the Developed Code: The developed code is implemented on sample
microwave networks and resuits obtained are verified to check whether it meets the

project requirements or not.

5. Apply Modifications: The developed code is then examined for further

improvement and modifications.

Figure 3.1 below shows a Flow Chart of the overall procedure chosen to implement

the desired computer code.

21

Identify Prnhlé;i;
hjectives and Scope

Selecting Feasible and Reliable]
; Epmgeptiun Seattering Matrix Method)

... Apply Mudlﬁcaunns No Meet
— Goals?
-
Yes

| Project C"mpleteﬁ"w"‘

Figure 3.1: Overall Project Procedure Flow Chart

22

3.2 Development of Project Computer Code

The required computer code in this final year project is chosen to be
developed using Mathematical Laboratory 2007 (Matlab 2007) software package.
Matlab is specifically chosen because it is widely known and used extensively in
universities and colleges to apply and verify mathematical theories in practical forms.
It also incorporates many useful features such as there is no need for declaration of
variables, simple and convenient syntax, easy creation of Graphical User Interfaces

(GUISs) and incorporating many simulation and visualization features.

3.2.1 Development of Matlab Code Algorithms

The Connection-Scattering Matrix method is chosen to develop the computer
code algorithms. As it has been mentioned earlier, the analysis of an arbitrarily
connected multi-port microwave network based on the Connection-Scattering Matrix
method depends on determining two major matrices, Scattering Matrix and
Connection Matrix. From both these matrices, Connection-Scattering Matrix is then
formed and used to determine the scattering parameters for a given microwave

network.

The first step in order to develop the required computer code is to write
individual Matlab functions that are used to determine the scattering parameters for
several microwave elements based on their user defined values and descriptions.
Another Matlab function is then developed to put the scattering parameters of each
individual element in any given microwave network in one matrix called the
Scattering Matrix. Information on the network’s topology and how clements are
interconnected with each other are used to generate the Connection Matrix using
several other Matlab functions. After that, some Matlab functions are developed to
take both matrices and determine the Scattering Parameters of the overall network
based on certain default network excitations normally applied in microwave network

analysis.

23

Figure 3.2 below is a flow chart that represents the steps taken to develop the
required computer code for microwave circuit analysis in this project. All the

developed Matlab codes are shown in Appendix A.

Read InputData: o

(Components Description, Ports Interconnection and Frequency

_a_ﬁnn, Characteristic Impedance}

(Create the Overall Conrnﬁéchﬁ i Create the Overall Statterili

Matrix Matrix

Create the Overall Coﬁh

Scattering Matrix

. Apply Network Excitations

|

Determine Scattering Parameters

i

Figure 3.2: Computer Code Development Procedure Flow Chart

24

3.2.2 Development of Graphical User Interface (GUI)

A simple and suitable Graphical User Interface (GUL) is developed using
Matlab 2007 software package to facilitate the user to implement the developed
computer code for microwave circuit analysis. The developed GUI for this purpose is
named Microwave Circuit Analysis Program and is shown in Figure 3.3 below. It can
be easily activated by typing the command line ‘microwave gui’ on Matlab

Workspace screen.

(1) Select Network Compoenents

St x Longoond --

|
Shatvasi ‘ |
Skt i - SN, Ld|
Sqre Dt | 1
et Lagpacter i . - . |
Mo propieiioe R Sectn . | Microwave Circuit Analysis Program ;
Pty Tee St i w | i
SpanEn Bontig Twenisoile: \ : C 1
il : e . " Hemen2
~ets Sempleart - W o eddere Gegred . v !
(2) Input Elements Parameters Values ’ :
- i Element 3 ’ Bement 4 !
B g Jewews : o -
: Mrmtrg gt ! 5.5“«3 Sorgidntt . W ‘..;eeda iwmﬁi .o
o _ Hemont$ _ cements !
S o Spmsta Dempenrt - vl - STs Compreert . w
...... v - ; :] v |
Sy Corvear o i . St R Sop StepSae '
: Frequency of Operation 40 & 06 iMoo G ;
: H "E/Chalamlisﬁcl adgnce® 00 o . . ‘
(3) Select Frequency of Operation and 200 " o e
i . . Ret) 1
(+4) Identify Elements Port Numbers P tetwes Tepoogy | :
L I ———

Do oo NV 5 : : : . i
e o : ; 5 :

. ! 3 ! :

i s ey e [caigsseeogpumens | | somowm | |

{6) Smith Chart
Simulation

(5) Calculate Scattering
Parameters for the Network

Figure 3.3: Developed Graphical User Interface

25

Through this Program, the user can enter ail input data needed to calculate
both the Scattering and Connection Matrices required to determine the Scattering
Parameters for a given microwave network. In addition, the program enables the user
to simulate the given network by plotting the Smith Chart for the calculated reflection
coefficient vector (Si1 vector). Figure 3.3 shows the steps the user follows when
using the Microwave Circuit Analysis Program to analyze and simulate any

arbitrarily connected microwave network as follows:

3.2.2.1 Select Network Components

The program allows the user to select up to six different network components.
For each component, the user can select an element from a menu that contains
different elements normally used in microwave network design. For the purpose of
this final year project, the user selects an element from a menu that contains seven

options; which are:

e Series Inductor

¢ Shunt Inductor

o Series Capacitor

¢ Shunt Capacitor

¢ Microstrip Coupled-Line Filter Section
e Microstrip Tee Junction

e Open-End Microstrip Transmission Line

3.2.2.2 Input Elements Parameters Values

Once the user selects an element form the menu, a pop up window appears
through which the user can input the element’s parameters values. The user can clear
those values and retype them back any time by clicking on ‘Clear’. Once the values
are entered, the user clicks on “OK’ and continue with the following element in the
network.

Afier the user enters all the parameters values for all elements in the network,

the program creates sets of data files that contain elements parameters input values.

26

These files can be retrieved at anytime and data can be read and used to analyze the

network as required.

3.2.2.3 Select Frequency of Operation and Characteristic Impedance Zy:

The user selects a range of frequencies at which the given network is
analyzed. The user determines the start and stop frequencies values of the given
frequency range as well as the step size of the frequency increment in the range. The
developed program allows the user to enter frequency value in the GHz range. In
addition, the user has to specify the characteristic impedance (Zg) at which the

analysis is performed.

From the data entered previously, the program takes these values and uses
them to create the Scattering Matrix for all selected elements in the network for the

range of frequencies given.

3.2.2.4 Identify Elements Ports Numbers

The user is also required to provide information on the network topology.
When the user clicks on ‘Network Topology’, a pop up window appears that enables
the user to enter the elements ports numbers. Four ports places allocated for each
network element based on its type. When the user clicks on ‘OK’, the program will
take the elements ports numbers given by the user and use them to generate the

Connection Matrix for the network.

3.2.2.5 Calculate Scattering Parameters for the Network

When the user clicks on ‘Calculate Scattering Parameters’, the program takes
both Scattering and Connection Matrices and determines the Scattering Parameters
for the overall network for the range of frequencies specified by the user in the
program. The Scattering Parameters appears on Matlab workspace screen in a form of
a table with each row in the table representing the scattering parameters for the

network for one frequency at a time.

27

3.2.2.6 Smith Chart Simulation

The developed program incorporates the feature of simulating the response of
the given network through plotting the Smith Chart simulation of the calculated
reflection coefficients, S11 values. When the user clicks on ‘Smith Chart Plot’, the
program takes the S11 values from the first column from the results table as a vector
and converts them into load impedances vector. The program then uses this load
impedances vector to plot the Smith Chart simulation for the network. The Matlab
code used to plot the Smith Chart is originally developed by Antony-Dean
McKechnie & Neville Wilken in their final year project at Wits, South Africa. It was
then further developed by Alan Robert Clark, Department of Electrical Engineering,
Wits, South Africa, 1992. For the purpose of this final year project, this Smith Chart
Matlab code was implemented with minor modifications to suit the objective of the

project. The Smith Chart and the GUIs Matlab functions are shown in Appendix A.

28

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Results

For the purpose of this final year project, the required computer code was
developed using Matlab 2007 software package as indicated in Figure 3.2. As
explained earlier, several Matlab functions were first developed to determine the
Scattering Parameters for several microwave elements. Those codes were
implemented to analyze and simulate each element individually. The results obtained
are compared with the results obtained from analyzing those elements using
Advanced Design System (ADS) software package used for design and analysis of
microwave networks. The analysis of these elements and the verification of the

obtained results are shown in the following sections of this chapter.

Once the developed codes for the individual elements were verified, the
Graphical User Interface, Microwave Circuit Analysis Program, was developed to
analyze and simulate microwave networks as shown in Figure 3.3. The program takes
input data from the user and creates both Scattering and Connection Matrices then
uses them to calculate the Scattering Parameters for the overall network. The program
was used to analyze and simulate three sample microwave networks, an L-C Low
Pass Filter, an L-C High Pass Filter, and Microstrip Coupled-Line Band Pass Filter.
The results obtained are also compared with the results obtained from analyzing those
networks using Advanced Design System (ADS) sofiware package. The analysis of
these networks and the verification of the obtained results are also shown in the

following sections of this chapter.

29

Input Refiection Coefficient

mt

S ?S)éonmoaHz'o 182
) | + JU.

0% (1000 +0.3

imdﬂme:z

S(1,1)

freq (1.000GHz o 8.000GHz)

Figure 4.3: ADS Simulation Smith Chart for Single Series Inductor Circuit

Table 4.1: Matlab Scattering Parameters for Single Series Inductor Circuit

Freq

(GHz) S$(1.1) $(1,2) 8(2,1) 5(2,2)
1.0 0.0039 + 0.0626i 0.9961 - 0.0626i 0.9961 - 0.0626i 0.0039 + 0.0626i
1.5 0.0088 + 0.0934i 0.9912 - 0.0934i 0.9912 - 0.0934i 0.0088 + 0.0934i
20 0.0155 + 0.1237i 0.9845 - 0.1237i 0.9845 - 0.1237i 0.0155 + 0.1237i
25 0.0241 + 0.1533i 0.9759 - 0.1533i 0.9759 - 0.1533i 0.0241 + 0.1533i
3.0 0.0343 + 0.1820i 0.9657 - 0.1820i 0.9657 - 0.1820i 0.0343 + 0.1820i
35 0.0461 + 0.2098i 0.9539 - 0.2098i 0.9539 - 0.2098i 0.0461 + 0.2098i
4.0 0.0594 + 0.2364i 0.9406 - 0.2364i 0.9406 - 0.2364i 0.0594 + 0.23641
4.5 0.0740 + 0.2618i 0.9260 - 0.2618i 0.9260 - 0.2618i 0.0740 + 0.2618i
5.0 0.0898 + 0.2859i 0.9102 - 0.2859i 0.9102 - 0.2859i 0.0898 + 0.2859i

31

1

S(1,1)=0.034 + [0.182
edanc Jo-'u_ooom.sm

Input Refiection Coefficient

freq (1.000GHz to 8.000GHz)

Figure 4.3: ADS Simulation Smith Chart for Single Series Inductor Circuit

Table 4.1: Matlab Scattering Parameters for Single Series Inductor Circuit

(';':g) S(1,1) $(1,2) s(2,1) $(2,2)
10 | 0.0039+00626i | 0.9961-0.0626i | 0.961-0.0626i | 0.0039 + 0.0626i
15 | 0.0088+0.0834i | 0.9912-0.0934i | 0.9912-0.0934i | 0.0088 + 0.0934i
20 | 0.0155+0.1237i | 09845-0.1237i | 0.9845-0.1237i | 0.0155+0.1237i
25 | 0.0241+0.1533i | 09759-0.1533i | 0.9759-0.1533i | 0.0241+0.1533i
30 | 0.0343+0.1820i | 0.9657-0.1820i | 0.9657-0.1820i | 0.0343 + 0.1820i
3.5 0.0461 + 0.2098i 0.9539 - 0.2098i 0.9539 - 0.2098i 0.0461 + 0.2098i
4.0 0.0594 + 0.2364i 0.9406 - 0.2364i 0.9406 - 0.2364i 0.0594 + 0.2364i
4.5 0.0740 + 0.2618i 0.9260 - 0.2618i 0.9260 - 0.2618i 0.0740 + 0.2618i
5.0 0.0898 + 0.2859i 0.9102 - 0.2859i 0.9102 - 0.2859i 0.0898 + 0.2859i

31

W‘w—,—:‘— EESTa—— - S———— —— m
(W EE Ve e kD W 000~
DSES k QAN ¢ 0B =0
i inf 2
s} x\//,jr%:?—: 8)
o5l ,,/ N B S
P TR T
v SE it /_/\/\ 2 “) _-\’)
azr/ e KN
3 (7 { ¥ Y
iy N, s
B\ A\ A
a4 NP i
N\ S —~—t—
08 '\.\ Py ;o i %
08 "\\,' = St 2
| T -
4 08 06 04 02 0 02 |yons

Figure 4.4: Matlab Smith Chart for Single Series Inductor Circuit

4.1.2 Single Shunt Capacitor

A single shunt capacitor circuit is shown in Figure 4.5 below. The analysis of
the element is performed at characteristic impedance of 50 Ohms and specified range
of frequencies of (1.0 -5.0) GHz with 0.5 GHz increment. Results of both ADS
simulation and Matlab code implementation are shown clearly. Smith Chart
simulation results are also clearly indicated. A value pointer is placed at 3GHz
frequency point for each plot to verify the results obtained.

id — Term

< | Term1 c’
& | Num=1 - c1
- | -|Z=50 ohm -

II-

[Z£] DisplayTemplate
: disptemp1 =~ =

- "S_Params_Quad_dB:_Smith" -

Term
Term2
Num=2 -
-|Z=50 Ohm -

I+t

S-PARAMETERS I
*S_Param- 1
SP1 - -
.Start=1.0 GHz

Stop=5.0 GHz
Step=0.5 GHz _

Figure 4.5: Single S

hunt Capacitor Circuit

32

freq S(1.1) S(1.2) S21) S@22)

1000GHz | -0024-/0.453 | 0976-10.153 | 0.976-/0.153 | -0024-[0.153
1500GHz | 0053-0223 | 0847-10223 | 0.947-0223 | -0053-10.223
2000GHz | -0090-086 | 0910-j0.286 | 0910-0.86 | -0.090-}0.286
2500GHz | -0.14-J0.340 | 0866-J0.340 | 0866-10.340 | -0.134-10.40
3000GHz | -0.182-0386 | 0818-J0.386 | 0818-10.386 | -0.182-}0.386
3500GHz | -0232-0422 | 0768-J0422 | 0768-0422 | -0.232-0422
4000GHz | 02830450 | O717-[0450 | 0717-0450 | -0.283- 0450
4500GHz | -0333-J0AT1 | 0667-[0471 | 066710471 | -0.333-J04T1
5000GHz | -0.382-0486 | 0618-J0486 | 0618-10486 | -0.362-J0486

Figure 4.6: ADS Simulation Scattering Parameters for Single Shunt Capacitor Circuit

Input Reflection Coefficient

m1

sA 182 - j0.386
rnp'e;g'e = Z0 * (0.530 - 0.499)

S(1.1)

freq (1.000GHz to 5.000GHz)

Figure 4.7: ADS Simulation Smith Chart for Single Shunt Capacitor Circuit

33

Table 4.2: Matlab Scattering Parameters for Single Shunt Capacitor Circuit

(GHz) $(1,1) $(1,2) $(2,1) $(2,2)
1.0 -0.0241 - 0.1533i 0.9759 - 0.1533i 0.9759 - 0.1533i -0.0241 - 0.1533i
15 -0.0526 - 0.2232i 0.9474 - 0.2232i 0.9474 - 0.2232i -0.0526 - 0.2232i
2.0 -0.0898 - 0.2859i 0.9102 - 0.2859i 0.9102 - 0.2859i -0.0898 - 0.2859i
25 -0.1336 - 0.3402i 0.8664 - 0.3402i 0.8664 - 0.3402i -0.1336 - 0.3402i
3.0 -0.1817 - 0.3856i 0.8183 - 0.3856i 0.8183 - 0.3856i -0.1817 - 0.3856i
3.5 -0.2321 - 0.4222i 0.7679 - 0.4222i 0.7679 - 0.4222i -0.2321 - 0.4222i
4.0 -0.2830 - 0.4505i 0.7170 - 0.4505i 0.7170 - 0.4505i -0.2830 - 0.4505i
4.5 -0.3332 - 0.4713i 0.6668 - 0.4713i 0.6668 - 0.4713i -0.3332 - 0.4713i
5.0 -0.3815 - 0.4858i 0.6185 - 0.4858i 0.6185 - 0.4858i -0.3815 - 0.4858i
o i ———— Lok
Fle Edt View Irsst Desktop Window Help -
DEES k QQAH® ¢ OE 0O
% wl 2
as} - e,
05 / 5\. N\
oa} [o L
[~/ o S e
02 . "?: n s NS . \
f f saEv Y S
o I ! .
| = L
P e
X et e
D4 5 . “’. f : ’.-
08} : \
08} e o . /i
T Y R T 55 ”

Figure 4.8: Matlab Smith Chart for Single Shunt Capacitor Circuit

34

4.1.3 Single Microstrip Coupled-Line Filter Section

A single microstrip coupled-line filter section circuit is shown in Figure 4.9
below. The analysis of the element is performed at characteristic impedance of 50
Ohms and specified range of frequencies of (1.0 -5.0) GHz with 0.5 GHz increment.
Results of both ADS simulation and Matlab code implementation are shown clearly.

Smith Chart simulation results are also clearly indicated. A value pointer is placed at

3GHz frequency point for each plot to verify the results obtained.

T;ﬁn\
Nuom=1 ~
Z=500 Ohm

: ;-. nlayTempl
disptérngl] 5
S_Params Quad_dB :Smith

=

MCFI
. Clin1

S=10.0 mil

L=100.0 fril

. . Subst="MSubl*. .
W=25.00 mil

il@

= _Fargm
SP1

Star=1 0 GHz
Stop=5 0 GHz
Step=0 5 64z

. TanD=0) .
. Rough=0 mil

MSUB

MSub1

H=8.0mil
Er=856

Mur=1

Cond=1 DE+50
Hu=3 8e+034 mil
T=0mik

Figure 4.9: Single Microstrip Coupled-Line Filter Section Circuit

freq S(,1) §(12) S21) S22

1000GHz | 0762-0647 | 0007+0008 | 000740008 | 0762-j0647
{S00GHz | 0528-0849 | 001340008 | 0013+j0008 | 0528-0848
2000CH | 0278-0960 | 001740005 | 001740005 | 078-j0960
00tz | 0040909 | OMD4ROBES | O4BBES | 00D
3000GHz | 0f50-0987 | 00210003 | 002(-j0003 | -0169-j0887
IS00GH | 03%0-0%44 | 00210007 | 00210007 | -0330-094
4000GHz | 0469-0883 | 00200011 | 0020001 | -0469- 0883
4500GH | 0563-0812 | 00190014 | 0019-0014 | -0583-0812
5O00GH | §74-0738 | 00180017 | 0018-0017 | 0674-0738

Figure 4.10: ADS Simulation Scattering Parameters for Single Microstrip Coupled-

Line Filter Section Circuit

35

Input Reflection Coefficient

o

S(1,1)

1

000GHz
159 j0.

1,1)=0.159 - j0.967
=20* (1.922E-4 - j0.851)

\\T_//

freq (1.000GHz to 5.000GHz2)

Figure 4.11: ADS Simulation Smith Chart for Single Microstrip Coupled-Line Filter

Section Circuit

Table 4.3: Matlab Scattering Parameters for Single Microstrip Coupled-Line Filter
Section Circuit

e | 6w 5(1.2) s@1) s(2.2)
1.0 0.7706 - 0.6364i 0.0213 + 0.0257i 0.0213 + 0.0257i 0.7706 - 0.6364i
1.5 0.5427 - 0.8387i 0.0375 + 0.0242i 0.0375 + 0.0242i 0.5427 - 0.8387i
2.0 0.2988 - 0.9529i 0.0493 + 0.0155i 0.0493 + 0.0155i 0.2988 - 0.9529i
25 0.0688 - 0.9961i 0.0552 + 0.0038i 0.0552 + 0.0038i 0.0688 - 0.9961i
3.0 -0.1330 - 0.9895i 0.0562 - 0.0076i 0.0562 - 0.0076i -0.1330 - 0.9895i
3.5 -0.3032 - 0.9512i 0.0539 - 0.0172i 0.0539 - 0.0172i -0.3032 - 0.9512i
4.0 -0.4437 - 0.8944i 0.0498 - 0.0247i 0.0498 - 0.0247i -0.4437 - 0.8944i
4.5 -0.5585 - 0.8278i 0.0449 - 0.0303i 0.0449 - 0.0303i -0.5585 - 0.8278i
5.0 -0.6518 - 0.7566i 0.0399 - 0.0344i 0.0399 - 0.0344i -0.6518 - 0.7566i

36

Brewer : ' "=/oEs
Fle EQt Vew Iet Toos Destop Widow Hep _'““';“
DSE& h QAN ¢ 0E = O

1'? //‘“‘_L - S

| [0
i 08 / e —— N
0§ S 7 ‘\\//-" ?‘X H— ‘r"_"-r‘ S \
/ N N, - i \-'.\

b ot/ /Y, XN
~. f Bl ? e\
02 Pl AR gy, N

a2
04}

| 06} "-.\ -/_\‘ X ~ ~£ |~)A,-’

|
|

; \

¥. D985 |\

Figure 4.12: Matlab Smith Chart for Single Microstrip Coupled-Line Filter Section

4.1.4 Single Microstrip Tee Junction

A single microstrip tee junction circuit is shown in Figure 4.13 below. The
analysis of the element is performed at characteristic impedance of 50 Ohms and
specified range of frequencies of (15.0 -20.0) GHz with 0.5 GHz increment. Results
of both ADS simulation and Matlab code implementation are shown clearly. Smith
Chart simulation results are also clearly indicated. A value pointer is placed at 17GHz
frequency point for each plot to verify the results obtained.

) Subst="MSub
T MSUB - + 1
MSub1
. H=10.0.mit i _‘I'_:m.' MR (i PSRRI (1~ 5 R e R =
Er=9.6
© mur=1 i Num=1
" Cond=10E+80 © ° Z=50 Ohm -
© MHu=3ge+03mil- " _f - - - i
- T=0mit =
. Rough=0mil
| (=) vispleyTempieie ' |@% | sPARAMETERs |
=] isptemp1 X : Proipdaris - f
“S_Perams_Quad_dB_Smith* SP1
' i : ; Start=15.0 GHz
Slop=20.0 GHz
Step=0.5 GHz

Figure 4.13: Single Microstrip Tee Junction Circuit

37

freg S(1,1) §(1,2) $(1,3) S33)

15.00GHz | -0.409+j0.007 | 0450-j0.504 | 0529-j0.309 | -0.453-j0.209
1550GHz | -0.416+j0.011 | 0430-j0522 | 0516-j0.321 | -0.465-j0.214
1600GHz | -0424+[0015 | 0409-0539 | 0502-0.333 | -0.477-]0218
1650 GHz | -0.431+/0.020 | 0386-10.556 | 0.487-j0.344 | -0.490-j0.222
17.00GHz | -0.439+/0.026 | 0363-10572 | 0.472-j0.35 | -0.503-[0.224
1750GHz | -0.446+[0.033 | 0339-j0.587 | 0.456-j0.365 | -0.517-j0.225
1800GHz | -0.453+j0.041 | 0313-j0602 | 0.439-j0.375 | -0.531-[0.226
1850GHz | -0.450+j0.051 | 0287-10616 | 0.422-j0384 | -0.546-[0.225
19.00GHz | -0.464+j0.061 | 0260-0.628 | 0.405-j0392 | -0.561-[0.223
1950GHz | -0.469+j0.072 | 0232-j0641 | 0.388-j0400 | -0.576-j0.220
2000GHz | 0473+j0.084 | 0203-j0652 | 0370-0.407 | -0.590-]0.215

Figure 4.14: ADS Simulation Scattering Parameters for Single Microstrip Tee

Junction Circuit

Input Reflection Coefficient

17.00GHz

1,1)=-0.439 +j0.026
=70 (0.390 +0.025

S(1.1)

Figure 4.15: ADS Simulation Smith Chart for Single Microstrip Tee Junction Circuit

38

Table 4.4: Matlab Scattering Parameters for Single Microstrip Tee Junction Circuit

Freq

(GHz) $(1,1) $(1,2) s(1,3) $(3,3)
15.0 -0.3280 - 0.0733i 0.6718 + 0.0017i 0.6562 + 0.0716i -0.3315 - 0.0496i
15.5 -0.3276 - 0.0757i 0.6721 + 0.0019i 0.6555 + 0.0739i -0.3314 - 0.0512i
16.0 -0.3273 - 0.0781i 0.6725 + 0.0020i 0.6548 + 0.0761i -0.3312 - 0.0529i
16.5 -0.3269 - 0.0805i 0.6728 + 0.0022i 0.6541 + 0.0784i -0.3311 - 0.0545i
17.0 -0.3265 - 0.0829i 0.6732 + 0.0023i 0.6533 + 0.0806i -0.3310 - 0.0562i
17.5 | -0.3261 - 0.0853i 0.6736 + 0.0025i 0.6525 + 0.0828i -0.3308 - 0.0578i
18.0 -0.3257 - 0.0877i 0.6739 + 0.0027i 0.6518 + 0.0850i -0.3307 - 0.0595i
18.5 -0.3253 - 0.0901i 0.6743 + 0.0028i 0.6510 + 0.0872i -0.3305 - 0.0611i
19.0 -0.3249 - 0.0924i 0.6747 + 0.0030i 0.6501 + 0.0894i -0.3304 - 0.0628i

Fle Edt View lnsert Tools Deskop Window Help
DEES8 k @a®® & 08 0O
12 L
s e
T
o8l > 4 A
06}] \ 53 ¥
i -.v’/-" R ,"" ix,f’”??‘».. " A
@ T~ KN
ol ! . :
| L
0z} =N
1 T N2
04} \ :
\\ \ ~
a8})
-\-‘
Y08 06 04 02 0 02

=g
-

X0
Y. 00828

Figure 4.16: Matlab Smith Chart for Single Microstrip Tee Junction Circuit

39

4.1.5 Single Open-End Microstrip Transmission Line

A single open-end microstrip transmission line circuit is shown in Figure 4.17
below. The analysis of the element is performed at characteristic impedance of 50
Ohms and specified range of frequencies of (1.0 -5.0) GHz with 0.5 GHz increment.
Results of both ADS simulation and Matlab code implementation are shown clearly.
Smith Chart simulation results are also clearly indicated. A value pointer is placed at
3GHz frequency point for each plot to verify the results obtained.

MSub
MSUB -
- MSubt
H=10.0 mi}
Er=9.
5 e
Cond=1.0E+50 Num=1 s i
Hu=3.9e+034 mil 2=50 Ohm Subst="MSub1"
T=0mil - W=26.0 mil Wkl | S-PARAMETERS
TanD=0 = L=1000mil e
Rough=0 mil SP1 = ‘
Start=1.0 GHz
: %] DisplayTemplate Stop=5.0 GHz
i Step=05GHz
"S_Params_Quad_dB_Smith"

Figure 4.17: Single Microstrip Open-End Transmission Line Circuit

ADS Smaulation Matlab ('ode Implementation
o | S0 feg S(11)
1.0 0.88714 -0.47241 | .

) 1000GHz 0.889-j0458
W § N 1500 GHz 0.763-}0547
20 0.5828 - 0.8126i Zm Gm 0% 'jﬂ T%
25 0.4024 - 0.9155i me GHZ 0432 L 10902
3.0 0.2192 - 0.9757i J000GHz 0.254-)0%7
35 0.0426 - 0.9991i 3900GHz 0.081-)0.997
40 0.1216 - 0.9926i 4000GHz -0.082- 0987
45 0.2702 - 0.9628i 4500GH 0.231-§0973
5.0 0.4022 - 0.9156i 5000GHz -0.365-0.931

Figure 4.18: ADS Simulation and Matlab Code Implementation Scattering
Parameters for Single Microstrip Open-End Line Circuit

40

Input Reflection Coefficient

m1

1,1)=0.254 - j0.967
edan -g,"(?.ms-w-n.zsn

\o o

freq (1.000GHz to 5.000GHz)

S(1,1)

Figure 4.19: ADS Simulation Smith Chart for Single Open-End Microstrip Line

Circuit

T ——————— |

Flo ER Vew fnest Tok Destrp Windw Heb =
DeEs r@QN® ¢ 0E 'O

88288288 -

el
sl
ol
B
g
S

| ' J

Figure 4.20: Matlab Smith Chart for Single Open-End Microstrip Line Circuit

41

4.1.6 Microwave L-C Low Pass Filter Network

Figure 4.21 represents a microwave L-C Low Pass Filter network. This filter
network is considered to be a four cascaded two-port systems with the inductors and
capacitors being the four cascaded systems respectively. The characteristic
impedance of the network is set to 50 Ohms and the frequency of operation is within
the range of 1.0 — 5.0 GHz with an increment of 0.5 GHz.

The developed Matlab program was used to enter all input data of the
network’s elements parameters values and ports numbers and analyze the network at
the specified range of frequencies. The same network was then analyzed using ADS
software package. Results of both ADS simulation and Matlab code implementation
are shown clearly. Smith Chart simulation results are also clearly indicated. A value

pointer is placed at 3GHz frequency point for each plot to verify the results obtained.

E) : V -
"L P :
g7 TR 21
S tems - EEMOH - L op

|
=

g Num=1 - :

o [g]bispl'ayfambial'a ;
- % L disptémg1 - N 8 T
* "S_Params_Quad _dB- Smith*

SP1

‘Stan=10GHz
‘Stop=5.0GHz -
Slep=05GHz -

Figure 4.21: Microwave L-C Low Pass Filter Network

42

freq S(11) §(12) S21) §22)

1000GHz | -0.111-10.148 | 0.890-j0416 | 08%0-j0416 | -0.042-[0.181
1500GHz | 0223-10.457 | 0.765-00.584 | 0.765-10.584 | -0.093-0.256
2000GHz | -0335-10.109 | 0610-j0.710 | 0610-10.710 | -0.158-10.315
2500CHz | -0422-0011 | 0441-0792 | 0441-0792 | 0232-10.353
3000GHz | -0467+)0.118 | 0271-j0834 | 0271-10834 | -0309-)0370
3500GHz | -0461+0.250 | 0108-10.843 | 0.108-10.843 | -0.382-10.363
4000GHz | 0408+0381 | -0044.10828 | -0044-10828 | -0.446-0.33
4300GHz | 031640478 | -0.183-10.798 | -0.183-0.798 | -0496-0.287
5000GHz | -0.195+)0.534 | -0329-)0.754 | -0329-10.754 | -0.526-10.220

Figure 4.22: ADS Simulation Scattering Parameters for Microwave L-C Low Pass
Filter Network

Input Reflection Coefficient

1

3 000GHz
1,1)=-0.467 +0.118
= Z0 * (0.355 + [0.109)

§(1,1)

freq (1.000GHz to 5.000GHz)

Figure 4.23: ADS Simulation Smith Chart for Microwave L-C Low Pass Filter
Network

43

Frequency
1,0000
1,5000
2,0000
2,5000
3.0000
3.5000
4.0000
4.5000
5.0000

5
-0.1114 - 0.19841
-0.2226 - 0.15M1
-0.3351 - 0.10871
-0.4225 - 0.0109i
-0.4668 + 0.11761
-0.4613 + 0.25501
-0.4084 + 0.3807i
-0.3161 + 0.47821
-0.1951 4 0.53411

SR
0.8901 - 0.41631
0.7649 - 0.58361
0.6102 - 0.70961
0.4411 - 0.79171
0.2708 - 0.83361
0.1081 - 0.8429i
-0.0439 - 0.82851
-0.1875 - 0.79761
-0,3295 - 0.78371

81
0.8901 - 0.41631
0.7649 - 0.58361
0.6102 - 0.70961
0.4411 - 0.79171
0.2708 - 0.83361
0.1081 - 0.84291
-0.0439 - 0.82851
-0.1875 - 0.79761
-0.3295 - 0.75371

§al
-0.0425 - 016061
-0.0926 - 0.25621
-0.1577 - 0,31511
-0.2317 - 0.35351
-0,3085 - 0.36951
-0.3820 - 0.36321
-0.4464 - 0.33541
-0.4961 - 0.267M1
-0.5245 - 0.21951

Figure 4.24: Matlab Scattering Parameters for Microwave L-C Low Pass Filter

Network

L

1r
08
06
o4
02

0
092
04
08
08}

8|

+ 08 06 04 02 0 02

¥ Oekis
¥ 011N

_—

Figure 4.25: Matlab Smith Chart for Microwave L-C Low Pass Filter Network

4.1.7

Microwave L-C High Pass Filter Network

Figure 4.26 represents a microwave L-C High Pass Filter network. This filter

network is considered to be a four cascaded two-port systems with the inductors and

capacitors being the four cascaded systems respectively. The characteristic
impedance of the network is set to 50 Ohms and the frequency of operation is within
the range of 1.0 — 5.0 GHz with an increment of 0.5 GHz.

The developed Matlab program was used to enter all input data of the
network’s elements parameters values and ports numbers and analyze the network at
the specified range of frequencies. The same network was then analyzed using ADS
software package. Results of both ADS simulation and Matlab code implementation

are shown clearly. Smith Chart simulation results are also clearly indicated. A value

pointer is placed at 3GHz frequency point for each plot to verify the results obtained.

"S_Params_Quad_dB_Smith"

i) R, A |
JE L T N
L. L1] L2 c
+‘ Term L=1.0nH C2 L=1.0 nH <
Term1 R= ‘R= C=1.0pF +
! Nirne! b ; o Ty
y Z=50 Ohm
DisplayTemplate
disptemp!1

|$| S-PARAMETERS I
_Param _
SP1

‘Start=1.0 GHz

‘Stop=5.0GHz -
-Step=0.5 GHz

Term

Term2
Num=2
Z=50 Ohm

Figure 4.26: Microwave L-C High Pass Filter Network

45

freq

S{1.1)

§(1.2)

S21)

§2.2)

1.000 GHz
1.500 GHz
2000 GHz
2500 GHz
3000 GHz
3500 GHz
4,000 GHz
4500 GHz
5.000 GHz

-0.966 + 0.258
0.916+0.400
0822 +0.566
0613 +)0.761
0.078+0.793
0.084 +10.053
-0.381-10.030
0512+0.108
0526 +10.209

0.003 - j0.001
0.014-10.012
0.039 - 10.056
0.050 - 0.207
{.244 - 10.553
0.991 - 0.107
0,780 + 0.496
0522+ 10673
0.349+10.747

0.003 - 0.001
0.014-0.012
0.039-0.056
0.050 - j0.207
{.244 - 10.553
0.991-10.107
{.780 + 0.49%
0522+ 10673
0.349+0.747

0806 0592
0571 - 0821
0244 - 0.967
0197-0.957
639- 0476
0074+ {0038
0.134-10.358
0023- 052
0178-[0538

Figure 4.27: ADS Simulation Scattering Parameters for Microwave L-C High Pass

Filter Network

Input Reflection Coefficient

1

000GHz
1,1)=-0.078 +j0.793

o (0.204 +}0.885)

/

/

m1
y

S(1,1)

freq (1.000GHz to 5.000GHz)

Figure 4.28: ADS Simulation Smith Chart for Microwave L-C High Pass Filter

Network

46

Frequency
1.0000
1,5000
2.0000
2.5000
3.0000
3,5000
4,0000
4,5000
5,0000

i

-0.9662 +0.25771 0.0030 - 0.00141
-0.9161 4 0.40051 0.0143 - 0,01171
-0.8217 + 0.56561 0.0388 - 0.0559i
-0.6128 + 0.76111 0.0500 - 0.20651
-0.0784 + 0.79251 -0.2845 - 055321
0.0645 + 0.05331 -0.9907 - 0.10711
~0.3607 - 0.03041 -0.7799 + 0.4958i
-0.5122 +0.10791 -0.5223 + 0.67321

3

321
0.0030 - 0.00141
0.0143 - 0.01171
0,0388 - 0.05591
0.0500 - 0.20651
-0.2445 - 0.55321
~0.9907 - 0.10711
~0.7799 + 0.49581
-0.5223 + 0.67321

-0.5262 + 0.20911 -0.3486 + 0.74691 -0.3486 + 0.74691

522
0.8061 - 0.59181
0,5708 - 0,62091
0.2437 - 0.96751
-0.1969 - 0.95711
-0.6367 - 0.47561
-0.0744 + 0.03831
0.1340 - 0.35711
-0.0228 - 0.52301
-0.1716 - 0.53761

Figure 4.29: Matlab Scattering Parameters for Microwave L-C High Pass Filter

Network

s B ERE B ESE .

:\\._‘ V ‘|

-

" 58 08 04 12

- P

7 s

Figure 4.30: Matlab Smith Chart for Microwave L-C High Pass Filter Network

47

4.1.8 Microwave Microstrip Coupled-Lines Band-Pass Filter

Figure 4.31 represents a microwave Coupled-Line Band Pass Filter network.
This filter network is considered to be a four cascaded two-port systems with the
coupled-line filter sections being the four cascaded systems respectively. The
characteristic impedance of the network is set to 50 Ohms and the frequency of
operation is within the range of 0.7- 1.0 GHz with an increment of 0.02 GHz.

The developed Matlab program was used to enter all input data of the
network’s elements parameters values and ports numbers and analyze the network at
the specified range of frequencies. The same network was then analyzed using ADS
software package. Results of both ADS simulation and Matlab code implementation
are shown clearly. Smith Chart simulation results are also clearly indicated. A value
pointer is placed at 0.74 GHz frequency point for each plot to verify the results
obtained.

T We=88 3968 mil
. -S=753mil - SRS |y PR
. L=1939 897 mil M 7

DisplayTemplate = ° ~ ° =~ =~ = = °

TS A S R L U
rS_Params_Buad_dB_Smith® - - - o

Figure 4.31: Microstrip Coupled-Line Band-Pass Filter Network

48

freq (1) S S S22
700.0 MHz 0.997 +10.068 0.002- j0.032 0.002- j0.032 -0.997 +10.068
720.0 MHz 0959+ 0211 0.015- 0.04 0.015- 10.054 0959+ 0217
740.0 MHz 0.840 +0.531 -0.058.- 10.091 -0.058-10.091 -0.840 +10.531
760.0 MHz 052+ 0815 02040132 0.204- 0132 0526 +0815
780.0 MHz 0.199 +10.764 0583 +)0.155 0593 +0.155 0.199 +0.764
800.0MHz | 0210 +j5.782E4 0,003 +0.978 0003 +10978 | 0210 +5.782E4
820.0 MHz 0.013-10.035 0.873 + 0485 0.873 +]0485 0.019-10.03%
840.0 MHz -0.062- 0.144 0.906 - 0.392 0.906.- 0.392 0.062- 0.144
860.0 MHz 0.081- 0021 0.249- 10.965 0.249- 10965 -0.081-10.021
880.0 MHz 0.302-10.387 0,687 - 10.536 -0.687 - 10.536 0.302- 10.387
900.0 MRz 0.291- 0852 D412+ 0.4 D412+ 0941 0.291- 0852
9200 MRz 0733- 0647 0.140 + 0.158 0.140 +10.158 0733 0647
%400 MRz 0911-0.3% 0047 +10.109 0047 +10.109 0311- 0.39
960.0 MRz 0.9681-0.180 001440074 0014 +10.074 -0.981-10.180
980.0 MHz 099940002 | B246E5+0051 | 8.246E-5 +)0.051 039+
1.000 GHz 0987 +10.157 0.006 +10.037 0.006 +10.037 0987 +10.157

Figure 4.32: ADS Simulation Scattering Parameters for Microwave Coupled-Line

Band Pass Filter Network

m1

freq=740 OMHz
5(1.1)=-0.840 + j0.531
impedance = Z0 * (0003 + 0 289}‘,!,1 /

Input Reflection Coefficient

Aol

Figure 4.33: ADS Simulation Smith Chart for Microwave Coupled-Line Band Pass

Filter Network

49

Frequency
0.7000
0.7200
0.7400
0.7600
0.7800
0.8000
0.8200
0.8400
0.8600
0.8800
0.9000
0.9200
0.9400
0.9600
0.9800
1.0000

51
-0.9980 + 0.05231
-0.9680 + 0.24431
-0.8757 + 0.47231
-0.6503 + 0.7337i
-0.1171 + 0.8897i
0.3950 + 0.2794i
0.0521 - 0.03114
0.0081 - 0.08831
-0.1216 - 0.11671
0.1523 - 0.04521
0.0095 - 0.80931
-0.6318 - 0.7354i
-0.8829 - D.4544i
-0.9746 - 0.2139i
-0.9991 - 0.0162i
-0.9884 + 0.1499i

512
-0.0019 - 0.0364i
-0.0142 - 0.05641
-0.0479 - 0.08681
-0.1475 - 0.13071
-0.4376 - 0.05751
-0.5053 + 0.71461
0.5123 + 0.85671
0.9919 + 0.0909i
0.6826 - 0.71111
-0.2810 - 0.94651
-0.5872 - 0.00681
-0.1858 + 0.15961
-0.0542 + 0.10531
-0.0141 + 0.06431
-0.0007 + 0.04031
0.0040 + 0.02611

s21
-0.0019 - 0.03641
-0.0142 - 0.05641
-0.0479 - 0.08881
-0.1475 - 0.13071
-0.4376 - 0.05751
-0.5053 + 0.71461
0.5123 + 0.85671
0.9919 + 0.0909i
0.6826 - 0.7111i
-0.2810 - 0.94651
-0.5872 - 0.0068i
-0.1858 + 0.15961
-0.0542 + 0.10531
-0.0141 + 0.06431
-0.0007 + 0.0403i
0.0040 + 0.02611

522
-0.9980 + 0.0524i
-0.9679 + 0.24431
-0.8756 + 0.47231
-0.6502 + 0.73381
-0.1169 + 0.88971
0.3951 + 0.2793i
0.0521 - 0.03121
0.0081 - 0.08831
-0.1216 - 0.11681
0.1523 - 0.04531
0.0094 - 0.80931
-0.6319 - 0.73531
-0.8830 - 0.45431
-0.9746 - 0.21391
-0.9991 - 0.01621
-0.9883 + 0.1499i

Figure 4.34: Matlab Scattering Parameters for Microwave Coupled-Line Band Pass

Filter Network
P ——— A= %]
Fie R vew buwt Toos [P ‘].
DeEaé & Aan® ¢ 0B =D
| 2

Figure 4.35: Matlab Smith Chart for Microwave Coupled-Line Band Pass Filter

Network

50

Vector S21 obtained from the results shown in Figure 4.34 was extracted from
the results and was used to plot a linear graph of the forward transmission response of
the network shown in Figure 4.31 by plotting the magnitude of S21 over the
frequency range given. The graph plotted was compared to the graph obtained from
ADS simulation of the network and the results are shown below:

Forward Ti ssion (Linear)
= 10 - W X
freq=840 OMHz ‘
S(2 1120 988 /.23 4080 %

08-
07-
06-
05
04-
03
02-
01
00 L s _ =
070 075 080 085 09 095 100
freq GHz

Vb]

Figure 4.36: ADS Forward Transmission Simulation for Microwave Coupled-Line

Band Pass Filter Network
R —— e
[Fle £ Vew bowt Tok Destop Wedow Heb -

NDEEe &t Aan® v 08 =0 |

1
{ 1

| - - v
li ng |
‘ 08

: or R

08

4 04

H 03 \

4 02 \ |
il / _

o1

E 8 o7 o o8 om I', st

M Frequency

Figure 4.37: Matlab Forward Transmission Simulation for Microwave Coupled-Line
Band Pass Filter Network

51

4.2.2 Analysis of Microwave Filter Networks

The developed Matlab program was used to analyze and simulate some
microwave networks. For the purpose of this project, three microwave networks were
analyzed; Microwave L-C Low Pass Filter, Microwave L-C High Pass Filter, and
Microwave Micostrip Coupled-Line Band Pass Filter. Comparison of results obtained
from ADS simulation and Matlab code implementation of these networks indicates

that the results are very similar to each other with an acceptable range of accuracy.

The results obtained from Matlab program analysis of Microwave L-C Low
Pass and L-C High Pass Filter Networks are almost the same as the results obtained
from ADS analysis of the same networks. On the other hand, the results obtained
from Matlab program analysis of Microwave Microstrip Coupled-Line Band Pass
Filter Network differ a little from the results obtained from ADS analysis. This is
because the mathematical model used to implement the Matlab code in this project
may differ a bit from the ideal model ADS software uses to analyze Coupled-Line
Filter Sections. This is due to different mathematical models available to analyze
microstrip elements as explained earlier. However, careful comparison of both results

shows an acceptable range of similarity and accuracy between them.

From all the results obtained and shown clearly in the previous section, it can
be concluded that the results obtained from implementation of the Matlab code
developed in this project are very similar to the results obtained from ADS
simulation. This proofs that the method chosen to analyze microwave networks; the

Connection-Scattering Matrix method; is effective and reliable.

53

CHAPTER 5
CONCLUSION AND RECOMMENDATION

5.1 Conclusion

A defailed and practical computer code that acts as basis for an alternative
Computer Aided Design (CAD) program for microwave network analysis and design
is successfully developed in this final year project. This alternative CAD program is
to be specially developed to fulfill the requirements and learning outcomes of
Microwave Engineering courses at universities and engineering institutions. The
computer code required in this final year project is developed based on the
Connection-Scattering Matrix method and implemented via Matlab 2007 software
package. A detailed verification of the results obtained is successfully achieved
through comparison with the results obtained from Advanced Design System (ADS)

software packages used for analysis and simulation of microwave networks.

The developed Matlab code successfully achieved the main objectives of this

final year project as follows:

i. Successfully performs computerized analysis and simulation of microwave

neitworks with accurate and reliable results.

ii. Incorporates a suitable Graphical User Interface (GUI) for an easy and

convenient usage and implementation of the developed code.

iii. It is an open-source code that students can easily access to modify for further

development.

54

5.2 Recommendations

This final year project successfully developed an open source Matlab code
that can be used as a basis for an alternative CAD program for microwave network
analysis and simulation. This Program can be implemented to fulfill the requirements
and learning outcomes of Microwave Engineering courses at universities and
engineering institutions as an alternative to the expensive available CAD programs
currently being used. It is recommended that students access and modify the
developed code for further enhancement of the program. There are several areas of

improvements can be implemented on the developed code such as:

5.2.1 Number of Network Components

It is recommended that the developed code program be further improved by
including the option of using more than six components to analyze any given
microwave network. The program can include the option of ‘Add Component’
whenever the user needs to analyze microwave networks that contain more than six

network components.

5.2.2 Analysis of Other Microwave Elements

The developed program allows the user to select a network component from a
menu that contains five different microwave elements. It is recommended that the
program be further improved by including the analysis of microwave elements such

as stripline elements and other lumped and microstrip elements.

5.2.3 Simulation of Microwave Networks

The developed program allows the user to perform network simulation by
plotting the Smith Chart of the input reflection coefficients; S11 vector. The program
can be further developed by developing Matlab codes to plot the network response in
terms of S21 and $12 vectors and include these plots in the GUI developed in this

project. These plots can be very useful in design and analysis of microwave networks.

55

REFERENCES

[1] Janusz A. Dobrowolski & Wojciech Ostrowski, Computer-Aided Analysis,
Modeling and Design of Microwave Networks, The Wave Approach. Artech House,
Boston, London, 1996.

[2] Vito A. Monaco, Computer-Aided Analysis of Microwave Circuits, 1EEE
Transactions on Microwave theory and Techniques, Vol. MTT-22, No. 3, March
1974.

[3] Less Besser, Rowan Gilmore, Practical RF Circuit Design for Modern Wireless
Systems, volume 1, Passive Circuits and Systems, Artech House, Boston, London,
2003.

[4] bttp://www.microwaves101.com/encyclopediahistoryCAD.cfim

[5] Guillermo Gonzalez, Microwave Transistor Amplifiers, Analysis and Design, 2™
Edition, Prentice Hall, Inc. © 1997.

[6] Gupta, Computer Aided Design of Microwave Circuits, Artech House, Boston,
London, 1981, chapters 11, 19 and 20.

[7] Gunter Kompa, Practical Microstrip Design and Applications, Artech House,
Boston, London, 2005.

[8] Mongia, Bahl, Bhartia, Hong, RF and Microwave Coupled-Line Circuits, nd
Edition, Artech House, Boston, London, 2007.

56

APPENDIX A

» Subroutines to Calculate Scattering Parameters for a Series inductor:

%$%% Function to calculate Scattering Parameters of a Series I[nductor
5%% for a given range of frequencies

function s_inde series=s all indc_series(%0,L, fl, £2, incrt)
f1 = £1*1079; % Start frequency in GHz
£f2 = £2+%1079; Stop frequency in GHz
incrt = incrt*1079; frequency increment value in GHz
L = L*10%-9; Inductor wvalue in nH
s_indc_series=[]:
for i=fl:incrt:£2
k=INDC SERIES(Z0,1i,L};

o

[<is)

an e

Loop repeats based on increment in frequency
calculate Scattering Parameters for one
frequency at a time

g_1indc series=[s_indc series;k];
end

o gl g@

function LM = INDC SERIES(ZC, f,L)

w=2*pi*£f; % 'f£' 1s the freguency of operation
Z=w* L * i; % 'L'" is the inductor wvalue in nH

SL11 =2 / (Z + 2 * Z0}; % 'Z0' is the characteristic impedance
SL12 =2 * Z0 / (2 + 2 * Z0};

SL22 = SL11;
SL21 = SL12;
LM = [SL11 SLl12 SL21 SLz22];

» Subroutines to Calculate Scattering Parameters for a Shunt Inductor:

%%% Function teo calculate Scatterxring Parameters of a Shunt Inductor
%% for a given range of freguencies

function s_indc shunt=s all indec_shunt{z0,L,fl, f2, incrt)
fl = £f1*1079; % Start frequency in GHz
£2 £2*10"9; Stop frequency in GHz

]

K
incrt = incrt+*1079; % frequency increment value in GHz
L = L*10"-9; % Inductor value in nH
5_indc_shunt=[];
for i=fl:incrt:£2 % Loop repeats based on increment in fregusncy
k=INDC SHUNT(Z0,i,L}; % calculate Scattering Parameters for one
% freguency at a time

s_indc_shunt=[s indc shunt;k};
end

function LM1 = INDC SHUNT(ZO, f£,L)
w=2*pi * £; % 'f' is the frequency of operation
2 =w * L * i; % 'L' is the inductor value in nH

Y= 1/2;

SL11 = —-ZO0*Y/ {2+ 20*Y); % 'Z0' is the characteristic impedance
SL1z = 2 / (2 + Z0*Y);

8122 = SL11;

SL21 = SL12;
LMl = [SL11 SL12 SL21 SL22};

» Subroutines to Calculate Scattering Parameters for a Single Microstrip Coupled-Line Filter
Section:

%%% Tunction to calculate Scattering Parameters of a single microstrip
5% coupled line filter section for a given range of freguencies

ks

o of

function s_coupled=s all coupled{input_coupled, f1,f2, incrt)

W= input coupled(l}: % width of the substrate

h =input coupled(2}; % height of the substrate

L=input coupled(3}; Length of the inductor

s=input coupled(4); separation between conductors

Er= input coupled(5}: dielectric constant of the substrate material

£f1 = £1*10"9; start freguency in GHz

£2 = £2%10°9; stop frequency in GHz

incrt = incrt*10°9; increment in freguency in GHz

s_coupled=[];

for i=fi:incrt:£f2 % loop repeats based on the frequency increment

k=Coupled(h,W,s,L,1,Er);
s coupled=[s coupled;k];

e B e

[FEa]

oo

end
function [8] = Coupled(h,W,s,L,f,Er)
ERE = Dielec (W,Exr,h):; % calculate the effective dielectric constant

=5

Zu = IMPWU(ERE,W, h):;

Eree = Dielec even (W,Er,h,s,ERE);
Ereo = Dielec odd (W,Er,h,s,ERE);

z =IMPEC (W, h,s,Er, ERE,Eree,Ereo, Z2u) ;

calculate the impedance based on ERE
calculate even-mode impedance
calculate the odd-mode impadance
calculate the characteristic impedance

o

.
e

e

c = (0.3*%10"9; % speed of light

L = L*2.54*%10"~5; % length of the conductor

wp = 2.0%pl*f;

Beta = wp* ((sgrt{ERE))/c):

teta = Beta *L; % electrical length of the coupled iine
7 = 7 param(z{(1l),z(2),teta); % calculate the Z-parameters of the line

Z0 =50;
S = conZ28(2(1),2(2),2(3),2(4),20);

o

calculate the S-parameters of the line

%% Function to calculate the Effective Dielectric Constant based on
)
=)

%%% given dielectric constant and substrate height and width

o
rel

function ERE = Dielec (W,Er,h); % 'W' is the substrate width
u = W/h; % 'h' is the substrate height

AL = 1 + {1/49)* log({u™d + {(u/52)°2)/ (u™d + 0.432));

A2 = (1/18.7)*log {1+ (u/1l8.1)"3);

A = Al +AZ;

B = 0.564 *{(Fr - 0.9)/(Exr + 3})70.053; % 'Er' is the dielectric constant
EWh =(1+ (10/u))"™ (-A*B};

ERE = ((Er+l}/2)+((Ex - 1)/2)*FWh;

o

o8 oR

Function to calculate the characteristic impedance from known FRE, width
and height of the substrate

o1y
oe ol

function Zu = IMPWU(ERE,W,h};
1= W/h;
fu =6 + {(2*pi)=-6)}* exp (-1*{30.666/u)"0.7528);

7u (60/sgrt (ERE)} * (log {(fu/u) + sgrt {1 + (2/u)"2)});

%%% Function to calculate the Effective Dielectric Constant for the even mode

function Eree = Dielec even (W,Er,h,s,ERE);

u = W/h;

g = s/h; %is' is the separation between conductors

v = {u *(20 + g*2)/{10 + g*2))+ g*exp(—g);

aev = 1 +(log{((v“4)+(v/(52)A2))/((v“4)+0.432)}/49)+(log(l+(v/18.1)“3)/18.7);
bev = 0.564 *{(Er-0.9)/{(Er+3))"~0.053;

Eree = 0.5*% (Er+l1) +0.5*(Er-1)*(1+ (1l0/v))~ (-l*aevi*bev);

o0
B0

% Function to calculate the Effective Dielectric Constant for the odd mode

function Erec = Dielec odd (W,Er,h,s,ERE);

e = W/h;

g = s/h;

aod = 0.7287 * (ERE-0.5* (Erx+l))*(l-exp(~-0.179%u));

bod = (0.747 *Er}/(0.15+4Er);

cod = bod-(bod-0.207)*exp(-0.414%u);

dod = 0.59340.6%4*exp(-0.562*u);

Ereo = (C.5* (Er+1)+acd-ERE) *exp{-cod*g~dod)+ ERE;

%%% Function to caleculate the even and odd modes impedances

function [Zm] = IMPEO{W,h,s,Er,ERE,Eree,Ereo, Zu);

u = Wh;

g = s/h;

01 = 0.8695*% {(u)"0.194;

Q2 = 140.7519%g+0.189* (g) ~2.31;

03 = 0.1975+(16.6+(8.4/g)"6)"~0,.387 +log({gn10)/{(1+{g/3.4)~10))/241;
Q4 = (2*Q1/Q2)* (exp(-g)*(u"Q3)+(2-exp(~g))* (u"-03))"-1;

Ze = Zu* (sqrt(ERE/Eree))*(1L/(1-(Z2u/377)*((ERE})"~0.5)*Q4));

05 = 1.794+1.14*1og{1+(0.638/(g+0.517*(g)*2.43)));

Q6 = 0.2305+1log((g)"10/(1+(g/5.8}710}))/281.3+10g(1+0.598*g"1.154)/5.1;
Q7 = (10+190%(g)"2)/(1+82.3* (g} "3);

Q8 = exp(-6.5 -0.95%log(g)-{g/0.15)~5);

09 = log (Q7)*(Q8+ {1/16.5)};

Q10 = ((Q2)"-1)*(Q2*Q4-05*exp(log{u) *Q6* (u) ~-09));
%o Zu* (sqrt(ERE/Ereo})* {1/ (1-{(Zu/377)* ({(ERE)"0.5)*Q10));
2m = [Ze Zo];

il

% Function to calculate the Z-parameters of single coupled line Cilter
% section from the known Ze and Zo

function [Z] = Z param(Ze, Zo,teta};
Z0 = sqrt (Ze*Zo);

7211 = {-i/2)*(Ze +Zo)*cot {teta);
22 = zl11;
212 = (-i/2)*({7Ze -Zo)*csc (teta);
221 = 212;

2 = [211 Z212 Z21 Z22 Z0];

5%% Function to convert the Z-parameters to Scatltering Parameters
functicn [Sz] = conZ28{Z11,212,221,%222,20};

Zdelta = (211 + ZO}*(Z22 +Z0)- Z12*Z21;

311 = ((Z11 - Z0)*(Z22 + Z0} - Z12+*Z21)/Zdelta;

312 = (2,0%212+20) /Zdelta;

321 =

(2.0%221*20) /Z2delta;

S22 = ({Z1l1l + ZO)*(722 - Z0) - Z12*Z21)/Zdelta;
Sz = [811 512 3821 82271;

> Subroutines to Calculate Scattering Parameters for a Single Microstrip Tee Junction:

3% Function to calculate Scattering Parameters of a single microstrip tee
%%% Junction for a given range of frequencies

function s_tee=s all tee(input tee, fl, {2, incrt)

Wil= input tee(1); width of the maln substrate

W2= input_tee{2); width of the second substrate

h= input tee(3); height of the substrate

Exr= input_tee(4); dielectric constant of the substrate material
£1 = £1*10"9; start frequency in GHz

DE aR o0 ol

st

£2 = £2*10°9; % stop frequency in GHz

incrt = incrt*1079; % lncrement frequency in GHz

5 _tee=[];

for i=fl:incrt:£2 % loops repeats based on frequency increment

k=tee junc(Wl,W2,Er,h,i);
s_tee=[s_tee;k];
end

%% Function to calculate Scattering Parameters for microstrip Tee Junction

function [8] = tee junc (W1l,W2,Er,h,f);

Wl = Wi*(2.54%10"-5); 5%5% put it in maters
W2 = W2*(2.54*10"-5);

h = h*(2.54*107~5);

ul = Wl/h;

All = 1 + (1/49)* log{({ul™4 + (ul/52)72)/ (ul~d + 0.432));
AlZ2 = (1/18.7)*log {1+ (ul/18.1)"3);

Al = A1l +Al12;

Bl = 0.564 *{(Er - 0.9)/(Er + 3})"0.053;

FWhl ={1+ (10/ul)}~ (-A1*Bl1);

ERE1l = ((Er+1)/2)+({Er - 1)/2)*FWhl;

ful = 6 + ((2*pi)-6)* exp (-1*(30.666/ul)"0.7528);

Zul = (60/sgrt(ERE1l}) * {(log ((ful/ul) + sgrt (1 + (2/ul)"2)));
u2 = W2/h;
A21 =1 + (i/49)* log{{u2™4 + (u2/52)"*2)/ (u2”~4 + 0.432)});

B22 = (1/18.7)*log (1+ (u2/18.1)"3);

A2 = A21 +A22;

B2 = 0.564 *((Er - 0.9)/(Er + 3))70.053;

FWh2 =(1+ (10/u2))~ (-A2%B2);

ERE2 = ((Er+1)/2)+((Er - 1)/2)*FWh2;

fu2 = 6 + ((2*pi)-6)* exp (-1*(30.666/u2)~0.7528);

Zuz = (60/sgrt(EREZ2))} * (log {(fu2/u2) + sgrt (1 + (2/u2)°2)});

Z0 = 50;

= = 0.3%10"9; $%% speed of light
Lwl = (Zul*sqgrt (ERE1))/c;

w2 = {Zu2*sgrt (ERE2))/c:

-t
L1

(({10C/tanh{0.0072*Zu2))+0.64*Zu2-261) *W1); %% in pF
(-W2/h* ((W2/h)* (-0.016* (W1/h)+0.064)+0.016/(W1l/h)}*Lwl}*h; %%% in nH

[

L2 = {{(0.12%(W1l/h)-0.47)*{W2/h)+0.195*% (Wl/h)-0.357+0.0283*%sin(pi* (Wl/h}-
0.75*%pi}) *LwZ2) *h;

X1 = i*2*pi*f*L1/20;

X2 = i%2%pi*f*L2/20;

X3 = 1/i*2%pi*F*Z0*Ct;

Zinl = ({1+X1)*(1+X2)* (1+X3))/ ((14+X1}* {1+X1+X2+X3) + ((1+4X2) * (X14X3))) ;
Zin2 = ({1+X1)* (X2+X3))/ (1+X1+ (2% (X2+X3)));

311 = (Zinl -1)/{Zinl+1);

§22 = 811;

512 = ((1-S11)*X3*{14X2))/ ((I+X2) * (14XI+X3) +X3* (1+X1)) ;
821 = 812;

S13 = {({1-S11)*X3* (1+X1)}/{{1+X2)* (1+X1+X3)+X3* (1+X1));
531 = 813;

523 = 513;

8§32 = 523;

833 = (Z2in2 ~1)/(2in2+1);
[S] = [811 512 813 821 822 823 531 832 S$33]1;

> Subroutines to Calculate Scattering Parameters for a Single Open-End Microstrip
Transmission Line:

ial

% Function to calculate Scattering Parameters of a single microstrip
% copen-end Transmission line for a given range of freguencies

o oo
o

3
o
o3

©

%

function s_open=s_all open(input line,fl, f2,incrt)
W= input line(1); Width of the substrate
h= input line(2); height of the substrate
I= input line(3); length of the conductor
Er= input line(4); dielectric constant of Lhe substrate material
fl = £1*10"9; start frequency in GHz
f2 = £2*10"9; stop freguency in GHz
incrt = incrt*1079; frequency increment in GH=z
s_open=[];
for i=fl:incrt:f2 % loop repeats based on the frequency increment
k=open endl{W,h,L,Er,i);
s_open=[s open;k];
end

40 GG ab &0 oo

&

oo

Q

%% Punction to calculate Scattering Parameters for an Open-End Microstrip
%% Transmission Line

function 811 = cpen endl (W,h,L,Er,f};

u = W/h; N

Al = 1 + (1/49)* log{{u™d + (u/52)"2)/ (u™4 + 0.432));
A2 = {1/18.7)*leog {1+ (u/18.1)"3);

A = Al +AZ2;

B = 0.564 *((Exr - 0.9)/(Exr + 3)})"0.053;

FWh =(1+ (10/u))” (-A*B};

ERE = ((Er+1)/2)+{((Exr - 1)/2)*FWh;

fu =6 + ((2*pi)-6)* exp (-1*(30.666/u)"0.7528);

Zu = (860/sgrt{(ERE)} * (log ({fu/u) + sgrt (1 + (Z2/u}"2)));
c = 0.3*10"9; %% speed of light

Z0 =50;

h = h*{2.54 *10"-5);

L = L*({2.54 *10"-5);

DL = (0.412*h*{ERE+0.3)* (u+0.264))/((ERE-0.258)* (u+0.813))+L;
BL = DL*2*pi*f*sqgrt (ERE}/c;

Zin = = i* Zu*cot (BL):

S11 {Zin-20) /{Zin+20);

» Subroutines to Set Input Data Files for all Network Elements:
%% Tunction to initialize all input data files for all elements

function initial all

findc = fopen{'INDC SERIES data','w'); % series inductor input data file
fclose (finde) ;

findel = fopen{'INDC SHUNT data’,'w'); % shunt inductor input data file
fclose{findcl);

fcap = fopen ('CAP SERIES data’,'w'); % series capaclitor input data file
fclose(fcap):

fcapl = fopen('CAr SHUNT data’,'w'}; % shunt capacitor input data file
fclose {fcapl);

fcoupled=fopen (' Coupled data’', 'w'}; % coupled line ipput data file
fclose(fcoupled);

fjunc = fopen('i junction acata','w’'}; % tee junction input data file
fclose(fjunc);

fline = fopen('Cpen End cata’,'w'); % open-end line input data file
fclose(fline);

1. Series Inductor

$%% Function to create input data set for all series inductor elements
%%% selected by the user for n number of times

function inductor_ series data {indcl)
findc series = fopen('INDRC SERIES data','a'}; % open file and append data
% from the end without overwriting
fprintf (findc series,' %g',indcl);
fclose{finde series);
$%% Funciion to read input data for all seriss inductor elements
function inductor series =inductor series read ()}
findcl = fopen(inue Sekits aata’);
inductor series =fscanf (findcl, '&f'};
fclose(findcl);

2. Shunt Inductor

runction to create input data set for all shunt inductor elements
selected by the user for n number of times

function inductor_shunt data (indc2)
findec shunt = fopen('INDC SHUNT data','a'}; % open file and append data
% from the end without overwriting

fprintf(findc shunt, ' %g',indc2);
fclose(finde shunt);

% Function ¢ read input data for all shunt inductor elements

function inductor shunt =inducter shunt read ()
findc2 = fopen('INDC SHUNT_ data');
inductor_shunt =fscanf(findcz, '%f'};
fclose{findc2);

3. Series Capacitor

[N

unction to create input data set for all series capacitor elements
elected by the user for n number of times

%% F
%% s
function capacitor_series data (cap2)

fcap series = fopen('CAP SERIES data','a'); % open file and append data

Q

3 from the end without overwriting

fprintf(fcap series, ™ sg',cap2);

fclose(fcap series);

%% Function to read input data for all series capaciltor elements
functicn capacitor series = capacitor_series read()

fcap?2 = fopen(Car Skrik3 data);

zapacitor series=fscanf (fcapZ,'%L');

fclose (fcap2);

4. Shunt Capacitor

209
[S =l
3

Function to create input data set for all shunt capacitor elements
selacted by the user for n number of times

%
@ o
TQ

]

function capacitor shunt data {capl)
fcap shunt = fopen{'CAP SHUNT data','a'); % open file and append data
% from the end without overwriting
fprintf (fcap shunt,' %g',capl});
fclose(fcap _shunt);

&G

5%% Function to read input data for all shunt capacitor elements
function capacitor shunt = capacitor shunt read()

Ecapl = fopen('CAl sSHunI data};

zapacitor_shunt=fscanf (fcapl, "'%£');

fclose (fcapl);

§. Microstrip Coupled Line Filter Section

[functicn te create inpuft data set for all coupled line filter sections
selected by the user for n number of times

unction coupled_data (Width, leight, Length, Seperation,D constant;
fcoupled = fopen('Coupled data','a');

fprintf (fcoupled, "\n g sg %9 39

sg',Width, Height, Length, Seperation,D constant):

Iclose (fcoupled) ;

7%% Function to read input data from user for each coupled line sechtions
‘unction coupled = coupled read()
Icoupledl = fopen|('Coupled data');:
oupled=[};
lor i=1:10
if(fecof{fcoupledl)) % if no data stored in the data file

break
end
Jecoupledl=fscanf (fcoupledl, 'sq g %g %qg %g', [l 51);
Joupled=[Coupled;Dcoupledl] ;
and
fclose (fcoupledl);

6. Microstrip Tee Junction

% Function to create input data set for all tee junction elements selected
% by the user for n number of times

functicn tee junc data(Widthl,Width2,Height,D_constant)

fjunc = fopen('T juncticn data','a'};

fprintf (fiunc, *\n %g %g %g %g',Widthl,Width2,Height,D_constant);
fclose (fjunc) ;

3%% runction to read input data from user for each tee_junction element
function tee junc= tee junc_read {)
fjuncl = fopen(¥ _junction cata‘)
T junction=[};
for i=1:10
if(feof(fjuncl}) % 1f no data stored in the data file
break
end
Djuncl=fscanf {(fjuncl, ‘59 sg sg g ,[{1 431);
Tﬁjunction=[T_junction;Djuncl];
end
fclose (fjuncl);

7. Microstrip Open-End Transmission Line

b

$%% TFunction to create input data set for all open end transmission line
%%% sections seclected by the user for n number of times

function open end data(Width,Height,Length,D censtant)

fline = fopen('Cpen End data','a’);

fprintf (fline, '\n %g %g %g %g',Width,Height,Length,D constant);
fclose(fline);

%% Function to read input data Lrom user for each cpen _end line eliements
function line = open_end read{)
flinel = fopen(iupen rnd cata'});
Open End=[];
for i=1:10
if{ feof({flinel)) % 1f no data stored in the data file
break
end
Dlinel=fscanf(flinel, ‘n\ sg zg9 sq sq',[1 41});
Open End=[Open End;Dlinel];
end
fclose(flinel};

> Subroutine to Set Number of Ports for all Network Elements:

%%% Function to determine the element's number of ports when selected from
%%% the menu by the user

function [Ep]l=elements (menues)

Ep=[1;
for i=1:6 % for this program we are using up to 6 elements max
1f menues (i)==1
break
end
switch menues (i)
case 2
Ep=[Ep 21; % series inductor, 2 ports
case 3
Ep=[Ep 2]; % shunt inductor, 2 ports
case 4
Ep={Ep 21: % series capacitor, 2 poris
case 5
Ep=[Ep 21: % shunt capacitor, 2 ports
case 6
Ep=[Ep 2]1: % coupled line filter section, 2 ports
case 7
Ep=[Ep 31: % tee Jjunction, 3 ports
case 8
Ep=[Ep 11; % open-end line, 1 port
end ’
and

» Subroutines to Set the Scattering Matrix for all Selected Elements in the Network for the
Range of Frequency of operation Specified by the User:

5%% Function creates matrices for esach element that contains scattering
%% parameters for all freguencies in the range given

$ read input data values for selected elements depending on how many times
¥ they have been selscted by the user

function [Smatrix]=individual S (menues, fl,f2, incrt, z0)
o=[1:

_indc series=[];

_indc_shunt =[];

_cap_series=I];

_cap shunt=[];

coupled=[]:

_june=[1;

line={];

ement times
i,1,1,,1,,1,1,41,1,1,1,1,1,1,1,1,1,%,1,1,1,1,1,1,1,1,1
(1.1,11; % to specify how many times the e

[NV R TR U R U RV R VIRV F |

= o—

f1,1,1,1,1,4,1,1,1,1
' lement is used
Zor i=1:6 % for this program we are using up to 6 elements max
1f menues (i)==1
break
end
switch menues (i)
case 2
inductor series=inductor series read {);
temp =
3 all indc series(Z0,inductor series{element times(1)),fl,f2,incrt);
S indc series=[S indc_series; temp]:

element times(l)=element times(1)+1;
2indicates that series inductor has been chosen mere than one time
Ep=[Ep Z2]; % element has 2 ports

case 3
inductor shunt=inductor shunt read ({};
temp =

s_all indc_shunt (Z0, inductor shunt (element_times (2)), fl, f2,incrt);

5 _indc shunt=[S_indc shunt; temp];
element times(2)=element times(2}+1;
$indicates that shunt inductor has been chosen more than one time

Ep=[{Ep 21; % element has 2 ports

case 41
capacitor series = capacitor series read(};
temp =

s_all cap_series (Z0,capacitor_series(element times(3)),fl,f2,incrt);

=]

S _cap series=[S5 cap series; temp];
element times(3)=element times(3}+1;

$indicates that series capacitor has been cheosen more than one time
Ep=[Ep 2]; % element has 2 ports

case 5
capacitor shunt = capacitor_shunt read():
temp =

_all cap shunt(Z0,capacitor_shunt (element times(4)),fl,f2,incrt);

5_cap shunt=[5 cap_ shunt; tempi;
elenment times(4)=element times(4)+1;
%indicates that shunt capacitor has been chosen more than one time
Ep=[Fp 21: % element has 2 ports

case b
coupled = coupled read {);
temp =s_all coupled(coupled({element times(5},:},fl,f2,incrt);
S coupled=[5_ccupled; temp]:
element_times(5)=element_times(5)+1;
$indicates that coupled line has been chosen more than one time
Ep=[Ep 2]; % element has 2 ports

case 7
tee junc= tee_junc_read ();
temp = s _all tee(tee junc{element times(6),:),fl,f2,incrt);
S junc={S5 junc; temp];
element times{6)=element times(6)+1;
$indlcates that tee junction has been chosen more than onz time
Ep=[Ep 3]:; & element has 3 ports

case B8
line =open end_read ();
temp =s all open(line{element times(7),:},fl,£f2,incrt);
3 line=[S line; temp];
element times!/)=element times(7)+1;
tindicates that open-end line has been chosen more than cne tims
Ep=[Fp 1]: % element has 1 port

end
end

Sp_all=[];
freq range = size((fl:incrt:£2),2);: %frequency range given

for i=l:freq range
temp indc_ series=0;
temp indc_shunt=0;
temp cap series=0;
temp_cap_ shunt=0;
temp_coupled=0;

temp tee=0;
temp line=0;
Sp=[1:

for j =l:size(Ep,2) % the no of elements
switch menues(j) % to follow the elements in crder specifying
thelr type
case 2
row = temp_indc series*freq range+i;
Sp=[{Sp S _incdc series(row,:)];
temp indc series=temp indc series+l;
case 3
row = temp_indc_ shunt*freq rangeti;
Sp=[8p 5§ indc_ shunt(row,:)I;
temp_indc shunt=temp_indc_shunt+l;
case 4
row = temp cap series*freq range+i;
Sp=[Sp 5 cap_series(row,:)];
temp cap series=temp cap_ series+l;

case 5
row = temp cap shunt*freq range+i;
Sp=[Sp S_cap_shunt (row,:)];
temp cap shunt=temp cap shunt+1;

case 6
row = temp coupled*freq range+i;
Sp=[8p 8 _coupled(row,:}};
temp coupled=temp coupled+l;

case 7

row = temp_ tee*freq range+ti;
Sp={Sp S _tee(row,:}];

temp tee=temp tee+l;

case 8
row = temp line*freq range+i;
Sp=[Sp 5 line{row,:}];
temp line=temp line+l;
end
end
ip_all = [Sp_all ;Spl;

snd

a

fprintf(fnet,' %g',port{i)):; % put user input value
end
end
fclose (fnet) ;

$%% Function to read input data file for network topology and selt cont matrix
$%% based on values for elements ports numbers

function [cont matrix] = netlist read{Ep)
fnetl = fopen('Netlist data'}; % open file that contain input data
netlist old=facanf (fnetl,"' %g'); % reads stored data for input

fclose (fnetl);

netlist=[];
for j= 1:24
netlist=[netlist netlist_old(j,1)i;

4 port places for each element
arrange input data properly Tto be
used in the function

ol ot ol

end

temp=1;

netlist matrix=[];

for i=1:6 $ up to 6 elements 1in the network
k=netlist (temp:2Z2+temp}; % take one row of input data at a time
t=k>0; % consider only non-negative values

temp=temp+4;
if(sum{t))>0

% set matrix that contains user input values only
netlist matrix=[netlist matrix; k];
end

and

element no=size({netlist matrix,1);
zont matrix=zeros({element no};
for i=l:element no h
fer j=itl:element no
% check for connection
x=test connecticn{netlist matrix({i,:),netlist matrix(j,:)):

cont_matrix(i,j)=1; % set cont matrix based on connection
cont matrix(j,i)=1;
end
end
znd
5%% Function to test connection betwesn ports based on egquality in ports
0. -
5% numbers

Lo
)

function equ_element= test connection(A,B)
:qu_element=0;
for i=1:4
for J=1:4
equ element=isequal (A(i},B(3))+ equ element; % save any equality found
end
end

L oL

L
(e
g
Vo

(3]

function topo = topo (Np,con matrix)

n=

Function to set the Connection Matrix for the network based on
previcusly determined cont matrix and number of ports of each element

con matrix describes how elements
are connected
he number of ports of each element

T a0 o

% Np describe
size (Np,2);

topo=zeros (n*2+2);

for

end

»

o
‘a

[
RG]
20009
CTY
2D
THE

%5

i=l:n
if sum{con matrix(i,:)) < Np(i)
for k=2:2*n-1 3 lcop valid for the interconnected ports
if mod(k,2)==0 % condition depends whether wave npumber is even or odd
topo(k, k+1)=1;
else
topol(k,k-1)=1;
end
end
else % vallid for the external input and cutput ports
tope(l,2*n+l) =1;
topo(2*n+l1,1) =1;
topo (2*n, 2*n+2) =1;
topo (2*n+2,2*n) =1;
end

Subroutines to Calculate Scattering Parameters for the overall Network based on previously
determined Scattering Matrix and Connection Matrix:

Function that determines and displays the Scattering Parameters for the
overail network based on the previously determined Scattering and
Connection Matrices

function [8]=Cal_ S{topology,Smatrix, fl, £2, incrt, Ep)
S5=[1;

n=1;

a=sum (Ep} ;
freq range = size((fl:incrt:£2),2);
k=f1;

for

and

i=l:freq range % for the whele range of frequency determined

%% determine the Connection Scattering Matrix
%% determine the reflected and incident waves vectors

[Al, A2 ,B1 ,B2]= W(topology, Smatrix(l:sum(Ep),m:n)) ;
%%% determine the scattering parameters for specified freguency

Sf = Calc (Al ,A2 ,B1, B2);
m = mt+ sum(Ep);

n=n + sum(Ep):

S = [8; k 8f]:

k = k+incrt;

fprintf (' Freguency A\t AL AE AE STL Mt AT ANE NESLIZ NE AT AT SZ21 ntoAND AT
\EsZ22h\n'!

(
y:
disp (8S)

2%% Function to determine the connection-scattering matriz and incident
% and reflected wave vectors

function [Al,A2,Bl,B2]}=W(gama,S matrix) % Function returns vectors A and B
% {incident and reflected waves)

n=size (S matrix,1);

m_smatrix=zeros(n+2}; m matrix is the modified S-matrxix with the

appropriate size

Substituting S~matrix into the modified one

Substract the S-matrix from the gamma matrix

[SE=g: S

m smatrix{l:n,1:n)=S_matrix;
Ibr=gama-m_smatrix;

=i

F{W matrix)

Cl=zercs{size{gama,1),1):
C2=zeros(size{gama,1),1);
Cl{n+1)=1; % Excitation to detexmine 511 and S21
Cl{nt+2)=0;
C2(n+1}=0; % Excitation to determine S12 and 322
C2(n+2)=
Al=inv{Ibr)*Cl; % Calculate the inverse of W matrix.

% (Determine the incident waves to calculate S11 and S21)
Bl=gama*Al; % Determine the reflected waves to calculate 511 and S21
AZ=inv{Ibr)*C2; % Determine the incident waves Lo calculate 512 and 522
B2=gama*A2; % Determine the reflected waves to calculate 512 and S22
%%% Function to calculate the required Scattering parameters from obtained
%% incident and reflected waves

function [S]=Calc{Al,A2,Bl,B2);

al=Al(1);

bl=Bl (1) ;

aex=Al {end-2}; % Incident wave at the external output port
bex=Bl (end-2}; % Reflected wave at the external output port
Sli=bl/al; % Calculate S11

RE 311 = real (5811);

IM 511 = imag(S1il);

freflect = fopen('Reflect data','a'); % cpen file and write new data
% based on user input

fprintf{freflect, '\n %g %g',RE S11,IM S11};

fclose (freflect);

321=bex/al; % calculate 521

al=RA2(1);

21=B2 (1} ;

aex=A2 (end-2) ; % Incident wave at the external output port
xex=B2 (end-2) ; % Reflected wave at the external ocutput port
312=bl/aex; % Calculate 312

322=bex/aex; $ Calculate 522

3 =[811 812 521 8522]3;

¥ Subroutine to Plot Smith Chart from Calculated $11 for the Network

$%% Function to determine vector 71 {load impedances) from vector S11
3

2

3%% (reflection coefficients)

function 8 Z1(fl,£f2,incrt,Z0)
Z1={1:

ref coef =[];

ref num={];

freq range = size({fl:incrt:£2),2};
freflectl= fopen ('Reflect data');

%% Read the real and lmaginary parts of 511 calculated earlier
for j=1l:freq range

reflectl=fscanf (freflectl, '\n zg sg', [1 2]):

ref num=[ref num; reflectl]:

end N

%%% Form S11 into complex numbers and put them in vector form
for n=1:freq range

ref complex=ref num (n,1)+ref num(n,2)*i;

ref coef= [ref cocef ref complex];

%%% Determine vector #1 from vector S11
for m=l:size(ref coef,2)
21 (m)= -20* (ref ccef(m)+1)/(ref coef{m)-1};

smith (Z1, 20)
fclose (freflectl):

oo

of g0 gl o X

SMITE (%1,70) draws a Smith chart of the Complex impedances in zl,
normalized to the real valued characteristic impedance Zo.
Originally basad on some Matlab code by Antony-Dean McKechnie & Neville
Wilken in their final year project of their BSc(Eng} at Wits.
But rather heavily rewritten by Alan Reobert Clark, PrEng.

Dept Elect. Eng

P.O.Wits

2050 South Africa

clark@odie.wits.ee.ac. za

15 December 18952.

oo oo

4O g g

o= gf e

gd ¢ of o oo

e

function smith (Z1, Zo);
Set up Constant Resistance Circles;
and Constant reactance c¢ircles -- but crop at OQuter Circle.
= [1 0.826 0.665 0.500 0.334 0.162];
axis([-1 1 -1 17);
Re = [1,2,5,5];
Im = [0.2 0.5 1 2];
for 1 = 1:4
p = (0:(Re(i1)/100):Re(i))"';
g = p-p+Im(i);
Icircl = p+i*qg:;
Icire2 = p~j*q:
rhol=(Icircl-1)./ (Icircl+l);
rho2={Icirc2-1)./(Icirc2+1};

Koo g

rhomag = abs{rhel);
Circm(:,1i)= rhomagy;
Circp = angle{rhol);
Circpl{:,1) = Circp;
Circp = angle(rho2);
Circp2{:,1i) = Circp;
end,
inc = 2*pi/100;
theta = 0:inc:pi;
phi = 0:2*inc:2*pi;
RV = phi-phi+0.329;
for i=1l:6
Rl = 2*r(:,i)*sin{theta+pi/2);
yl = Rl.*sin(theta);
x1 R1l.*cos ({theta);
yZ2 = yl;
X2 = x1+{1-2*r (i));
R = sgrt(x2."2+y2."2);
R2(:,1) = R";
thetal = atan{(y2./x2));
for p=l:length{x2) % Crop at 1
if x2(p) < 0, thetal(p)=thetal(p)-pi; end:
and,
theta2{:,1) = thetal’;
end
hold on
polar(thetaZ,R2};poclar{Circpl,Circm, ‘--p*):; pelar{ Circp2,Circm);
poiar (phi,RV);
% Fill in the Real axis
x=[-pi 0];
y=[1 1];
polar (x,y, " 'w:"};
text(-pi,1.1,'0');
text (-pi,0.66,"'.2");
text (-pi,0.33,'.5');
text(0,0,'17);
text (0,0.33,'2");
text (0,0.66,'5");
text (0,1.05, 'znt'};
text(5.2*pi/6,1.1,'.2"});
text {(-5.2%pi/6,1.15, " .2");
text(2.2*pi/3,1.1,".5");
text (-2.2*pi/3,1.15,'.5");
text (pi/2,1.05,'1");
text{(-pi/2,1.1,'1');
text(pi/3.2,1.05,'2"};
text {(-pi/3.2,1.1,'2'});
3 plot the impedances, -- first normalize
rho={Z1~Z0) ./ (Z1+Z0c};
rhomag = abs(rho};
rhoph = angle(rho);
solar (rheoph, rhomag, "k* ') ;
10ld off % return to usual state
function [rads] = angle (comp val)
rads = atan2 ({imag{comp val),real (comp val));

» Graphical User Interface (GUI) Matlab Files:

1. Series Inductor GUI:

% INDUCTOR SERIES GUL M-file for inductor_series gui.fig

function varargout = inductor_ series gui(varargin)

% Begin initialization code

gui_Singleton = 1;

gui State = struct{ gui name, ‘mfilename, ...
'gui_ Singleton', gui Singleton, ...
'gui upeningrcn', @inductor series_gui_ OpeningFen,
'gqui_ OutputFen', @inductor series guli OutputFcn,
‘gui _Layoutfen', [1 .,
"gui_Callback', [1):

if nargin && ischar(varargin{li})

guli State.gui Callback = strZfunc(varargin{l});

end
if nargout
[varargouti{l:nargout}] = gul mainfcn(gul State, varargin{:});
else
gui_mainfen(gui_State, varargin{:});
end

% End initialization code
% —--- Executes just before inductor series gui is made visible.
function inductor series gui OpeningFcn(hObject, eventdata, handles,
varargin)
% Choose default command line output for inductor series gul
handles.output = hCbject;
% Update handles structure
guidata (hCbject, handles);
§ ——- Outputs from this function are returned to the command line.
function varargout = inductor series_gui OutputFcn{hCbject, eventdata,
handles)
% Get default command line output from handles structure
varargout{l} = handles.output;
function editl Callback(hObject, eventdata, handles)
% —--— Executes during obiect creation, after setting all properties.
function editl CreateFcn{hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor®),
get {0, 'defaultUicontrolBackgroundColor')}

set (hObject, 'BackgroundColor’, "white');
end
% --- Executes on button press in conflrm bttn.
function confirm bttn Callback(hObject, eventdata, handles)
cap value= str2double(get (handles.editl, 'String'));

close
function edit2 Callback{hObject, eventdata, handles)
% —-- Executes during object creation, after setting all properties.

function edit2 CreateFcn(hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor'},
get (0, 'defaultUicontrolBackgroundiolor))
set (hCbject, 'BackgroundColor", 'white');
end
%t --- Executes on button press in pushbuttonl.
function pushbuttonl Callback(hObject, eventdata, handles)
set (handles.edit2,'String','0.0");

Q

% ——-— Executes on button press in pushbutton3.

function pushbutton3 Callback(hObject, eventdata, handles)
indcl= str2double (get (handles.edit2,'String')});
inductor series data{indcl};

close

2. Shunt inductor GUI:

% INDUCTOR SHUNT GUI M-file for inductor shunt gui.fig

function varargout = inductor shunt gui (varargin)

% Begin initialization code

gui_ Singleton = 1;

gui State = struct(gui nName', mfilename,
'gui Singleton', gui Singletcn, ...
‘gui_upeningrcn©, €@inductor shunt gui OpeningFcn,
'gui CutputFen', @inductor shunt gui OutputFcn,
‘gul _Layoutkcn', [1 .,
"gui Callback', [1};

if nargin && ischar(varargin{l})

gui State.gui Callback = str2func(varargin{l});

end
1f nargout

[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:}):
else

gui mainfcn(gui State, varargin{:});
end
% bnd initialization cod
% --— Executes just before inductor shunt gui is made visible.
function inductor shunt_gui OpeningFcn (hObject, eventdata, handles,
varargin)

handles.output = hObject;
% Update handles structure
guidata (hObject, handles});
% ——-- Outputs from this function are returned to the command line.
function varargout = inductor_shunt gui CutputFcn(hObject, eventdata,
handles)
varargout{l} = handles.output;
function editl Callback(hObject, eventdata, handles)
% —--- Lxmecutes during cbject creation, after setting all properties.
function editl CreateFcn(hObject, eventdata, handles)
if ispc && isequal {get (hObject, 'BackgroundColor®),
get (0, "defaultUicontrolBackgroundColor'})
set (hObject, 'BackgroundCeloxr ', 'white');
end
% ~-— Executes on button press in confirm bttn.
function confirm bttn Callback(hObject, eventdata, handles)
cap value= str2double (get (handles.editl, 'String'));
close '
function edit2 Callback{hObject, eventdata, handles)
% —-—— Executes during object creation, after setting all properties.
functien edit2 Createlcn(hObject, eventdata, handles)
if ispc && isequal (get (hObject, "BackgroundColor'},
get (0, "defaultUicontrolBackgroundColor'})
set (hObject, 'BackgroundColor', 'white’);
end
% --- Executes on button press in pushbuttonl.

function pushbuttonl Callback{hObject, eventdata, handles)
set (handles.edit2, 'String','0.0");

% ~-- Executes on button press in pushbutton3.

function pushbutton3 Callback(hObject, eventdata, handles)
indc2= str2double (get (handles.edit2, "String’)};

inductor_ shunt_data(indcZ);

close

3. Series Capacitor GUI:

% CAPACTTOR S$ERIES GUT M-file for capacitor series gul.fig
function varargout = capacitor series gui{varargin)

% Begin initialization code

gui Singleton = 1;

gul_State = struct{‘gui wame', mfilename, ...
‘gul_Singleton', gui_Singleton,

‘gui_upeningkcn:, @capacitor series_gui OpeningFcn,
'gui OutputFen', Q@capacitor _series_gui_ Output¥en, ...
"gul_bLayoutrcn', [] ,

'gui Callback', [3):

if nargin && ischar (varargin{l})

gui State.gui Callback = strZ2func(varargin{l});

end

if nargout

[varargout{l:nargout}] = gui mainfen(gui_State, varargin{:}):
else

gui_mainfecn{gui_State, varargin{:});

end

% FEnd initialization code

% —--- Exascutes just before capacitor series_gui is made visible.

function capacitor series gui_OpeningFcn(hObject, eventdata, handles,
varargin)

handles.output = hObject;

% Update handles structure

guldata (hObject, handles);

% —-—— Cutputs from this function are returned to the command line.
function wvarargout = capacitor_series gui OutputFcn (hObject, eventdata,
handles)

varargout{l} = handles.cutput;

function editl Callback{hObject, eventdata, handles)

% --- Bxecutes during object creation, after setting all properties,
function editl_CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, ‘Backgroundcolor'),

get (0, 'defaultUicentrolBackgroundColor'))

set (hObject, 'BackgroundColoxr', "white');

end

% —--- Executes on button press in confirm bttn.

function confirm bttn Callback(hObject, eventdata, handles)
cap_value= str2double(get (handles.editl, 'String')};

close
function edit2 Callback (hObject, eventdata, handles)
% —~—— Executes during cbject creation, after setting all properties.

function editZ CreateFcn{hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor'),
get {0, 'detaultVicontrolBackgrounaColor®)}

set (hObject, 'BackgroundCclor', 'white');

end

% —--- Executes on butten press in pushbuttonl.

function pushbuttenl Callback(hObject, eventdata, handles)
set (handles.edit2,'String’','0.0"};

% --- Executes on button press in pushbutton3.

function pushbutton3 Callback{hObject, eventdata, handles)
cap2= str2double(get (handles.edit2, -String });
capacitor series data(cap2);

close

4. Shunt Capacitor GUI:

% CAPACITOR SHUNT GUI M-file for capacitor shunt gqui.fig

function varargout = capacitor_shunt gui{varargin)

% Begin initialization code

gul Singleton = 1;

gui State = struct({:'gui name-, mfilename,
'gui Singleten', gui_Singleton,
'gui_upeningrcn®, @capacitor shunt gui OpeningFcn,
"gui CutputFcn', @capacitor shunt_gui OutputFen,
‘gui_Layoutrfcn’, [1 .
"gui Callback', [1);:

if nargin && ischar(varargin{l})

gui_State.gui Callback = str2func(varargin{l});

end
if nargout

[varargout{l:nargout}] = gui mainfen(gui State, wvarargin{:});
else

gui_mainfecn({gui State, varargin{:});
end
% BEnd initialization code
% —--— ExXecutes just before capacitor shunt gui is made visible.
function capacitor shunt_gui OpeningFcn{hObject, eventdata, handles,
varargin)

handles.output = hObject;

% Update handles structure
guidata (hObject, handles):
% —--- Outputs from this function are returned to the command line.
function varargout = capacitor shunt gui OutputFcn (hObject, eventdata,
handles)
varargout{l} = handles.output;
function editl Callback({hObject, eventdata, handles)
% —--- Execultes during object creation, after setting all properties.
function editl CreateFcn (hObject, eventdata, handles)
1f ispc && isequal {get (hCbject, ‘Backgroundiolor'},
get (0, "defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundCclor’, "white');

end
% —-—-- Executes on button press in confirm bttn.
function confirm bttn Callback(hObject, eventdata, handles)
cap_value= str2double(get (handles.editl, 'String'});

close
function edit? Calliback(hObject, eventdata, handles)
% —-- Executes during cbject creation, after setting all properties.

function edit2 CreateFcn(hOCbject, eventdata, handles)

function edit2 Callback(hObject, eventdata, handles)
%4 ~-- Executes during obiject creation, after setting all properties.
function edit2 CreateFcn{hObject, eventdata, handles)
if ilspc && isequal {get (hObject, 'BackgroundColor'),
get {0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'};
and
3 ——— Executes on button press in pushbuttoni.
function pushbuttonl Callback(hObject, eventdata, handles)
get (handles.edit2, "String','0.0");
set (handles.edit3, 'string', 'U.0%);
set (handles.editd, 'String','0.0"});
set (handles.edith, 'string', 0.U"');
set (handles.edit6, 'String','0.0");
3 —--— Executes on button press in pushbutton3.
function pushbutton3 Callback{(hObject, eventdata, handles)
Aidth= str2double (get (handles.edit2, ‘string'));
Height= str2double (get (handles.edit3, 'String'));
Length= str2double (get (handles.edit4, 'String*));
Jeperation= str2double (get (handles.edit5, 'String'}));
2 constant= str2double (get (handles.edit®, -string‘));
coupled data(Width, Height, Length, Seperation,D constant);
zlose
function edit3 Callback(hObject, eventdata, handles
& ——-- Executes during object creation, after setting all propertiss.
function edit3 CreateFcn{hCbject, eventdata, handles)
Lf ispc && isequal (get{hObject, ‘Backgrounalolor'),
Jet {0, '"defaultUicontrolBackgroundColor')}
set {hObject, 'BackgroundColor ', 'white ') ;

and
function edit4 Callback (hObject, eventdata, handles)
Y ——- Executes during object creation, after setting all properties.

unction edit4 CreateFcn(hOblject, eventdata, handles)
Lf ispc && isequal (get{hObject, 'BackgroundColor'),
yet {0, 'deraultUicontrolBackgroundColor '})
set (hObject, 'BackgroundColor', 'white');
:nd
lunction edit5 Callback(hObject, eventdata, handles)
; ——— Executes during object creation, after setting all properties.
‘unction editb CreateFcn{hObject, eventdata, handles)
.f ispc && isequal (get (hObject, 'Backgroundtolor'},
jet (0, 'defaultUicontreolBackgroundColor™))
set (hObject, 'BackgroundColor', "white');
snd
unction editG_Callback(hObject, eventdata, handles)
i ——— Executes during object creation, after setting all properties.
unction edité CreateFcn(hObject, eventdata, handles)
.f ispc && isequal {get (hObject, 'BackgroundColor'),
jet (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', "white');
:nd

6. Microstrip Tee Junction GUI:

TEE GUT M-file for tes gui.fig
function varargout = tée_gui(varargin)
% Begin initialization cods

gui Singleton = 1;

gui_ State = struct(= szw=-, mfilename,
‘gui Singleton', gui_Singleton, ...
comd Swaenincions . @tee gui OpeningFen,
‘gui outputkcen', @tee gui OutputFcn, ...
cresn vmsemesmwrnt, [,
'gul Callback®, [y

if nargin && ischar(vargrgin{l})
gul State.gui Callback = strZfunc(varargin{l}};
and
if nargout
[varargout{l:nargout}] = guil mainfen(gui State, varargin{:}):
zlse
gui mainfecn(gui State, varargin{:});
and
End initialization code
5§ -—— Executes just before tee gui is made wvisible.
functicn tee gui OpeningFecn(hObject, eventdata, handles, varargin)
nrandles.output = hObject;
3 Update handles structure
juidata (hObject, handles);
5 —-- Outputs from this function are returned to the command line.
function varargout = tee_gui_Outputhn(hObject, eventdata, handles)
5 Cet default command line cutput from handles structurs
rarargout{l} = handles.output;
‘unction editl Callback{hObject, eventdata, handles)
5 —~~ Executes during object creation, after setting all properties.
function editl CreateFen (hObject, eventdata, handles)
LL 1Spc && isequal (get (hObject, 'BackgroundColor'),
Jet {0, fafnt i e e T b T s 7))
set (hCbject, 'BackgroundColer®, 'white');
mnd
5 —-- Executes on button press in confirm bttn.
‘unction confirm bttn Callback(hCbject, eventdata, handles)
zap value= str2double(get{handles.editl, 'string"));
xlose
unction edit? Callback(hCbject, eventdata, handles)
5 ——— Exeoutes during object creation, after setting zll properties.
lunction edit2 CreateFen{hObject, eventdata, handles)

.f ispc && isequal (get (hObject, *=acharocaldUoios’),
jet {0, defaultUlconLrolBackgroundColor))
set {hCbject, R S PR B
:nd
i ——— Executes on button press in pushbuttonl.

‘unction pushbuttonl Callback(hObject, eventdata, handles)
set (handles.edit?2, szo-ioof, tu o)
set (handles.edit3, 'String’,'0. O)
set (handles.editd, Sozi:ut "}
set (handles.edit6, 'String’ ,‘O 0)

» —== Executes on button press in pushbutton3.

‘unction pushbutton3 Callback(hObject, eventdata, handles)
lidthl= str2double (get (handles.edit2, 'String'));

~y e we

Width2= str2double{get (handles.edit3, 'Zt-:nut));
Height= str2double(get {handles.edit4, 'String'}));
D constant= str2double(get (handles.edit6, =+in37));
tee junc data({Widthl,Width2,Height,P constant};
close
function edit3 Callback{hCbject, eventdata, handles)
function edit3 CreateFen(hObiect, eventdata, handles)
if ispc && isequal {get (hObject, suchorousdicior),
get(O,'defaultUlcontrolBackgroundColor)]

set (hObject, "=t g uwiflu y it)
end
function edit4 Callback(hObject, eventdata, handles)
function edit4 CreateFcn(hObject, eventdata, handles)
if 1spc && isequal (get (hObject, 'BackgroundColor'},

get {0, "uurouitloorrir ot f e churoungloios))
set(hobject 'BackgroundColor', 'white');
=nd
function edith Callback(hObject, eventdata, handles)
3 --- Executes duving obiecl creation, after setting all properties.
function edit5 CreateFcn (hObject, eventdata, handles)
if ispc && isequal (get (hObject, "sachyroundioios),
get (0O, ‘detaultUlcontrolBackgroundColor‘})
set {(hCbject, S T A R)
and

function edité Callback{hObject, eventdata, handles)
function edit6 CreateFcn(hObject, eventdata, handles)
if 1spc && 1sequal(get(h0bject,'BackgroundColor Yy
Jet (0, "duioor i oo oo Srskyn o onddlolor)

set {hObject, ' BackgroundColor , 'white’);
and

7. Microstrip Open-End Transmission Line GUI:

5 OPEN GUT M-iile for open_gui.fig
function varargout = open gui (varargin)
i Begin initialization code
jui_Singleteon = 1;
Jul State = struct(’ mmma mfilename,
gul singleton’, gui Singleton,
st swmemanTien s, @open _gui OpeningFen,
gul putputren', @Gopen gui OutputFcn,
RS e P B
gul_baleacK', {1):
if nargin && ischar(varargin{l})
gui State.gui Callback = strZfunc(varargin{l}};
Ehate -
Lf nargout

% —--- Executes during object creation, after setting all properties.

% —--— Executes during object creation, after setting all properties.

¥ --- Executes during object creation, after setting all properties.

[varargout{l:nargout}] = gui mainfcn(qui State, wvarargin{:});

:xlse

gul mainfen{gui State, varargin{:})
and
Y End dnitialization code

% --- Executes just before open guil is mace visible

function open gui Openlnchn(hObject eventdata, handles, varargin)
handles.output = hObject; ’

% Update handles structure

guidata {hObject, handles});

& --- Outputs from this function are returned to the command line.
function varargout = open gui OutputFcn(hObject, eventdata, handles)
% Get default command line output from handles structure
varargout{1l} = handles.cutput;

function editl Caliback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function editl CreateFcn({hObject, eventdata, handles)

if ispc && isequal{get (hObject, ‘fochuroundioist),
get(O,'defaultUlcontrolBackgroundColor Yl
set (hObject, T o FEREE R N
and
% —-- DExecutes on button press in confirm bittn.
function confirm bttn Callback(hObject, eventdata, handles)
cap_value= str2double(get(handles editl, et Yy g
2lose
functicn edit2 Callback(hObject, eventdata, handles)
¥ —--- Executes during object creation, after setting all properties.

function edit2 CreateFcn(hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject,‘BackgroundColor |
Jet (0, "doiouliviooniyo siEnchkospnndrolort))

set (hObject, 'BackgroundCoLor ‘white'});

ll)

nd
-—— Executes on button press in pushbuttont.

function pushbuttonl Callback(hObject, eventdata, handles)
set (handles.edit2, 'String' ,'O O)
set (handles.edit3, *Ztromu:)
set (handles.edit4, 'String’, ‘0 O Vi
set (handles.edit6, ‘=irznc®)
5 —--- Executes on button press in pushbutton3.

function pushbutton3 Callback({hObject, eventdata, handles)

fidth= str2double{get (handles.editZ2, 'String‘));

=l

.

ieight= str2dcouble (get (handles.edit3, "St::iu));
sength= str2double (get (handles. ed1t4,‘Str1ng Yi:
) constant= striZdouble{get (handles.edité, vving));
apen_end_data(Wldth Height, Length,D constant);
xlose
function edit3 Callback(hObject, eventdata, handles)
5 ~—— Executes during object creation, after setting all vroperties.
function edit3 CreateFcn (hObject, eventdata, handles)
Lf ispc && isequal{get (hObject, ‘zaciurcuadicio:*),
yet (0, ‘defaultUlcontrolBackgroundColor'))
set (hObject, Smere i SRR SR I L
and
‘unction edit4 Callback{(hObject, eventdata, handles)
5 --— Executes during cobject creation, after setting all properties.

unction editd4 CreateFcn (hObject, eventdata, handles)

I ispc && 1sequal(get(h0bject 'BackgroundColor'}),

1ot (0, " fuurtviount o clEschuroundiioclosnt))
set(hObject ‘BaukgroundColor 'white');

xnd

unction editb Callback({hObject, eventdata, handles)

Q

% -—-- Execubtes during object creaticn, after setting all properties.
functiocn edit5 CreateFcn(hObject, eventdata, handles)

if ispc && isequal (get (hObject, "Bockoroundioior®),
get (0, 'defaultUlcontrolBackgroundColor))
set (hObject, ERRREA RN TR R) ;
2nd
function edit6 Callback(hObject, eventdata, handles)
% -—— Executes during cbiect creation, after seitting all properties.

function edit6é CreateFcn(hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject,’BackgroundColor 1,
get (0, "duicuritroontroiBachors onndlorost))

set (hObject, ‘BackgroundCOlor ,'white ') ;
and

8. Network Topology GUL:

¥ TOPO GUIL M-file for topo gul.fig

function varargout = topo gui (varargin)

5 Begin initialization code

jui Singleton = 1;

Jul_State = struct('gvz wmams, mfilename,

'gui blngieton r 9gui Singleton,
Loumsningion’, @topo_gui OpeningFen,
'guliuutputﬁcn', @topo gui Outputfcn, ...
Pt TayeminiRan, {1 .,

‘gui_ Callpack’, f1):
if nargin && ischar(varargin{l})
gui State.gui Callback = strZ2func(varargin{l});

and
Lf nmargout
[varargout{l:nargout}] = gui mainfcn({gui State, varargin{:}):
alse
gui mainfcn(gqui State, varargin{:});
and
5 End initialization code
% —-- Ezecutes just before topo gui 1s made visible.

function topo gui OpeningFcn(hObject, eventdata, handles, varargin)
r1andles.output = hObject;

¢ Update handles structure

juidata (hObject, handles);

j === Outputs from this function are returned to the command line.
Zunction varargout = topo_gul OutputFen{hObject, eventdata, handles)
rarargout{1l} = handles.output;

lunction edit3 Callback(hObject, eventdata, handles)

3 ——— Executes during objscth creation, after setting all properties,.
‘unction edit3 CreateFcn (hObject, eventdata, handles)

.f ispc && isequal (get (hObject, 'Backurcundicior '),
et (0, 'defaultUlcontrolBacquoundColor n

set (hObject, "=k rnmadaing T, Twliis=1);
and

unction edit4 Callback(hCbject, eventdata, handles)

i ——— Executes during object creatlion, after setting all properties.

‘unction edit4 CreateFcn(hObject, eventdata, handles)

£ 1spc && 1sequal(get(h0b3ect 'BackgroundColor),

jet {0, *ucivuiiiventroiBackurous ciort))
set(hobject,‘BackgroundColor "white')

end
function edit5 Callback{hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function editb CreateFcn(hObject, eventdata, handles)
if ispc && isequal {get (hObject, ‘zacrurooiloiert),
get {0, defaultUlcontrolBackgroundColor‘))
set (hObject, "F=oon iy IERRENILR N PR B
and
function edit6é Callback(hObject, eventdata, handles)
$ --- Execuies during object creation, after setting all properties.
function edité CreateFcn{hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject "BackgroundColer'),

get (0, "duionsilivonis o Beohoeroundloior '))
set(hObject, BackgroundCOlor' "white');
and
function edit7 Callback(hObject, eventdata, handles) .
5 --- bxecutes during object creatiocn, after setting all properties.

function edit? CreateFcn{hObject, eventdata, handles)
if ispc && isequal (get (hObject, *sockorounad
yet (0, 'defaultulcontrolBackgroundColor 1)

set (hObject, mbeyrcenad T iost Tahinat)
2nd
function edit8 Callback(hObject, eventdata, handles)
5 --- Fxecutes during object creation, after setting alil properties.

function edit8 CreateFcn(hObject, eventdata, handles)
Lf ispc && 1sequal(get(h0bject 'BackgroundColor'},
Jeb (0, "urroat it ivenis ol Bechar o rornndloiort))

set {(hObject, BackgroundColor ,Twhite’);

and
Zunction edit8 Callback(hObject, eventdata, handles)
Y —--- Executes during cobject creation, afier setting all propsrities
unction edit9 CreateFen(hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'Sochoroundloior),
jet (0, ‘defaultUlcontrolBackgroundColor 1)
set (hObject, prieeseE i T Twhiia Ty g
:nd

‘unction editl0 Callback(hObject, eventdata, handles)
i -~~~ Executes during object creation, after setting all properties.
unction editl0 CreateFcn (hObject, eventdata, handles)
.I ispc && 1sequa1(get(h0bject 'BackgrcundColor'),
jet (0, "dufouiitvroontsoifoohyronndloliort))
set (hCbject,’ BackgroundColor f'Wwhite '},
ik
lunction editll Callback(hCbject, eventdata, handles)
i ——- Executes durlng obiject creation, after setting 211 properties.
‘unction editll CreateFcn(hObject, eventdata, handles)

£ ispc && isequal (get (hObject, 'Sacig:ourndoiv:),
Iet(O,'defaultUlcontrolBacquoundColor))
set (hObject, it~ rormudoiory Twiiiiat)y

:nd
‘unction editlZ Callback{hCbject, eventdata, handles)
-—- Executes during object creation, after setting all properties.
unction editlZ2 Createfcn(hCbject, eventdata, handles)
i 1spc && 1Sequal(get(h0bjeCt, BackgroundColor'),
et (0, *derouitdioomisg ciHocrharoondloior)
Set(hObject,‘BacquoundColor‘ whlte yi
i

function editl3 Callback (hObject, eventdata, handles)

-—- Executes during objsct creaticn, after setting all properties.
function editl3 CreateFcn(hObject, eventdata, handles)

if ispc && 1sequal(get(h0bject, BackgroundColor |

i@

get (0, *duicuiidiconizo sibesckuroundioior)
set(hObject BackgroundColor ,'white');
and
functicn editl4 Callback(hObject, eventdata, handles)
% --- Exscutes during object creation, alfter setiting all properties.

function editl4 Creatchn(hObject, eventdata, handles)
if ispc && isequal (get (hObject,® o
get (0, 'defaulLUlcontrolBackgroundColor 1)

terdiloi et),

set (hObject, e ost fubiier)
=nd
function editl® Callback{hObject, eventdata, handles)
% ——~ Executes during object creation, after setting zll properties.

function editl: CreateFcn(hObject, eventdata, handles)

if ispc && 1sequal(get(h0bject 'BackgroundColor'),

get (0, "doiouiiviconrroizsachosoy shor)
set(hObject,'BackgroundCOlor ‘white');

and

function editle Callback(hObject, eventdata, handles)

¥ ——— Executes during object creation, after setting all proparties.

function editlé CreateFcn(hObject, eventdata, handles)

if ispc && isequal {(get (hObject, ‘fuchgrounsloics'),
get (0, defaultUlcontro}BackgroundColor‘})

set (hObject, * ISR R T
and

function editl7_Callback(hObject, eventdata, handles)
5 —--- BExecutes during obiject creation, after setting all properties.
function editl7 CreateFcn{hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject 'BackgroundColor'),
Jet {0, "uoinuiiilornir ol Bachurs sundUolozt))
set (hObject,’ BackgroundColor y Twhite);
=nd
function editl€ Callback(hObject, eventdata, handles)
5 ——- Executes during object creaticn, after seiting all properties.
function editl8 CreateFcn(hObject, eventdata, handles)
Ltf ispc && isequal (get (hObject, ‘zZachgroundtolort),
Jet (0O, detaultUlcontrolBackgroundColor)}
set (hObject, R R RATRTEE Lo T Taeliid et) g
and
‘unction editld® Callback(hObject, eventdata, handles)
3 -—- Executes during object creation, after setting all properties.
function editly CreateFcn(hObject, eventdata, handles)
Lf ispc && isequal {get (hObject,’ BackgroundColor Vs,
jet (0, "duioelivivont ol Beckgroundlotor T))
set{hObject, BackgroundColor', 'white'};

ang

‘unction editZ0 Callback(hObject, eventdata, handles)

5 ~-= Executes during object creation, after setting all properties.
unction edit20 Creatchn(hObject eventdata, handles)

.f ispc && isequal (get (hObject, ‘Zooku-owmitloior),
jet (0, 'defaultUlcontrolBackgroundColor)

set (hObject, cherepns G a7 Tah il ety s
:nd

5 ——— Executes on bubton press in pushbuttonl.

function pushbuttonl | Callback(hObject, eventdata, handles)
set (handles.edit3, 'String’, "):

set (handles.editd, *suzine’, -
set (handles.edit5, 'String’
set (handles.edit6, *Ztrrng:
set (handles.edit7, ‘Strlng
set (handles.edit8, "=t s
set (handles.edit9, 'String’ ,' !

LYY

r

r

r

- M om wow

")
)
RE:
Ll L)
)i
Vi

set (handles.editlQ, "zzozowt, ') ;
set (handles.editll,'String'," "):
set (handles.editl2, Scriout,:)¢
set (handles.editl3, 'String',' '):
set (handles.editlid, ‘Zuzznu',* *);
set {(handles.editl5,'String’,’ '};
set (handles.editl6, ‘Ztoiou’, ' *);
set (handles.editl?,'String’',' '):
set (handles.editl®, '=Si.i:o0, ' *);
set (handles.editl9, 'String',' '):
set (handles.edit20, *scriou’, 7))
set (handles.edit24, ‘String',‘ Yyi
set (handles.edit25, :ztisinw P
set (handles.edit26, 'Strlng D ¥
set (handles.edit27, "Zrzzau:, ")}
set (handles.edit28, 'String',"' '):
set (handles.edit29, "zirinut, ™ *):
¥ --- Bbxecutes on button press 1n pushbuttonZ.

function pushbutton2 Callback (hObject, eventdata, handles)
o2l= str2double(get (handles.edit3, 'String')}:

22= str2double(get (handles.editd, "Zirinw));
53= str2double (get (handles.edith, 'String'));
4= str2deouble (get (handies.edit24,Siri::07))72
55= str2double (get {handles.edité, 'Strlng‘)):
26= str2double (get (handles.edit?, *Strinc®));
27= str2double{get (handles. ed1t8,‘8tr1ng')),
8= str2double (get (handles.edit25, *zczi07))2
»9= str2double (get (handles. ed1t9,'Strlng Y):
»10= str2double (get (handles.editl0, *Stz:nc:'));
»11= str2double {get (handles.editll, 'Strlng‘)),
212= strz2double (get (handles.edit26, "Sizie’))}
313= str2double(get (handles.editl2, 'String’'});
2l4= str2double{get (handles.editl3, "#iring’));
215= str2double (get {handles.editl4, 'String’'));
»16= str2double(get (handles.edit27, 'Ztzinat));
317= str2double(get (handles.editl5, 'String')):
»18= str2double{get (handles.editl6, ‘stoius"));
219= str2double(get (handles.editl7, 'String'}):
320= str2double(get (handles.edit28, "*zcrins’));
321= str2double (get {handles.editl8, 'String"'));
222= strZ2deouble (get(handles.editl9, 'St-i:));
323= str2double (get (handles.edit20, 'String')};

324= str2double(get (handles.edit29, 'Ziriau));

ort =[pl p2 p3 pd pd pé p7 p8 pf% pll pll pl2 pl3 pld pld pl6 pl7 pl8 pld p20
321 p22 p23 p24];

1etlist data {port);

:lose

function edit24 Callback(hObject, eventdata, handles)

% ——- Executes during object creation, after setting all properties.
function edit24 CreateFcn(hObject, eventdata, handles)
if ispc && isegual (get{hCbject, *Sachgorcundloior®]),
get (G, 'defau1tUlcontroiBackgroundColor))
gset (hObject, e g Tmhinat) g
end
function edit25 Callback(hObject, eventdata, handles)
% ~—— Executes during obiject creation, after setting all properties.
function edit25 CreateFen{hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject,'BackgroundColor),

get (0, "doioettiii oot oviBuchuso soundiUotor)
set (hObject, BackgroundColor ,'white"):
end
functicn editz6é_Callkack(hObject, eventdata, handles)
% --— Execubes during object creation, after setting all propertiss.
function edit26 Createlcn(hCbject, eventdata, handles)
1f ispc && isequal (get (hObject, EBcchoroomiiulor),
get (0, ' defaultU1controlBackgroundColor V)
set (hObject, "= Forvimwi Mo T Tuhinet) g
and
function edit27 Callback (hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.

function edit27 CreateFcn{hObject, eventdata, handles)
if 1spc && 1sequal(get(h0bject 'BackgroundColor '),

get (0, *oorgultUicori rotBachken s coundUoiont))
set {(hObject, 'BackgroundCo?or fwhite');
end
functicn editZ8 Callback(hObject, eventdata, handles)
% —--- Executes during object creation, after setting all properties.
function editZ8 CreateFcn{hObject, eventdata, handies)
if ispc && isequal (get (hObject, "socruroundiivior:),
get (Q, 'defaultulcontrolBackgroundColor 3
set (hObject, R AR T R OEE PR LR I
znd
function edit29 Callback(hObject, eventdata, handles)
5 -—-- Executes during object creation, after settling all properties.

function edit2? CreateFcn{hObject, eventdata, handles)

if 1spc && lsequal{get(hobjeCt,‘BackgroundColor Vs

get {0, "ouiouiitionni g ciBrohoroundloior)y
set(hObject,'BackgroundColor 'Wwhite)

and
function edit30 Callback (hObject, eventdata, handles)
3 ——- Executes during cbiect creation, after setting all properties.
function edit30 Creatchn(hObject eventdata, handles)
if ispce && isequal {get (hObject, 'Sochgroundloios),
Jet (0, 'defaultUlcontrolBackgroundColor 1)
set (hObject, *frmociar i nin e Twiii =)}
and
function edit3l Callback(hObject, eventdata, handles)
5 —--- Executes during object creation, after setting all properties.

Function edit31 CreateFcn(hObject, eventdata, handles)
Lf ispc && 1sequal(get(h0b3ect,'BackgroundColor "
yet {0, "uguiouitvicontroliBaskuronndloior®))
Set(hObject, BacquoundColor s 'white'):
and
‘unction edit32 Callback{hObject, eventdata, handles)
j === Executes during object creation, after setting all properties.

function edit32 CreateFcn{hObject, eventdata, handles)
if lSpC && 1sequal(get(h0bject 'BackgroundColor'},

get {0, 'duieuiiib controiBaokay corendilndost))
set (hObject, ‘BackgroundColor‘ ‘white');
end
function edit33 Callback(hObject, eventdata, handles)
% —-- Execules during cbiect creation, aftsr setting all properties.
function edit33 Creatchn(hObject eventdata, handles)
if ispc && isequal(get (hObject, 'Socioropndicior’),
get (0, defauitUlcontrolBacquoundColor })
set (hObject, "H=oraregud lalan T, T)i
end
furction edit34 Callback(hObject, eventdata, handles)
% —--- Bbxecutes during object creation, after setting all properties.

function edit34 CreateFcn(hObject, eventdata, handles)
if 1spc && 1sequal(get{h0bject ‘BackgroundColor‘),

get (0, o 53 wiort))
set(hobject,'BackgroundColor whlte y:

end
function edit35 Callback(hObject, eventdata, handles)
% --— Executes during obiject creation, after setting 211 propertiles.
function edit35 CreateFcn{hObject, eventdata, handleg)
if lspc && isequal (get (hObject, :Sachuroundioloer®),
get {0, defaultUlcontrolBackgroundColor 3)
set (hObject, "iisrimrgn @ o Fudiid =)
end
function edit36 Callback (hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.

function edit36 CreateFcn(hObject, eventdata, handles)

if ispc && 1sequal(get{h0b]ect BackgroundColor Yy

get(O PAUAon e ';_@;“;;muu- oion
set(hObject, BackgroundColor

and

function edit37 Callback(hObject, eventdata, handles)

% —--- Executes during object creation, after setting all properties.
function edit37 Creatchn(hObject eventdata, handles)
1f ispc && isequal (get (hObject, 'Sockorounsioiosr),
get (0, 'defaultUlcontrolBackgroundColor‘))
Set(hObjeCt SEersuagra Tl T Pk (0);
2nd

8. Microwave Circuit Analysis GUI:

5 MICROWAVE GUI M-file for microwave gui.fig
function varargout = microwave gui(varargin)
3 Bagin initialization coda
Jui Singleton = 1;
jui State = struct{ sui Hams-, mfilename, ...
gul _Singleton', gui_ Singleton, ...
feres Oremimgeonc, @microwave gui OpeningFon, ..
gul Lutputken’ @microwave gui OutputFecn, ...
Frnn _:zagiT=Jmﬁ-, 1, ...
‘gui Callback', [1):
if nargin && ischar{varargin{i})
gui_ State.gui Callback = str2func(varargin{l});
and
tf nargout

[varargout{l:nargout}] = gui mainfca{gui State, varargin{:});
elss
gui mainfen(gui State, varargini{:});
end
% ©End initialization code
5 ——- Executes just before microwave gui 1s made visible.
function microwave gui Opening¥cn{hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
guidata (hObject, handles});
% —-- Outputs from this function are returned to the command line.
function varargout = microwave gui OutputFcn(hObject, eventdata, handles)
varargout{1l} = handles.output;

% —--- Lxecubtes on selection change in popupmenul.
function popupmenul Callback(hObject, eventdata, handles)
menul = get (hObject, ==} ;
switch menul
case 2
inductor_series gui;
case 3
inductor shunt gui;
case 4
capacitor series gui;
case 5
capacitor shunt gui
case 6
coupled gui;
cass 7
tee gui;
case 8

open gui;
end
% --—- Executes during cbject creation, after setting all properties,.
function popupmenul CreateFcn(hObject, eventdata, handies)
if 1spc && isequal (get (hObject, 'BackgroundColor'},
get (0, "dereur i diouni s SncharonnsCaiast))
set (hObject, 'BackgroundCelor ', "white'};

=nd
% --- Executes on selection ¢hangs in popupmenul.
function popupmenuZ Callback(hObject, eventdata, handles)
menuZ = get (hObject, 'Value');
switch menu2
case 2
inductor series gui;
case 3
inducter shunt gui;
case 4
capacitor series gui;
case 5
capacitor_shunt gui
case 6 N
coupled gui;
case 7
tee gui;
case 8
open_gui;
and

% ——-- Exscutes during object creation, afiter setting all properties.
function popupmenu? CreateFcn{hCbject, eventdata, handles)

if ispc && isequal (get{hOblject, Sachuroundlcivz®),
get (0, defaultUlcontrolBackgroundColor V)

set (hObject, "Her i umiloicet , Twiiil =) g
end

o
°

--- Executes on selection change in popupmena3.
function popupmenul Callback(hobject, eventdata, handles)
menuld = get (hObject, - HERTER S I
switch menu3
case 2
inductor series gui;
case 3
inducter shunt gui;
case 4
capacitor_series gui;
case o
capaciter shunt gui
case 6
coupled gui;
case 7
tee_gui;
case 8
open_gui;
end
% -—-- Executes during object creation, after setting all properties.
function popupmenu3 CreateFcn (hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject, BacquoundColor'),

get (0, "werouliliicent colE ook cornrniiolor))
set(hObject ‘BackgroundColor 'white'});

2nd

% —-—— Executes on selection change in popupnmenud.

function popupmenud Callback(hObject, eventdata, handles)
menud = get (hObject, 'Value'):
switch menud
case 2
inductor series gui;
case 3
inductor_shunt_gui;
case 4
capacitor series gui;
case 5
capaciteor shunt gui
case ©
coupled gui;
case 7
tee gui;
case B8
open_gui;
and
5 —--- Executes during ohject creation, after setting all properties.
function popupmenué4 CreateFcn(hObject, eventdata, handles)

Lf ispc && lsequal (get (hObject, ‘Sevhorowniivios),
jet (0, 'defaultUlcontrolBackgroundColor 1)
set (hObject, "Hooromor e ions , Tl at),

:nd
y ——— Executes on button press in pushbuttonl.

function pushbuttonl Callback(hObject, eventdata, handles)
function edit3 Callback{(hCbject, eventdata, handles)
incrt= str2double (get (handles.edit3, "Sixine));
% ——— Executes during object creation, after setting all properties.
function edit3 CreateFcn(hObject, eventdata, handles)
if ispc && 1sequal(get(h0b]ect 'BackgroundColor'),
get(O tiivtanlrlir conth ot s Sk oL =;;:;u;:;'})
set (hObject, BackgroundColor ; "white');
end
function edit4 Callback(hObject, eventdata, handles)
fi= str2double{get (handles.editd, "=usiase));
% —--- Executes during object creation, after setting all properties.
function edit4 CreateFen{hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject, BackgroundColor'}),
get (0, *cdoientiivivontroliSenkory condUoiort))
set (hObject, ‘BackgroundColor , 'white');
and
function edit?2 _Callback (hObject, eventdata, handles)
f2= strZ2double (get (handles.edit2, *Zi-inn “Yy:
% —-—-- mxecutes during cobject creaLlon, after sebtting all preperties.
function editZ CreateFcn{hObject, eventdata, handles)
if lSpC && 1sequal(get(h0bject 'BackgroundColor‘),
get (0 ik o Coiori))
set(hObject 'BackgroundColor' "white');

end
function edit5 Callback{(hObject, eventdata, handles)
Z0= str2double{get (handles.edith, "zt-ina7));
% ——— Executes during object creation, after setting all properties.
functicn editb CreateFcn{hObject, eventdata, handles)
if 1spc && 1sequal(get(h0b]ect,'BackgroundColor Y.
get {0, "serosl vl Beskhuns Suntiioiort))
set (hObject, 'BackgroundColor‘ 'white');
end
% --— Executes on button press in pushbuttonZ.
function pushbutton2 Callback(hObject, eventdata, handles)
topc gui;
% -~-— Executes on button press in pushbutton3.
function pushbuttonB_Callback(hObject eventdata, handles)
menuZ = get (handles.popupmenuz, Yoiuz');
menu3 = get (handles.popupmenud, 'Value'):;

menud4 = get (handles.popupmenud, ‘*valuo:);
menud = get (handles.popupmenué, 'Value'):
menué = get (handles.popupmenu7, *“ziusz®);
menues =[menul menu?Z menul menud menu5 menu6],
fl=strZdouble{get (handles.editd, *zi-izu)},
f2=str2double (get (handles.edit2, 'Strlnq Y):
incrt=str2double{get (handles.edit3, =Zu:i:07));

Z0=strZ2double (get (handles.edith, "String'));
Smatrix=individual § (menues,fl,f2,incrt,z0);
Ep=elements (menues);
connection=netlist read(Ep);
topology = topo (Ep,connection};
freflect = fopen(Fafianr darzat,'=%); 3 open file and clear stored data
fclose(freflect);
Cal S(topology,Smatrix,fl,f2,incrt,Ep);
¢ ——-— Executes on bulton press in pushbuttoné.
function pushbuttond Callback(hObject, eventdata, handles)

fl=str2double (get (handles.editd, *siring’)
f2=str2double (get (handles.edit2, 'String')
incrt=str2double {get (handles.edit3, *5r-i:c"

)
Y
Y

Z0=str2double (get (handles.editb, 'String'));

figure
S 7Z11{f1,£2,incrt, 20)
% --- Executes on button press in pushbuttons.
function pushbuttonb Callback (hObject, eventdata, handles)
initial all;
set (handles.popupmenul,'vValue',1};
set (handles.popupmenu2, ¥oroz,1);
set (handles.popupmenu3, 'Value',1);
set (handles.popupmenu4, _;,:-,1),
set (handles.popupmenu6,'Value S1);
set (handles.popupmenu7, *¥otua®,1);
set (handles. edlt4,‘Str1ng 0. O'),
set (handles.edit2, "=or i HPREAR R -
set (handles.edltB,‘Strlqg ,‘O ')
set {(handles.edith, ‘zos_ w0 00)
% —-—- Executes on selechtion change in popupmenub.
function popupmenué6 Callback (hObject, eventdata, handles)

menub

= get (hObject, 'Valus’);

switfch menub

and

case 2

inductor series gui;
case 3

inductor shunt_gui;
case 4

capacitor series gui;
case 5

capacitor shunt gui
case b

coupled gui;
case 7

tee gui;
case 8

open_gui;

Executes during object creation,

after setting all properties.

functicn popupmenub Creatchn(hObject, eventdata, handles)
if ispc && isegual (get (hObject, *Zockyzuedioioy,
get (0, 'defaultUlcontrolBackgroundColor)]
set (hObject, R T I P T I
and
5 ~-~ Executes on selection change in popupmenu’.
functicn popupmenu7 Callback(hObject, eventdata, handles)

nenub =

switch menu6

get (hObject, 7w=iu=7);
case 2

inductor series gui;
case 3

inductor_ shunt gui;
case 4

capacitor series gui;
case 5

capacitor shunt gui
case 6

coupled gui;

case 7
tee gui;
case 8
open gui;
end
5 ——- Executes during object creation, after setting all properties.

function popupmenu’ CreateFcn(hObject, eventdata, handles)
if ispc && 1sequal(get(h0bject 'BackgroundColor'},
get (0, *coboa it liorsl o clEschkorounaloiosty)
set (hObject, 'BackgroundColor' 'white'};
end

