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ABSTRACT

The main purpose of this project is to develop black-box models. That can

introduce another modeling tool in process control system identification field. These

models need to address process that is difficult or complex to model using the

mathematical or empirical modeling approaches. The core activity for this project is

to develop a model for chemical process (single loop pressure control) using black-

box identification techniques. This approach overcomes the difficulties that

encountered in modeling processes that characterized with low level of a priori

knowledge (operators have no priori knowledge about the system). Process control

system identification is implemented through conducting an experiment on a gas /air

pressure pilot plant where a set of input-output data are collected. Intelligent black-

box modeling techniques are implemented for building process model that can be

utilized for further process control applications. Feedforward Neural network and

fuzzy clustering method are used to obtain a model from the plant data. The author

developed and compared the performance of black-box modeling techniques against

the performance of empirical model. According to the comparison achieved. It is

recommended to use black box modeling techniques for processes where process

control engineers may face the lackof knowledge about the system or the plant.
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CHAPTER 1

INTRODUCTION

1.1 Project Background

Process control system identification is achieved through a number of modeling

techniques. The conventional modeling techniques which was most common in this

trends, seems to be not sufficient enough or it comes to the time where looking for

alternatives of old modeling techniques. That makes the process control system

identification easier from the implementation aspects.

In another word, depending on the level of a priori knowledge about the system, the

identification problem can be approached in different ways. If the identification is

based exclusively on the system's measured data such technique is called black-box

modeling.

Assuming there is no or only diminutive knowledge aboutthe physics, chemistry and

dynamics of the system. The identification techniques handling such lack of

knowledge about the system (process) dynamic are called black-box modeling. In

contrast to this is white-box modeling. That is used the pure physics and chemistry

laws of the systems in order to develop a model. But when a certain level of insight

about the system exists and is utilized to improve the empirical modeling the phrase

gray-box modeling is used.

Another problem that might exist that is even though knowledge about the process is

available but it is difficult to utilize it as it relates to a continuous-time description of

the system (i.e., interm offdifferential equations). In this case transferring knowledge

to a discrete-time description is often hard and thus it is frequently lost in

discretization process. For this case modeling option will be confined to black-box



identification regardless that a certain level of system insight is available. However, a

certain level of system'sbehavior (system dynamics) is always useful tool to facilitate

the identification job. Such insightmight include: the order of the system, whether the

system dynamics are slow or fast, stability properties, operation range, and time

delay.

An important stage in control system design is the development of a

mathematical mode! of the system to be controlled. In order to develop a controller, it

must be possible to analyze the system to be controlled and this is done using a

mathematical model. Another advantage of system identification is evident if the process

is changed or modified. System identification allows thereal system to be altered without

having to calculate the dynamical equations and model the parameters again. The

mathematical model in this case is the black-box, it describes the relationship between the

input and output signals.

Process identification approach helps in system modeling using different

techniques of modeling. One of these techniques is using a black-box system

identification technique. Where the main idea of this kind of modeling is to construct

processmodels from identification data (set of input-output).

The purpose of the model is to emulate the relation between system's input-

output data. To model a certain process designs an experiment to collect the

identification data process data (identification data), assume (select) model structure,

and calculate model parameters then evaluating performance of the model or

remodeling ifnecessary.

Processmodeling has a significant improvement in the process control system

industry. Process control engineers are in need for an accurate model (model with

minimum errors). That represents the process dynamics. This model facilitates the

implement of different control strategies. Where doing such experiment on the

running plant might be impossible due to the operation condition and the product

quality.



In brief, the process model can be used for control application, fault

detection, prediction, etc.

1.2 Objective

In short, the projectaims is to meet the following objectives:-

1) To conduct experiment on UTP Pilot Plant (SIM 305 pilot plant 2: air flow,

pressure & temperature pilot plant.), in order to collect data for identification

(record of plant input-output).

2) To apply fuzzy logic and neural network in order to obtain "black-box" process

models (build model from the process data).

1.3 Scope of the Project

The "Black-box" system identification techniques used in this project are limited to

feedforward neural network and fuzzy clusteringmethods. Plant data set (input-out) is

used to build a model that can emulate the plant's dynamics behavior.

Neural network model constructed by using Neural Network toolbox in MATLAB,

thenthe produced model is trained and simulated (model validation).

Fuzzy clustering (building fuzzy model from partition) is implemented using fuzzy

modeling and identification toolbox developed by Dr. Robert Babuska. [1]

1.4 Problem Statement

The project addresses modeling practice where difficulties are face in the following

aspects:

1) Difficulties to implement process data in order to obtain empirical model.

2) Lack of the knowledge about the system. That enables process control

engineers to develop a mathematical model from the physical and chemistry

principles (obtain models from the fundamental laws of physics and

chemistry).



The black-box model developed in this project can be implemented for developing

control strategies, fault detection, etc.



Chapter 2

LITERATURE REVIEW

2.1 System Identification

System identification is the task of inferring a mathematical description or a model of

a dynamic system from a series of measurements on the system.

If burden associated with building a model using laws of physics, chemistry

economics, etc., is considered overwhelming, system identification techniques are

naturally of particular interest.

2.2 Empirical Modeling

Empirical modeling is an alternative modeling method to the mathematical modeling

method for process control system. A model developed using this method provides the

dynamic relationship between the selected plants's input - output variables.

Empirical model involve design experiments, during which the process is perturbed to

generate dynamic response. The success of the model requires close adherence to the

principles of experiment design and model fitting. There are two method of model

fitting. The first method is termed the process reaction curve which employs simple

graphical procedures for model fitting. The second and more general method employs

statistical principles for determining the parameters.



2.3 Neural Network

According to Chin-Teng Lin and C.S Gorge Lee:

Neural Networks are a promising new generation of information processing

systems that demonstrate its ability to learn, recall and generalize from

training patterns of data. [2]

In another word, neural network can be trained using plant real time data sets [MV

PV], the data or the observed plant input-output.

Another general definition for Neural Network, according to Norgaard, Ravan,

Poulsen and Hansen:

Neural network is a system of simple processing elements, neurons that are

connected into a network by a set of (synaptic) weights. [3]

Adjustments can be done to determine the function of the network. Such adjustments

can be in term of selecting the architecture of the network, the magnitude of weights

and the processing element's mode of operation.

2.3.1 Basic Models and Learning Rules of ANNs

Models of ANNs are specified by three basic entities: models of the neurons

themselves, models of synaptic interconnections and structures, and the training or

learning rules for updating the connecting weights

Processing elements (PE), Information processing of the PE can be viewed

as structure consisting of two parts: input and output .associated with the inputof the

PE is an integration function / which service to combine the information, activation

or evidence from an external source or PEs into a net input to PE. The second action

of the PE is to output an activation value as a function of its net input through an

activation function or transfer function (/).

Connections, an ANN consist of highly interconnected PEs such that each PE

output isconnected through weights to other PEs orto it self, both delay and lag-free

connections are allowed. Hence the structure that organize these PEs and the



connection geometry among them should be specified for an ANN. It is also

important to point out where the connection originates and terminates in addition to

specifying the function of each PE in an ANN. refer to Figure 1below.

Hidden Output
layers layer

Figure 1 Basic networkconnection geometries (for feedforward
network)

Learning rules, specifying an ANN learning rule is an important design

aspect, generally there are two kinds of learning in ANNs: parameter learning which

is concerned with updating of the connecting weights in an ANN, and structure

learning which focuses on the change in the network structure, including the number

of PEs and their connection types, in general learning rules are classified as

supervised , unsupervised and reinforcement learning , attention is paid to supervised

learning as learning rule for the neural network model.

In supervised learning, at each instant of timewhen input is applied to an ANN,

the corresponding desired system output response is given as (d). The neural network

is thus told precisely what it should be emitting as output. More clearly, in the

supervised learning mode an ANN is supplied with a sequence of examples,

(x{i),d^\(xiz), J(2)),K ,{xik\d^) of the desired input-output pairs ,when each input
x^is put into the ANN, the corresponding desired output d^ is also supplied to the
ANN, the difference between the actual output (neural network predicted output)

y{k) and the desired output is measured in the error signal generator which then



produces the error signal for the ANN to correct its weights in such a way that the

actual output will move closer to the desired output. Figure 2 below shows the

representation of the supervised learning rule.

s
ANN

^7T
Error
Signals

li:
Error
Signal

Figure 2 Supervised learning

(Actual Output)

In supervised learning, it is assumed that the correct "target" output values are

known for each input pattern. However, in some situations only less detailed

information is available. For example, the ANN may only be told that the current

actual output is "too high" or 50%"correct". In extreme case, there isonlya single bit

of feedback information indicating whether the output is right or wrong. Learning

base on this of critic information is called reinforcement learning, and the feedback

information is called the reinforcement signal. Reinforcement learning is a form of

supervised learning because of the network still receives some feedback from its

environment. But the feedback (i.e., the reinforcement signal)is only evaluative

(critic) rather than instructive .that is just indicate how good or how bad a particular

output is and provide no hints as what the right answer should be . The external

reinforcement signal is usually processed by the critic signal generator produce more

informative critic signal for the ANN to adjust its weights properly with the hope of

getting better critic feedback in the future. Figure 3 below shows the representation

of reinforcement learning rule. The reinforcement learning is also called learning with

critic as opposed to learning with a teacher, which describes supervised learning

rule.



(Input)

Critic

Signals
Critic
Signal
Generator

(Actual Output)

Reinforcement

Signal

Figure 3 :Reinforcement learning

Learning algorithm (back-propagation), it is applied to multilayer

feedforward neural networks consisting of processing elements with continuous

differentiable activation functions. Such networks associated with the Back-

Propagation learning algorithm are called back-propagation neural networks. Given a

training set of input-output pairs {(x{k) ,t/(A))}, k=l,2,...,p, the algorithm provide a

procedure for changing the weights in the back-propagation network to classify the

given input patterns correctly. The basis for this weight update algorithm is simply

the gradient-descent method as used with simple perceptron with differential units.

For a given input-output pair {(X(k), d(k))}, the back-propagation algorithm performs

two phases ofdata flow. First, the input pattern X(k) is propagate from the input layer

to the output layer and , as a result of this forward flow of data , it produces an actual

output y(k). Then the error signal resulting from the difference between d(k) and y(k)
are back-propagate from the output layer to the previous layers in order to update

their weights.

2.4 Fuzzy logic

According to Robert Babuska:
The concept of fuzzy-set theory and fuzzy logic can be employed in the

modeling of systems in a number of ways. [4]

Examples of fuzzy systems are rule-based fuzzy systems, fuzzy linear regression



models.

Fuzzy rule-based systems, are system where the relationship between the variables

are represented by a means of fuzzy if-then rule

If antecedentproposition then the consequentproposition

Example ;

if valve isfully open then pressure is very high

If valve is halfopen then thepressure is medium

If valve isfully close then the e pressure is low

Depending on the structure of the consequent proposition three types of models are

distinguished:

1. Linguistic fuzzy model, where both antecedent and consequent are fuzzy sets.

2. Fuzzy relational model, which can be regarded as generation of the linguistic

model, allowing one particular antecedent proposition to be associated with

several different consequent proposition via fuzzy relation.

3. Takagi-Sugeno (TS) model, where the consequent is a crisp function of the

antecedent variables rather that the fuzzy proposition.

2.4.1 Fuzzy modeling

System can be represented by mathematical models of many different forms, such as

algebraic equations, differential equation, etc. the modeling frame work considered

for this project is based on rule-based model fuzzy model, which describe the

relationships between the variables by means of if-then rules, such as:

ifthe heating power is high then the temperature will increase fast.

2.4.2 Fuzzy identification

According to Robert Babuska:
The term fuzzy identification usually refers to techniques and algorithm for

constructing fuzzy models from data. Two main approaches for the

integration of knowledge and data in fuzzy model can be distinguished. [4]

10



1. The expert knowledge expressed in verbal form is translated into collection of

if-then rules. In this way, a certain model structure is created. Parameters in

the structure (membership functions, weights of the rules, etc.) can be fine-

tuned using input-output data. The particular tuning algorithms exploit the

fact that at the computational level. A fuzzy model can be seen as a layered

structured (network), similar to artificial neural networks, to which standard

learning algorithm can be applied. This approach usually called neuro-fuzzy

Modeling.

2. If no prior knowledge about the system under to formulate the fuzzy rules. In

such case fuzzy model is constructed using numerical data only. It is expected

that the extracted rules and membership functions can provide a posterior

interpretation of the system's behavior. An expert can comfort this

information with his own knowledge, can modify the rules. Or supply new

ones and design additional experiments in order to obtain more informative

data.

This project focus on the implementation of the second method (fuzzy model is

constructed using numerical data only (input-output data set)) - automated fuzzy

modelfrom data. In many cases a natural requirement in a model not only accurately

predicts the system's output but also provides some insights of the system dynamics.

For this project exercise, fuzzy models is viewed as a class of local Modeling

approaches which attempt to solve a complex Modeling problem by decomposing it

into a number of similar sub-problems.

Since it cannot be expected that sufficient prior knowledge is available concerning

this decomposition method for automated generation of the decomposition, primary

from system /plant data set are developed. A suitable class of fuzzy clustering

algorithms is used for this purpose. Moreover, additional techniques are proposed for

the reduction and simplification of the initial model acquired from data.

11



2.4.3 Fuzzy clustering

According to Robert Babuska:
Fuzzy clustering is an effective approach to the identification of complex

nonlinear systems, where the available data is partitioned or clustered into

subsets and approximate each subsetby simple model. [4]

In another term, fuzzy clustering can be used as a tool to obtain a partitioning of data

where the transitions between the subsets are gradual rather than abrupt.

The objective of cluster analysis is the classification of the objects according to

similarities among them, and organizing of data into groups.

This method can be applied for the approximation of non-linear systems, and

facilitate the task of building and analyzing models of complex systems based on

numerical data.

12



Chapter 3

METHODOLOGY

Modeling and simulation of process control systems using a black-box system

identification technique is achieved by gathering real time data from a pressure

control loop. That is chosen to be the ground of this exercise on university

Technology Petronas pilot plant under the tag number (SIM 305 pilot plant 2: air

flow, pressure & temperature pilot plant.).Refer to appendix A for the plant layout.

The overall project methodology is achieved through black-box identification

techniques (building model from the process data): two different approaches are

implemented .the performance of both models are compared to the performance of

the empirical model developed using the same experiment data.

3.1 Neural Network based System Identification

The following procedures [see figure 4 below]were followed using real time data

collected from the plant to build neural network model that emulate the behavior of

the plant. But before going into the steps of building or constructing the model, the

collected data are plotted and studied to give some understanding of the system

behavior where it facilitate the steps of building the model. Such process insight

might include:

1. Order of the system.

2. Dynamics of system whether slow or fast.

3. Operating range.

4. Time delay.

5. Nonlinearities (hard/smooth).

13



Experiment

Select model structure •*

Estimate model

Not accepted

Validate model

Accepted

Figure 4 Overview of the basic system identification procedures
using neural network.

3.1.1 Plant Experiment

The experiment isperformed on the pilot plant (305 pilot plant 2: air flow, pressure &

temperature pilot plant.) - Refer to appendix B for the control loop under this

exercise. An experiment is performed to know the dynamics of the plant operation

explore and choose a suitable input perturbation that is strong enough to excite the

system.

Open loop experiment, first a control loop is identified to carry the experiment

on, then the plant or the loop is operated in manual mode (controller is switched to

manual-mode (PIC221)). This enable the operator to change the manipulated variable

[MV] and observe the change on the process variable [PV], this facilitate how to

choose a suitable perturbation to excite the plant. This is done by varying the input of

the plant signal [CV].

14



After exploring the behavior of the plant a step input is chosen as 15% valve

open, although it is much better to collect data across the entire operating range (i.e.,

keep in creasing the step change to cover the entire range of the operation), but the

philosophy used here to choose just a perturbation MV=15% (valve opening 15 % is

observed to produce dynamic response higher than five times the signal-to-noise-

ratio, which is estimated to be (0.6 X5) equivalent to 3 psi )for observing the behavior

of the plant with giving the plant enough time until it reaches the steady state. Here

some advantage is considered from designing experiment for empirical modeling.

The data set of corresponding inputs and outputs takes the form of

Z"={[M(0,H0]^=1>K,7V}

This data is used for inferring a model of the plant.

o. 2

15
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§. 10
o

>
TO
>

Plant Dynamic Response
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X:276
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;
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Step Input
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5 -
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Time-sec

Figure 5 Identification Data
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3.1.2 Model Structure Selection

The goal is to select a model structure. That is considered appropriate for describing

the system (plant).A family of model structures is explored, including multilayer

neural network, radial bias function network. Generally model structure plays an

important role as an instrument or tool of mapping or emulating the plant dynamics.

This might be decomposed in how to form the data vectors or regressors from past

inputs and outputs and how to choose the nonlinear mapping from the regressor space

to the output space. As practice in this project, multilayer Feedforward neural

network is chosen as model structure, where parametric tuning of the model is

achieved through the choosing of the hidden neuron and the number of layers.

3.1.3 Model Estimation

Model estimation is the process of picking a model from model structure family. This

in neural network community is called training or learning. The model is trained

using input-output data. Learning algorithm used is back-propagation or error back

propagation.

3.1.4 Validation

After the model is being trained /estimated, it goes through evaluation stage to

investigate whether it meets the desired requirements or not. As a measure of model

quality model errors are evaluated to check the ability of the model in mapping or

emulating the plant dynamic.

3.2 Fuzzy Identification

This section presents the individual steps of the identification techniques in order to

obtain fuzzy model from data. Data set of 349 samples taken or recorded every

second. Refer to figure 6 for the overview of fuzzy modeling procedures.

16
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3 Generation ofInitial
Fuzzy Model
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threshold
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5. Model Validation
Model rejected

Motlel a ccepted

Figure 6 Overview of the identification approach based on fuzzy
clustering

3.2.1 Design of Identification Experiment and Data Collection

The same input signal used for neural network identification is applied here, although

for system identification it is preferable to choose an input signal that excite the

system in the entire range of the considered variable [MV,PV] or the input out put

range. Assumption is made by assuming the plant operation range MV 0 - 15 % valve

open.

17



3.2.2 Structure Selection

Model structure selection helps in translating the identification of the dynamic

system into a regression problem that can be solved by static manners. The order of

the system is chosen as first order due to the prior knowledge available from the

identification data, but in cases where the data can not provide good visualization of

the system dynamics. The user can try different order of models and compare the

models, then choose a model with best performance(less error).

The choice of the input and out put variables, input-output selection was not a

problem in the identification ofthe loop in concern, because the other variables in the

loop are kept constant. Referring to appendix .A , the plant input is chosen to be

control valve(manipulated variable [MV]), process variable [PV], is chosen to be the

control, other variables are kept constant, this include hand valves (HV-200, HV-

211, HV221)plus the control valve PY-243 is set manually to 40% pen (controller in

manual mode (PIC-243) and the motor operated valve MV244 is maintained open

through the experiment, the same set up implemented here is also applied loop

identification for neural network model.

3.2.3 Clustering of the data

Structure selection led to a nonlinear static regression problem, which is

approximated by a collection of linear models. By using MATLAB fuzzy model

identification toolbox the identification data were clustered into submodels

represented by linear approximation. The following function is used to cluster the

data in to 6 clusters. Refer to appendix E for the out put argument of this function.

The data matrix was constructed from the identification data

opressure(l)

opressure{2)

M

opresssure{N -1)

valveopenQ)

valveopen(2)

U

valveopen{N-I)



[F,C,P,V,D,J,M] = gkfast([opressure vopen],6,2,le-3,l,[ones(l,500)])

Function approximation

0

15

10

5

0

E 0-5-

m

1.5 2 2.5 3.5

Membership iunctions

Figure 7 The upper graph shows the data and the local linear
models given by the eigenvectors of the cluster covariance matrices.
Cluster center are denoted by the '+'marks. the bottom graph depicts
membership functions for x obtained asanapproximation envelope of
the projection of fuzzy partition matrix ontox

To determine the number of clusters, the validity measures were applied. Where the

upper limit number ofclusters was set to c=6, assuming that the nonlinearity ofthe
process can be sufficiently approximated by 6 local linear models.

3.2.4 Generation of an Initial Model

After investigating the cluster in the identification data, a rough estimate about the
suitable data cluster is made. The identification data is implemented in MATLAB,

fuzzy model identification tool box to create model suitable for emulating the plant

behavior.

19



3.2.5 Model validation

The fuzzy model produced (structure) is simulated to evaluate it is ability to predict

the plant output. Model performance is highlighted in the result section. Where the

visualization of the fuzzy model predicted output is plotted on the same graph with

the plant observed output.

3.3 Empirical model

The plant data collected in the experiment section is used in order to obtain the

empirical model. The main purpose for obtaining empirical model in this project is to

compare the performance of black-box model.

Start

2
Experimental Design

1
Plant Experimentation

Determine Model Structure

I" :
Parameter ILsiimation

I
Diagnostic Evaluation

I
Model Verification_j

Complete

Figure 8 :Overview of the empirical model procedures

By referring to figure 8, this shows the overview of empirical model procedures. The

first two steps are almost the same as in the section of plant experiment. However,

model structure is assumed to be first order with dead time. This due to the plant's

dynamic response.

20



3.3.1 Parameter Estimation

The process reaction curve or (plant dynamic response) obtained in the experiment

section is used to approximate the process parameters. That includes:

1. Dead time (time delay), 6

2. Process gain,kp

3. Time constant, r

The graph in figure 9 demonstrates the process parameters calculation using the

plant dynamic response. An input perturbation is chosen as 15 % valve open. That

value chosen due to constrain of signal to noise ratio. Which is approximated as 5

times the plant optimum operation (i.e., for zero input or valve fully close the plant

observed output is 0.6 psi. this value times 5 is equivalent to 3.00 psi. Hence any

input can be chosen as long as it produces a response higher than (5X0.6=3 psi). The

measures and calculated parameters are as below:

5 -15% valve opening(manipulated variable(MV))

A=( 4.37- 0.6146) =3.7554psi output variable(PV)

=A=(3.7554M) =()25
p 8 i}5%open)

r =1.5(t62% - tn% )=1.5(0.7 -0.2)- 0.75 min =45 sec

6 =t630/-r = 0.7 - 0.75 = 0.05min = 3sec

I MI>IR1C\L MOOKK UUILOIM; rUOCKDUKl!

"i"^-" i Process resit"(ion curve - .Method II **^iSei

Figure 9 Processes reaction curve (PRC)
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The graphical calculations determine the parameters for a first-order-with -dead time

model. The process reaction curve is restricted to this model. The form of the model

is as follows, with X(s) denoting the input and Y(s) denoting the output

X(s) =KPe*
Y(s) ts +\

3.3.2 Empirical Model Simulation

The model parameters obtained above are used to develop a transfer function model.

This transfer function is simulated in SIMULINK, refer to figure 10 for the simulink

layout.

Step

^*>
Gain

27sM

Tiansfer Fen

^
Transport:

Deljy

•

Scope

Figure 10 SIMULINK layout of theempirical model

The model is simulated with a perturbation same as the plant input 15% valve open,

thenthe model is validated bycomparing the plant output andthemodel output.

4.5

A

3.5

S 3
••.

3D 2.5

2

1.5

0.5

_^_L

50

empirical model validation

plant observed output
empirical model simulated output

100 150 20O 250 300 350 400
Time,sec

Figure ll Empirical model output for an input of 15 % valve
opening
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CHAPTER 4

RESULT

The result obtained from neural network and fuzzy model is represented in term of

models. These models are simulated to verify how close the models can emulate the

plant dynamic behavior. Model quality is judged by evaluating and calculating the

model residuals.

According to Lennart Ljung:

Residuals are the "leftovers" from the modeling process-the part of data that

the model could not produce. [5]

The performances of both models, developed in the previous stage are

analyzed and compared to the empirical modelperformance in the following manner.

4.1 Neural network model analysis and evaluation

The neural network model produces plant predicted output in figure 12 below. It is

observed that the neural network model tries to learn the dynamic of the system

which include the dead time or the time delay. The model has the ability to learn or

estimate the plant dead time.
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2
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1

0.5

Multilayer perception trained with Matlab NN Toolbox
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Time,sec

NN predicted output

Plant observed output

250 300 3SO

Figure 12 tNeural NetworkModelPredictedOutput

In term of linearity in the transient response, nonlinearity problem appears. The

model output has more deviation from the plant observed output. This is mainly due

to the way how the experiment is designed to collect the data from the plant. In the

steady state period the model produce a very good predicted output. The model

succeeds in mapping the plant dynamic behavior as a linear relationship relating the

plant input to the output. Plotting the model output and the plant output on the same

graph gives a good visualization measure for evaluating how the model can fit the

plant data orhow good themodel canemulate the plant output.
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Figure 13 : NN Model Residuals

Model residuals or model errors are plotted as in figure 13 above, to give a measure

of the model quality, investigating the model ability to reduce or minimize the error,

the dynamic of the error (residuals [the observed output- the predicted output]). This

dynamic shows that the model error is declining. In another word error at the transient

period is declining to achieve a very minimum or almost zero model error at the

steady state period.

4.2 Fuzzy Model Analysis and Evaluation

As a common practice in process control identification viewing the visual plant

observed output and model predicted output. This gives some insight about the ability

of the model to fit the plant data. Hence it provides the process control engineers

with a criteria or a tool for judging the quality of different modeling techniques.

Generally speaking it represents how the model can be used for further control

application. Another aspect of modeling and system identification is that it gives

diagnosis information about the system performance. This means instead of using the
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model for control application, it can be used for diagnostic purposes.

Process output (blue) and model output (magenta)

50 100 150 200

Time [s]

250 300 350

Figure 14 :Fuzzy Model Predicted Output

theplotof predicted model output andthe observed output give information onhow

the model can emulate the plant dynamics.

4.2.1 Fuzzy Model Validation

In process control system identification, validation is achieved by comparing the

predicted model output and the plant observed output (computing the residuals).More

over visual comparison is also obtained to evaluate the ability of the model fit the

plant data.

The author faces challenges in using the simulink model in fuzzy logic

toolbox. The model simulated only in form of Matlab m-file attached in appendix D.

The simulation result is plotted in figure 14 above.
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As model quality measure the model residuals are plotted in figure 15 below. The

dynamic of the model error is declining to zero, but in the transient response it shows

a very high error. That is means the model is not able to produce the transient

response of the plant, especially the dead time. The plant dynamics characterized by a

dead time but the model doesn't have the ability to emulate this response.

fuzzy model residuals
0.5

-0.5 -

! i i i i i

- FM res iduals=plantobserved output - frn output

\ I ./^
i : f

\ I /I i /
][ Y

Vj
j\

V !

-1

-1.5

-2

-2.5
50 100 150 200

Time

Figure 15 : fuzzy model residuals

250 300 350

4.3 Empirical Model Validation

The dynamic response of the empirical model plotted in figure 16 below. That shows

the great ability of the empirical model to emulate the dynamics of the plant in

relating the input to the output.
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Figure 16 :Empirical model validation

Another validation is toplot the residuals. The residual plot shows the dynamic ofthe

error or the ability of themode to emulate the plant output.

empincat model residuals
residuals=plant putput - empirical model output

150 200

Time.sec

Figure 17 Empirical model residuals
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4.4 Comparison between the black-box modeling techniques and empirical

model performance

Modeling performance is evaluated by comparing different performance criteria. That

is includes:

1) Mean squared error (MSE)

2) Mean absolute error (MAE)

3) Sum of the squared error (SSE)

4) Integral absolute error(IAE)

The tabulated data below show the model performance in term of comparing the error

criteria. In general, the performance of the neural network model is the best in a

achieving minimum error. It is followed by empirical model performance. However,

the performance of the fuzzy model far behind the neural network model and

empirical model. It is seen as a promising identification method but the main

drawback of this method is the identification data set used in this project for fuzzy

model.

In short, this performance measure showed that the black-box modeling techniques

(neural network) performance is better than the empirical model performance.

Model Performance

MSE MAE SSE IAE

Neural Network 0.0212 0.0882 7.3926 30.7796

Fuzzy 0.4331 0.3567 151.1523 124.4957

Empirical 0.0287 0.1071 10.0265 37.3872

Table 2 Comparison of the performance of neural network, fuzzy and
empirical models.
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CHAPTER 5

DISCUSSION

System identification techniques applied in this project requires the process control

system engineers to appreciate the difference between empirical modeling techniques

where the collected data represent informative data. That contains the process

dynamic in a clear picture. Using the same data in order to obtain a black-box model

might not work especially for data with monotonic signal or only exited by single

input. Although system identification or building process black-box models from data

represents a very powerful method, where there is no any priori knowledge about the

dynamic of the system. The ability of black-box modeling techniques to be used in

creating models that can emulate the plant dynamic or create a proper mapping of the

plant input output combination.

System identification is still faced by some limitation: first limitation on data quality,

it is obvious that limitation of the use of system identification techniques is linked to

the availability of good data and good model structures, without a reasonable data

record not much can be achieved.

According to Lennart Ljung, Bad signal-to-noise can, in theory, be

compensated for, by longer data records. [5]

In the case of this project on pilot plant where there no restriction on manipulating the

input signal (% of control valve opening). These features of pilot plant facilitate the

learning issues for the process control engineer where strategies can be developed

based on the plant operation.

The author recommends that the experiment duration can be longer, taking in

consideration the signal conditioning. In the case of empirical modeling practice, the

process control system engineer can choose the input signal that produce an output 5
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times higher than the signal to noise ration to grantee an informative identification

data.

Obtaining a fuzzy model from data requires performing fuzzy clustering that divide

the identification data to submodels. Everysubmodel is represented by one rule in the

fuzzy combination, but unfortunately here because the identification data contain on

step input, or the input signal does not excite the whole range of the operation. There

is only one submodel found in the identification data. The idea behind fuzzy

clustering method is to cluster or group all the patterns in the identification data that

have an excitation signal of different levels and different frequency. For example if

the identification data contain excitation as valve open 0-15% ,15-30% ,30-43% ,40-

55% and 60- 70% and each input has an interval length of 5 minutes, 10 minutes,

15 minutes ,5 minutes and 20 minutes respectively, apply fuzzy clustering for such

data can create four or five sub models similar to the one in figure 7.

More constructive work can be done in the future. By using the same project flow or

procedure but taking advantage of neural network toolbox and fuzzy model

identification toolbox. Bydoing some effort onthedesign of theexperiment to collect

data this project canbemore useful for the future work.

The both model performance (neural network and fuzzy model) were promising.

However fuzzy model performance contains higher value of error. But still there is

way where the model performance can be improved.

Empirical model can be a good guide to evaluate the feasibility of this project. It is

easy to implement and easy to evaluate if the empirical modeling consideration is

fulfilled.
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CHAPTER 6

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

Two method were investigated to create a black box model ,as a system identification

concern there are two areas need to be concentrated on to build a good model from

data.

First the model structure which represent the dynamic of the system to be modeled, in

both techniques (i.e., fuzzy identification and neural network identification). By

selecting the model structure where the inputs out put variables are chosen. In this

project exercise the selection of the model input was not a problem. But in running

plant engineers might face problems that set as boundaries in conducting an

informative experiment. Such constrains might include plant safety, product quality,

etc.

Close loop experiment some time is suitable for such application but is still faced

with restriction on varying the setpoint due to the reasons mentioned above like the

product quality and safety consideration.

The project highlights the application of the black-box modeling (neural network and

fuzzy identification). Upon the experimental practice in this project it is found that

these techniques give more accurate performance in term of evaluation the model

errors. This is a good feature of the black box modeling , because the main concern of

process control system practice is to develop a model that fulfill certain performance

criteria.

The methods used here for model performance (evaluating different characteristic of
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the error (MAE, MSE, SSE, and IAE). this gives a good insight of the model

dynamic. Another concern is to reduce these errors.

6.2 Recommendations

The project can be revised and implemented in a more proper way by putting much

effort on how to construct an informative identification data .setting the experiment to

construct and record the identification data for the modeling purpose.

Differentiate between designing anexperiment for empirical modeling and black-box

modeling, because misunderstanding ofthe experiment designing objective. For these

different modeling techniques might lead to failure ofblack-box system identification

techniques.

In designing an experiment for process control system identification (black-box)

creating model from data, the following issues must be addressed carefully:

or

6.2.1 Operation Range

This is simple to be chandelled, but very important criteria to collect an informative

identification data.

To achieve this requirement an input signal that is used to excite the system for the

sake of collecting identification data must be design to cover the whole operation

range (the idea is to vary the input signal and observe the impact on the output(s))

Finally, the purpose ofthe experiment must be stated clearly to collect a set of data

thatdescribe how the system behaves over itsentire range of operation.

6.2.2 Developing SIMULINK block

The black-box models developed in this project can be implemented in most

productive way ifsimulink blocks are available. Because these model are represented
in structure form (i.e., not a transfer function form like the empirical model). That is

different from the empirical model which can be represented in transfer function
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models.

Simulink blocks can help in implementing many control strategies in SIMULINK.

Hence it helps the process control system engineers to investigate more about the

process in their concern. Another advantage of developing process model in simulink

blocks it helps to study more about the process. This is considered as learning

facilities for activities that it cannot be performed on the running plant due to

operation , quality , and safety constrains that cannot entertain any mistakes or

changes in the plant dynamic operation aspects such like introducing a setpoint

change.
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APPENDIX A

OVERVIEW OF SIM 305 PILOT PLANT 2: AIR FLOW,

PRESSURE & TEMPERATURE PILOT PLAN
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APPENDIX C

MATLAB M-FILE TO GENERATE NEURAL NETWORK

PROCESS MODEL

art-file to create neural NETWORK model for simple air pressure process
%feed forward neural network(MLP),implememting back-prpoagation learning
%algorthims as supervised learning rule.

load DATA3; , . . - ,
% premnmx - Normalize data for maximum of 1 and minimum of -1.
[PN,minp,maxp,TN,mint,maxt3=premnmx(Trai'niP,TrainTgt);
% newff - Create a feed-forward backpropagation
% network.

% Transfer functions.
%(purelin - Linear transfer function.)%%%%%%%%%%%%%%
%Ctansig - Hyperbolic tangent sigmoid transfer function)
%(purelin - Linear transfer function.)

net=newff(nrinmax(PN), [1 t .,,..,,,, _, , .
349],{'tans^"g,,,purelin,,'tansig,,,tans^g,,'tansig'},'trainlm', learngdm , mse

net.trai nParam.epochs=10;
net.trai nParam.show=l;
net.trainparam.lr=.001;
net.trai nParam.goal=0;

% using networks.

CI) train - Train a neural network.
[net,tr,Y,E]=trainCnet,PN,TN); . ,
% tramnmx - Transform data with precalculated minimum and maximum.
PN_Test = tramnmx(TestlP,minp,maxp);
% C2) sim - simulate a neural network.

TN_Test = simCnet,PN_Test); %TN_Test is the neural networl predicted output
% postmnmx - Unnormalize data which has been normalized by premnmx.
[quireyinputs predictOutputs]=postmnmxCPN_Test,minp,maxp,TN_Test,mint,maxt);
plotCrestTgt,'-*');hold on

plotCpredictoutputs,'r:');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

neural network performance

-performance functions.-
% mae: - Mean absolute error performance function.

MAEA=maeCE)% E Cerror)is the difference between neural network
%predicted output and the plant output Ctarget output)

% mse - Mean squared error performance function.
%MSE: mean squred error
MSEA=mseCE)
% SSE: - Sum squared error performance function.

SSEA=sseC E)

TRAINLM, Epoch 0/10, MSE 1.03995/0, Gradient 305.853/le-010
TRAINLM, Epoch 1/10, MSE 1.27785e-006/0, Gradient l,8587/le-01Q
TRAINLM, Epoch 2/10, MSE 3.67202e-015/0, Gradient 0.000219261/le-010
TRAINLM, Epoch 3/10, MSE 2.32261e-026/0, Gradient 4. 71818e-012/le-010
TRAINLM, Minimum gradient reached, performance goal was not met.

MAE =

1.2786e-013

MSE =

2. 3226e-026

SSE =

8.1059e-024

Note: Errors calculated herewith reference to the normalized error signal

But inthe report errors are calculated due to the original data
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APPENDIX D

MATLAB M-FILE FOR IMPLEMENTING FUZZY MODEL

USING FUZZY MODEL IDENTIFICATION TOOLBOX

%generate a fuzzy model for air pressure process

clear fm

define constants

fm.c =4; % number of clusters
FM.m = 1.2; % fuzziness parameter
FM.seed =0; % seed
FM.ante =2; %antecedent: 1 - product-space MFS

% 2 - projected MFS
FM.cons =2; % consequent estimation

FM.Ny = 1
FM.NU = 1
FM.Nd = 1

denominator order
numerator orders
transport delays
(set to 1 for y(k+l) = f(uCk) ))

identification data

load mvset;
Dat.U = vopen(:);
Dat.Y = opressureCO;
Dat.Ts =1; % sample time [s]
Dat.inputName = 'valve opening';
•at.outputName = 'pressure';

validation data

load evaldat;
ue = vopenCO;
ye = opressureCO ;

make fuzzy model by means of fuzzy clustering

dispC'hit any key to create fuzzy model by means of fuzzy clustering ');pause
[FM.Part] = fmclustCDat.FM);

[gain.T] = fm2kt(FM);
a = antename(FM);
k=l;
ni = length(a{k});
dispC'hit any key to update the mpdel );pause
FM = FMupdate(FM);
%fis = fm2fis(FM,ye)

£ txt = fuzz2txt(rls,ue,ye,300,test_vo_2);

simulate the fuzzy model for validation data

figureCD; elf
[ym,VAF,dof,yl,ylm] = fmsimCue.ye.FM); vaf
title('process output (blue) and model output (magenta; );
ylabel('pressure'); , _,
dispC'Hit any key to see the local models ... ); pause

figure(2); elf
subplot(211); plot([ylm{l}]);
titleCindividual local models );
xlabel('Time'); ylabel C'pressure');
subplot(212); plot(dof{l})
title('Degrees of fulfillment );
xlabel('Time'); ylabel('Membership grade');
dispC'Hit any key to see the membership functions ... ); pause

figureC3); elf
plotmfs(FM);
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APPENDIX E

function [f,v,P,V,D,J,M] = gkfast(x,fO,m,e,s,rho)

% Gustastafson-Kessel clustering algorithm (with fuzzy covariance matrix).

%

% [F,C,P,V,D,J,M] = GKFAST(X,FO,m,e,s,rho)

% Input:

% X ... M by N data matrix,

% M is the number of data points and N data dimension

% FO ... either an initial fuzzy partition matrix, or the

% number of clusters. In the latter case, a default

% partition matrix is generated.

% m ... optional parameter m > 1, determines the fuzziness

% of clustering, for m close to 1 clusters become crisp,

% default value is 2

% e ... optional termination tolerance, the algorithm stops

% when max(max(|F(k-l)- F(k)|)) <=e, default tolerance le-3

% s ... optional parameter for plotting intermediate results

% (only for 2D data), default 0 - i.e. no plot, set

% to 1 to show the clustering process on-line,

% set to 2 to speed-up the plots for ordered data

% rho .. IxM vector of expectedcluster volumes(defaulta unit vector)

%

% Output:

% F ... fuzzy partition matrix

% C ... cluster means matrix

% P ... cluster covariance matrices concatenated in one matrix

% P= [Pl;P2;,.,Pk], where k is number of clusters

% V ... eigenvectors of the covariancematrices, corresponding

% to the smallest eigenvalues

% D ... eigenvalues of the covariance matrices

% J ... history of the clustering criterion J
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% M ... matrices inducing the distance norm, calculated as

% M = det{P)A(l/N)*inv(P), M - [Ml ;M2;...Mk]

% (c) Robert Babuska, 1994-96

if{nargin<3), m = 2; elseif isempty(m), m = 2; end;

if (nargin < 4), e = le-2; elseif isempty(e), e = le-2; end;

if (nargin <5), s = 0; elseif isempty(s), s = 0; end;

[mx,nx] = size(x);

[mf0,nf0] = size(fO);

xl =ones(mx,l);

inx —1/nx;

% Initialize fuzzy partition matrix

if max(mfO,nfD) = 1, % only # of cluster given

c = fO;

mm = mean(x);

aa = max(abs(x - ones{mx,l )*mm));

v = 2*(ones(c,l)*aa).*(rand{c,nx)-0.5) + ones(c,l)*mm;

elseif nfO== nx, % centers given

c = mfO;

v = fD;

end;

if mfD ~=mx,

% Calculate ffl

for j = 1 : c, % for all clusters

xv = x- xl*v(j,:);

d(: j) = sum((xvA2)')r;

end;

d = (d+le-100)A(-l/(m-l));

fO = (d./(sum(d')'*ones(l,c)));
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else

c = size(f0,2);

fm = fD.Am; sumf = sum(fm);

v = (fm'*x)./(sumf*ones(l ,nx));

end

f = zeros(mx,c); % partition matrix

iter = 0; % iteration counter

if (nargin <6), rho = ones(1,c); elseif isempty(rho), rho = ones(l,c); end;

% initialize graphics

if(s-^O) & (nx<3),

subplot(211);

lines = [v(:,l)*x(:,l)'+v(:,2)*ones(l,mx)]';

mask = find(fO < 0.2); % find membership degrees < 0.2

lines(mask) = NaN*ones(size(mask)); % mask with NaN's for plots

HI =plot(x(:,l),x(:,2),,go',v(:,l),v(:,2),'^*,,x{:,l),lines,lEraseModeVxor,);

title('Function approximation');

xlabel('x'); ylabel('y');

minx= min(x(:,1)); maxx= max(x(:,1));

miny = min(x(:,2)); maxy = max(x(:,2));

ma = 0.3*max(abs(x(:,2)));

axis([minx maxx miny-ma maxy+ma]);

subplot(212);

ifs=l,

H2 = plotCxfijO.ffl.'oVEraseMode'.'xor');

else

H2 = pJoKxf^lJ.fD.'EraseModeVxor');

end;

title('Membership functions');

xlabel('x');ylabel('Membership');

set(gcf,'UserData',[Hl;H2]);

end;
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% Iterate

while max(max(abs(fu-f))) > e

iter = iter + 1;

f=fO;

fm = f.Am; sumf = sum(fm);

% Calculate centers

v = (fm'*x)./(sumf*ones(l,nx)),

for j = 1 : c, % for all clusters

xv = x-xl*v(j,:);

% Calculate covariance matrix

p = ones(nx,l)*fm(:j)'.*xv'*xv/sumf(j);

% p = ones(nx,I)*fm(:J)'.*xv'*xv;

ifrcond(p)<le-15;

[ev,ei]=eig(p);

ei(find(ei<max(diag(ei))*le-15))=max{diag(ei))*le-15;

ei=diag(diag(ei));

p=ev*ei*inv(ev);

end

% Calculate distances

M = (det(p)/rho(j))Ainx*inv(p);

d(:J) = sum((xv*M,*xv)')';

% Calculate eigen vectors and cluster prototypes (lines)

ifs —0&nx<3,

[ev,ed] = eig(p); ed = diag(ed);

ev = ev(:,ed = min(ed));

lines(:j) = -x(:,l )*ev(l )/ev(2) + v(j,:)*ev/ev(2);

mask = find(fO < 0.2); % find membership degrees < 0.2

lines(mask) = NaN*ones(size(mask)); % mask with NaN's for plots

end;

end;

J(iter) = sum(5um(f0.*d});

% Update fD

d = (d+le-10)A(-l/(m-l));
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ro = (d./(sum(d')'*ones(l,c)));

% Plot intermediate results

if (s ~= 0), fprintf '̂Iteration count = %d, J = %r\n\n',iter,max(max(f-fO))),

if (nx < 3),

H - get(gcf,'UserData');

set(H(2),lxdatal,v(:,l),'ydata',v(:,2));

for i = 1 : c,

set(H(2+i),'ydata',lines(:,i));

set(H(2+c+i),'ydata',rD(:,i));

end;

drawnow;

end;

end;

end

fm = fO,Am; sumf = sum(fm);

P = zeros(nx,nx,c); % covariancematrix

M = P; % norm-inducing matrix

V = zeros(c.nx); % eigenvectors

D = V; % eigenvalues

% calculate P,V,D,M

for j = 1 : c, % for all clusters

xv = x - ones(mx, 1)*v(j,:);

% Calculate covariance matrix

p = ones(nx,l)*fm(:j)'.*xv'*xv/sumf(j);

ifrcond(p)<le-15;

[ev,ei]=eig(p);

ei(find(ei<max(diag(ei))*le-15))=max(diag(ei))*Ie-15;

ei=diag(diag(ei));

p=ev*ei*inv(ev);
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end

% Calculate eigen values and eigen vectors

[ev,ed] = eig(p); ed = diag(ed)';

ev = ev(:,ed = min(ed));

% Put cluster info in one matrix

P(:,:j) = p;

M(:,: j) = (det(pyrhoO)).A(l/nx)*inv(p);

V<j,:) = ev(:,end)';

Da,:) = ed;

end;
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