DISSERTATION

“Bit-level non-destructive arbitration of CAN controllers”

By:
Kwong Lai Yeen (1473)

Dissertation submitted in partial fulfilment of
the requirements for the
Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

JUNE 2004
Universiti Teknologi PETRONAS z
Bandar Seri Iskandar @l % 0
31750 Tronoh ;‘{3’-!’
Perak Darul Ridzuan o o0k

, can wnirolles

o Condrolley Aren
Metwovk

Yy BEE - Hesis

CERTIFICATION OF APPROVAL

Bit-level non-destructive arbitration of CAN controllers

by

Kwong Lai Yeen

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

(Mr. Abu Bakar Sayuti)
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

M

KWONG AT YEEN

ii

ABSTRACT

This report is written as part of the requirement of Final Year Project in progress. The
title; “Bit-level non-destructive arbitration of CAN controllers” was selected by the
author from a selection of titles provided by lecturers and approved by the Final Year
Project (FYP) committee.

Chapter 1 of the report presented a brief overview on the project scope and concepts
applied. I't gave some introduction and a brief history on C ontroller Area Network
(CAN). The problem statement which leads to the implementation of the project has
also been highlighted. The objective of the project has also been defined in this
section in which the main aim of this project is have an FPGA implementation of a
CAN controller which will be able to demonstrate the non-destructive arbitration
operation when sending messages across the bus. Chapter 2 of the report discussed
more on CAN in general. It explained on the CAN protocol and the principle used in
the network. CAN in general is divided into three layers which is the Object Layer,
Physical Layer and Transfer Layer. Each layer has its corresponding tasks or
functionality in data/message handling within the network. In network data
transmission, CAN uses a method known as Carrier Sense, Multiple Access with
Collision Detect (CSMA/CD) but with the enhanced capability of non-destructive
bitwise arbitration to handle message collision to deliver maximum use of the

available capacity of the bus.

In Chapter 3, the methodology used in implementing the project has been identified.
The methodology schedule is based on the Gantt chart (Appendix A). The FPGA
design flow used to program into the design into the FPGA chip has also been
presented. In Chapter 4, some discussions and findings of CAN especially in the bit-
level arbitration process of CAN has been discussed. The Register Transfer Level
(RTL) simulation results and the Logic Analyzer captured output waveform has been
analyzed and verified. The last section consists of the conclusion and some

recommendations to improve on the design.

1

ACKNOWLEDGEMENT

This project would not have been possible without the help of a number of people,

and the author would like to express her utmost gratitude to all of them.

The author would like to express her foremost gratitude to her supervisor, Mr. Abu
Bakar Sayuti for his guidance and endless supports in the course of this project. Being
under his supervision has been an irreplaceable experience; Mr. Abu Bakar has
continuously monitored her progress and guided her throughout the duration of the
project. His comments, critiques and suggestions were given serious consideration

and were invaluable in determining the final outcome of the project.

Heartfelt gratitude also goes to Mr. David Kong, Mr. Ho Tatt Wei and Mr. Ng Kiat
Hong, the author’s fellow course mates who have been very helpful in providing basic
tutelage in high-level programming to the author. Thank you very much for their
support.

The author would also like to extend her sincerest thanks to Mr. Goh Teik Ming, the
authors’ good friend for providing valuable insights, ideas and assistance in one way
or another throughout the duration of the project. His many useful comments and
support has indeed helped the author in completing her project successfully. Also, the
author would like to express her gratitude to the UTP Electrical and Electronics Lab
technician espeéi_ally Encik Musa bin Mohd Yusof for his valuable tips and assistance

from time to time,

Last but not least, the anthor would also like to thanks her family for their continuous
love and support, for which is a source of strength and motivation to the author.
Finally, a very big thank you to everyoné who has directly or indirectly assisted the
author in different aspects throughout the development of her project. Without their
constant guidance, supervision and encouragement, this project would not have been
successfully completed. Thank you again for making this project a thorough learning

experience for the author. Your kindness will be deeply appreciated.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVALcovvnminmsssmissssssmsnssisisssssssssssssssssssisssss i

CERTIFICATION OF ORIGINALITY ...ovinncnsmminmnssmissesiossmssescses ii
ABSTRACT.....cccceunuee ORI PP 111
ACKNOWLEDGEMENT.......... . CevesrrrtEssse s a e s et rasasesssenpEesesan iv
TABLE OF CONTENTS ...ciiiiiininiiinsssirsnisssisssssssssssssrossansssssses v
LIST OF ILLUSTRATIONSccmmmmnerrremrssssssssssenes s ———————— vi
LIST OF APPENDICES..........coocrrerecrerccncseesseneeneas ... vii
1.0 INTRODUCTION............... cevrvermnenerseeanas 1
1.1 Background of Syeveveeveeercersessreeeeiereeeee s essenesneee e 1
1.2 Problem Statement........cocuureeiiieiiiii st essesssre s s ssennennens 3
1.3 Objectives and Scope of StUAYcccovivieeic e 4
2.0 LIT_ERATURE REVIEW AND THEORYccccrirrersessrssssenssssenssssnsssnese 5
2.1 Basic CAN PIINCIPIE ...ovevereerieeerie st 5
22 CAN LAYEIS. . oottt s e sm s 6
2.3 CAN Mes8age FIamMe......ovviviivneiinies sttt 7
2.4 CAN ProtoCOl VErSion.......oomuiimmuiiriiinsisscsssisssss e essssssssssssssnes 10
2.5 Datd Transmission in CAN ..o s 10
2.6 VHSIC Hardware Description Language (VHDL) «.coecovoovvivvievecicvniniennnn 13
3.0 METHO_DOLOGY[PROJECT WORK .cvivviersnsnsnasssssnsssssssrsrsossersssssssssanasas 14
3.1 Procedure IAentifiCatioN.coeveniiiemniieciniressinnss s 14
3.2 Research'and Development..........ccooovvivvnrnnnan. et e 16
3.3 FPGA Design Flow......ccoveviivieviniisnierencennens F U PO U POUPUEIPPTROU 21
34 ToolSTUSED .ovevviiiii e cererie e esrerrrsvemseereeaaenes e e e e 25
4.0 RESULTS AND DISCUSSTON ouvurreerersesesesssssssesssssssssssssssssssesssssssasses 26
4.1 Design Simulation ReSUlts........cccovvivviviirirnirmscmin s 26
4.2 Design Synthesis and Implementation Results........ccooiiiiinccnnnne 34
4.3 Device Programming Resultsccoocooviivnnenns e e s 38
5,0 CONCLUSION ...ccovsvev. erssessseasasesssssaseses S 27
5.1 Conclus..ion ... e bbb 41
5.2 ReCOMMENAALIONSccciirerresiiieeeeiiees i neersassessessssstesrsseseetebsstesssbessssesnanasessenes 42
REFERENCES.......covvurenessrennes ceseanessss et ssessaRes RS AR R AR R A 10D 44
APPENDICES .ouccouimmsesssssssssssssssissssmssentssssmmssssssasssssssssissssssesssssssessssssvssissssissss 45

LIST OF ILLUSTRATIONS

Figure 1.1 . ISO/OSI Reference Model........c.ooovvviviiiiiniiini
Figure 2.1 : CANDataFramec.ooeiiiiiiiiiniieii e

Figure 2.2 : CANRemote Frameoo s
Figure 2.3 : Anexample of CAN arbitration process..........oovvvvivrvivieneninnnnn
Figure 3.1 . Project Flow Chartccooooiiiiiii
Figure 3.2 : Functional Block Diagram for CAN controllet..................c.ouen.
Figure 3.3 . A CAN message handling system..............cocoouviiiiiiiiniiininn,
Figufe 34 . Finite State Machine Chart for Shift Register Controller

Finite State Machine Chart for 8-bit Serial-in, Serial-out Shift

Figure 3.5 T 1 1 OO
Figure 3.6 . FPGA Design Flow..........ooiiiiiiiiiii e,
Figure 4.1 - RTL simulation using stimulus for XNOR gate.................. ...
Figure 4.2 . RTL simulation using stimulus for 8-bit shift register..........
Figure 4.3 - RTL simulation using stimulus for shift register controller
Figure 4.4 . RTL, simulation using stimulus for Top-level CAN controller
Figure 4.5 . Test bench simulated output for XNOR gate.............coovvvvennnnn,
Figure 4.6 . Test bench simulated output for 8-bit shift register
Figure 4.7 . Test bench simulated output for shift register controller
Figure 4.8 . Test bench simulated output for Top-level CAN controller............

Figure 4.9 . Report of Top-level CAN controller simulation on window console.

Figure 4.10 - CAN top-level Logic Analyzer output waveform........................

vi

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4
APPENDIX 5
APPENDIX 6
APPENDIX 7
APPENDIX 8
APPENDIX 9
APPENDIX 10
APPENDIX 11
APPENDIX 12
APPENDIX 13
APPENDIX 14

LIST OF APPENDICES

Project Gantt Chart

VHDL Source Codes
Block Diagram of Top-level CAN controller

Test benches Source Codes

Translation Report

Map Report

Place & Route Report

FPGA Floorplan

Pad Report

Asynchronous Delay Report

Post-Place & Route Static Timing Report
BitGen Report

User Constraint File

Layout and caption of Virtex II Xilinx XC2V100 Demo Board

vil

CHAPTER 1

INTRODUCTION

This section provides some insights on the topic of interest, Controller Area Network
(CAN). In addition, the problem statement of the project has also being defined.
Besides, the objectives of the project and the scope of study have also being

provided in this section.

1.1 BACKGROUND OF STUDY

1.1.1 Brief History of CAN

Controller Area Network (CAN) which was developed in the year 1986 was the
brainchild of Robert Bosch, a German automotive system supplier. It was initially
developed for automotive industry applications to ensure a more robust serial
communications for networking in vehicles. CAN is a technology designed for
automobiles to be more reliable, safe and efficient while decreasing wiring harness
weight and complexity within the interior of vehicle electronics. With the use of
CAN, point-to-point wiring in vehicle wiring systems is gradually being replaced by
one serial bus connecting all control systems. Besides in-vehicle applications, CAN
is also being employed in the industry. It is usually used as a communication bus for

message transaction in small-scaled distributed environment.

1.1.2 Introduction

Layered approach is commonly used for network applications in system
implementation. This systematic approach provides standards which enables
interoperability between products from different manufacturers. Similarly for CAN,
a layered approached has been applied in its protocol. CAN is internationally

standardized by the International Standardization Organization (ISO) and the Society

of Automotive Engineers _(SAE) which provide a template for this layered approach.

It is called the Open Systems Interconnection (OSI) Network Layering Reference

Model (As illustrated in Figure 1.1), The CAN protocol itself implements most of
the lower two layers of this reference model, the Data Link Layer and the Physical

Layer [4].

ISO/OSI Reference

Application

-Session -

Transport

Network

Data Link

Data Link Layer

Logical Link Layer (LLC)

Acceptance Filtering
Overload Notification
Recovery Management

Medium Access Control (MAC)
Data Encapsulation/Decapsulation
Frame Coding

. | Medium Access Management
::| Error Detection

Error Signaling

Acknowledgement

Serialisation/Deserialisation

Bit Encoding/Decoding
Bit Timing

Driver/Receiver Characteristics

Figure 1.1: ISO/OSI Reference Model [4]

As shown in Figure 1.1, the Data Link layer of CAN is further subdivided into two
sub layers, which is the Logical Link Control (LLC) and Medium Access Control -
(MAC) sub layers. The Data Link layer is the only layer that recognizes and
understands the format of messages. This layer constructs the messages to be sent to

the Physical Layer, and decodes messages received from the Physical Layer {2].

The Physical layer on the other hand, specifies the physical and electrical
characteristics of the bus. It is responsible for the transfer of bits between the
different nodes in a given network. It defines how signals are transmitted aﬁd
therefore deals with issues like timing, encoding and synchronization of the bit
stream to be transferred. This layer is usually the hardware that converts the
characters of a message into electrical signals for transmitted messages. It also
converts messages from electrical signals into characters for received messages.
Although the other layers may be implemented in either hardware (as chip level
functions) or software, the ‘Physical layer is always "real" hardware (usually a

twisted pair of wire/cable or ahy other medium of transmission).

1.2 PROBLEM STATEMENT

Currently, low-cost CAN controllers and interface devices are available as off-the-
shelf parts manufactured by several of the leading semiconductor manufacturers
such as Fujitsu, Hitachi, Intel, Texas Instruments and Phillips Semiconductors.
Custom built devices and popular microcontrollers with embedded CAN controllers
are also available. However, most of these CAN controllers are proprietary, and as
such customization and further design evolution of the chips will require permission
and consultation from respective manufacturers which in turn will incur more cost

towards system development.

Besides, CAN technology is relatively new in Malaysia unlike in the United
Kingdom where CAN has already received widespread used in different areas of
expertise especially in automotive and industrial applications. It is hope that this

project will serve as an introduction and familiarization with CAN technology in

Malaysia. The results and research work of this project will serve as a foundation for

future development of CAN in the country.

1.3 OBJECTIVE AND SCOPE OF STUDY

The main objective of this project is to be able to implement a section of CAN
network bus with a reasonable degree of performance. The implementation will
focus on the Transfer layer of CAN (explained further in Section 2.2.) which is

responsible for the bit-level non-destructive arbitration of CAN controller.

The design is an FPGA-based implementation which includes the programming of a
CAN controller system onto the FPGA demo board with hardware description
language like VHDL (VHSIC Hardware Description Language) as the core
programming language. One of the main CAN controllers must be able to handle
collisions of signals by bit-level non-destructive arbitration process which is
important in eliminating me_s’sfage_ re-transmission and unnecessary network
overloading. Another CAN co’ntréIleréin the &esign will compete in the usage of the
network bus with the main CAN cﬁontrioller. ‘This is done to ensure that the arbitration
process of the CAN system can _i)e observed and analyzed whenever one or more
nodes (represented by the CAN ;jcon‘;folier:s')sare sending message to the bus. The
output signals of the CAN controléier Viiill then be analyzed and captured with a Logic

Analyzer to investigate the arbitrfajtionéof sigﬁéls behavior in the controller.

In order to cnsure that this project will be feasible within the scope and time frame,
the concentration of this project Wi]i be larg:ely based on the implementation of the
message handling and collision section of CAN. The other principal functionality of
CAN like error handling and remote data transfer will not be included. This project
will be implemented within two semesters where the first semester covers on the
understanding of the CAN concept and VHDL modules programming. For the
second semester, design flow in accordance to the Xilinx FPGA implementation has

been adopted.

CHAPTER 2

LITERATURE REVIEW

This section provide more information on the CAN protocol which includes the
basic principle of CAN, the three layers significant in CAN, its message format and
more on the non-destructive bit-level arbitration process. The information presented
is mostly obtained from relevant books and online resources. More information on
each section can be obtained from the direct source in which it has been referenced
to (The number enclosed within the square brackets corresponds to the referenced
item in the References Sectiorf). B:esides, some information on the hardware

description language used for this project, VHDL is included in this section as well.

2.1 BASIC CAN PRINCIPLE

With reference to [3] and {4], CAN principle has been described in this section.
CAN is an advanced serial bus system that efficiently supports distributed control
systems. It is a broadcast bus that has an open, linear structure with one logic bus
line and equal nodes. CAN is also a message-based protocol, not an address based
protocol. As such, the messages are not transmitted from one node to another node
based on addresses but the message is broadcasted to all nodes and each message 1s
referred to by an identifier within the message itself which indicates the message
content and the priority of the message. This identifier is unique throughout the
network. All other nodes on the network receive the message and cach performs an
acceptance test on the identifier to determine if the message, and thus its content, is
relevant to that particular node. If the message is relevant, it will be processed,
otherwise it is ignored. Since the nodes do not have addresses, the number of nodes
may be changed dynamically without disturbing the communication of the other

nodes.

2.2 CAN LAYERS

In order to achieve design transparency and implementation flexibility, CAN has

been subdivided into different layers. They are:-

o The Object layer
¢ The Transfer layer

o The Physical layer

The object layer and the transfer layer comprise all services and functions of the data

link layer defined by the ISO/OSI model (As being mentioned in Section 1.1) [11].

2.2.1 Object Layer
The scope of the object layer includes:

¢ Finding which messages are to be transmitted.
e Deciding which messages received by the transfer layer is actually to be
used.

¢ Providing an interface to the application layer related hardware.

222 ‘Transfer Layer
The scope of the transfer layer mainly is the transfer protocol which includes:-

o Controlling the framing
e Performing arbitration
¢ Error checking and error signaling

s Fault confinement.

2.2.3 Physical Layer

The scope of the physical layer is the actual transfer of the bits between the different
nodes with respect to all electrical properties. Within one network the physical layer,
of course, has to be the same for all nodes. There may be, however, much freedom in

selecting a physical layer.

2.3 CAN MESSAGE FRAME

With reference to [11], it is found that CAN protocol define four different types of

messages (or Frames). They include:-

e Data Frame
¢ Remote Frame
¢ FError Frame

¢ Overload frame

The most common type of frame is a Data Frame. This is used when a node
transmits information to any or all other nodes in the system. The second frame is
called 2 Remote Frame, which is basically a Data Frame with the Remote Transmit
Request (RTR) bit set. The other two frame types are for handling errors. One is
called an Error Frame and the other one is called an Overload Frame. Error Frames
are generated by nodes that detect any one of the many protocol errors defined by
CAN. Overload errors are generated by nodes that require more time to process

messages already received.

Data Frames and Remote Frames will be further explained. Data Frames consist of
fields that provide additional information about the message as defined by the CAN
specification. Embedded in the Data Frames are Arbitration Fields, Control Fields,
Data Fields, CRC Fields, a 2-bit Acknowledge Field and an End of Frame.

The Arbitration Field is used to prioritize messages on the bus. Since the CAN
protocol defines a logical 0 as the dominant state, the lower the number in the
arbitration field, fhe higher priority the message has on the bus. The arbitration field
consists of 12-bits (11 identifier bits and one RTR bit) or 32-bits (29 identifier bits,
1-bit to define the message as an extended data frame, an SRR bit which is unused,
and an RTR bit), depending on whether Standard Frames or Extended Frames are
being utilized. The current version of the CAN specification is Version 2.0B3, which
defines 29-bit identifiers. They are known as the Extended Frames. Previous
versions of the CAN speciﬁcation defined 11-bit identifiers which are called

Standard Frames. The CAN protocol version will be explained further in Section 2.4.

The Remote Transmit Request (RTR) is used by a node when it requires information
to be sent to it from another node. To accomplish an RTR, a Remote Frame 1s sent
with the identifier of the required Data Frame. The RTR bit in the Arbitration Field
is utilized to differentiate between a Remote Frame and a Data Frame. If the RTR bit
is recessive, then the message is a Remote Frame. If the RTR bit is dominant, the

message is a Data Frame.

The Control Ficld consists of six bits. The most significant bit (MSB) is the IDE bit
(signifies E xtended Frame) which should be dominant for S tandard Data Frames.
This bit determines if the message is a Standard or Extended Frame. In Extended
Frames, this bit is RB1 and it is reserved. The next bit is RB0 and it is also reserved.
The four least significant bits (LSB) are the Data Length Code (DLC) bits. The Data
Length Code bits determine how many data bytes are included in the message. It
should be noted that a Remote Frame has no data field, regardless of the value of the

DLC bits.

The Data Field consists of the number of data bytes described in the Data Length
Code of the Control Field. The CRC Field consists of a 15-bit CRC field and a CRC
delimiter, and is used by receiving nodes to determine if transmission errors have
occurred. The Acknowledge Field is utilized to indicate if the message was received

correctly. Any node that has correctly received the message, regardless of whether

the node processes or discards the data, puts a dominant bit on the bus in the ACK
Slot bit

The last two message types arc Error Frames and Overload Frames. When a node
detects one of the many types of errors defined by the CAN protocol, an Error Frame
oceurs. Overload Frames tell the network that the node sending the Overload Frame
is not ready to receive additional messages at this time, or that intermission has been
violated. Figure 2.1 and Figure 2.2 shows the Data Frame and Remote Frame for a

Standard CAN (Version 2.0A).

Data Frame of CAN 2.0A (Standard)

1 _ m
1 N 1 : 1 ¥ | ' [1 1
1 : 1 1 : : : . 1 : 1 1 1
1 1 1 1 1 1
! START! IDENTIFIER ERTR | IDE | RO} DLC ! DATA i CRC ! ACK ! EOF+FS |
i | i : I ‘) : i : i
] !)] l !] l 1] l
—— o . a0 . . .] 1 a0 . .,
1 bit ! 11 bits 1hit y1bit 1bit 4bits, 0to 8 bytes ' 16 bits; 2 hith 10 bits
[] 1 i 1
' : | ' i |
: : : S P
‘¢—— Arbilratior——4—— Control —»4—— Data Field—»i4—>d4—»)
' field ' Field ' CRC !
Field
Acknowledge
Field
Figure 2.1: CAN Data Frame [13]
Remote Frame of CAN 2.0A (Standard)
1 m
|] \ -I] -1 t 1 ' 1
) | | o i) . ' :]
| START! IDENTIFIER !RTR ! IDE ! RO DLC | CRC . ! ACK | EOFHFS !
b R ¥ R :
L } — w
1bit 1 11 bits 1bith 1bit 1bit 4bits | 16 bits 2 hits 10 bits
; ! | !
r 1
1

< Arbitraiion_,.'q__ Control—_pg¢— GRG ﬁeld—"—’i
! field : field : : '

Acknowledge field

Figure 2.2: CAN Remote Frame [13]

24 CANPROTOCOL VERSION

The CAN protocol supports two message frame formats, the only essential
difference being in the length of the identifier. The CAN standard frame supports a
length of 11 bits for the identifier, and the CAN extended frame, supports a length of
29 bits for the identifier.

2.5 DATA TRANSMISSION IN CAN

In any systems, some parameters will change more rapidly than others. It is likely
that the more rapidly changing parameters need to be transmitted more frequently
and, therefore, must be given a higher priority. To determine the priority of
messages, CAN uses an established method known as CSMA/CD that is similar to
that used in ETHERNET. However, besides the CSMA/CD technology, CAN have
an enhanced capability of non-destructive bitwise arbitration to provide collision

resolution, and to deliver maximum use of the available capacity of the bus.

The ‘CSMA’ stands for Carrier Sense Multiple Access. What this means is that
every node on the network must monitor the bus for a period of no activity before
trying to send a message on the bus (Carrier Sense). Also, once this period of no
activity occurs, every node on the bus has an equal opportunity to transmit a message
(Multiple Access). The abbreviation, ‘CD’ stands for Collision Detection. If two
nodes on the network start transmitting at the same time, the nodes will detect the

collision and take the appropriate action [2].

2.5.1 Non-Destructive Bitwise Arbitration

From [5], the following information has been further obtained. Bus access conflicts
are resolved by nén—destructive bit-wise arbitration in CAN in the transfer layer of
the layered structure of CAN which is explained in Section 2.2. The protocol
happens in accordance with the "wired-and” mechanism, by which the dominant
state overwrites the recessive state. The priority of a CAN message is determined by

the numerical value of its identifier. The numerical value of each message identifier

10

(and thus the priority of the message) is assigned during the initial phase of system
design. A fundamental CAN characteristic in this sense is that the lower the message
number, the higher its priority. Therefore, an identifier consisting entirely of zeros is

deemed to be the highest priority message.

CAN utilize binary signaling with a high and low signal state and an idle signal state
that is defined as high. To transmit a logical ‘0 bit, a node sinks the bus state to low
for one bit time. This is called a dominant bit. To transmit a logical ‘1° bit, the state
of the line is left high for one bit time. This is called a recessive bit. Collision-
avoidance begins when two or more nodes simultaneously begin to transmit the first

bit of their frame-identifier.

At any time during priority arbitration, a node transmitting a dominant bit (logical 0)
has a higher priority than any node transmitting a recessive bit (logical 1). A node
transmitting a recessive bit effectively monitors the bus state for one bit time. Upon
detection of a dominant bit transmission, this node recognizes a higher priority frame
and drops out of contention. This process is repeated over the length of the identifier.
Given that the frame identifiers are unique, only one node can be left in contentién at
the end of the bit-wise arbitration. This effectively realizes a priority arbitration
mechanism wherein the identifier with the lowest numeric value has the hiéhest

priority. Figure 2.3 shows an example of arbitration process in CAN.

il

10 ¢ 8 7 6 5 4 3 2 1 0
Station 1 | | I ‘ listening only
| I listening only

recassive o
Bus level . | ' |
dominan : ' i : !

Figure 2.3: An example of CAN arbitration process [5]

From Figure 2.3, station one and station two has lost in the arbitration of signals.
Station 3 which have the highest priority (lowest identifier value) is thus in the
transmitter mode and is successful in transmitting th¢ complete data frame. Station 1
and Station 2 on the other hand, has switched to receiver mode upon detection of its
arbitration state. In the receiver mode, the station orily “listens™ to the messages and
will decide whether to accept or reject the meSsages.é Station 1 and Station 2 and will

resend the message (data frame) once the bus is free again (in recessive mode).

2.5.2 The Benefits of Non-Destructive Bitwise Arbitration

Non-destructive bitwise arbitration provides bus allocation on the basis of need, and
delivers efficiency benefits that cannot be gained from either fixed time schedule
allocation (e.g. Token ring) or destructive bus allocation (e.g. Ethernet.). With only
the maximum capacity of the bus as a speed limiting factor, CAN is indeed more
superior in term of message handling across transmission medium. Outstanding
transmission requests are dealt with in their order of priority, with minimum delay,

and with maximum possible utilization of the available capacity of the bus [2].

12

2.6 VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL)

From [6], [7] and [9], the following information has been obtained. VHDL is a
hardware description language that can be used to describe and simulate the
operation of a wide varicty of digital systems, ranging in ¢ omplexity from a few
gates to an interconnection of many complex integrated circuits, It can describe a
digital system at several different levels, which is behavioral, dataflow and
structural. VHDL leads natiirally to a top-down design methodology in which system
is first specified at a high level and tested using a simulator. The simulator is used to
verify the behavior of the digital circuit prior to expensive fabrication After the
system is debugged at this level, the design ean be refined, eventually leading to a

structural description closely related to the actual hardware description.

VHDL program 1is unlike any conventional program written in either Pascal or
FORTRAN. In VHDL, the focus is in describing the behavior of some physical
system rather than how a furlction is computed. The: VHDL description can be used
to support two complimentary processes foimd in the design of digital system which
is simulation and synthesis. Simulation and synthems are complementary design
processes. In both cases, the specrﬁcatron of the behavior of the digital system is the
first step to ¢ onstruct a VHDL m odel for the desu'ed system. A VHDL simulator
executes this model to mlmlc the behavror of. the phys1cal circuit where the behavior
is described in terms of the occurrence of events and waveforms of srgnals In
contrast, digital circuit synthesrs is the reverse process. A VHDL program is the
input to a synthesis compller that can process th1s description to generate the
physical design of a circuit. 3Essentra11y, the synﬂ1e51s compiler mimics the activities
of what used to be a human chip designer job to generate a hardware design from an

initial specification.

13

CHAPTER 3

METHODOLOGY / PROJECT WORK

This section describes the procedUre$ and project flow used in implementing this
project. Besides, the design stages from the project flow chart will be explained

further in this section. The tools used in assisting this project have also been defined.

3.1 PROCEDURE IDENTIFICATION

Described in this section is the methodologies applied in order to achieve the final
objective set. The methodology used has been illustrated with a project flowchart as

shown in Section 3.1.1.

It is important to note that the tasks and workflow for this project is largely based on
the Project Gantt Chart. Milestones have been set accordingly and the Gantt chart
will be used as a guide along the duration of the project. It is important to note that
the Gantt chart will be revised along the course of the project to suit the personal
needs of the author as well as to cater for some unforeseen circumstances. Please

refer to Appendix 1 for the Project Gantt Chart.

3.1.1 Project Flow Chart

Figure 3.1 is a flow chart that illustrates the design process used in the

implementation of this project.

14

Design Implementation

Design Stage v

Create user constraint file

Y

Draw fuctional block diagram

F

Bitstream File

Sketch Finite State Machine \{\

(FSM) flowchart Post, Place & Route
VHDL Netlist & SDF

— T

Device Programming

Design Specification Stage
_ : Optimized Netlist
VHDL Programming of each Output waveform on Logic
design entity Analyzer

A

Test, analyze and verify design

Desllgn. Synthesis Stage output signals

Perform RTL Simulation o
(Stimulus & Testbench) Finalize Results

Figure 3.1: Project Flow Chart

15

From Figure 3.1, it is observed that the methodology has been divided into two
major phases which is Research and Development and FPGA Design Flow. The first
phase consists of only one sub—sta’ge which 1s the Design stage. The Design stage
will be explained in Section 3.2.1. The FPGA Design Flow phase is a step-by-step
method employed to implement the CAN design in FPGA chip. This phase consists
of four sub-stages namely the Design S pecification stage, Design Synthesis stage,
Design Implementation stage and Device Programming stage which will be

elaborated in Section 3.3.1, 3.3.2, 3.3.3 and 3.3.4 respectively.

The Research and Development phase includes preliminary research work on CAN
from resources like books and internet as well as mastering the VHDL programming
language. In semester one, the author compl_éted the first phase and a section of the
second phase which is until the Design Synthesis stage. The second semester is a
continuation of work from the first semester until completion. In order to achieve the
device programming stage, a systematic approach has been employed in order to
achieve the final objective. The FPGA dcsi‘én flow has been adopted in order to be
able to successfully program the CAN desigﬁ into the FPGA chip.

3.2 RESEARCH AND DEVELOPMENT

3.2.1 Design Stage

32.1.1 Functional Block Diagram

The specification stage involves producing a Functioﬁal Block Diagram of a CAN
controller with message arbitration capabilities. Figure 3.2 illustrates the block
diagram for a CAN controller. From Figure 3.2, it is shown that four main modules.
are needed to design a CAN system. Enclosed within the double line box are three
different modules or entities used to design a single CAN controller, say CAN
controller A. The modules are a shift register controller, a shift register and a
comparator which is basically an XNOR gate. Outside the double line box is another
shift register, a dummy shift register which functions as another CAN controller, say

CAN controller B which will only shift out a sequence of bits every clock cycle but

16

will not posses the arbitration properties of a real CAN controller. CAN controller B
will compete in the use of the bﬁs with CAN controller A. An AND gate which acts
as the design physical bus is part of the FPGA design implementation to demdnstrate
the message handling capability of the controller across the bus which behave

according to the “wired-AND” mechanism as discussed in section 2.5.1.

» Enable_shifter
> Shift Reglster ' A e o . .
‘Conitroller enahle shifter |- Shift Reglster > Dout
y: T A — y u— , Bus
T " Qutput
AND gate
{Physical Bus
Bus_status Co_mparator) Behavior)
{X_NOR gate)
Bus busy?
CAN Controller A » Bus_busy_out
Shift Reglster
1 ¢ (Dummy)
CAN Coﬁroller B
» Clock_putput
-—t — Note:
| EOF I IR —_—— | T Theinputs enclosed with dotted
- [Reset | —_— | line box will be provided from a
- | @ | Loae test bench
| ek |
| start |

Figure 3.2: Functional Block Diagram for CAN controller

32.1.2 CAN Message Handling Design System

In the CAN system, CAN controller A and CAN controller B must send out its
identifier value to the bus first to determine its priority. As being mentioned in
Section 2.5, CAN adopts a message-based protocol and priority of message is
determined by its identifier. The lower the identifier value, the higher the priority. As
such, any CAN controller with the lower identifier value will win the arbitration
process (message handling process) and thus be able to proceed in sending out its

message (the whole data frame) to the receiver across the bus. In this design, CAN

17

controller A will be set to have a higher identifier value than CAN controller B. As
such, for this system, CAN controller B will win in the arbitration process as it has
been given higher priority due to its lower identifier value as detected by the network
system bus. This arbitration process protocol must be achieved to verify the
functionality of the CAN message handling system. A diagram which illustrates the
CAN message handling system has been shown Figure 3.3.

Network Bus
: ' Other
Lower priofity -sy'gtem :
: . connected -,
| — — — To CAN

network
CAN CONTROLLER A

Higher priority

Other - - -
system: - —
connected: '
To CAN
network

10000000 CAN CONTROLLER B

Figure 3.3: A CAN message handling system
3213 Finite State Machine (F SM) Chart

Finite State Machine (FSM) chart that des@ﬁbes the shift register controller and shift
register in accordance to the functional block diagram are then drawn to assist in the
HDL programming stage. A Finite State Machine flowchart leads directly to a
hardware realization using VHDL. Basically, the VHDL description of these systems
is constructed from the FSM Chart and the VHDL codes are then simulated (RTL
behavioral simulation described in Chapter 4) to verify its correct operation. The
FSM charts of both the shift register controller and shift register are shown in Figure
3.4 and Figure 3.5 respectively.

18

Finite State Machine Chart For Shift Register Controller

State 0

Y. ;

> - idle

—
— PP

Y

(enable_shifter =0)

‘start
-operation

(enable_shifter=1)

Figure 3.4: Finite State Machine Chart for Shift Register Controlter

19

ini i r Shift Reqgister

Idle

Yes

No

C!nitialize shifter ="100011 10')

No

Clock high?

Start=17?

Start shifting .

y
(tmp(7) stemp(6) & DI)

v

C Do=temp(7) > (Do =1)

Figure 3.5: Finite State Machine Chart for 8-bit Serial-in, Serial-out Shift Register

From Figure 3.4, it can be observed that the shift register controller has only two
states. The minimal number of stages used ensures a more efficient approach to
handle the controller. This is because the state of the design is synchronous and
relies on the system clock. With less state changes when the design is triggered, the
results can be observed immediately. This is an important criterion as the design is a
time-critical design according to Mealy state machine. As such, the outputs are a

function of the inputs and the current state. Hence, with fewer states, state transition

20

can be designed to happen immediately in the current clock cycle instead of
changing only during the next clock cycle. This is an important protocol as the
message handling process of each controlier must be quick in response. Any failure

to do that will disrupt the message sending process.

From Figure 3.5, the shift registér module 1s initially idle. At this idle state, its output
(D0) is set to be logic ‘1’ to signify that it is idle. It is designed to send out a
sequence of bits after reset is iniﬁated and its start input is activated. The bits will be
shifted out serially according to its initialization bits. From the figure, the
initialization bits are set as “10001110”, After the first eight bits being shifted out,
the follow-up bit will be in accordance to the state of the shifter input, DI. The

similar process repeats after a reset.

3.3 FPGA DESIGN FLOW

The general FPGA design flow diagram employed is shown in Figure 3.6. This is the
overall development methodology used in implementing the CAN design in FPGA.

Design _ Design Verification

Entry

Functional
Simulation
Design
Sy

nthesm

Static Timing
Design Analysis

ion
Imptementatio ack Timin
Annotation Simulation
Download to a _ In-Circuit
Verification

Xilinx Device

Figure 3.6: FPGA Design Flow [14]

21

3.3.1 Design Specification Stage

After the first phase, intensive coding with VHDL language is done in accordance to
the FSM chart produced earlier in Section 3.2.1. Active-HDL 5.1 program is used as
the authoring platforin. Simpler module like the XNOR gate code is obtained from
web resources and being modified accordingly to suit the needs and specification of
the design. Block diagram is used to interconnect the smaller module of the design to
produce the top-level module which can be automatically generated by the Active-
HDL program. The top-tevel module is used to tic all other modules to form a
complete design of the CAN controller. Please refer to Appendix 2 for the VIIDL
source codes for each entity/module and Appendix 3 for the Top-level module block

diagram.

3.3.2 Design Synthesis Stage

Synthesis is the transformation of an idea into a manufacturability device to carry out
an intended function. It other words, it can also be described as the transformation of
a design from abstract to concrete design [14]. Synthesis will be done using Active-
HDL 5.1 and Xilinx Synthesis Technology (XST) program packaged within the ISE

Design Environment 4.2i.

The source code for the Comparator, Shift registers, Shift register controller and top-
level CAN controller entities will be compiled and synthesized using the Active-
HDLI. program and later migrated to the Xilinx ISE Design Environment 4.2i tool to
be synthesized again. Simulation is performed on each entity to ensure that the
design works according to spec'iﬁcation. As such, Register Transfer Level (RTL)
simulation is done to determine and analyze the functionality of the design and to
verify the correctness of the RTL VHDL description. The simulated output can also
be used to measure the performance of the design and further improvement on the
design can be done to improve its performance. The results and the corresponding
discussion on the RTL simulation carried out in this project will be presented in

Chapter 4.

22

3.3.3 Design Implementation Stage

Design implementation stage begins with the mapping of a logical design file to a
specified device and is complete when the physical design has been successfully
routed and a bitstream is generated [14]. Design implementation is also done using
the ISE Design Environment 4.2i. The software uses the following design flow

engine to carry out the implementation stage.

i. Translate - Merge all input netlist to form a complete full chip
netlist. This is done by running the NGDbuild program.

ii, Map - Optimizes the merged netlist by NGDbuild. This can be
accomplished by running the program, MAP.

iii. Place & Route - All logic blocks are assigned specified location
within the die. Routing (connection) of logical blocks are done by
the program, PAR.

iv. Configure - Configures the physical implementation into binary
stream. This is accomplished by the program BitGen. PromGen
program will then converts BitGen into PROM file format.

V. Timing - Performs timing analysis by 7RACE program.

Before an implementation, constraints must first be set. Constraints are instructions
placed on symbols or nets in an FPGA schematic or textual entry file such as VHDL
or Verilog. They can indicate a number of things such as placement, implementation,

naming, signal direction, and timing considerations.

In the Xilinx development system, logical constraints are placed in a file called the
User Constraints File, The Xilinx Constraints Editor which is integrated within the
ISE Design Environment software is used to create and modify timing and physical
constraints of the design. Input files to the Constraints Editor are the UCF file.
Constraints created by the user are written to this file and NGD (Native Generic
Database) file. This file serves as input to the mapper, which generates the physical
design database (NCD file). NGDBuild uses the UCF file and design source netlists
to produce an NGD file. The NGD is read by the MAP program, which generates an

23

NCD file (a physical design database) and a PCF (Physical Constraints File). The
implementation tools use the NCD and PCF files to produce a bitstream. The UCF
file can be viewed from Appendix 13.

3.3.4 Device Programming Stage

Device programming is the process of loading a design-specific programming into
one or more FPGAs in order to define the functional operation of the internal blocks
as well as their interconnections. The Xilinx device which will be used for this
project is re-programmable and it also supports in-system programming. Device
programming is done using the iMPACT program within the ISE Design

Environment.

The iMPACT configuration tool is a command line and GUI based tool, which
allows user to configure FPGA designs using Boundary-Scan, Slave Serial, and
Select Map configuration modes. Boundary-Scan mode is an industry ‘standard serial
programming mode and will be the selected mode to perform the design. External
logic from a cable, microprocessor, or other device is used to. drive the JTAG
specific pins, Test Data In (TDI), Test Mode Select (IMS), and Test Clock (TCK)
and sense device response on Test Data Out (TDO). This mode is the most popular
mode of configuration due to its standardization and ability to program FPGAs,
PLDs, and PROMs through the same four JTAG pins. [14]

There is a specific order in which commands must be executed using the iMPACT

tool. The following steps are performed to initiate the device programming process:

1 Set the configuration mode

ii. Set up the cable port

iii. Define the JTAG chain and assign files
iv. Program the device

V. Verify the device

Vi. Exit from the programming software

24

The programmed device will be verified by checking the output signals of the board

using a Logic Analyzer. The results will be analyzed and discussed in Chapter 4.

34 TOOLS USED

The software required to assist in the implementation of this project are the Active-
HDL 5.1 and Xilinx ISE 4.2i Design Environment software which is used to perform
the steps in Section 3.2 and Section 3.3.

The FPGA board that used in the project is the Virtex I1 XC2V1000-FG256 demo
board by Insights Electronics Inc, distributed by Memec Design. The Xilinx
XC2V1000 FPGA chip used in the project is mounted on the Xilinx FPGA demo
board. The FPGA chip on the board contains as much as one million logic gates. The
board utilizes the Xilinx XC18V04 ISP PROM, which allows user to download
revisions of a design and verify the design changes in order to meet the final system-
level design requirements. In addition to ISP PROM, the board also provides a JTAG
connector for direct configuration of the Virtex II FPGA. The graphical picture as
well as the reference board block diagram of the Xilinx Virtex II demo board is

shown in Appendix 14.

The output signals from the FPGA chip will be analyzed using a Hewlett Packard
(HP) 1673G Series Logic Analyzer.

235

CHAPTER 4

RESULTS AND DISCUSSION

In this section, the RTL simulation results for all the design modules are shown. The
waveforms obtained are then analyzed tolcheck if the results are as desired and
whether it conformed to the design specifications and requirements. Besides, the
results of design implementation and device programming have also been presented
in this section. The final design output from the FPGA captured with the Logic
Analyzer is being compared with the RTL simulation and discussed further.

41 DESIGN SIMULATION RESULTS

Two methods of RTL simulation has been employed in verifying the modules of the
design. One is simulation using stimulus and the other is simulation with test
benches. Some explanation on both methods is provided in Section 4.1.1 and Section
4.1.2. The corresponding simulation results and discussions for both methods are

also provided.

4.1.1 RTL simulation using stimulus

This method of simulation is considered manual simulation as the stimulus is set by
the designer itself. In the Active-HDL program, the stimulus is set using
“HOTKEY” which is any of the keys from the keyboard to represent a signal state.
A stimulus or stimulator that represents the design environment is then used to drive
the design and ¢ heck to make sure that the results produced by the design are as
expected. A standard VHDL simulator can be used to read the RTL VHDL
description and to verify the correctness of the design. The VHDL simulator feads

26

the VHDL description and then compiles it into an internal format which then
executes the compiled format using test vectors [12]. |

By observing the output waveforms from the simulation, the functionality of the
design can be verified. The waveform display shows the values of the signals of the
design over time. The resuits of the simulation using stimulus for XNOR gate, shift
register and shift register controller and top-level CAN controller are shown in

Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4 respectively.

Buame. - Ve fstmia oW e w0 om0
Input 1

o 1 R DR e S B
Input 2

i ! S N e SN s S o S
‘ Dt

[1 _.__I {__________ l_____

Figure 4,1: RTL simulation using stimulus for XNOR gate

From Figure 4.1, the results obtained is as desired. The output (G) of the XNOR gate
is a logic high (logic ‘1°) if both inputs (a and b) is similar (eithera =b =0’ ora =
b = *17) while the output is logic low (logic ‘0*) if both inputs are not similar. This is
the b ehavior expected from that ofan XNOR gate. The XNOR gate is usedasa
comparator in this CAN desi;gn to compare the signals transmitted and received
again from controller A to che:ck if it has been arbitrated or not. The comparator will
compare the output signals ol;)tainedé from the CAN controller before and a fter its
output passed through the ATND ga{e. The AND gate is used to emulate a real

physical bus which have the c}jlaracteristic of an AND gate when it carries messages,

27

e Ve [otndeis | o B 0. w0 0w E0L W WO
Clock . k-
" SR g Y O W
Shifter_jnput
)| 1 ¢=1
Raset
= [iR 1 A |_E L_J
’ Start_shifter
o SR t § |
Intainzl storage
HE & tmp EF W e O IR O A T I T
Shifter output
'BDD 0 T l | I

Figure 4.2: RTL simulation using stimulus for 8-bit shift register

The shift register is an 8-bit serial-in, serial-out shift register and it is set to have
input initialization bits of *“10001110”. The shift register will shift the bits at each
clock event (clock high). From Figure 4.2, the clock frequency is set at 25 MHz to
emulate the clock frequency of the FPGA on-board oscillator. CLR represents a reset
and the design must be reset before it is activated. As soon as the shifter is initiated
by starting up the shifter (SR =’17), it is observed that the first eight bits of the shifter
output (D0) is “100011107, wﬁich is the initialization bits of the shift register. The
ninth, tenth eleventh and so forfh bits will be similar to that of the shifter input value
(DI) which is “1” until the shifter is reset again. The shifter input (DJ) allows real
time input into the shifter. From the simulation, it is shown that during the second
reset, the output will again be $imilar to the input initialization bits as the shifter is
being reset after the eleventh b;it.'-Th.is. is the case as after reset, the shifter will be

restored with the eight initialization bits again.

The RTL simulation for the dummy shift register module will not be shown as it has
similar characteristic to that of this shift register. The only slight difference is in its
initialization bits output. The dummy shift register is set to have an initialization bit
of “100000000”. And as such, it will shift out the initialization bits every clock
cycle. Similarly the shifter input (DJ) has been set at ‘1°.

28

Warne: .~ - - |Value” Simatory [0 om0 0 e S0 R 20 T i T :“*:surmsmn:.
Stant [R
B gart 1 5 |
Reset
B rgset 1 R |_l
Zlock
T AU N N I s 0 O O 0 O o O N B
Bus States " .
o bus_status 0 B T B
. End of Frame
o eof 0 <=0
. : Enabt Shifter
@ enable_shifter 0 ‘
N T e L
: Curentstate
ar Tslate 1
I T |]
Rleqt State
A Frext 1 l
........ .

Figure 4.3: RTL simulation using stimulus for shift register controller

The clock frequency is set at 25 MHz. The value 25 MHz is chosen as the on-board
oscillator of the FPGA demo board is approximately this frequency range. The input
signals are start, reset, clk, eof and bus status while the output signals are
enable_shifter. The Tstate and Tnext are the internal signals which represent the

states of the design.

From Figure 4.3, it is observed that the shift register controller is activated when the
signal is fed into its “start’ input. The bus_status signal as it names implies indicates
whether the bus is free or busy. A logic ‘1” represents the bus is free while logic ‘0’
represents the bus is busy. The shift register controller will output a logic ‘1’ signal
(enable_shifter = *1") whenevér the bus status is not busy and vice versa. This is the

signal that will be used to enable or disable the shift register.

29

Name s ;|ValueiStimu...§ﬂ B0 00 B0 200 . B0 300 380 400
1 L J 5 y 1

B [_clock il E[Zlnuk |]|||l||||f||,|||

[Ck_output

Master reset (B[ipget

® Bus_slatus

Controller B [® AN B out

Won in arbitration

U
0
o
Controller A |8 Doyt |_| --------] Lost in arbitration
;T
U

ws outpuT | CBus

j

X
Figure 4.4: RTL simulation using stimulus for top-level CAN controller

Referring to Figure 4.4, C_bus is the output from the AND gate, which in this case,
acts as a physical bus which carries the messages transmitted by the -transmitter
(Controller A and Controller B) to the receiver. C_Dout is the output from CAN
controller A, the main CAN controller which exhibits the arbitration characteristics.
C _clock is the clock input which has been set at 25 MHz. C_Clk_output is the clock
output. The reason the clock output is checked is to ensure that the clock goes into
the design during the design implementation stage. C_reset is the master reset of the
system. Before the start of the message sending process, the C_reset input must be
set to low (Logic ‘0°) to reset the whole éystem. Bus status is an output which
represents the status of the bus whether thé bus is free or busy. Comparing the
waveform of C_bus, C Dout and C_CAN_B_out, it was found that the waveform for
C bus and C CAN B out is similar. Hence, the bus is actually carrying the
sequence of bits sent by CAN Controller B. This shows that CAN controller B has
actually won in the arbitration process. CAN controller A has lost in the arbitration
process at X (please refer to Figure 4.4) because it has a higher identifier value as
compared to CAN controller B. This means that controller B actually has a higher

priority than controller A and is given the bus allocation.

30

The results obtained indicate that the design has met with the specification of a CAN
system during message handling. The arbitration of signals has been exhibited by the

controfler when it lost in the bus allocation due to its lower priority identifier.

4.1.2 RTL simulation using Test Bench

A test bench is a design entity which serves as a host environment for another design
being tested. Test bench is not real device or a system that must communicaﬁe with
its environment and as such it does not need any inputs or outputs. The testeé! entity
i called Unit Under Test (UUT) and it is instantiated in the test bench archifecture.
The ports of the UUT instantiation ;will be assigned stimuli signals by the test bench
architecture. The heart of eaeh testé bench is a set of stimuli which is a sequence of
values for each UUT input signai applied over time. Since test bench dees not
communicate with its env1ronment through signals, all stimuli must be declared
internally in the test bench archltecture like any other signals inside the VHDL
architecture declarative part. Test vectors used to simulate the UUT entity .can be
furnished in an external file 61' encoded immediately in-the test bench arch{tecture

[10].

The advantage of using test bench is the fact that once test bench is generated as well
as its test vectors are specified, it can be reused many times to perform simulation
and automatic verification of our design regardless of any successive revisions of the
VHDL designs. The predicted outputs can also be coded into the test bench. As such,
the test bench not only prepares the test vectors but can verify the expected output
from the design. As such, the outputs can be check once the test bench is run and the
outcome or results for the sirhulation can be reported. Report clause is used in the
test bench to display messages when something goes wrong or if the simulation 1s
not successful. The report of simulation can be viewed from the console window of

the VHDL program.

Due to constant revisions being done on the design entities, test benches are written
for the shift register module, shift register controller module as well as the top-level

CAN controller module to verify their functionality. The results of the test bench

31

simulations are shown in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8. The
results of the test bench can be viewed from the ERR_STATUS (error status) output.

Besides, a report will be generated on the console window by the Active-HDL

program to indicate the successful simulation status. An example of the generated

report for the top-level CAN controller module is shown in Figure 4.9.The test

benches source codes can be viewed at Appendix 4.

Noe “Avase Totmaers T om0 cw o ome. ae. o om0 @
= STiM_a 1] |
= STIM_b i i o ey R
m ACTUAL G 1]] [
= EXPECT_G | | T 1 i]

Bl 2 WL (7 stimuly... X % X ¥ X ¥ X7 (stimulud
w ERR_STATUS il - '

Figure 4.5: Test bench simulated output for XNOR gate.

‘Name : Valie © - {8tm.. |
S STIMC g
mSTM DL |1
#STMLOIA A
=STMSA 1
arACTUAL DO 0
= EXPECT DO |-
@ WPL {602 st
= ERAR_STATUS IL

Figure 4.6: Test bench simulated output for 8-bit shift register.

Mame:

* Ivalue:

Stim: |

T w

R

R

T

w L

B wm . wm

ar STIM_stait 1
ar GTIM_reset 0
= STiM_ck 0
*r 5TIM_bus_tatus]
o 5TIM_eof i}
o ACTUAL ensble shifter 0
& EXPECT_snabls_shifter 1
B WHL [17fsti...
[* WPLSIGNALS 17
ar WRLDIRECTION [stimil...
a EAR_STATUS L

Figure 4.7: Test bench simulated output shift register controller.

32

Nare - [DY TR I Cl o L E e R T W \-i.ﬁﬂf'__l.)
& STiM_C, Din 1 =
STM_C.clock 1 S oy Ny Yy Yy s Y 1y 0 o o M
= 5TIM_C,_sof bl
& STiM_C_reest 1 | J
= STIM_C, stat 1 |
ar ACTUAL G Bus D T -

* EXPECT_C Bus Y T W O N0 O A

* AETUAL_C_Ck_outpit

= EXPECT_C_Ch_outpuk

= ACTUAL C_Dout

= EXPECT_C_Dout

] - \WPL

™ ERR_STATUS

Figure 4.8; Test bench simulated output for top-level CAN controller

e # Simulation has been initialized
o # Selected Top-Level: testhench_for can bd

vil o # #asim TINING_FOR can bd

wave

‘wave

wave
wave

' wave
| wave
L wave
| wave
L wave

wave

crave

wave
mave

L wave

Y urL

—-noredg
-noreg
—-noreg
—-noreg
—nared
-noreg
-noreg
-noreg
~Nnoreg
-nored
-noreg
WFPL
ERR_STATUS
500.00 ns

STIM _C Din
STIM C clock
STIN_C_eof
STIN C reset
3TIM C start
ACTUAL C Bus

EXPECT C_Bus
ACTUAL C Clk output
EXPECT C Clk cutput
ACTUAL_C._Dout
EXPECT_C_Dout

: 1k

#

NOTE : All wvectors passed.

pe

HT
s # KERNEL:

TImer SOU NE, ICEration:
stopped at time: 500 ns

TOF imnstance.

s #§ #End slmulatlnn Macro

—g -Console *

Figure 4.9: Report of Top-level CAN controller simulation on window console

The observations from the output waveforms verified that the design in Figure 4.5,

Figure 4.6, Figure 4.7 and Figure 4.8 is functioning as desired as the ERR_STATUS

which denotes the error status of the simulated module shows logic ‘0’. Logic ‘0’

proves that the simulated module is correct and has no errors in syntax and its

hierarchy. Figure 4.9 shows a console generated report that verifies that the top-level

module has been successfully simulated. It is important to note that the successful

results obtained is not as spontaneous and simple as it may seem. The modules has

33

been revised, debugged and re-tested many times before the desired results can be

achieved.

Basically, the outputs expected from the test benches is in essence similar to that
obtained through RTL stimulus simulation. Test bench has the benefits of reusability
whereby user will not need to supply the stimulus each time simulation is performed

as the test vectors has been written beforehand.

42 DESIGN SYNTHESIS AND IMPLEMENTATION RESULTS

As being mentioned eatlier in Chapter 3, the design synthesis and implementation
stage has been done using the ISE Design Environment 4.2i software. Synthesis is
performed using the XST (Xilinx Synthesis Technology) software while
implementation has been done with the help of multiple software tools like Xilinx
FloorPlanner and FPGA Editor which comes packaged within the ISE Design

Environment.

During implementation, the design is converted from the logical design file format
created in the design entry stage into a physical file format contained in an NCD
(Native Circuit Description) file. Implementation processing for FPGAs involves
three basic phases: Translate, Map, and Place and Route as described in Section
3.3.3. Processes to check and verify timing requirements are also included. At the
end of these phases, a programming file can be created. With the programming file,

user can directly download the programming file into the Xilinx device.

The completed implementation of the design will generate the following reports

which provide a complete description of the FPGA based design.

4.2.1 Translation Report

During the first step of design implementation, the translate process merges all of the

input netlists and design constraint information and outputs a Xilinx NGD (Native

4 PUGAT SUBMBER MAVLUMAT

UNIYERSITI TEENOLOGT FETRONAS

Generic Database) file. The output N GD file can then be mapped to the targeted
device family. The Translation Report contains warning and error messages from the
three translation processes which are conversion of the EDIF or XNF style netlist to
the Xilinx NGD hetlist format, timing specification checks, and logical design rule
checks. .All errors must be rectified before the implementation can be preceded.

Please refer to Appendix 5 for the Translation Report,

4.2.2 Map report

The MAP process first performs a logical DRC (Design Rule Check) on the design
in the NGD file produced by the Translate process. MAP then maps the logic to the
components (logic cells, /O cells, and other components) in the target Xilinx FPGA.
The output design is an NCD (Native Circuit Description) file physically
representing the design mapped to the components in the Xilinx FPGA. The NCD

file can then be placed and routed.

The MAP report contains warning and error messages detailing logic optimization
and problems in mapping logic to physical resources. Basically, the report provides a
detailed description of the design information and design summary after the design is
mapped onto the FPGA.

Some important information gathered from this report is the number of gate count
required for the design. The number of gate count for this design is only 171 gates.
The target architecture used for this project, the Xilinx XC2V100 chip can support
up to one million gates and as such is more than enough to support the CAN

controller design needs.

The Map report also includes the following information; Removed logic summary,
TOB properties and Area Group Summary and Modular Design summary. The Map

report can be viewed from Appendix 6.

35

42.3 Place & Route Report

After an FPGA design has undergone the necessary processing to bring it into the
mapped NCD format, it is ready to be placed and routed. This phase is done by PAR
(Xilinx's Place and Route program). PAR takes a mapped NCD file, places and
routes the design, and produces an NCD file to be used by the programming file
generator (BitGen). The output NCD file can also act as a guide file if the place and

route the design is repeated again due to some minor changes done on the design.

The Place & Route report contains routing information or connection of logical
blocks within the FPGA hardware. The report also contains the device utilization
summary, the delay summary and the average connection delay summary. The
average connection delay summary highlights the maximum pin delay of the design
and the listing of each pin delays in nanoseconds. Please refer to Appendix 7 for the

Place & Route Report.

It is important to note that the FPGA device is actually a gate-array-like architecture,
with a matrix of logic cells surrounded by‘periphery of Input/Output (I/O) cells.
Segments of metal interconnect are linked m an arbitrary fashion by programmable
switches in order to form the desired signal nets between the cells. The CAN design
which have been mapped and downloaded ihto the FPGA device will combine an
abundance or combination of logic gates ,}egisters and I/Os to form the design

interconnection.

The logic signals generated in the block of FPGA are called the Control Logic Block
(CLB). In addition to CLBs, the FPGA has programmable input/output blocks (I/0
blocks) located within the chip. F lip-flops a}nd buffers are also located within the
FPGA. The placement of the gates, flip ﬂbps and buffers in the FPGA cab be
reviewed and edited after the Pace & Route étep using the FPGA Floor Planner tool
from the ISE Design Environment like 1jFlc.orplanner and FPGA Editor. The
Floorplanner displays a hierarchical representation of the design using hierarchy

structure lines and colors to distinguish the different hierarchical levels. The

36

complete connection of the design in the Xilinx XC2V1000 FPGA chip can be
viewed from Appendix 8.

424 Pad Report

The Pad report contains I/O pin information that is a list of the pin-out by pin name
and list of pin-out by pin number. The Pad report is important for future
maintenance, expansion and iroubleshooting of the design as it contains the critical

pin information of the design. Please refer to Appendix 9 for the Pad Report.

42.5 Asynchronous Delay Report

This report highlights the delay analysis of all the nets and connections of the design.
Each signal nets is analyzed and then tabulated. The twenty worst net delays has
been tabulated in the report and this information is important and must not be taken
lightly as time delays will affect the performance of time-critical design. The
propagation delay in the design can be improved by focusing on the nets with the
worst delay. Please refer to Appendix 10 for the Asynchronous Delay Report.

42.6 Post-Place & Route Static Timing Report

The Post-Place & Route Static Timing Report process contains a calculated worst-
case timing for all signal paths of a design. It optionally includes a complete listing
of all delays on each indiviidual path in the design. This report also tabulated a
checklist of all timing constraints in the design. If is important to check and venfy
that all timing c onsiraints are metin the implementation of the design. The Post-

Place & Route Static Timing report can be viewed from Appendix 11.

42.7 Programming File Generation Report

After the design has been completely routed, the device is configured so that it can

execute the desired function. Xilinx's bitstream generation program, BitGen, takes a

37

fully routed NCD (Native Circuit Description) file as its input and produces a
configuration bitstream (a binary file with a .bit extension). The BIT file contains all
of the configuration information from the NCD file defining the internal logic and
interconnections of the FPGA, plus device-specific information from other files
associated with the target device. The binary data in the BIT file can then be
downloaded into the FPGA’s memory cells, or it can be used to create a PROM file.

The Programming File Generation Réport or also known as the BitGen Report is the
final report generated in the implementation step. The report lists the errors and
warnings found during the bit map gEneration. The bit stream file generated is very
crucial as it will be downloaded int6 the FPGA. The BitGen report can be viewed
from Appendix 12.

43 DEVICE PROGRAMMING RESULTS

The device programming stage proved successful as there is no error generated
during the FPGA chip programming process is initiated until it has completed. After
the FPGA chip has been programmed; the output signals are analyzed with a logic

analyzer fo verify its correct operation.

38

43.1 Logic Analyzer Qutput Waveform

¢ Analyze

I accumulate |
' Orr
' ‘ P Delay l Markers

IR

Figure 4.10: CAN top-level Logic Analyzer output waveform

From Figure 4.10, it is observed that the signals captured from the Logic Analyzer
are ahnost_simi}ar to the RTL simulation resuits in Figure 4.4. Note that the signals
OSC_OT denotes the oscillator output signals, BUS OT denotes the bus output
signals, D_QUT is the output signal of CAN controller A, CANB denotes the output
signals from CAN controller B, RESET is the master reset signal of the design and
BUS ST denotes the status of the bus.

The proéess starts as soon as the reset signal (RESET) is initiated. It is observed that
the CAN controller A output (D OUT) lost its arbitration starting from point A
(referring to Figure 4.10). The bus status signal (BUS ST) in turn shows a logic ‘0’
which indicates that the bus is busy. CAN controller B (CANB) which has lower

identifier value won in the arbitration process and thus be able to send its full data

39

frame across the bus. Hence, the bus output (BUS_O) is similar to that of CAN
controller B (CANB). " |

The results obtained from the RTL simulation as well as the Logic Analyzer
captured waveforms verify that the CAN design is working fine according to the
specification set in Chapter 3. However further improvements can be done to the
design to improve on its performance and functionality. This will be discussed in

further in Chapter 5.

40

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This section reviews and concludes the project while highlighting some of the
problems faced and how it is handled to overcome them. Some recommendations are

made to suggest for further improvement and for future progress.

5.1 CONCLUSION

The desired deliverable is a CAN controller that will exhibits bit-level non-
destructive arbitration of signals during message collision. From the successful
simulation results obtained as well as the captured output waveform from the Logic

Analyzer in Chapter 4, the objectives set in Section 1.3 have already been achieved.

This project was carried out in two semesters. The first semester was mainly
dedicated to preliminary research work, detailed design of the CAN message
handling protocol and also testing and performing RTL simulation of the design. The

second semester work mainly focused on the implementation of the design in FPGA.

The mastering of a new language, in this case, VHDL proved to be most challenging
part of the project in this semester. As the language is not taught in the university
and there is no expertise among the university lecturers and technicians in this field,
self-study and sclf-exploration have to be done to familiarize with the language. The
language is different to other common programming languages like C++ or Visual
Basic. The knowledge of sequential programming in which the author is familiar
with is not sufficient to assist in the concurrent programming environment. There
was a need to understand that the operation of a digital system is inherently

concurrent and so the VHDL programming techniques must be concurrent as well.

41

Trial-and-error method is used for familiarization with the authoring tool and
language became the norm for many weeks before the author proceeds to intensive
coding. With time and effort, the author has managed to grasp the language better

and be able to code the modules and achieved the results desired for the design.

The major problem encountered during the second semester was mainly caused by
the constraint of time available for the author to familiarize with the FPGA
development system. The FPGA Design Flow includes the utilization of two
sepatate software tools and many sub tools embedded within the two main softwares.
The main software tools mentioned are the Aldec Active-HDL and Xilinx ISE
Design Environment. Each of these software tools has different function and needed
to be fully understood before design development could begin. There is also a lack of
user friendliness in the software tools and this has resulted in a longer familiarization

time taken as compared to development time.

However, upon completion, the project has indeed enhanced the author’s
understanding in digital design usi1;1g VHDL. Besides, the author has gain valuable
insights on the techniques used in FPGA implementation, particularly each step in
the design flow from design speciﬁcation to device programming stage for FPGA
implementation. The author has ;falso gain more knowledge on CAN message

handling protocol and its other funciionality.

52 RECOMMENDATIONS -

The CAN controller can be furthef improved by adding in more functionality like
error handling capability in the design. As arbitration of signals signify that the
signals sent by a node/station is lost during transmission, an error handling capability
may detect the lost transmission and will be able to recover the lost signals by

informing the node in particular to resent the message.

Besides, the design can be optimized further by reducing the clock frequencies used

in the system and also by optimizing the timing constraints used in the design, The

42

current clock frequency used approximately 24 MHZ. In sﬁch frequency, the system
may be affected by noise interference and as such may affect the performance of the
design. Besides, delay in the design will be larger due to parasitic capacitance.
Parasitic capacitance may occur in the routing or wiring within the chip especially
for routing between IOBs which is in close proximity. As such, lower clock

frequency will be more feasible to prevent delays and interference.

In addition to that, the AND gate used in the CAN design to represent the physical
can be replaced with a real physical wire for future project enhancement. The
behavior of the CAN design system using the real physical wire can then be
compared with the one with an AND gate to verify the feasibility and functionality
of the CAN design.

In conclusion, this project has achieve all the objectives set in Section 1.3 which is to
be able to deliver an FPGA-based implementation of a version of CAN system with

emphasis on bit-level non-destructive arbitration.

43

10.

11.
12,
13.
14.

REFERENCES

Mike J Schofield 14™ August 2003
<http://www.mjschofield.com/canworks.htm>

Siemens. October 1998
<http://wwwihc.icepp.s.utokyo.ac.jp/ATLAS/tgeelex/technology/can/CA
NPRES.pdf>

Hitex UK Ltd. 15" August 2003
<http://www.hitex.co.uk/CAN/canarticle.html>

Microchip. 16™ August 2003
<http://www.microchip.com/dowuloadlappnote/analog/can/ﬂﬂ‘!133.pdi>
Cia (CAN in Automation). 16™ August 2003

< http://www.can-cia.de/can/protocol/>

Charles H. Roth, Jr, 1998. Digital Systems Design Using VHDL, Boston,
PWS Publishing Company

Kevin Skahill, 1996. VHDL for Programmable Logic, Addison-Wesley
Logman, Inc.

Douglas Perry, 1998. VHDL, New York, McGraw-Hill Companies Inc.
Sudhakar Yalamanchili, 2001. Introductory VHDL: From Simulation to
Synthesis, New Jersey, Preﬁtice-Hal], Inc.

J Mirkowski,MKapustka, Z. Skowronski, A. Biniszkiewicz, 1998. Active
VHDI. Series:Book #2, ALDEC, Inc.

Technical report refers BOSCH CAN Specification 2.0. (1991)

Thesis refers to Cecilia Chau. (2001)

Thesis refers to Abu Bakar Sayuti. (2002)

Xilinx Software Manual (2004)

44

APPENDICES

45

APPENDIX 1

Project Gantt Chart For Final Year Design Project

Semester 1 & Semester 2

$S390.J
au0Isa[Iw Pajsadsing

UNIOTT

11oday wanuy sj[dure))

uone[NWIs ugsag

ssad0dJ Suiddnga(g pue Sunsal

S o[npot
E>2-n88:vo.aEmu?voE:onn_EoO-

S[NPOW T[2BS WRIS0I]-

WeIderp y20[q 23 M Pasn SA[NPoW
oD I0] QU[ORIA 18IS I 91 MBI~

. Ja[[onuod
NV B Jo wieiSerp yoo[q jeuonounj . usisa(] -

uonejuswddwmy joalorg sseqg

9

11oday ssaadoa g Jo uoIssIuqng

oFenue] TAHA UIeoJ-

- werdold TH-2ANYY ay) alofdxg-

{eLioin [, pue uonesoldxy yoaloag

paoday Aleunurag Jo UolSSIHqNS

FunuweiFold TAHA uo du peay-

NV uo dn peay-

HIOM YOAEISY ATeurmipLg

apL 13loag Jo uonemIGUOD) PUE UO1IIIY

§590044

AUGISI[IUI PI1SIFING

aNHIDAT

HOISSTWNS JIENSqY PapuAxyg

K4

(uonigigxg) noyesedalg TONEIIISIL] [BI0

11

=c=mtomm_§..=&m [elL] JO UOISSTINg

J10d3y Yeaq Jo uossnugng| -

juswdinba w:s.moH LM JS]]OXIBOS JO S1sA[eue pue Suriso -

uenropiad diyd Ja[j0nued NV Jo uoneinsaaug

S1I0113 2] Sngep pue AJIUdPL-

dig yodg Sunooysqnoiy |

uolssHuqng 7 1oday ssaidoag

9

Suimmeidolg 2149

smppsnyIe pIeog VO] PAod[es Smpumsapur)-

uonBuAmdw] 3A3(|

noissimqng | 3ao0day ssaadoag|

xunry Aq IojeSiae 100lorg Fusn-

SuiESnqa(pue sIsnpPuAs 139foag

‘ufisan walaid saoisid a0 TasursAoadmT

-

APPENDIX 2

VHDL Source Codes

o XNOR Gate

o Shift Registers

o Shift Register Controller

¢ Top-level CAN Controller

VHDL source code for XNOR entity

--Design name: canl9
-—-XNOR gate
--Revision 2.0

--Last updated: 23/10/03

library ieee;
use 1eee.std logic 1164.all;

entity XNOR_ent is

port(a:instd logic;
b: in std_logic;
G: out std logic

)

end XNOR_ent;

architecture behv of XNOR_ent is
begin

G<=a xnorb;

end behv;

VHDL source code for shifter entity

--Design name: can40
--8-bit Shift-Left Register
--Revision 2.2

-~Last updated: 10/2/04

--Details:
--Shifter with Positive-Edge Clock, Asynchronous Clear, Serial In, and Serial Out

--Input Description:

--C = Positive-Edge Clock

--DI = Serial In

--CLR = Asynchronous Clear (active High)
--DO = Serial Qutput

--SR=Start Register

library iece,
use ieee.std logic 1164.all;

entity shifter is
port(C,DI, CLLR,SR : in std logic;
DO : out std_logic);
end shifter;

architecture archi of shifter is
signal tmp: std_logic_vector(7 downto 0);

begin
process (C, CLR)
begin
if (CLR ='0") then
-- reset shift
tmp <="10001110";
elsif (C'event and C="1") then
-- +ve edge trigger flop
if (SR='1") then
tmp <= tmp(6 downto 0) & DI,
DO <=tmp(7);
else
DO <="1%
end 1f;
end if}

end process;
znd archi;
--description:
~when it is +ve edge of clock and SR is low,
~DO is high.
--When it is +ve edge of clock and SR is high,
--send the predefined value and then tmp[0] is replaced by DL
--This is asynchronous shift register,
~when CLR is low at any time,
~the shift register will be reset and tmp 1s '1001110'

VHDL source code for dummy shifter entity

--Design name: can27

--8-bit Shift-Left Register (Dummy)

--Revision 1.0

--Last updated: 3/3/04

--Details:

--Shifter with Positive-Edge Clock, Asynchronous Clear, Serial In, and Serial Out

--Input Description:

--C = Positive-Edge Clock

--DI = Serial In

--CLR = Asynchronous Clear (active High)
--DO = Serial Output

--SR=Start Register

library icee;
use icee.std_logic 1164.all;

entity dummy_shifter is
port{C,DI, CLR,SR : in std logic;
DO : out std_logic);
end dummy _shifier;

architecture arch_shifter of dummy _shifter is
signal tmp: std_logic_vector(7 downto 0);

begin
process (C, CLR)
begin
if (CLR ='0") then
-- reset shift
tmp <="10000000";
elsif (C'event and C="1") then
-- +ve edge trigger flop
if (SR="1") then
tmp <= tmp(6 downto 0) & DI,
DO <=tmp(7),
else
DO <="'1%
end if}
end if}

end process;
and arch_shifter;
-description:
~when it is +ve edge of clock and SR is low,
DO is high. '
~When it 1s +ve edge of clock and SR is high,
~send the predefined value and then tmp[0] is replaced by DL
~This is asynchronous shift register,
~when CLR 1s low at any time,

~the shift register will be reset and tmp is '1001110"

VHDL source codes for shift register controller entity

-~-Design name: can4{}
--Shift register controller
~Revision 2.2

-~-Last updated: 10/2/04

ibrary ieee ;
1se ieee.std_logic 1164.all;
antity SR_controller is
port (reset,start,clk,eof,bus_status:in STD LOGIC;
enable_shifter:out STD_LOGIC);
:nd SR_coniroller;

architecture arbitration of SR_controller is
signal Tstate,Tnext: STD _LOGIC;

segin
process(clk, reset)
begin
if (reset ='0") then
Tstate <='0"; -- make reset as asynchronous so whenever reset is
nigh, the controller will be set to 00 state

else
if (clk'event and clk ='1") then
Tstate <= Tnext;
else
Tstate <= Tstate;
end if}
end if;
end process;

process(start,bus_status,eof, Tstate,reset)

begin
case Tstate is

when '0' =>

if (reset="0") then
enable_shifter <="'0";
Tnext <="0";

elsif (start="1" and bus_status ='1") then -- if bus is free
enable shifter <='1";
Tnext<="1";

else
enable_shifter <='0";

Tnext <="0",
end if;
when '1' => ---
if (start ='1") then
if (bus_status ='1") then -- if bus is free
if (eof ='0") then -- if end of frame is not reached
enable shifter <='1";
Tnext<="1";
else
enable shifter <='0", --if bus is not free
Tnext <="'0",
end if}
else
enable_shifter <='0"; -- it is started but the bus is
busy so wait here.
Tnext<='1";
end 1f;
else
enable_shifter <="'0";
Tnext <='0); -- the start is low
end 1f}
when others=>null;
end case;
end process;

end arbitration;

-- Description
-- one is reset state one is transmission state

VHDL source codes for can top-level entity

- Title :can_bd
--Design :can54

-- Author :Lai Yeen
- Company :UTP

-- File : C:\My_Designs\can54\compile\can_bd.vhd
-- Generated : Tue Apr 6 14:50:06 2004

-- From : C:/My _Designs/can54/src/can_bd.bde

-- By : Bde2Vhdl ver. 2.01

-- Design unit header --
library [EEE;
use IEEE.std_logic 1164.all;

entity can_bd is

port(
C _clock : in STD LOGIC;
C reset: in STD LOGIC,;
C Bus: out STD_LOGIC;
C _Clk_output : out STD_LOGIC,
C Dout : out STD LOGIC;
Reset : out STD_LOGIC

);

end can_bd;
architecture can_bd of can_bd is
---- Component declarations -----
component dummy_shifter

port (

C:in STD_LOGIC;
CLR : in STD LOGIC;

DI:in STD LOGIC,;
SR :in STD LOGIC;
DO : out STD _LOGIC
);
end component;
component shifter
port (
C:in STD LOGIC;
CLR : in STD_LOGIC,;
DI:in STD _LOGIC;
SR :in STD_LOGIC;
DO :out STD LOGIC
);
end component;
component sr_controller
port
bus status : in STD _LOGIC;
clk : in STD_LOGIC;
eof : in STD LOGIC;
reset : in STD _LOGIC;
start : in STD _LOGIC;
enable_shifter : out STD _LOGIC
);
end component;
component stimulus
port (
master : in STD _LOGIC;
m_din : out STD LOGIC,
m_eof : out STD_LOGIC,
m_start : out STD _LOGIC
%
end component;
component xnor_ent
port (
a:in STD LOGIC;
b:in STD LOGIC;
G :out STD_LOGIC
)

end component;
---- Signal declarations used on the diagram ----

signal NET10903 : STD_LOGIC;
signal NET1151 : STD_LOGIC;
signal NET4277 : STD_LOGIC,
signal NET4389 : STD_LOGIC;

signal NET5095 : STD_LOGIC,;
signal NET5127 : STD_LOGIC,;
signal NET5136 : STD _LOGIC,;
signal NET98 : STD_LOGIC;

begin
---- Component instantiations ----

Ul : sr_controller
port map(

bus status => NET1151,
clk =>C_clock,
enable shifter => NET4277,
eof => NET98,
reset => C_reset,
start => NET5136

)
Reset <= C_reset;

U2 : shifter
port map(
C=> C_clock,
CLR =>C reset,
DI =>NET5127,
DO =>NET4389,
SR => NET4277

);

U3 : xnor_ent
port map(
G =>NET1151,
a =>NET4389,
b =>NET10903
);

C Dout <=NET4389;

NET10903 <= NET5095 and NET4389;
C Bus <=NET10903;

U7 : dummy_shifter

port map(
C=>C clock,

CLR =>C reset,
DI=>NET5127,
DO => NET5095,
SR =>NET5136

);
C_CIk_output <= C_clock;

U9 : stimulus
port map(
m_din => NET5127,
m_eof => NET9g,
m_start => NET5136,
master => C_reset

end can bd;

APPENDIX 3

Block Diagram of Top-level CAN Controller

pq ues L

vo/8/v ‘pajeasn

Auvedwon uopeoyiep ubseq oyl

odA V=

¥.068 AN ‘uosiapuay
8410 ejelodio) 0£ZT

oul *93a1v(o)

19594 e

N g NvOE s

ing

Lo S

JUS JoUX

NANC N 0@« <]+

N9

smeysTsng @ - A _

ng

sng D&

o—+f0a . gl

[A3

S

lejjonuoo s

|islius"aideus SnimsTsng

o«

0

o

SMYNULHIS

4 _..__U+EM.._D.«.nu_:” 4

an

L __@oop 9D

APPENDIX 4

Test Benches for RTL Simulation

o XNOR Gate

o Shift Register

¢ Shift Register Controller

e Top-level CAN Controller

Test Bench for XNOR entity

--Title : CAN

-- Design : can54

-- Author :Lai Yeen
-- Company :UTP

-- File : xnor_entwb_TB.vhd

-- Generated : Sun Apr 4 16:55:11 2004

-- From :xnor_entwb TB_settings.txt
-~ By : tb_generator.pl ver. ver 1.2s

-- Description ;: main Test Bench entity

library icee;
use ieee.std_logic 1164.all;

use IEEE.waves_interface.all;

use WORK.UUT test pins.all;

use WORK.waves_objects.all;

use WORK.DESIGN DECLARATIONS.all;
use WORK.MONITOR_UTILITIES.all;

use WORK.WAVES GENERATOR.all;

-- User can put library and packages declaration here

entity xnor_ent_whb is
end xnor_ent_whb;

architecture xnor_entwb_archi of xnor_ent_wb is

-- Component declaration of the tested unit
component xnor_ent

port (
a:in std_logic;
b : in std_logic;
G : out std_logic);

end component;

-- Internal signals declarations:
-~ stimulus signals (STIM_)for the waveforms mapped into UUT inputs,
-- observed signals (ACTUAL)} used in monitoring ACTUAL Values of UUT

Outputs,

-- bi-directional signals (BI DIRECT)} mapped into UUT Inout ports,
-- the BI DIRECT _signals are used as stimulus and also used for monitoring

the UUT Inout ports

begin

signal STIM_a : std logic;
signal STIM b : std logic;
signal ACTUAL G : std logic;

-- Expected signals used in monitoring the UUT OUTPUTS
signal EXPECT G : STD_ULOGIC;

-- WAVES signals OUTPUTing each slice of the waves port list
signal WPL : WAVES PORT _LIST;

signal TAG : WAVES TAG;

signal ERR_STATUS: STD _LOGIC:=TL";

-- Signal END_SIM denotes end of test vectors file

signal END SIM : BOOLEAN:=FALSE;

-- Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

-- Processes that convert the WPL values to 1164 Logic Values

ASSIGN _STIM_a: STIM_a <= WPL.SIGNALS(TEST_PINS'pos(a)+1);
ASSIGN _STIM b: STIM_b <= WPL.SIGNALS(TEST_PINS'pos(b)+1),
ASSIGN _EXPECT G: EXPECT G <=WPL. SIGNALS(TEST PINS'pos(G)+1);

-- Unit Under Test port map
UUT: xnor_ent
port map(
a=>STIM a,
b=>STIM b,
G => ACTUAL_QG);
-- Monitor processes to verify the UUT operational response
MONITOR_G:

MONITOR_RESULTS(REP_FILE,ACTUAL_G,EXPECT_G,NOW,G_NAME,E

RR_STATUS);

-- Process denoting end of test vectors file
NOTIFY _END VECTORS: process (TAG)
begin
if TAG.len /=0 then
if ERR_STATUS='L' then
report "All vectors passed.";
elsif ERR_STATUS="1" then
report "Errors were encountered on the output ports,
differences are listed in xnor_ent _report.log";
end if;
END_SIM <= TRUE;
CLOSE _VECTOR;
CLOSE _REPORT;
end if;
end process;

end xnor_entwb_archi;

configuration TESTBENCH_FOR_xnor_ent of xnor_ent wb is
for xnor_entwb_archi
for UUT : xnor_ent
use entity work.xnor_ent (behv);
end for;
end for;
end TESTBENCH_FOR_xnor_ent,

Test Bench for shifter entity

-- Title : CAN
--Design : cand4

-- Author :Lai Yeen
-- Company UTP

-- File : shifterwb_TB.vhd

-- Generated : Sun Apr 4 16:44:33 2004
-- From : shifterwb_TB_settings.txt
-- By : th_generator.pl ver. ver 1.2s

library ieee;
use icee.std_logic 1164.all;

use IEEE.waves_interface.all;

use WORK.UUT test pins.all;

use WORK . waves_objects.all;

use WORK.DESIGN DECLARATIONS all;
use WORK.MONITOR_UTILITIES.all;

use WORK.WAVES_GENERATOR.all;

-- User can put library and packages declaration here

entity shifter wb is
end shifter_wh;

architecture shifterwb_archi of shifter wb is

-- Component declaration of the tested unit
component shifter

port (
C:instd logic;
DI instd_logic;
CLR :in std_logic;

SR : in std logic;
DO : out std_logic);
end component;

-- Internal signals declarations:
-- stimulus signals (STIM)for the waveforms mapped into UUT inputs,
-- observed signals (ACTUAL) used in monitoring ACTUAL Values of UUT

Outputs,

-- bi-directional signals (Bl DIRECT) mapped into UUT Inout ports,
-~ the BI DIRECT _signals are used as stimulus and also used for monitoring

the UUT Inout ports

begin

signal STIM_C : std_logic;
signal STIM DI : std_logic;
signal STIM_CLR : std_logic;
signal STIM_SR : std_logic;
signal ACTUAL DO : std_logic;

-- BExpected signals nsed in monitoring the UUT OUTPUTS
signal EXPECT DO : STD_ULOGIC;

-- WAVES signals OUTPUTing each slice of the waves port list
signal WPL : WAVES PORT_LIST,

signal TAG : WAVES_TAG;

signal ERR_STATUS: STD_LOGIC:="L",

-- Signal END_SIM denotes end of test vectors file

signal END_SIM : BOOLEAN:=FALSE;

-- Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

-- Processes that convert the WPL values to 1164 Logic Values

ASSIGN STIM_C: STIM_C <= WPL.SIGNALS(TEST_PINS'pos(C)+1);
ASSIGN _STIM_DI: STIM_DI <= WPL.SIGNALS(TEST_PINS'pos(DI)+1);
ASSIGN_STIM_CLR: STIM_CLR <=

WPL.SIGNALS(TEST PINS'pos(CLR)+1);

ASSIGN STIM_SR: STIM._SR <= WPL.SIGNALS(TEST_PINS'pos(SR)+1);
ASSIGN_EXPECT DO: EXPECT DO <=

WPL.SIGNALS(TEST PINS'pos(DO)+1);

-- Unit Under Test port map
UUT: shifter
port map(

C=>STIM_C,

DI=>STIM D],

CLR =>STIM_CLR,

SR => STIM_SR,

DO => ACTUAL DO},
-- Monitor processes to verify the UUT operational response
MONITOR _DO:

MONITOR_RESULTS(REP_FILE,ACTUAL_DO,EXPECT DO,NOW,DO_NA
ME,ERR_STATUS); -

-- Process denoting end of test vectors file
NOTIFY_END_VECTORS: process (TAG)
begin
if TAG.len /= 0 then _
if ERR_STATUS='L' then
report "All vectors passed.”;
elsif ERR_STATUS="1"then
report "Frrors were encountered on the output ports,
differences are listed in shifter report.log";
end if;
END SIM <= TRUE;
CLOSE _VECTOR;
CLOSE_REPORT;
end if;
end process;

end shifterwb_archi;

configuration TESTBENCH_FOR_shifter of shifter wb is
for shifterwb_archi
for UUT : shifter
use entity work.shifter (archi);
end for;
end for;
end TESTBENCH_FOR_shifter;

Test Bench for shift register entity

-- Title : CAN
--Design : can54

-- Author : Lai Yeen
-- Company :UTP

-- File : sr_controllerwb_TB.vhd

-- Generated : Sun Apr 4 16:57:29 2004

-- From : sr_controllerwb_TB_settings.txt
-- By : tb_generator.pl ver. ver 1.2s

library ieee;
use ieee.std_logic 1164.all;

use IEEE.waves_interface.all;

use WORK.UUT _test pins.all;

use WORK.waves_objects.all;

use WORK.DESIGN DECLARATIONS.all,
use WORK.MONITOR_ UTILITIES.all;

use WORK.WAVES GENERATOR all;

-- User can put library and packages declaration here

entity sr_controller wb is
end sr_controller_whb;

architecture sr_controllerwb_archi of sr_controller wb is

-- Component declaration of the tested unit
component sr_controller

port
start : in std_logic;
reset ; in std_logic;
clk : in std_logic;

bus_status : in std_logic;

eof : in std logic;

enable shifter : out std _logic),
end component;

-- Internal signals declarations:
-- stimulus signals (STIM_)for the waveforms mapped into UUT inputs,
-- observed signals (ACTUAL) used in monitoring ACTUAL Values of UUT

Outputs,

-- bi-directional signals (BI_DIRECT) mapped into UUT Inout ports,
-- the BI_DIRECT _signals are used as stimulus and also used for monitoring

the UUT Inout ports

begin

signal STIM_start : std_logic;

signal STIM reset : std_logic;

signal STIM clk : std_logic;

signal TMP clk : std_logic;

signal STIM bus_status : std logic;

signal STIM eof : std logic;

signal ACTUAL enable_shifter : std_logic;

-- Expected signals used in monitoring the UUT OUTPUTS
signal EXPECT enable_shifter : STD_ULOGIC,;

-- WAVES signals OUTPUTing each slice of the waves port list
signal WPL : WAVES PORT LIST;

signal TAG : WAVES TAG;

signal ERR STATUS: STD_LOGIC:="T',

-- Signal END_SIM denotes end of test vectors file

signal END SIM : BOOLEAN:=FALSE;

-- Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

CLOCK_GEN_FOR_clk: process
begin
if END_SIM = FALSE then
TMP_clk <="0',
wait for 20 ns;
clse
wait;
end 1f;
if END_SIM = FALSE then
TMP clk <="'1';
wait for 20 ns;
else

wait;
end if;

end process;

-- Processes that convert the WPL values to 1164 Logic Values

ASSIGN_STIM_start: STIM_start <=
WPL.SIGNALS(TEST PINS'pos(start)+1);

ASSIGN STIM reset: STIM reset <=
WPL.SIGNALS(TEST PINS'pos(reset)+1);

ASSIGN_STIM_clk: STIM_clk <= TMP_clk;

ASSIGN _STIM bus_status: STIM bus_status <=
WPL.SIGNALS(TEST PINS'pos(bus_status)+1);

ASSIGN_STIM_ eof: STIM_eof <= WPL.SIGNALS(TEST PINS'pos(eof)+1);

ASSIGN_EXPECT enable_shifter: EXPECT enable_shifter <=
WPL.SIGNALS(TEST PINS'pos(enable_shifter)+1};

-- Unit Under Test port map
UUT: sr_controller
port map(

start == STIM _start,

reset => STIM reset,

clk => STIM clk,

bus_status => STIM bus_status,

eof => STIM_ eof,

enable shifter => ACTUAL_enable_shifter);
-- Monitor processes to verify the UUT operational response
MONITOR_enable_shifter:

MONITOR_RESULTS(REP FILE,ACTUAL enable shifter, EXPECT enable s
hifter, NOW,enable shifter NAME,ERR STATUS);

-- Process denoting end of test vectors file
NOTIFY_END_VECTORS: process (TAG)
~ begin
if TAG.len /= 0 then
if ERR_STATUS='L' then
report "All vectors passed.”;
elsif ERR_STATUS="1'then
report "Errors were encountered on the output ports,
differences are listed in sr_controller_report.log";
end if;
END_SIM <=TRUE;
CLOSE_VECTOR;
CLOSE _REPORT;
end if;
end process;

end sr_controllerwb_archi;

configuration TESTBENCH_FOR _sr_controller of sr_controller_whb is
for sr_controllerwb_archi '
for UUT : sr_controller
use entity work.sr_controller (arbitration);
end for;
end for;
end TESTBENCH_FOR sr controller;

Test Bench for can top-level entity

--Title :CAN
--Design :can54

-- Author :Lai Yeen
-- Company :UTP

-- File : can_bdwb TB.vhd

-- Generated : Sun Apr 4 17:03:08 2004
-- From : can_bdwb TB_settings.txt
- By : tb_generator.pl ver., ver 1.2s

library icee;
use ieee.std_logic 1164.all;

use IEEE. . waves_interface.all;

use WORK.UUT test pins.all;

use WORK.waves_objects.all;

use WORK.DESIGN DECLARATIONS.all;
use WORK.MONITOR UTILITIES.all;

use WORK.WAVES GENERATOR.all;

-- User can put library and packages declaration here

entity can_bd wb is
end can_bd_whb;

architecture can_bdwb_archi of can _bd wb is

-- Component declaration of the tested unit

component can_bd

port (
C Din : in std_logic;
C clock : in std_logic;
C eof : in std_logic;

C reset : in std_logic;
C start : in std_logic;
C Bus : out std_logic;
C_Clk_output : out std logic;
C Dout : out std logic);

end component;

-- Internal signals declarations:
stimulus signals (STIM_)for the waveforms mapped into UUT inputs,
observed signals (ACTUAL) used in monitoring ACTUAL Values of UUT

Qutputs,

bi-directional signals (Bl DIRECT) mapped into UUT Inout ports,
-~ the BI DIRECT _ signals are used as stimulus and also used for monitoring

the UUT Inout ports

begin

signal STIM_C Din : std_logic;

signal STIM_C clock : std_logic;

signal TMP_C _clock : std_logic;

signal STIM_C _eof : std_logic;

signal STIM_C reset : std_logic;

signal STIM_C_start : std_logic;

signal ACTUAL C Bus: std_logic;

signal ACTUAL C Clk_output : std_logic;
signal ACTUAL C Dout : std_logic;

-- Expected signals used in monitoring the UUT OUTPUTS
signal EXPECT_C_Bus : STD_ULOGIC;

signal EXPECT_C_Clk_output : STD_ULOGIC;

signal EXPECT_C_Dout : STD. ULOGIC;

-- WAVES signals OUTPUTing each slice of the waves port list
signal WPL : WAVES PORT LIST;

signal TAG : WAVES_TAG;

signal ERR_STATUS: STD_LOGIC:=L",

-- Signal END_SIM denotes end of test vectors file

signal END_SIM : BOOLEAN:=FALSE;

-- Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

CLOCK _GEN FOR_C_clock: process
begin
if END_SIM = FALSE then
TMP_C clock <="'0"
wait for 20 ns;
else

wait;
end if;
if END SIM = FALSE then
TMP_C clock <="'17,
wait for 20 ns;
else
wait;
end if}
end process;
-- Processes that convert the WPL values to 1164 Logic Values
ASSIGN_STIM_C Din: STIM_C Din <=
WPL.SIGNALS(TEST PINS'pos(C_Din)t1);
ASSIGN _STIM_C clock: STIM_C clock <=TMP _C clock;
ASSIGN _STIM_C eof: STIM_C eof <=
WPL.SIGNALS(TEST PINS'pos(C_eof)+1);
ASSIGN_STIM_C reset: STIM_C reset <=
WPL.SIGNALS(TEST PINS'pos(C reset)+1);
ASSIGN STIM C start: STIM C_start <=
WPL.SIGNALS(TEST _PINS'pos(C_start)+1);
ASSIGN_EXPECT C_Bus: EXPECT C Bus <=
WPL.SIGNALS(TEST_PINS'pos(C_Bus)+1);
ASSIGN_EXPECT C _CIk_output: EXPECT C Clk_output <=
WPL.SIGNALS(TEST_PINS'pos(C_Clk_output)+1);
ASSIGN EXPECT C Dout: EXPECT C Dout <=
WPL.SIGNALS(TEST_PINS'pos(C_Dout)+1);

-- Unit Under Test port map
UUT: can_bd
port map(
C Din=>STIM_C _Din,
C clock=>S8STIM _C clock,
C eof=>STIM C eof,
C_reset => STIM_C _reset,
C_start => STIM_C _start,
C_Bus=> ACTUAL C_Bus,
C_Clk output == ACTUAL C Clk_output,
C_Dout=> ACTUAL C Dout);
-- Monitor processes to verify the UUT operational response
MONITOR _C Bus:

MONITOR_RESULTS(REP_FILE,ACTUAL C_Bus,EXPECT C_Bus,NOW,C
_Bus NAME,ERR STATUS),
MONITOR_C Clk output:

MONITOR_RESULTS(REP_FILE,ACTUAL C CIk output, EXPECT C CIk o
utput, NOW,C_Clk_output NAME,ERR STATUS};
MONITOR_C Dout:

MONITOR_RESULTS(REP FILE,ACTUAL C_Dout,EXPECT C_Dout,NOW,
C_Dout NAME,ERR_STATUS);

-- Process denoting end of test vectors file
NOTIFY_END_VECTORS: process (TAG)
begin
1f TAG.len /=0 then
if ERR STATUS='L' then
report "All vectors passed.";
elsif ERR_ STATUS="1'then
report "Errors were encountered on the output ports,
differences are listed in can_bd_report.log"; '
end if; _
END_SIM <= TRUE;
CLOSE_VECTOR;
CLOSE_REPORT;
end if;
end process;

end can_bdwb_archi;

configuration TESTBENCH_FOR can bd of can_bd wb is
for can_bdwb_archi
for UUT : can_bd
use entity work.can_bd (can_bd);
end for;
end for;
end TESTBENCH_FOR_can bd;

APPENDIX §

Translation Report

Translation report

Release 4.21 - ngdbuild E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Command Line: ngdbuild -dd ¢:/kly/can54/ ngo -nt timestamp -p xc2v1000-{g256-4
can_bd.ngc can_bd.ngd

Reading NGO file "C:/kly/can54/can_bd.ngc" ...
Reading component libraries for design expansion...

Annotating constraints to design from file "can_bd.ucf" ...

Checking timing specifications ...
Checking expanded design ...

NGDBUILD Design Results Summary:
Number of errors: 0
Number of warnings: 0

Writing NGD file "can_bd.ngd" ...

Writing NGDBUILD log file "can_bd.bld"...

APPENDIX 6

Map Report

Map report

Release 4.21 - Map E.35
Xilinx Mapping Report File for Design 'can_bd'

Design Information

Command Line : map -p xc2v1000-fg256-4 -cm arca -k 4 -c¢ 100 -tx off can_bd.ngd
Target Device : x2v1000

Target Package : {2256

Target Speed : -4

Mapper Version : virtex2 -- SRevision: 1.58 §

Mapped Date : Wed Apr 28 21:36:19 2004

Design Summary

Number of errors: 0
Number of warnings: 0

Number of Slices: 12 outof 5,120 1%
Number of Slices containing

unrelated logic: Qoutof 12 0%
Number of Slice Flip Flops: 19 out of 10,240 1%
Number of 4 input LUTs: 4 outof 10,240 1%
Number of bonded IOBs: Joutof 172 4%
Number of GCLKs: loutof 16 6%
Number of DCMs: loutof 8 12%

Total equivalent gate count for design: 7,179
Additional JTAG gate count for IOBs: 336

Table of Contents

Section 1 - Errors

Section 2 - Warnings

Section 3 - Informational

Section 4 - Removed Logic Summary
Section 5 - Removed Logic

Section 6 - IOB Properties

Section 7 - RPMs

Section § - Guide Report

Section 9 - Area Group Summary
Section 10 - Modular Design Summary

Section 1 - BErrors

Section 2 - Warnings

Section 3 - Informational

INFO:MapLib:354 - Virtex BUFG symbol "ull_u_bufg" (output signal=net5381) is

being retargetted to Virtex2 BUFGMUX with input tied to I0 and Select pin

tied to constant 0.
INFO:MapLib:62 - All of the external outputs in this design are using slew rate

limited output drivers. The delay on speed critical outputs can be
dramatically reduced by designating them as fast outputs in the schematic.
Section 4 - Removed Logic Summary

2 block(s) optimized away

Section 5 - Removed Logic

Optimized Block(s):
TYPE BLOCK
GND GND 1
VCC VCC_ I

To enable printing of redundant blocks removed and signals merged, set the
detailed map report option and rerun map.

Section 6 - IOB Properties

+ +
| 1OB Name | Type |Direction | [O Standard | Drive | Slew | Reg (s) | Resistor |IOB |
\ | | | | Strength | Rate | | | Delay |

+ +
| c_bus |IOB |OUTPUT |LVTTL |12 |SLOW| | | |
c_clk_output |IOB |OUTPUT |LVTIL |12 |SLOW| | | |

| c_clock |IOB |INPUT |LVTTL | | | | I

|c_dout |IOB |OUTPUT |LVTTL |12 |SLOW| | | |

| c_reset |[IOB |INPUT |LVTTL | I | []

| lock |IIOB |OUTPUT |LVITL |12 [SLOwW| | | |

| reset |IOB |OUTPUT |LVTIL |12 |SLOW| | | |

+ +

Section 7 - RPMs

Section 8 - Guide Report

Guide not run on this design.

Section 9 - Area Group Summary

No area groups were found in this design.

Section 10 - Modular Design Summary

Modular Design not used for this design.

APPENDIX 7

Place & Route Report

Place & Route report

Release 4.21 - Par E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Wed Apr 28 21:36:26 2004

par -f par.rsp

Constraints file; can_bd.pcf

Loading design for application par from file par_temp.ncd.
"can_bd" is an NCD, version 2.37, device xc2v1000, package fg256, speed -4
Loading device for application par from file '2v1000.nph' in environment

C./Xilinx.
Device speed data version: PRODUCTION 1.96 2002-01-02.

Resolved that TOB <c_dout> must be placed at site A8.
Resolved that IOB <c_clock> must be placed at site P9.
Resolved that IOB <c_bus> must be placed at site A7.
Resolved that JOB <c¢_reset> must be placed at site M4.
Resolved that IOB <reset> must be placed at site C5.
Resolved that IOB <c_clk output> must be placed at site B8.
Resolved that [OB <lock> must be placed at site D5.

Device utilization summary:

Number of External [OBs 7Joutof 172 4%
Number of LOCed External I0Bs 7outof7 100%
Number of SLICEs 12out of 5120 1%
Number of BUFGMUXs loutofle 6%
Number of DCMs loutof8 12%

Overall effort level (-ol): 2 (set by user)
Placer effort level (-pl): 2 (set by user)
Placer cost table entry (-t): 1

Router effort level (-r1): 2 (set by user)

Extra effort level (-xe): 0 (set by user)
Starting Clock Logic Placement. REAL time: 7 secs

Placer score =21
Finished Clock Logic Placement. REAL time: 7 secs

Automatic resolution of clock placement was successful.

It was not necessary to constrain the placement of any of the logic driven by the global

clocks with the current clock placement.

HHEHHR T A R
Automatic clock placement completed.
B R R R R R

Starting clustering phase. REAL time: 7 secs
Finished clustering phase. REAL time: 7 secs

Starting Directed Placer. REAL time: 8 secs
Placement pass 1 .

Placer score = 5610
Placer score = 5610
Finished Directed Placer. REAL time: 8 secs

Starting Optimizing Placer. REAL time: 8 secs
Optimizing

Swapped 9 comps.

Xilinx Placer [1] 5310 REAL time: 8 secs
Finished Optimizing Placer. REAL time: 8 secs

Dumping design to file can_bd.ncd.

Total REAL time to Placer completion: 8 secs
Total CPU time to Placer completion: 5 secs

0 connection(s) routed; 70 unrouted active, 7 unrouted PWR/GND.
Starting router resource preassignment

Completed router resource preassignment. REAL time: 10 secs
Starting iterative routing.

Routing active signals.

End of iteration 1

77 successful; 0 unrouted; (0) REAL time: 12 secs

Constraints are met.

Total REAL time: 12 secs

Total CPU time: 8 secs

End of route. 77 routed (100.00%); 0 unrouted.

No errors found.

WARNING:Route:49 - The signal "GLOBAL LOGIC0" has no loads so was not routed.

This design was run without timing constraints. It is likely that much better circuit
performance can be obtained by trying either or both of the following;

- Enabling the Delay Based Cleanup router pass, if not already enabled
- Supplying timing constraints in the input design

Total REAL time to Router completion: 12 secs

Total CPU time to Router completion: 8 secs

Generating PAR statistics.

The Delay Summary Report

The Score for this design is: 5222

The Number of signals not completely routed for this design 1s: 0

The Average Connection Delay for this designis: | 1.765 ns
The Maximum Pin Delay is: 4.448 ns
The Average Connection Delay on the 10 Worst Nets'is: 2.291 ns

Listing Pin Delays by value: (ns)
4<1.00 <d<2.00 <d<3.00 <d<4.00 <d<5.00 d>=5.00

34 18 10 9 6 0

Dumping design to file can_bd.ncd.

All signals are completely routed.

Total REAL time to PAR completion: 13 secs
Total CPU time to PAR completion: 9 secs

Placement: Completed - No errors found.
Routing: Completed - No errors found.

PAR done.

APPENDIX 8

FPGA Floorplan

FPGA Floorplan

APPENDIX 9

Pad Report

Pad report

Release 4.21 - Par E.35 _
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Wed Apr 28 21:36:39 2004

Xilinx PAD Specification File

st e ke ok s sk stk ok ke ok e sk sk ok ok ok e kok sk ok ook ok

Input file: par_temp.ncd
Output file: can bd.ncd
Part type: xc2v1000
Speed grade: -4
Package: fg256

Pinout by Signal Name:
| | | [| | | | ! | | |
i b I I i | I I i I I I
Signal Name | PinName |Pin |Direction | IO Standard [IO Bank # [Drive (mA)| Slew | Pullup | IOB Delay | Voltage
|Constraint |
| | Number | | | | | Rate | Pulldown. | | \ |
| | I | | 1 (| | i | | |
I 1 | I | i I ! i I I |
¢ _bus | |A7 |OUTPUT |LVTITL |0 |12 | SLOW | NONE#* | | | LOCATED |
c_clk_ouiput | GCLKSP |B8 |OUTPUT |LVTTL {0 |12 | SLOW | NONE#®* | k& | |
LOCATED | :
¢_clock | GCLK2P |P9 |INPUT |LVTTL |4 [12* | SLOW*| NONE** |NONE | |
LOCATED |
c_dout | GCLK4S |A8 |OUTPUT |LVTTL |0 12 | SLOW | NONE** | #¥% | |
LOCATED |
c_reset | |M4 |INPUT |LVTIL |6 {12* [SLOW¥ NONE** [NONE | | LOCATED |
lock | |D5 |OUTPUT [LVTITL |0 |12 | SLOW | NONE** | %4* | | LOCATED |
reset | |C5 |OUTPUT |LVTTL |0 |12 | SLOW | NONE** | *#* | | LOCATED |
\ I i { I I -~ I | I |
Pinout by Pin Number:
| | | 1 |] 1 | | | | |
| | I | I I 1 1 § | | 1
Pin | Signai Name | PinName | Direction | IO Standard [I0 Bank # [Drive (mA)| Slew | Pullup | IOB Delay | Voltage
[Constraint |
Numrber | | | | |] | Rate | Pulldown | f |
| | | i | | | | | i 1 i
| | | i i | | | 1 i i i
Al | | GND | |LVTTL* | | 12% | SLOW*| NONE** | *** | | |
A2 | |PROG_B | |LVTTL* | [12% | SLOW*| NONE** | #k# | I |
A3 | | RSVD | ILVTTL* | |12% | SLOW*| NONE##* | ### I | |
Ad) |RSVD | [LVTTL* | [12% | SLOWH| NONE** |##+ [| |
A5] | |UNUSED [LVTTL* |0 [12% | SLOW*| NONE#* |¥++ | | |
A6 | i |UNUSED |[LVTITL* |0 [12% | SLOW*| NONE#** | #4* | | |
A7 |c_bus | [OQUTPUT |LVTTL |0 [12 |SLOW |NONE** |¥#* | | LOCATED
A8 |c_dout | GCLK4S JOUTPUT |LVTTL |0 [12 | SLOW | NONE#** |+ | |
LOCATED | '
A9 | | GCLK3P | |LVTTL* |1 {12% | SLOW*| NONE#* | #%= | | |
Al0 | | |UNUSED |LVTTL* |1 [12*% | SLOW*| NONE** [%% | | |
All | | |UNUSED |LVTIL* |1 [12* | SLOW™| NONE** | #4% | | |
AlZ | | |UNUSED |LVTTIL* |1 [12* | SLOW* NONE#** | *#* | | |
Al3 | | RSVD | |LVTTL* | [12% [SLOW¥| NONE** | #*=% | | |
Ald | | VBATT | [LVTTL* | [12* | SLOW* NONE® [#%x | | |
AlS | | TCK \ [LVITL* | [12% | SLOWH* NONE** |*%% | | ;
Al6 | | GND ; |LVITL* | |12* |SLOWX NONE** |#% | | |
Bl | | VCCAUX | |LVTTL* | | 12% | SLOW* NONE** | ##+ | | |
B2 | [GND | |LVTTL* | [12% | SLOW*|NONE®* |##x | | |
B3 | |HSWAP EN | LVITE* | |12% |SLOW* NONE** [##+ | | |
B4 | t |[UNUSED |LVTTL* |0 |12* |[SLOWXNONE** |** | | [
B | \ |UNUSED |LVTTL* [0 |12*% | SLOWH NONE** |*** | | |
B6 | | |UNUSED |LVTIL* |0 |12*% |SLOW*|NONE** |[*+ | | |

B7 |
B8
LOCATED |
BY |
BIO |
BII |
B2 |
BI3 |
|
I

I
I
|
I
C5 |reset
|
I
I
|I
I
|
Cl3 |
|
|
!
i
|
I
| lock
|
I
I
I
E
Di2 |
|
I
I
|
I
|
i
|
E5 |
I
I
|
|I
I
|
E13 |
I
I
I

|
I
|
F5 |
I
|
|
I

| c_clk_output

| VREF | [LVITL* [0 |12* |SLOWY NONE** | %% |
| GCLKSP [OUTPUT [LVTTL |0 |12 |SLOW |NONE** |##x

|GCLK2S | [LVTTL* |1 |12* |SLOW¥ NONE®* |#* |

| VREF I [LVTTL* |1 |12* |SLOWY NONE®* |#¥+

| {UNUSED |LVTTL* |1 |12* |SLOWH NONE** |#% |

I |UNUSED |LVTTL* |1 [12* |[SLOW*| NONE** |*%* |

I [UNUSED |LVTTL* |1 |12* |[SLOWY| NONE** |#%* |

| TMS | [LVTTL* | [12% |SLOWH NONE#* | %% |

| GND I |LVTTL* | [12% | SLOW# NONE** | %+ |

|VCCAUX | ILVITL* | |12* |SLOW*| NONE** |#%* |

| |UNUSED |LVTTL* {7 [i2% |SLOW NONE** |#xx |

| TDI | | LVITL* [12% | SLOW*| NONE#* |#** | |

| GND | | LVTTL* [12% | SLOW*| NONE#®* | k= |

| |UNUSED |LVTTL* |0 |12% |SLOWX NONE** |#x¢ |

I [OUTPUT |LVTTL |0 |12 |SLOW|NONE#* }*++ |

I |UNUSED |LVTTL* [0 |12*% |SLOW*| NONE** |#%* |

I {UNUSED |LVTTL* [0 |12* |SLOW*| NONE*® |#** |

|GCLK6S | |LVTTL* |0 |12% [SLOW*| NONE** [*%* |

| GCLK1P | |LVTTL* |1 [12% | SLOWH| NONE#* | ##+ |

I | UNUSED |LVTTL* |1 |12% |SLOW*| NONE*% |#%+ |

| [UNUSED |LVTTL* |1 |12% |SLOWY NONE** |#* |

I [UNUSED |LVTTL* |1 j12% [SLOWH| NONE** |#* |

I |[UNUSED [LVTTL* |1 = |12% |SLOWH NONE®* |#ex |

| GND [ILVTTL* | |12* |SLOW* NONE** |*** |

| TDO | [LVITL* | [12* | SLOW*| NONE** |k |

| |[UNUSED |LVTTL* |2 [12¥ |SLOW* NONE#* |+ |

| |UNUSED |LVTTL* |7 [12% | SLOWS| NONE** | %#* |

I |[UNUSED |LVTTL* {7 [12% |SLOW* NONE** |*%x |

I JUNUSED |LVTTL* 7 |12%¥ |SLOW¥ NONE** |*#+ |

|[VCCINT | ILVITL* | |12%* |SLOW*| NONE#* | |

| JOUTBUT |LVTTL |0 |12 |SLOW |NONE®* |#%*

| VREF | [LVITL* |0 [12* |SLOWY NONE** |*# |
|UNUSED [LVTTL* {0 |12% |SLOW*| NONE** |*&* |

| GCLK7P | [LVTTL* [0 . [12* |SLOWH* NONE** [*+ |

[GCLKOS | |LVTTL* |1 |12* |SLOW* NONE# |*#+ |

| |UNUSED |LVTTL®* |1 | |12% |SLOW* NONE** |##% |

| VREF I [LVITL* |1 }12* |SLOW*|NONE#* |#*%x |
|UNUSED |LVTTL* |1 |12% |SLOW¥| NONE** | |

| VCCINT | |LVTTL* | |12* | SLOW* NONE** |**x |

| |UNUSED |LVTTL* |2 [12* |SLOWX NONE** |#%x |

| |[UNUSED [LVTTL* |2 [12% |SLOWH| NONE** |#x% |

| [UNUSED |LVTTL* |2 [12% |SLOW*| NONE#®* |#%% |

| |[UNUSED |LVTTL* |7 [12* |SLOW*NONE#®* |*+* |

| |[UNUSED |LVTTL* |7 [12* [SLOW* NONE** |** |

| VREF | [LVITL* |7 |12* |SLOW*| NONE** | %+ I

I |UNUSED |LVTTL* |7 |12% |SLOW?®| NONE** |**= |

|[VCCINT | |LVITL* | [12% | SLOWX|NONE** |#%* |

I |UNUSED |LVTIL* |0 [12* |SLOWZ NONE#* |**x |

| |UNUSED |LVTIL* |0 [12% [SLOWS® NONE** |**x |

|VvCCco 0 | [LVTTL* { |12* |SLOW* NONE** |**= |3.30

| VCCo_1 | |[LVTTL* | [12* |SLOW* NONE** |*** |na

| |[UNUSED |LVWTTL®* |1 |12% |SLOWH NONE** |#k% |

| |UNUSED |LVTTL* |1 [12% |SLOW* NONE** |##+ |

| VCCINT I |LVTTL* | [12% | SLOW* NONE** |*** |

| |UNUSED |LVTTL* |2 |12* |SLOW*| NONE** |*** |

| VREF | |[LVTTL® |2 [12% |SLOW* NONE** | *++

| [UNUSED |LVTTL* |2 |12% |SLOW¥ NONE** |##+ |

I |[UNUSED |LVTTL* |2 [12% |[SLOWY NONE** |=** |

| JUNUSED |LVTTL* |7 [12% | SLOW#| NONE** [*++ |

I [UNUSED |[LVTTL* |7 |12% {SLOWHNONE#** |#*+ |

| [UNUSED |LVTTL* |7 |12* {SLOW* NONE** [**+ |

I IUNUSED |LVTTL* |7 |12% {SLOWSH NONE** |#*#+ |

| |UNUSED |LVTTL* {7 |12% |SLOWH NONE** |**x |

| GND | {LVTTL* [12* | SLOW* NONE** |+ |

| VCCO_0 | ILVITL* | |12% |SLOWH NONE** |*** |330

| VCCO_0 | [LVITL* | |12% |SLOW¥| NONE** |*** 330

[VCCOo_1 | |LVTTL* | [12* | SLOW* NONE** |*** |na

{vCCo_l | |LVTTL* | |12* |SLOW* NONE** |*** |na

|GND | [LVITL* | |12* |SLOW* NONE** |¥%* |

| |UNUSED |LVTTL*
| |UNUSED |LVTTL*
| |UNUSED |LVTIL*
| |UNUSED |LVTTL*
| |UNUSED | LVTTL*
| VREF [| LVTTL*

1 |UNUSED |LVTTIL*
] |UNUSED |LVTTL*
| |UNUSED | LVFTL*

| VREF | | LVTTL*
| vCCo_ 7 | | LVTTL*
| GND] [LVTTL*
| GND i | LVTTL*
| GND | | LVTTL*
| GND | | LVTTL*
| VCCO 2 I | LVTTL*
| VREF | | LVTTL*
| |UNUSED |LVTTL*
| | UNUSED |LVTTL*
| | UNUSED | LVTTL®
| VREF | | LVTTL*
| |UNUSED |LVTTL*
| |UNUSED |LVTTL*
| | UNUSED |LVTTL*
| |UNUSED |LVTTIL*
| veCco_7 | | LVTTL*
| VCCOo 7 | | LVTTLA
| GND [| LVTTL*
| GND | | LVTTL*
| GND | | LVTTL*
| GND | | LVTTL*
| veeo 2 | [LVTTL*
[VCCO 2 | ILVTTL*
1 [UNUSED | LVTTL*
i | UNUSED | LVTTL*
| | UNUSED | EVTTL*
| | UNUSED | LVTTL*
|UNUSED |LVTTL*
|UNUSED | LVTTL*
|UNUSED |LVTTL*
|UNUSED |LVTTL*
| VCCO 6 | | LVTTL*
| vCCO 6 | | LVTTL#
GND		[LVTTL*
GND		LVITL* -
GND		LVTTL*
GND		LVTTL* -
veeo 3		LVTTL*
VCCO_3 I	LVTEL*	
UNUSED	LVTTL*	
UNUSED	LVTTL*	
UNUSED	LVTTL*	
UNUSED	EVMTTL*	
VREF		LVTTL*
UNUSED	LVTTL*	
UNUSED [LVTTL*		
UNUSED	LVTTL*	
VREF	[LVTTL*	
veco 6	[LVTTL*	
GND [[LVTTL*	
GND [LVTTL*	
GND \	LVTTL*	
GND	[LVTTL*	
VCCo 3		LVTTL*
VREF		LVTTL*
	UNUSED	LVTTL*
	UNUSED	LVTTL*
	UNUSED	LVTTL*
VREF [LVTTL*	

|[UNUSED | LVTTL*

|12* | SLOW* NONE** | %sx
[12* | SLOW* NONE** |*xx
[12% | SLOW* NONE** | %ix
[12* | SLOW* NONE** | *ix
[12% | SLOWH| NONE#* | #i+
[12% | SLOW*| NONE*¥ | ks
|12% | SLOW*| NONE** | %x
[12% | SLOW* NONE** | ##*
|12* | SLOW* NONE** | *x*
|12% | SLOW*| NONE** |
[12* | SLOW* NONE** | %
[12% | SLOW*| NONE** | %
[12% | SLOWS®| NONE** |+

[12% | SLOW# NONE** | ¥

|12% | SLOWH* NONE** | **x
[12% | SLOW*| NONE** |***
[12% [SLOW* NONE** | %%
[12% | SLOW* NONE** |®x+
[12% | SLOW*| NONE#* |®**
112% | SLOWH| NONE#* | *#*
[12% | SLOWH*| NONE#* | b
|12% | SLOW*| NONE*= | =+
[12% |SLOW* NONE#* |*+*
112% | SLOW*| NONE#* | %+
[12% | SLOW* NONE** | #x*
|12% | SLOW*| NONE#** | *#+
|12% | SLOW*| NONE#* |+

[12% | SLOWS| NONE** |
[12% | SLOW#| NONE** |#=*
[12% | SLOW| NONE** | =

[12% . | SLOW*| NONE** | %+
[12% | SLOW*| NONE#* | %%
[12* | SLOW*| NONE** | *x*
1125 | SLOWH| NONE®* | b
[12% | SLOW*|NONE** | ***
[12% | SLOW* NONE#* | #*s
| 12% | SLOW* NONE** | **=
|12% | SLOWH| NONE#* | *++
|12% | SLOW*| NONE** | #+
|12% | SLOW*| NONE*=® | =%
|12% | SLOW*| NONE** | %#

|12%. | SLOWH| NONE** | **

|12%° | SLOW¥| NONE*#* | 2%
[12% | SLOWY| NONE** | o+
|12* | SLOW*| NONE** |#% |
[12% | SLOWH NONE** | #++

[12% | SLOW*| NONE®* | %%
[12% |SLOW* NONE#* | *%
[12% | SLOW*| NONE#* | *+#
[12% | SLOW* NONE#®x | **x
112% | SLOW*| NONE#* | **s
[12% | SLOW* NONE#** | #*=
[12% - | SLOWY NONE** | %
]12% | SLOW® NONE** | %%¥
112% | SLOW®| NONE** | *#x
[12% | SLOW* NONE** | #x
[12% | SLOW*| NONE** | %k
[12% | SLOW*| NONE** | ¥

! 12* | SLOW*' NONE** { LS
[12% | SLOW*| NONE** | #x*
[12% | SLOWX| NONE** | #*x
[12% | SLOWH| NONE#* |*x%

[12% | SLOWH| NONE#* | #%
[12% | SLOWH| NONE#** | %
|12% | SLOWX| NONE** |*=x
|12% | SLOW*| NONE#* | ##
|12% | SLOW*| NONE** |#**
[12% | SLOWH*| NONE## | ks
|12% | SLOW*| NONE** | *x*

a1

&

©_reset

=

I
I
MI3 |
|
|
II
|
|
I
N5 |
I
I
I
I
I
i
I
NI3 |
|
I
I

I
I
I
P4 |
|
|
|

P9 |c_clock
LOCATED |

P1CG |
P13 |
P12 |
P13 |
P14 |
P15 |
P16 |
R1 |
R2 |
RI |
R4 |
RS |
R6 |

| | UNUSED |LVTTL* |6 [12% | SLOWH| NONE#** | %+ I
I |UNUSED |LVTIL* |6 |12* |SLOWH NONE*# |##% |
| |[UNUSED |LVTTL* |6 |12*% |SLOWH NONE** |#*x |
I |[UNUSED |LVTTL* |G |12* |SLOWH NONE#* % |
[GND I | LVTTL* [12% [SLOWH| NONE** | *»*
|VCCOs | |LVTIL* [12* | SLOW* NONE** |*%* |na
[VCCO5 | |LVTTL* [12* |SLOW¥ NONE** [*** |na
|[Vvcco 4 | |LvTree 112% |SLOW* NONE** |#** |pa
| VCCO _4 | |LVTTL | [12% | SLOW* NONE** |*** |na
}GND I U]IIUSEDILI;E\I%;L* I |12|=i= *|SLIOW*1 NONE** | *#x |
3 12% [SLOWH| NONE** | ks
I |UNUSED |LVTTL* |3 | 12% |SLOW*INONE** I*** I
| {UNUSED |LVTTL* |3 [12% | SLOW*|NONE** | s |
I |UNUSED |LVTTL* |3 |12* |SLOW*/NONE®** |##+ |
| |UNUSED |LVTTL®* |3 }12* |SLOW* NONE#** |## |
| |[UNUSED |LVTTL* [6 |12* |SLOW*NONE** |*x* |
VREE 1 IVIIL 6 (b |stowsioNERe eee |||
IV|CCINT IHTPUT]IEIIE; |I6 ‘Ilf* iISLOW;I NONE** |NONE |
12% |SLOW®| NONE** | i
| JUNUSED |LVTTL* |§ |12% |SLOW* NONE** |#*% |
Ivcco 5IUNL|JSED ||LVTTL: II5 [12% | SLOWH| NONE** |%xe |
_ LYTTL [12% | SLOW*| NONE** [¥%% |pa
| VCCO 4 | [EVTTL* | [12% | SLOW*| NONE** |+ | na
I |[UNUSED |JLVTTL* |4 [12* |SLOW* NONE#* |*x+ |
| |UNUSED [LVTTL* |4 [12* |SLOW# NONE** |##+ |
| VCCINT | [LVTTL* | [12% | SLOW*| NONE*®* | #** |
e U L R
12% | SLOW*| NONE*® | #k*
| |[UNUSED |LVTTL* |3 [12* |SLOWH NONE** |**¢
I |[UNUSED |LVITL* |3 |12* |SLOWH NONE** |##* |
| |UNUSED JLVITL* |6 {12* |SLOW¥ NONE#** |** |
i |UNUSED |LVITL* |6 |12* {SLOW¥ NONE** |*x* |
| [UNUSED [LVTTL* |6 |12% |SLOW* NONE** |*¥* |
| VCCINT | | LYTTL* [128 | SLOW* NONE** | =+
| DS/ALT_VRN 5 | [LVITL* |5 |12% |SLOWY NONE** |*++
I |UNUSED |LVTTL* |5 |12* |SLOWY NONE#** |#% |
I [UNUSED |LVTTL* |5 |12* |SLOWY NONE** [#xx |
| GCLK4P | |LVTTL* |5 [12% |SLOW*| NONE** [##= |
| GCLK3S | [LVTTL* {4 |12% |SLOW*| NONE** | #+%
| |UNUSED |LVTTL* |4 }12* |SLOW*|NONB#* |*** I|
I |[UNUSED |LVTTL* |4 [12% |SLOWH NONE** |*** |
|D2/ALT VRP 4 | [LVITL* |4 |12* | SLOW® NONE** |*#*
| VCCINT | |LVTTL* | [12* | SLOW* NONE** |#%% |
I [UNUSED |LVTTL* |3 [12* |SLOW*| NONE®* |#*x |
I |UNUSED |LVTTL* |3 {12* |SLOWS NONE** |*sx |
	UNUSED	LVTTL*	3 [12% ISLQW*	NONE**	#5%	
	UNUSED	LVTTL*	6 [12%	SLOWH NONE#*	%e+	
M1	[LVTTL*	[12%	SLOWH	NONE**	#s+	
GND	[LVTTL*	[12% [SLOWH NONE*®	##¢			
D7	[LVITL*	5	12%	SLOWH* NONE**	%xx	
D4/ALT_VRP 5	[LVTTL* }5 [12%	SLOW* NONE®*	**x			
	[UNUSED	LVTTL*	5 [12%	SLOW¥ NONE**	*xx	
	UNUSED	LVTTL*	5	[12*	{SLOWH NONE#**	##*
GCLKSS I ILVETL*	5	12% ~	SLOW* NONE** [***			
GCLK2P	INPUT	LVTTL	4	12*	SLOW* NONE**	NONE
[UNUSED	LVTTL* {4	12*	SLOWH* NONE*#	®¥*		
	[UNUSED	LVTTL*	4 [12*	SLOW* NONE**	#*+	
D3/ALT VRN 4		LVTFL*	12%	SLOW*	NONE#**	##x
DO I [LVTTL*	4	12*	SLOW®	NONE**	*e	
[GND		LVTTL* [12%	SLOWH* NONE**	##x		
CCLK.		LVTTL* [12%	SLOWH	NONE*®	ks	
[UNUSED	LVTTL*	3 }12*	SLOW* NONE**	*+*		
VCCAUX I	LVTTL*	[12*	SLOWH NONE®+	#xx		
GND I [LVTEL*		12*	SLOW*NONE**	**=		
M2	[LVITL*		12%	SLOWH	NONE*	*+
D6	[LVTTL*	5 [12%	SLOW*	NONE**	*#%	
VREF		LVTTL* [12%	SLOWH	NQNE#*	*ex I	
VREF		LVTTL* [12% [SLOW* NONE**	*#+			

!
!
I
|
I
!
I

|
| LOCATED |

R7 | [VREF | [LVTTL® |5 |12* |SLOW* NONE#** |**= | | |

R8 | | GCLK6P | |LVTTL* |5 [12% |SLOW*|NONE®* |*®* | | |
R9 | |GCLKIS | [LVTTL* |4 |12% |SLOWX NONE#** |[*xx | | |
RI10 | | VREF | ILVITL* |4 |12* . |SLOWH| NONE** |*+ | | |
Rli i ‘ VREF J ‘ LVTTL* |4 | 12% | SLOW*' NONE#** | gy [| |
RI3 | [DI | |LVTTL* |4 |12% |SLOW* NONE** |#*x | | i
R14 | | DONE | |LVTTL* | [12% |SLOW*| NONE#* |++= | ; |
RIS | | GND | |LVTTL* | [12* | SLOW* NONE#** | #¥* | | |
RI6 | | VCCAUX | {LVTTL* | [12% | SLOW*| NONE** |#s | | |
Tl | GND i ILVITL* | [12* |SLOW* NONE** |*# | | |
T2 | MO | [LVITE* | |12% [SLOW*NONE** |*** | | |
13 |CS_B | [LVITL* {5 |12* |SLOWH NONE®* |**= | | |
T4 [RDWRB | |LVTTL* |5 [12* |SLOWXNONE** |®+ | | |
|UNUSED |LVTTIL* |5 [12*% | SLOWH*| NONE#** |#+* | f |

!
]
|
E
TS |
|
|
|
I

|

T6 | |UNUSED |LVTTL* |5 |12* |SLOW* NONE®* [®+ | | |
7 | |UNUSED |LVTTL* |5 [12* |SLOW*[NONE®* (== | | |
T8 |GCLK?S | [LVITL* |5 |12* |[SLOW*NONE** |*** | | |
9 |GCLKOP | [LVITL* |4 |12* [SLOW*NONE®* {*** | | |
TIO | g |UNUSED |LVTTL* |4 [12* [SLOWH NONE** |*** | | |
Tl | [|[UNUSED |LVTTL* |4 |12* |SLOWXNONE** |*«* | | |
TI2 | [[UNUSED |LVTTL* |4 [12* [SLOW# NONE** |*** | | |
TI3 | IINIT B | [LVTTL* |4 |12 [SLOW* NONE** |** | | |
TI4 | i DOUT | [LVITL* |4 |12* |SLOW*NONE** |[*** | | |
TI5 | 'PWRDWN_B | [LVITL* | |12% |SLOWY NONE** |#*x | | |
Ti6 |

| GND | [LVITL* | |12% |SLOW* NONE** |#=x | | |
| | | { | | | | I

| | | i 1 1 | 1 | 1 | i

* Default value.
** This default Pullup/Pulldown value can be overridden in Bitgen.
*** The default IOB Delay is determined by how the IOB is used.

#

To preserve the pinout above for future design iterations,

simply invoke PIN2UCF from the command line or issue this command in the GUL
For Foundation ISE/Project Navigator - Run the process "Implement Design" ->
"Place-and-Route" -> "Back-annotate Pin Locations"

For Design Manager - In the Design menu select "Lock Pins...

The location constraints above will be written into your specified UCF file. (The
constraints

listed below are in PCF format and cannot be directly used in the UCF file).

|

COMP "c¢_bus" LOCATE =SITE "A7";

COMP "¢_clk_output” LOCATE = SITE "B8";

COMP “c_clock" LOCATE = SITE "P9" ;

COMP "¢_dout" LOCATE = SITE "A8";

COMP "¢ _reset" LOCATE = SITE "M4" ;

COMP "lock" LOCATE = SITE "D5" ;

COMP "reset" LOCATE = SITE "C5" ;

#

APPENDIX 10

Asynchronous Delay Report

Asvnchronous Delay report

Release 4.21 - Par E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Wed Apr 28 21:36:38 2004
File: can_bd.dly

The 20 Worst Net Delays are:

| Max Delay (ns) | Netname |

4.448 lock OBUF
4.329 reset OBUF
2.589 net5381
2.464 u2_do
2.171 ¢_bus_OBUF
1.598 u7_tmp<l1>
1.586 u2 tmp<l>
1.582 w2 tmp<3>
1.291 u2_ tmp<5>
1.257 u2_tmp<7>
1.194 N58
0.990 u7_tmp<7>
0.950 u2_tmp<0>
0.949 u2_tmp<d4>
0.938 u7_tmp<0>
0.935 u7_tmp<4>
0.934 u7_tmp<2>
0.934 u2_tmp<6>
0.934 u7_tmp<6>
0.933 u2_tmp<2>
Net Delays

GLOBAL_LOGICI
PWR_VCC 0.VCCOUT
0.172 ull _u bufg.S

GLOBAL_LOGICI 0
PWR_VCC_1.VCCOUT
0.070 u7_tmp<1>BY

GLOBAL_LOGIC1 1
PWR_VCC_2.VCCOUT
0.070 u2_tmp<i>BY

GLOBAL_LOGICI 2

PWR VCC_3.VCCOUT

0.115
0.151

ull u demDSSEN
ull v demPSCLK

N56

0.115 ull u dem PSEN

0.115 ull_u_dem PSINCDEC

N56.X

N58

0.408 v2_tmp<1>.CE
(.408 12 tmp<3>.CE
0.408 u2_tmp<5>.CE
0.389 w2 _tmp<7>.CE

ul tstate.Y

1.194 u2_do.SR

¢_bus OBUF
N56.Y

2.171 ¢ _bus.0O1

¢_clock IBUFG
¢ clock.l

0.798 ull u dem.CLKIN

lock OBUF
ulT_u_dem LOCKED

4.448 lock.O1

net5381
ull u bufg.O

2.589 ¢ _clk output.Ol
1.366 ull u dem CLKFB
1.097 u7_tmp<1>.CLK
1.097 u7_tmp<3>.CLK
1.096 07 tmp<5>.CLK
1.094 u7_tmp<7>.CLK
1.083 v2_do.CLK
1.093 ul tstate.CLK
1.088 u7_do.CLK
1.101 u2_tmp<1>.CLK
1.101 u2 tmp<3>.CLK
1.101 uv2_tmp<5>.CLK
1.098 u2 tmp<7>.CLK

reset OBUF
¢ reset.]

3.675 reset.0O1

2.307 ull v dem.RST
3.432 u7_tmp<1>.CE
3.723 u7_tmp<1>.SR
3.432 u7 tmp<3>.CE
3.723 u7_tmp<3>.SR
2.991 u7_tmp<5>.CE
3,065 u7_tmp<3>.SR
4.034 u7_tmp<7>.CE

3.730 u7_tmp<7>.SR
3.721 u2 do.CE
4.329 ul tstate.SR
3.721 ul tstate.F4
4.024 ul_tstate.G3
4.034 u7_do.CE
2774 u7_do.SR
2.732 u2_tmp<1>.S8R
2,732 u2 tmp<3>.SR
2.732 u2 tmp<5>.SR
4,229 N56.F2

2.774 u2_tmp<7>SR

ull clk0 w
ull u dem.CLKO

0.852 ull_u_bufg.I0

ul I tnext/O
ul tstate. X
0.001 ul_tstate.DX

ul tstate
ul tstate. XQ
0.532 ul tstate.F1
0.569 ul tstate.G1
0.285 N56.F4

u2 do
u2 do.YQ
2464 ¢_dout.Ol
0.325 ul_tstate.G4
0.533 N56.F1
0.570 N56.G1

u2_ tmp<(>
u2_ tmp<1>YQ
0.950 u2 tmp<1>BX

u2 tmp<i>
uZ tmp<1>.XQ
1,586 u2_tmp<3>BY

u2_tmp<2>
u? tmp<3>YQ
0.933 v2_tmp<3>BX

u2_tmp<3>
u2_tmp=<3>XQ
1.582 u2_tmp<5>BY

u2_tmp<4>
uZ2_tmp<5>.YQ
0.949 u2 tmp<5>BX

u2 tmp<5>
u? tmp<5>XQ

1291 u2_tmp<7>BY

u2_ tmp<6>
u? tmp<7>YQ
0.934 v2 tmp<7>BX

u2 tmp<y>
u2_tmp<7>XQ
1.257 u2 do.BY

u7 _do
u7_do.YQ
0.786 ul_tstate.G2
0.641 N56.F3
0.610 N56.G3

u7y_tmp<0>
u7_tmp<1>YQ
0.938 u7 tmp<1>BX

u/_tmp<l>

u7_tmp<1>XQ
1.598 u7 mp<3>BY

u7_tmp<2>
u? tmp<3>YQ
0.934 u7_tmp<3>BX

u?7_tmp<3>
u7_tmp<3>XQ _
0.693 u7 tmp<5>BY

u7_tmp<4>
u7_tmp<5>YQ
0.935 u7_tmp<5>BX

u7_tmp<s>
u7_tmp<5>XQ
0.693 u7_tmp<7>BY

u7_tmp<6>
u7_tmp<7>YQ
0.934 u7_tmp<7>BX

u7_tmp<7>
u7_tmp<7>XQ
0.990 u7_do.BY

APPENDIX 11

Post-Place & Route Static Timing Report

Post-Place & Route Static Timing Report

Release 4.21 - Trace E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

trce -e 3 -13 -xml can_bd can_bd.ncd -o can_bd.twr can_bd.pcf

Design file: can_bd.ncd

Physical constraint file: can_bd.pcf

Device,speed: xc2v1000,-4 (PRODUCTION 1.96 2002-01-02)
Report level: error report

WARNING:Timing:2491 - No timing constraints found, doing default enumeration.
Timing constraint: Default period analysis

89 items analyzed, O timing errors detected.
Minimum period is 6.762ns.
Maximum delay is 10.042ns.

Timing constraint: Default net enumeration

32 items analyzed, 0 timing errors detected.
Maximum net delay is 4.448ns.

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock ¢_clock
— S —" +
| Setupto | Holdto |
Source Pad | clk (edge)| clk (edge) |
--------------- R

¢_reset 7.267(R)| 0.000(R)|

Clock ¢_clock to Pad

-------- + —t
| clk (edge) |

Destination Pad | to PAD |
-------- + -+
¢ _bus | 8.830(R)|
c_clk output | 6.533(X)|
c_dout | 8.069(R)|
+ +

Clock to Setup on destination clock ¢_clock
— —t + I T— +
| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock [Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall]

—+ + + —+ +
¢_clock | 3.272| | | [
- +---- +---- + + +
Pad to Pad
--------------- + -+ +
Source Pad |Destination Pad | Delay |

— it +
c_reset | reset | 10.042|
+- R USRS — +

Timing summary:

Timing errors: O Score: 0
Constraints cover 89 paths, 32 nets, and 70 connections (100.0% coverage)
Design statistics:

Minimum period: 6.762ns (Maximum frequency: 147.885MHz)

Maximum combinational path delay: 10.042ns
Maximum net delay: 4.448ns

Analysis completed Wed Apr 28 21:54:16 2004

APPENDIX 12

BitGen Report

BitGen report

Release 4.2i - Bitgen E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Loading design for application Bitgen from file can_bd.ncd.
"can_bd" is an NCD, version 2.37, device xc2v1000, package fg256, speed -4
Loading device for application Bitgen from file 2v1000.nph' in environment

C:/Xilinx.
Opened constraints file can_bd.pcf.

Wed Apr 28 22:02:14 2004

bitgen -w -g DebugBitstream:No -g CRC:Enable -g ConfigRate:4 -g CclkPin:PullUp -g
MOPin:PullUp -g M1Pin:PullUp -g M2Pin:PullUp -g ProgPin:PullUp -g DonePin:PullUp
-g DriveDone:No -g PowerdownPin:PullUp -g TckPin:PullUp -g TdiPin:PullUp -g
TdoPin:PullNone -g TmsPin:PullUp -g UnusedPin:PullUp -g UserID:0xFFFFFFFF -g
DCMShutDown:Disable -g DisableBandgap:No -g StartUpClk:CClk -g DONE cycle:4 -
g GTS_cycle:5 -g GWE_cycle:6 -g LCK_cycle:NoWait -g Match _cycle:NoWait -g
Security:None -g Persist:No -g DonePipe:No -g Encrypt:No can_bd.ncd

Summary of Bitgen Options:

+ - -+ +
| Option Name | Current Setting |
+ + S—
| Compress | (Not Specified)* |
+omm A — +
| Readback | (Not Specified)* |
SR e +
| CRC | Enable** |

S —— e — +
[DebugBitstream | No** I

S — S — +
| ConfigRate | 4%* |

S R R —— +
| StartupClk | Celk** |
R SRS +
{ DCMShutdown | Disable** |
T —— e ——— +
| DisableBandgap | No** |
S R —— +
| CclkPin | Pullup** I

o o +

| DonePin [Pullup** |

+ N +
| HswapenPin | Pullup* |

+ -t +
| MOPin | Pullup** |

+ -t -t
| M1Pin | Pullup** |

e —t +
| M2Pin | Pullup** |

+ -t -- +
| PowerdownPin | Pullup** |
+ -t -- +
| ProgPin | Pullup** |

+ S +
| TekPin | Pullup** |

+ —+ +
| TdiPin | Pullup** |

+ -+ -- +
| TdoPin | Pullnone |

+ —+ S
| TmsPin | Pullup**]
T Fe- +
| UnusedPin | Pullup |
SR S +
| GWE_cycle | 6%* |

+ — R +
| GTS cycle PGk |

Frommmm e treme +
| LCK cycle | NoWait** |
R S +
| Match_cycle | NoWait |
+-- et +
| DONE _cycle | 4%* |
T +-- +
| Persist | No** |

+-- -- -—t +
| DriveDone { No** |
+-- L +
| DonePipe | No** |

+ - -—t +
| Security | None** |

+ e e +
| UserID | OxFFFFEFFE** |
+ -—t +
| Encrypt | No** |

+ - e +

Fomeen . - +
| Keyl | pick* |

+ + - +
| Key2 | pick* |
Fomeee S S +
| Key3 | pick* |

+o- S —t
| Key4 | pick* |

+ - S +
| Key5 | pick* |

eme - N — +
t Keyseq0 | M* |
S S +
| Keyseql | M* |
e e + +
| Keyseq2 | M* |
N — + +
| Keyseq3 | M* |
e e + - +
| Keyseq4 | M* |

+ee + +
' Keyseq5 | M* |

+om- + -t
i KeyFile | (Not Specified)* |
+--- —+ S
| StartKey | 0% |

+ et - o
| StartCBC | pick*® |

+ o L
| Binary | No* |

+ o +

* Default setting.

** The specified setting matches the default setting.

Running DRC.

WARNING:DesignRules:366 - Netcheck: Sourceless and loadless. Net
GLOBAL 1.OGICO has no pin.

DRC detected O errors and 1 warnings.

Creating bit map...

Saving bit stream in "can_bd.bit".

Bitstream generation is complete.

APPENDIX 13

User Constraint File (UCF)

R R AR

BASICUCF SYNTAX EXAMPLES V2.1.5-
e L N R R R R

#

TIMING SPECIFICATIONS

#

Timing specifications can be applied to the entire device (global) or to

specific groups of login in your PLD design (called "time groups').

The time groups are declared in two basic ways.

i

Method 1: Based on a net name, where 'my_net' is a net that touchs all the
logic to be grouped in to logic_grp'. Example:

#NET my net TNM_NET = logic_grp ;

#

Method 2: Group uing the key word TIMEGRP' and declare using the names of
logic in your design. Example:

#TIMEGRP group_name = FFS ("U1/*");

creates a group calted 'group_name' for all flip-flops with in
the hierarchical block called Ul. Wildcards are valid.
#

Grouping is very important because it lets you tell the software which parts
of a design run at which speeds. For the majority of the designs with only

one clock the very simple global constraints.

#

The type of grouping constraint you use can vary depending on the synthesis
tools you are using. For example, Synplicity does well with Method 1, while
FPGA Express does beter with Method 2.

#

#

B R R

Internal to the device clock speed specifications - Tsys

SR R R R

.

data JARNARY out

D Qpe---{ LOGIC} --—|D Q|-

i I wwwew ||

--[»CLK | ---[> CLK |

#clock | --------- | —emmeeme

The PERIOD spec, covers all timing paths that start or end at a

register, latch, or synchronous RAM which are clocked by the reference
net (excluding pad destinations). Also covered is the setup

requirement of the synchronous element relative to other elements

(ex. flip flops, pads, etc...).

#NOTE: The default unit for time is nanoseconds,

#

#NET clock PERIOD = 50ns ;

#

FROM:TO style timespecs can be used to constrain paths between tite

groups. NOTE: Keywords: RAMS, FFS, PADS, and LATCHES are predefined

time groups used to specify all elements of each type in a design.

#TIMEGRP RITS = RISING FFS ("*"); // creates a rising group called RFFS

#TIMEGRP FFFS = FALLING FFS ("*"); // creates a falling group called FFFS
#TIMESPEC TSF2F =FROM : FFS :TO:FFS :50 ns; // Flip-flips with the same edge
#TIMESPEC TSR2F =FROM : RFFS : TO : FFFS : 25 ns; // rising edge to falling edge
#TIMESPEC TSI2R =FROM : FFFS : TO : RFFS : 25 ns; // falling edge to rising edge

Requires a combination of the 'Period' and FTROM;TO’ type time specifications
#NET clockl TNM_NET =clkl grp;

#NET clock2 TNM_NET =clk2_grp ;

#

#TIMESPEC TS_clkl = PERIOD : ¢lk1 _grp: 50;

#TIMESPEC TS c¢lk2 = PERIOD : clk2 grp: 30;

#TIMESPEC T'S_ckl 2 ck2 =FROM :clkl grp: TO:clk2 grp:50;
#ITMESPEC TS_ck2 2 ckl =FROM :¢lk2 grp: TO:clkl grp:30;

#

#
e G e S
CLOCK TO OUT specifications - Tco

e e s s e

from fARAANY \

wmmmmmmenn |D Q|es{ LOGIC } -—--- |Pad >
#PLD | | Wwvwww/ e f

-—|> CLK |

#clock | ---------

B

OFFSET TIME-SPEC

To automatically include clock buffer/routing delay in your

clock-to-out timing specifications, use OFFSET constraints .

For an output where the maxirmum clock-to-out (Tco) is 25 ns:
#NET out_net name OFFSET = OUT 25 AFTER clock net name ;
#

-OR-

#TIMESPEC TSF2P =FROM : FFS :TO:PADS : 25 ns;

Note that FROM: FFS : TO: PADS constraints start the delay analysis

at the flip flop itself, and not the clock input pin, The recommended

method to create a clock-to-out constraint is to use an OFFSET constraint,

#

#

R A R R R R R R R R R A
Pad to Flip-Flop speed specifications - Tsu

B e S S R R R R

#omee \ AnAnmy into PLD
#lpad >-—-—{ LOGIC } =D Q |-

B amannn / Wwyvww/ ||

—> CLK |

OFFSET TIME-SPEC

S

To automatically account for clock delay in your input setup timing
specifications, use OFFSET constraints.

For an input where the maximum setup time is 25 ns:

#NET in_net name OFFSET =IN 25 BEFORE clock_net_name ;

#

-OR-

#

S

FROM:TO TIME-SPECs
B

#TIMESPEC TSP2F =FROM ;: PADS ;: TO:FFS :25ns;

Note that FROM: PADS : TO: FFS constraints do not take into account any
delay for the clock path. The recommended method to create an input

setup time constraint is to use an OFFSET constraint.

#

#
R R R R AR A
Pad to Pad speed specifications - Tpd

B R R R AR
#

B AN \

#|pad >-----—-- {LOGIC } ----- |pad >
#f weremmm / \Wvvvy/ e /

#

S

FROM:TO TIME-SPECs
S

H#TIMESPEC TSP2P =FROM : PADS : TO: PADS : 125 ns;

#

.

R R B R AR
Other timing specifications

S R R R R R R R AR

If you can ignore timing of paths, use Timing Ignore (TIG). NOTE: The
"*" character is a wild-card which can be used for bus names. A "?"

character can be used to wild-card one character.

Ignore timing of net reset_n:

#NET : reset n: TIG;

#

lgnore data_reg(7:0) net in instance mux_mem:
#NET : mux mem/data_reg® : TIG ;

#

lgnore data_reg(7:0) net in instance mux_mem as related to a TIMESPEC
named TSOI only:

#NET : mux_mem/data_reg* : TIG =TS01

#

lgnore datal_sig and data2_sig nets:

#NET : data? sig: TIG;

If your design has outputs that can be slower than others, you can

create specific timespecs similar to this example for output nets

named out_data(7:0) and irq_n:

#TIMEGRP slow_outs = PADS(out_data* : irq n);

#TIMEGRP fast_outs = PADS : EXCEPT : slow_outs ;

#TIMESPEC TS08 = FROM : FES : TO : fast_outs: 22 ;
#TIMESPEC TS09 =FROM : FFS : TO : slow_outs: 75 ;

#

If you have multi-cycle FF to FF paths, you can create a time group
using either the TIMEGRP or TNM statements.

#

WARNING: Many VHDL/verilog synthesizers do not predictably name flip
flop Q output nets. Most synthesizers do assign predictable instance
names to flip flops, however.

#

TIMEGRP example:

#TIMEGRP slowffs = FFS(inst_path/ff q output netl*:

#inst path/ff q_output_net2*);

#

TNM attached to instance example:

#INST inst_path/ff instance namel_reg* TNM = slowffs ;

HINST inst path/ff instance name2 reg* TNM = slowffs ;

#

If a FF clock-enable is used on all flip flops of a multi-cycle path,

you can attach TNM to the clock enable net. NOTE: TNM attached to a
net "forward traces" to any FF, LATCH, RAM, or PAD attached to the
net.

#NET ff_clock _enable net TNM = slow(fs ;

#

Example of using "slowffs" timegroup, in a FROM:TO timespec, with
either of the three timegroup methods shown above:

#TIMESPEC TS10 = FROM : slowffs : TO : FFS : 100 ;

#

Constrain the skew or delay associate with a net.

#NET any net name MAXSKEW =7

#NET any_net_name MAXDELAY =20 ns;

#

#

Constraint priority in your .ucf file is as follows:

#

highest 1. Timing Ignore (TIG)

2. FROM : THRU : TO specs

. 3. FROM : TO specs
lowest 4. PERIOD specs
#

See the on-line "Library Reference Guide" document for
additional timespec features and more information.

#

#

B R R R R R AR R
#
LOCATION and ATTRIBUTE SPECIFICATIONS
#
R R R R R R R R R
Pin and CLB location locking constraints

b e R e e
#
#
Assign an 10 pin number
#
#INST io_buf instance name LOC=PI10;
#NET io_net name LOC="P111;

#
#
Assign a signal to a range of I/0 ping
#
#NET "signal_name" LOC=P32, P33, P34,
#
#
Place a logic element(called a BEL) in a specific CLB location. BEL =FF, LUT, RAM, eic...
#
#INST instance path/BEL _inst name LOC=CLB R17C36;
#
#
Place CLB in rectangular area from CLB R1C1 to CLB R5C7
#
#INST /U1/U2/reg<0> LOC=clb_rlcl:clb r5¢c7;
#
#
Place Heirarchial logic block in rectangular area from CLB R1C1 to CLB R5C7
#
#INST /UL* LOC=clb_rlcl:clb _r5¢7;
#

.
Prohibit 10 pin P26 or CLBR5C3 from being used:
#
#CONFIG PROHIBIT = P26 ;

#CONFIG PROHIBIT = CLB _R5C3;

Config Prohibit is very important for frocing the software to not use critical

configuration pins like INIT or DOUT on the FPGA. The Mode pins and JTAG
Pins require a special pad so they will not be availabe to this constraint

#
#
Assign an OBUF to be FAST or SLOW:
#
#INST obuf instance name FAST ;
#INST obuf_instance _name SLOW ;

#
#
FPGAs only: IOB input Flip-flop delay specifcation
#
Declare an IOB input FF delay (default = MAXDELAY).

#NOTE: MEDDELAY/NODELAY can be attached to a CLB FF that is pushed
into an I0OB by the "map -pr i" option.

#INST input_ff instance_name MEDDELAY ;

#INST input ff instance name NODELAY ;

#
#
Assign Global Clock Buffers Lower Left Right Side
#
INST gbufl LOC=8SW

#

4

NET "¢_clock" LOC = "P9";

NET "c¢_reset" LOC = "M4";

NET "c_dout" LOC ="C4";

NET "¢_bus" LOC="AT";

NET "c_clk output" LOC = "D3";
NET "reset" LOC ="AB"™;

NET "bus_status” LOC ="D16";
NET "can_b_out" LOC="E13";
NET "enable_shifter" LOC ="C16";

APPENDIX 14

s FPGA Board Layout
e Virtex IT Xilinx XC2V100 Demo Board Caption

Lavout of Xilinx XC2V100 FPGA Demo Board |

Virton -5 SPGA
RIS RSO

Chenond Puspose G

e

TEMKLS DDR Mstiory 7.84g g
[REDVR0T Board only) olepley : iﬂ]
' RILAD Brlints
. ibegre

|

o] [omere]

darpate |

1

; Gd
Hagitohes

iy B0 Connudtors
hwn BLPm Connedargl -

PG Conbyniation!
Foomparoni Pas |

JIRG
“Lanneido

e ®
¢ 8 £ 8
%S wE % é
ggm A ml»§$M i‘@g
& g% £3
) 7Y
P R— ,ié;ﬁ}m i m@a&mm ET EET] Ly 4w
; i)
: 'i ,E |i i!
atp i o : ‘
o N— $] E 1
% Bambs ! E% T Y T W
. i tr tisg Hing fag
1 . .
g ki] , T
' K
i !
{
" ' !
g Aufarenin] e) aw L 5% s
I e Rl ! : & ¢ L
% Rastolare ;
. %

Figure 1 - RC2VAOXC2VI000 Reference Board Bluck Diagram

22/04/2004

=
P
1
=
=)
Ql.
=
v
=
|
&)
Ay
>
(=
=]
|
>
ol
ol
¥
4
Z
[
-
i
P

