Effect of Non-Ground Copper Slag on Properties of Concrete

by

Mohd Zulhilmi Bin Mokhtar

Final report submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Civil Engineering)

JANUARY 2008

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

TABLE OF CONTENTS

CERTIFICATIO	N		iv
ABSTRACT			vi
ACKNOWLEDG	EMENT	ſ	vii
CHAPTER 1:	INT	RODUCTION	1
	1.1	Background of Study	1
	1.2	Problem Statement	2
	1.3	Objectives and Scope of Study	3
CHAPTER 2:	LIT	ERATURE REVIEW	3
	2.1	Copper Slag	3
	2.2	Ordinary Portland Cement	5
	2.3	X-ray Fluorescence (XRF) testing	6
	2.4	Compression Test	7
	2.5	Tensile Test	7
	2.6	Porosity Test	8
CHAPTER 3:	ME	THODOLOGY AND PROJECT WORK.	11
	3.1	Research	11
	3.2	Set up the Raw Material	11
	3.3	Detail of Mixing Scheduled	12
	3.4	Calculation and Mix Proportional	12
	3.5	Concrete Mixing	15
	3.6	Casting	16
	3.7	Curing Process	16
	3.8	Test	18
CHAPTER 4:	RES	ULTS AND DISCUSSION	21
	4.1	Result and Discussion	21
CHAPTER 5:	CON	CLUSION AND RECOMMENDATION	30
	5.1	Conclusion	30
	5.2	Recommendations	31
REFERENCES			33
AFFENDICES			34

LIST OF FIGURES

Figure 2.1	Copper Slag	3
Figure 2.2	X-ray fluorescence (XRF)	6
Figure 2.3	Graph of stress versus strain	7
Figure 3.1	Concrete Mixing Process	15
Figure 3.2	Casting of cylinder concrete	16
Figure 3.3	Curing process take place	17
Figure 3.4	Compression Test	18
Figure 3.5	Splitting Test	19
Figure 4.1	Graph of compressive strength of slag mortars	23
Figure 4.2	Failure in cube due to compression load	23
Figure 4.3	Graph of compressive strength of slag mortars	26
Figure 4.4	Failure in cylinder due to tensile load	26
Figure 4.5	Graph of compressive strength of slag mortars	39
Figure A	Copper slag at MMHE	34
Figure B	Informal discussion with MMHE personnel	34
Figure C	Equipment use for compression and tensile test	35
Figure D	Casting the concrete into the mould	35

LIST OF TABLES

Table 2.1	Material composition of copper slag	4
Table 3.1	Mixing Schedule	12
Table 3.2	Mix proportional for cubes	14
Table 3.3	Mix proportional for cylinders	14
Table 4.1	Result from mix 1 (control)	21
Table 4.2	Result from mix 2 for cube	21
Table 4.3	Result from mix 3 for cube	22
Table 4.4	Result from mix 4 for cube	22
Table 4.5	Result from mix 5 for cube	22
Table 4.6	Result from mix 6 for cube	22
Table 4.7	Result from mix 7 for cube	23
Table 4.8	Result from mix 1(control) for cylinder	24
Table 4.9	Result from mix 2 for cylinder	24
Table 4.10	Result from mix 3 for cylinder	24
Table 4.11	Result from mix 4 for cylinder	25
Table 4.12	Result from mix 5 for cylinder	25
Table 4.13	Result from mix 6 for cylinder	25
Table 4.14	Result from mix 7 for cylinder	25
Table 4.15	Result from mix 1 for slab	27
Table 4.16	Result from mix 2 for slab	27
Table 4.17	Result from mix 3 for slab	27
Table 4.18	Result from mix 4 for slab	28
Table 4.19	Result from mix 5 for slab	28
Table 4.20	Result from mix 6 for slab	28
Table 4.21	Result from mix 7 for slab	29

CERTIFICATION OF APPROVAL

Effect of Non-Ground Copper Slag on Properties of Concrete

by

Mohd Zulhilmi Bin Mokhtar

A project dissertation submitted to the Civil Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CIVIL ENGINEERING)

Approved by,

(AP Dr. Nasir Shafiq)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JANUARY 2008

ABSTRACT

Copper slag is material that widely used in blasting to prepare the steel for painting purposes. Major problem that arise regarding this materials are the way to dispose this material. Thus, this research was carried out to study the potential of copper slag as cement on properties of the concrete. Mortar specimen with non-ground copper ranging from 0% to 30% of cement weight were tested to determine the compressive strength, tensile strength, and permeability of the concrete. Results demonstrated that there is general an increase in the density and workability of concretes as copper slag quantity increases. Also results showed that the compressive strength of concrete is generally improved, compared with the control mix, with the increase of copper slag up to a certain copper slag content beyond which the strength generally reduces.

Keywords:

copper slag, fine aggregate, concrete, strength, compressive strength, tensile strength.

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I want to thank the Department of civil of Universiti Teknologi PETRONAS (UTP) for giving me permission to commence this thesis in the first instance, to do the necessary research work and to use departmental equipment.

I am deeply indebted to my supervisor AP Dr. Nasir Shafiq whose help, stimulating suggestions and encouragement helped me in all the time for finishing this research.

My former colleagues from the Department of Civil supported me in my research work. I want to thank them for all their help, support, interest and valuable hints. Especially to my colleague Miss Nur Hayati Abd Rahman whose help me a lot in laboratory work. Not forgotten also to all technician form Department of Civil who give fully cooperation in this research.

Last but not least, I would like to give my special thanks to my family members for their priceless support, encouragement, constant love, valuable advices, and their understanding along this research were carried out.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Copper slag is used in shot blasting to prepare steel surface for painting. The widespread use of leas and other heavy metals in protective paints increases heavy metals in used slag, which is classified as a solid or hazardous waste. Landfill disposal of copper slag is not feasible since a few hundred tones are produces per year per factory. See *Figure A* in appendix.

Many investigations relating to the disposal of industrial by-products in concrete have been actively pursued. Theoretically, the disposal of this waste by adding into the concrete can reduce the number of pollution related to the copper slag. However, the research on copper slag has not been extensive. Basically, copper slag has been used as aggregates and back failing material. A few studies have been performed to investigate the stabilization of heavy metal present in copper slag within the cement matrix.

1.2 PROBLEM STATEMENT

Copper slag is one the waste that been categorized as heavy metal. Generally, this material can be found at fabrication yard especially at Malaysian Marine and heavy Engineering (MMHE). Statistically, the amount usage of copper slag had increase day by day without proper disposal.

Thus, this research is to study the effect of the copper slag on the properties of concrete as one of the method to dispose this material.

1.3 OBJECTIVE AND SCOPE OF STUDY

The objectives of this thesis that need to be achieved by the end of the project are:

- 1. To determine the effect of non-ground copper slag on the properties of concrete.
- 2. To compare the strength, tensile and porosity of concrete by replacing some portion of cement with copper slag ranging of 0% to 30%.
- 3. To compare the effect between non-ground and ground copper slag on the properties of concrete.

CHAPTER 2

LITERATURE REVIEW

2.1 COPPER SLAG

Copper slag from a metal fabricating company at Pasir Gudang in Johor was used; its chemical composition ad physical properties are listed in **Table 2.1**. Physically it is angular, black, glassy and shiny with sharp edges.

Figure 2.1: Copper slag

As a general rule, the specific gravity will vary with iron content, from a low of 2.8 to as high as 3.8. The unit weight of copper slag is somewhat higher than that of conventional aggregate. The absorption of the material is typically very low (0.13 percent).

Granulated copper slag is more porous and therefore has lower specific gravity and higher absorption than air-cooled copper slag. The granulated copper slag is made up of regularly shaped, angular particles, mostly between 4.75 mm (3/4 in) and 0.075 mm (No. 200 sieve) in size.

ITEM	ITEM MATERIAL	
	CEMENT	COPPER SLAG
Chemical composition (%)		
Silica	20-25	11.9
Calcium oxide	Min 62.0	2.65
Alumina	4.8-6.0	1.56
Iron oxide	2.4-4.5	73.6
Magnesium oxide	Max 3.5	0.302
Sulfuric anhydrite	2.1-2.4	0.554
CuO	-	2.83
K2O	-	1.13
PbO	-	0.376
ZnO	-	1.91
TiO2	-	0.566
Cr2O3	-	0.0564
MnO	-	0.104
As2O3	-	0.256
SrO	-	0.0804
ZrO2	-	0.0753
MoO3	-	0.808
Tb4O7	-	0.221
Re	-	0.624
Os	-	0.0148

 Table 2.1: Material composition of copper slag and cement

2.2 ORDINARY PORTLAND CEMENT

Ordinary Portland Cement (OPC) is the most common cement used in general concrete construction when there is no exposure to sulphates in the soil or groundwater. Ordinary portland cement is a gray coloured powder. It is capable of bonding mineral fragments into a compact whole when mixed with water. This hydration process results in a progressive stiffening, hardening and strength development.

It is a fine powder produced by grinding Portland cement clinker (more than 90%), a limited amount of calcium sulfate which controls the set time, and up to 5% minor constituents (as allowed by various standards). As defined by the European Standard EN197.1, "Portland cement clinker is a hydraulic material which shall consist of at least two-thirds by mass of calcium silicates (3CaO.SiO₂ and 2CaO.SiO₂), the remainder consisting of aluminium- and iron-containing clinker phases and other compounds. The ratio of CaO to SiO₂ shall not be less than 2.0. The magnesium content (MgO) shall not exceed 5.0% by mass." (The last two requirements were already set out in the German Standard, issued in 1909). Portland cement clinker is made by heating, in a kiln, a homogeneous mixture of raw materials to a sintering temperature, which is about 1450 °C for modern cements. The aluminium oxide and iron oxide are present as a flux and contribute little to the strength.

For special cements, such as Low Heat (LH) and Sulfate Resistant (SR) types, it is necessary to limit the amount of tricalcium aluminate ($3CaO.Al_2O_3$) formed. The major raw material for the clinker-making is usually limestone (CaCO₃). Normally, an impure limestone which contains SiO₂ is used. The CaCO₃ content of these limestones can be as low as 80%. Secondary raw materials (materials in the rawmix other than limestone) depend on the purity of the limestone. Some of the secondary raw materials used are: clay, shale, sand, iron ore, bauxite,

fly ash and slag. When a cement kiln is fired by coal, the ash of the coal acts as a secondary raw material.

2.3 X-RAY FLUORESCENCE (XRF) TESTING

Energy dispersive X-ray fluorescence technology (ED-XRF) provides one of the simplest, most accurate and most economic analytical methods for the determination of the chemical composition of many types of materials. It is nondestructive and reliable, requires no, or very little, sample preparation and is suitable for solid, liquid and powdered samples. It can be used for a wide range of elements, from sodium (11) to uranium (92), and provides detection limits at the sub-ppm level; it can also measure concentrations of up to 100% easily and simultaneously.

XRF is an elemental analysis technique with unique capabilities including (1) highly accurate determinations for major elements and (2) a broad elemental survey of the sample composition without standards. For example, XRF is used in analysis of rocks and metals with an accuracy of $\sim 0.1\%$ of the major elements. A technique known as Fundamental Parameters can estimate the elemental composition of unknowns without standards. And to top it all off, sometimes the analysis requires minimal sample preparation.

Figure 2.2: X-ray Fluorescence (XRF)

2.4 COMPRESSION TEST

Compressive strength is the capacity of a material to withstand axially directed pushing forces. When the limit of compressive strength is reached, materials are crushed. By definition, the compressive strength of a material is that value of uniaxial compressive stress reached when the material fails completely.

Figure 2.3: Graph of stress versus strain

The compressive strength is usually obtained experimentally by means of a compressive test. The apparatus used for this experiment is the same as that used in a tensile test. However, rather than applying a uniaxial tensile load, a uniaxial compressive load is applied. As can be imagined, the specimen (Usually cylindrical) is shortened as well as spread laterally. A Stress–strain curve is plotted by the instrument and would look similar to the following:

2.5 TENSILE TEST

ASTM C 496 gives required requirement for the testing apparatus, test specimen geometry and load application for determining splitting tensile strength of cylinder test specimen. The testing machine should meet the requirement of ASTM C 39. The specimen is placed on its side and subjected to a diametral compressive force along its length. If either the upper or lower bearing block of the testing machine is shorter than the cylinder, a bearing bar or plate shall be used that is at least as thick as the distance from the edge of the machine bearing block to the end of the cylinder at least 51 mm wide, and within 0.001 in 0.025 mm of plainness. Bearing strip at least as long as the cylinder and 1/8 in 3.2 mm thick and 25 mm wide shall be placed between the specimen and the loading faces. The load should be applied at a rate of between 686 bad 1380 kPa/min splitting tensile stress.

Failure of these specimens occurs along a vertical place containing the specimen axis and the applied load. The load configuration of this test method induced tensile stresses along the failure plane over approximately two-third to three-fourth of the specimen diameter. The regions of the specimen in the vicinity of the loading strips are subjected to large compression force. However, tensile rather than compressive failure occurs because the stress state at the loading strips is triaxial compression, allowing the concrete to resist higher compressive stresses.

2.6 POROSITY TEST

There are various methods available that have been used to study the pore structure of concrete and mortar, in a broad sense they can be divided into two categories.

- Indirect or Bulk Methods
- Direct Methods

Indirect methods generally give information about the average picture of the whole microstructure of concrete or mortar, on the other hand the direct methods demonstrate the way in which different component phases are arranged in the microstructure. However, there are certain limitations and advantages of each method and technique.

2.6.1 VACUUM SATURATION TECHNIQUE

The total porosity of a porous material, such as concrete, is defined as the fraction of the bulk volume occupied by the voids. The voids may be filled with air and/or water depending upon the degree of pore saturation. For a partially saturated condition, the total porosity is the combination of the part of water filled and air filled voids usually termed as open porosity [Cabrera and Hassan, 1997], which corresponds to the term of empty porosity as used by Ujike and Nagataki (1988).

There are number of methods used to determine the total porosity of concrete and mortar, however, the technique of vacuum saturation is perhaps the simplest, cheap and direct method of measurement. Although the vacuum saturation of concrete is not widely used, evidence shows that the method is gaining acceptance because of providing a closed approach to total or full saturation in a relatively short time period [Cusens and Cabrera, 1987].

2.6.2 Calculation of Porosity

The total porosity (P) and the open porosity (V_e) of concrete and mortar samples were calculated using the following equations [Cabrera and Hassan, 1997].

$$P = \frac{W_{SA} - W_{d}}{W_{SA} - W_{SW}} 100$$
(6.1)
$$V_{e} = P \left(1 - \frac{S}{100} \right)$$
(6.2)

Where:

P = Total porosity (%)

 $V_e = Open porosity (\%)$

S = Degree of saturation (%)

 W_{SA} = Weight of saturated surface dry samples in air (g)

 W_{SW} = Weight of saturated surface dry samples in water (g)

 W_d = Weight of oven dry samples (g)

CHAPTER 3

METHODOLOGY AND PROJECT WORK

3.1 RESEARCH

At the beginning of the project, author has conducted research by referring to the journal, books and also web. Besides, the author also makes some discussion with Miss Fatin Nabilah, one of the FYP students who are using the same material. For further information regarding the material use, the author has managed a discussion with in charge person at Malaysian Marine and Heavy Engineering (MMHE).

3.2 SET UP THE RAW MATERIAL

One of the main important parts of the project is to set up all the material before mixing take place. To ensure the schedule is one time, the author had organized a trip to MMHE in order to take 400 kg of copper slag. This is because, copper slag is the main material needed in this project.

Beside, the author investigates the place to find the raw material are hardware shop(sand) ,market(jut bag) ,quarry(coarse aggregate) and some raw material already available at lab are grease, cement and others equipment.

3.3 DETAIL OF MIXING SCHEDULED

NO.	PERCENTAGE	DATE
1	Control	22-Aug-07
2	95% of cement + 5% of CS	22-Oct-07
3	90% of cement + 10% of CS	4-Nov-07
4	85% of cement + 15% of CS	15-Jan-08
5	80% of cement + 20% of CS	16-Jan-08
6	75% of cement + 25% of CS	17-Jan-08
7	70% of cement + 30% of CS	18-Jan-08

Table 3.1: Mixing schedule

3.4 CALCULATION AND MIX PROPORTIONAL

Before the author start the project and the laboratory, the author do the calculation to determine the mixing proportional The mix proportions are done by referring to the literature review and discussion with supervisor. This design is very important before the author can proceed to the next step. Based on the mix design, the author can determine the proportion of aggregate, cement, water and copper slag.

Calculation

Characteristic Strength	:	Compressive 50 N/mm ² at 28 days
	:	Proportion defective 1 percent
Standard deviation	:	5 N/mm ²
Margin	:	(k=2.33) 2.33 x 5 = 11.6 N/mm ²
Target mean strength	:	50 + 11.6 = 62 N/mm ²
Cement type	:	OPC
Aggregate type: coarse	:	Crushed
Aggregate type: fine	:	Uncrushed
Free water cement ratio	:	0.46
Maximum free-water/cement ratio	:	0.45
Slump	:	Slump 60-180 mm
Maximum aggregate size	:	20 mm
Free water content	:	205kg/m ³
Cement content	:	$205 / 0.45 = 455 \text{ k/m}^3$
Maximum cement content	:	*
Minimum cement content	:	370 kg/m ³
Relative density of aggregate (SSD)	:	2.9
Concrete density	:	2733 kg/m ³
Total aggregate content	:	$2733 - 455 - 205 = 2073 \text{ kg/m}^3$
Grading of fine aggregate	:	Zone 2
Proportion of fine aggregate	:	40 percent
Fine aggregate content	:	$2073 \ge 0.4 = 829.2 \text{ kg/m}^3$
Coarse aggregate content	:	$2073-829.2 = 1243.8 \text{ kg/m}^3$

<u>For cube</u>

Size : 150 x 150 x 150 mm

Total sample : 105 samples

Table	3.2:	Mix	proj	portional	for	cubes
-------	------	-----	------	-----------	-----	-------

	COPPER	CEMENT	WATER	FINE AGGREGATE	COURSE AGGREGATE
Perin	(NO)			(KG)	(KG)
		455	205	829	1243
			ER TRIAL MIX	(=0.07 m ³	
Mix 1	0	32.0	14	58	87
Mix 2	1.6	30.4	14	58	87
Mix 3	3.2	28.8	14	58	87
Mix 4	4.8	27.2	14	58	87
Mix 5	6.4	25.6	14	58	87
Mix 6	8.0	24.0	14	58	87
Mix 7	9.6	22.4	14	58	87

<u>For split slender</u>

Size : 100 x 200 mm

Total sample : 63 samples

Table 3.3: Mix proportional for cylinders

	COPPER	CEMENT	WATER	FINE	COURSE
per m ³	(KG)	(KG)	(KG)	- AGGREGAIE - <u>(</u> KG)	AGGREGAIE (KG)
		455	205	829	1243
		P	ER TRIAL MIX	≡ 0.02 m³	
Mix1	0	9.10	4.1	17	25
Mix 2	1.6	8.65	4.1	17	25
Mix 3	3.2	8.19	4.1	17	25
Mix 4	4.8	7.74	4.1	17	25
Mix 5	6.4	7.28	4.1	17	25
Mix 6	8.0	6.83	4.1	17	25
Mix 7	9.6	6.37	4.1	17	25

3.5 CONCRETE MIXING

All concrete should be mix thoroughly until it is uniform .The sequence of concrete mix is very important and it must be followed accordingly. It must be follow by the BS 1881 Part 125:1986)

- 1. Wetted the mixer with water
- Pour all coarse and fine aggregates into the mixer and mix for 25 seconds to ensure uniform distribution between both materials.
- 3. Add half of the water and mix for 1 minute.
- Leave the mixes for 8 minutes to let both coarse and fine aggregates to absorb water.
- 5. Add cement into the mixer and mix for 1 minute.
- 6. Add remaining water available and mix for 1 minute.
- 7. Stop the machine and do hand mixing to ensure homogeneity.
- 8. Pour the concrete onto the non porous surface.

Precaution

- Room temperature should be approximately 25-27 ^oC
- All the fine and coarse aggregate must be in dry condition. If they are wet, find the content of the aggregates to determine the quantity of water required.

Figure 3.1: Concrete Mixing Process

3.6 CASTING CUBES, SLENDERS AND PLANKS

- 1. Brush the inner faces of mould with oil and tighten the screws.
- The concrete mixing are pouring into the form work by 3 layer, at each layer, vibrator are used take out the air that trapped in concrete mix. Trapped air can reduce the concrete strength.
- After the next day, the cubes, cylinders and planks will take out from the mould and curing process will be conducted.

Figure 3.2: Casting of cylinder concrete

3.7 CURING PROCESS

Curing process is to fully hydrate the concrete beam before it acquires strength and hardness because the concrete beam must be *cured* once it has been placed. Curing is the process of keeping concrete under a specific environmental condition until hydration is relatively complete. Good curing is typically considered to provide a moist environment and control temperature. A moist environment promotes hydration, since increased hydration lowers permeability and increases strength resulting in a higher quality material. Allowing the concrete surface to dry out excessively can result in tensile stresses, which the still-hydrating interior cannot withstand, causing the concrete to crack.

Also, the amount of heat generated by the exothermic chemical process of hydration can be problematic for very large placements. Allowing the concrete to freeze in cold climates before the curing is complete will interrupt the hydration process, reducing the concrete strength and leading to scaling and other damage or failure.

The effects of curing are primarily a function of geometry (the relation between exposed surface area and volume), the permeability of the concrete, curing time, and curing history. Improper curing can lead to several serviceability problems including cracking, increased scaling, and reduced abrasion resistance.

Figure 3.3: Curing process take place

3.8 TEST

3.8.1 Compression Test

Figure 3.4: Compression Test

This test is carried out to determine the compressive strength for the cube. Below are the procedures for compressive test:

- 1. Remove the specimen from curing tank and with surface water and grit off specimen
- 2. Weight each specimen to the nearest kg.
- Clean the top and the lower platens of the testing machine. Carefully enter the cube on the lower platen and ensure that the load will be applied to two opposite cast faces of the cube.
- Without shock, apply and increase the load continuously rate within the range 0.2N/mm² to 0.4N/mm² until no greater load can be sustained. Record the maximum load applied to the cube.

3.8.2 Splitting Test

In the splitting test, a concrete cylinder of the type used in compressive strength testing, is placed, with its axis horizontal, between platens of a testing machine, and the load is increased until failure take place by splitting in the plane containing the vertical diameter of the specimen. Figure3.5 shows the type of jigs required for supporting the test specimen in a standard compression test machine as described by BS 1881: 1983 ; ASTM C 496-90 prescribes a similar test. to prevent very high local compressive stresses at the load lines, narrow strips of packing material , such as hardboard or plywood, are interposed between the specimen and the platen. Under these conditions, there is a high horizontal compressive stress at the top and the bottom of the cylinder but, as this is accompanied by a vertical compressive stress of comparable magnitude, there is a state of biaxial compression so that failure does not take place at these positions. instead, failure is initiated by the horizontal uniform tensile stress acting over the remaining cross section of the cylinder.

Figure 3.5: Splitting Test

3.8.3 Porosity Test

This test was carried out in order to determine the percentages of void contain in the sample. Subsequently this result can be used to determine the durability of the concrete in long term period.

- 1. Make a hole by using coring machine.
- 2. Allocate the sample into the porosity equipment without water and leave it for 30 minutes. Turn it on.
- 3. Then, switch off the equipment and add with the water. Switch on the equipment and leave it for 6 hours.
- 4. After that, put the sample into the coring tank for 1 day.
- 5. Remove the specimens from coring tank, measure the weight in air and in water.
- 6. Put the sample into the oven for 1 day period.
- 7. Weight the sample in air only.

CHAPTER 4

RESULT AND DISCUSSION

4.1 RESULT AND DISCUSSION

In order to study the effect of copper slag to the construction material, compressive strength of mortar sample were determined. A plot of compressive strength against the period of 3, 7, 28 and 90 days reveal that the strength of copper slag mortar generally higher than the control mortar.

Detail: Mix 1 (control)

Days	3	7	28 set for any	and a state of the second s
Cube No.	Average	Average	Average	Average
Weight (kg)	8.08	8.06	8.14	8.12
Max Load (N)	432.33	603.17	914.67	1061.20
Stress	19.22	32.75	40.26	47.16
Pace Rate	6.80	6.80	6.80	6.80

Table 4.1: Result from mix 1 (control)

Detail: Mix 2 (95% of cement + 5% cement)

Days *	Herminister it	A STATE AND A STATE OF	28	nin a manual 90° ang mangang kang kang kang kang kang kang kan
Cube No: Manufact	Average	Average	Average	Average
Weight (kg)	8.30	8.41	8.40	8.41
Max Load (N)	706.23	983.43	1214.67	1261.33
Stress	31.39	43.70	53.99	56.05
Pace Rate	6.80	6.80	6.80	6.80

Table 4.2: Result from mix 2 for cube

Detail: Mix 3 (90% of cement + 10% cement)

Days	mentering and the 3	an an grant an	- 28	and the second s
Cube No.	Average	Average	Average	Average
Weight (kg),	8.37	8.43	8.45	8.43
Max Load (N)	825.13	1018	1239	1402.33
Stress	36.68	45.25	55.05	62.33
Pace Rate	6.80	6.80	6.80	6.80

Table 4.3: Result from mix 3 for cube

Detail: Mix 4 (85% of cement + 15% cement)

Table 4.4. Result from this 4 for cube						
Days	3	$\mathbb{P}_{\mathbb{P}}^{\mathcal{T}}$, we approximate the second s	1.1.1.1.1.1.1.1.28.1.1	**************************************		
Cube No.	Average	Average	Average	Average		
Weight (kg)	8.39	8.38	8.19	8.52		
Max Load (N) 🕫	754.97	894.27	625.73	1265.67		
Stress	33.55	39.74	40.54	46.27		
Pace Rate	6.80	6.80	6.80	6.80		

Table 4.4: Result from mix 4 for cube

Detail: Mix 5 (80% of cement + 20% cement)

TADIC 4.3. Result HOILI HILL J TOL CUDE	Table 4	1.5:	Result	from	mix	5	for cube
---	---------	------	--------	------	-----	---	----------

Days starting	internet 3	na seren Zerrania sere	1	The second s
Cube No.	Average	Average	Average	Average
Weight (kg)	8.47	8.38	8.39	8.39
Max Load (N)	725.50	823.17	847.67	1194.33
Stress	32.25	36.58	37.67	53.07
Pace Rate	6.80	6.80	6.80	6.80

Detail: Mix 6 (85% of cement + 25% cement)

Table 4.6: Result from mix 6 for cube

Days and a		7		90
Cube No asses	Average	Average	Average	Average
Weight (kg)	8.38	8.45	8.31	8.49
Max Load (N)	642.60	672.70	733.47	1033.47
Siress and the	28.56	29.90	32.60	45.92
Pace Rate	6.80	6.80	6.80	6.80

Detail: Mix 7 (70% of cement + 30% cement)

Days	3	7	28	90
Cube No.	Average	Average	Average	Average
Weight (kg)	8.38	8.33	8.50	8.37
Max Load (N)	625.37	666.57	686.93	1077.33
Stress	27.80	29.63	30.53	47.9
Pace Rate	6.80	6.80	6.80	6.80

Table 4.7: Result from mix 7 for cube

Figure 4.1: Graph of compressive strength of slag mortars

Figure 4.2: Failure in cube due to compression load

Another test that been conducted to study the effect of copper slag is tensile strength. Theoretically, tensile strength of concrete was stated to be eight (8) lower than the compressive strength.

Detail: Mix 1 (control)

Days	3	28. spinster	and the second
Cube No.	Ave.	Ave.	Ave.
Weight (kg)	3.72	3.73	3.73
Max Load (N)	75.63	123.37	149.03
Stress	2.41	3.73	4.74
Pace Rate	0.94	0.94	0.94

Table 4.8: Result from mix 1(control) for cylinder

Detail: Mix 2 (95% of cement + 5% cement)

 Table 4.9: Result from mix 2 for cylinder

Days	3	28	90 ····
Cube No.	Ave.	Ave.	Ave.
Weight (kg)	3.76	3.77	3.73
Max Load (N)	84.40	119.90	165.20
Stress	2.69	3.78	5.26
Pace Rate	0.94	0.94	0.94

Detail: Mix 3 (90% of cement + 10% cement)

Days	3	28	90 ····		
Cube No.	Ave.	Ave.	Ave.		
Weight (kg)	3.80	3.73	3.75		
Max Load (N)	85.83	130.90	179.73		
+ references Stress.	2.73	4.17	5.72		
Pace Rate	0.94	0.94	0.94		

Table 4.10: Result from mix 3 for cylinder

Detail: Mix 4 (85% of cement + 15% cement)

Days	3	28*****	Risperio de la constanción de la consta Esta de la constanción
Gube No.	Ave.	Ave.	Ave.
Weight (kg)	3.84	3.78	3.84
Max Load (N)	95.43	110.97	77.20
Stress	3.04	3.53	2.46
Pace Rate	0.94	0.94	0.94

 Table 4.11: Result from mix 4 for cylinder

Detail: Mix 5 (80% of cement + 20% cement)

Days	3	28	
Cube No.	Ave.	Ave.	Ave.
	3.80	3.83	3.82
Max Load (N)	83.10	72.77	75.37
Stress	2.65	3.33	2.40
Pace Rate	0.94	0.94	0.94

Detail: Mix 6 (75% of cement + 25% cement)

 Table 4.13: Result from mix 6 for cylinder

Days	3	28 representation	ni marania 20 mila kata
Cube No:	Ave.	Ave.	Ave.
Weight (kg)	3.80	3.83	3.8
Max Load (N)	75.60	87.47	72.73
Stress	2.41	2.78	2.06
Pace Rate	0.94	0.94	0.94

Detail: Mix 7 (70% of cement + 30% cement)

 Table 4.14: Result from mix 7 for cylinder

Days		28	90
Cube No.	Ave.	Ave.	Ave.
Weight (kg)	3.80	3.78	3.87
Max Load (N)	73.13	86.47	80.67
Stress	2.33	2.75	2.28
Pace Rate	0.94	0.94	0.94

Figure 4.3: Graph of tensile strength of slag mortars

Figure 4.4: Failure in cylinder due to tensile load

The higher strength could be attributing by the composition of silica and other composition in the copper slag. Some of the composition that exists in the copper slag helps to reduce the porosity and by the same time also decrease the permeability of the concrete. Those behaviors will increase the compressive and tensile strength of the concrete. Besides, porosity test also been conducted in order to determine the long term strength of the concrete.

Detail: Mix 1 (control)

Days	andra an	7	n 100 di sa		28	an a
in an	weight in air	weight in water	weight dry	weighi in air	weight In water	weight dry
""""""""""""""""""""""""""""""""""""""	266.6	117.2	250.9	267.6	120.2	252.9
2	269.5	118	253.5	293.3	133.8	274
анала за запарала.	262.1	118.6	246	269.3	125.1	255.3
Average	266.07	117.93	250.13	276.73	126.37	260.73
POROSITY(%)		10.76			10.49	

Table 4.15: Result from mix 1 for slab

Detail: Mix 2 (95% of cement + 5% cement)

Table 4.16: Result from mix 2 for slab

Days	and providence of the second sec	7	a and the second of the second se	n an		e ana ann an Anna Tanan an Anna Anna an Anna an Anna an
¹ C. S. Andre Ratherson, M. Kerner, March 1997, and Physics, and Physics, 19977, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997	weight in air	weight in water	weight" dry	weight in air	weight in water	weight
a shekin a shekir a	269.8	121.2	253.9	243.8	111.9	230.5
2	267.6	120.2	252.9	231.1	103.6	217.4
IT We wind the Statement of the second second	278.4	127	263.3	225.7	100.3	212.4
Average	271.93	122.80	256.70	233.53	105.27	220.10
POROSITY(%)		10.21	an 's standard se Baile an an Alberta Se		10,47	

Detail: Mix 3 (90% of cement + 10% cement)

Table 4.17: Result from mix 3 for slab

Days	dador da ser a la ser	7		Harry Stringers (Her)	28	n abere statistik derberen (1996 - Blenderber († 1997)
an dan series an anna an a	weight In air	weight in water	weight dry	weight in air	weight in water	weight dry
Water and the state of the	295.4	136.7	278.5	290.8	134.2	276.4
2	290.7	134.3	274.6	296	120.1	280.7
	292.8	136.6	278.1	282 .9	128.5	268.3
Average	292.97	135.87	277.07	289.90	127.60	275.13
POROSITY(%)		10.12	na segundad And challe agus Sent challas anas		1999 - 1999 -	

Detail: Mix 4 (85% of cement + 15% cement)

Days man	atolational annual annual a	7	ante de la companya de la companya Na companya de la comp Na companya de la comp	And a state of the	28	And a second s
	weight in air	weight in water	weight dry	welght in air	welght in water	weight dry
With a start and the start and	237.2	101.6	222.4	285.7	134.8	270.5
are and a second s	244.4	105.7	228.9	291.3	138.7	276.7
Barrier Barrier	233	98.6	217.7	291.1	138,3	275.8
Average	238.20	101.97	223.00	289.37	137.27	274.33
POROSITY(%)		11.15	Alternation (States) (States)		9.89	an a

 Table 4.18: Result from mix 4 for slab

Detail: Mix 5 (80% of cement + 20% cement)

Table 4.1	9: Result fro	om mix 5 for slab	
in a second second			

Days dress	THE REAL	7.5	Malatan	denan armitentar	28	and a state of the second
	weight in air	weight in waler	weight dry	weight in air	weight in water	weight dry
and the second s	282.2	128.4	265.8	296	141	280
2	280.7	128.4	265	290.7	138.8	276.1
3 and show and	286.5	132.5	271.3	283	133.3	267.5
Average	283.13	<u>129.77</u>	<u>267.3</u> 7	<u>289.9</u> 0	<u>137.</u> 70	27 <u>4.</u> 53
POROSITY(%)		10.28	Ale and the could be a could be a Ale a could be a Ale a could be could be a could be		10.09	

Detail: Mix 6 (75% of cement + 25% cement)

Days	and a state of the	7	Contraction of the state	in many strength in strength	28				
	weight in air	weight in water	weight dry	weight in air	weight in water	∽weight dry			
and the second	296.2	136.5	279.6	275.3	142.3	261.2			
2	298.4	137.8	281.7	269.3	135.1	255.3			
3	299.5	138.2	282.8	265.5	127.4	252.6			
Average	298.03	137.50	281.37	270.03	134.93	256.37			
POROSITY(%)		10.38			10.11	1945 ^{- 19} 19 - 1946 1946 - 1947 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 -			

 Table 4.20: Result from mix 6 for slab

Detail: Mix 7 (70% of cement + 30% cement)

Days and Days	i Hereite an teacharta an teach	7	and and a second se	and the state of t	28 ⁸	The File of the second
ningen ander som	weight in air	weight in water	weight dry	welght- in air	weight In water	weight dry
and the second s	298.4	137.2	278.6	297.4	140.3	278.8
The management 2 the management	293.3	133.8	274	297.2	140.2	278.5
Balance Balance	288.5	131.7	270.4	290.3	136.4	272.5
Average	29 <u>3.</u> 40	134.23	274.33	294.97	138.97	276.60
POROSITY(%)		11.98			11.78	

Table 4.21: Result from mix 7 for slab

Figure 4.5: Graph of porosity of slag mortars

This graph showed that the mix 2 by replacing the cement with 5 percent of copper slag give the lowest reduction of porosity compared with others mix. The reducing of pores inside the cement leads the increasing of the compressive and tensile strength of the concrete. This situation may due to the existence of heavy metals inside the copper slag.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

From the research that have been done by collecting information from the articles, journal and books, it showed that that copper slag is the best material can be used to replace the cement in order to produce high strength concrete. Thus, after the on going research being done, it showed that this material has increased the properties of the concrete. In order to realize this study, further research will be made to clarify the behavior of copper slag in concrete.

This study has shown that the used of copper slag can increased the strength of a concrete. Based on the results, an optimum strength of concrete is at10% of copper slag usage. Thus, copper slag can be used safely in the concrete as one of the method to dispose this material

Findings from this research will lead to a new are in building construction technology. The use of copper slag will be a cost effective alternative to concrete in order to increase the properties of the concrete. Hopefully with findings from this research, copper slag can be reuse in proper way without any environmental issues.

5.2 RECOMMENDATION

In this final year project, the author determine that there are still have a problem while the author conduct the project that can affected the schedule and the results of laboratory. The problem are :

Water cement ratio decrease

During the mixing of concrete, author notice that water/cement ratio is decrease due to time. This occurs when author decide to combine mixing for cube and slender. Thus, the time use to casting all cube and slender take long time and may cause the water to evaporate. Subsequently, water/cement ratio will decrease and the mix becoming dry. This may give effect to the result of compressive strength and tensile strength. To avoid this from occurs; the author had divided the mixing between cube and cylinder.

Laboratory apparatus

Laboratory apparatus is not sufficient because when the peak hour of laboratory usage, the author must consecutively with others student because lack of equipment .In example in the lab, only 1 hammer present in the laboratory. It makes more time required for laboratory work because lack of equipment facilities in the lab.

Aggregate used

To ensure the accuracy of the research, the mix that been made must using the same size of aggregate. Basically, there is a lot of type of aggregates behind the laboratory.

Future Research

In order to ensure this material can be used widely in concrete as a replacement for concrete, further research should be done respectively. Others research can be carried out are to study the effect of copper slag on structural behavior of the concrete. These are the proposed studies;

- ✤ Static load dynamic
- ✤ Durability load
- ✤ Chloride migration
- ✤ Micro structured using ACM

REFERENCES

- JEGEL. Manitoba Slags, Deposits, Characterization, Modifications, Potential Utilization. Report prepared by John Emery Geotechnical Engineering Limited, Toronto, Ontario, 1986.
- Hughes, M.L. and T.A. Haliburton, "Use of Zinc Smelter Waste as Highway Construction Material," Highway Research Record No.430, 1973, pp.16-25.
- 3. A.M. Neville and J.J. Brooks, 1999, Concrete Technology, Prentice Hall.
- 4. M L Gambhir, 2004, Concrete Technology, Tata McGraw Hill.
- M.S. Shetty, 1982, Concrete Technology-theory and practice, S. Chand & Company Ltd.
- American Society for Testing and Material. Standard specification for ground granulated blast-furnace slag for use in concrete and mortar. ASTM C989-89, Philadelphia, 1982.
- 7. MS 552: Specification for Portland cement (ordinary and rapid hardening): part 1 : Standard specification (first Revision), 1989.

APPENDIX

Figure A: Copper slag at MMHE

Figure B: Informal discussion with MMHE personnel

Figure C: Equipment use for compressive and tensile test

Figure D: Casting the concrete into the mould

FULL RESULT FOR COMPRESSION TEST

Mix 1

Days Market Contractor		3					7.266° 29.69			2	3 10 10 10 10				90	
Cube No.	裕静和 其新語	· 2.000	XXXX3 XXXX	Ave,		2×2		Ave.	新教室	-8862 - 1	1443 4446	Ave.				Ave.
Weight (kg)	7.99	8.13	8.12	8.08	8.06	8.1	8.02	8.06	8.15	8.2	8.06	8.14	8.21	8.06	8.1	8.12
Maximun Loadr(N)	536.5	446.4	314.1	432.33	353.5	834	622	603.17	925.4	855.2	963.4	914.67	1143	1220	820.6	1061.20
STEES	23.85	19.84	13,96	19.22	33.49	37.07	27.69	32.75	41.14	38.02	41.63	40.26	50.8	54.21	36.47	47.16
Pace Rate and it is a second	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80

Mix 2

Days 🚛 👘 👘		- 1 - 3	刘阳 赵阳的	物物要得		网络新闻的 关于	7.98			Selected and 2	8			90 👬		0000
Cube No.	***	24182 3438	國際3 目後	Ave.	警護1 警察	明明2 聖宗	(明) 3 (論)	Ave.	· 建新加加加加	建造 2 / 特殊	1 Mar 13 Mar 14	Ave.		臺灣2臺灣	總超3團體	Ave.
Weight (kg)	8.33	8.37	8.2	8.30	8.55	8.31	8:37	8.41	8.4	8.55	8.25	8.40	8.44	8.47	8.32	8.41
Maximun Load (N) 🖾 🖾	755.8	668.4	694.5	706.23	981	961.3	1008	983.43	1192	1295	1157	1214.67	1305	1237	1242	1261,33
Stress	33.59	29.71	30.87	31.39	43.6	42.72	44.79	43.70	52,96	57.57	51.44	53.99	57.98	54.97	55.19	56.05
Pace Rate Contract	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80

Mix 3

Days 🔄 👘	24 2 6483	3				i-∿(t).⊴.7		218. S. F. S.	法 保持的第	exercit2	2 8 - 16 2	es (dage	5.7.1.4.8			NAME OF
Cube No.		- 2	:::::::::::::::::::::::::::::::::::::	Ave.	1 200	2	3	Ave.	影響1%。	2 🚓	3	Ave.		2 98	3	Ave.
Weight (kg)	8.35	8.26	8.5	8.37	8.59	8.32	8.38	8.43	8.52	8.47	8.36	8.45	8.57	8.41	8.3	8.43
Maximun Load (N)	794.7	865.7	815	825.13	1027	1022	1005	1018.00	1225	1257	1235	1239.00	1349	1444	1414	1402.33
Stress	35.32	38.48	36.23	36.68	45.63	45.44	44.67	45,25	0.00	0.00	0.00	0.00	59.96	64.19	62.85	62.33
Pace Rate	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80

Mix 4

Days and some second		Medilinitett.	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				7.当时后,常常			a fille and a	8 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			90 80		
Cube No.		講論2個語	警察。3 影響	Ave.		2 a		Ave.	派派1 ()	3 2 de	3 MA	Ave.	業業後1286年	2		Ave.
Weight (Ro)	8.38	8.23	8.56	8.39	8.53	8.1	8.52	8.38	8.08	8.32	8.17	8.19	8.44	8.57	8.56	8.52
Maximum Lead((N))	774	701.3	789.6	754.97	903	875.9	903.9	894.27	8.68	958.8	909.7	625.73	1121	1332	1344	1265.67
Slices	34.4	31.17	35.09	33.55	40.13	38.93	40.17	39.74	38,59	42.61	40.43	40.54	19.83	59.21	59.76	46.27
Race Rate	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80

Days and a local sector of the			3								8			90		
Cube No.		建酸24酸酸	3	Ave.	推荐: 125	2	· # # 3 · # # #	Ave.		國家2個業	3.55	Ave.		1002 (B)	3	AVe.
Walani (Ra).	8.6	8.42	8.38	8.47	8.47	8.43	8.25	8.38	8.38	8.32	8.46	8.39	8.48	8.4	8.29	8.39
Maximun Lozick(N)	746.8	725.5	704.2	725.50	829.1	797	843.4	823.17	829.2	843.4	870.4	847.67	1188	1277	1118	1194.33
Siess	33.19	32.25	31.3	32.25	36.85	35.42	37.48	36.58	36.85	37.49	38.68	37.67	52.82	56.73	49.67	53.07
<u>ଇଅନ୍ୟୁକ୍</u> ର	6.8	6.8	6.8	6.80	6.8	6:8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80

Deven 105 March 3804	a source electric station stational station	NA PROVIDENT	A statement and the statement of	a. 847-812 (48-988)	AND		and the Asian Barbara	A Section Section 16314	- THE REPORT OF THE PARTY OF TH	1. TOTATION OF A DESCRIPTION OF A DESCRI	tinter and and a state	10	Number of Statistics	Courses and a second states	estation areas	STOCTOR AND ADDRESS TO A	anticipation to parte."
Daysa	A REAL PROPERTY OF	1. 合同和合称的问题	是我是我们的问题 。"	1.3162-27 7番	San	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 4 7 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Constant and a second	。有法的。得到深	2010年1月1日1日1日	A PRIME STREET	10 (1994) (1994) (1994) (1994)	的考虑的最终的考虑	「大学がないないのない	·論·派AC 聖法明	As the state of the	1999年1998年1997
Cube No.			1 1 1	梁續3 連續	Ave.		(法) 2 % 管	23	Ave.	· 建新計 清晰	3.62	3.3	Ave.	建設	謝禮2 微微	非正式 建建	Ave.
Weight (kg		8.34	8.49	8.32	8.38	8.54	8.41	8.4	8.45	8.32	8.35	8.26	8.31	8.56	8.4	8.52	8.49
Maximunit	oad (N) and the	637.1	664.8	625.9	642.60	651.9	695	671.2	672.70	757.9	703.2	739.3	733.47	1039	984.4	1077	1033.47
Stress		0.00	0.00	0.00	0.00	28.97	30.89	29.83	29.90	0.00	31.26	32.86	21.37	46.13	43.75	47.87	45.92
Pace Rate		6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80

Days 🏙	a de la casa de la cas	建建物。		3 *******				7 22 34		法的关键的		28 28 40 28			90		建建建制的
Cube No.	e a zan y was s	都為1 装装	· 建全 2 - 9 至	345	Ave.	単第1 第第	÷¥⊒2 %≓	美洲3 莱蒙	Ave.	送她第1 资格	编辑2 1 编	38×3 28	Ave.	Sec.1	2 2 2		Ave:
Weight (kg	3)	8.36	8.5	8.27	8.38	8.26	8.36	8.36	8.33	8.45	8.52	8.53	8.50	8.32	8.37	8.42	8.37
Maximun I	Load (N)	657.8	597.4	620.9	625.37	726	613.2	660.5	666.57	759.4	690.7	610.7	686.93	1061	1093	1078	1077.33
Stress		0.00	0.00	27.6	9.20	32.27	27.25	29.36	29.63	33.75	30.7	4152.76	1405.74	47.16	48.59	47.95	47.90
Pace Rate		6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80	6.8	6.8	6.8	6.80

FULL RESULT FOR TENSILE TEST

Mix 1

Days 🕯 🛊 🤞	2	十 權 十 4	124 413	1.	£ 9 7 9 £ ;	****	1 1 1 7 2 2 E	3 / 1 / -	**1*1*1	6485	₩ ¥ ¥ 9	0 / / / /	111111
Cube No. 🗧 🖌		· #1-3-3	2 2 2 1	**3 *	Ave.	攀着1 转	3 老 2 · 1	3	Ave.	**1*	李慧2李全		Ave.
Weight (kg)		3.71	3.69	3.75	3.72	3.73	3.72	3.73	3.73	3.75	3.74	3.71	3.73
Maximun Load	l (N) 🖉	75.6	77.8	73.5	75.63	105.1	119.3	145.7	123.37	112.4	149.3	185.4	149.03
Stress 🗧 🗧	in the	2.406	2.475	2.34	2.41	3.345	3.796	4.039	3.73	3.578	4.751	5.903	4.74
Pace Rate		0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94

Mix 2

Days		/ * * * 3	孝王王章			i i i i i i i i i i 28	5	1999年1月1日		19	33-1-0	14111
Cube No:		2	3	Ave.		2 2	3 3	Ave.	1 1 1 2 - 2	2	3 3 1	Ave. =
Weight (kg)	3.76	3.77	3.74	3.76	3.8	3.77	3.75	3.77	3.75	3.74	3.71	3.73
Maximun Load (N)	96	83.9	73.3	84.40	121.8	124.4	113.5	119,90	180.5	162.3	152.8	165.20
Stress	3.055	2.67	2.334	2.69	3.877	3.865	3.612	3.78	0.000	0.000	0.000	0.00
Pace Rate	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94

Mix 3

Days i 👘 👘		1 6 . 1.13		11112	a sector	i i i i 28 i i i	e states i		1 (190) i	本有关的本人的主要 在
Cube No. 💈 👔		1248	<u> </u>	Ave.	1 11 1 1	÷ ÷ 2; ; i ; ; ; ; 3	Ave.	\$ 212 3	1 2 2 1 1 1	3 Ave.
Weight (kg)	3.79	3.83	3.78	3.80	3.75	3.77 3.68	3 3.73	3.72	3.8 ?	3.74 3.75
Maximum Load (N)	85.5	87.1	84.9	85.83	135.8	126.4 130./	5 130,90	185.6	175.8 1	77.8 179.73
Stress	80.37	81.87	79.81	80.68	0.00	0.00 0.00) 0.00	0.00	0.00 (J.00 0.00
Pace Rate	0.94	0.94	0.94	0.94	0.94	0.94 0.94	1 0.94	0.94	0.94 (J.94 0.94

Days 🖌 🎽 🖌 🌈	· ***	*****	3-4 4	* * * * * *	****	7 1 24 28		******	- ** **		0.2514	
Cube Not 1		1 2 1 -	***	* Ave.	*****	金新22条装着	3	Ave +	承担 [][]]	2 2 8 M	科13 海	Ave.
Weight (kg)	3.83	3.84	3.84	3.84	3.83	3.87	3.9	3.87	3.83	3.85	3.83	3.84
Maximun Load (N)	85.4	98.8	102.1	95.43	117.9	117.8	97.2	110.97	75.6	78	78	77.20
Stress 4 4	2.72	3.145	3.249	3.04	3.752	3.75	3.093	3.53	2.405	2.481	2.484	2.46
Pace Rate	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0,94	0.94	0.94	0.94	0.94

		-
16.6	12	- 64
191		- 1
		-

Days I A		272 <u>3</u> 3	1 and the	******	1212	191144	28111	218251	15141	- 5 / 1 / 390	111	11111
Cube No. 👘 👘	1	3 #2 #2 ·	# 317	Ave.	まま13	委 医鼻子 鼻子	· • • · 3' •	Ave.	1 1 1	1 2 2 2 3 S	÷ 33 💒	Ave.
Weight (kg)	3.82	3.8	3.79	3.80	3.77	3.73	3.78	3.76	3.85	3.79	3.82	3.82
Maximun;Load (N)	79.5	85.2	84.6	83.10	113	101.7	3.597	72,77	76	74.6	75.5	75.37
Stress 4	2.532	2.711	2.692	2.65	3.597	3.237	2.568	3.13	2.42	2.376	2.403	2.40
Pace Rate	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0,94

Mix 6

Days		214.323				- 28 -		1 # # # # # #	2 2 4 2 - 4	90) / / / /	2121911
Cube No.	i≩ 1 8	2	* 3 +	Ave.	1	2	3	Ave.		2	3	Ave.
Weight (kg)	3.79	3.79	3.82	3.80	3.83	3.8	3.85	3.83	3.79	3.83	3.77	3.80
Maximun Load (N)	72.8	78.2	75.8	75.60	91.1	77.2	94.1	87.47	72.3	72.2	73.7	72.73
Stress	273.49	293.77	284.76	284.00	2.899	2.456	2.996	2.78	2.03	2.043	2.084	2.06
Pace Rate	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94

Days	1. 1. 1. 1.	6 2 3	1.5.1.5	教育者的 名字			8 2 2 2 7 1	1 7 <u>8 8 8 1 7</u>	1. A	90	7 F - V.	ATTACK!
Cube No. 🗶 🐇 🐇	新闻·新闻	3 12 · 1	3 .	Ave.	112	2	1 2 13 2 1	Ave	S 1. 5 g	21	3	Ave
Weight (kg)	3.86	3.84	3.71	3.80	3.84	3.78	3.71	3.78	3.82	3.85	3.93	3.87
Maximun Load (N) F	65.6	73.1	80.7	73.13	86.1	88.3	85	86,47	88.1	85.6	68.3	80.67
Stress I	2.088	2.328	2.57	2.33	2.742	2.812	2.707	2.75	2.492	2.422	1.932	2.28
Pace Rate	0.94	0.94	0.94	0,94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0,94