
Comparitive Study On Multiplier Algorithms using Verilog HDL

by

NUR SY AHADAH BINTI MOHD SAPLI

5983

Final Report submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

JUNE 2008

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh
Perak Darul Ridzuan

Dedicated to

My parents who always give encouraging words

Che A bas bin Hj Hamid

Sarimah binti Hj Md. Ali

My siblings who have always been my pride and joy

Mohd Shwifi bin Mohd Sapli

Nur Syahida binti Mohd Sapli

Mohd Shulhi bin Mohd Sapli

Mohd Shubhi bin Mohd Sapli

Muhammad Aliff Ali bin Che Abs

Myfriend & other half whom I always rely on

Mohd Shahadan bin Mokhtar

My best friends with whom I share five years of my life

Noor Fadhilah Mohd Raes

Nor Hafizah Abdul Malek

Shahrinima Sharifuddin

My dearfriend who always listens

Ms Siti Hawa Hj Tahir

Thank you all for the great gifts that each of you have bestowed upon me

CERTIFICATION OF APPROVAL

Comparison Study on Multiplier Algorithms Using Verilog HDL

Approved by,

by

Nur Syahadah binti Mohd Sapli

5983

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

(AP DR MOHAMMAD BIN A WAN)

Final Year Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2008

II

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

(NUR

5983

ADAH BINTI MOHD SAPLI)

Jll

ABSTRACT

Multipliers are used in many applications especially in computers. A personal

computer (PC) utilizes multipliers to perform calculations. Thus, having a multiplier

with great speed will definitely boost the performance of a PC. Based on this, the

purpose of the Final Year Project is to perform a comparison study on multiplier

algorithms using Verilog HDL. Four multipliers have been selected to be the subject

of study. The multipliers are Ripple Carry multiplier, Carry Save multiplier, Wallace

multiplier and finally the Dadda multiplier. The propagation delay of each multiplier

is determined to check their performance in terms of speed. The outcome of this

project has showed that, among these four multipliers, Carry Save multiplier has

exhibited the smallest amount of propagation. Therefore, it is the fastest multiplier out

of the four that are studied whereas Dadda multiplier shows the least number of logic

elements used up until 6-bit multiplication process.

IV

ACKNOWLEDGEMENT

I would like to thank my supervisor, AP DR Mohammad bin Awan for the

constant guidance and coaching throughout the entire duration of this project. He has

kept me motivated and encouraged during the time that I am under his supervision.

Thank you, Sir. I would also like to extend my gratitude to Mr Patrick Sebastian, who

has never refused to answer lengthy questions on Verilog syntax. Thank you so much

for the numerous V erilog coding that you have corrected as well as tips on good

programming style. My deepest gratitude also goes to Mr Lo Hai Hiung who explains

a lot about Quartus II software. Without the knowledge, I would not be able to do the

simulation. To EE Lab Technologist, Ms Siti Hawa Hj Mohd Tahir, thank you for the

moral support that you have given during the entire time of knowing you. Finally, to

my parents and friends, thank you for the advices which I will always treasure.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL.. 11

CERTIFICATION OF ORIGINALITY.. m

ABSTRACT.. IV

ACKNOWLEDGMENT.. v

LIST OF FIGURES.. IX

LIST OF TABLES.. XI

CIIAPTER 1: INTRODUCTION... I

1.1 Background of Study..................................... I

1.2 Problem Statement.. I

1.3 Objective and Scope of Study........................... 2

CIIAPTER 2: LITERATURE REVIEW I TIIEORY...... 3

2.0 Propagation Delay.. 3

2.1 Basic Components of a Multiplier....................... 3

2.1.1 Half Adder... 4

2.1.2 Full adder.. 4

2.2 Types of Adder... 6

2.2.1 Ripple Carry Adder................................. 6

2.2.2 Carry Save Adder. 9

2.3 Types of Multiplier... II

2.3.1 Shift-Add Multiplier................................ II

2.3.1.1 Ripple Carry Multiplier.................. 12

2.3.1.2 Carry Save Array Multiplier............. 13

2.3.2 Wallace Multiplier.................................... 14

2.3.2.1 2-bit Wallace Multiplier..................... 15

2.3.2.2 4-bit Wallace Multiplier.................... 15

2.3.2.3 6-bit Wallace Multiplier.................... 16

2.3.2.4 8-bit Wallace Multiplier.................... 16

VI

2.3.3 Dadda Multiplier...................................... 17

2.3.3.1 2-bit Dadda Multiplier..................... 18

2.3.3.2 4-bit Dadda Multiplier..................... 18

2.3.3.3 6-bit Dadda Multiplier..................... 19

2.3.3.4 8-bit Dadda Multiplier..................... 19

CHAPTER3: METHODOLOGY /PROJECT WORK.................... 21

3.1 Project Flow Overview..................................... 21

3.2 Methodology... 22

3.3 CAD Tool.. 28

CHAPTER4: RESULT AND DISCUSSION 29

4.1 Result. ... 29

4.1. 1 Ripple Carry Multiplier 29

4.1.1.1 2-bit Ripple Carry Multiplier. 29

4.1.1.2 4-bit Ripple Carry Multiplier 31

4.1.1.3 6-bit Ripple Carry Multiplier. 31

4.1.1.4 8-bit Ripple Carry Multiplier. 31

4.1.2 Carry Save Multiplier. 32

4.1.2.1 2-bit Carry Save Multiplier. 32

4.1.2.2 4-bit Carry Save Multiplier. 33

4.1.2.3 6-bit Carry Save Multiplier. 33

4.1.2.4 8-bit Carry Save Multiplier. 34

4.1.3 Wallace Multiplier. 35

4.1.3.1 2-bit Wallace Multiplier. 35

4.1.3.2 4-bit Wallace Multiplier. 36

4.1.3.3 6-bit Wallace Multiplier. 36

4.1.3.4 8-bit Wallace Multiplier. 37

4.1 .4 Dadda Multiplier. 38

4.1.4.1 2-bit Dadda Multiplier. 38

4.1.4.2 4-bit Dadda Multiplier. 39

4.1.4.3 6-bit Dadda Multiplier 39

4.1 .4.4 8-bit Dadda Multiplier. 40

4.1.5 Implementation on FPGA 40

Vll

4.2 Discussion.. 41

4.2.1 SummaryofResults................................. 41

CHAPTER 5 : CONCLUSIONS AND RECOMMENDATION.......... 44

5.1 Conclusions... 44

5.2 Recommendation.. 44

REFERENCES... 45

APPENDIX.. 46

Vlll

LIST OF FIGURES

Figure 2.1 : Propagation Delay.. 3

Figure 2.2 : Half- Adder Schematic... 4

Figure 2.3 : Full-adder schematic... 4

Figure 2.4(a): 2-bit full adder block diagram....................................... 6

Figure 2.4(b) : 4-bit full adder block diagram.. 7

Figure 2.5 : Schematic of 4 bit ripple carry adder with Carry bit highlighted... 7

Figure 2.6 :Design Hierarchy of a 4-bit Ripple Adder............................. 8

Figure 2.7 :A Full Adder (FA) and a Carry Save Adder (CSA).................. 9

Figure 2.8 : Design Hierarchy for Carry Save Adder............................... 9

Figure 2.9(a): 2-bit Carry Save Adder.. 10

Figure 2.9(b): 4-bit Carry Save Adder.. 10

Figure 2.10 : Normal Multiplication.. II

Figure 2.11 : Block Diagram of 4-by-4 bits Ripple Carry Multiplier.............. 12

Figure 2.12 : Block Diagram of 4-by-4 bits Carry Cave Multiplier............... 13

Figure 2.13: 2-bit Wallace Multiplication... 15

Figure 2.14: Dot Diagram for a 4-bit Wallace Multiplier......................... 15

Figure 2.15 : Dot Diagram for a 6-bit Wallace Multiplier.......................... 16

Figure 2.16 : Dot Diagram for 8-bits Wallace Multiplier........................... 17

Figure 2.17 : 2-bit Dadda Multiplier... 18

Figure 2.18 : Dot Diagram for a 4-bit Dadda Multiplier........................... 18

Figure 2.19 : Dot Diagram for a 6-bit Dadda Multiplier........................... 19

Figure 2.20 :Dot Diagram for an 8-bit Dadda Multiplier.......................... 20

Figure 3.1 : General Project Flow... 22

Figure 3.2: Creating a New Design File... 23

Figure 3.3 :Compilation Window... 23

Figure 3.4 : Functional Simulation Window... 24

Figure 3.5 :Example of Functional Simulation Output............................. 25

Figure 3.6 :Assigning Device to Design... 25

Figure 3.7: Timing Simulation Window.. 26

Figure 3.8: An Example of Timing Simulation Output.............................. 27

Figure 3.9: Detailed Project Flow.. 28

!X

Figure 4.1 : Timing Simulation for 2-bit Ripple Carry Multiplier.................. 29

Figure 4.2: Worst-Case Propagation Delay Time.................................... 30

Figure 4.3 : Propagation Delay Time for the Design................................. 30

Figure 4.4 :Timing Simulation for 2-bit CS multiplier.............................. 32

Figure 4.5 :Worst-Case Propagation Delay... 32

Figure 4.6 :Propagation Delays for the Design....................................... 33

Figure 4.7: Timing Simulation for 2-bit Wallace multiplier........................ 35

Figure 4.8: Worst-Case Propagation Delay Time.................................... 35

Figure 4.9 : Total Propagation Delay for the Design................................. 36

Figure 4.10 : Timing Simulation for a 2-bit Dadda multiplier...................... 38

Figure 4.11: Worst-Case Propagation Delay Time.................................. 38

Figure 4.12 : Total Propagation Delay for the Design............................... 39

Figure 4.13 : Propagation Delay Chart.. 41

Figure 4.14: Number of Logic Elements Chart....................................... 43

X

LIST OF TABLES

Table 2.1 : Truth table for half adder... 4

Table 2.2: Truth table for full adder.. 5

Table 2.3 : The Bit Product.. 11

Table 2.4 : Table of Reduction Stages for Wallace and Dadda Multipliers....... 14

Table 4.1: Propagation Delay... 41

Table 4.2 :Number of Logic Elements.. 43

CHAPTER I

INTRODUCTION

1.1 Background of Study

Multipliers are used in many applications especially in computers. A

personal computer (PC) utilizes multipliers to perform calculations. Thus, having

a multiplier with great speed will definitely boost the performance of a PC.

Therefore, this study will focus mainly on the speed performance of digital

multipliers implemented in different ways. The purpose is to develop a

comparison of speeds between several digital multipliers that are implemented in

different methods. This is important as speed is a crucial factor in any digital

design especially when the gates are connected in series. This can lead to a major

time delay that will of course, affect the speed performance.

1.2 Problem Statement

In digital design area, there are many kinds of multipliers. Since there are so

many ways to implement a multiplier, the issue of speed arises. Multipliers are

commonly found in the computer systems area whereby it is used in the basic

structure of the computer itself. Therefore, if the delay time is too great, it could

and would affect the whole computer performance. Thus, the issue of speed is

considered as a major issue in digital design.

1

1.2.1 Objective and Scope of Study

The objective of this project is to determine the propagation delay of each

multiplier. Therefore. a multiplier needs to be designed and simulated to ensure

that it is giving the expected correct output. The study covers several multipliers

such as Ripple Carry Multiplier, Carry Save Multiplier, Wallace Multiplier and

finally Dadda Multiplier.

2

CHAPTER2

LITERATURE REVIEW I THEORY

2.0 Propagation Delay

Propagation delay occurs between the time that an input changes and the

time taken by the output to change accordingly [1]. As shown in Figure 2.1,

propagation delay is divided into two which are, the propagation delay high-low

and propagation delay low-high [2]. Propagation delay high-low occurs because a

change in the input from the logic state '1' to the logic state '0' is detected and

the output signal takes some time to change accordingly. Propagation delay low­

high is the exact reverse of propagation delay high-low. In this project, the worst­

case propagation delay is determined so that the maximum frequency that the

design can run on can be calculated.

1r,1 -1>- OUT

IN ____r--L_ __

OUT Tplh B 1: ~

Figure 2.1 : Propagation Delay

2.1 Basic Components of a Multiplier

Below are the basic components of a multiplier; a half adder and a full

adder. Both components are used in a multiplication process because a multiplier

needs adder to sum up the partial products.

3

2.1.1 Half Adder

A half-adder is one of the two types of adder. The basic concept is that, a

half-adder accepts two binary inputs and produces a sum output and a carry

output. Below is a logic circuit diagram of a half-adder and the corresponding

truth table as shown in Figure 2.2 and Table 2.1 [3].

Table 2.1 :Truth Table for Half Adder

A \~ s B ;!_//
A B Cout L:
0 0 0 0

0 1 0 1

f--------

'------- c 1 0 0 1

1 1 1 0

Figure 2.2 : Half- Adder Schematic

2.1.2 Full adder

On the other hand, a full adder is able to accept one more bit which is the

input carry bit, Cin. Therefore, the logic circuit diagram for the full adder looks

like as shown below in Figure 2.3 and its truth table in Table 2.2 [1].

Figure 2.3 : Full Adder Schematic

4

Table 2.2 shows the two outputs; Carry-out bit (Cout) and Sum-bit (I)
given certain inputs which are A, B and Carry-in bits.

Table 2.2 : Truth Table for Full Adder

A B Cin Cout I
0 0 0 0 0

0 0 1 0 I

0 I 0 0 1

0 I I I 0

I 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

5

2.2 Types of Adder

This section will discuss two types of commonly used adders which are

the Ripple Carry Adder and Carry Save Adder.

2.2.1 Ripple Carry Adder

The block diagram for a ripple carry adder is shown in Figure 2.4. A

ripple carry is a type of parallel adders found in digital world. A ripple carry

adder is where the carry output of one stage is being used as input to a full adder

in the next higher stage [I]. The carry output of a lower stage adder is connected

to the carry input of the next higher adder stage. A 4-bit ripple carry adder can be

formed by cascading four !-bit full adders in a chain where the carry generated

by one unit is then being passed forward to the next full adder via the carry input

port of that adder. Figure 2.4(a) below shows the block diagram of a 2-bit Ripple

Carry Adder.

ao bo

FA HA

+ + I +
so

(a)

6

Figure 2.4 (b) below depicts the block diagram for a 4-bit ripple carry adder.

ao bo

FA I+- FA I+- FA +-- HA

+ + J + + +
sz so

(b)

Figure 2.4: (a) 2-bit full adder block diagram (b) 4-bit full adder block diagram

Figure 2.5 shows the logic gate diagram of 4-bit ripple carry adder with

the Carry bit highlighted. Theoretically, this path is the longest path that causes

the delay in the ripple carry adder [2].

r -----------,
I I
I I
I I
I I

I

s
0

-----------,
I

v::FU--,1
I

,_ ___________ _

B A,

r -----------,
I I
I I
I I

c I I
I

I
lc2

I C4
I I
I I ,_ ___________ _

s,

Figure 2.5 : Schematic of 4-bit ripple carry adder with Carry bit highlighted

7

Shown below in Figure 2.6 is the design hierarchy of the ripple adder [2].

A half-adder consists of logic gates 'XOR' and 'AND'. By using two half-adders,

a full adder is then constructed. In order to create a 4-bit ripple adder, four !-bit

full adders are used.

Ripple_ adder

I
~ ~ ~ ~

full adder full adder full adder full adder

I
~ ~

half adder
I I

half adder

1
r l

xor and

Figure 2.6 : Design Hierarchy of a 4-bit Ripple Adder

8

2.2.2 Carry Save Adder

If a carry save adder is briefly looked at, it does not look any different

from a typical full adder. A carry save adder still accepts three inputs and

produces two outputs. However, when this adder is used in a circuit, it obviously

differs in the carry bit aspect. The figure below, Figure 2.7 demonstrates clearly

the difference between a carry save adder and a typical full adder [4].

tl~ y " !I z

~~~ . 

' 
• 

' 
' 

Cout- FA -c,rn ~· CSA 

' 

I I 
. - ~ 

.9 c 8 

Figure 2.7: A Full Adder (FA) and a Carry Save Adder (CSA) [4] 

A Carry Save adder also has the same basic components as the previously 

discussed Ripple Carry adder. The design hierarchy for the Carry Save adder is 

shown in Figure 2.8 below. 

I 
Carry Save Adder 

I 
~ ~ ~ ~ 

full adder full adder I 
full adder full adder 

I 
~ ~ 

half adder half adder 

I 
r ~ 

xor and 

Figure 2.8 : Design Hierarchy for Carry Save Adder 

9 

I 



The Carry Save Adder usually consists of n number of full adders. The 

full adders are connected in such a way that the carry bit is propagated to the next 

layer of addition process. This means that, each layer of adders can perform 

addition without waiting for the carry bit input from the previous stage. Shown 

below in Figure 2. 9 are the block diagrams for a 2-bit and a 4-bit carry save 

adder. 

bo ao 

HA 

HA 

(a) 

bo ao 

HA HA HA HA 

so 

(b) 

Figure 2.9: (a) 2-bit Carry Save Adder (b) 4-bit Carry Save Adder 

10 



2.3 Types of Multiplier 

This section discusses four types of multipliers which are Ripple Carry 

Multiplier, Carry Save Multiplier, Wallace Multiplier and Dadda Multiplier. 

2.3.1 Shift-Add Multiplier 

As the name suggests, a shift-add multiplier shifts the product bits before 

adding them together much like a normal multiplication method. This is further 

illustrated below. 

Table 2.3 : The Bit Product 

A1 Ao A B AxB 
X 81 Bo 

A1Bo AoBo 0 0 0 

+ A181 Ao81 0 1 0 

CJ C2 C1 Co 1 0 0 
Figure 2.10 : Normal Multiplication 

1 1 1 

There are a few types of shift-add multiplier. Each one differs from one 

another in terms of the adder component used in the array. 

11 



2.3.1.1 Ripple Carry Multiplier 

This type of multiplier is constructed from several half adders and full 

adders. Shown below in Figure 2.11 is the block diagram of the shift-add 

multiplier using ripple carry adder to sum up the partial product bits. The partial 

product bits are the logical 'and' from each input [5]. 

FA k- FA ~ HA 

I __j LJ 

Ps 

FA f- FA f- FA f- HA 

FA 1+- FA 1+- L,F;-A--,---.1~~ H~A--.--J 
LJ LJ lS 

Prods Prod1 Prodo 

Figure 2.11 : Block Diagram of 4-by-4 bits Ripple Carry Multiplier 

Since ripple carry adder is used to sum up the bit products, it is expected 

to have a maximum delay from the Least Significant Bit (LSB) to the Most 

Significant Bit (MSB). 

12 



2.3.1.2 Carry Save Array Multiplier 

This type of multiplier fundamentally produces the same gate delay as the 

ripple carry array multiplier shown previously [ 6]. However, the difference 

between the two multipliers is that a Carry Save Array Multiplier does not 

perform the carry chain. Instead, it passes the carry bit to the next layer of adder 

to be added together with other bit products. Due to this matter, the multiplier is 

called "Carry Save" Array Multiplier. Shown below in Figure 2.12 is block 

diagram of a Carry Save Array Multiplier. 

HA HA HA 

FA FA FA 

.---- L__ .----

Pn P12 

FA FA FA 

J 

FA ~ FA 1- HA 

Prods Pro do 

Figure 2.12 : Block Diagram of 4-by-4 bits Carry Cave Multiplier 

13 



The last layer of the addition part uses ripple carries technique. To yield a 

smaller propagation delay, this process can be substituted with a faster carry tree 

adder. 

2.3.2 Wallace Multiplier 

For this type of multiplier, the partial products are generated in the same 

manner as the shift-add multiplier whereby n number of AND logic gates is used. 

Wallace multiplier tries to reduce as many partial products as possible in a single 

reduction layer. These partial products are reduced to a final level with a height 

of two. Then, ripple carry adders are used to complete the reduction. The length 

of the adder, m depends on the number of bits, n. 

RCA length, m = 2(n) ~ 2 [7] 

Each sub-section below will discuss in length on several n-bits 

multiplication process. The number of reduction level is done according to Table 

2.4 [8]. 

Table 2.4: Table of Reduction Stages for Wallace and Dadda Multipliers 

Number of bits, n Number of Reduction Level 

2 0 

3 I 

4 2 

5-6 3 

7-9 4 

10-13 5 

14-19 6 

20-28 7 

29-42 8 

43-63 9 

64-94 10 

14 



2.3.2.1 2-bit Wallace Multiplier 

Based on the concept on Wallace Multiplier mentioned earlier, it is 

required that the partial products are reduced to a level with a height of two. For 

two-by-two multiplication process, the partial products generated are already in a 

level with a height of two. Therefore, it needs no further reduction process. The 

diagram will give a better understanding. 

A1 Ao 
X 81 Bo 

A1Bo AoBo } 
Partial products with a 

+ A1B1 AoB1 
height of two 

P3 P2 P1 Po 

2.3.2.2 4-bit Wallace Multiplier 

Based on the Table 2.4, the number of reduction performed is two. The 

first reduction is to a height of three as shown in Figure 2.14. Then, the partial 

products are further reduced to a height of two. The reduction process uses 

several counters. There are two types of counters which are three-to-two (3, 2) 

and two-to-two (2, 2). The last stage is to complete the multiplication using ripple 

carry adder of length m. 

• ••• •••• •••• •••• :<-.--.-.><- • 
•••• .-.-.--.;<-•• •••••••• 

Figure 2.14 : Dot Diagram for a 4-bit Wallace Multiplier [7] 

15 



2.3.2.3 6-bit Wallace Multiplier 

As described in Table 2.4, the nwnber of reduction stages of a 6-bit 

multiplier is three stages. For a 6-bit multiplier, the partial products generated 

initially are of a height six. Since it requires three stages of reduction process, the 

first stage will be to reduce the partial products to a height of four, then three and 

finally to a height of two. The multiplication process is completed by using ripple 

carry adders. Figure 2.15 shows the dot diagram for a 6-bit Wallace Multiplier. 

•••••• •••••• •••••• •••••• ••••••• •••••• 

•• u:;-.,-.,-.;-•• 
•••••• H?.{fW••• 

••••••••••••• 
Figure 2.15 : Dot Diagram for a 6-bit Wallace Multiplier 

2.3.2.4 8-bit Wallace Multiplier 

For an 8-bit Walla(;e multiplier, the number of reduction required is four 

stages. The first stage is to reduce to height of six, then four, three and finally 

two. The multiplication process is also completed using ripple carry adder. 

16 



The figure below, Figure 2.16 shows the dot diagram of the multiplier. 

The 'crossed diagonal' line represents (2,2) counters and the single diagonal line 

represents (3,2) counters. 

• ••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• 

Figure 2.16: Dot Diagram for 8-bits Wallace Multiplier 

2.3.3 Dadda Multiplier 

Dadda multiplier works in similar manner as the Wallace multiplier. It 

also consists of three stages which are; (1) partial products generation using AND 

logic gates, (2) partial product reduction and (3) using adders to complete the 

multiplication. However, unlike Wallace multiplier, Dadda multiplier does not try 

to reduce the partial products all at once. Instead, it only reduces partial products 

that exceed the required reduction. The sub-sections below will discuss this 

multiplier in length [7]. 

17 



2.3.3.1 2-bit Dadda Multiplier 

Same as Wallace multiplier, a 2-bit Dadda multiplier reqmres no 

reduction because the partial products are already in the final height of two. 

Therefore, the output of the multiplication process can easily be obtained straight 

from the output of each adder components. 

A1 Ao 
X 81 Bo 

A1Bo AoBo } Partial products with a 

+ A1B1 Ao81 
height of two 

P3 P2 P1 Po 

Figure 2.17 : 2-bit Dadda Multiplier 

2.3.3.2 4-bit Dadda Multiplier 

A 4-bit Dadda multiplier also requires two reduction stages as shown in 

Table4. The first reduction is to height of three and finally to a height of two. The 

multiplication process is completed using ripple carry adder to sum up the 

reduced partial products. The dot diagram in Figure 2.18 shows the partial 

products that are reduced. Notice that in the second layer partial product, only a 

few are reduced. 

• ••• •••• •••• •••• 
·~.-:::· •••• :::v.-.;::• •••••••• 

Figure 2.18 :Dot Diagram for a 4-bit Dadda Multiplier [6] 

18 



2.3.3.3 6-bit Dadda Multiplier 

A 6-bit Dadda multiplier requires three reduction stages. The first one is 

to reduce the partial products generated from the AND logic gates to a height of 

four, then to a height of three. Next, it will be reduced further to achieve the final 

height of two before adders are applied to complete the multiplication process. 

The reduction concept of the previously discussed 4-bit Dadda multiplier is 

applied in this multiplication process. Figure 2.19 shows the dot diagram for a 6-

bit Dadda Multiplier. 

•••••• •••••• •••••• •••••• •••••• •••••• 
:-t~~===· ......... , ... ............. 

P???.--?M:• •••••••••••• 
Figure 2.19 : Dot Diagram for a 6-bit Dadda Multiplier 

2.3.3.4 8-bit Dadda Multiplier 

As the number of bits, n increases, the number of reduction stages also 

increases. For an 8-bit Dadda multiplier, the required reduction stage is four 

stages. The first stage reduced the partial products of height eight to a height of 

six and the second stage reduces them further to a height of four. The process 

continues with the partial products being reduced to a height of three and finally 

to a height of two. The multiplication process is completed using ripple carry 

adders. 

19 



Shown in Figure 2.20 is the 8-by-8 bits dot diagram for Dadda multiplier. 

As can be seen, only certain partial products are reduced to achieve the required 

reduction. 

• ••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• • ···:::-ffii. • ••••• ••• • •••• ••• • •••• ••••••••• ••••••• •••••• 

• :;-...-.,-.,-...-.,-..,-.-M:: • 
•••••••••••• :>-..--.--.............. ..,. .... ..--.;;:: • •••••••••••••••• 

Figure 2.20 : Dot Diagram for an 8-bit Dadda Multiplier 

20 



CHAPTER3 

METHODOLOGY I PROJECT WORK 

3.1 Project Flow Overview 

The first stage of the project is to conduct research work. Research work 

is done to select the types of adders that will be used in the project. By doing 

research, a better understanding of the operations of the adders is achieved. 

Source of information is not only limited to books but also includes group 

discussion. 

The second phase of the project is to understand the programmmg 

language used for the project which is the Verilog HDL. Verilog is a widely 

accepted language for VLSI design [5]. Therefore, the time allocated to be 

familiarized with Verilog is used to understanding the constructs in Verilog such 

as the basic ofthe language, its convention and so on. 

With the second phase of the project is still on-going, the coding for 

adders begins. By using trial-and-error method, many codes are generated and 

simulated to find the eliminate errors in the coding of the adders. A lot of time 

has been spent in trying to convert the understanding of the adder operation into a 

workable Verilog code. 

21 



The figure below, Figure 3.1 shows the general project flow. 

[-- Research Work J 

D 
[Coding for Adders I 

Simulation 

D 
Analyze results 

D 
Implementation on FPGA 

D 
["Observe output waveform of FPGA J 

Figure 3.1 : General Project Flow 

3.1 Methodology 

As mentioned in the previous section, before being able to design the 

multiplier, concept of the multiplier operation must be first studied. This is to 

ensure that the result obtained during the simulation phase is the same as the 

calculated result. Therefore, as shown in the detailed project flow, understanding 

the design concept is the first stage. 

The next stage of the project is to transfer the understanding gained on the 

multiplier design into a block diagram. Working with block diagrams is much 

22 



easier than complicated texts. 

Using the block diagram created earlier, the designing stage of the project 

can begin. Assigning variables in the design becomes a lot easier with the help of 

the block diagram. Since this project uses Verilog HDL as the programming 

language, thus Verilog is selected in the pop up window of the Quartus II 

software as shown in Figure 3.2. Compiling the design is the next process that 

must be done. Compilation is done to check syntax errors. Figure 3.3 is the 

compiler tool. 

De'¥ice DesisJl F1es Other Fies 

AHDLAe 
Block D iagam/S chematic Fie 
EDIF Fie 

OK Cancel 

Figure 3.2 : Creating a New Design File 

:..., Compiler Tool t}§~ 

Analy= Zt Synthesis 

0~ 

00:00:00 

..,. .l~l\ 

~ St«t J 

Rter 
0 ~ 

00:00:00 

~ 

0'-
00:00:00 

·~J -' ~ 0 

Ide 

0 ~ 

00:00:00 

Figure 3.3 : Compilation Window 

23 

Tinilg Analyzer 

0~ 

00:00:00 

•& ~®~ 

~Report 



If the design is found to contain error, the design file needs to be checked 

again based on the error message that will nonnally appear after the compilation 

process. The next part of the project, which is to perform functional simulation, 

can only be started after successful compilation process. Functional simulation is 
I 

one of the three simulation options that are available in Quartus II. It assumes th4t 

the logic elements and interconnection wires are perfect. Therefore, there is no 

delay in propagating the signals in the design circuit. Functional simulation can 

be said as verifying the functionality or correctness of the circuit as designed. rn 
simple words, it is done to help designers check whether the design file is giving 

expected output. 

Figure 3.4 shows the Simulator tool with Functional simulation mode 

selected. 

~ Simulator Tool ~~~~ 

Generate Fll'lclional Sintjatjoo Netisl 

End siTUation at 

SiTUation options 

~ Altomaticaly add pim to siTdation Wpt.t waveforms 

Dieck Wpt.ts 

_j 

~------------------- 0 
000000 

Sttwt _j _j ~ Open j di1> A eport J 

Figure 3.4 : Functional Simulation Window 

24 



Figure 3.5 shows an example of the Functional simulation mode. Notice 

that the output is obtained as the same time as the input. 

!i: . ./rc_curaymuiUrc_arraymult_functional. vwt • ~§~ 

Master Tine Bar: 0 ll$ • • Porter. 17 ns Interval: 3. 7 ns Start: El'lli 

11} p ns wp_ns __ _ 3rl[)ns 
I 

40pns 

< ) < 

Figure 3.5 : Example of Functional Simulation Output 

All designs in this project are simulated on EPF10K70RC240-4 which is 

available in Quartus II as shown in Figure 3.6. 

Select the family .¥.:f device you wari to target fOf compiation 

F amiy. FLEX1 OK 

Device & Pil Optiom... J 
Target device 

At.to device selected by the Filter 

• Specific device selected n'Avaiable devices' at 

Avaeble devices: 

Name LEs Memor ... 
EPf1 OK2CFIC240-4 1152 12288 
EPf1~1240-4 1152 12288 
EPf1 OK3lFIC240-4 1728 12288 
EPf1 0K3(JU240-4 1728 12288 
EPf1 OK41JlC240-4 2:114 16384 
EPf1 OK51JlC240-4 2880 20480 
EPf1 ll<51Jl1240-4 2880 20480 
EPF10K70RC2~ 3744 18432 

Show i1 'Avaiable devices' at 

Package: Any ~ 

Pn COld 240 ~ 
Speed~ade: 4 ~ 
Core voltage: 5.CN 

o1 Show advanced devices 

Figure 3.6: Assigning Device to Design 

25 

) 



When the output of the functional simulation is checked to be correct, 

then timing simulation can proceed. Timing simulation is to determine how well 

a circuit performs in terms of speed. Therefore, in this type of simulation, it will 

consider the delay in propagating all the signals. After timing simulation is done, 

propagation delay for the simulated design can be determined from the simulation 

report. 

Shown in the diagram below, Figure 3.7, is the Simulator tool window 

with the timing simulation mode selected. 

S Simulator Tool LJ[QJ~ 

SinUalion mode: Timi'lg 

r:=--E I.I'ICtional-:-:--. ;---------,~ 
SinUation~ 

~ usi'!g Fau Tirn!\g Model 
Silmiation period 

• Rl.l'l siWation t.llli al vector stiJd are used 

End simtJation at _j 

SinUation options 

v Automaticaly add pm to sirulation outplA waveforms 

Checkoutpt.b 

Set\4) and hold tine violation detection 

Gich detection: 

Start J 

l 

0"4 
00:00:00 

0 0pen J 

Figure 3.7 : Timing Simulation Window 

26 

_j 

4!l> Report 



Figure 3.8 is an example of timing simulation output. Notice that the 

output is delayed for a while. 

Figure3.8: An Example of Timing Simulation Output 

27 



The flow chart below, Figure 3.9, summarizes the detailed project flow. 

Yes 

Understand Design 
Concept 

Create Block 
Diagram 

Design using 
Verilog HDL 

Compile Design in 
Quartus 11 

Functional 
Simulation 

Timing 
Simulation 

Determine 
propagation delay 

Figure 3.9: Detailed Project Flow 

3.2 CAD Tool 

The CAD tool used in this project is Quartus II Web Edition Version 6. 

28 



CHAPTER4 

RESULT AND DISCUSSION 

4.1 Result 

In this section, the simulation results of the multipliers under study are 

analyzed. 

4.1.1 Ripple Carry Multiplier 

This section shows the simulation results for 2-bit, 4-bit, 6-bit and 8-bit 

Ripple Carry Multiplier. 

4.1.1.1 2-bit Ripple Carry Multiplier 

Shown below, Figure 4.1 is the simulation result of a 2-bit Ripple Carry 

Multiplier and the worst-case propagation delay time window, Figure 4.2 along 

with all the propagation delays in the design, Figure 4.3. 

MastetTineB~r. 

) < 

Figure 4.1 : Timing Simulation for 2-bit Ripple Carry Multiplier 

29 

> 



The diagram below, Figure 4.2 shows the worst case propagation delay 

which is 20.7 ns. The propagation delay occurs from input a[ I] to output prod[3]. 

~ Complabon R.~ 

-~ l~ga Notlcr 
aLJ Flo· Summary 

all AO"· SettJnos 
ell Flo·· Non{)efault Globa Setting 

all F~o• Elapsed~me 
-~ Flo· Log 

< ) 

Figure 4.2: Worst-Case Propagation Delay Time 

_j Compl1abon R~port 
li ~ Lega, No bee 
~Flo· Summary 
Sill Flo·, Setongs a. Flo·. Non-Defal..t Globa Settings 
all Flo~ Sapsed Trne 

-~ Flo~ Log 
+ ._J Ana!)'SiS &Synthes1s 
+ !j_J F1tter 

+ !;._1 As~b!er 
- ft J Tim1ng Analyzer 
~Summary 
all settngs 
~tpd 
a.~) 1•1essages 

20.700ns 
20.700ns 

None 20.500ns 
None 20.500ns 
None 20.500ns 
None 20.500 ns 
None 20.500ns 
None 20.500 ns 
None 20.500 ns 
None 20.400ns 
None 20.200ns 
None 20.200ns 
None 20.200 ns 

Figure 4.3 :Propagation Delay Time for the Design 

) 

Besides the propagation delay time, the number of logic elements for the 

design can also be obtained from the compilation report. For 2-by-2 Ripple Carry 

Multiplier, the number of logic elements is determined to be four. 

30 



4.1.1.2 4-bit Ripple Carry Multiplier 

Based on the timing analyzer report, the worst-case propagation delay is 

51.8 ns. It occurs between the time a signal is propagated from input b[O] to 

output prod[7]. Attached in Appendix 1 A is the simulation result for the 4-by-4 

bits multiplication process. From the compilation report, the number of logic 

elements used in this design is 29 which is less than 1% of the total logic 

elements available. 

4.1.1.3 6-bit Ripple Carry Multiplier 

From the timing analyzer report, the worst-case propagation delay time is 

90.8 ns. It occurs from input a[O] to output prod[ I 0]. Attached in Appendix 1 B is 

the simulation result for the multiplication process. For 6-bit Ripple Carry 

multiplier, the number of logic elements is 69 out of 3744 logic elements. This is 

about 2% of the total logic elements available. 

4.1.1.4 8-bit Ripple Carry Multiplier 

For 8-by-8 bits multiplication process, the worst-case propagation delay is 

124.0 ns. This occurs during the time a signal is sent from input a[O] to output 

prod[15l . Attached in Appendix I C is the simulation result for the multiplication 

process. In 8-bit Ripple Carry multiplication process, the number of logic 

elements used is 130 which is 3% of the total logic elements available in 

EPF I OK70RC240-4. 

31 



4.1.2 Carry Save Multiplier 

This section shows the simulation results for 2-bit., 4-bit, 6-bit and finally 

8-bit Carry Save Multiplier. 

4.1.2.1 2-bit Carry Save Multiplier 

The figure below, Figure 4.4 shows the result of the timing simulation for 

a 2-by-2 bit multiplication process which adopts the carry save multiplication 

method. There are 4 logic elements used in this design as determined in the 

compilation report. 

2110 nc • • Pointer. 41 4 nc lnlelvat 21-4 nc Start End 

·al ps 1:j:ns 2C PN 3t pns l: prs 50 pns ~ ;: rs 70 pns en pns 9C ;:ns lOC,Cns 
2C 2CC ns ... 

) < ) 

Figure 4.4 : Timing Simulation for 2-bit CS multiplier 

Figure 4.5 shows the worst propagation delay for the multiplication 

process which is 20.7 ns. The delay occurs between input a[l] to output prod[3]. 

~ C0"'1pi11!tlon Report A ~-Mill!!i!!Yi!!J!!! ... !J!!!!!jj!flloj 
a~ Legal ~loti~ 
at::! F1o·v Summary a. Flo· Settings a. Flo· t~-DefatJt 
a.l Flo· 8apsed '"':mt 
.lll&.a. .... _ --

) 

Figure 2.5 :Worst-Case Propagation Delay 

32 

) 



Figure 4.6 displays all the propagation delay in the design . 

...J Comprll!bon Report 

-~ l~ll· Nobce 
aLl Flo., Summl!fY 
.. Flo·,. Settings ~9L all Flo; Non-Default Globa: Settings 20.700m b(1) proc(3] a. Flo· Elllpsed ~ime None 20.700ns l!{'l) proc(3) 
-~Flo;, Log 

None 20.500m b[O) proc:(2) 
+ 5_J Analys•s & Synthes:s 

+ a_J F tter 
None 20.500ns b[l) proc(2) 

+ a _j Assembler None 20.500m ~1) proc:(2) 

- 8 ...J Timrno Anl!lyzer None 20.500m ~0) proc(l) 

aetJ Summary None 20.500m b[O) proc(l) 

a.Bsetnngs None 20.500m b(1) proc(1) 
~tpd None 20.500m ~OJ proc(O] 
&; ~ J MesSl!Qes None 20.400m b[O] proc(3) 

None 20.200m a[O] prod(2) 

None 20.200m a[1) prod[1) 

None 20.200m b[O] prod( OJ 

Figure 4.6: Propagation Delays for the Design 

4.1.2.2 4-bit Carry Save Multiplier 

The worst-case propagation delay for a 4-by-4 bit Carry Save Multiplier is 

47.6 ns. The delay happens between input b[O] and output prod[?]. The 

simulation result is attached in Appendix 2A. The design has 28 logic elements. 

Since EPF10K70RC240-4 contains 3744 logic elements, this design uses less 

than 1% of the total logic elements. 

4.1.2.3 6-bit Carry Save Multiplier 

For the 6-by-6 bits Carry Save multiplication process, the longest 

propagation delay time is 70.9 ns. The delay occurs between input a[4] and 

output prod[?]. The simulation result is attached in Appendix 2B. For 6-bit Carry 

Save multiplier, the total number of logic elements used in the design is 71 which 

is about 2% of the total logic elements available in EPFI OK70RC240-4. 

33 



4.1.2.4 8-bit Carry Save Multiplier 

As for the 8-by-8 Carry Save multiplication process, the worst-case 

propagation delay associated with the design is determined to be 89.2 ns. The 

propagation delay takes place between input a[5] and output prod[15]. Attached 

in Appendix 2C is the simulation result. From the compilation report, the number 

of logic elements used in this design is 130 logics. This is about 3% of the total 

logic elements. 

34 



4.1.3 Wallace Multiplier 

This section shows the simulation result of 2-bit, 4-bit, 6-bit and 8-bit 

Wallace multiplication process. 

4.1.3.12-bit Wallace Multiplier 

Figure 4.7 shows the output from the timing simulation process. In Figure 

4.8, the propagation delay is determined to be 20.7 ns from input a[l] to output 

prod[3]. This design contains 4 logic elements as obtained from the compilation 

report. 

. ( 
Figure 4.7: Timing Simulation for 2-bit Wallace multiplier 

Figure 4.8 below shows the worst-case propagation delay in the design. 

Figure 4.8: Worst-Case Propagation Delay Time 

35 



Figure 4.9 display all the propagation delays that occur during the 

simulation of the design. 

_j Complabon Report 

a~ LeQa No bee 
a£:j Flo" Summary 
all Flo· Settings 
{Ia FlO\' tlon{)efault Glo None 20.700 ns b[1] proc{3] 
all Flo·• Elapsed T~ None 20.700m a[1) proc{3) 
-~ Flo· Log None 20.500ns b[O) proc{2] 

+ a_j Ana YSiS & Synthesis 
None 20.500ns b[1] proc{2) 

+ eJ_j F'tter 
+ a _j Assembler None 20.500ns a(1) proc:(2] 

-a _J lmtng Analyzer None 20.500ns a[ OJ proc{1) 

ae; summary None 20.500ns b[O) proc{1) 

all Setbngs None 20.500m b[1) proc{1] 
~tpd None 20.500 ns a[ OJ proc{O) 
li ...aJ Messages None 20.400m b[O) proc{3) 

None 20.200m a[O) proc{2) 

None 20.200 ns a(1] proc{1] 

None 20.200ns b[O] proc{O] 
< 

Figure 4.9 : Total Propagation Delay for the Design 

4.1.3.2 4-bit Wallace Multiplier 

For the 4-by-4 bit Wallace Multiplier, the worst-case propagation delay is 

determined to be 48.0 ns from input b[O] to output prod[6]. The simulation result 

is attached in Appendix 3A. The 4-bit Wallace multiplication process yields 28 

logic elements in the design which is less than 1% of the available total logic 

elements. 

4.1.3.3 6-bit Wallace Multiplier 

For 6-by-6 bits Wallace multiplication process, the worst-case 

propagation delay is 71.4 ns. The delay occurs between input b[4] and output 

prod[IO]. The simulation result is attached in Appendix 3B. For this design, the 

36 



number of total logic elements is 76. This is 2% of the total logic elements 

available in EPFIOK70RC240-4. 

4.1.3.4 8-bit WaUace Multiplier 

For the multiplication process of an 8-by-8 bit Wallace multiplier, it is 

determined from the report that the worst-case propagation delay is 87.8 ns. The 

delay occurs from input b[l] to output prod[IO]. Attached in Appendix 3C is the 

simulation results. The number of logic elements used in this design is 153 which 

are 4% of the available total logic elements. 

37 



4.1.4 Dadda Multiplier 

This section shows the simulation result for 2-bit, 4-bit, 6-bit and 8-bit 

Dadda multiplier. 

4.1.4.1 2-bit Dadda Multiplier 

Figure 4.10 shows the timing simulation result. Notice that the output is 

delayed for a while. For 2-bit Dadda multiplier, the design uses 4 logic elements. 

S.....t>an<\e:x>tt 

·(;) ~ ... bet 

«:1 """' 5...mrlart .. '""'So~ 
- ._JSM..U:u 

t!=y 
~s--..ato'l wo .. • 

• • ...J SM.• aonCo ... ' 1----+-=----_._, ~r-.n~~~~~--------..--~~~~~~~~.....--v-n~ l 
-~u.. •~) V~ 

Figure 4.10 : Timing Simulation for a 2-bit Dadda multiplier 

Figure 4.11 shows the worst-case propagation delay in the design. From 

the report, the delay is determined to be 20.7 ns from input a[l] to output prod[3]. 

< 

Assembler 
_j Tilllil'l9 Analylef' 

~Summary 
a.ISettnQs 
~tpd 
a~ ) r.1essages 

< > 

Figure 4.11 :Worst-Case Propagation Delay Time 

38 



Figure 4.12 shows all the propagation delays that occurred during the 

design simulation. 

_J Ccnpoiabon Report 
512l Legal Nonce 
ar::J Flow Summary 
... Flow Setbngs 
a.l Flow Non..Qefa~.oi t Glo b(1) pr~3) 
a-1 Flow ~apsed T~ None 20.700ns a(1) pr~3) 
-~ Flowlog None 20.500ns b(O) pr~2) 

+ a_J Analys.s & Synthes s 
+ ._J ~"ltter 

None 20.500ns b(1) pr~2) 

+ • _J Assembler None 20.500ns a{1) pr~2) 

- 5:....J TimlflO Ana'yzer None 20.500ns a(O) pr~1) 

~Summary None 20.500ns b(O) pr~1) 

.. Settings None 20.500ns b(1) pr~1) 

~ tpd None 20.500ns a(O) pr~O) 
6~ 1 Mess~es None 20.400ns b(O) pr~3) 

None 20.200ns a(O) pr~2) 

None 20.200ns a(1) pr~1) 

< 
None 20.200ns b(O) ~0) 

Figure 4.12 : Total Propagation Delay for the Design 

4.1.4.2 4-bit Dadda Multiplier 

Simulation of the 4-by-4 bits Dadda multiplier yields a worst-case 

propagation delay of 50.3 ns. The delay happens between input b[O] to output 

prod[6]. The simulation results are attached in Appendix 4A. From the 

compilation report, the number of logic element in the design is determined to be 

2 7 which is less than 1% of the total logic elements. 

4.1.4.3 6-bit Dadda Multiplier 

For 6-by-6 bits Dadda Multiplier, the worst-case propagation delay is 

determined to be 73.0 ns. The delay occurs between input a[4] and output 

prod[10]. The simulation results are attached in Appendix 48. For 6-bit Dadda 

multiplication process, the number of logic elements used in the design is 61 

which is about 2% of the total logic elements. 

39 



4. 1.4.4 8-bit Dadda M ultiplicr 

lhe simulation process of an 8-by-8 bits Dadda multiplier yields a worst­

case propagation delay of 88.5 ns. The delay occurs between input b[O] to output 

prodfl 0]. The simulation results are attached in Appendix 4C. In the 8-bit Dadda 

multiplication process, 157 logic clements are used. This is 4% of the total logic 

elements in EPF I OK70RC240-4. 

4.1.5 Implementation on FPGA 

The implementation on FPGA part of the project is successful. fhe UP2 

board which contains the FPGA EPF I OK70RC240-4 is connected to the 

computer via ByteBlaster II cable. The board is also connected to the power 

supply . Designs that have been created arc downloaded onto the 

EPFI OK70RC240-4 via the ByteBiaster II cable and the resulting outputs arc 

observed. The inputs of the multiplier are user-defined whereby the inputs are 

assigned to the DIP switches available on the UP2 board. The DIP switches give 

logic ·o· when they are pressed down and vice versa. The output of the multiplier 

can be observed through the seven-segment LEOs. The LEOs of the seven 

segment are active low which means that the LEOs light up when the output is a 

logic ·o· and turns off when the output is logic · J '. To observe the output 

waveforms that result from the FPGA, a monitor is connected to the board via 

VGA port. l lowever, even after proper settings have been done, no waveforms 

can be observed despite the correct outputs observed on the seven-segment. 

Appendix 5 shows one of the implementation results obtained. 

40 



4.2 DISCUSSION 

This section discusses the result shown in the previous section. 

4.2.1 Summary of Results 

Table 4.1 summarizes the results obtained from the simulation process. 

Nbits 

2 

4 

6 

8 

! 140 

-a 120 
c 

Table 4.1 : Propagation Delay 

Ripple Carry Carry Save Wallace 

20.7 ns 20.7 ns 20.7 ns 

51.8 ns 47.6 ns 48.8 ns 

90.8 ns 70.9 ns 71.4 ns 

124.4 ns 89.2 ns 87.8 ns 

Propagation Delay 

E RCA CSA Wallace Dadda l 

0 100 +---------------- =--'----

: 80 +------
0 
; 60 
c 
c 40 

~ 20 +---~i~---------------- -------

Dadda 

20.7 ns 

50.3 ns 

73.0 ns 

88.5 ns 

a o ~------~--------~--------~------~ 
2 4 6 8 

Number of bl• N 

Figure 4.13: Propagation Delay Chart 

For the 2-bit results of each multiplier, it yields the same amount of 

propagation delay. This is because all 2-bit binary multipliers have the same 

adder architecture. 

41 



As the number of bits. n increases, propagation delays for all multipliers 

also increase as expected. Based on the table above, Ripple Carry multiplier has 

the worst performance among all four multipliers. This is due to the fact that one 

adder cannot begin the addition process until it receives the necessary carry in bit 

from the adder of the previous stage. 

Carr) save multiplier shows the best performance of all four multipliers 

analyzed. As mentioned in Chapter 2. carry save multiplier does not have to wait 

to begin the next partial product summation process as the carry bits arc 

forwarded to the next layer of adders. which explains the small propagation dela] 

experienced by this particular multiplier. 

As for both Wallace and Dadda multipliers. in order to compare their 

performance, the level of reduction must also be taken into account. llowever. 

during the designing stage, care has already been taken to ensure that both are 

reduced with the same number of reduction stages. From the results shown. the 

Wallace multiplier has a smaller propagation delay compared to Dadda multiplier 

although the difference is not really huge. 

I able 4.2 shows the number of logic elements used in the designs of 2-bit. 

4-bit. 6-bit and 8-bit multipliers. As shown in Table 4.2. Dadda multiplier uses 

the least logics out of the four multipliers studied up until the 6-bit multi pi ication 

process. For 8-bit multiplication process, both Ripple Carry multiplier and Carr] 

Save multiplier have the least number of logic gates which is 130 logic elements. 

Ilowever. between the two multipliers. Carr} Save wil provide better 

performance because it has the smallest propagation delay although same number 

of logic elements. 

42 



Table 4.2 : Number of Logic Elements 

Nbits Ripple Carry Carry Save WaUace Dadda 

2 4 4 4 4 

4 29 28 28 27 

6 69 71 76 61 

8 130 130 153 157 

Number of Logic Elements 

E RC cs Wallace Dadda 

200 

.2 
Q 150 
.9 

--------- --- - -- -

0 ... 100 
.! 
E 50 :s 
z ~ 0 1---- ----,....-----.----------,,---------, 

2 4 6 8 

Number of bits, N 

Figure 4.14: Number of Logic Elements Chart 

43 



CHAPTERS 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

To conclude the report, the importance of adder speed is again stressed. 

Speed is a major contributor towards the successful implementation of a digital 

multiplier. As such, the speed factor must be addressed properly. A smaller 

propagation delay means the shorter time response for the multiplication. In this 

study, ripple carry multiplier has given the largest propagation delay and carry 

save multiplier has shown the smallest delay among all multiplers studied 

whereas Dadda multiplier has the least amount of logic elements up until 6-bit 

multiplication process. For 8-bit multiplication process, both ripple carry 

multiplier and carry save multiplier use the same number oflogic elements which 

is 130 logics. 

5.2 Recommendation 

This project can further be enhanced by adding several types of 

multipliers. The comparison between many types of multipliers will enable the 

industry to select the most reliable multiplier. Besides that, this project can also 

be expanded to compare these multipliers in terms of area and power 

consumption. Most multipliers usually come with advantages and disadvantages. 

One particular multiplier is able to yield small propagation delay but it can also 

be at a disadvantage in terms of area whereby it needs more space to 

accommodate a lot of logic elements. Therefore, it would be a great enhancement 

to the project if all aspects (speed, area and power) are taken into account. 

Another enhancement that can be done is to increase the number of bits compared 

to at least 64 bits to really be able to see the propagation delay of each multiplier. 

44 



REFERENCES 

[1] T. L. Floyd, 2003, Digital Fundamentals, New Jersey, Prentice Hall 

[2] D. Ciletti, 2002, Advanced Digital Design with Verilog HDL, New Jersey, 

Prentice Hall. 

[3] <http://www.cs.umd.edu/class/spring2003/cmsc311/Notes/Comb/ 

adder.html> Retrieved I November 2007 

[4] Prof. Loh, Processor Design, February 2005 

[5] <http://www.fpga-guru.com/multipli.htm> Retrieved 13 December 2007 

[6] <http://cag-www.lcs.mit.edu/6.004/Lectures/lect17/sld015.htm> Retrieved 12 

December 2007 

[7] W. J. Townsend, E.E. Swartzlander, Jr., J.A. Abraham,"A Comparison of 

Dadda and Wallace Multiplier Delays", 2003 

[8] K.C. Bickerstaff, E. E. Swartzlander, Jr."Analysis ofColnmn Compression 

Multipliers", 2001 

45 



APPENDIX 

46 



APPENDIX AI 

Simulation Result for a 4-bit Ripple Carry Multiplier 

< 

Complation Report 

a~ Legal No bee 
QLj Flo·t· SUITliMI"( 

all Flov. Sttbngs 

Timing Simulation for 4-bit RC Multiplier 

Cia Flew Non.Oi!fault Global Setbng 

Qlll Flol'f Elapsl!d Tml! 

Worst Case Propagation Delay Time for 4-bit RC Multiplier 

-=-.--:.~ C o mpolatlon Report 
• ~ Legal N o b ee 
ar:r:J Flo·.·. Summary 

·- FIQ"'-~t~ a• Flow Non-<>efeult Global Setbng s 

·-F lo w Elapsed Time 
Cit~ Flow Loo 

+ a L.::J Analy sos & Synthesos 

·~Fotter 
+ a u Assembler e .....31 Tlmong Ana ly:rer 

~Summary a• set-tings 
~tpd 
6 !-..1 Meu.ages 

"a 000 n s 
N one 4 5 0 00 n $ 

N one 4 b OtJU n & 

N one 44 eoo n s 
N one 4 4 7'00 n s 

N o n e 4 4 400 n s 
N o ne 4 3 700 n & 

N one 4 3 700 n s 

N one 4 3500 n s 
N o ne 4 3 400 n s 

N one 4 3 100 n a 

N o ne 4 2 .200 n s 
N o ne 4 1 400 n s 

N one 4 0 900 n s 
N one 4 0 900 n s a[1J 

N ono 4 0 900 n s 4>[2 1 
N o ne 4 0 700 n s a [3J 
N e l'le 4 0 600 n s h [1J 
N o ne 4 0 100 n s b (2 J 

N ctNt:J 39 600,. lo[O) 

N o ne 3 8 200 n s b [3) 

None 3 7 600 n s b [2 ) 

None 3 6 9 00 ns b [3 ) 

N one 3 5100 n s a ( OJ 

prodl l"J 
p rod(7) 

p rod(l') 
pood[7 ) 
prod[6 ) 
pood[6) 

prod[6) 
prod[6 ) 

p rod(6 ) 

p ood(4 ) 
p rod[7) 

prod( 51 
p rod[ 5 1 

prod( 5 1 
p rod[ 51 
I!)IM [§ J 
p rod[6) 

1'1t><l[3 ) 
p rod[7) 

p rod[ 5 1 
prod(6 ) 

p rod[4) 

Propagation Delay Time in the design for 4-bit RC Multiplier 

A-1 



APPENDIX lB 

Simulation Result for a 6-bit Ripple Carry Multiplier 

Timing Simulation for 6-bit RC Multiplier 

Compdabon Report 

&f ~ l~al No bee am Flo·.v Summary 

&fR Flow Setbngs 
&fill Flow Non-Default 
etllll Flow 8apsed Tme v 
,..~ ... 

< > 

Worst Case Propagation Delay Time for 6-bit RC Multiplier 

Comp!latx>n Report .f!ll LeQalNob~ 
arn Flo· .. Summary 
Q8l Row Setllngs 
at• Flovu Non-Defaul t Glol 
affm Flo.,.. El<opsed Trne 
&;~ Flowlog 

+ etU Analysrs & Synthesrs . •u F\tte< 
+ &fi..:J Assembti 
- &.....:j Timing Analyzer 
~Sumn1arv 
Ba S<>tbngs 
aC1I tpd 
B J..J MHsages 

< 

Nona 
None 

N one 

None 
N one 
None 

None 

None 
None 

None 
None 

Non9 
None 

None 

None 

Ne.,e 

None 

None 

90.700 ns 
88100 no 
88000ns biOI prod(11 l 
87.500 no aiOI prod(91 
84800m b(OI prod(9) 
t!Z.l!Otl no a!OI prodflll 
82 300 ns af1 I prod(101 
82.200 ns all I prod(l l I 
82 000 ns b(lj prod(lOJ 
81.900 ns b(1 I prod(11 I 
81 .900 n• 11141 pro4101 
81 800 ns af41 prod(llj 
eQ.:JQQ nt 0!121 Pro<;llOI 
80 200 ns al21 prod(1 1 I 
00.200 n • b(OI prod( III 
79000 m all I prod(91 
79700 .,. 1>11 I 1>•<><11!1 
78 600 no af41 prodl91 
78.200 ns 11(31 prod(l OI 

Propagation Delay Time in the design for 6-bit RC Multiplier 

A-2 

> 



APPENDIX lC 

Simulation Result for a 8-bit Ripple Carry Multiplier 

~ "l!lolJI,JI IOil f{t'fX''1 \111Hdo1IHHl \#.',pit lnrlll\ c_ r1 IX 
,, 

'-11mul.tt"m W.tvrlorm .. 

l!;ll~- s..u.c.on mode Tmng 

I 
ern Flo¥ Sumllt • 
.. _ S.t"""• 

- 6-i SlmJolllr 

• 
ail s..."'"'• r-
aii S.ttngs IMaste~ r ... Bar. 17.425nt •J•JPoner 120.4 .... lrU!val 102.98 ... Swt Erd 
~ s.muatcn wa .-of 

• 'SimUa1KnCo.-erl 

I 
ppo 1o p ... 20p ... 30pns 40p ... sop no 60pno iO pno 80fnt !lOp .... 100,0ns 

( 

.. IN! Usage I lome 174l5nl 
Q J.J-.-

~ 
rn . 
fi b ~ L IIUUUtll' 

> ~ 
ill PlOd 8 ()1 

, I< 

Timing Simulation for 8-bit RC Multiplier 

< 

CompNbon Report 

C!JGlJ Legal Nobce 
at[II Flow Sl.lnmary 

M Flow Setbnos 
all Flow Non~ft!Uit Global Settrtg 
MF1ow~Tme 
~!ill Flowloa 

Worst Case Propagation Delay Time for 8-bit RC Multiplier 

Compilation Report 
• ~ l egal Nob~ 
CBL:l Flo·, .. Summary 

a• Flow Settings G Flo·,· Non-oefault Globi!l SettJnQs 
Flow Elapsed Time None 121 900 ns a{O] 

e!; ~ Flo~\ Log None 120.300ns b(OJ prod(14J 
+ e98 Analysts & SynthesJs 

None 120 000 ns a( OJ prod{13) 
+ 41fLJ Fitter 
• aw Assembler None 11 8 400 ns b[OJ prod(1 3] 

- e§'-..5J TmlllQ Analyzer None 11 7 000 ns .-a{1) prod(16] 

~Summ11ry None 116.900 ns b(1) prod(1 5) 

C9B Settings None 116.500 ns <!1[2) prod[1 5) arm tpd None 11 5.100 ns <!1[4) prod(15) a ~'J MeSSiiQ«!S None 114.500 ns <!1(1) prod{14] 

None 11 4.400 ns b(1 ] prod(14] 

Nono 114.400 !1$ G(O) ~roc;l(1 2J 

None 114.100 ns <!1[3) prod(15) 

None 114.000 ns a(2) prod(14) 

None 112.800 ns b(O] prod(12) 

None 112.600 ns <!1[4] prod(14] 

None 11 2.600 ns <!1[1 ] prod(1 3] 

Propagation Delay Time in the design for 8-bit RC Multiplier 

A-3 

) 

) 

v 



APPENDIX2A 

Simulation Result for a 4-bit Carry Save Multiplier 

Timing Simulation for a 4-bit CS multiplier 

< 

Compi!abon Report 

ii~ Lmi Notl~ 
&;1!] Ao•' Slmmary 
all Flow Setbngs 

e§ll Flo~\ Non-Default a• Flow 8apsed TmE 

8~ Flo·1 Log 

> 

... ~~~~:.~~~-~P.! ____ ·-·-··--·-·····-··---
1 ota number of failed paths 

< 

Worst-Case Propagation Delay Time 

Compdabon Report 
rnl Legal Nobce 

am Flow Svmm~ry 
aiB Flow Setbngs 
&;• Flow Non.Oef•ult Glo aa Aow Elapsed Time 
B~ Aow LOQ 

+ au AnalySIS &. SyntheSIS 
• a.__} FtttN 
+ 4ii....:l Assembler 
- &it ..3 Tunng Analyzer 

eimJ Summary 
Qlll Setbnos 
ar::; tpd 

Q -.' I Messages 

< 

.. ·- 4.L.~OQ . .!:'.~ ........ ~1Ql 
47.000 ns b(O) 

None 44 200 ns a(3) 
None 43 800 ns a(1) 

None 43100m a(2) 
None 43 600 ns a(3) 
None 43 400 ns b(1) 
None 43 200 ns a[1] 

None 43 100 ns a(2) 

None 42.800ns b[1] 

N OI'I& 42.300 ns b(O) 

N one 42 300 ns b[O) 
N one 40 100 ns a[O) 

None 39 600 n; • (OJ 
None 39 500 ns a[3) 

None 38 500 ns a(1] 

None 38.500ns a(1) 

None 38 400 ns a[2) 

None 38 400 ns a[2) 

None 36100 n; b[1) 

p!od(6) 

prod(7J 
prod(7) 
prod(1 ) 
prod( G) 
prod(?) 

prodl61 
prod(6) 
p!Od(6) 
prod(6) 
prod[4) 

prod(?) 
prod(6) 
p~od(5) 

p!Od(5) 

prod[4) 

prod[ 51 

prodl" l 
PfOd(5) 

Propagation Delay Time in the design for 8-bit Carry Save Multiplier 

A-4 

> 

..., 



APPENDIX2B 

Simulation Result for a 6-bit Carry Save Multiplier 

Timing Simulation for a 4-bit CS multiplier 

< 

::j Comp!1abon R~port 

Cj ~ Legal No be~ 
elm Flo-. Summary 
Cilll Flow Setbngs 

Sill Flow Non-Default 

ei• Flow Elapwd Timt 
f;ml Flowlog 

Worst-Case Propagation Delay Time 

...::.il Complabon Report 
6 ~ Legal No bee 
a LLJ Flow Summary 
•• Flow Setbngs 
crt• Flo'l' Non-Defau l t Glo 
•• Flo·," Elapsed Time 
C!i~ Flo·. log 

+ Q ._j AnalySJs & Synthesis 
+ dlfL.J Frtter • a ,__) AsS4!!:mbl~ 
- 5 ._3 Tim,ng Analyzer 

a r3 Summary a• Setbn9s 
-~ tpd 
4li ~,J Messages 

< 

a.®. 
None 69600 ns a[4) 
None 69.400 ns a[5) 

NQn_, W1Q0ni ~~I 
None 66.300 ns b[O) 

None 66.100 ns b[1) 
None 66100 ns <!![2) 
None 65 000 ns b[O) 
None 64.800 ns b[1) 

None 64 800 ns a[2) 

None 104.400 ns a[41 
None 63.900 ns a(OI 
None 62.900ns a(51 
Non(! 62 600 n ; a IOJ 
None 61 .600 n s a(31 
Nene &1 SOO ns a(4) 

None 60.400 n s b(2) 
None 60.300 n s a[3) 

None 60Q00ns a(5) 

None 59.800 ns b(O) 

prod[11 I 

prQc;!(1QJ 
prod[11 I 

prod(11J 
prod(11 I 
prod[101 
prod[101 
prod(101 

proc(511 
prod(11 I 
prod(91 
[)!Qd(10) 
prod[l1 I 
l)red(SJ 
prod(11 ) 

prod(10) 
prod[8) 
prod(9) 

Propagation Delay Time in the design for 8-bit Carry Save Multiplier 

A-5 



APPENDIX2C 

Simulation Result for a 8-bit Carry Save Multiplier 

Timing Simulation for 8-bit Carry Save multiplier 

< 

Compilation Report ,.. 

&6 ml Legal No bee 
ar!:J Flow Summary 
511 Row Setbnqs 

Cltl! Flo•-v Non-Qe~\. a• Flo·"' Elllpsed n 
~~ P'low Loo 

Worst-Case Propagation Delay Time 

Comptlabon Report 
&i ~ Legall'lobce 
arn Flow SUmmary 
c&• Flow Setbngs a• Flo~' Non.Oefalit G None aB Flo.,., Ela~d Tme None 87 400 ns 
-~ Flo·,, Loo None 86 800 ns • a;.::J An•lvsu; & Syntnas~ 

+ a ZJ fitter 
None 86.800 ns 

+ ·~ Assembler 
Non• 86000 n' 

- -~ T1m111<;;1 Analyzer None 85 900 ns 

~Summary None 85.900 ns 
~Setbngs Nono 85400m 
~tpd None 85 000 ns 
5 ].J Messages None 84 100 ns 

Non• 84100 ns 
None 84100 ns 
None 83.600m 

Non• 82700m 
None 82.700 ns 
None 82.500ns 

None 82300 ns 
None 81 200 ns 

< None eo 900ns 

Total Propagation Delays in the Design 

A-6 

a@ .. ___ i?fOdl~.~l 

a(7) Pfodl15) 
41(5) Pfod!141 
b(O) PfOd(15) 
a(7) Pfod[14) 

41(5) PfOd(13) 

a(3) PfOd(15) 

a( G) PfOd(15) 
o(7) orod[lJJ 
b(O) PfOd(14) 
a(4) Pfod[15) 

431 ll'Odt14) 
a{6) Pfodl14) 
b(O) Pfod(13) 

o(3) Pfod(13) 
a(6) PfOd(13) 

b(1 I Pfod(15) 

41(4) Pfod(14) 

a(5J PfOd(12) 

a(4) Pfod(13) 

) 

v 



APPENDIXJA 

Simulation Result for a 4-bit Wallace Multiplier 

5 1!li loQal ~bet 
41t!l F .... s.m-y 

- AowSett.lQI - !L:l So~Uat« 

==' " s.n.J.uan wa .. -ef • ._J So!UabonC<>'erl Hf-=---.l- 1,-,...,..-,..,..,.,-.l,.....,.,.,.-v__,.,....--v--.moor-v,.,.,.rv-......,rv-""'-v-....---v--c"""-vo,.,.--l 

< 

a. It<! Usage 

·~~--
) ( 

Timing Simulation for 4-bit Wallace multiplier 

Comp~labon Report 

i9 ~ legal Nobce 
Q~ Aow Summary 
&611 Aow Settings 
&61111 Flow Non-Defaul t 
C!;B Flow Elapsed TimE 

·~ l"low Log 
> 

Worst-Case Propagation Delay Time 

Complabon Repor t 
&; ~ Legal No bee 

~~ Flow Summary 
Ill Flow Setbngs 

a• Flow Non-Default Glo 
•• Flo·." Elapsed Tune 

5 ~ Flo·" log None 48.100 ns • 4lf._j AnalySis & SynthesiS 
None 45.600 ns 

+ ei;U F1tter 
+ Sw Assembler None 44.900 ns 

- d!J_j TUTilng Analyler None 41 .500 ns 

-~ Summary None 41 .500 ns 

ell Setbnos None 41 400 ns 
Ejrlm tpd None 41.400 ns 
&j h Messages None 41 400 ns 

None 41.400ns 

N one 38 900 ns 

None 38.900ns 

None 38 300 ns 

None 38.200ns 

None 38.200 ns 

None 38.200 ns 

None 38 200 ns 

< None 38.200 ns 

a[3) 

a{1) 

a[l I 
b(1 I 
a(2J 

b[l) 

a(2) 

b[O] 

b(OJ 

a[1) 

b(2] 

b(2] 

b[1) 

e(2) 

e(3) 

Total Propagation Delay for the Design 

" ,.., n-' 

> 

prod[SJ 

prod[ 51 

prod[S) 

prod(?) 

prod[6) 

prod[?) 

prod[?) 

prod[ G) 

prod[ G) 

prod[4] 

prod(3) 

prod[ 51 

prod[7) 

prod[6) 

prod[ 51 

prod( 51 

prod(4) 



APPENDIXJB 

Simulation Result for a 6-bit Wallace Multiplier 

Timing Simulation for a 6-bit Wallace multiplier 

Worst-Case Propagation Delay Time 

Compdabon Report 

&; ~ Legal No bee 
at:r] FlO\\ Summary 

•• Flow Settings .J B• Flow Non-Qef~vlt Glob 71 400 nt 
•• Flow Elapsed Time None 70 500 ns 
-~ Flow Loo None 70 500 ns 4it...J Analys•s & Synthesas 

None 68 800 ns &;'..:J Fatter 
6 21 Assembler None 68 700 ns a[4] prod[1 1] ._j r rn.ng Analyzer None 68 700 ns a(4] prod(l 0] 

-~ Summary None 67 900 ns b(O) prod[1 1) 

a• Settings None 67 900 ns a(5] prod{11 ] 

~tpd None 67 900 ns b{O] prod(lO) 
S h Messages None 67 900 ns a[5) prod(10) 

None 67 900 ns b(3) prod(9) 

None 66 900 ns b(5] prod(1 1] 

None 66 900 ns b{5) prod{l 0) 

None 66100 ns a(4) prod(9) 

None 65 300ns b(O) prod(9) 

None 65 300ns a(5) prod(9) 

None 64 300 ns b(5) prod(9) 

None 63 400 ns b(l ) prod(11) 

< None 63 400 ns b[1] prod[10) 

Total Propagation Delay in the Design 

A-8 



APPENDIX3C 

Simulation Result for a 8-bit Wallace Multiplier 

Timing Simulation for a 8-bit Wallace multiplier 

Compiabon Report ~ 
~ L~al Nobel! 

Flow Svmm~ 
Flow s~tbnos 

Bj. l"lowNon~~ 

I • Flow Elapsed Tir 
~ FlowLOQ v 

< > 

Worst-Case Propagation Delay Time 

_;I Compolabon Report 
{9 ~ L~oal No be~ 
4ii[!] Flow Summary 

a. Flow S~tbngs --~11.1 all Flow Non~fault G None 87 600 ns b(1J prod(14J aa Flow ~DSed TIITle None 85 800 ns b(OJ p!Od(15) 
efi~ Flo·.v Loo None 85.600 ns b(OI prod(141 

+ &f._j Analysrs & SyntheSI 
+ C!;....J Fitter 

None 84 600 ns b(1J prod(1 3) 

+ aw Assembler None 82.600 ns b(OJ prod(1 31 

- 4if'_j TlfTllllO Analyz.r Nono 82 400n$ a( 51 Plodi15J 

~Summary None 82.200 ns a(5J prod(14J 

.. SettJnos None 82.100 ns a(2J prod(l5J 
BK3 tpd None 81 900 0$ a(21 prod(UJ 
&; J.J M~ssaoes None 81 500 ns b(3J prod(151 

None 81 500 ns b(4J prod(15J 

None 81 300 ns b(3) prod(141 

None 81 300ns b(4J Plodl141 
None 79 BOOns a(3) prod(15) 

None 79.600 ns a(3J prod(14J 

Non~ 79 SOOns a(4) ptod(1 5) 

None 79.500 ns a(61 prod(151 

None 79.300 ns a(4) prod(14) 

< None 79.300 ns a(6) prod(l4) 

Total Propagation Delay in the Design 

A-9 

> 

v 



APPENDIX4A 

Simulation Result for a 4-bit Dadda Multiplier 

Timing Simulation for a 4-bit Dadda multiplier 

< 

Compolabon Report 
eli mJ Legall'lobce 
6r::d Flow Summ.ry 
c&llll Flo·., Settings 
... Flow Non-Default C 
a• Flow Elapsed Time 

·~ Flo"' LOO 

~o.r~ca~.~~-
Total number of laded paths 

Worst-Case Propagation Delay Time 

Comprlabon Report 
C!j l;'l Legal No bee 
C!fe:l Flow Summary aa Flow Settings 
Cifll Flow Non.O.fault Glob b(O) 
Ejlll Flow El~sed Time b!'JJ 
a~ Flow log None 46.300 ns b[3) Sw Analysts & SyntheSis 

Clw Fttter 
None 46100 ns b(O) 

§ Assembler None 44100 ns b[l) 

ift_] Ttmtno Ani!llyzer None 44 000 ns a[1) 

i!f~ SUmmary None 43.900 ns a[O) 

ciilm Settings None 43 800 ns a(2) 
ar:; tpd None 43100ns b{1] 
CijJ; Messages None 43 100 ns b(3) 

None 43.000 ns a[1) 

None 42.900 ns a[ OJ 

None 42900ns a[2) 

None 41 .800 ns b(O) 

None 40 500 ns b(2) 

None 39roOns b11 I 
None 39.800 ns a[1) 

None 39 700 ns 9[0) 

( None 39600 ns a[2) 

Total Propagation Delay for the Design 

A-10 

PlOd(?) 

prod[ 51 
PIOd[S) 

p!Od(6) 

Plod[6) 
PfOd(6) 

prod[?] 

prod[ 51 
p!Od(7) 

prod[?) 

PlOd(?) 

prod(4) 

PIOd[6) 
p!Od(5) 

prod[ 51 
JXod[5) 
prod( 51 

> 

v 



APPENDIX4B 

Simulation Result for a 6-bit Dadda Multiplier 

Timing Simulation for a 6-bit Dadda multiplier 

< 

.....j Compdabon R~t A 

Cit~ Legal Nobc~ 
arn Flow Summary 
•• Flow Settings 

a• Flo .. Non-oef& 
•• Flo.,.. ~PSed T~ 

·~ Flo.v log 
) 

Worst-Case Propagation Delay Time 

a~ LeQal No be~ 
5[!] Flow Summary 
•• Flo•,•· S~tbf'l9S a• Flow Non-oensult G a• Flo~-. Elc!!ps~d rune None 72.800 ns 
-~ Flow log None 72.800 ns 

+ 8--.J AnalySIS & Synthest 
+ &f--l ~tter N one 71 400 ns 

+ a;,:;_j Assembler N one 71 200 ns 

- C9:_j Tunng Analyzer None 68 700 ns 

ar:u SummMy N one 68700 ns 
•• SettJnos None 67 500 ns 
-~tpd None 67 300 ns 
8 }-.J Messages None 67 100 ns 

None 67 100 ns 

None 67 100 ns 

None 66.500 ns 

None 66 500 ns 

None 66 400 ns 

None 66.400 ns 

None 65.500 ns 

None 64.900 ns 

< None 64 BOOns 

-~~l. 
a(4J 
b(O) 

b[O) 

a{4) 
b(O) 

a! OJ 
a{O) 
a[4) 

b(O) 

b(31 
b(3) 
a[O) 

a(31 
a{3) 

b(1) 

b(1 I 
b(3) 

a[3] 

b(1) 

Total Propagation Delay in the Design 
A-11 

) 

prod[10) 

prod(9) 
prod(9) 

Plod[11) 

prod(1 0) 
prod(8) 
prod( B) 

prod(11 I 
prod{10) 

prod(9) 

prod(1 1 I 
PIOdl10) 
prod(11 ) 

prod(l OJ 
prod[9) 

prod[9] 

prod[9) ...., 



APPENDIX4C 

Simulation Result for a 8-bit Dadda Multiplier 

Timing Simulation for a 6-bit Dadda multipli€lr 

< 

Complabon Report " 

&; ~ l~al No bee 

E Flow Summary 

M Flow Setbngs 

M Flo~' Non-Dehll 
M Flow 8apsed Tir 

~ ~ Flo" Log v 

> < 

Worst-Case Propagation Delay Time 

~ Comptlabon Report 
(!; ~ Legal No bee 
S m Flow Svmm~ry 
C§lll Flow Settings ............... ....... .............................. ~.tOJ 
&;lEI Flow Non-oefault G None 88.300 ns b(l) 
~~~ Flow Elapsed T1me None 87 700 ns a(3) 
~ Flo·.- Log

None 87.100 ns b(O)
• C§L.J AnalySis & Synthcs1
+ C9._j Fitter

None 86.900 ns b(l)

+ a o Assembler None 86 300 ns a(4)

-a~ liming Analyzer None 86 300 ns a(3)

.{!ir:; Summary None 84 900 ns a(4)
C§lll Setbngs None 84 100 ns b(O}
am~ tpd None 84 000 ns a(2)
C:§ ~',) Messages None 83 900 ns b(ll

None 83.300 ns a[5)

None 83.300 ns a[6)

None 63 300 n$ ~[7)

None 83.300 ns a(3)

None 82.600 ns a[2)

None 81 900 ns a[5)

None 61 900 n$ ~(6)

None 81 .900 ns a(7)

< None 81 900 ns a[4)

Total Propagation Delay in the Design

A-i2

prod(15)

prod(15)

prod(14)

prod(14]

prod(15)

prod(14)
prod[14}
prod[1 3)

prod[15)

prod[13)

prod(15)

prod(1!5]

Prodll~l
prod[13)

prod[14)

prod[14)

prod(14)

prod[14)

prod(13)

>

v

APPENDIXS

IMPLEMENTATION ON EPF10K70RC240-4

The figure below shows the output of the multiplication process of input bits

of 0011 and 1100, observed on the seven-segment LEDs. The seven-segment LEDs

are active low. The seven-segment shows the output to be 00100100 which is correct.

4-bit Ripple Carry Multiplier

A-13

