Comparitive Study On Multiplier Algorithms using Verilog HDL

by

NUR SYAHADAH BINTI MOHD SAPLI
3983

Final Report submitted in partial fulfilment of
the requirements for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

JUNE 2008

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

Dedicated 1o

My parents who always give encouraging words
Che Abas bin Hj Hamid
Sarimah binti Hf Md. Ali

My siblings who have always been my pride and joy
Mohd Shuufi bin Mohd Sapli
Nur Syahida binti Mohd Sapli
Mohd Shulhi bin Mohd Sapli
Mohd Shubhi bin Mohd Sapli
Muhammad Aliff Ali bin Che Abs

My friend & other half whom I always rely on
Mohd Shahadan bin Mokhtar

My best friends with whom I share five years of my life
Noor Fadhilah Mohd Raes
Nor Hafizah Abdul Malek
Shahrinima Sharifuddin

My dear friend who always listens

Ms Siti Hawa Hj Tahir

Thank you all for the great gifis that each of you have bestowed upon me

CERTIFICATION OF APPROVAL

Comparison Study on Multiplier Algorithms Using Verilog HDL

by

Nur Syahadah binti Mohd Sapli
5983

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

nw»{’k)&au%-ﬂu

(AP DR MOHAMMAD BIN AWAN)

Final Year Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2008

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

&

(NUR SYAITADAH BINTI MOHD SAPLI)
5083

1ii

- ABSTRACT

Multipliers are used in many applications especially in computers. A personal
computer (PC) utilizes multipliers to perform calculations. Thus, having a multiplier
with great speed will definitely boost the performance of a PC. Based on this, the
purpose of the Final Year Project is to perform a comparison study on multiplier
algorithms using Verilog HDL. Four multipliers have been selected to be the subject
of study. The multipliers are Ripple Carry multiplier, Carry Save multiplier, Wallace
multiplier and finally the Dadda multiplier. The propagation delay of each multiplier
1s determined to check their performance in terms of speed. The outcome of this
project has showed that, among these four multipliers, Carry Save multiplier has
exhibited the smallest amount of propagation. Therefore, it is the fastest multiplier out
of the four that are studied whereas Dadda multiplier shows the least number of logic

elements used up until 6-bit multiplication process.

iv

ACKNOWLEDGEMENT

I would like to thank my supervisor, AP DR Mohammad bin Awan for the
constant guidance and coaching throughout the entire duration of this project. He has
kept me motivated and encouraged during the time that I am under his supervision. |
Thank you, Sir. I would also like to extend my gratitude to Mr Patrick Sebastian, who
has never refused to answer lengthy questions on Verilog syntax. Thank you so much
for the numerous Verilog coding that you have corrected as well as tips on good
programming style. My deepest gratitude also goes to Mr Lo Hai Hiung who explains
a lot about Quartus II software. Without the knowledge, T would not be able to do the
simulation. To EE Lab Technologist, Ms Siti Hawa Hj Mohd Tahir, thank you for the
moral support that you have given during the entire time of knowing you. Finally, to

my parents and friends, thank you for the advices which | will always treasure.

TABLE OF CONTENTS

..

CHAPTER 1: INTRODUCTION
1.1 Background of Study...........coooviiiiiiiin.

1.2 Problem Statement..........ccooviiiiiiiiiiieeeeanns

1.3 Objective and Scope of Study.........coeeeeiiiiinis

CHAPTER2: LITERATURE REVIEW/THEORY.......................
2.0 Propagation Delay...........coooviiiiiiiiiiiiiii
2.1 Basic Components of a Multiplier.......................

2.1.1 Half Adder..........ccoooiiiiiii
212 Fulladder.........oooooiiii
22 Typesof Adder........oooiiiiiiiii i
2.2.1 Ripple Carry Adder...........ooooviiiiiinnnn
222 Carry Save Adder.........oo
23 Typesof Multiplier.......ccooooiiiiiiiin i
2.3.1 Shift-Add Multiplier...............coooo
2.3.1.1 Ripple Carry Multiplier..................
2.3.1.2 Carry Save Array Multiplier.............
2.3.2 Wallace Multiplier..........c.cooooiiiiiinnn,
2.3.2.1 2-bit Wallace Multiplier....................
2.3.2.2 4-bit Wallace Multiplier....................
2.3.2.3 6-bit Wallace Multiplier....................
2.3.2.4 8-bit Wallace Multiplier....................

vi

N R e S o A - e LS B S VS

A,._.
o o= =

CHAPTER 3 :

CHAPTER 4 :

233

Dadda Multiplier.................coovnnn
2.3.3.1 2-bit Dadda Multiplier.....................
2.3.3.2 4-bit Dadda Multiplier.....................
2.3.3.3 6-bit Dadda Multiphier.....................
2.3.3.4 8-bit Dadda Multiplier.....................

METHODOLOGY /PROJECT WORK.....................

3.1

Project Flow Overview...............ooooeiiiiiiiennnn,
3.2 Methodology......ooviiiiiiee e
3.3 CADTOOL .,

RESULT AND DISCUSSION.......coooviiii

4.1

Result
4.1.1

4.1.2

413

414

Ripple Carry Multiplier...........................
4.1.1.1 2-bit Ripple Carry Multiplier............
4.1.1.2 4-bit Ripple Carry Multiplier............
4.1.1.3 6-bit Ripple Carry Multiplier............
4.1.1.4 8-bit Ripple Carry Multiplier.............
Carry Save Multiplier............oooeiinnn,
4.1.2.1 2-bit Carry Save Multiplier..............
4.1.2.2 4-bit Carry Save Multiplier................
4.1.2.3 6-bit Carry Save Multiplier...............
4.1.2.4 8-bit Carry Save Multiplier................
Wallace MUltiplier.oooveveeereieeeeeeeeee,
4.1.3.1 2-bit Wallace Multiplier..................
4.1.3.2 4-bit Wallace Multiplier..................
4.1.3.3 6-bit Wallace Multiplier..................
4.1.3.4 8-bit Wallace Multiplier..................
Dadda Multiplier..............coooviciii
4.1.4.1 2-bit Dadda Multiplier.....................
4.1.42 4-bit Dadda Multiplier.....................
4.1.4.3 6-bit Dadda Multiplier.....................
4.1.4.4 8-bit Dadda Multiplier.....................
Implementation on FPGA...........................

vii

21
21
22
28

CHAPTER 5: CONCLUSIONS AND RECOMMENDATION

REFERENCES

APPENDIX

4.2 Discussion

4.2.1 Summary of Results.................oiiviinnns

5.1 Conclusions

5.2 Recommendation.........cooereeeoi i,

viii

44

44

44

45

46

LIST OF

Figure 2.1 :
Figure 2.2 :
Figure 2.3 :

FIGURES

Propagation Delay...........coooviiiiiii i,
Half- Adder Schematic

Full-adder schematic...........ooiv i,

Figure 2.4(a) : 2-bit full adder block diagram.........................
Figure 2.4(b) : 4-bit full adder block diagram.........................
Figure 2.5 : Schematic of 4 bit ripple carry adder with Carry bit highlighted...

Figure 2.6 :
Figure 2.7 :
Figure 2.8 :

Design Hierarchy of a 4-bit Ripple Adder...............

A Tull Adder (FA) and a Carry Save Adder (CSA)....
Design Hierarchy for Carry Save Adder.................

Figure 2.9(a) : 2-bit Carry Save Adder............c.ooiiiiinn.
Figure 2.9(b) : 4-bit Carry Save Adder.....................c

Figure 2.10
Figure 2.11
Figure 2.12

Figure 2.13 ;

Figure 2.14

Figure 2.15 :
Figure 2.16 :

Figure 2.17

Figure 2.18 :

Figure 2.19
Figure 2.20
Figure 3.1 :
Figure 3.2 :
Figure 3.3 :
Figure 3.4 :
Figure 3.5 :
Figure 3.6 :
Figure 3.7 :
Figure 3.8 :
Figure 3.9 :

: Normal Multiplication.... ...,

: Block Diagram of 4-by-4 bits Ripple Carry Multiplier..............

: Block Diagram of 4-by-4 bits Carry Cave Multiplier
2-bit Wallace Multiplication................c.ini.
: Dot Diagram for a 4-bit Wallace Multiplier...........
Dot Diagram for a 6-bit Wallace Multiplier...........
Dot Diagram for 8-bits Wallace Multiplier............
- 2-bit Dadda Multiplier.........cocoovvreiiiereeeeeeennn,
Dot Diagram for a 4-bit Dadda Multiplier.............
: Dot Diagram for a 6-bit Dadda Multiplier.............

: Dot Diagram for an 8-bit Dadda Multiplier............

General Project Flow. ...,

Creating a New Design File.....................

...............

Compilation Window..........c.ooooiiii i

Functional Simulation Window...............cocvvnvee..

Example of Functional Simulation Output..............

Assigning Device to Design............coooiiennnn.

Timing Simulation Window................oneen
An Example of Timing Stmulation Output...............oi
Detailed Project FIOW.......ooiv i

[T

~J

Figure 4.1 : Timing Simulation for 2-bit Ripple Carry Multiplier.................. 29

Figure 4.2 : Worst-Case Propagation Delay Time..............ocoviiiiiiiinennn. 30
Figure 4.3 : Propagation Delay Time for the Design..............ocoooiiinnn. 30
Figure 4.4 : Timing Simulation for 2-bit CS multiplier.....................ooo 32
Figure 4.5 : Worst-Case Propagation Delay............cocoooooiiiiii 32
Figure 4.6 : Propagation Delays for the Design..........cc.oocooiiiiiiiiiniiiininn 33
Figure 4.7 : Timing Simulation for 2-bit Wallace multiplier........................ 35
Figure 4.8 : Worst-Case Propagation Delay Time.............ccooeiiiiniiinn 35
Figure 4.9 : Total Propagation Delay for the Design......... e 36
Figure 4.10 : Timing Simulation for a 2-bit Dadda multiplier...................... 38
Figure 4.11 : Worst-Case Propagation Delay Time............cccoooiiiiiinninnnn, 38
Figure 4.12 : Total Propagation Delay for the Design...............oooeiiein. 39
Figure 4.13 : Propagation Delay Chart...............ccoooiiiiiin e, 41
Figure 4.14 : Number of Logic Elements Chart...............c..o.coc. 43

LIST OF TABLES

Table 2.1 : Truth table for halfadder.............coooiiii 4
Table 2.2 : Truth table for full adder................oocoiiiii 5
Table 2.3 : The Bit Product..........ooooiiiiiiiii e 11
Table 2.4 : Table of Reduction Stages for Wallace and Dadda Multipliers....... 14
Table 4.1 : Propagation Delay..........cooiviiiiii i 4]

Table 4.2 : Number of Logic Elements...............ccoeiiiiiiiiiiiiin, 43

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Multipliers are used in many applications especially in computers. A
personal computer (PC) utilizes multipliers to perform calculations. Thus, having
a multiplier with great speed will definitely boost the performance of a PC.
Therefore, this study will focus mainly on the speed perf(;rmance of digital
multipliers implemented in different ways. The purpose is to develop a
comparison of speeds between several digital multipliers that are implemented in
different methods. This is important as speed is a crucial factor in any digital
design especially when the gates are connected in series. This can lead to a major

time delay that will of course, affect the speed performance.

1.2 Problem Statement

In digital design area, there are many kinds of multipliers. Since there are so
many ways to implement a multiplier, the issue of speed arises. Multipliers are
commonly found in the computer systems area whereby it is used in the basic
structure of the computer itself. Therefore, if the delay time is too great, it could
and would affect the whole computer performance. Thus, the issue of speed is

considered as a major issue in digital design.

1.2.1 Objective and Scope of Study

The objective of this project is to determine the propagation delay of each
multiplier. Therefore, a multiplier needs to be designed and simulated to ensure
that it is giving the expected correct output. The study covers several mulitipliers
such as Ripple Carry Multiplier, Carry Save Multiplier, Wallace Multiplier and
finally Dadda Multiplier.

CHAPTER 2

LITERATURE REVIEW / THEORY

2.0 Propagation Delay

Propagation delay occurs between the time that an input changes and the
time taken by the output to change accordingly [1]. As shown in Figure 2.1,
propagation delay is divided into two which are, the propagation delay high-low
and propagation delay low-high [2]. Propagation delay high-low occurs because a
change in the input from the logic state ‘1’ to the logic state ‘0’ is detected and
the output signal takes some time to change accordingly. Propagation delay low-
high is the exact reverse of propagation delay high-low. In this project, the worst-
case propagation delay is determined so that the maximum frequency that the

design can run on can be calculated.

[T D ouT
LI s O

AUT Tpth ! Tph

Figure 2.1 : Propagation Delay

2.1 Basic Components of a Multiplier

Below are the basic components of a multiplier; a half adder and a full
adder. Both components are used in a multiplication process because a multiplier

needs adder to sum up the partial products.

2.1.1 Half Adder

A half-adder is one of the two types of adder. The basic concept is that, a
half-adder accepts two binary inputs and produces a sum output and a carry
output. Below is a logic circuit diagram of a half-adder and the corresponding
truth table as shown in Figure 2.2 and Table 2.1 [3].

Table 2.1 : Truth Table for Half Adder
AI’ \w_ A B Cout Z
B—— % S 0 0 0 0
0 1 0 1
1 0 0 1

—C
i i 1 0

Figure 2.2 : Half- Adder Schematic

2.1.2 Full adder

On the other hand, a full adder 1s able to accept one more bit which is the
input carry bit, Ci, Therefore, the logic circuit diagram for the full adder looks
like as shown below in Figure 2.3 and its fruth table in Table 2.2 [1].

Crn Ao

:ﬁq i
—) G

Figure 2.3 : Full Adder Schematic

Table 2.2 shows the two outputs; Carry-out bit { Coy) and Sum-bit (3)

given certain inputs which are A, B and Carry-in bits.

Table 2.2 : Truth Table for Full Adder

A B Cin Cout 2
0 0 0 0 0
0 0] 0 1
0 1 0 0 I
0 1 | 1 0
1 0 0 0 I
| 0 1 1 0
1 1 0 1 0
| 1 1 | 1

2.2 Types of Adder

This section will discuss two types of commonly used adders which are

the Ripple Carry Adder and Carry Save Adder.

2.2.1 Ripple Carry Adder

The block diagram for a ripple carry adder is shown in Figure 2.4. A
ripple carry is a type of parallel adders found in digital world. A ripple carry
adder is where the carry output of one stage is being used as input to a full adder
in the next higher stage [1]. The carry output of a lower stage adder is connected
to the carry input of the next higher adder stage. A 4-bit ripple carry adder can be
formed by cascading four 1-bit full adders in a chain where the carry generated
by one unit is then being passed forward to the next full adder via the carry input
port of that adder. Figure 2.4(a) below shows the block diagram of a 2-bit Ripple
Carry Adder.

a; by aQ by

| 3!

FA I HA

I — 7

S2 S 50
©)

Figure 2.4 (b) below depicts the block diagram for a 4-bit ripple carry adder.

az b3 a bz a bl o b()

A “ e
v

— l

54 53 82 5 30

(b)
Figure 2.4: (a) 2-bit full adder block diagram (b) 4-bit full adder block diagram

Figure 2.5 shows the logic gate diagram of 4-bit ripple carry adder with
the Carry bit highlighted. Theoretically, this path is the longest path that causes
the delay in the ripple carry adder [2].

Figure 2.5 : Schematic of 4-bit ripple carry adder with Carry bit highlighted

Shown below in Figure 2.6 is the design hierarchy of the ripple adder [2].
A half-adder consists of logic gates “XOR’ and ‘AND’. By using two half-adders,

a full adder is then constructed. In order to create a 4-bit ripple adder, four 1-bit

full adders are used.

Ripple adder

Y

full adder

full_adder

Y

y

full _adder

full adder

b

half adder

half_adder

Xor

and

Figure 2.6 : Design Hierarchy of a 4-bit Ripple Adder

2.2.2 Carry Save Adder

If a carry save adder is briefly looked at, it does not look any different

from a typical full adder. A carry save adder still accepts three inputs and

produces two outputs. However, when this adder is used in a circuit, it obviously

differs in the carry bit aspect. The figure below, Figure 2.7 demonstrates clearly

the difference between a carry save adder and a typical full adder [4].

Tawt T

FA

1

CSA

Figure 2.7 : A Full Adder (FA) and a Carry Save Adder (CSA) [4]

A Carry Save adder also has the same basic components as the previously

discussed Ripple Carry adder. The design hierarchy for the Carry Save adder is

shown in Figure 2.8 below.

Carry Save Adder

h 4

h 4

‘

full_adder

full adder

full_adder

full_adder

h 4

h 4

half adder

half adder

h 4

xor

and

9

Figure 2.8 : Design Hierarchy for Carry Save Adder

The Carry Save Adder usually consists of » number of full adders. The
full adders are connected in such a way that the carry bit is propagated to the next
layer of addition process. This means that, each layer of adders can perform
addition without waiting for the carry bit input from the previous stage. Shown

below in Figure 2.9 are the block diagrams for a 2-bit and a 4-bit carry save
adder.

bo ao
'
HA
b a
LT
HA
l ¢ v
S 80
(a)
by a by a b1 a4 by ag
b 4 4k L
HA HA HA HA

Loar ar af

I._

! REN Vo

S5 S4 S3 57 S So

(b)

Figure 2.9 : (a) 2-bit Carry Save Adder (b) 4-bit Carry Save Adder

10

2.3 Types of Multiplier

This section discusses four types of multipliers which are Ripple Carry

Multiplier, Carry Save Multiplier, Wallace Multiplier and Dadda Multiplier.

2,3.1 Shift-Add Multiplier

As the name suggests, a shift-add multiplier shifts the product bits before
adding them together much like a normal multiplication method. This is further

illustrated below.

Table 2.3 : The Bit Product

A1 Ao A B AxB
X B Bo
AiBo AoBo 0 0 0
+ A1B1 AoB1 0 1 0
Cs Cz C1 Co 1 0 0
Figure 2.10 : Normal Multiplication 1 . 1

There are a few types of shift-add multiplier. Each one differs from one

another in terms of the adder component used in the array.

1

2.3.1.1 Ripple Carry Multiplier

This type of multiplier is constructed from several half adders and full
adders. Shown below in Figure 2.11 is the block diagram of the shift-add
multiplier using ripple carry adder to sum up the partial product bits. The partial

product bits are the logical ‘and” from each input [5].

P7 P5 P3 T 112 P1 P(}
* FA [* FA "\ HA
I]
Py Pyg Py Py
b4 Y h 4 l h l
FA [* FA FA ¢ HA
L]] |
Pys P14 Pis P2
F l A l A l Y l
FA FA FA |* HA
h L 4 A J
Prod~ Prodg Prod; Prod, Prod; Prod, Prod, Prod,

Figure 2.11 : Block Diagram of 4-by-4 bits Ripple Carry Multiplier

Since ripple carry adder is used to sum up the bit products, it is expected
to have a maximum delay from the Least Significant Bit (LSB) to the Most
Significant Bit (MSB).

12

2.3.1.2 Carry Save Array Multiplier

This type of multiplier fandamentally produces the same gate delay as the

ripple carry array multiplier shown previously [6]. However, the difference

between the two multipliers is that a Carry Save Array Multiplier does not

perform the carry chain. Instead, it passes the carry bit to the next layer of adder

to be added together with other bit products. Due to this matter, the multiplier is

called “Carry Save” Array Multiplier. Shown below in Figure 2.12 is block

diagram of a Carry Save Array Multiplier.

Pg Ps

L

Ps P,

|

P; P

L

HA

HA

HA

0

FA

|

h 4 Vl

FA

FA

lpm
r

FA

FA

lPB lplz
r Yy

FA

FA

Prod; Prodg Prods

HA

=

Prod,

Pl‘Od}

\ 4 v
PI‘Od]

A

Prod,

Py

A\

PI‘Odo

Figure 2.12 : Block Diagram of 4-by-4 bits Carry Cave Multiplier

13

The last layer of the addition part uses ripple carries technique. To yield a

smaller propagation delay, this process can be substituted with a faster carry tree
adder.

2.3.2 Wallace Multiplier

For this type of multiplier, the partial products are generated in the same
manner as the shift-add multiplier whereby » number of AND logic gates is used.
Wallace multiplier tries to reduce as many partial products as possible in a single
reduction layer. These partial products are reduced to a final level with a height
of two. Then, ripple carry adders are used to complete the reduction. The length

of the adder, m depends on the number of bits, #.
RCA length, m=2(n)-2 [7]
Each sub-section below will discuss in length on several n-bits

multiplication process. The number of reduction level is done according to Table

2.41(8].

Table 2.4 : Table of Reduction Stages for Wallace and Dadda Multipliers

Number of bits, n Number of Reduction Level

2 0

3 1

4 2
5-6 3
7-9 4
10-13 5
14-19 6
20-28 7
29-42 8
43-63 9
64-94 10

14

2.3.2.1 2-bit Wallace Multiplier

Based on the concept on Wallace Multiplier mentioned earlier, it is
required that the partial products are reduced to a level with a height of two. For
two-by-two multiplication process, the partial products generated are already in a
level with a height of two. Therefore, it needs no further reduction process. The

diagram will give a better understanding.

Ai Ao
X B+ Bo -
A1Bo AoBo Partial products with a
} height of two
+ A1B1 AoB1

P3 P2 P1 Po

2.3.2.2 4-bit Wallace Muitiplier

Based on the Table 2.4, the number of reduction performed is two. The
first reduction is to a height of three as shown in Figure 2.14. Then, the partial
products are further reduced to a height of two. The reduction process uses
several counters. There are two types of counters which are three-to-two (3, 2)
and two-to-two (2, 2). The last stage is to complete the multiplication using ripple

carry adder of length m.

Figure 2.14 : Dot Diagram for a 4-bit Wallace Multiplier [7]

15

2.3.2.3 6-bit Wallace Multiplier

As described in Table 2.4, the number of reduction stages of a 6-bit
multiplier is three stages. For a 6-bit multiplier, the partial products generated
initially are of a height six. Since it requires three stages of reduction process, the
first stage wili be to reduce the partial products to a height of four, then three and
finally to a height of two. The multiplication process is completed by using ripple
carry adders. Figure 2.15 shows the dot diagram for a 6-bit Wallace Multiplier.

AT
il

oI NOEBRIEN

Figure 2.15 : Dot Diagram for a 6-bit Wallace Multiplier

2.3.2.4 8-bit Wallace Multiplier

For an 8-bit Wallace multiplier, the number of reduction required is four
stages. The first stage is to reduce to height of six, then four, three and finally

two. The multiplication process is also completed using ripple carry adder.

16

The figure below, Figure 2.16 shows the dot diagram of the multiplier.
The ‘crossed diagonal’ line represents (2,2) counters and the single diagonal line

represents (3,2) counters.

Se8eE
e 2 2 L
*e e
o

.

SN0 eS
L2 2 2 1 2

 J
»
i
L
»
H

Figute 2.16 : Dot Diagram for 8-bits Wallace Multiplier

2.3.3 Dadda Multiplier

Dadda multiplier works in similar manner as the Wallace multiplier. [t
also consists of three stages which are; (1) partial products generation using AND
logic gates, (2) partial product reduction and (3) using adders to complete the
multiplication. However, unlike Wallace multiplier, Dadda multiplier does not try
to reduce the partial products all at once. Instead, it only reduces partial products
that exceed the required reduction. The sub-sections below will discuss this

multiplier in length [7].

17

2.3.3.1 2-bit Dadda Multiplier

Same as Wallace multiplier, a 2-bit Dadda multiplier requires no
reduction because the partial products are already in the final height of two.
Therefore, the output of the multiplication process can easily be obtained straight

from the output of each adder components.

An Ao

X B1 Bo
AiBo AdBo } Partial products with a

height of t
+ AB1 AoBi CIgHt oTtwo
P3 P2 P4 Po

Figure 2.17 : 2-bit Dadda Multiplier

2.3.3.2 4-bit Dadda Multiplier

A 4-bit Dadda multiplier also requires two reduction stages as shown in
Table4. The first reduction is to height of three and finally to a height of two. The
muliiplication process is completed using ripple carry adder to sum up the
reduced partial products. The dot diagram in Figure 2.18 shows the partial
products that are reduced. Notice that in the second layer partial product, only a

few are reduced.

Figure 2.18 : Dot Diagram for a 4-bit Dadda Multiplier [6]

18

2.3.3.3 6-bit Dadda Multiplier

A 6-bit Dadda multiplier requires three reduction stages. The first one is
to reduce the partial products generated from the AND logic gates to a height of
four, then to a height of three. Next, it will be reduced further to achieve the final
height of two before adders are applied to complete the multiplication process.
The reduction concept of the previously discussed 4-bit Dadda multiplier is

applied in this multiplication process. Figure 2.19 shows the dot diagram for a 6-
bit Dadda Multiplier.

YIr X
SRS
seBReN
' TET TN
SEPBES
2 tieeees
‘:’"Qf”fv‘f’&fggi
ﬁ:t}@gwg

Figure 2.19 : Dot Diagram for a 6-bit Dadda Multiplier

2.3.3.4 8-bit Dadda Multiplier

As the number of bits, » increases, the number of reduction stages also
increases. For an 8-bit Dadda multiplier, the required reduction stage is four
stages. The first stage reduced the partial products of height eight to a height of
six and the second stage reduces them further to a height of four. The proeess
continues with the partial products being reduced to a height of three and finally
to a height of two. The multiplication process is completed using ripple carry

adders.

19

Shown in Figure 2.20 is the 8-by-8 bits dot diagram for Dadda multiplier.

As can be seen, only certain partial products are reduced to achieve the required

reduction.

L2 22 2 12 J
L 2 L1 3 L]
LL L2 L

L 2 1 1]

- 8%

L T

®

L
]
:
»
|
»
*
|

Figure 2.20 : Dot Diagram for an 8-bit Dadda Multiplier

20

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Project Flow Overview

The first stage of the project is to conduct research work. Research work
is done to select the types of adders that will be used in the project. By doing
research, a better understanding of the operations of the adders is achieved.
Source of information is not only limited to books but also includes group

discussion,

The second phase of the project is to understand the programming
language used for the project which is the Verilog HDL. Verilog is a widely
accepted language for VLSI design [5]. Therefore, the time allocated to be
familiarized with Verilog is used to understanding the constructs in Verilog such

as the basic of the language, its convention and so on.

With the second phase of the project is still on-going, the coding for
adders begins. By using trial-and-error method, many codes are generated and
simulated to find the eliminate errors in the coding of the adders. A lot of time
has been spent in trying to convert the understanding of the adder operation into a

workable Verilog code.

21

The figure below, Figure 3.1 shows the general project flow.

Research Work

U

Introduction to Verilog HDL

U

Coding for Adders

1y

Simulation

U

Analyze results

U

Implementation on FPGA

U

Observe output waveform of FPGA

Figure 3.1 : General Project Flow

3.1 Methodology

As mentioned in the previous section, before being able to design the
multiplier, concept of the multiplier operation must be first studied. This is to
ensure that the result obtained during the simulation phase is the same as the
calculated result. Therefore, as shown in the detailed project flow, understanding

the design concept is the first stage.

The next stage of the project is to transfer the understanding gained on the

multiplier design into a block diagram. Working with block diagrams is much

22

easier than complicated texts.

Using the block diagram created earlier, the designing stage of the project
can begin. Assigning variables in the design becomes a lot easier with the help of
the block diagram. Since this project uses Verilog HDL as the programming
language, thus Verilog is selected in the pop up window of the Quartus II
software as shown in Figure 3.2. Compiling the design is the next process that
must be done. Compilation is done to check syntax errors. Figure 3.3 is the

compiler tool.

Device Design Files | Other Fies |

AHDL File -
Block Diagram/S chematic File
EDIF File

SOPC Builder Sw

WHDL File

oK Cancel

Figure 3.2 : Creating a New Design File

3 Compiler Tool
\ Analysis & Synthesis Fitter Assembler Timing Analyzer
[EEY . == E T SRR e
00:00:00 00:00:00 00:00:00 00:00:00

Vs RR P /8% BB Y@

Figure 3.3 : Compilation Window
23

If the design is found to contain error, the design file needs to be checked
again based on the error message that will normally appear after the compilation
process. The next part of the project, which is to perform functional simulation,
can only be started after successful compilation process. Functional simulation is
one of the three simulation options that are available in Quartus II. It assumes that
the logic elements and interconnection wires are perfect. Therefore, there is no
delay in propagating the signals in the design circuit. Functional simulation can
be said as verifying the functionality or correctness of the circuit as designed. In
simple words, it is done to help designers check whether the design file is giving
expected output.

Figure 3.4 shows the Simulator tool with Functional simulation mode
selected.

& Simulator Tool

‘* Run simulation until all vector stimuli are used

' End smulstionat i |
Simulation options

v Automatically add pins to simulation output waveforms
~ Check outputs

v Overwrite simulation input fle with simulation results

Figure 3.4 : Functional Simulation Window

24

Figure 3.5 shows an example of the Functional simulation mode. Notice
that the output is obtained as the same time as the input.

re_arraymult/rc_arraymult_functional.vwf®
Master TmeBar ~ Ops ¢|+|Pointer 37ns Intevat 37ns Stat End
Dos 100ns 20ns WPns 40ns 1
Name: ios i N o NN i i ,
1
® = (moT X oo} oo} oo Y oim
@b § 0007 Y 0010 Y ool X 0100 W 0101
[pod [00DO00OT X DOODOTOD Y 0OGOI00T) 00010000) 0OOTI001
¥ e »

Figure 3.5 : Example of Functional Simulation Qutput

All designs in this project are simulated on EPF10K70RC240-4 which is
available in Quartus II as shown in Figure 3.6.

| Famiy: [FLEXIOK v sm”h“'md’"“_’ﬁl
| Package: 1
. Device & Pin Options... | e -
, Pincount 240 v
Target device -~
~ Auto devi jected by the Fitter Speed grade: |4 v
‘s Specific device selected in 'Available devices' list Core voltage: 5.0V
¥ Show advanced devices
| Avaiable devices:
| Name LEs | Memor.. | E Tt ret i
| EPF10K20RC240-4 1152 12288
| EPF10K20RI240-4 1152 12288
EPF10K30RC240-4 1728 12288
| EPF10K30RI240-4 1728 12288
| EPF10K4ORC240-4 2304 16384
| EPF10KS0RC240-4 2830 20480
| EPF10KS0RI240-4 2880 20480
WRIEPF10K70RC240-4 8432

Figure 3.6 : Assigning Device to Design

25

When the output of the functional simulation is checked to be correct,
then timing simulation can proceed. Timing simulation is to determine how well
a circuit performs in terms of speed. Therefore, in this type of simulation, it will
consider the delay in propagating all the signals. After timing simulation is done,
propagation delay for the simulated design can be determined from the simulation
report.

Shown in the diagram below, Figure 3.7, is the Simulator tool window

with the timing simulation mode selected.

B Simulator Tool

' Run simulation until all vector stimuli are used

e =

Simulation options
v Automatically add pins to simulation output waveforms

"~ Checkouputs |
" Setup and hold time violation detection

" Glitch detection: | | |

v Overwrite simulation input file with simulation results

Figure 3.7 : Timing Simulation Window

26

Figure 3.8 is an example of timing simulation output. Notice that the

output is delayed for a while.

Mastes TmeBar 200ns +/»/Poter 1331ms Intevat 1131ns Stat End
1100ns 120,0ns 1300ns 140,0ns 150,0ns
s A i < i T
— pa—
@b
& prod

Figure3.8 : An Example of Timing Simulation Output

27

The flow chart below, Figure 3.9, summarizes the detailed project flow.

(Start)

r

Understand Design
Concept

r

Create Block
Diagram

y

Design using |«
Verilog HDL

'

Compile Design in
Quartus 11

Yes

Error

No

Functional
Simulation

Correct

Timing
Simulation

A
Determine
propagation delay

v
End

Figure 3.9 : Detailed Project Flow

3.2 CAD Tool

The CAD tool used in this project is Quartus [Web Edition Version 6.
28

CHAPTER 4
RESULT AND DISCUSSION

4.1 Result

In this section, the simulation results of the multipliers under study are
analyzed.

4.1.1 Ripple Carry Multiplier

This section shows the simulation results for 2-bit, 4-bit, 6-bit and 8-bit
Ripple Carry Multiplier.

4.1.1.1 2-bit Ripple Carry Multiplier
Shown below, Figure 4.1 is the simulation result of a 2-bit Ripple Carry

Multiplier and the worst-case propagation delay time window, Figure 4.2 along
with all the propagation delays in the design, Figure 4.3.

Moster TmeBar. 200ns «|»/Pomtec 414ns Intevat 214ms Stat End
ps 100ns 200ns 300ns 400ns 50Pns 600ns 700ne BODns S500ns 1000ns
s, e S ROU SO anie ope G P pre 100,
A Y D G D LD G G LD GBS GRS 65D G LD G D
wl B B0 Y BF Y 0 - T o X B Y WX W
| B prd B(0 1 1 00T} DOm0 b 001
< * £ >

Figure 4.1 : Timing Simulation for 2-bit Ripple Carry Multiplier

29

The diagram below, Figure 4.2 shows the worst case propagation delay
which is 20.7 ns. The propagation delay occurs from input a[1] to output prod[3].

v Compilation Report - Timing Analyzer Summary

Pl Timing Analyzer Summary

EBB Lega Notice 1
Fiow Summary Type Time | Time i
&SHEE Flow Settings 1} Worst-case tpd N/A None 20.700ns a[l] piod[3] i
@Ml Fio Non-Defauit Giobal Settng [2] Total umber of faled paths
&ShBE Flov Blapsed Time B
& B Flow Log v

ompilation Report - tpd
&y Compilation Report
| &B LegalNotice

Flow Summary .

EHEE Flow Settings 1 | N/A
&DEE Flow Non-Default Global Settings [2 | N/A None 2700ns b[1] prod[3]
EDEE Flow Elapsed Time 3 | N/A Nome 20700nms 1] prodi3]
&8 FowLog 4 | N/A None 20500ms bi0] prodi2]

| a_l Analysis & Synthesis —
| + &_|Fitter 2]
+ &) _| Assembler S
| - &3 Timing Analyzer 7 | N/A None 20500ns al0] prodl]
S summary 8 |
EPER settings 9 |
& wd 10| N/A None 20500ms af0] prodi0]
2/} Messages

Figure 4.3 : Propagation Delay Time for the Design

Besides the propagation delay time, the number of logic elements for the
design can also be obtained from the compilation report. For 2-by-2 Ripple Carry
Multiplier, the number of logic elements is determined to be four.

30

4.1.1.2 4-bit Ripple Carry Multiplier

Based on the timing analyzer report, the worst-case propagation delay is
51.8 ns. It occurs between the time a signal is propagated from input b[0] to
output prod[7]. Attached in Appendix 1A is the simulation result for the 4-by-4
bits multiplication process. From the compilation report, the number of logic
elements used in this design is 29 which is less than 1% of the total logic

elements available.

4.1.1.3 6-bit Ripple Carry Multiplier

From the timing analyzer report. the worst-case propagation delay time is
90.8 ns. It occurs from input a[0] to output prod|10]. Attached in Appendix 1B is
the simulation result for the multiplication process. For 6-bit Ripple Carry
multiplier, the number of logic elements is 69 out of 3744 logic elements. This is

about 2% of the total logic elements available.

4.1.1.4 8-bit Ripple Carry Multiplier

For 8-by-8 bits multiplication process, the worst-case propagation delay is
124.0 ns. This occurs during the time a signal is sent from input a[0] to output
prod[15]. Attached in Appendix 1C is the simulation result for the multiplication
process. In 8-bit Ripple Carry multiplication process, the number of logic
elements used is 130 which is 3% of the total logic elements available in

EPFI0K70RC240-4.

31

4.1.2 Carry Save Multiplier

This section shows the simulation results for 2-bit, 4-bit, 6-bit and finally

8-bit Carry Save Multiplier.

4.1.2.1 2-bit Carry Save Multiplier

The figure below, Figure 4.4 shows the result of the timing simulation for

a 2-by-2 bit multiplication process which adopts the carry save multiplication
method. There are 4 logic elements used in this design as determined in the

compilation report.

Ll twobit_rc_arraymull_
Mastes TimeBar: ~ 200ns +/»|Poiter. 414ns Intervat 214ns Stat End
va P2 10fns 2fne Pre 40prs 50Prs 60fms 70Pre 80Pre S0Pns 1000ns
Name 20 200ns
gy 00 Y O VY Yo Y omy - Y n yowmmyuwyYn
| B YW Y O YW Y B X W Y O Y W X I ¥y X W Y W
[pod BLK 000 ‘ i D &1]]
» |¢ >

Figure 4.4 : Timing Simulation for 2-bit CS multiplier

Figure 4.5 shows the worst propagation delay for the multiplication
process which is 20.7 ns. The delay occurs between input a[1] to output prod[3].

‘> Compilation Report - Timing Analyzer Summary
Fiow Summary Tope |Time [Time 7
EER o setings 1] Worst-case tpd N/A None 20700ns a[l] prod3];
& Fow NonDefaut 2] Total numbe of faled paths
&8 Fiov Elzpsed Tme
BN~
< R >

Figure 2.5 : Worst-Case Propagation Delay

32

Figure 4.6 displays all the propagation delay in the design.

% Compilation Report - tpd

#i&h 3 Compilation Report
| &SB LegalNotice
Flow Summary
&HEE Flov Settings 1 | N/A i
&EE Fiow Non-Default Global Settings 2 | N/A None 0700ns b1] prod3]
o f’::“d Time 3| N/A None 20700ns al] prod3]
| + &_] Analysis & Synthesis o] MR [Hoew 205000 bl |peock?]
il + & 1 Fitter 5 | N/A None 20500ns b[1] prodf2]
B &b _| Assembler 6 | N/A None 20500ns af1] prod2]
il - & 3 Timing Analyzer |7 | N/A None 20500 ns al0] prod(1]
' SR summary 8 | N7A None 20500ns b[0] prod[1]
9| N/A Nome 20500ms b[1] prodl]
10| N/A None 20500ns a[0] prod(0]
1 N/A None 20400ns b[0] prod[3]
12| N/A None 20200ns a[0] prod(2]
13| N/A None 20200ns a[1] prod[1]
_u N/& None 20200ns b[0] prod[0]

Figure 4.6 : Propagation Delays for the Design

4.1.2.2 4-bit Carry Save Multiplier

The worst-case propagation delay for a 4-by-4 bit Carry Save Multiplier is
47.6 ns. The delay happens between input b[0] and output prod[7]. The
simulation result is attached in Appendix 2A. The design has 28 logic elements.
Since EPF10K70RC240-4 contains 3744 logic elements, this design uses less
than 1% of the total logic elements.

4.1.2.3 6-bit Carry Save Multiplier

For the 6-by-6 bits Carry Save multiplication process, the longest
propagation delay time is 70.9 ns. The delay occurs between input a[4] and
output prod[7]. The simulation result is attached in Appendix 2B. For 6-bit Carry
Save multiplier, the total number of logic elements used in the design is 71 which
is about 2% of the total logic elements available in EPF10K70RC240-4.

33

4.1.2.4 8-bit Carry Save Multiplier

As for the 8-by-8 Carry Save multiplication process, the worst-case
propagation delay associated with the design is determined to be 89.2 ns. The
propagation delay takes place between input a[5] and output prod[15]. Attached
in Appendix 2C is the simulation result. From the compilation report, the number
of logic elements used in this design is 130 logics. This is about 3% of the total

logic elements.

34

4.1.3 Wallace Multiplier

This section shows the simulation result of 2-bit, 4-bit, 6-bit and 8-bit
Wallace multiplication process.
4.1.3.1 2-bit Wallace Multiplier

Figure 4.7 shows the output from the timing simulation process. In Figure

4.8, the propagation delay is determined to be 20.7 ns from input a[1] to output
prod[3]. This design contains 4 logic elements as obtained from the compilation

report.
= Smulation Report
&R Lecaitore Smuianon mode: Teming
Flow Summary
Eigw: Settrgs ¥ e T e T T
- &b Smisnr Mastes Time Bar: 185 ns ¢+ Pointer 636ns Intervat BSl5m Start:
Summary
[os 0 0rs 40fne 60pre
St el Name 1308 i€550e
i ot 5 -1 |) G G G G S I 1 S 6L G |
i1 Messages | Eo g W X 0T X W) T X O X 0L X 0 X 1 X ¥ o Yy w)
| B e Bef BOOO[) OOOT) D0 X 70T X D000 X _DORT X G100 X 0T) 0000
I |
L4 > |€ A B b

Figure 4.7 : Timing Simulation for 2-bit Wallace multiplier

Figure 4.8 below shows the worst-case propagation delay in the design.

> Compilation Report - Timing Analyzer Summary - ”D! |

P § Compilation Report &
EBB Legal Notce

&7 Fiow Summary Typo
EHEE Flow Settings 1

&BEE Flow ton-Default [2] Total number of faled paths
&SEE Flow Elepsed Tme [

& B Flow Log v

| < > < >

Timing Analyzer Summary

Figure 4.8 : Worst-Case Propagation Delay Time

35

Figure 4.9 display all the propagation delays that occur during the
simulation of the design.

S Compilation Report - tpd |_:|@|El
&b Compilation Report

& B Legal Notice

&7 Flow Summary
a Flow Settings
&SEE Flow Non-Default Glo
ESHEE Flow Elapsed Time

N/A
N/A None 20700ms bl1] prodi3]
N/A None 20700ns al] prodi3]

| &8 Forlcg N/A None 20500ns bj0] prod2]
|3 g:: eSS0 5 | WA Noe 20500ns b1l pod2]
|+ &3 assember N/A None 20500ns al] prod(2]
| - & _J Timing Analyzer N/A None 20500ns af0] prod[1]
| & summary N/A None 20500ns bl0] prod{1]
EHEH setings N/A None 20500ns b1] prodfl]
S wd N/A Nome 20500ns 0] prod0]
& i/ Messages N/A None 20400ns b0] prod(3]

EEEEEFFEFFEERE

Figure 4.9 : Total Propagation Delay for the Design

4.1.3.2 4-bit Wallace Multiplier

For the 4-by-4 bit Wallace Multiplier, the worst-case propagation delay is
determined to be 48.0 ns from input b[0] to output prod[6]. The simulation result
is attached in Appendix 3A. The 4-bit Wallace multiplication process yields 28
logic elements in the design which is less than 1% of the available total logic

elements.

4.1.3.3 6-bit Wallace Multiplier

For 6-by-6 bits Wallace multiplication process, the worst-case
propagation delay is 71.4 ns. The delay occurs between input b[4] and output
prod[10]. The simulation result is attached in Appendix 3B. For this design, the

36

number of total logic elements is 76. This is 2% of the total logic elements
available in EPF10K70RC240-4.

4.1.3.4 8-bit Wallace Multiplier

For the multiplication process of an 8-by-8 bit Wallace multiplier, it is
determined from the report that the worst-case propagation delay is 87.8 ns. The
delay occurs from input b[1] to output prod[10]. Attached in Appendix 3C is the
simulation results. The number of logic elements used in this design is 153 which

are 4% of the available total logic elements.

37

4.1.4 Dadda Multiplier

This section shows the simulation result for 2-bit, 4-bit, 6-bit and 8-bit
Dadda multiplier.

4.1.4.1 2-bit Dadda Multiplier

Figure 4.10 shows the timing simulation result. Notice that the output is

delayed for a while. For 2-bit Dadda multiplier, the design uses 4 logic elements.

Smulation mode: Timing

4 » Pomnter.

1855 ns

M&Tl-h:

Pos 10Prs 20pr 0Prs e S00rs E0frs T0frs 200ne 0Pns 1000ne

Name f?g 1855
B _a}mm O D O D O O .

ED : :Dmrﬂ1xnxm>m@
3 prod BC i) X { [« j

> |€ >

KR

Figure 4.10 : Timing Simulation for a 2-bit Dadda multiplier

Figure 4.11 shows the worst-case propagation delay in the design. From
the report, the delay is determined to be 20.7 ns from input a[1] to output prod[3].

'S ('smpi!ari:m Report - Timing Analyzer Summary

| + Qr__] Assembler

E &_i Timing Analyzer

| S summary 1] Worst-case tpd N/A_ None 20.700ms a[1] prodi3] :
S setvngs 2| Total number of faied paths
S vd

| < > - 2

Figure 4.11 : Worst-Case Propagation Delay Time

38

Figure 4.12 shows all the propagation delays that occurred during the

design simulation.

‘>’ Compilation Report - tpd

& 3 Compilation Report
=] Legal Notice

&—j Fl?ﬁ.‘ Summary Slack To
SR Flow Settings 1 | N/A prod{3]
&HER Fiow Non-DefauitGlo [2 [N/A None 20700ns b{1] prodi3]
;‘gf‘ SepsedTme [T1NA Noe 20700ns] peodd)
: i 4 | N/A None 20500ns b[0] prod2]
:g:: AevesSSIeS S N/A None 20500ns b1l prod2]
| ’_‘ Assenibler L N/A None 20500ns a[l] prod(2]
| - & _J Timing Analyzer 7 | N/A None 20500 ns af0] prod{1]
| &R summary L N/A None 20500ns b{0] prod[1]
EHER setings 9 | N’/A None 20500ns b{1] prod(l]
S v 10| N/A None 20500ns a[0] prodi0]
2 T (11| N/A Nome ~ 20400ns bj0] prodi3)]
12| N/A None 20200ns a0] prodf2]
E N/A None 20200ns a[l] prod(1]
. 5 [14] /A~ None 20200ns bi0] prod{0]

Figure 4.12 : Total Propagation Delay for the Design

4.1.4.2 4-bit Dadda Multiplier

Simulation of the 4-by-4 bits Dadda multiplier yields a worst-case
propagation delay of 50.3 ns. The delay happens between input b[0] to output
prod[6]). The simulation results are attached in Appendix 4A. From the
compilation report, the number of logic element in the design is determined to be
27 which is less than 1% of the total logic elements.

4.1.4.3 6-bit Dadda Multiplier

For 6-by-6 bits Dadda Multiplier, the worst-case propagation delay is
determined to be 73.0 ns. The delay occurs between input a[4] and output
prod[10]. The simulation results are attached in Appendix 4B. For 6-bit Dadda
multiplication process, the number of logic elements used in the design is 61
which is about 2% of the total logic elements.

39

4.1.4.4 8-bit Dadda Multiplier

The simulation process of an 8-by-8 bits Dadda multiplier yields a worst-
case propagation delay of 88.5 ns. The delay occurs between input b[0] to output
prod[10]. The simulation results are attached in Appendix 4C. In the 8-bit Dadda
multiplication process. 157 logic elements are used. This is 4% of the total logic

elements in EPF10K70RC240-4.

4.1.5 Implementation on FPGA

The implementation on FPGA part of the project is successful. The UP2
board which contains the FPGA EPFI0K70RC240-4 is connected to the
computer via ByteBlaster I cable. The board is also connected to the power
supply. Designs that have been created are downloaded onto the
EPFI0K70RC240-4 via the ByteBlaster Il cable and the resulting outputs are
observed. The inputs of the multiplier are user-defined whereby the inputs are
assigned to the DIP switches available on the UP2 board. The DIP switches give
logic “0" when they are pressed down and vice versa. The output of the multiplier
can be observed through the seven-segment LEDs. The LEDs of the seven
segment are active low which means that the LEDs light up when the output is a
logic 0" and turns off when the output is logic “1°. To observe the output
waveforms that result from the FPGA, a monitor is connected to the board via
VGA port. However, even after proper settings have been done, no waveforms
can be observed despite the correct outputs observed on the seven-segment.

Appendix 5 shows one of the implementation results obtained.

40

42 DISCUSSION

This section discusses the result shown in the previous section.

4.2.1 Summary of Results

Table 4.1 summarizes the results obtained from the simulation process.

Table 4.1 : Propagation Delay

N bits Ripple Carry | Carry Save Wallace Dadda
2 20.7 ns 20.7 ns 20.7 ns 20.7 ns
E 51.8 ns 47.6 ns 48.8 ns 50.3 ns
6 90.8 ns 70.9 ns 71.4 ns 73.0 ns
8 124.4 ns 89.2 ns 87.8 ns 88.5 ns
Propagation Delay
—+—RCA = CSA Wallace - Dadda
2 140
© 120 =
80 / —
S 60 ,,//'/ﬁ -
; 40 //’
> 20 -
2 0 ‘ , :
2 4 6 8
Number of bits, N

Figure 4.13 : Propagation Delay Chart

For the 2-bit results of each multiplier, it yields the same amount of
propagation delay. This is because all 2-bit binary multipliers have the same
adder architecture.

41

As the number of bits, n increases, propagation delays for all multipliers
also increase as expected. Based on the table above, Ripple Carry multiplier has
the worst performance among all four multipliers. This is due to the fact that one
adder cannot begin the addition process until it receives the necessary carry in bit

from the adder of the previous stage.

Carry save multiplier shows the best performance of all four multipliers
analyzed. As mentioned in Chapter 2, carry save multiplier does not have to wait
to begin the next partial product summation process as the carry bits are
forwarded to the next layer of adders, which explains the small propagation delay

experienced by this particular multiplier.

As for both Wallace and Dadda multipliers. in order to compare their
performance, the level of reduction must also be taken into account. However,
during the designing stage, care has already been taken to ensure that both are
reduced with the same number of reduction stages. From the results shown, the
Wallace multiplier has a smaller propagation delay compared to Dadda multiplier

although the difference is not really huge.

Table 4.2 shows the number of logic elements used in the designs of 2-bit,
4-bit, 6-bit and 8-bit multipliers. As shown in Table 4.2, Dadda multiplier uses
the least logics out of the four multipliers studied up until the 6-bit multiplication
process. For 8-bit multiplication process. both Ripple Carry multiplier and Carry
Save multiplier have the least number of logic gates which is 130 logic elements.
However. between the two multipliers, Carry Save wil provide better
performance because it has the smallest propagation delay although same number

of logic elements.

Table 4.2 : Number of Logic Elements

N bits Ripple Carry | Carry Save Wallace Dadda
2 4 4 4 4
4 29 28 28 27
6 69 71 76 61
8 130 130 153 157
Number of Logic Elements
|—+—RC = CS Wallace - Dadda|
200

2

Number of Logic
g 8

o

»‘/#
2 4 6
Number of bits, N

Figure 4.14 : Number of Logic Elements Chart

43

CHAPTER 5
CONCLUSION AND RECOMMENDATION

5.1 Conclusion

To conclude the report, the importance of adder speed is again stressed.
Speed is a major contributor towards the successful implementation of a digital
multiplier. As such, the speed factor must be addressed properly. A smaller
propagation delay means the shorter time response for the multiplication. In this
study, ripple carry multiplier has given the largest propagation delay and carry
save multiplier has shown the smallest delay among all multiplers studied
whereas Dadda multiplier has the least amount of logic elements up until 6-bit
multiplication process. For 8-bit multiplication process, both ripple carry
multiplier and carry save multiplier use the same number of logic elements which

is 130 logics.
5.2 Recommendation

This project can further be enhanced by adding several types of
multipliers. The comparison between many types of multipliers will enable the
industry to select the most reliable multiplier. Besides that, this project can also
be expanded to compare these multipliers in terms of area and power
consumption. Most multipliers usually come with advantages and disadvantages.
One particular multiplier is able to yield small propagation delay but it can also
be at a disadvantage in terms of area whereby it needs more space to
accommodate a lot of logic elements. Therefore, it would be a great enhancement
to the project if all aspects (speed, area and power) are taken into account.
Another enhancement that can be done is to increase the number of bits compared

to at least 64 bits to really be able to see the propagation delay of each muitiplier.

44

REFERENCES

[1] T. L. Floyd, 2003, Digital Fundamentals, New Jersey, Prentice Hall

[2] D. Ciletti, 2002, Advanced Digital Design with Verilog HDL, New Jersey,

Prentice Hall.

[3] <http://www.cs.umd.edu/class/spring2003/cmsc311/Notes/Comb/
adder.html> Retrieved 1 November 2007

[4] Prof. Loh, Processor Design, February 2005
[5] <http://www.fpga-guru.com/multipli.htm> Retrieved 13 December 2007

[6] <http://cag-www lcs.mit.edu/6.004/Lectures/lectl 7/sld015.htm> Retrieved 12
December 2007

[7] W. J. Townsend, E.E. Swartzlander, Jr., J.A. Abraham,”4 Comparison of
Dadda and Wallace Multiplier Delays”, 2003

[8] K.C. Bickerstaff, E. E. Swartzlander, Jr.”Analysis of Column Compression
Multipliers”, 2001

45

APPENDIX

46

APPENDIX A1

Simulation Result for a 4-bit Ripple Carry Multiplier

B re arr aymult. vw
Master Time Bar: 200ns ,'J,',I Pointer: 822ns Intervat 22 Start: End:

va[foe 10pre 20pns e 4opns 50gm 0pre T0pre 30pns %09 to0om

Name A 200ns
|

| @2 B 0000 X 0001 OO10 Y 0011 X 0100)X 0101 X 0110 X 0111 X 1000 1001 X 1010 _
| b B (0000 Y 0001 ¢ 000 X O0n }(mwxmmx‘{}_{rnXEnrxmooxmmx_r!
9| @ prod BoC [OO0 : DR |
< > |4 >

' Compilation Report - Timing Analyzer Summary

Timing Analyzer Summary

& B Legal Notce
ST Flow Summary kocha !
GHEE Flow Settings 1| Worst-case tpd N/A None 51.800ne bl0] prodi7] !
&HER Fiow Non-Default Global Setting 2| Total number of failed paths
&HER Flow Elapsed Time . AN

< b < >

Worst Case Propagation Delay Time for 4-bit RC Multiplier

‘-3 Compilation Report

Legal Notice i

B ety Stack | PS Time | Time . |From |To
&ESEE Flow Settings 1 | N/ MNone 61.800ns _ bl0] _ prod(7]
<EPER Flow Non-Default Global Settings 2 NZA MNone 50.500 ns bl0] prod[6]
&PHER Fiow Elapsed Time [3] N/A None 48.000ns bl0] prod(5]
&E rlow Log [4 | N/a [None 45000ns a[1] | prod(7]

+] Analysis & Synthesis —1 =

+ o) Fitter |8 | N/A Mone 45 000 ns al2) prod(7)
& {Z2) Assembier _§_ NAA None 44.800 ns al3) prod{7)
= ‘=8 Timing Analyzer |7 | N/A None 44 700 ns al0] prodl?)
Summary 8 | N/A None 44400 ns b[1] prod(7]
EPER Setungs 9 | N/A MNone 43 700 n= al1] prod[6]
&S td (10| N/A None 43.700ns a[2] prod(6)
&P 5 Messages 7] M2a Nore 43500ns |af3] |prodi6]
1_2. N/A None 43 400 ns al0] prod|E])
...E..‘ MN/A None 43 100 ns b[1] mod(B]
14| N/A None 42 200 ns bl[0] prod(4]
E N/, None 41 400 ns bl2) prod[7]
16| N/A Mone 40.900 ns al0) prod(S]
(17| MN/A MNone 40 900 ns al1] prod(5)
E N /A None 40 3900 n=s al2) prod[5]
[19] N/A Mone 40.700 ns al3) prod[S)
_2& N /A Maene 40 600 ns B[1] prad|(5])
121] N/A MNone 40100 ns bl[2] prod&]
3_2_ MN/A MNones 39 600 = blO] prod]3]
[23] N/a MNone 38.200ns b{3] prod(?]
Iﬂ N/ZA MNone 37.600 ns bi2) prod[5]
|25] N/A Mone 36.900 ns bi3] prod[6]
_gi MN/A MNone 35100 ns al0]) prod[4]

Propagation Delay Time in the design for 4-bit RC Multiplier
A-1

APPENDIX 1B

Simulation Result for a 6-bit Ripple Carry Multiplier

i sixbit_rcarraymult.vwf
Master Time Bar: 475ns +| »| Pointer: 76 Interval 88ns Start: End:
Pos 200ns 400ns 800 ns 800ns 100.0d
Hame ~ 475ns
g
a2 { k 000000 X 000001 10 ¥ 000011 Y 00010) 0101 0110 X 000111 1 1001 X10
Eb i 1 i} i ibi) 1 111 Y 001000 X 001001
[® prod BOC ‘ q
¥ 1< >

Timing Simulation for 6-bit RC Multiplier

Compilation Report

=T ~ . . o .
‘e* Compilation Report - Timing Analyzer Summary

P Timing Analyzer Summary

&HB Legal Notice
ST Flow Summary Type
SHER Flow Settings 1} Werst-case tpd N/A Nene 90800ns al0] prod(10];
f8 Flow Non-Default 2] Total number of falled paths
Flow Elapsed Time ,
@ - .
< > < >
—— = =
Worst Case Propagation Delay Time for 6-bit RC Multiplier
=3 Compilation Report
Legal Notice i
g,% Fif.'., Summary Slack s;g"'l"::a ?f_::d r2p From |To >
&BER Flow Settings T OF N/ INone |S0800ne I1a0] locodflOl . . o)
&EBEE Flow Non-Default Glol [2 | N/A None 90700ns al0] prodfii]
::o-.-.‘ f)apscd Tme 3] M4 MNone 88100ns bl0] prod{10]
i S 4 | N/A None 88000ns bl0] prod{11)
: gj ;r;a;:s‘s A Syrihese Z MN/& None 87 500 ns al0) prod{S]
+ &) Assembler (6| N/A None 84.800ns bl0] prod{3]
- &p'—N Timing Analyzer |7 | N/A None 82.9300 ns alo) prod{8)
Summary 8 N4 None 82.300 ns all] piod{10]
SDHEE Settings E M/A None 82200ns a1l prod{11]
SR wd (10 | N/A None 82000ns b{1] pod(10]
&) 1) Messages 11 | N/A None 81900ns b{1] prod(11]
112 | N/A None 81.900 ns al4] piod(10]
i N/A None 81,800 ns al4] prod[11]
14 | N/A Nane 80300n: al2] pedlO]
15 | N/A None 80200ns af2] peod(11]
16 | WA Mone 90.200ns bl0] prod(g]
l MN/AA Mone 79.000 ns all) prod[9])
_;I_ﬂ__ N/ Mene 78.700 ns bf1) pred]9)
__1_3;_ N/A None 78.600 ns al4] prod{9]
< > ﬂ_ N/A None 78.200 ns a[3) prod{10] ~

Propagation Delay Time in the design for 6-bit RC Multiplier

A-2

APPENDIX 1C
Simulation Result for a 8-bit Ripple Carry Multiplier

s’ Simulation Report - Simulation Wavefarms

@ Smulation Report Simulation Waveforms

B LegaiNobee Semuiation mode: Timing
&[T Flow Summary
MR Flov Settrgs
- &3 Simustor
Summary —
Settings Master Tme Bar.| 17.425ms «[»|Poter. 1204ms Intevak 10298ne Stan End
Simulation Wavef
vﬁﬁmdﬂhmtomra ps 100ns 200m 300ns 400rs 500ns 600ns 700ns 800ns 900ns 1DOI0M|
BB 111 Usage Hame 1742508 i ' i
&) Messages J
|65 | 2
| @b
|&»| B prod
L > | £

© Compilation Report

liming Analyzer Summary

4 Compilation Report Timing Analyzer Summary

&hB Legal Notice
&) Flow Summary Type
a Flow Settings 1§ Worst-case *pd
&HER Flow Non-Default Global Setting 2| Total number of failed paths
EHEH Flow Elapsed Time =l
&R Fiow Loa v

£ > <

=l Compilation Report - tpd

&9 Compilation Report

& B Legal Notice Actual P2P
ST Flow Summary Time From
&ER Flow settings 1 §N/A MNone 124400ns a[0] prod[15]
2= Flow Non-Default Global Settings [2 | N/A None 122800ns bl0] prod(15]
Flow Elapsed Time 3 | N/A None 121.900ns a[0] prod[14]
& B FlowLog 4 | N/A None 120300 ns b{O] prod[14]
+ & Analysis & Synthesis
 + @ Fiter 5 N/A None 120,000 ns a[0] prod[13]
+ B Assembler 6 N/& None 118.400ns b[0] prod(13]
- &3 Timing Analyzer 7 M/A None 117.000ns afl] prod[15]
SHER summary 8 | N/A | None 116.900ns b[1] prod[15)
&EHEE settings 9 | N/A None 116500 ns a2] prod[15]
S wd 10 | N/A None 115100 ns afd] prod[15]
& &) Messages 11 | N/A None 114500 ns a[1] prod[14]
12 | N/A None 114.400ns b[1] prod14)
13 | N/A None 114.400ns al0] prod[12]
14 | N/A None 114100 ns a[3] prod[15]
15 | N/A Mone 114000 ns al2] prod14]
16 | N/A None 112800 ns b[0] prod]12]
17 | N/A None 112600 ns af4] prod{14]
18 | N/A Mone 112800 ns 'a[1] prod[13]

Propagation Delay Time in the design for 8-bit RC Multiplier

A3

APPENDIX 2A

Simulation Result for a 4-bit Carry Save Multiplier

¥ Simulation Report - Simulation Waveforms = S!

) Smulation Report
@B Legal todce

Simulation Waveforms
Simuiation made: Timng

= @R Smiater Master Time Bar:| 17.425ns +|»|Pomte:] 400ns Ineval| 2288ms St Ops End Ops

ﬂimmﬂv va P2 100re 200m 0fns 400ns S00m E00m 700ne 800ns S00ns 1000ns |
ettings Name e e e S e]
@R simuiation Viavel ol
+ @3 smulavon Cover:

EHER 11 Usage Ii
ed

& 5, vessages

< LA 4

=]

Compilation Report - Timing Analyzer Summary

W TG s Gl Timing Analyzer Summary

&0 Legal Notice

ST Flow Summary
Sl Flow Settings
&SR Flow Non-Default
&EHER Flow Elapsed Time
& B FlowLog v

< » < ?

Type
Worst-case tpd N/A None
Total number of failled paths

-

47600 ns b[0] prod(7)

|

Worst-Case Propagation Delay Time

Compilation Report - tpd
Sh'_y Compilation Report

Legal Notice i
gﬂgﬂ Fl;-\' Summary Aok f o Ti ¢$n:d i From
&PEE Flow Settings 1 | N7& None '47600ns b0] prod(7)
&HER Flow Non-Default Glo [2 | N/A None 47000ns b[0] prod]B] |
&SEE Flow Elapsed Time 3 | N/A None 44200ns a3] prod[7)
i g% ’::a“ g synthesis |3 N/A None 43800ns a[l] prod(7)
i = me [5 | /A None 43700n: a2] prod|?)
+ @B Assembler |6 | N/A None 43.600 ns a[3] prod]B]
= & =3 Timing Analyzer |7 | N7A None 43400ns b{1] prod(7]
&SR summary |8 | N/A None 43.200 ns all] prod(8)
&EHER Settings 9 | N/A None 43100 ns al2] piod|B]
St wd [10] N/A None 42800ns b(1] piod6)
& 5 Messages [11] N/a None 42300ns bl0] prodiS]
(12| N/A None 42300 ns bi0] prodi4]
(13| N/A MNone 40100ns a[0] prod(7]
_l N/A None 39500 ns a[0] prad|[B]
15| N/A None 39500ns a[3] prod(5]
r1—_8—{ N/& None 38500 ns a[l] prod({5]
[17] N7A None 38500ns a[l] prodid]
18] N/& None 38400ns a[2] prod(5]
E N/& None 38.400 ns al2] prod([4]
< . > |20] N/A None 38100ns bl1] prodl9) s

Propagation Delay Time in the design for 8-bit Carry Save Multiplier
A-4

APPENDIX 2B

Simulation Result for a 6-bit Carry Save Multiplier

% Simulation Report

Simulation Wavefor

ms

' Simulation Wavetorms
EB Legal Novee Simulation mode: Timng
&[T Flow Summary
Blow Set
i gﬁmmm Mastei TmeBar Ops <|s[Pomtec] 582ns Iwevel 582m Sl End
g= Sua—" oe 20pns 40pns §0.0ns 800 ns 100,0ns
thags Name .gp,
? Smulation Wavet
P gﬁ;‘;“fx“m »| @ WMWWWWW 7Y ST Wn i
& i) Messages | @b AL 00 A
7| @ prod mmm
> | ¥ |€ >

% Compilation Report

fiming Analyzer Summary

b Compilation Report A
&S B Legal Notice
Flow Summary Type
a low Settings 1] Worst-casetpd N/ None 70.900 ns ald] prod[11]
&ER Flow Non-Default 2| Total number of failed paths
&SHER Flow Elapsed Tme [
&B FlowLog v
L4 > < >
Worst-Case Propagation Delay Time
'—d Compilation Report
[Legal Notice i
gt-n Fiog'.‘.- Summary Slack ggg""r“ :fe %elrrlmual il Fiom To »
&SER Fiow Settings 1 MN/A Mene 70900ns af4) pred11] j
&BEE Flow Non-DefaultGlo |27 | N/A Mone 69600 ns al4] prod(10]
&HHEE rlow Elapsed Time 3™ | /A None 69.400ns a5] prodi11]
+ ga E::;;yl;?sg& Synthesis |4 H/a_Hone £3.100ne alS] |peod10)
+ d@h_) Fitter) N/& None 66.300 ns bf0] prod{11]
+ &p) Assembler b N/A MNone 66.100 ns bl1] prod[11]
- &P Timing Analyzer 7 N/& None 66.100 ns al2] prod{11]
S summary 8 N/A None 65.000 ns bl0] prod[10]
EHER Settings 3 | NA None 64.800ns b[(1] prod(10]
&SR wd 10 | N/A& Mone 64.800n: a[2] prod(10]
&P 3. Messages 11 | N2A None 64.400ns a4] prod(9)
12 N/A MNone 63.900 ns a[0] prod[11]
13 N/& None 62.900 ns a[5] prod[9)
14 | N/A None 62 600 ns al0] peod{10]
15 N/8 MNone 61.600 ns a[3] prod[11)
16 N/& MNene 61.500 ns ald] prod[8)
17 NS None 60.400 ns bl2] prod{11]
18 N/A None 60.300 ns a[3] prod[10]
19 N/A None 60.000 ns al5] prod[8)
£ > |20 N/A None 59.800 ns bl0] prod[39] v

Propagation Delay Time in the design for 8-bit Carry Save Multiplier

A-5

APPENDIX 2C
Simulation Result for a 8-bit Carry Save Multiplier

Master Tie B 1855m o »| Porter 56,8 ns interval 3726 St End

Summar y Pos 10fns 200m W0pre 400ns S0fne E00ns T0pne i

Compilation Report

Compilation Report A

Timing Analyzer Summary

Legal Notice
gm Flow Summary Type
&HER Flow Settings 1} Worst-case tpd ‘N/A_ 'None 89.200 ns af5] _ prod(15] ;
&SR Flow Non-Defa, 2| Total numbet of failed paths
&EHEB Flow Elapsed Tt [|
& B Flow Log v
< > < 2

Worst-Case Propagation Delay Time

Compilation Report - tpd

S _ Compilation Report
&hB Legal Notice Actual P2P
&FT) Flow Summary Slack Time
&R Flow Settngs 1 _JN/A None 83200ns alS] _prod15] |
&HEB Fliow NonDefault G [2 | N/A None 88600ns af7] prod(15]
Flow Elapsed Time [3 | N/A None 87.400ns af5] prod14]
v @S A:;:v::& ——— 4 | N/A None 86800ns bl0] prod(15]
4 au—l Fitter 5 N/& None 86.800 ns af7] prod[14)
" au Asasiidoler (4 N/A None 86.000 ns al5) prod(13])
o g N Timing Analyzer 7 N/A& None 85.900 ns al3] prod(15)
&SR summary 8 N/4 None 85900ns alB] prod[15)
EHER Settngs 9 | N7A None 85400ns al7] prod13)
&M wd 10 | N/A None 85000ns b{0] prod[14]
&b 5 Messages 1 | N/A None 84100ns al4] prod[15]
12 | N/A None 84.100ns al3] prod(14]
13 | N/A None 84.100 ns alE] prod[14]
14 N/& None 83600 ns b{0] prod[13]
15 | N/A None 82.700 ns al3] prod13]
16 | N/A None 82.700 ns alB] prod[13]
17 | N/A MNone 82500ns b{1] prod[15]
18 | N/A None 82.300 ns ald] prod(14]
19 | N/A None 81.200 ns a[5) prodf12)
< > |20 | N7A None 80900ns ald] pod(13]

Total Propagation Delays in the Design

A-6

APPENDIX 3A

Simulation Result for a 4-bit Wallace Multiplier

= Simulation Report - Simulation Waveforms

S Simulation Report
’B Legal Nobce

& Flow Summary

Simulation Waveforms

«|»| Ponter

192m Interval 600 ps

Stast:

Ops Erd

“F‘ﬁ‘ Set
- @y M:B(Um Mastes Time Bai 200mns
Summary
Settngs Pt Va
Simulation Wavefl «

« @) Smulabon Cover:

SR 11 Usage Ld e 8

& &) Messages | @b B
| Bpod B

< y |2 3

200ns

D00y 0001 . BO070)} 0011 X 0100) 0101 X
i

ps 100ms 200ms 300ns 400ns SO00ms 600ms 700ms 800rs 900m 1000ms |

T00_ Y0101) 0110 X G111 1000 X_1001_X 1010

TT0 Y OOTT y 0700} 0101) 0110 X O IO) 001 _)00

» Compilation Report - Timing Analyzer Summary

‘= Compilation Report &

&P B Legal Notice

Required

Fiow: Stimmary Type Slack THha Tk From |To ‘
&PER Flow Settings 1| Worst-case tpd N/A_ Mone 48800ns b0] prod(6]
&SER Flow Non-Default 2| Total number of failed paths
&HER Flow Elapsed Tme [|
& B FEowlog -~

< > < >

Worst-Case Propagation Delay Time

S Compilation Report - tpd

' Compilation Report
[E] Legal Notice i A
§ Flo‘f Summary Slack Il?"gpm?;i ?ﬁtn:a! oah From
Flow Settings 1 | N/A None 48800ns b0] prod(7)
&EE Flow Non-Default Glo [2 | N/A None 48800ns bl0] prod(B)
&BEE FlowBlapsed Tme 37| N/A None 48100ns &3] prod(7]
P %E e ynthess || N/ MNone 48100ns a[3] prodl]
+ @] Fitter 5 | N/A None 45600ns bf0] prod[5)
+ &) Assembler 6 | N/A None 44900ns &3] prod[5)
= ‘ 7 | N/A None 41.500 ns 1 prod(7
&gg'g::}:‘::ef z N/A None 41.500 ns :Li plDd{E}
SHER settings 9 | N/A None 41.400ns b[1] prod(?)
S d [10] N/a None 41.400ns a[2] prod(7)
&b 5/ Messages (7| N/A Nore 41400ns b{1] prod(6]
[12] N/A None 41400ns a2] piod(s)
13| N/A Nene 38.800 ns b[0] prod4]
E N/A None 38900ns b0] prod3)
15| N/A None 38300ns a[l] prod5)
(16| N/A None 38200ns b2 prod(7)
[17] N/A4 Nane 38200ms b2] prodi]
18| N/A MNone 38200ns b[1] prod5]
T; N/& Mone 38200ns a[2] prod(5)
¢ s [20] N/A Nome 38200ns a[3] prodi4) -

Total Propagation Delay for the Design

A_TY
Lx=r

APPENDIX 3B

Simulation Result for a 6-bit Wallace Multiplier

Simutal

B Le(| Simutation mada’ Taning

™ Fia

N o Mt T B 18E6ns || Peiner Ve Inenval 1206w Stat End

am w Wgm Wpm Wm 0w Wpw @gm Mgm 0P Npm |

gs Hen 19;‘5m '

ﬁ! CR —ET D Y T Y O X T (RO TTT O W
4 B TOoo0T_ (00000 (i)RR i

"Jg B e = -

< ,7 7(» €

« Compilation Report

i N Compilation Report

z% Legal Notice

Flow Summary

&- Flow Settings
EHER Flow Non-Default ¢
&EHER Fiow Elapsed Time
& B Flow Log

~

v
>

Timing Analyzer S

Timing Analyzer Summary

ummary

Type
1} Worst-casetpd 71.400 ns bfd]__ prod(10] |
2| Total number of failed palhs
< >

Worst-Case Propagation Delay Time

Compilation Report

& B Legal Notice
&[T Flow Summary
&EHEE Flow Settings

& B FlowLog

+ & Fitter

+ &) Assembler

= Q = Timing Analyzer
&EHEH summary
EDER Settings
S8 wd

&P i) Messages

&EHEB Flow Non-Default Glob
&R Flow Elapsed Time

+ @B Analysis & Synthesis

tpd

Slack 2
1_|N/A Nome 71400ns bi4] prod1l) i
2 N/A None 71.400ns bl4] prod(10]

3 | N/A None 70500ns b[3] prod[11)
4 N/& MNone 70500 ns b[3] prod(10]
5 N/A Mone 68800ns b[d] prod(9)
6 N/A None 68.700ns ald] prod(11]
7 N/A MNone 68700ns a[4] prod[10]
8 N/& None 67.900ns b[0] prod[11)
8 N/A None 67.900ns a[5] prod[11]
10 | N/JA None B7.900ns b[0] prod(10]
11 | N/A None 67900ns a[5) prod[10]
12 | N/A MNone 67.900ns b[3] prod{9]
13 | NJA None 66.900ns b[5] prod(11]
14 | N/A None 66.900ns b[5] prod(10]
15 | N/A None 66.100ns a[4) prod]9]
16 | N/A None 65.300ns b[0] prod{9)
17 | N/A None B5300ns a[5] prod(9)
18 | N/& None 64.300ns b{S] prod9]
19 | N/A None 63400ns b[1] prod[11]
20 | N/A None 63400ns b{1] prod[10] v

Total Propagation Delay in the Design

A-8

APPENDIX 3C

Simulation Result for a 8-bit Wallace Multiplier

R eightbit_wallace_mult.vwf

Master Time Bar: 1855 ns +| *| Pointer: B84 ns Interval 4985ns Start:

Name

$ Compilation Report - Timing Analyzer Summary

Timing Analyzer Summary

& B Legal Notice
a Flow Summary Tm Slack Tm Tm From |To
&PER Flow Settings 1§ Worst-case tpd (N/& ‘None 87.800 ns b{1] prod[15] ;
&HER Fiow Non-Defac 2| Total number of failed paths
B Flow Elapsed Tir W
B Flow Log v
< > < >

Worst-Case Propagation Delay Time

% Compilation Report - tpd

&h — Compilation Report

ey ran [1 ;
&HER Flow Settings 1 | N/A 87800ns b[1] piod(15]
&HER Flow Non-Default G [2° | N/A None 87600ns b{1] pod(14]
EHEE Flow Elapsed Tme [3 | N/A None 85800ms bj0] pred(1S]
i gE ?;';Y;?&Smmeg 4 | N/A MNone 85600ns bf0] piod[14)
% gi_] Fitter 5 N/ MNone 84600ns bl1] prod(13]
+ @B Assembler 6 | N/A None 82600ns bl0] piod(13]
- @3 Tming Analyzer 7 | N/A None 82400ns alb] prodi18)
&R summary 8 N/& None 82200ns a5] pod14]
SHER settings 9 | N/ None 82100ns a[2] prod(15)
& wd 10 | N/A None 81.900ns a[2] piod(14]
& &) Messages 1 | N/A None 81500ns b{3] piod(15]
12 | N/A None 81500ns bf{4) piod(15]
13 | N/A None 81.300ns b[3] piod[14]
14 | N/A None 81.300ns bl4] piod14]
15 | N/A None 79800ns a[3] prodi15]
16 | N/A None 79600ns &3] piod14]
17 | NJA None 79500ns a[d] | prod{15]
18 | N/A MNone 79500ns al6] prod]15)
19 | N/A None 79300ns al4] prod(14]

» |20 | N/A None 79300ns alB) piod[14] "

Total Propagation Delay in the Design

A-S

APPENDIX 4A
Simulation Result for a 4-bit Dadda Multiplier

[

W dadda_mult.vwf

Master TmeBar Ops +|»|Pointer. 182n¢ Imeval 182ns Stat End

Pos 100ns 20prs 30Qns 40pns S0Pne G0Pns 70pre fne NPne 10000s |

g 0000 Y 0001 X 0010 X 0011 ¥ 01 1101 i ik
B X 10T X 0

Compilation Report - Timing Analyzer Summary

A Compilation Report POl Timing Analyzer Summary

[E) Legal Motice uired
gé Flog:\' Summary Type Slack ?;r?e J'?:‘:o:a' From | To

&HE Fiow Settings Worstcasetpd " N/A_ None 50300 ns bl0] _ prod(6] ;
&ESER Flow Non-Default ¢ 2| Total number of failed paths

ESHER Flow Elapsed Time =]
&PBE FlowLog v

L > < »

oy

Worst-Case Propagation Delay Time

tpe CE®

2 Compilation Report

s~y Compilation Report
B Legal Notice A
g Flow Summary Slack From
&BER Flow Settings 1 | N/A None 50 b[0] prodl®]
&HEE Flow Non-Default Glob [2 | N/A None 49300ns bl0] prod(7]
&S FlowElapsed Tme [37] N/A None 47.300ns B3] prodi6)
gﬂ i’::l'v;?& Synthesis 4] N4 None 46300ns b3 prod|7]
(3 Fitter _5_ N/ MNone 46100 ns bi0] prod(5)
(3 Assembler 6 [N/A None 44100ns bl1] prodis]
&3 Timing Analyzer 7 | N/A None 44000ns af1] prod§]
SR summary 8 | N/A None 43900ns a[0] prod[B)
SR Settings 3] N/A None 43800ns a2] prodi6]
S wd 10 N/A None 43100ns bi1] prod(7)
é &) Messages 11| N/A None 43100 ns b{3] prod[5)
ITE N/A& MNone 43000ns | a[1] prod[7)
ﬁ' N/& None 42900 ns a[0] piod(7)
14] N/A None 428B00ns a2) prod(7]
[15] N/A None 41.800ns b[0) prod(4)
E N/A None 40500ns bl2] prod(B)
1_?_ N/A None 39900ns b[1] prod(5]
__1_9_ N/A | None 39800ns &[1] prod]5)
[19] N/A None 39700ns al0) | prod(5)
< > |20] N/A None 39600ns a[2] prod5) v

Total Propagation Delay for the Design
A-10

APPENDIX 4B
Simulation Result for a 6-bit Dadda Multiplier

lation Rey

Somudation Wave

1 - Simulation Wavi

torm

forms

Masler Time Bar 1886 s -i }Pm- B716m Interval BBE s Shat End
ps IO!Dm mpm mpm wpm SOFM Gﬁpm 700ns BO?M
1855ns
1 (‘—WXW'} o L L i) (AL
(TR0) DotoRT | ooain X ooy T‘W}(‘ﬂmﬁ—m
w . :
< >

© Compilation Report
' _§ Compilation Report A
EDE Legal Notice
&H[T) Flow Summary
SHER Fiow Settings
&HER Flow Non-Defal
&SEH Flow Elapsed Tn
& B FlowLog v

>

liming Analyzer Summary

Timing Analyzer Summary

Type

1§ Worstcaselpd

" 73.000 ns ald)

_prod[10] |

2| Total number of failled paths

Compilation

Worst-Case Propagation Delay Time

Report - tpd

&9’ Compilation Report

L+ 4 +

&[T Flow Summary Slack |
&EHEE Flow Settings 1 N/A
&SHR Flow Non-Default G [2 | N/A None
&SHEB Flow Elapsed Time [3 | N/A None
& B Flow Log
- 4 HN/A None
&b Analysis & Synthesi
- 5 N/A None
&b Fittar
QL._' Assembler 6 N/A None
&b 3 Timing Analyzer) N/A None
&R summary 8 N/A None
&EHER settings 9 N/A None
S od 10 | N/A None
&b 1) Messages 11 | N/A None
12 | N/A None
13 | NJA None
14 N/A None
15 | N/A None
16 | N/A Mone
17 | NJA NMNone
18 | N/JA None
19 | N/A Mone
$ |20 | N/A MNone

& B Legal Notice

Actual 2P

Time

1 73.000 ns

prod(11]

73.000 ns
72.800 ns
72.800 ns
71.400 ns
71.200 ns
68.700 ns
68.700 ns
67.500 ns
67.300 ns
67100 ns
67.100 ns
67100 ns
66.500 ns
66.500 ns
66.400 ns
66.400 ns
65.500 ns
64.900 ns
64 800 ns

al4)
b{0]
b{0]
a[4]
bl0)
a[0]
a[0]
al4)
bl0]
b(3]
bi3]
a[0]
a(3)
a[3)
b{1]
b{1]
bl3)
a[3]
b{1)

prod[10)
prod[11]
prod[10]
prod([3]
prod[9)
prod[11]
prod[10]
prod{8]
prod(8]
prod[11]
prod{10]
prod(3]
prod{11]
prod{10]
prod{11]
prod{10]
prod[9]
prod[9]
prod[9) -

Total Propagation Delay in the Design

A-11

APPENDIX 4C
Simulation Result for a 8-bit Dadda Multiplier

i eightbit_dadda_mult.vwf
Master Time Bar 1855ns «| | Pointer M2ns Intervat 1565ns Stat End
0 e 200ns 400ns 60.0ne 800ns 100 0ng
Name 1855ns i
| @ R Gy s j i i 70T (OO000T i i T
¥| @b 00000000 Y 0a000001 1 1 1 101 10 m i 1001
prod BOC G000 0 :
|
) |£ >

&B Legal Notice Requited | Actual
Flow Summary Type Slack Tin Tina _ From |To
&SR Flow Settings 1] Worst-casetpd N/A None 88,500 ns b[0] prod[15] i
&R Fiow NonDefo (3] Total number of faled paths
EHER Flow Elapsed Ti
@E Flow Log v
< > < >

Worst-Case Propagation Delay Time

" Compilation Report - tpd i?HEI@|

=D Compilation Report
[2) Legal Notice i ~
gg.:; Fl:\' Summary Slack 25:?'1! :'?3
&PES Flow Settings 1_JN/A None 88500ns 'blO] podlS]
&EE Flow Non-Default G [27 | N/A None 88300ns b{1] piod(15)
ga FiowElapsed Tme [37| N/a |None 87.700ns al3] prod(15)
. QE i’:‘;‘l':;’f& o mhest || N4 None 87100ns bl0] prod14]
+ @h] Fitter 5 N/4 None 86.900 ns b{1] prod[14])
+ &) Assembler 6 N/A |Nene B6.300 ns al4] pred[15]
- &b Timing Analyzer 7 N/& None B6.300ns a[3] pod(14]
SR summary g N/ None 84.900 ns afd)] prod[14]
&HE settngs 9 | N/A None 84.100ns bl0] prod(13]
&8 d 10 | N/&4 None 84000ns a[2) piod[15)
& £ Messages 11 | N/A None 83900ns b[1] prod(13]
12 | N/A NMNone 83.300 ns als] prod15]
13 | NA None 83300 ns alg] pod(15]
14 | N/A Mane 83300ns al7] pred(19)
15 | N/A None 83.300 ns al3] prod(13)
16 | N/A None 82 600 ns al2] 'prod[14)
17 | N/A None 81.900 ns als] prod{14]
18 | N/A None 81.900ns alf] prod14]
19 | N/A MNone 81.300 ns al7] prod[14]
< % |20 | N/A None 81.900 ns al4) prod[13] v

Total Propagation Delay in the Design

A-12

APPENDIX 5
IMPLEMENTATION ON EPF10K70RC240-4

The figure below shows the output of the multiplication process of input bits

of 0011 and 1100, observed on the seven-segment LEDs. The seven-segment LEDs

4-bit Ripple Carry Multiplier

A-13

