
Ray Casting for Iso-surface in Volumetric Data

By

Do Hoang Ngoc Anh

FINAL REPORT

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Information Technology)

DECEMBER 2005

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

-\

Approved by,

CERTIFICATION OF APPROVAL

Ray Casting for Iso-surface in Volumetric Data

By

Do Hoang Ngoc Anh

Dissertation submitted to the

Information Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION TECHNOLOGY)

(Mr. Nordin Zakaria)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

DECEMBER 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

DO HOANG NGOC ANH

Ray Casting for Iso-surface in Volumetric Data

(dataset: BrainSmall - Volpack - Stanford)

ABSTRACT

Volume data visualization is an active field of research and development. It can be

applied in many areas such as medical, oil and gas exploration, etc... Although volume

visualization is highly computational cost, there is a vision of real time volumetric

visualization systems based on interactive ray tracing. Over the years, many rendering

algorithms have been created and enhanced. The focus of this project is to develop a

simple ray casting program for volumetric data. The program will be able to render

specific volume data using a singleprocessor in a reasonable amount of time. It is opento

improve for implementation on multiprocessors. The thesis will compare some existing

algorithms for ray casting in terms of image quality, computing time, complexity and so

forth. The thesis includes a proposal of new multisampling algorithm, which significantly

reduces rendering time while producing similar quality of image with existing algorithms.

11

ACKNOWLEDGEMENTS

I would like to present my respect and thankfulness to my supervisor, Mr. Nordin Zakaria

who shows his supports not only in professional knowledge, academic aspect but also in

my character development. I would like to thank him for the chance of working in real

project, which may be a topic for my further study.

I would like to thank Dr. Ahmad Kamil Mahmood for his encouragement during the last

stages of this project.

I would like to thank Dr. Abas Md Said and the board of management for the vision

about visualization.

111

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL 2

CERTIFICATION OF ORIGINALITY 3

ABSTRACT ii

ACKNOWLEDGEMENTS in

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

ABBREVIATIONS AND NOMENCLATURES viii

CHAPTER ^INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW AND THEORY 3

2.1 Basicknowledge about ray tracing 3

2.1.1 Ray 3

2.1.2 Ray casting 4

2.1.3 Enhancement - multi-sampling technique 6

2.1.4 Primitives 7

2.1.5 Volumetric data 7

2.1.6 Ray acceleration methods 9

2.2 Algorithms, analyses andcomparisons 10

2.2.1 Intersection 10

2.2.2 Gradient Vector(normal vector) 14

2.2.3 Ray traversal 16

2.2.4 Acceleration by space partition 19

2.3 Proposal of new multisampling schema 21

CHAPTER 3_METHODOLOGY/PROJECT WORK 24

3.1 Functions 24

3.2 Program flow 25

3.3 Psedo code 25

i\

3.4 Modules 25

3.5 Argument 27

CHAPTER 4_RESULTS AND DISCUSSION 28

4.1 Results and comparisons 28

4.2 Discussion - Future work and research areas 31

CHAPTER 5 CONCLUSION AND RECOMMENDATION 32

REFERENCE 33

APPENDIX 36

Appendix 1 37

Appendix 2 39

LIST OF FIGURES

Figure 1: Ray presentation 3

Figure 2: Ray casting basis 4

Figure 3: Aliasing with single sample 6

Figure 4: Multisampling 7

Figure 5: Voxel 8

Figure 6: Ray acceleration classification 9

Figure 7: Interpreting ray in different coordination system 10

Figure 8: Middle point interpolation 12

Figure 9: Linear interpolation miss-case 13

Figure 10: Exact linear interpolation 14

Figure 11: Stepping ray 17

Figure 12: Stepping ray problem 17

Figure 13: Amanatides and Woo's ray traversal algorithm 18

Figure 14: Nested grid 20

Figure 15: Octree hierarchy 20

Figure 16: Proposal multisampling algorithm 21

Figure 17: Rendering time of different sampling algorithm 22

Figure 18: Anti aliasing in volumetric data 22

Figure 19: Miss-case 23

Figure 20: Program flow 25

Figure 21: In-line command arguments 27

Figure 22: Schwarze approach : unstable accuracy 28

Figure 23: Different interpolation algorithms 28

Figure 24 : Different gradient estimation algorithms 29

Figure 25 : Rendering time 30

Figure 27: Single sample ray tracing 30

Figure 28: Comparison betweensingle and multi sampling 30

vi

LIST OF TABLES

Table 1: Rendering time of different sampling algorithm 22

Table 2 : Rendering time experimental result with object scene 29

Table 3 : Proposal topics for further research 31

vi

ABBREVIATIONS AND NOMENCLATURES

Voxel - Unit of three-dimensional array of data that contains any number of fields of

data, such as tissue density or temperature.

Illumination - the transport of luminous flux from light sources between points via direct
and indirect paths

Lighting - the process of computing the luminous intensity reflected from a specified 3-D
point

Shading - the process of assigning a colors to a pixels

CHAPTER 1

INTRODUCTION

Currently, researches on interactive volume ray tracing maybe categorized into 3 main

groups. These categories are namely parallel software-based implementation, single

graphic unit implementation, and multiple hardware graphic units in parallel. Researcher

in the first group tends to use parallel programming to accelerate its software. Ray

casting, shear warp and splating are techniques explored by this group. This group takes

advantage of PCs, resulting in a flexible and cheap multiprocessor solution. The second

group uses single graphics adapters to perform rendering. There are some advantages of

the method in this groupover the first group such as the ability to exploit texture mapping

hardware. The last group uses hardware graphics units in parallel [5].

This thesis is a research project, which aims to study on ray casting of volumetric data.

The thesis focuses on iso-surface rendering using ray casting algorithm. Objective of the

thesis is to compare some existing rendering algorithms and to find some ideas on how to

improvethem. The report is organized into the following sections:

1. Literature survey. The project will provide an overview of ray tracing concepts,

which are necessary for any ray tracing program. The in-depth survey will focus

on existing algorithms that aim at real time interactive program.

2. Implementation of selected algorithms. Some of techniques and algorithms will

be implemented. The final program will be able to render volume data. Different

algorithms will be implemented for comparison purpose.

3. Analysis and comparison. Selected algorithms will be analyzed and compared

according to their accuracy, computing time, computational cost, complexity and

so forth. The comparison may be beyond implemented algorithms.

4. Enhancements and areas of research. The project will suggest some ideas to

enhance existing algorithms. Since those algorithms are well developed, chances

of success of those ideas are few. However, they maybe new ways of seeing the

old things.

CHAPTER 2

LITERATURE REVIEW AND THEORY

'If I have seen farther than others, it is because I was standing

on the shoulders of giants". Albert Einstein

This chapter first provides an overview aboutray tracing concepts, and then drills on

particular theories that are implemented by the thesis.

2.1 Basic knowledge about ray tracing

2.1.1 Ray

Theoretically, ray, or half line, is a 3D parametric line with a half-open interval, usually

[0,+qo) [1]. However, in practice, the interval of a ray is usually set as [s, +qo) due to the

fact that the origin of the ray is usually placed on the surface. The interval thus is ranged

from s to co in order to avoid self intersection [2].

A ray can be written as:

R(t) = 0 + D * t

or

x(t) = Origin.x + Direction.x * t

y(t) = Origin.y + Direction.y * t

z(t) - Origin.z + Direction.z * t

0

O + Dt

Figure 1: Ray presentation

where Origin.x, Origin.y, Origin.z are the coordination of origin of the ray in the

coordination system, Direction.x , Direction.y ,Direction.z are the value of direction

vector upon perspective axis, t is the time value, which lays between interval tmin and

interval tmax; s < t < +co. In practice, we use 2 float values tmin and tmax to set the

valid range for a ray.

2.1.2 Ray casting

The idea of ray casting is simple. Given a view point (eye), given some primitives, given

a view plane (screen). The ray tracer will generate rays, which have origin located at eye,

go through every single pixel on the screen to hit onto primitives. The colors of screen

pixels are determined by the intersections between rays and primitives.

eye

primitives

View pli

Image on screen

Figure 2: Ray casting basis

There are 2 main tasks: to determine the intersections between rays and objects (hit

points), and to determine what color that point is [1]. The term "primitive" stands for

both object and iso-surface.

• Intersections

There are 3 different kinds of finding intersection.

To find closest hit to the eye. It is the most fundamental task in ray tracing program.

The hit point must satisfythe condition that it is the nearestpoint to the eye among all

hit points. It usuallyrequires an additional mechanism to verify the condition.

• To find any hit. It is to check as if the ray hit primitive at any point in between tmin

and tmax. General speaking, this case is simpler than the first case and most of ray

tracing engines have special algorithm for it.

• To find all hits. There is not many ray tracers take care of this case; it requires

advance algorithm [2].

Following example discusses on a simple ray-plane intersection [1]. The object is a plane

whose implicit equation : (p-a) * n = 0. The ray is described as p(t) = 0 + t * d. Thus, the

(a-o)n
ray hit the plane at the value oft where (O + t*d-a)*n = 0 ; Or t =

d.n

• Coloring intersection point ?

Coloring a point, or shading, is to find the color of the point with given light sources and

reflecting primitives. Generally, there are 2 contributors to the color of a point, local

illumination and global illumination.

• Local illumination deals with the light come directly from light sources. It ignores the

effects of other primitives, such as reflected light from primitives or occluded light

from light sources. Common techniques to calculate local illumination are flat

shading, Gouraud shading and Phong shading. Flat shading assigns the same color

for a flat polygon, which can be enhanced by calculating the color at edges. Gouraud

shading is the most common technique, used by OpenGL, which calculates color in

linear approach along scan-lines. Its limit is the inaccuracy in illustrating specular

components. Phong Shading calculates color at every pixel of the objects, provides

better results compared to Flat and Gouraud shading, but its computational cost is

more expensive.

• Global Illumination deals with the light come directly and indirectly from light

source. In contrast to local illumination, it also calculates the reflected light from

other objects. Ray tracing is used for global illumination. The idea of ray tracing is

firstly, to cast a ray and find the closest intersection point, and then to recursively cast

secondary rays from intersection points to get global effect on the hit point.

Results of illumination depend on properties of light source and the surface where rays

hit objects. Those properties are color, position and direction, directional attenuation of

the light source; color, position, orientation and micro structure, absorption capacity of

the surface [3].

2.1.3 Enhancement - multi-sampling technique

Single-sample ray tracer, which is tracer that estimates color of hit points by sampling

with one ray, is fast and good for interactive application [2].

2

i

Figure 3: Aliasing with single sample

The problem of single-sampling ray tracing is it creates jaggies in the image. Above

diagram illustrates the problem. Single sample ray in point (2,1) does not hit the object (a

leaning bar). The image thus does not display the bar consistently.

To have better quality picture, there is a need of advance technique, such as multi-sample

ray tracing. Multi-sampling ray tracing means to sample the scene with more than 1 ray

per screen-pixel. The arrangement of sampling ray is random, which is different from

super-sampling or regular sampling. Super sampling is still potential of generating

jaggies. Following diagram illustrates a randomizing schema that use grid to partition the

square unit into smaller grids. [4]

0

• ^^^-~~ • • • S

• •—~i • • •

1 0

i j 1 —z^=r tt

i •^—r • ' •;
•"•s^*7 :"» ^j^i^-^rrr^.

_^-*—"1— "; •
-^^r-- • »

• • • •

1
(a) (b)

Figure 4: Multisampling (a) Super sampling (b) Random sampling

2.1.4 Primitives

Basically, scene is a list of geometric primitives to be rendered. In order to render it,

primitive intersections must be computable [2]. The common approach to find

intersection is, firstly, to develop geometric expression of the primitives, and then, to

solve the polynomial of equation where ray and primitives are equal.

There are many types of primitives; they are objects like plane, triangle, sphere...; iso-

surfaces in volumetric; algebraic surface... Triangle is one of the most common and

important primitives since all objects can be displayed by triangles.

2.1.5 Volumetric data

Volumetric data is a set of samples (x, y, z, v), representing the value v of some property

of the data, at a 3D location (x, y, z) [7]. The volumetric data is usually stored in a three

dimensional array. The samples are aligned to the Cartesian axes and are equally spaced

in a given dimension [8].

Pi jo

(1-1.0)

Figure 5: Voxel

A cell, or voxel, of volumetric data is illustrated by above diagram, where value of

sample points are pOOO at (xO,yO,zO), pOOl at (xO.yO.zl), etc... In trilinear volume, where

value of point along 3 axes are linear, the value of one point p inside the voxel at

coordination (x,y,z) is calculated by

P(x,y,z) =

X]-x y^~y zx-z
p 000

+
*i -x yx-y z-z0

xi -x0 yx -y0 zx -zQ
p 001

z —zf

+
-x y -y0 zx-z

X\ ~ Xq Vj —yQ Z| —z0
•Pm +

Xi-x y-yi
P on

X] xQ yx yQ Z| zc

x~x0 yx-y zx~z

X\ ~xQ _V| —yQ Zj —z0

x~x0 y-y0 zx -z

X] ~ xQ y\ ~ y§ Z\ ~ Zq

+ Pm +
x~x0 yx-y z-zQ

x\ ~Xq Vj —yQ zl —zc
P 101

+
x~x, y -yQ z-z0

Pw +—J "An
X] x0 yx yQ Zj zc

(pixel value triliniear equation)

Iso-surface is the surface that consists of points that have the same value within a

volumetric data. To render an iso-surface in volume, which is the main purpose of this

project, there are 2 main techniques, indirect rendering and direct rendering.

Indirect rendering is the technique that first generates a model according to raw data

and later renders the model. A common technique of indirect rendering is Marching

Cube [6]. The algorithm requires a mapping dictionary of voxel corner value and the

shape of iso-surface associated with that voxel. In fact, Marching Cube is faster than

direct rendering. Indirect rendering technique has a pitfall of inaccuracy. Since it

requires a middle step of generating models, it misses some data (for full resolution, it

takes very long time to generate the model).

• Direct rendering is the technique that renders the iso-surface directly from raw data

without creating any model. Direct rendering technique has the pitfall of

computational cost since it requires calculating for every single point on the screen.

However, there are many ways to reduce rendering time such as parallel

programming.

2.1.6 Ray acceleration methods

One of active areas of researches is ray tracing acceleration. Existing methods maybe

categorized into 3 groups, fast intersections, fewer rays, and generalized rays.

The aim of the first group is to find intersections in shorter time. Fast intersection

methods can be subdivided into 2 groups, which are faster ray-object intersection and

fewer ray-object intersections. The second group tries to reduce number of ray and the

last group uses special rays with different shapes. [19]

Ray Tracing Acceleration Techniques

Fast

Intersections

Faster

ray-object
intersection

Examples: 1
Object bounding
volumes

Efficient intersectors

for parametric
surfaces, fractals, etc.

ray-object
intersections

Bounding volume
hierarchies

Space subdivision

Directional techniques

Fewer

Rays

Examples: 3
Adaptive tree-depth
control

Statistical

zations for anti-

Figure 6: Ray acceleration classification

Generalized

Rays

Examples:
Bean tracing

Cone'

Pencil tracing

2.2 Algorithms, analyses and comparisons

This chapter, which is the main part of this report, describes and compares some recent

ray casting algorithms, which was deployed in volumetric data rendering. There are some

comparisons that go beyond implemented parts. The project conducted researches on

intersection, gradient estimation and ray traversal techniques.

2.2.1 Intersection

This section is a comparison of Schwarze's approach [10], simple middle value

approximation, linear approximation and exact linear approach [11].

• Trilinear interpolation: cube polynomial

This method was developed by Schwarze[10], it results in the most elegant intersection

point. The algorithm bases on Cardano solution for general cubic equation. Pitfall of this

algorithm is time consuming since it uses arccos function.

The detail of this algorithm is described as follow.

Pixel value trilinear equation after substituting with u
•A* -\ r

Ai Ar

v =

z-z.

w = became

Z] ZQ

p(UjV,w) = (1-u) (l-v)(l-w) pOOO + (1-u) (l-v)(w) pOOl + (1-u) (v)(l-w) pOlO +

(1-u) (v)(w) pOll + (u) (l-v)(l-w) plOO + (u) (l-v)(w) plOl +

(u) (v)(l-w) pllO + (uKvKw) pill

Substitutingl-w = w0,l-v = v0, l-w = wQ>

u-ul3 V = V, , w = wl

p(u,v,w) = HUiVJWkPijk

y-y0

y\~yo

Figure 7: Interpreting ray in different coordination system

10

A ray p(t) = a + tb intersects with the iso surface at a point p(t) = p1S0. This equation
can be converted into cubic polynomial by displayed p(t) = a + tb on 2 coordination
systems

^o =KXXj=
x,~xa y,-ya zx-zL

X\ Xq yx yQ zx z0 ^

a, = \u°v°w?)=*
xa-xQ ya-y0 za-zt

-xt yb ~zb

X\ Xq y{ y0 zx zQ j

xb yb zb

\

\

x}-x0 y{-yQ zx~zo J

•i (b b b\

^1=(«f,vf,Wf) =
xx -xQ y\-yQ z\~zoj

p(t) = pisobecame

i,j,k=0,\

plso = I («>; +/«fv;+?«,6v; +/2«fvj X<+*W)/>
i,y,*=o,i

v+ tu*vyk+ t\y^ t2u>vybk+1>uyykJ/,y,A=0,I

Set

a= X («fvXk

Put

i',y,A=o,i

/,y,ft=o,i

/,y,A=o,i

d=-p»,+ Z (<vXk*
i,y,A=o,i

Derived cubic polynomial ^4? +5/ +C? + Z) = 0 can be solved using Cardano's

method.

Given F(x)=xH px + q. (p #))

If x is a solution of F(x) =0, then there exist u, v that x = u + v and 3uv = - p.

Substituting x = u+ v onto the equation (u + v)3 + p(u + v) + q =0

11

u3 + v3 + (3uv + p)(u + v) + q = 0

Substituting 3uv = - p yields u3 + v3 = • q

Hence, u3 and v3 are roots of the quadratic equation s2 + qs • (p/3)3 = 0

The solutions of this equation are:

u3 = (-q/2) + [(q/2)2 + (p/3)3]1/2

v3 = (-q/2)- [(q/2)2 + (p/3)3]1/2

If (q/2)2 + (p/3)3 is negative, it will be "casus irreducibilis", in which results complex

numbers. Triginometrical method is the only way to find real root.

Setting cos((p) = -0.5q(-p/3)"2/3, where <p e (0,jc)J r = 2 (-p/3)1/2 results xi = r

cos((p /3), X2 = r cos(<p + 2 rc)/3, X3 = r cos((p+47r)/3

This project uses Schwarze's algorithm to implement Cardano's method.[9] This

algorithm naturally initiates many disadvantages. Firstly, it requires separate algorithm

for degraded cases of F(x) =0, e.g. A = 0. The degraded case requires quadratic equation

solution. Secondly, to find the value of q>, it requires using arccos function, which is

expensive in term of computational cost. Besides, the algorithm is unstable, in term of

numerical accuracy [11]. However, the algorithm produces highly accurate intersection if

s is small enough. In a recent research, a value of l.e -30 was used [8].

• Middle point approximation

This algorithm is considered as the simplest algorithm of calculating intersection. When

visiting a voxel with iso-surface inside, the ray finds intersection t as the average value of

tin and tOut. tin and tOut are the value of tHit when the ray enters the voxel and exits

from it, respectively.

The computing time is fast, but quality image is poor

with blocky effect. It is inaccurate.

Figure 8: Middle point interpolation

12

• Linear interpolation approximation

Linear interpolation is more advanced than simple middle tin

point interpolation but it is still simple. In order to apply it,

there must be an assumption that value along the ray from

entry point to exit point is linear.

Figure 9: Linear interpolation miss-case

The algorithm at first, checks if density value of entry point and exit point are both

greater or both smaller than density value of iso-surface. This condition means there will

not be a hit in between 2 points. It is a potential error as the iso-surface may bend over

the ray.

Hit point is calculated by

t -t +(t -t) ^iso "~ ^inlhit lIn ^VOut lIn) __
rout rin

The algorithm is fast, simple but inaccurate.

• Exact linear interpolation

The algorithm applies repeated linear interpolation [12] on the nearest interval that has

iso-surface. The mathematical base of the algorithm is the cubic polynomial condition of

having root.

Given fit) —At + Bt + Ct + D ; intersection points are roots ofequation f(t)=0

f>(t) = 3At2+2Bt +C

Extrema values of f(t) are at the value of f (t) ^0. By applying quadratic equation on

f (t)=0, valuesof eQ and ei will be found.

13

p
1

tin/

fay

/tOut
0 \ 61

/

«0 \\y t

Figure 10: Exact linear interpolation

Above diagram illustrates a cubic polynomial with 3 roots in between tin and tOut. In

this case, at first, it calculates extrema values of f(t), which are en and ej. Then it

determines an interval to further examine within 3 intervals [tin, en], [en, ei], [ei, tout],

which is [tjn, eo] since f(tln) < 0, f(e0) >0 AND it is the nearest interval. Finally, it

applies repeated linear interpolation [12] on that interval to find hit point. Pseudo code

for this algorithm can be found in appendix 1.

This algorithm produces quite accurate intersection without complex calculations like

Cardano's method. It is useful for closest hit intersection since it concerns to the nearest

interval only.

2.2.2 Gradient Vector (normal vector)

This section discusses on normal vector estimation, or gradient estimation, at the

intersection point of an iso-surface. Normal vector is essential for shading. The section

analyzes 2 most common techniques, i.e. exact normal and rectilinear gradient. These

techniques were implemented in the program. This sectionalso mentions to smoothexact

algorithm.

• Exact Normal

14

Given a trilinear volumetric data, normal vector at a point (x,y,z) is derived as

—,—,— . Below derivation is to find Nz . Similar processes can be apply
dx dy dzJ

for NYmdNv.
y

Since density value at apoint (u,v,w) is given by P\u>V'w) 2-j uivjwkPijk
i,j,k=0,l

Density value at a point (u,v,w+Aw) is given by

p(u, v, w+Aw) = Y uivjwdkPijk
i,j,k=0,\

z + Az~zn n T z,-z~Az , ft+1 Az
where wrf, = and wrf0 = — or wdk = wk +(-1)

z] - ZQ Z] ~Z0 Z\ ~ 20

Az
Ap =/?(w,v,w +Aw)-/?(w,vsw) = ^ UiVji-l)**1 pijk

iJ,k=0A Z\ Z0

Ap uy

Az /,y,A=o,i zi zo

Ax /,y,A-o,i *i xo

Ay (J^0jl ^-^0

Exact gradient presents the exact shape of the surface. However, for the visualization

purpose, exact gradient is not useful since the overall image is not smooth. Due to the fact

that at the side of each voxel, there are cliffs and edges, surfaces do not smoothly match

between voxels.

• Smooth exact (slicing voxel)

Smooth exact estimation uses a virtual voxel: the point to calculate normal vector is in

the center, size of the voxel is the same as other voxels, planes are parallel with other

voxels, density value at vertice is calculated by trilinear interpolation [14].

15

Smooth exact estimation algorithm introduces a smooth surface; however, there is the

potential of loss data since it reduces the sharpness of edges.

• Rectilinear gradient

It is the most common technique to estimate the normal vector. The algorithm is as

follow: In preprocess, it calculates normal vectors at grid points (vertices) and stores

them. In rendering process, to find normal vectors at arbitrary points, it derives them by

triliniear interpolation equation from stored grid point normal vectors.

The algorithm is fast, produces acceptable surface with less lost and smooth enough for

visual effects.

2.2.3 Ray traversal

This section discusses on some algorithms of ray traversal. These algorithms includes

simple stepping ray, and fast ray traversal by Amanatides and Woo[17].

Basically, ray traversal means to find which voxel that the ray enters at a value of t.

Recall that a ray is represented as R(t) = 0 + D * t. Where t can be considered as time of

traversal, 0 is the origin and D is the direction vector of the ray R.

• Stepping ray

This method is named by the author of this thesis, according to the way that the ray

travels. This algorithm performs the traversal of the ray by increasing t with a value

tStep. With a value t, the associated voxel can be computed by floor functions.

voxelSizex j
Xvoxel = floor

16

>

Figure 11: Stepping ray

It is simple to understand and implement, however, it contains potential of error. Since

the ray traversal depends heavily on value of tStep, change in this value will lead to

change on result.

As illustrated by below diagram, the ray may miss a voxel if the value of tStep is large

enough and the direction of the ray is not parallel with any axis. Theoretically, the ray

always miss some voxels since with every value of tStep, there is position of ray that

makes interval AB smaller than tStep.

(a) (b)

Figure 12: Stepping ray problem (a) Common situation (b) Miss-case

In practice, the algorithm produces picture with some dots on the iso-surface. Besides,

this algorithm requires many calculations when increasing the value of t with tStep,

which is small.

17

• Ray traversal by Amanatides and Woo [17]

In 1987, Amanatides and Woo developed a fast algorithm for ray traversal that nowadays

many applications still use without changes. Below is the version of the algorithm in 2 D

grid.

Figure 13: Amanatides and Woo's ray traversal algorithm

The algorithm use integer variable X and Y to store the voxel coordinates; tDeltaX and

tDeltaY to indicate how long it takes the ray to travel the width and the height of a voxel;

xStep and yStep to indicate the sign of ray direction, which is 1 if it is positive, -1 if it is

negative. The algorithm has 2 two phases: initialization and incremental traversal.

• The initialization phase is to identify the voxel that contains the ray origin or the first

voxel that the ray hits the volume data. X and Y are set with this voxel coordinates.

Next, it finds the value of tMaxX and tMaxY as the first value of t at which the ray

crosses the first vertical and horizontal voxel boundaries. The minimum of these two

values will indicate how much we can travel along the ray and still remain in the

current voxel.

• The incrementalphase is a simple loop:

loop{
if (tMaxX < tMaxY)

{
tMaxX= tMaxX + tDeltaX;

X= X + stepX;

18

else

{
tMaxY= tMaxY + tDeltaY;

Y= Y + stepY;

}
VisitNextVoxel(X,Y) ;

}

The incremental phase basically finds which boundary that the ray will hit first, and to

increase coordinates of the voxel accordingly.

In the program of this thesis, the algorithm is slightly changed. It uses 2 more variables

oldX and oldY to store the most recent visited voxel and further examine that voxel. The

purpose of visit old voxel is to get tin and tOut without redundantly comparing tMaxX

and tMaxY.

• Ray traversal in partition space

In this project, recursive algorithm was used to travel a ray through partition space. When

the ray hits a parent node, the algorithm finds a local ray that enters the node and applies

Amanatides and Woo's algorithm on that ray. There is another way to implement it; one

can, instead of casting local ray, change the initialization according to the size of child-

node. However, the computational cost is almost the same since both algorithms have to

find the coordinates of first hit child node.

It is difficult to say if the algorithm is good or bad. Basically, the effectiveness of an

algorithm depends on nature of dataset. It leads to a phenomenon called "teapot in

stadium" [17], wherethe scene consists of a huge emptyspace with only one small object

at center.

2.2.4 Acceleration by space partition

19

This section discusses on the effectiveness of different space hierarchy on the speed of

the program. There are 2 hierarchies were used, which are nested grid and octree.

Theoretically, octree is the most effective hierarchy, however, in practice with this data

set, it show some disadvantages.

• Nested Grid

Figure 14: Nested grid

This hierarchy at first divides the scene with a large grid. Neither number of column

nor row is necessary to be power of 2. Secondly, it divides each grid which contains

object into smaller grid, and so forth. In this project, nested grid shows more

advantages than octree.

Octree

Figure 15: Octree hierarchy

Octree has the same construction as nested grid; the different is each node has exactly 4

children. In this project, the volumetric data is partitioned by octree until each node

contains only 1 voxel. It takes about 7 levels. The experiment is to show the effect of

number of level.

20

2.3 Proposal of new multisampling schema
"Eureka"- Archimede

Multisampling is a method to reduce alias effect. Increasing number of ray leads to

increasing computing time. This section proposes an anti-aliasing sampling algorithm

with the acceleration of ray traversal. Its aim is to reduce aliasing with less time. Basis of

the algorithm is to cast sampling rays directly to the object/voxel, which was detected by

a primary ray. The algorithm saves time of ray traversal for sampling rays.

(a) screen

(b)

(c)

Figure 16: Proposal multisampling algorithm (a) Cast primary rays to find object (b) Cast
sampling rays directly to objects (c) Existing sampling techniques require sampling rays travel
from screen.

The new algorithm has 3 phases. For each pixel on screen, do the follows:

• Cast primary ray to find objects/voxels that the ray intersects with. Store those

objects/voxels into memory.

21

• Cast sampling rays directly to appropriate stored objects/voxels.

• Apply integral methods to determine the color of screen pixel.

The algorithm was implemented with a laptop Centrino Mobile 1.5GHz. Sample set is

BrainSmall, 128 * 128 * 84, 1:1:1, example dataset associated with Volpack package,

Standford University. Supersampling, 9 samples per pixel, image 512*512.

Single ray Normal

multi-

sampling

New multi-

sampling

2 sees 14 sees 9 sees

Table 1: Rendering time of different sampling algorithm

16 •

14

12

10 ..,

8
.

6
%

4

2 - --.— •*

1 '

Single ray Normal multi-sampling New multi-sampling

Figure 17: Rendering time of different sampling algorithm

Figure 18: Anti aliasing in volumetric data (a) New algorithm (b)NormaI algorithm (c) Single
sample (d) Higher resolution produce the same result for 3 algorithms

22

This algorithm fastens the process of sampling because sampling rays do not have to

travel from screen to object. It does not increase the resolution because no new object is

discovered. Small objects still can be missed.

i—i -->

View plane

Figure 19: Miss-case

Although the rendering engine is not yet optimized, dramatic decrease in rendering time

proves the advantage of new algorithm. New algorithm is faster because it eliminates

traversal time for sampling rays.

23

CHAPTER 3

METHODOLOGY/PROJECT WORK

This chapter describes about the architecture and module of the program. In general, the
program implements algorithms that are described in section 2.3 in the previous chapter.

3.1 Functions

The program is aray casting program, was created with the purpose of implementing and
comparing specific algorithms. These algorithms include space partition, ray traversal,
ray-isosurface intersection, and gradient estimation. The program does not implement

global illumination.

Recall that the interval value of t should not include 0, however, since there is no

secondary rays were generated, the interval value is assigned as [0,+co)

In general, the program has following functions

• Data input: to capture dataset BrainSmall into a3D array of float. The module can

be modified to capture other file formats.

• Preprocess : to analyze captured volume data and generate pre-requisite data such
as normal vector at grid point

• Ray casting: to cast a ray through each pixel on screen into volume data. There
are 3 different sub modules thatperform 3 different algorithms.

• Intersection interpolation: to calculate hit point ofeach ray on iso-surface.

• Gradient estimation: to calculate normal vector at hit point.

• Color determination: to assign a color on a pixel on the screen. The color is

calculated with Phong shading.

• Image Output: to generate the final image. The format of the image file is ppm.

2'

3.2 Program flow

Input dataset Pre process ^
Intersection

Interpolation
—».

Gradient
H Estimation

1'

Color

determination

1 r

Image
generation

Figure 20: Program flow

3.3 Psedo code
The main program psedo code

FOR EACH pixel O ON screen
Cast a ray R that originated from 0

IF the ray hit the surface

Calculate gradient vector at hit-point

Calculate hit-point color

Color the screen pixel

ELSE

Color the screen pixel with default value.

END IF

END FOR

3.4 Modules

The program of the project has a structure that is described in the book "Realistic ray
tracing" refer to Peter Shirley and Keith Morley (2003). The program has been developed
by starting with simple, standard source code, and then modifying to meet objectives.
Listed source code below is only a portion ofthe whole program.

Box.h and Box.cpp : to declare and implement properties and functions ofbox (voxel).

These files contain source code from Amy Williams, Steve Barrus, R. Keith Morley, and

Peter Shirley "An Efficient and Robust Ray-Box Intersection Algorithm" Journal of

graphics tools, 10(l):49-54, 2005; source code from Jochen Schwarze. "Cubic and
quartic roots". In Andrew Glassner, editor, Graphics Gems, pages 404-407. Academic

Press, San Diego, 1990.

cell.h and cell.cpp : to declare and implement properties and functions of cell, used to

implement space partition hierarchy.

denfile.h and denfile.cpp : to read volume data file. The files are parts of Volpack

package publication. Retrieved from the Stanford Computer Graphics Laboratory's by

August 15, 2005.

Web page http://www-graphics.stanford.edU/software/volpack/#Distribution or

ftp://www-graphics.stanford.edu/pub/volpack/.

image.cpp image.h: to generate image, the files are parts of source code from the

course Advanced Computer Graphics II, Spring 2005 by Steven G. Parker. Retrieved

from University of Utah by August 1, 2005.

Webpage http://www.cs.utah.edu/classes/cs6620/

ray.h: to implement ray as in paper from Amy Williams, Steve Barrus, R. Keith Morley,

and Peter Shirley "An Efficient and Robust Ray-Box Intersection Algorithm" Journal of

graphics tools, 10(l):49-54, 2005

rgb.h, rng.h, vector3.h: to implement color, vector; are parts ofsource code from Peter

Shirley, R. Keith Morley. "Realistic Ray Tracing" second editor. A.K. Peters Publisher

2003.

26

3.5 Argument

Compiled program is supported with several arguments, which allow users select
different algorithms. The scene, includes view point, light and dataset, is static for each
compiled program.

-r : ray traversal

-o : octree hierarchy

-s : stepping ray

-e : exact normal

-g : gridnormal

-p ; Schwarze interpolation

-m : middle value interpolation

-n : linear interval checking interpolation

C:\>i318'
,-i* : ray

-e : exact

C:\>i3183_Jyp_uolu.netric s g p

Render started

Finish at :

@&:23=@7
06=23=1""

@&:23:i4

Figure 21: In-linecommand arguments

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results and comparisons

Changes in emake significant changes in image.

(a)s=l.e-6 (b)e=l.e-4

Figure 22: Schwarze approach : unstable accuracy.

• Different interpolation algorithms

The data sample is BrainSmall, 128 *128 *84,1:1:1, example dataset associated with
Volpack package, Standford University[20]

(a) W
Figure 23: Different interpolation algorithms (a)Linear Interpolation (b) Schwarze's approach and
exac linear interpolation (c) Linear Interpolation

"*.Jfisa.M

:r/u!E

"h-

(a) —• (b) —^
Figure 24 : Different gradient estimation algorithms (a)grid normal (b) exact normal

• Different acceleration techniques

Following results are rendering time ofdifferent algorithm ona laptop, 1.5GHz. Image

512*512

o Stepping ray: 3 mins

o Octree : 14 sees (7 levels of depth)

o Uniform grid : 10 sees (3 levels of depth)

• Proposal algorithm

The algorithm was implemented with a laptop 1.5GHz, image 512 * 512, super sampling,

9 rays per pixel, 25 level depth, unit is second. Rendering engine is modified from

Parker's course program [15]. The algorithm is applied on the first casting of the rays.

Experiment shows that the new algorithm takes advantage when the scene has many

objects.

No of

Object
1 7 13 19 25 31 61

Single
Ray

5 5 14 24 32 37 76

Normal

Super
Sampling

39 96 152 232 283 344 700

New

Super
Sampling

55 91 141 183 212 258 501

Table 2 : Rendering time experimental result with object scene

29

800

700 -

600 -

500 —

400 -

300 -i-

200 -

100 -

0 n

w

i. i-

13 19 25

No of Object

IV

61

B Single Sample EJ Normal Super Sample Q New Super Sample

Figure 25 : Rendering time

Figure 27: Single sample ray tracing Figure 26: Normal super sampling algorithm and new
super sampling algorithm produce the same image

(a) (b)

Figure 28: Comparison between single and multi sampling

30

4.2 Discussion - Future work and research areas

"In the beginner's mind there are many possibilities, but in the expert's there are few."

Shunryo Suzuki-Roshi

This section mentions about a few ideas that may be further research.

Topic Description Field of study Potential

problem
Space partition

according to

dataset pattern

To develop an algorithm/schema that can

determine technique of space partition

according to dataset pattern

Course of

viewpoint

To develop sets of courses of view points, to

accelerate interactive rendering by mapping

between view point and to-be-examinated

voxels. Those courses have to fit with specific

purpose of viewing and satisfy users' needs.

New courses will be added into the set on the

spot when users navigate the volume

Machine learning,

data mining

Local ray

algorithm

To find a more efficient algorithm for casting

local ray in space partition

New global

illumination

algorithm

to develop a formula for gradient interpolation

at a point (x,y,z) in a scene Object[i],

LightSource[i]. To simplify the reflecting light

from other objects, i.e. triangles become points.

Given object at specific coordination with

(x,y,z) contributes approximated illumination.

Contributed illumination from each object is the

accumulation of its triangles. Occlusion

contributes negative value.

Photon mapping Shape of light

source will not be

easy to handle

Table 3 : Proposal topics for further research

31

CHAPTER 5

CONCLUSION AND RECOMMENDATION

The thesis consists of 4 main sections: literature review, implementation of selected

algorithms, analysis and comparison, and enhancements and areas of research. The

thesis proposes a new algorithm to accelerate multisampling rendering and suggests a

few topics for farther research.

Literature review (section 2.1) summarizes basic knowledge of ray tracing, from

definition of ray, primitive to fundamental concepts of volumetric rendering, ray

acceleration.

Implementation of selected algorithms (section 2.2) is deeper research on 4 areas of

ray tracing. These groups are intersection interpolation, gradient estimation, ray

traversal and ray acceleration. Research on each group consists of analysis of a few

algorithms and programming implementation of them. Different algorithms produce

different results, they are then compared (section 4.1) for a match between theory and

practice.

Areas of research (section 4.2) describes some ideas with that the author came up.

These ideas may be not good enough for possible researches; however, they also may

be new ways to see old things. The thesis includes a proposal of new algorithm for

ray acceleration in multisampling (section 2.3). The new algorithm eliminates

traversal time of sampling rays from view plane to objects, thus reduces rendering

time. Miss-case with small objects is the limitation of the algorithm.

32

REFERENCE

[1] Peter Shirley, R. Keith Morley. (2003) Realistic Ray Tracing second edition. A.K.

Peters Publisher 2003. ISBN 1-56881-198-5

[2] Ingo Wald (2004) Realtime Ray Tracing and Interactive Global Illumination. Ph.D

Thesis. Saarland University. Retrieved from University of Utah by September 14,2005.

Website: http://www.sci.utah.edu/-wald/PhD/wald_phd.pdf

[3] Pascal Vuylsteker (2003). Lecture Note. Retrieve from The Australian National

University by August 16, 2005.

Website : http://cs.anu.edu.au/student/comp4610/plan.html

[4] Alexander Keller (2002) Monte Carlo and Beyond. Course note. ETH Ziirick 2002.

Retrived from Universitat Ulm by October 3, 2005.

Website: http://graphics.uni-ulm.de/BeyondMonteCarlo.pdf

[5] Joe Kniss, Patrick McCormick, Allen McPherson, James, Ahrens, Jamie Painter, Alan

Keahey, Charles Hansen (2001) Interactive Texture-Based Volume Rendering for Large

Data Sets IEEE 2001. Retrieved from University of Utah by October 20, 2005.

Website : www.cs.utah.edu/-jmk/TRex_CGA.pdf

[6] William E. Lorensen and Harvey E. Cline.(1987) Marching cubes:A high resolution

3d surface construction algorithm. Conference Proceedings . ACM Siggraph 1987.

Retrieved from Israel Institute of Technology by October 20, 2005

Website: www.cs.technion.ac.il/-u_shani/cs236807-S2/lecturesstudents/Marching

Cubes.pdf

[7] Arie E. Kaufman. Volume Visualization: Principles and Advances. Retrieved from

Mitsubishi Electric Research Laboratories by June 14, 2005.

33

Website:http://www.merl.com/people/pfister/courses/Bonn2000/Papers/KaufmanVolume

Visualization.pdf

[8] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, Peter-Pike Sloan (1999)

Interactive Ray Tracingfor Isosurface Rendering. Retrieved from University ofUtah by

August 16, 2005.

Website: http://www.cs.utah.edu/sci/publications/ieee_tvcg99/tvcg99.pdf

[9] Milan Ondrus (2004) Algorithm in K. Retrieved by November 14, 2005.

Website http://homepage.hispeed.ch/milano. 2004

[10] Jochen Schwarze(1990) Cubic and quartic roots. In Andrew Glassner, editor,

Graphics Gems, pages 404-407. Academic Press, San Diego, 1990.

[11] Ingo Wald, Heiko Friedrich, Philipp Slusallek, Gerd Marmitt, Andreas Kleer(2004)

Fast and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing.VMW

2004. Retrieved from Universitat Des Saarlandes by August 16, 2005.

Website: graphics.cs.uni-sb.de/VolumeRT/Publications/IsoIsec/IsoIsec_VMV2004.pdf

[12] A. Neubauer, L. Mroz, H. Hauser, R. Wegenkittl (2002).Cell-based first-hit ray

casting. Proceedings of the Symposium on Data Visualisation 2002. Retrieved from

VRVis by September 3, 2005.

Website: medvis.vrvis.at/fileadmin/publications/TVCG_printed.pdf

[13] Torsten Moller, Raghu Machiraju, Klaus Mueller, Roni Yagel (1997) A Comparison

OfNormal Estimation Schemes. IEEE. 1997. Retrieved from State University at Stony

Brook by Octorber 12, 2005.

Website: www.cs.sunysb.edu/-mueller/ papers/vis97_NormalSchemes.pdf

[14] Paul Agron (2002). Isosurface Viewing in Volume Rendering. Course paper.

Retrieved from State University at StonyBrookby Octorber 12, 2005.

34

Website: http://www.cs.sunysb.edu/-pagron/report.pdf

[15] Steven G. Parker (2005) Lecture note CS6620, Advanced Computer Graphics II.

Spring 2005. Retrieved from University of Utah by August 1,2005

Website: http://www.cs.utah.edu/classes/cs6620/

[16] John Amanatides, Andrew Woo (1987) Afast voxel traversal algorithm for ray

tracing. Eurographics '87. 1987. Retrieved from York University by August 18, 2005.

Website www.cs.yorku.ca/-amana/research/grid.pdf

[17] A. S. Glassner. (1984) Space subdivisionforfast ray tracing. IEEE Computer

Graphics and Applications, pages 15,October 1984.

[18] Amy Williams, Steve Barrus, R. Keith Morley, Peter Shirley. (2005) An Efficient

and Robust Ray-Box Intersection Algorithm. Journal ofgraphics tools, 10(l):49-54, 2005

[19] Greg Humphreys (2003). Ray Tracing Acceleration Techniques. Lecture note. Image

Synthesis. Retrieved from University of Virginia by October 11, 2005.

Website:www.cs.virginia.edu/-gfx/Courses/2003/ImageSynthesis/scribed_notes/03_acce

leration.pdf

[20] Philippe Lacroute (1994) The VoIPack Volume Rendering Library. Retrieved from

Stanford University by Augustl2, 2005

Website: graphics.stanford.edu/software/volpack/

35

APPENDIX

Appendix 1. Pseudo code for interpolation algorithms

Appendix 2. Some jokes

36

Appendix 1

Pseudo code for interpolation algorithms

Ingo Wald, Heiko Friedrich, Philipp Slusallek, Gerd Marmitt, Andreas Kleer Fast and

Accurate Ray-Voxel Intersection Techniquesfor Iso-Surface Ray Tracing (2004).

Pseudo code for linear intersection

pin := f(tln);
pOut := f(tOut);
if signtpln - plso) = sign(pOut - plso) then

return NO HIT

end if
return tHit := tin + (tout - tin)((pIso~pIn)/(pOut~pIn));

Pseudo code for exact repeated linear intersection

to = tin; ti = tout; fo = f(to); fi = f(ti)
if fO has real roots then eO = smaller root of fO

ift0<e0<tlthen

if sign(f(e0)) = sign(fO) then
tO := eO; fO := f(e0)

else

tl := eO; fl := f(e0)
end if

end if

el = second root of fO

ift0<e0<tlthen

if sign(f(el)) = sign(fO) then
tO :=el;fO :=ffel)

else

ti:=ei;fi:=f(el)
end if

end if

end if

if sign(fO) = sign(fl) then
return NO HIT;

end if

37

fori=l..Ndo

t := tO + (tl - tO) *((pIso • fO)/(fl-fO))
if sign(f(R(t))) = sign(fO) then

tO := t; fO = f(R(t))
else

tl := t; fl = f(R(t))
end if

end for

return tHit :=tO + (tl - tO) *((p!so - fO)/(fl-fO))

Appendix 2

How did love end?

1. Stars.

A student who is working on a ray tracing program was having a walk with his

girlfriend. It was a romance night with sparkling stars on the black sky. They were

watching in silence until they saw a pair of very bright stars which are close together.

The girl said "Honey! Look at them, the left one is you, and the right one is me. I am

always by your side." The boy looked at them for a while and replied "My love! We

are looking upward, the direction is positive; I think the rays miss the front-top-

corners of the voxels."

2. A new algorithm

The girl tried a new makeup style. She was very happy while the boy kept gazing at

her face. She said "Honey! I will keep this style since you really love it". The boy

replied "I still see some sharp edges on the surface. I think you need to find another

algorithm for your normal vectors"

3. And the consequence.

The boy finished his project and went to meet the girl after a long time busy with

coding. He was in shock to see her with another guy. And he was horrified to hear his

ex-girlfriend's saying "Honey! Your rays skip everything. I do love you, but your

bounding box was too tight for a place for me." (The End)

"Do loveyour work, don't missyour love" - Do, Anh

39

