
Dissertation

Sensor Node for Medical Application

Mohd Asri bin Ahmad

5592

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

June 2008

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

317 50 Tronoh

Perak Darul Ridzuan

Approved:

CERTIFICATION OF APPROVAL

SENSOR NODE FOR MEDICAL APPLICATION

by

Mohd Asri bin Ahmad

A project dissertation submitted to the

Electrical & Electronics Engineering Pro gramme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Ms. Azrina binti Abd. Aziz/ Dr Nor Hisham Hamid

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2008

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MOHD ASRI BIN AHMAD

lll

ABSTRACT

Sensor network has been used in many applications namely military, medical and

envirorunent. It is used to monitor and collect data from physical environment. It is

used to monitor and collect data from physical envirorunent. The sensor network is

basically a collection of sensor nodes usually interconnected wirelessly to perform a

specific task. The aim of this project is to design and develop an automated system

for medical application. The system will be using sensor nodes for collecting

temperature data of the patient diagnosed with dengue fever. This system designed is

to replace the current method used in hospitals to save clinicians' time and to have

proper database system for future access.

The sensor node system will connect patients to the PC through wireless connection

mode. The temperature reading will be stored on the computer and graphs will be

plotted automatically. It is envisaged that the system built will help clinicians to

perform their job faster.

IV

ACKNOWLEDGEMENTS

First of all, the author is grateful to Allah S.W.T. for the completion of this

Final Year Project. Deepest gratitude goes to project supervisors Ms. Azrina Abd.

Aziz and Dr Nor Hisham Hamid for their guidance and patience in ensuring that the

author accomplished the project objectives, also for their supports and commitments.

Special thanks to FYP technologist, Ms. Siti Hawa Mohd Tahir for her assistance in

helping the author completed the tasks related.

The author also would like to express a thousand appreciations to other

Electrical & Electronics lecturers and colleagues who have involved directly or

indirectly with this project for all the help and guidance throughout the year.

The gratitude extended to author's family who has given undivided support to

the author throughout the completion of the project. The author will always be

grateful for their sacrifices and sincerity.

Finally, million thanks to all parties who had also contributed directly or

indirectly towards the success of this project.

Thank you.

v

TABLE OF CONTENTS

TITLE PAGE ... i

ABSTRACT ... iv

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS .. ix

CHAPTER I INTRODUCTION ... !

1.1 Background Study .. I

1.2 Problem Statement .. 3

1.3 Objectives ... 4

1.4 Scope of Study .. 4

CHAPTER 2 LITERATURE REVIEW ... 6

2.0 Wireless Sensor Network ... 6

2.1 Sensor Node .. 7

2.1.1 Processing unit ... 8

2.1.2 Transceiver .. 8

2.1.3 Power Source ... 9

2.1.4 Sensor Unit. .. 9

2.2 Dengue Fever. ... I 0

2.2.1 Overview of dengue fever. ... 1 0

2.2.2 Symptoms of dengue fever .. II

2.3 Brain Temperature Tunnel... ... 13

2.4 The Sensor Node System .. 14

VI

2.4.1 Microcontroller (MSP430F2274) .. 15

2.2.1 Microcontroller's Architecture .. 16

2.2.1 Transceiver (CC2500) .. 16

CHAPTER 3 METHODOLOGY .. 17

3.1 Project Methodology .. 17

3.2 Project Architecture .. 18

3.2.1 Transmit and receive part ... 19

3.2.2 Data analysis .. 19

3.3 Tools for sensor node (eZ430-RF2500) ... 20

CHAPTER 4 RESULTS AND DISCUSSION .. .21

CHAPTER 5 CONCLUSION AND RECOMMENDATION 32

5.1 Conclusion .. 32

5.2 Recommendation .. 32

REFERENCES .. 33

APPENDICES ... 34

APPENDIX A SOURCE CODE FOR ACCESS POINT 34

APPENDIX B SOURCE CODE FOR END DEVICE 42

Vll

LIST OF FIGURES

Figure 1.1: The most common places for temperature measurement... 2

Figure 2.1: Sample architecture of wireless sensor networks [6] 7

Figure 2.2: The sensor node architecture [7] ... 8

Figure 2.3: Female Aedes aegypti mosquito [10] .. 10

Figure 2.4: Number of total cases of dengue in Malaysia from year 2000 to 2005 ... 12

Figure 2.5: Eye patch that measures the body's core temperature l3

Figure 2.6: eZ430-RF2500 development too1.. .. 14

Figure 2.7: eZ430-RF2500 Flow Connections ... IS

Figure 3.1: Project methodology .. l7

Figure 3.2: The proposed system architecture .. l9

Figure 3.3: IAR Embedded Workbench Kickstart Workspace 20

Figure 4.1: The USB Debugger and Target Board .. 21

Figure 4.2: Flowchart for Access Point (AP) ... 24

Figure 4.3: Flowchart for End Device (ED) ... 26

Figure 4.4: Components of the prototype .. 27

Figure 4.5: The target board been placed inside the case 27

Figure 4.6: The prototype ... 28

Figure 4.7: The prototype ofthe sensor node used on the patient. 29

Figure 4.8: The PC Visualizer .. 30

Figure 4. 9: Temperature readings result from the console .. 31

viii

ADC

AP

ED

FIFO

IrDA

MCU

RF

SARS

TB

UART

USB

WSN

LIST OF ABBREVIATIONS

Analog Digital Converter

Access Point

End Device

Flow In Flow Out

Infrared Data Association

Microcontroller Unit

Radio Frequency

Severe Acute Respiratory Syndrome

Tuberculosis

Universal Asynchronous Receiver-Transmitter

Universal Serial Bus

Wireless Sensor Network

IX

CHAPTER!

INTRODUCTION

1.1 Background of Study

Body's core temperature is a measure of body ability to generate and get rid

of heat [I]. Temperature is one of the illness indicators of our body. Many diseases

such as dengue fever, SARS, TB and Malaria can be detected by changes in the body

temperature. Patients diagnosed with these diseases are normally placed in intensive

care. Their body temperature will be monitored continuously for safety measured if

something bad happens in sudden to them.

There are many places to measure temperature. The most common places are

the mouth, armpit, ear, forehead and rectum (shows in Figure 1.1). It usually been

measured by using a gadget called mercury thermometer. The normal body's core

temperature of a healthy, resting adult human being is stated to be at 98.6 degrees

Fahrenheit or 37.0 degrees Celsius [2]. When our body is too hot, the readings will be

higher than normal core body temperature. When the body is cold, the reading will be

v1ce versa.

I

Forehead

Ear

Mouth

Rectum

Area between
nose and eyes
(Please refer Figure 2)

Armpit

Figure 1.1: The most common places for temperature measurement.

2

The main objective of this project is to develop an automated system to

collect temperature data from patients. Currently clinicians are measuring

temperature using thermometer at a periodic time. The temperature data gathered are

then used to plot graph for analysis purpose. As an alternative, a system composed of

wireless sensor network is proposed to collect temperature data which will later be

used during analysis process.

The sensor network in this project will consist of two sensor nodes (patients)

communicating with the main host (PC). The sensor nodes used to collect

temperature of patients will be placed at eye's cord.

1.1 Problem Statement

Monitoring temperature continuously is very important for certain disease like

dengue fever, SARS and Malaria [4]. By doing this, we can detect and manage the

infection early and prevent any side complications. Yale researcher Dr. M. Marc

Abreu has identified an area of the brain he calls the brain temperature tunnel, which

allow physicians to easily measure the body's core temperature by monitoring a patch

of skin [5]. This patch of skin claimed by the researcher is located at eyes cord. From

the area, we can measure the temperature continuously and more accurately

compared to other areas such as forehead, armpit and mouth.

The existing method of collecting temperature data is done manually at

hospitals. Usually the clinician will measure the temperature at patient's armpit,

mouth or forehead. This data measurement will be made periodically. After gathering

all the data, a graph will be plotted manually. Then the graph's pattern will be

analysed by doctor for further medical examination.

Current problems of doing these normal methods are time consummg.

Clinicians need to repeat the same steps to gather the data before it can be analysed

by the doctor.

3

As an alternative, this project will use wireless sensor node to monitor the

temperature continuously. By using the sensor node we can speed up the diagnosing

time and save time. This sensor node will be placed at eye's cord for high accuracy

data measurement.

This system will also allow many patients to be monitored simultaneously. It

is because our application can be integrated with network which can be connected by

multiple numbers of sensor nodes for each wireless sensor network. Another

advantage of this system is we can have proper and accurate database system. The

database system can be easily accessed by the doctor because it will be digitally

indexed.

1.2 Objectives

The objective of this project is to build a sensor network that can be used to

measure and collect patient's temperature diagnosed with dengue disease. It will help

the clinicians in gathering their patient's temperature data and stored it in digital form

for further use. With the sensor network clinician can save more time and acquire

more accurate data for diagnosis. By having digital data of their patient's we can

develop a proper and accurate database system. With this database system we can

have proper medical history of our patient which may be important for future works.

1.3 Scope of Study

This project takes into consideration the study of dengue fever that happens in

Malaysia. Wireless sensor node will be used to measure the temperature of the patient

who diagnosed with dengue fever. With the data taken by the sensor node, it could

have a better way of analysing the dengue disease.

4

At the end of this project, the following will be developed.

• A better way to measure body's core temperature who diagnosed with the

disease.

• We also can develop wireless sensor network for monitoring many patients

simultaneously.

• Moreover this project will provide help to clinician to enhance their normal

methods which have a lot of problems.

• Develop a proper database system for their patients

5

CHAPTER2

LITERATURE REVIEW

2.0 Wireless Sensor Network

Wireless sensor communications and digital electronics have enabled

developments of multifunction sensor nodes that can be communicated at distance.

This technology is called as wireless sensor network (WSN). The concept of wireless

sensor network is very simple. It consists of multiple numbers of sensor node,

processor, transceiver and power supply as their basic components. With these

components we can develop a lot of sensor node application which can be used in

many fields namely military, health and environment. A wireless sensor network is a

wireless network of distributed devices that using sensors to measure certain

parameters such as temperature, pressure, vibration and others.

Figure 2.1 shows architecture of wireless sensor networks. It consists of a

large number of sensor nodes over the area of interest. Each node is equipped with

one or several sensors (suited to the application), a short range (10-lOOm) radio and a

microcontroller. The nodes form an ad-hoc network capable of sending the sensed

data to one or more base stations that further forward the data using a long haul link

to the monitoring center [6].

6

2.1 Sensor Node

The sensor node consists of four basic parts which are processing unit,

sensing unit, transceiver and power unit [6]. From the Figure 2.1 it is their basic

architecture of sensor node unit. Figure 2.2 show the typical architecture of the sensor

node.

Figure 2.1: Sample architecture of wireless sensor networks [6]

7

Transceiver

Sensor 1
'"1:1
0

~ ::;;
(1)
.....
1JJ Micro-controller ADC
0

~ :::: i (")
(1)

Sensor 2
External Memory

Figure 2.2: The sensor node architecture [7]

2.1.1 Processing unit

The main function of processing unit is to perform tasks, process data and

control the functionality of other components in the sensor node [7]. An example of

processing unit is microcontrollers which are most suitable choice for its flexibility to

connect to other devices, programmable, power consumption is less, as these devices

can go to sleep state and part of controller can be active.

2.1.2 Transceiver

The vanous choices of wireless transmission media are Radio frequency,

Optical communication (Laser) and Infrared. Laser requires less energy, but needs

line of sight for communication and also sensitive to atmospheric conditions. Infrared

like laser, needs no antenna but is limited in its broadcasting capacity. Radio

Frequency (RF) based communication is the most relevant that fits to most of the

WSN applications. WSN's use the communication frequencies between about

433MHz and 2.4GHz [7]. The functionality of both transmitter and receiver are

combined into a single device know as transceivers.

8

2.1.3 Power source

Power consumption in the sensor node is for the sensing, communication and

data processing. More energy is required for data communication in sensor node.

Energy expenditure is less for sensing and data processing. The energy cost of

transmitting 1 Kb a distance of 100 m is approximately the same as that for the

executing 3 million instructions by 100 million instructions per second/W processor

[7]. Power is stored either in Batteries or Capacitors. Batteries are the main source of

power supply for sensor nodes.

2.1.4 Sensor Unit

Sensors are hardware devices that produce measurable response to a change

in a physical condition like temperature and pressure. The continual analog signal

sensed by the sensors is digitized by Analog-to-Digital converter and sent to

controllers for further processing. Characteristics and requirements of sensor node

should be small size, consume extremely low energy, operate in high volumetric

densities, be autonomous and operate unattended, and be adaptive to the

environment.

9

2.2 Dengue Fever [10)

Dengue fever is an infectious disease carried by mosquitoes and caused by

any of four related dengue viruses. This disease used to be called "break-bone" fever

because it sometimes causes severe joint and muscle pain that feels like bones are

breaking, hence the name [8]. Dengue fever occurs in tropical and sub-tropical

regions and usually increases in the hot and humid months. Dengue fever is not a

new disease. In recent years, dengue fever has become a major international public

health concern.

2.2.1 Overview of dengue fever

Dengue fever can be caused by any one of four types of dengue virus: DEN-1,

DEN-2, DEN-3, and DEN-4 [8]. A person can be infected by at least two if not all

four types at different times during his/her lifetime, but only once by the same type.

A human can get dengue virus infections from the bite of an infected Aedes

mosquito. Mosquitoes become infected when they bite infected humans, and later

transmit infection to other people they bite. Two main species of mosquito, Aedes

aegypti (Figure 2.3) and Aedes albopictus, have been responsible for all cases of

dengue transmitted in this country. Dengue is not contagious from person to person.

Figure 2.3: Female Aedes aegypti mosquito [10]

10

2.3.2 Symptoms of dengue fever

Symptoms of typical uncomplicated (classic) dengue usually start with fever within 4

to 7 days after been bitten by an infected mosquito and include

• High fever, up to I 05°F

• Severe headache

• Retro-orbital (behind the eye) pain

• Severe joint and muscle pain

• Nausea and vomiting

• Rash

The rash may appear over most of our body 3 to 4 days after the fever begins, and

then subsides after I to 2 days. We may get a second rash a few days later. Symptoms

of dengue hemorrhagic fever include all of the symptoms of classic dengue such as

marked damage to blood and lymph vessels and bleeding from the nose, gums, or

under the skin, causing purplish bruises. This form of dengue disease can cause

death.

Symptoms of dengue shock syndrome--the most severe form of dengue disease-

include all of the symptoms of classic dengue and dengue hemorrhagic fever, such as

• Fluids leaking outside of blood vessels

• Massive bleeding

• Shock (very low blood pressure)

This form ofthe disease usually occurs in children (sometimes adults)

experiencing their second dengue infection. It is sometimes fatal, especially in

children and young adults [8].

Basically, dengue commences with high fever and other signs as listed above for

2 to 4 days. Then, the temperature drops rapidly and intense sweating takes place.

After about a day with normal temperature and a feeling of well-being, the

II

temperature rises abruptly again. Rashes (small red bumps) show up on the arms, legs

and the entire body simultaneously along with fever [9]. However, rashes rarely

occur on the face. The palms of the hands and soles of the feet may be swollen and

bright red. Although the patient may feel exhausted for several weeks, most cases of

dengue take approximately one week to recover. Once a person recovers from

dengue, he or she will have antibodies in their bloodstream which will prevent them

from having a relapse for about a year.

Figure 2.4 shows a number of total cases of dengue in Malaysia from year 2000

to 2005. The highest cases occurred in 2002 till2004. It shows that a lot of cases of

dengue occurred in Malaysia.

Number of cases

33895

2000 2001 2002 2003 2004 2005

Year

Figure 2.4: Number of total cases of dengue in Malaysia from year 2000 to 2005

12

2.3 Brain Temperature Tunnel

At the past, the most accurate temperature measurement of human is collected

at rectum. It is the most accurate type of body temperature measurement [2]. But it is

definitely, by far, not the most comfortable method to measure the body temperature

of an individual.

However, the current study conducted by Yale researcher Dr. M. Marc Abreu

has identified an area of the brain he calls the brain temperature tunnel, which will

allow physicians to easily measure the body's core temperature by monitoring a patch

of skin [5]. This area is the most accurate type of body temperature measurement.

The discovery has the potential to prevent death from heat stroke and hypothermia,

and detect infectious diseases such as dengue fever and SARS.

He found that a small area of skin near the eyes and the nose is the point of

entry for the brain temperature tunnel as shown in Figure 2.5. His research shows that

this area is connected to a thermal storage center in the brain, and the area has the

thinnest skin and the highest amount of light energy. The brain temperature tunnel

has enabled the creation of systems that enhance performance while maximi.zing

safety in hot or cold temperatures and preventing dehydration.

Figure 2.5: Eye patch that measures the body's core temperature [5]

13

2.4 The sensor node system

In this project eZ430-RF2500 from Texas Instrument will be used as the

sensor node. The eZ430-RF2500 is the world,s smallest low-power wireless

development tool. Figure 2.6 shows the eZ430-RF2500 development tool. The tool

includes a USB emulator to program and debug the application in-system and 2.4-

GHz wireless target board featuring the highly integrated MSP430F2274 ultra-low

power MCU. The MSP430F22x4 combines 16-MIPS performance with a 200-ksps

1 O-bit ADC and 2 op-amps and is paired with the CC2500 multi-channel RF

transceiver designed for low-power wireless applications. Figure 2. 7 shows eZ430-

RF2500 flow connections of the USB debugging interface and the target boards.

I

Spy Bi-Wife &
UART Interface 2x LEOs

CC2500

U MSP430F2274
Pow~r~d CU pins

acc~ssible

Chip
Antenna

\.._._ _______ / \.. ~---.)

~ ~--~~

En u1du n emo arget

Figure 2.6: e1A30-RF2500 development tool

14

~;-rr •• :n~~~;,~ ..

.. . - -· ,. '
J

- .
~ .
. .
. 1

- ' ~·---~ ~. _._.)

;~----=--· -.=- -,, ,~,.~~-

.. .. ' "'"~;
Sub

Component I
MSP430Fl6X

(Microcontroller)

Wired/wireless
connection

Sub
Component

MSP430FU74

(Microcontroller)

D
CC2500

Transceiver

Figure 2.7: eZ430-RF2500 Flow Connections

2.4.1 Mkrocontroller (MSP430F2274)

The following is the specification of microcontroller (MSP430F2274):

• 200ksps 1 O-bit SAR ADC

• 2 built-in Op-Amps

• Watchdog timer, 16-bit Timer_A3 and 83

• USCI module supporting UARTILIN, (2) SPI, I2C, or IrDA

• Five low power modes drawing as little as 700nA in standby

15

2.4.2 Microcontroller's Architecture

A 16-bit RISC CPU, peripherals and flexible clock system are combined by

using a von-Neumann common memory address bus (MAB) and memory data bus

(MDB). Partnering a modern CPU with modular memory-mapped analog and digital

peripherals, the MSP430 offers solutions for today's and tomorrow's mixed-signal

applications.

2.4.2 Transceiver (CC2500)

The CC2500 is a low-cost 2.4 GHz transceiver designed for very low-power

wireless applications. The circuit is intended for the 2400-2483.5 MHz ISM

(Industrial, Scientific and Medical) and SRD (Short Range Device) frequency band.

The RF transceiver is integrated with a highly configurable baseband modem. The

modem supports various modulation formats and has a configurable data rate up to

500 kBaud. CC2500 provides extensive hardware support for packet handling, data

buffering, burst transmissions, clear channel assessment, link quality indication, and

wake-on-radio. The main operating parameters and the 64-byte transmit/receive

FIFOs of CC2500 can be controlled via an SPI interface. In a typical system, the

CC2500 will be used together with a microcontroller and a few additional passive

components.

16

CBAPTER3

METHODOLOGY

3.1 Projed Methodology

This project is implemented into several stages to complete as shown in Figure 3.1

-----]
Data acquisition ~·~·

-- .. ·"·] Integration between
hardware and softw~e

~--~._ -Validate the temperature ~~
collected ~

----· ~
Sensor network data system ~::~

Figure 3.1: Project methodology

17

Figure 3.1 shows the stages involved in project methodology. The first stage

involves data gathering process. This phase is the most crucial phase and provides the

author all the useful and important knowledge for design progress. Books, Internet

and Journals are the most practical sources for data gathering. After several

researches have been done, the devices and their application for the system are

specified. It was then followed by purchasing the hardware and the software for the

system. Then the system is implemented by build the hardware and integrating it with

the software applications. The final stage is validating process in which data from

sensor network data system is compared to data from and doctor's current method.

Several test plans will be implemented on a set of data to validate the accuracy of the

system designed.

3.2 Project Architecture

Figure 3.2 indicates the proposed system architecture for this project. A

sensor node (target board, Z430-RF2500) will be placed at each patient I and patient

2. USB debugging interface of Z430-RF2500 is being placed at host PC. The host PC

will collect the temperature data and plot it into a graph. The graph plotted will be

used during analysis process by the clinician for further diagnosis.

18

Wireless
range: up to ~':""' .;''~\

450ft ffti:1l "-,_~
' I · ..

~~',. . .•..• ---· 1 ~)

\~
' '':4 ~.

L. ':rtr· . --I ! ' - '.(., -- j I ' " ,...,,. "· .. ~'

~ ""'!, (jl l,;_._ I . t - \\ •
~

"~ ·~·
"., .. !.,,

Patient 1 Equipped : -----·-····:; ._, ·-. ··-.>~~~~::.~ .. j' with Target Board 1
. ., _ _.., ..

~~~ ~ "'.' 
Host PC ~ '(.~~' ~ ~ Equipped with " ~.- \ '' . .'.~ ...... -- ·, ' "; j 

USB Debugger 
" -~:.~~ \ .......... / .. 

·L '• q'! (i, - _,I I ' g· ···· · •,, L....... i (,:!. ··- \~ ~ 

Wireless 
~ .!...,. .. • .... 

Connection Patient 2 Equipped 
(Data with Target Board 2 

Transmitted 
to Host PC) 

'""'" 0 "'' --OMO '' .. - --------- ----- - -·----· 

Figure 3.2: The proposed system arehitecture 

3.2.1 Transmit and receive part 

The sensor node from each patient will be connected wirelessly to the host 

PC. Temperature measurement will be taken by the sensor node and then transmitted 

wirelessly to the host PC (USB Interface). The receiver at USB debugging interface 

will receive the measurement data from the sensor node. The wireless range is up to 

450ft for lOkbps. The transmission media that was being used by the system is radio 

frequency (RF). 

3.2.2 Data analysis 

The temperature data received at host PC will be stored and analysed in the 

database system, MySQL. Temperature data stored will be used to plot the graph and 

to be analysed for further use. 

19 



3.3 Tools for the sensor node (e1A30-Rf2500) 

Tools used are IAR Embedded Workbench (shown in Figure 3.3) and Code 

Composer Essential. IAR Embedded Workbench for MSP430 is an Integrated 

Development Environment (IDE) for building and debugging embedded applications 

for MSP430 microcontrollers. The IDE includes a 4K limited C-Compiler/Unlimited 

Assembler/FET Debugger/ Simulator. The FET Debugger is a fully integrated 

debugger for source and disassembly level debugging with support for complex code 

and data breakpoints. 

The Code Composer Essentials is used for integrated programming and debugging 

environment for the MSP430 ultra-low power microcontrollers. 

,.,._,.. '-
Fioo 1: q 
s&.z0fffl5GI-s.n 

R ill IISMI•ffi,j., ... 
111-.}Pc 
111151\c 
llso.pio11--
ll""''l~ 
~~~ 
.... ..}ONI.o(l

..JOo!M
llile.d o.--llobug ~ I _ _ ED.c

IIISRc
II~11Endo.-.r...
II ""'ll~
·~CDIIIg.... __
..JOo!M

.&at itt=. 1"'!~"::

w latUa 1C8f :.a:;:
tat :..n:-:.J;:::

a.;-;::=--! • IE!_!, • A..'"':':::.:'-' .. H '- s..t7 .IDQCICI.IIf
1..--:::=..: • mr_: .. .:.:::.:SJ:_s .. a:t:a .. ;...-::.::s • .a.:r::.::I .. ~=,.,

tor t x,: • 2~ : ~ > : *1=--- f : d!!lr l • ... r.~ .. ::: •
A.."'::::::.: • a: .. a::c:~r.:~ ~:JIC ... r::llllr:: •:ut

t.:..a 3l =•1".r.M.:!=nrT .. ~·; f'1~ "'unp:..
~;[; • • c::MA;

:...."':.:::::..:. • :%!_::: '
;,_""::::':".a • !I!!_! • z...-.::::u:_: .. itt:ll .. --'""::~ .. r.::::~:t .. m:,.f':l
for t *1= • :' : ~ > : ~- t: *U7 t:t • n: n:.:4
.:::.:~ • !:::: .. ct:~: .r..p.!lJC' uf

• , t r "" • :-:.' J • • , s. •• J •u c:• 1
:!S tsiPU•~ u trlUI!-.ej u u ~ ~ L •

,,~c ~ •uJ
~ • :-c.u:.~: ·:1
:st:t: • U Ct11151 • rtl • •:1.1 ... :: .. l :
Ll l !c;C!~-: •• J
I

Figure 3.3: IAR Embedded Workbench Kickstart Workspace

20

CBAPTER4

RESULTS AND DISCUSSION

In developing the system, the author has divided the works into four main parts

which are:
i) Debugging and running the firmware
ii) Download the firmware into the boards
iii) Set up the system
iv) Gather and analyse the result
v) Validate result

Figure 4.1 shows the simple connection of the USB debugger and target board to
the PC. Both of these devices are connected to each other through wireless
connection. The medium for the connection is Radio Frequency (RF).

that connect to the PC

Target Board with

battery power-up

Figure 4.1: The USB Debugger and Target Board

21

Figure 4.2 shows that the flowchart for the Access Point's source code (refer to

Appendix A). Firstly it will initializes both the communication between the MSP430

and the CC2500 radio and the LEDs/switches on the board that are to be used in the

application. After hardware initialization, APs and EDs in the wireless sensor

network create a random 4-byte address, write that address into flash memory for

reuse on system reset, and then write over their default build-time device address.

Since a SimpliciTI protocol AP identifies new devices on the network by their device

addresses, storing this randomly-generated address in flash and checking this

predefined location at device initialization ensures that an ED that has lost power or

gets reset is always recognized as the same device (is given the same link ID) by the

AP and that if the AP goes down itself, any ED that used the AP address to identify

their respective SimpliciTI network sees the same AP on network reset. The random

address is created using the results from the TI get Random Integer from VLO

function inside the vlo _rand.s43 library file provided with the project. This library

uses the rising edges of the very low frequency oscillator clock found in

MSP430x2xx devices to trigger samples of a system clock that are then interpreted

into a 4-byte device address. By changing the frequency of the system clock between

triggers, the randomization of resulting device addresses is increased, and the user

can be confident that two devices do not create the same network address.

The MCU _Init() function performs further MSP430-specific initializations that are

necessary for the application. These include:

• The DCO and MCLK are set to run at 8 MHz

• Timer A is set to trigger interrupts at !-second intervals.

• The universal serial communication interface (USCI) UART is initialized to

communicate with the PC COM port to 9600 Baud and RX/TX, and interrupts

are enabled.

22

Once the hardware initialization is complete, the TI splash screen is transmitted to the

COM port on the PC and the program calls the SMPL_Init(sCB) network

initialization function. The sCB parameter is a function pointer to a callback function

that is executed within the interrupt service routine (ISR) upon packet reception by

theAP

23

Yes ~ r

Initialize radio
MSP_Inil()

Address alreedy
wrllton into flmlh? ' -··--No '1.

Create random address I Rotroive device. addross from flash I (TI_getRandomlntogerFromVLO)
and writ<> addross to flash

I I

~
0v91"Writo dovice address

and
Initialize MSP430

~
Transmit splash

scroon.and
"Initializing Network•

J.
Initialize network
SMPL_Inlt(sCB)

..i..

~ ~ .sselfMeasureSem,
sJoii~S9m or GPeerFram•&Hn? sP&&rFrrune-Se-m

sSelfP-'IaasutreSom

•
Listen for a link Read tempo181um Define Input msg

SMPL_LinkLislen() {ADC10) buller

~
~ Read voltage

I sNumCurrenlP-eers++; I (ADC10)

J
FonnatADC10

samples into a msg '
Decrement join fer transmission Proces·s an wa.lling

semaphore.

~·
fmmes

Transml msg to PC

I

Figure 4.2: Flowchart for Access Point (AP)

24

Figure 4.3 shows that the flowchart for End Device's (ED) source codes (refer

to Appendix B). EDs on the network exist purely to instantiate the network's

application or intended function. In this instance, EDs initialize onto the network,

then wake up once a second to sample and communicate their ambient

temperature/battery voltage. A notable difference exists, however, in their method of

initialization. The parameter an ED passes to its SMPL Init() function is a void

pointer to the nonexistent callback function it would use to receive messages from

peers.

This application has no need for a callback function that indicates the receipt of

messages from other nodes on the network, because an ED's responsibilities are only

to transmit its collected data. If an ED were to be capable of receiving messages, it

could do so in two ways:

I) In the case that an ED sleeps and wakes up to receive messages from the AP,

it would call SMPL _Receive() on wake-up to sample the AP output buffer for

any stored messages.

2) In the case that an ED is always on and always listening for incoming

messages, it would implement a callback function similar to the sCB function

in the Access Point firmware.

25

Timer ISR wake
Initialize radio

•up

BSP_Inlt()

Read \>em perature
(ADC10)

v .. s No Enter LPM3 until tim..,. interrupt

C.....te random adclr_, Read battery voltage
Retrieve device address from flash (TI_geiRandomlntegerFromVLO) (ADC10)

and write add•e.,. to fl .. sh

OveJWrite device address Format ADC sample.s and
Initialize MSP430 for tmnemiHion

lnitialiH.Ijcin network So nd dlda to AP
SMPL_Init((uint8_1>(')(1inkiD_t))o) SMPL_Send0

Link to Acceas Point
SMPL_Link()

Figure 4.3: Flowchart for End Device (ED)

26

Figure 4.4 shows the some of the components of the prototype. The heat sink

paste is used as a heat transfer medium between the sensor node and the copper sheet.

In order to have minimal space in the case, the coin battery (CR2025) also used in the

prototype. Figure 4.5 shows the placement of the target board inside the case.

1. Heat sink paste

2. Target board and

USB board

3. Toggle switch

4. Target board

5. Battery cell

(CR2025, 3 volts)

6. Copper iron

7. Case

Figure 4.4: Components of the prototype.

1. Toggle switch

2. Target board

3. Case

Figure 4.5: The target board been placed inside the case

27

Figure 4.6 shows the iron sheet be place on the prototype. As the best heat

conductor, iron sheet is used in the prototype. It will be place at the area between

nose and eyes as shown in Figure 2.5.

Will be placed on area
ben,·een eyes and nose
(refer Figure 2.5)

Figure 4.6: The prototype

28

Figure 4.7 shows the prototype of the sensor node used on the patient. The

sensor node (target board) will collect temperature data on the patient and then

transmit it to the host pc (USB debugging interface)

Figure 4.7: The prototype of the sensor node used on the patient.

29

Figure 4.8 shows the PC visualizer, the center node is the Access Point and

the attached bubbles are the End Devices. The PC application displays the

temperature of both the End Devices and Access Point. Additionally, the PC

application is capable of simulating distance from its access point when the End

Devices are moved.

Temperature reading

from USB Debugger

(will be put on the host

PC)

Reading from Target

Board (will be placed

patient)

Technology for Innovators ., TFXAs INSTRl:ME:'fl'>

Figure 4.8: The PC Visualizer

30

Figure 4.9 it shows the temperature readings from the board. From here we

can analyse the temperature readings and maintain the system.

~~ Console 1-1~~

$HUBI, 32.1C,3.6,111,NI
$18B1, 29.?C,3.1,165,NI
$HUBI, 32.1C,3.6,III,NI
$18B1, 29 . ?C,3.1,165,NI
$HUBI, 32.1C,3.6,III,NI
$HUBI, 31 . SC,3.6,111,NI
$18B1, 29.?C,3.1,165,NI
I$HUJII, 31.5C,3.6,111,NI

29.?C,3.1,165,NI
32.1C,3.6,III,NI

, ~..,-... , 29.?C,3.1,165,NI
I $HI~BI, 32.1C,3 . 6,III,NI
1., ~, 29.?C,3.1,165,NI

~~~~~~~-..~., 29. ?C,3.1,165,NI 
32.1C,3.6,III,NI 
29.?C .. 3.1,16S .. NI 

1.," .. , ....... 32.1C .. 3.6 .. 111 .. NI 
.. 29.?C .. 3.1 .. 165,NI 

32.1C,3.6,111,NI 
, 29.?C .. 3.1,16S .. NI 

32.1C .. 3.6,III,NI 
31.1C,3.1,16S .. NI 
32.1C,3.6 .. 111 .. NI 
32.1C .. 3.6 .. 111,NI 
29.?C .. 3.1,165,NI 
32.1C .. 3 . 6,III,NI 

Highlight 

SHUBO 

32.0C 

3.6V 

000 

Highlight 

$0001 

29.7C 

3.0V 

065 

•• 

Description 

USB Debugger 

Temperature 

Voltage supplied 

Distance taken from 
USB Debugger 

Description 

Target Board 

Temperature 

Voltage supplied 

Distance taken from 
USB Debugger 

29. ?C,3 .I,I6S,NI -------------------

C close J 
Figure 4.9: Temperature readings result from the console. 

31 



REFERENCES 

[1] Campbell, Neil A. Biology, 3rd ed, California Benjamin Cummings, 
1987:790. 

[2] "Temperature, Body", World Book Encyclopaedia Chicago, Field Enterprise, 
1996. 

[3] Kaydos-Daniels SC et a!. Body temperature monitoring and SARS fever 
hotline, Taiwan. Emerg Infect Dis [serial online] 2004 Feb. 

[4] Maria G. Essig, Body Temperature, Blue Shield of California, 2007. 

[5] Dr. M. Marc Abeau, "Discovery reveals new way to monitor body 
temperature", Yale Bulletin & Calendar, Volume 31, Number 33. 

[6] I.F. Akyildiz et a!, Wireless sensor networks: a survey, Georgia Institute of 
Technology, 2001. 

[7] Jason Lester Hill, System Architecture for Wireless Sensor Networks, 
University of California, Berkeley, 2003. 

[8] 'National Institutes of Allergy and Infectious Disease (NIAID), 27 October 
2007, http://www3 .niaid.nih.gov/healthscience/healthtopics/dengue/. 

[9] Malaysia Medical Associates- Dengue and Dengue Haermorrhagic Fever. 
http://medicine.com.my/wp/?p=292. 

[10] World Health Organization (WHO), 27 October 2007, 
http://www. who.int/globalatlas/DataQuery/default.asp. 

[11] Texas Instrument, eZ430-RF2500 Development Tool, User's Guide, 2007. 

[12] Crossbow Wireless Sensor Network, 27 October 2007, 
http://www.xbow.com/Products/productdetails.aspx?sid=160. 

[13] Cirronet Zigbee, 27 October 2007, http://w"I'Vw.cirronet.com/zigbee.htm. 

[14] PIC12F675 Tutorial, 21 March 2008, 
http://www.best-microcontroller-projects.com 

33 



CHAPTERS 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

In this project, the wireless sensor network system will be used to help 

clinician to collect data. It will provide a better way to obtain more accurate body's 

core temperature of patient diagnosed with dengue. The wireless sensor network 

system can be used for monitoring many patients simultaneously. 

With the sensor network, clinician can save more time and acquire more 

accurate data for diagnosis. By having digital data of their patient's we can develop a 

database system. With this database system we can have proper medical history of 

our patient which may important in the future works. 

5.2 Recommendation 

Increase number of sensor nodes to monitor large number of patients. 

Research on the wireless sensor network system which related to another disease 

could be conducted such as for Malaria and SARS. The accuracy and reliability of 

the system can be improved in the future by using more efficient database system. 

32 



APPENDIX A 

Source code for Access Point (AP) 

#include "bsp.h" 
#include "bsp_leds.h" 
#include "bsp _ buttons.h" 
#include "nwk_types.h11 

#include "nwk_api.h" 
#include "nwk frame.h" 
#include "nwk.h" 
#include "TI_ CC _spi.h" 

#include "msp430x22x4.h" 
#include "vlo_rand.h" 

#define MESSAGE LENGTH 3 
void toggleLED(uint8 _t); 
void TXString( char* string. int length ); 
void MCU_Init(void); 
void transmitData(int addr, signed char rssi, char msg[MESSAG E _LENGTH] ); 
void transmitDataString(char addr[4],char rssi[3], char msg[MESSAGE _LENGTH]); 
void createRandomAddress(); 

//data for terminal output 
_no_init volatile int tempOffset@ Ox! OF4; II Temerature offset set at production 

II reserve space for the maximum possible peer Link IDs 
static link!D_t sLID[NUM_CONNECT!ONS]; 
static uint8_t sNumCurrentPeers; 

II callback handler 
static uint8_t sCB(IinkiD_t); 

II work loop semaphores 
static uint8 _t sPeerFrameSem; 
static uint8 _t sJoinSem; 
static uint8_t sSelfMeasureSem; 

II mode data verbose~ default, deg F ~default 
char verboseMode ~ I; 
char degCMode ~ 0; 

void main (void) 
{ 

34 



bspiState_t intState; 

WDTCTL ~ WDTPW + WDTHOLD; II Stop WDT 
{ I I delay loop to ensure proper startup before SimpliciTI increases DCO 
volatile inti; 
for(i ~ 0; i < OxFFFF; i++){} 

} 
PI DIR ~ OxFF; 
P!OUT~OxOO; 

P2DIR ~ Ox27; 
P20UT ~ OxOO; 
P3DIR ~ OxCO; 
P30UT ~ OxOO; 
P4DIR ~ OxFF; 
P40UT ~ OxOO; 

BSP _!nit(); 
createRandomAddress(); 
MCU_Init(); 
//Transmit splash screen and network init notification 
TXString( (char*)splash, sizeof splash); 
TXString( "\r\nlnitializing Network .... ", 26 ); 

SMPL_Init(sCB); 

II network initialized 
TXString( "Donelrln", 6); 

I I main work loop 
while (I) 
{ 
II Wait for the Join semaphore to be set by the receipt of a Join frame from a 
II device that supports and End Device. 

if (sJoinSem && (sNumCurrentPeers < NUM_ CONNECTIONS)) 
{ 
I I listen for a new connection 
SMPL_LinkListen(&sLID[sNumCurrentPeers]); 
sNumCurrentPeers++; 
BSP _ENTER_ CRITICAL_ SECTION(intState); 
if (sJoinSem) 
{ 
sJoinSem--; 

} 
BSP _EXIT_ CRITICAL_ SECTION(intState); 

} 

II if it is time to measure our own temperature ... 
if(sSelfMeasureSem) 
{ 
char msg [6]; 
char addr[] ~ {"HUBO"}; 
char rssi[] ~ {"000"}; 
int degC, volt; 
volatile long temp; 
int results[2]; 

35 



ADCIOCTLI ~ INCH_IO + ADCIODJV _ 4; II Temp Sensor ADCIOCLKI4 
ADCIOCTLO ~ SREF _I+ ADCIOSHT_3 + REFON + ADCIOON + ADCIOIE + ADCIOSR; 
for( degC ~ 240; degC > 0; degC-- ); II delay to allow reference to settle 
ADCIOCTLO 1~ ENC + ADCIOSC; II Sampling and conversion start 
_bis_SR_register(CPUOFF + GlE); II LPMO with interrupts enabled 
results[O] ~ ADCIOMEM; 

ADClOCTLO &~ -ENC; 

ADCIOCTLI ~JNCH_II; II AVccl2 
ADCIOCTLO ~ SREF _I+ ADCIOSHT_2 + REFON + ADClOON + ADCIOIE + REF2_5V; 
for( degC ~ 240; degC > 0; degC-- ); II delay to allow reference to settle 
ADCIOCTLO 1~ ENC + ADCIOSC; II Sampling and conversion start 
_ bis _ SR _register(CPUOFF + GIE); II LPMO with interrupts enabled 
results[!]~ ADCIOMEM; 
ADCIOCTLO &~ -ENC; 
ADCIOCTLO &~ -(REFON + ADClOON); II tum off AID to save power 

} 

II oC ~ ((AI0/1024)*1500mV)-986mV)*ll3.55mV ~ A10*42311024- 278 
II the temperature is transmitted as an integer where 32.1 ~ 321 
II hence 4230 instead of 423 
temp~ results[O]; 
degC ~(((temp- 673) * 4230) II 024); 
if( tempOffset !~ OxFFFF ) 
{ 
degC +~ tempOffset; 

} 

temp ~ results[ I]; 
volt~ (temp*25)15 12; 

msg[O] ~ degC&OxFF; 
msg[l] ~ (degC»S)&OxFF; 
msg(2] ~volt; 
transmitDataString(addr, rssi, msg ); 

toggleLED(I ); 
sSelfMeasureSem ~ 0; 

II Have we received a frame on one of the ED connections? 
II No critical section-- it doesn't really matter much if we miss a poll 
if (sPeerFrameSem) 
{ 
uint8 t msg[MAX_APP_PAYLOAD], len, i; 

II process all frames waiting 
for (i~O; i<sNumCurrentPeers; ++i) 
{ 

if(SMPL_Receive(sLID[i], msg, &len)~~ SMPL_SUCCESS) 
{ 

ioctlRadioSiginfo _t siglnfo; 
siglnfo.port ~ sLID[i]; 
SMPL_Jocti(IOCTL_OBJ_RADIO, IOCTL_ACT_ RADIO_SIGINFO, (void *)&siglnfo); 
transmitData( i, (signed char)siglnfo.rssi, (char*)msg ); 

36 



} 
} 

} 

toggleLED(2); 
//processMessage(msg, len); 
BSP _ENTER_ CRITICAL_ SECT!ON(intState); 
sPeerFrameSem--; 
BSP _EXIT_ CRITICAL_ SECTION(intState); 

} 

void createRandomAddress() 
{ 

} 

volatile unsigned int rand; 
addr _ t !Addr; 

do 
{ 
rand~ Tl_getRandom!ntegerFromVLO(); II first byte can not be OxOO ofOxFF 

} 
while( (rand & OxFFOO)~~oxFFOO II (rand & OxFFOO)~~oxOOOO ); 

!Addr.addr[O]~(rand»8) & OxFF; 
!Addr.addr[I]~rand & OxFF; 
rand~ Tl_getRandomlntegerFromVLO(); 
!Addr.addr[2Nrand»8) & OxFF; 
!Addr.addr[3]~rand & OxFF; 
SMPL_Ioctl(IOCTL_ OBJ _ ADDR, IOCTL _ACT __ SET, &IAddr); 

/*------------------------------------------------------------------------------
* 
------------------------------------------------------------------------------*I 
void transmitData(int addr, signed char rssi, char msg[MESSAGE _LENGTH]) 
{ 
char addrString[4]; 
char rssiString[3]; 
volatile signed int rssi_int; 
if( rssi < 0) 
{ 
_NOP(); 
} 
addrString(O] ~ '0'; 
addrString[I] ~ '0'; 
addrString[2] ~ 'O'+(((addr+ 1)/10)%1 0); 
addrString(3] ~ 'O'+((addr+l)%10); 
rssi_int ~(signed int) rssi; 
rssi_int ~ rssi_int+I28; 
rssi_int ~ (rssi_int*l 00)/256; 
rssiString[O] ~ 'O'+(rssi_int%1 0); 
rssiString[I] ~ 'O'+((rssi_int/1 0)% I 0); 
rssiString[2] ~ 'O'+((rssi_int/1 00)%1 0); 
if( rssi < 0 II rssiString[O] ~~'/'II rssiString[l] ~~'/'II rssiString[2] ~~ '/') 

37 



} 

_NOP(); 
} 
rssi++; 
rssi_int++; 
transmitDataString( addrString, rssiString, msg ); 

/*------------------------------------------------------------------------------
* 
------------------------------------------------------------------------------*I 
void transmitDataString(char addr[4],char rssi[3], char msg[MESSAGE _LENGTH] ) 
{ 
char temp_string[] ~ {" XX .XC"}; 
int temp~ msg[O] + (msg[l]«8); 

if( !degCMode) 
{ 

} 

temp~ (((float)temp)*l.8)+320; 
temp_string[5] ~ 'F'; 

if( temp< 0) 
{ 

} 

temp _string[ OJ~'-'; 
temp ~temp* -I; 

temp _string[4] ~ 'O'+(temp%1 0); 
temp _string[2] ~ 'O'+((temp/1 0)%1 0); 
temp_string[l] ~ 'O'+((temp/100)%10); 

if( verboseMode ) 
{ 
char output_ verbose[] ~ {"lr\nN ode:XXXX,Temp:-XX.XC,Battery:X.XV ,Strength:XXX%,RE:no 

"}; 

} 

output_verbose[46] ~ rssi[2]; 
output_verbose[47] ~ rssi[l]; 
output_verbose[48] ~ rssi[O]; 

output_ verbose[ 17] ~ temp_ string[O]; 
output_ verbose[ IS] ~temp _string[!]; 
output_ verbose[l9] ~temp _string[2]; 
output_ verbose[20] ~temp _string[3]; 
output_verbose[21] ~ temp_string[4]; 
output_ verbose[22] ~temp _string[5]; 

output_ verbose[32] ~ 'O'+(msg[2]/l 0)% I 0; 
output_ verbose[34] ~ 'O'+(msg[2]% I 0); 
output_ verbose[7] ~ addr[O]; 
output_ verbose[8] ~ addr[l]; 
output_ verbose[9] ~ addr[2]; 
output_ verbose[ IOJ ~ addr[3]; 
TXString( output_ verbose, sizeof output_ verbose ); 

else 
{ 

38 



char output_ short[]~ {"lrln$ADDR,-XX.XC,V.C,RSI,N#"}; 

output_short[I9] ~ rssi[2]; 
output_short[20] ~ rssi[I]; 
output_short[21] ~ rssi[O]; 

output_short[8] ~temp _string[ OJ; 
output_ short[9] ~ temp _string[!]; 
output_short[IO] ~ temp_string[2]; 
output_short[Il] ~temp _string[3]; 
output_short[I2] ~ temp_string[4]; 
output_short[l3] ~ temp_string[5]; 

output_short[I5] ~ 'O'+(msg[2]11 0)%1 0; 
output_short[I7] ~ 'O'+(msg[2]%1 0); 
output_short[3] ~ addr[O]; 
output_short[4] ~ addr[l]; 
output_short[5] ~ addr[2]; 
output_short[6] ~ addr[3]; 
TXString(output_short, sizeof output_ short); 

} 
} 
1*------------------------------------------------------------------------------

* 
------------------------------------------------------------------------------*I 
void TXString( char* string, int length ) 
{ 

int pointer; 
for( pointer~ 0; pointer< length; pointer++) 

} 

{ 
volatile inti; 
UCAOTXBUF ~ string[pointer]; 
while (!(IFG2&UCAOTX!FG)); 

} 
II USC!_ AO TX buffer ready? 

1*------------------------------------------------------------------------------

* 
------------------------------------------------------------------------------*I 
void MCU_Init() 
{ 
BCSCTLI ~ CALBC1_8MHZ; II Set DCO 
DCOCTL ~ CALDCO _ 8MHZ; 

BCSCTL3 1~ LFXTIS_2; 
TACCTLO ~ CCIE; 
TACCRO ~ 12000; 
TACTL ~TASSEL_!+ MC_l; 

P3SEL 1~ Ox30; 
UCAOCTLI ~ UCSSEL_2; 
UCAOBRO ~ Ox41; 
UCAOBRI ~ Ox3; 
UCAOMCTL ~ UCBRS_2; 
UCAOCTL I &~ -UCSWRST; 

II LFXTI ~ VLO 
II TACCRO interrupt enabled 

11-1 second 
II ACLK, upmode 

II P3.4,5 ~ USC!_AO TXDIRXD 
II SMCLK 

II 9600 from 8Mhz 

II **Initialize USC! state machine** 

39 



IE2 j~ UCAORXIE; 
_enable _interrupt(); 

II Enable USC!_ AO RX interrupt 

} 
1*------------------------------------------------------------------------------
* 
------------------------------------------------------------------------------*1 
void toggleLED(uintS_t which) 
{ 

} 

if (I ~~which) 
{ 
BSP_TOGGLE_LEDI(); 

} 
else if(4 ~~which) 
{ 
BSP _TOGGLE_ LED3(); 

} 
else 
{ 
BSP _TOGGLE_ LED2(); 

} 
return; 

1*------------------------------------------------------------------------------
* Runs in ISR context. Reading the frame should be done in the 
* application thread not in the JSR thread. 
------------------------------------------------------------------------------*I 
static uintS_t sCB(Iink!D _t port) 
{ 

} 

if (port>~ PORT _BASE_ NUMBER) 
{ 
sPeerFrameSem++; 

} 
else if (SMPL _PORT _JOIN~~ port) 
{ 
sJoinSem++; 

} 

//leave frame to be read by application. 
return 0; 

1*------------------------------------------------------------------------------
* ADC I 0 interrupt service routine 
------------------------------------------------------------------------------*I 
#pragma vecto~ADCIO_ VECTOR 
_interrupt void ADCIO_ISR(void) 
{ 
_ bic _ SR _register_ on_ exit(CPUOFF); 

} 
II Clear CPU OFF bit from O(SR) 

1*------------------------------------------------------------------------------
* Timer AO interrupt service routine 
------------------------------------------------------------------------------*I 
#pragma vecto~TIMERAO _VECTOR 
_interrupt void Timer_A (void) 
{ 

40 



sSelfMeasureSem ~ I; 
} 

1*------------------------------------------------------------------------------
* USCIA interrupt service routine 
------------------------------------------------------------------------------*1 
#pragma vectoFUSCIABORX _VECTOR 
_interrupt void USCIORX _ISR(void) 
{ 

} 

char rx ~ UCAORXBUF; 
if ( rx ~~ 'V' II rx ~~ 'v' ) 
{ 
verbose Mode~ I; 

} 
else if ( rx ~~ 'M' II rx ~~ 'm') 
{ 
verboseMode ~ 0; 

} 
else if ( rx ~~ 'F' II rx ~~'f) 
{ 
degCMode ~ 0; 

} 
else if ( rx ~~ 'C' II rx ~~ 'c') 
{ 
degCMode ~ I; 

} 

41 



APPENDIXB 

Source code for End Device (Target Board) 

#include "bsp.h" 
#include "nwk _types.h" 
#include "nwk_api.h" 
#include "TI_CC_spi.h" 
#include "bsp _leds.h" 
#include "bsp _ buttons.h" 
#include 11Vlo rand.h" 

#include 11 Ccrf_regDefs.h" 

void IinkTo(void); 
void MCU _!nit( void); 

void toggleLED(uint8_t); 

_ no_init volatile int tempOffset@ Ox! OF4; II Temerature offset set at production 

void createRandomAddress(); 

void main (void) 
{ 
WDTCTL ~ WDTPW + WDTHOLD; II Stop WDT 
{ II delay loop to ensure proper startup before Simp liciT! increases DCO 
volatile inti; 
for(i ~ 0; i < OxFFFF; i++ ){} 

} 
II Simp liciT! will change port pin settings as well 
PIDIR ~ OxFF; 
PI OUT~ OxOO; 
P2DIR ~ Ox27; 
P20UT ~ OxOO; 
P3 DIR ~ Ox CO; 
P30UT ~ OxOO; 
P4DIR ~ OxFF; 
P40UT ~ OxOO; 

BSP _!nit(); 

createRandomAddress(); II set Random device address each startup 

42 



BCSCTLJ ~ CALBC1_8MHZ; II Set DCO after random function 
DCOCTL ~ CALDCO _ 8MHZ; 
BCSCTL31~ LFXT1S_2; II LFXTJ ~ VLO 
TACCTLO ~ CCIE; II TACCRO interrupt enabled 
TACCRO ~ 12000; II- I sec 
TACTL ~TASSEL I + MC _I; II ACLK, uprnode 

I I keep trying to join until successful. toggle LEDS to indicate that 
I I joining has not occurred. LED3 is red but labeled LED 4 on the EXP 
I I board silkscreen. LED I is green. 

} 

while (SMPL _NO _JOIN~~ SMPL _lnit((uint8 _t (*)(link!D _t))O)) 
{ 

} 

toggleLED(I ); 
toggleLED(2); 
_bis_ SR _register(LPM3 _bits+ GIE); II LPM3 with interrupts enabled 

II unconditional link to AP which is listening due to successful join. 
linkTo(); 

void createRandornAddress() 
{ 

} 

volatile unsigned int rand; 
addr_t IAddr; 

do 
{ 
rand~ Tl_getRandornlntegerFrornVLO(); II first byte can not be OxOO ofOxFF 

} 
while( (rand & OxFFOO)~~oxFFOO II (rand & OxFFOO)~~oxOOOO ); 

1Addr.addr[O]~(rand»8) & OxFF; 
IAddr.addr[ I ]~rand & OxFF; 
rand~ TI_getRandornlntegerFrornVLO(); 
1Addr.addr[2]~(rand»8) & OxFF; 
1Addr.addr[3]~rand & OxFF; 
SMPL _locti(IOCTL_ OBJ _ ADDR, IOCTL_ACT _SET, &IAddr); 

void linkTo() 
{ 
link!D_t link!DI; 
uint8_t msg[3]; 

I I keep trying to link ... 
while (SMPL_NO_LINK ~~ SMPL_Link(&link!DI)) 
{ 
_bis_SR_register(LPM3_bits + GIE); II LPM3 with interrupts enabled 
toggle LED(!); 

} 

I I Turn off all LEDs 
if(BSP _LEDI_IS_ON()) 
{ 

43 



toggleLED(l ); 
) 
if (BSP _ LED2 _IS_ ON()) 
{ 
toggleLED(2); 

) 
while(!) 
{ 
volatile long temp; 
int degC, volt; 
int results[2]; 
SMPL_loctl( IOCTL_OBJ_RAD!O, !OCTL_ACT_RAD!O_SLEEP, "" ); 
_bis_SR_register(LPM3_bits+GIE); II LPM3 with interrupts enabled 
SMPL_loctl( IOCTL_OBJ_RAD!O, JOCTL_ACT_RAD!O_AWAKE, "" ); 

toggleLED(2); 
ADClOCTLl ~ !NCH_!O + ADCIODIV _ 4; //Temp Sensor ADCIOCLK/4 
ADCIOCTLO ~ SREF_l + ADC10SHT_3 + REFON + ADCIOON + ADCIO!E + ADC!OSR; 
for( degC ~ 240; degC > 0; degC-- ); II delay to allow reference to settle 
ADCIOCTLO 1~ ENC + ADCIOSC; II Sampling and conversion start 
_bis_SR_register(CPUOFF +OlE); II LPMO with interrupts enabled 
results[ OJ~ ADCIOMEM; 

ADCIOCTLO &~ -ENC; 

ADCIOCTLI ~INCH_! I; // AVcc/2 
ADCIOCTLO ~ SREF_l + ADCIOSHT_2 + REFON + ADC!OON + ADCIOIE + REF2_5V; 
for( degC ~ 240; degC > 0; degC-- ); II delay to allow reference to settle 
ADCIOCTLO 1~ ENC + ADCIOSC; II Sampling and conversion start 
_bis_SR_register(CPUOFF + GIE); II LPMO with interrupts enabled 
results[!]~ ADCIOMEM; 
ADCIOCTLO &~ -ENC; 
ADC I OCTLO &~ -(REFON + ADC I OON); I I turn off AID to save power 

II oC ~ ((AI0/1024)*1500mV)-986mV)*l/3,55mV ~ A10*423/1024- 278 
II the temperature is transmitted as an integer where 32.1 ~ 321 
II hence 4230 instead of 423 
temp~ results[O]; 
degC ~((temp- 673) * 4230) I I 024; 
if( tempOffset !~ OxFFFF) 
{ 

degC +~ tempOffset; 
) 
/*message format, UB =upper Byte, LB =lower Byte 

ldegC LB I degC UB I volt LB I 

0 2 
*I 

temp~ results[!]; 
volt~ (temp*25)/512; 
msg[O] ~ degC&OxFF; 
msg[l] ~ (degC»8)&0xFF; 
msg[2] ~volt; 

44 



} 
} 

SMPL_Send(linkiDI, msg, sizeof(msg)); 
toggleLED(2); 

void toggleLED(uint8_t which) 
{ 

} 

if(! ~~which) 
{ 

BSP_TOGGLE_LEDI(); 
} 
else if (2 ~~which) 
{ 
BSP _TOGGLE_ LED2(); 

} 
return; 

1*------------------------------------------------------------------------------
* ADC I 0 interrupt service routine 
------------------------------------------------------------------------------*I 
#pragma vectoPADCIO_ VECTOR 
_interrupt void ADC I 0 _ISR( void) 
{ 
_bic_SR_register_on_exit(CPUOFF); II Clear CPU OFF bit rrom O(SR) 

} 
1*------------------------------------------------------------------------------
* Timer AO interrupt service routine 
------------------------------------------------------------------------------*I 
#pragma vector~TIMERAO _VECTOR 
_interrupt void Timer_A (void) 
{ 
_bic_SR_register_on_exit(LPM3_bits); II Clear LPM3 bit rrom O(SR) 

} 

45 


