
Design of a Solution to Unit Commitment
Using Visual Basic

by

Muhammad Zamir B Abu Bakar

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

JUNE 2004

•t

Universiti Teknologi PETRONAS T^
Bandar Seri Iskandar \oGS

31750 Tronoh ^ro^\H|
Perak Darul Ridzuan

Q- *££.£ —1 UcS-iS

Approved by,

CERTIFICATION OF APPROVAL

Design of a Solution to Unit Commitment
Using Visual Basic

by

Muhammad Zamir B Abu Bakar

A project dissertation submitted to the

Electrical & Electronic Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Nursyarizal Moid N«
Lecturer

(Mr. Nursyarizal Bin Mohd. Nor) Eiectri«i Engineering Dqmtm***.
Uniwrsiti Teknologi PETRONAS
33750 Tronot

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MUHAMMAD ZAMIR B ABU BAKAR

n

ABSTRACT

This Final Year Project paper describes the application of the Visual Basic software in

solving the Unit Commitment problem. The main objective is to find the most

economical generator combination to accomplish the consumer load demand. Using this

simulation software^ it can reduce the budget ofpower company butmaintain the power

supplied to the customer. This project is continued from previous student. The author is

needed to enhance the project by redesign the existing software to the new one that able

to simulate more than 10 generators. Author is expected to design the programming

using Visual Basic software and analyzed it. Knowledge in Unit Commitment problem

and the understanding on how to implement the Visual Basic software are prerequisite to

successful completion of this project.

111

ACKNOWLEDGEMENT

All praises be upon Allah s.w.t. the Almighty and peace be upon Prophet Muhammad

s.a.w. Firstly, the author would like to express his appreciation to the Electrical and

Electronic Engineering Department ofUTP for the support in completing this report.

The author is grateful to Mr. Nursyarizal Mohd. Nor, for his many helpful discussions

and suggestions. Also special thanks to Mr. Jale and Mr. Suhaimi, lecturer from IT&IS

department for their willingness in sharing the knowledge and information. The author

also appreciates Mr. Azizan for his valuable guidance and help, the appreciations also

goes to the UTP's staff support and resources provided by the UTP Resource Center.

Thanks and apologies to others whose contributions that have been overlooked. Last but

not least, the continual encouragement and supports from Jamiatul Aqmar, the author's

family and friends, which have lifted his spirits on countless occasions, are deeply and

sincerely appreciated.

IV

TABLE OF CONTENTS

CERTIFICATION .

ABSTRACT .

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF FIGURES .

LIST OF TABLES .

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

INTRODUCTION

1.1 Background of Study
1.2 Problem Statement

1.3 Objectives and Scope of Study

LITERATURE REVIEW / THEORY

2.1 Unit Commitment

2.2 Visual Basic 6.0

METHODOLOGY / PROJECT WORK

RESULTS AND DISCUSSIONS

4.1 Unit Commitment

4.1.1 Equations
4.1.2 Calculation

Visual Basic .

4.2.1 Steps in program development
Discussions .

4.2

4.3

in

iv

v

vi

vi

1

1

2

5

6

6

11

15

15

16

20

23

24

26

CHAPTER 5:

REFERENCES

APPENDIX

CONCLUSION AND RECOMMENDATIONS 37

5.1 Conclusion 37

5.2 Recommendations ... 38

39

41

LIST OF FIGURES

Figure2.1 Discrete levelsof systemload for an example daily load cycle

Figure 3.1 Flow Chart of the Project

Figure 3.2 Steps ofprogram development

Figure 4.1 N thermal units committed to serve a load of Pioad

Figure 4.2 Form for generator data entry

Figure 4.3 Form for generator data searching

Figure 4.4 Form for consumer load demand data entry

Figure 4.5 Form for results

Figure 4.6 Data control button

Figure 4.7 Properties window for Data control

Figure 4.8 DatabaseName dialog box

Figure 4.9 Record source property windows

Figure 4.10 ADODC button

Figure 4.11 Componentswindow

Figure 4.12 ADODC property pages

Figure 4.13 Record source for ADODC property pages

Figure 4.14 Data fields in the database of generators

LIST OF TABLES

Table 4.1 Capacity of generators

Table 4.2 Possible combination of 4 generators

vi

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Since human activities follow cycles, most systems supplying services to a large

population will experience cycles. These include transportation systems and

communication systems. The total loads on the system will generally be higher during

daytime and early evening when industrial loads are high, lights are on, and so forth, and

lower during late evening and early morning when most of the populations are asleep. In

addition, the use of electric power has a weekly cycle, the load being lower over

weekend than weekdays.

Nowadays, economic operation is very important for a power system to return a profit

on the capital invested. One of the economic operation problems that are usually faced

by t he p ower s ystem i ndustries i s c ailed Unit C ommitment p roblems. Shifting o f t he

load demand on power supply system require a sufficient number of generating units to

be committed to supply the required load. Note that, to "commit" a generating unit is to

"turn it on", i.e. to bring the unit up to speed synchronize it to the system, and connect it

so that it can deliver power to the network. The problem with "commit enough units and

leave them on line" is one of economics. It is quite expensive to run too many

generating units. A great deal of money can be saved by turning units off when they are

not needed. Hence, electricity generating companies and power systems have the

problem of deciding how best to meet the varying demand for electricity.

Therefore, the unit commitment problem is to schedule available generators (on or off)

to meet the required loads at a minimum cost subject to system constraints. The most

important constraint is that the total generation must equal the forecast half-hourly

demands for electricity. Unit commitment is a very challenging optimization problem,

because of the astronomical number of feasible combinations of the on and off states of

all the generating units in the power system over all the time-points in the study period.

The uses of programming software in solving the economic problem are no longer

weird. Almost all of the system in our daily life used this type of solution. In solving

Unit Commitment problems, we are trying to implement the Visual Basic (VB). VB is

designed to allow the user to develop applications that run under windows without the

complexity generally associated with windows programming. VB follow a relatively

new type of programming called event-driven programming. In the event-driven model,

programs are no longer procedural; they do not follow a sequential logic. Users, as a

programmer, do not take control and determine the sequence of execution.

Visual Basic software is quite popular among the expert and beginner programmer. This

is because Visual Basic can provide everything needed in order to develop any

applications in an easy-to-use-and-learn Graphical User Interface (GUI). Visual Basic is

easy to learn and understand and user friendly. Visual Basic provides a set of tools that

makes it easy to develop powerful Windows applications-fast. That's not to say that

there is nothing to learn, but the learning curve is small-even for those with no

programming experience.

1.2 Problem Statement

Electricity generating companies and power systems have the problem of deciding how

best to meet the varying demand for electricity. The use of electrical power has a daily

and weekly cycle. The demand or total load is lower over weekend than weekdays. As

electricity cannot be stored, it is necessary to start-up and shut-down a number of

generating units at various power stations each day.

Unit commitment optimizes the short-term scheduling of the generating units at power

stations. Unit commitment involves determining which generators in a given facility will

be committed to meet the expected load over the near term. Umt commitment is usually

scheduled a day in advance, and a generator is said to be committed once it is started.

Nearly all generators are rotating devices, so a committed generator is often referred to

as a spinning generator. A committed unit can remain offline indefinitely without

producing energy.

Electricity generating companies and power systems cannot just simply commit enough

units to cover the maximum system loads and leave them running. The problem with

"commit enough units and leave them on line" is one of economics. It is quite expensive

to run too many generating units. A great deal of money can be saved by turning units

off when they are not needed. A well done optimization could provide substantial

annual savings in operational and fuel costs. It can minimize the total fuel cost or to

maximize the total profit, over a study period of typically a day, subject to a large

number of difficult constraints that must be satisfied.

The problem is to find the most economic production and trade program for power

generation, when the power consumption and the technological and economical

parameters of the power sources are known. Well done optimization could provide

substantial annual savings in operational and fuel costs. Unit commitment was done by

formulating it as a mixed integer problem, which included the most important economic

and technological parameters. The umt commitment has often been solved by linear

programming.

With the proliferation of computers into every part of our lives, the demand for software

to accomplish everyday tasks grows at a rate that developers struggle to keep up with. In

addition, many people have needs that are so unique it is impossible to buy software to

meet them all. For those with programming experience, an easy solution is to write an

application t hat m eets a 11 o f t heir r equirements. That w ay t hey get e xactly w hat t hey

want and can change the program when their goals change. Visual Basic provides a set

of tools that makes it easy to develop powerful windows applications-fast.

The dynamic nature of the unit commitment problem complicates its solution. Suppose

that 10 units are available for scheduling within any one-hour interval, which is not

unlikely in practice. Then, theoretically a total of 210 - 1 = 1023 combinations can be

listed. If it were possible to link each prospective combination of any one hour to each

prospective combination of the next hour of the day, the total number of candidate

combinations become (1023)24 = 1.726 x 1072, which is enormously large and

unrealistic to handle. Fortunately, however, the multistage decision process of the unit

commitment problem can be dimensionally reduced by practical constraints of system

operations and by a search procedure based on the following observations:

1) The daily shcedule has N discrete time intervals or stages, the durations of which

are not necessarily equal. Stage 1 precedes stage 2, and so on to the final stage N.

2) A decision must be made for each stage k regarding which particular

combination of units to operate during that stage. This is the stage k subproblem.

3) To solve for the N decisions, N subproblems are solved sequentially in such a

way (called the principle of optimality) that the combined best decisions for the

N subproblems yield the best overall solution for the original problem.

1.3 Objectives and Scope of Study

The objectives of this project are as follows:

1. To learn and study the application and concept of Visual Basic (VB) which acts

as a controller to solve unit commitment problem.

2. To be exposed with the concept ofUnit Commitment problem.

3. To redesign Visual Basic simulation software to control more than 10 generators.

4. Research and literature review on Unit Commitment problem.

The aim of the project is to concentrate more on Visual Basic in solving the Unit

Commitment problem.

1. To rewrite and execute previous Visual Basic program.

2. To define and investigate in the errors that occurs during the execution.

3. To i dentify which 1ine of t he c oding t hat n eeds t o b e change in o rder for t he

program to simulate more than 10 generators.

4. To enhance the interface of the program so that it is more users friendly and easy

to understand.

The scope of study:

1. Literature review on Visual Basic in order to understand the existing program.

2. To refer with VB expert and discuss the problem encountered.

3. Internet surfing to gather additional information about Unit Commitment and to

find information about Visual Basic.

CHAPTER 2

LITERATURE REVIEW / THOERY

2.1 Unit Commitment

Because the total load of the power system varies throughout the day and reaches a

different peak value from one day to another, the electric utility has to decide in advance

which generators to start-up and when to connect them to the network and the sequence

in which the operating units should be shut-down and for how long. The computational

procedure for making such decisions is called unit commitment and a unit when schedule

for connection to the system is said to be committed. [1]

To develop the concept of unit commitment, we consider the problem of scheduling

fossil-fired thermal units in which the aggregate costs (such as start-up costs, operating

fuel cots and shut-down costs) are to be minimized over a daily load cycle. The

underlying principles are more easily explained if we disregard transmission loss in the

system. Without losses, the transmission network is equivalent to a single plant bus to

which all generators and all loads are connected, and the total plant output is equal to the

total system load. [1]

The power system with K generating units (no two identical) must have at least one unit

on-line to supply the system load with is never zero over the daily load cycle. If each

unit can be considered either "on" (denoted by 1)or "off (denoted by 0), there are 2K-1

candidate combinations to be examined in each stage of the study period. For example

if, K = 4, so there are 24 - 1 = 15 combinations (see Table 4.2). Of course, not all

combinations are feasible because of the constraints imposed by the load level and other

practical operating requirements of the system. For example, a combination of units of

total capability less than 1400 MW cannot serve a load of 1400 MW or greater; any such

combination is feasible and can be disregarded over any time interval in which that level

of load occurs. [1]

2000

1800

1600

1400
System

load 1200
(MW) 1000

800

600

400

200

0

0 4 8 12 16

Time (Hour)

Figure 2.1: Discrete levels of system load for an example daily load cycle

20 24

We subdivide the 24-h day into discrete intervals or stages and the predicted load of the

system will be considered constant over each interval, as exemplified in Figure 2.1. The

unit commitment procedure then searches for the most economic feasible combination

of generating units to serve the forecast load of the system at each stage of the load

cycle. [1]

2.2 Visual Basic 6.0

Visual Basic is a powerful development environment because it allows applications to

be developed visually. You drag and drop controls into forms. Then, you arrange and

size controls on a form to create the interface for your Windows applications. However,

the forms and controls by themselves do not create very useful applications. Code must

be added to forms and controls to give them more complex functionality. Programming

code is a set of instructions that tells the computer what to do.

When developing Windows applications, events are used as triggers to perform the

actions of a program. Pressing a button, changing the size of a form, or just moving the

mouse causes an event. This is where the real power of Visual Basic development comes

from: combining events with code to produce powerful applications. These applications

are called event-driven applications because the events that users perform make the

application work. [4]

Most applications interact with data of some sort. It might be a simple text file that

contains only a few lines of text, or it might be a large data base with millions of

records. Regardless of the amount of data, visual basic provides a way to access these

types of data. Text files have many uses. You could store text for a document, a log file,
i

or even comma-delimited records. The FileSystemObject (FSO) objects supplies you

with methods to easily open and manipulate text files. Databases have become

invaluable in today's computing environment. They provide an extremely fast way to

store, categorize, and retrieve large amount of data. To work with all types of databases,

visual basic now uses the ADO Data Control (ADO is an acronym for ActiveX Data

Objects). [3]

Many applications access information contained in database. Because of the variety of

database systems, it would be difficult to implement a separate mechanism for accessing

each type of database. Instead, an interface has been established that can interact with

the different types ofdatabase. This interface is called OLE DB. While OLE DBis

designed to interact with databases, it is not ideal for use in applications, which leads to

the need for something to connect the capabilities of OLE DB to applications. Microsoft

ActiveXData Objects (ADO) actsas that connection. ADO is compatible with any

OLE DB data source and can be used to bind controls to that data source. Binding a

control to a data source basically means that the control displays the data contained in

one of the fields in a database. This can be done for display purposes only, or the user

could also use the control to make changes to the data that is displayed. [4]

Many times, due to time constraints, people jump right into developing an application

without planning the management of their development. This error can cause a lot of

headaches. Careful planning can benefit even the smallest project. It will help protect

your code and the time you have invested. While planning is very beneficial to your

personal projects, it is absolutely essential to groupprojects. There must be a mechanism

in place to manage who develops which files when. Communication between team

members is crucial to avoid repeating work or, evenworse, losingwork. [5]

ActiveX Data Objects (ADO) access data from OLE DB providers. The Connection

object is used to specify a particular provider and any parameters. To connect to a data

source, you use a Connection object. Using that connection, you can create a new record

set, and using the Recordset object's method and properties, you can work withyour

data. An ADO transaction marks the beginning and end of a series of data operations

that are executed across a connection. ADO makes sure that changes to a data source

resulting from operations in a transaction either all occur successfully, or not at all. If

you cancel the transaction or one of its operations fails, then the result will be as if none

of the operations in the transaction had occurred. [5]

For obvious reasons, Object Linking and Embedding (OLE) is a very popular

programming topic. Using OLE you can give the users of your program direct access to

OLE server programs like Microsoft Word or Excel. In fact, you can integrate all kinds

of programs together using OLE, giving your program the power database, spreadsheet,

word processor and evengraphics programs all wrapped into one. Visual Basic lets you

do this with the OLE control. This control can display OLE objects and those objects

appear as mini-versions of the programs connected to them. For example, if you display

an Excel spreadsheet in an OLE control, the control displays what looks like a small

version of Excel right there in your program. The program that creates the object

displayed in the OLE control is an OLE server, and your program, which displays the

OLE object, is called an OLE container. In fact, the proper name for the OLE control is

the OLE container control. [5]

Rich text boxes (RTF) text support a variety of formats. For example, you can colortext

in a rich text box, underline it, bold it, or make it italic. You can select fonts and font

sizes, as well as write the text out to disk or read it back in. RTF boxes can also hold a

great amount of data, unlike standard text boxes, which are limited to 64K characters.

RTF text was designed to be a step beyond plain text, and because many word

processors let you save text in that format, it can provide a link between different types

of word processors. Using RTF boxes, you can also create your own simple word

processors, and that's exactly what the Visual Basic Application Wizard does if you

create an application with it. [6]

10

CHAPTER 3

METHODOLOGY / PROJECT WORK

Methodology used at the first stage of this project was:

1. Internet surfing

- To gather knowledge, information and data required on related websites

regarding Visual Basic and Unit Commitment problems.

2. Secondary Source

- To gather information through reading and observation from the

reference book borrowed from Resource Centre.

- To acquirerelevantdata and information as project is concerned.

3. Reference from the expert on Visual Basic.

~ To discuss with expert in solving the problem that occurs.

- To investigate which line of coding that needs changes in order to

achieve the main objectives of this project.

- To make somechanges in the users interfaceofpreviousprogram.

11

In performing the Visual Basic programming, author need to study the VB coding done

by previous student. Before start studying the coding, author first has to gain knowledge

about VB. The procedure used in dealing with VB was listed below:

1. Study the coding.

- In this stage, author studied all the coding. Determine and understand the

function of each line coding.

2. Rewrite the coding.

- After completing the first stage, author then rewrite the overall coding

and try to run it.

- If the program can be run, then it means that there is no problem in the

coding and author can proceed to the next stage. But if there is an error

occurs, means the program cannot be run, changes must be made to the

coding.

3. Modify the coding.

- At this stage, the main objective of the project is going to be achieved.

The existence coding is going to be changed or modified so that it will be

able to simulate more than 10 generators. The existences coding only

able to simulate up to 10 generators. If we exceed more than 10

generators, the program will not run.

12

Literature review on

Unit Commitment

> -

Literature review on

Visual Basic

"

Study the previous
coding/program

i'

Rewrite & run the program

S Can you run ^
the program?

No

Yes

1 '

Make changes on the coding so that it can
generate more than 10 generators.

1 '

Compile the new coding

/ Cailyou ^_
run it?

Yes

Improve the
interface

No

Figure 3.1: Flow Chart of the Project

13

Analyze and define
the problem

1'

Design visual
interface

i'

Define user-program
interaction

-'

Design code
structure

1 '

Write code

• '

Test and edit

the program

i '

Place the program
into production

Figure 3.2: Steps of program development

14

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Unit Commitment

Economic operation is veryimportant for a power system to return a profit on the capital

invested. Rates fixed by regulatory bodies and the importance of conservation of fuel

place pressure on power companies to achieve maximum possible efficiency. Maximum

efficiency minimizes the cost of a kilowatthour to the consumer and the cost to the

company of delivering that kilowatthour in the face of constantly rising prices for fuel,

labor, supplies, and maintenance.

Operational economics involving power generation and delivery can be subdivided into

two parts; one dealing with minimum cost of power production called economic

dispatch and the other dealing with minimum-loss delivery of thegenerated power to the

loads. For any specified load condition economic dispatch determines the power output

of eachplant (andeach generating unitwithin the plant) which will minimize the overall

cost of fuel needed to serve the system load. The minimum-loss problem can assume

many forms depending on how control of thepower flow in the system is exercised. The

economic dispatch problem and also theminimum-loss problem canbe solved by means

of the optimal power flow (OPF) program.

15

4.1.1 Equations

Figure 4.1 shows the configuration that will be used in this project. This system consists

of N thermal-generating units connected to a single bus-bar serving a received electrical

load Pioad- The input to each unit, shown as Ft, represents the cost rate of the unit. The

output of each unit, Pit is the electrical power generated by that particular unit. The total

cost rate of this system is the sum of the costs of each of the individual units.

Figure 4.1: N thermal units committed to serve a load of Pioaa.

The essential constraint on the operation of this system is that the sum of the output

powers must equal the load demand.

FT= FI+F2 + F3 + +FN (4.1)

PT= Pi+P2 + P3+ + pN (4.2)

16

Considering this project, any transmission losses are neglected and any operating limits

are not explicitly stated. To explain more easily on the unit commitment concept, a fixed

start-up cost for each generator was assumed.

The incremental fuel cost of the unit in dollars per megawatthour is dfi / dPu whereas

the average fuel cost in the same units isfi/Pi. Hence, if the input-output curve of unit i

is quadratic, we can write

ft = (at/2) Pi2 + biPt + a $/h (4.3)

and the unit has incremental fuel cost denoted by ^, which is defined by

k - dfi/dPt - atPi + bf $/MWh (4.4)

where aiy bt and ct are constant. The approximate incremental fuel cost at any particular

output is the additional cost in dollars per hour to increase the output by 1 MW.

Actually, incremental cost is determined by measuring the slope of the input-output

curve and multiplying by cost per Btu in the proper units. Since mills (tenths of a cent)

per kilowatthour is a very small amount of power in comparisonwith the usual output

of a unit of a steam plant, incremental fuel cost may be considered as the cost of fuel in

mills per hour to supply an additionalkilowatt output.

We now have the background to understand the principle of economic dispatch which

guides distribution of load among the units within one or more plants of the system. For

instance, suppose that the total output of a particular plant is supplied by two units and

that the division of load between these units is such that the incremental fuel cost of one

is higher than that of the other. Now suppose that some of the load is transferred from

the unit with the higher incremental cost to the unit with lower incremental cost.

Reducing the load on the unit with the higher incremental cost will result in a greater

reduction of cost than the increase in cost for adding the same amount of load to the

unit with lower incremental cost. The transfer of load from one to the other can be

17

continued with a reduction in total fuel cost until the incremental fuel costs of the two

units are equal. The same r easoning canb e extended t o a p lantwith more tnan two

units.

Thus, for economical division of load betweenunits within a plant, the criterion is that

all units must operate at the same incremental fuel cost.

When the incremental fuel cost of each of the units in a plant is nearly linear with

respect to power output over a range of operation under consideration, equations that

represent incremental fuel costs as linear functions of power output will simplify the

computations. An economic dispatch schedule for assigning loads to each unitin a plant

can be prepared by:

1) Assuming various values of total plantoutput.

2) Calculating the corresponding incremental fuel costXof theplant.

3) Substituting the value of Xfor X{ in the equation for the incremental fuel cost of

each unit to calculate its output.

A curve of X versus plant load establishes the value of X at which each unit should

operate for a given total plant load.

Example, for a plant with two units operating under economic load distribution the Xof

the plant equals Xf ofeach unit, and so;

Xj - dfi/ dPj = aiPj + bj (4.5)

X2 = df2 /dP2 = a2P2 + b2 (4.6)

18

Solving for Pi and P2, we obtain

Pi-(X-bi)/aj (4.7)

P2 = (X-b2)/a2 (4.8)

Adding together these results and then solve for Xgive

X = arPr + bj (4.9)

I1where aj = (4.10)

br~ ar (4.11)

and Pt = (Pi+P2) (4.12)

is the total plant output. For instance, if theplanthas K units operating on economic

dispatch, then the coefficients of equation above are given by;

VM ai J
(Xt =

bf = aj
(2 b ^

V'=1 ai J

1 1 1
— + + + —

aVfll a2

-1

K J

— a,j
b, b0 bv
— + —+ + -£

\°l a2 lKj

and the total plant output is given by

PT=(Pi+P2+ +Pk) (4.15)

19

(4.13)

(4.14)

4.1.2 Calculation

To explain more on the calculation of unit commitment using all the equation above, refer

to the example below. In this example it demonstrates only 4 generators. The

specifications of all generators used in this example were taken from Power System

Analysis book. [1]

Loading limits Fuel cost parameters

Generating
unit

number
Min (MW) Max (MW)

ai9

($ /(mw y ^
{ h } {S/MfVh) ($/h)

1 100 625 0.0080 8.0 500

2 100 625 0.0096 6.4 400

3 75 600 0.0100 7.9 600

4 75 500 0.0110 7.5 400

Table 4.1: Capacity of generators

ai = Fuel cost for start-up and shut-down

bt = Operating fuel cost

c. = Start-up and shut-down cost

20

Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 4.2: Possible combination of 4 generators

l=ON

0 = OFF

a. Combination 10: Units 1 and 3 are in operating mode.

aT =(a1"1+a3"1)"1 =(o.0080~'+0.0100"1)~t =4..44x io-

&<p —"* L*rp = a,
8 7.9

•+ •
0.0080 0.0100

= 7.876

Incremental fuel cost for the two units at load level of 1100 MW is equal to:

X=aTPgT+bT =4.44xl0~3(llO0)+7.876 =12.76$/M^

p^^LJ2.76-S.0=595MW
gi

a, 0.0080

=X-b3 ^12.76-7.9
a, ~ 0.0100g3 = 4%6MW

21

The hourly production costs of the three units are calculated to be:

fx =0.004/*' +8.0P, +500 I ^ =$6676.1perhour
PEi=595

/3 =0.005i>,32 +7.9Pg3 +600 \p =486 =$56203%perhour
rg3"

The total cost for this combination = $12 296.48 perhour

b. Combination 13: Units 1,2, and4 are in operating mode.

-3aT =(a-1 +a"1 +ax)_1 =(o.008_1 +0.0096"1 +0.011"1)_1 =3.1243 x10

rbx , ft, , O ' * " — ^bT =aT
Kai a2 aAj

= an
6.4 7.5

0.008 0.0096 0.011
- 7.3374

Incremental fuel cost for thethree units at load level of 1100 MW is equal to

/l=arPr+&r =3.1243xlO~3(llOO)+7.3374==lO.774$/M07i

^1^10.774-8.0^^
gl

g2

a} 0.008

X-b7 10.774-6.4
P-» = - = — = 456MW

a2 0.0096

P^^l=10-774-7.5=298w
a4 0.011

22

The hourly production costs of the three units are calculated to be

2fx =0.004i>glz +8.0PgI +500 | =34? =$3758perhour

f2 =0.0048Pg22 +6APg2 +400 \p =$4317perhour

/4 =0.0055Pg42 +7.5/>g4 +400 | =$3123/>erAo»r

The total cost for this combination = $11198 perhour

4.2 Visual Basic

In this project, the Visual Basic software was used to solve the Unit Commitment

problem. VB is a powerful programming software, easy to learn and very user friendly.

The functions of VB are same like using other windows program. VB provides a set of

visual objects that can be drawn easily onto a window (called a form). These controls

eliminate the need to develop the code to construct the visual interfaces. The layout of

the windows that contain the controls can be changed easily by dragging and dropping

the controls to a new location, without necessitating a change in the code. Thus, the

process for program development and revision becomes much easier and requires much

less time and effort.

Visual Basic is an event-driven. An event-driven program does not dictate the sequence

of operations. The user c an instruct the computer to perform whatever operations the

program is capable of, in any sequence he or she desires. This offers the user flexibility.

Anychanges in the sequence of operations will not call for revising the program. In this

sense, an event-driven program is easier to develop and requires fewer revisions.

23

4.2.1 Steps in program development

In developing an application program, there is a fairly standard set of steps that must be

followed in order to make sure the progress of the programming is smoother. These

steps can be outlined as follows:

1. Analyze and define the problem. The first requirement of a program is that it

must meet the needs of the applications. Thus, a clear understanding of the

problem and goals is the first step in developing the program. Onlywhen the

needs and requirements of the program are clearly understood can we determine

how the program is to look and act.

2. Design the visual interface. Based on analysis and understanding of the problem,

one will be able to design the visual interface for the program and start to work

with the VB Integrated Development Environment (IDE). At this stage, we will

need to decide what data fields should appear on a form. This process can

become quite involved. VB provides various visual objects (controls) that canbe

used to represent data fields. It takes a careful analysis to determine which VB

controls will be the best given the nature ofdata field.

3. Define user-program interaction. The user interface consists of the visual aspect

and the behavior in which the program responds to the user's actions and to what

happens in the computer internally. Wewillneedto determine what ourprogram

should do in detail. The user's actions and system activities are recognized as

events. User actions that can trigger events include such things as pressingkeys,

clicking a control, or making a selection from a menu. Systemactivities can also

trigger events. Examples of these activities include loading and unloading a

form. We must first be aware what events will be triggered when each of these

actions occurs. Basedon howwe decide ourprogram should react, we willplace

the code in the pertinentevent to respond accordingly.

24

4. Design the code structure. On appearance, the code we will develop to respond

to an action should be placed in the event that the action triggers. Thus, our code

structurewill simply be dictated by the responses we want our programto carry

out. In reality, however, it can be much more complex. We will be introduced to

various complex situations. Suffice it to say, it pays to analyze the complex

situation thoroughly before writing any code. As the program grows into

multiple modules (a module is a codewindow that contains code), we will also

discover that many code blocks can be shared. Thus, we must choose the

appropriate module in which to place these blocks. The design of the code

structure can have far reaching implications on the maintainability of the code.

The importance of this design phasecannot be overemphasized.

5. Write code. Based on the design, we will then develop the code to perform the

activities that the program requires. In addition to ensuring that the code

performs what is called for, particular attention should bepayto the coding style.

This includes the mechanical aspects of indenting and following the naming

conventions.

6. Test andedit the program. Testing and editing code constitutemost of the effort

in the coding activity. To minimize the possibility of encountering "mysterious"

logic errors, the code were breaks into small steps and run test frequently. This

makes it easier to identify the range of code that causes the error. A smaller

number of statements make the error source easier to track down and correct.

Program can have various kinds of errors:

a. It can have syntax errors, resulting from the failure to follow the rules to

put various code elements together.

b. It can also have semantic errors, resulting from the difference between

what the programmer codes and what he or she actually means (the

failure to say what the programmer means). For example, the

25

programmer may code a "print" statement thinking it will output on a

printer. However, the statement actually means to display output on a

form.

c. Finally, i t c an h ave 1ogic e rrors, resulting from the d ifference b etween

what the programmers believes a block of code will do and what the

program actually does. This type of error is the trickiest and can take

days or even weeks to resolve in some complex situations. Thus, in most

cases, we will test run the program and discover some unexpected

problems or results. We will then modify the code to solve the problems

we have identified and test it again. The process was then repeat until no

problem or unexpected result is encountered.

7. Place the program into "production". After a program is thoroughly tested, it is

ready to be placed in actual use. A program that works with live data and

produces "real" results is called a production program. When we are developing

and testing the program, we work in the VB IDE. A program to be placed in

productionshouldbe compiled to produce a separate object program. This object

program (an executable file) can then run without the IDE.

4.3 Discussions

Mainly, this simulation software consists of four (4) forms:

1. Generator data form

2. Search form

3. Consumer form

4. Result form

26

Below is the layout view of the forms using the interactive graphical user interface

(GUI) in the Visual Basic software. These forms were design using the toolboxprovided

in the VB software.

-iDlxl

I'jf lis. '• i"ii-n?rVo' Fo'n

•jentiaiti rJunib?- |«i

HiN.fi jif Lea 3Laoazty [I'M] |tji

Kid>in-. fi Lead Ldsx V I'-IV/J fay}

•Jp'-rrjrrg t •. d Lns' [i'MWh,]pr

ila i..p ur dSKuldnwri 1i.: ili/ll:1\VJ^!/nJ" |[,-, jjj

3'an^P fna i>h»Kown Lost n/hj [r-rj

UstRttC-irl [Fii^Rr*r 11 I ' FV'ious - \ • Next

liu. t Dj!c-e . Save Secrcn •, I

Pecuk j ' Clcss.
-

Figure 4.2: Form for generator data entry

.Si

GensidLr Nurraer h^

OK

Figure 4.3: Form for generator data searching

27

0*

-

•

Figure 4.4: Form for consumer load demand data entry

Jflx|

3EN£R£T0R CHAFACTFRSSTIC DATA

Gel £'=0-'i •n y i iMirt'muniCaD3Ciiy iMaoiiT&jnciu-
rf ?-1 7>i j

f .'T ' j.J

•J 1^ •<•; i

3
j .'S b.l

1

'I

IP"

lit 01b

"^ :-Hii TTO
•

—

hi 1 H

GEHtPATOr RESULTS CATA

|_Np _ j LliOciit ij'TiHl-'E! If

Figure 4.5: Form for results

28

nxEraixmo
•"iwxoxyjui
f" .•[)'•,QP0XX01D
l".UJ XUXX311

j.in xo-jcxioo
.nrop'xoxxioi
iLwrxoxxno

•xouixoxxin
trnt^ocuxjixo
rO""X00C01D01
near u jc yuLOi oi o

Back

A

d

All the forms shown above was designed using command buttons and text boxes in

order to make this project more interactive and user friendly. A text box is a VB control

that enables user to enter any type of data. The text box control has a property called

"text". We can set this property to any text, which will then be displayed at a runtime.

Text box also allows the user to enter and edit its contents at runtime. The text so

obtained can then be further processed or simply saved for future use. Command

button is the click event procedures most often seen, whose caption typically indicates

to the user what to expect. For example, in this project, users can click "Last Record"

command button to display the specification of the last generator in the database. The

coding for "Last Record" command button and the text boxes are stated as below:

Private Sub cmdLast_Click()

With Data1.Recordset

MoveLast

txtNo.Text = Fields(O)

txtMin.Text = .Fields(l)

txtMax.Text - .Fields(2)

txtFuel.Text = .Fields(3)

txtTime.Text = Fields(4)

txtCost.Text = .Fields(5)

End With

End Sub

The coding for interface form inFigure 4.2 until Figure 4.5 is attached inAppendix 1.

Data control and ActiveX data objects (ADO) data control is the main function in

this project. The data control is a two-way street; not only does it display database data,

but user can modify the data that the Data control displays and the Data control makes

sure that the changes are made to the underlying database through bound control. If we

don't want user to be able to change data displayed from a Data control, we can use a

29

label and not a text box to display the database data. We can bind several other controls

to the Data control and make the control read-only so that the user cannot change the

underlying database. The procedure for settingthe Data controlpropertiescan be seen as

follows:

a. Connect property setting

H'i • !•!

Figure 4.6: Data control button

JDatdl f-v,
Alpn^Ptic ICa^sgonred |

'Connect

•I .dcaL3s ths sfliiTr- c" an open d^idba^j
,C3tjUdiii USsd in o paiS-th'CPJyh QLiry, or

J£j

d

•3

an

Figure 4.7: Properties window for Data control

In this project, the Data control was connected to the Access database

because we are using the Microsoft Access Database.

30

b. Setting the database name property

LV--V i.1-^ jj. "" a /' JJx|

,oC- .n j __/,~osj s'b* 3 *> a cr m
gB;5«!,e:a:or!

\~\Z. I. J |W [~.l1,|f* <j 'i' Qpe'

F'2<o(L'^ hiiji«.t. I M-ibl "j Cancel

Help

Figure 4.8: DatabaseName dialog box

Dialog box in Figure 4.8 above will occur when we click on the Database

Name in the properties window.

c. Record source property setting

jDdtdl Citi

Al^aiet.: |c«tec-ri:ej]

Rti urdSuuri e

- clu: "•s/- '-ts i"he ijri Wl^ng :ab 5j jQL
:cacsTer •, cr Que^Dc* obiecfc for a Data

*}

3

Figure 4.9: Record source property window

31

This procedurecan be doneby clickingon the record sourcepropertyand

choose the table name matching with the database name.

ActiveX data objects (ADO) datacontrol is another technology introduces by VB. ADO

can be used to handle not only the database (whether local or remote) but also various

data "stores" (data that are stored in any form, not just the database format). These

objects provide a standard programming interface to develop the code in handling data.

The ADO provides a uniform setof interfaces (properties, events, andmethods) thatcan

be use to handle all kinds of data. FromVB program, we can use the ADO to access the

database via the ADO data control orbycode directly. The ADO data control (ADODC)

provides features that enable user to interact with the underlying database with bound

controls and code. A VB control can be bound to data through the ADODC if that

control has the DataSource property. Below are theprocedures for setting the properties

of ADODC:

a. Before adding this data control to the form, we must first add the ADODC

function by clicking on the "Project" toolbars and choose "Component" or

just simply press "Cltr+T" on the keyboard. Then components window as in

Figure 4.11 below will appear. Click on the box provided to add the

Microsoft ADO Data Control 6.0(OLEDB) controls into theproject.

[_MJ_<]-r-M •I

Figure 4.10: ADODC button

32

CorJu'a. |Do5[gnL-ii| Inwiatw Cbiectc |

'Ohrr'..C:ii'.Oj 'rc. :r:L^.

1DirectAnimaton Library
ispDTC 1,0 TYPE UK*ARY

i ielp Center U! 1.0 Type Lfcrary

Hi

IMicrosoft Agent Omtrot 2.0
1Microsoft CalendarControl 8.0
Microsoft ChartControl 6.0 £OUEDB)
Microsoft Cotmi Control 6,0

MICROSOFT COMMON DIALOGCONTROL

Microsoft DataBound Grid Control 5*0 (SR3)
Microsoft Data Bound ListControls 6.0

"3

J

si$£ *s 'eh

.] -i=]

Ill
IKI -

S21

frj >7. *3

E !.qj:

ll

Efuwse ..
jj = "

J -iJ I" Selected It-ms Oriy

-) 7iifc?Swt vsFlex3 Cc-trr!s -

LL:al._n: C:'iW:r.DO|ijS\5yst«ii32^wsrLCK3.0CX

*]

Of. Cj-icel *frV |

Figure 4.11: Components window

b. Right click on the ADODC button and choose ADODC properties, then the

property page as in Figure 4.12 below will appear. Choose the "Use

connection string", click the "Build" button and set the Microsoft Jet 4.0

OLE DB Provider as the data1inkproperties. Click on the " Next"button,

select the database name and test the connection between ADODC button

and the database. If the test connection was succeeded, click "OK" button

and precede to the Record source properties. Property pages as Figure 4.13

will then appear. Here we select the table using Structures Query Language

(SQL) command.

33

Ser.s d IAuthentication | RccnrfSo'-rK] Co::r | Fo t j
r S&nrc?cf CtnniJdion - — • • :

C Use-Dctjbnl. File

"I

£fx-;^.
I .

C Llr-200tCD.2ta£curceNair?

1 «
(* (Jo1--Connect inSlung

Burd.. •

Dher£-!rib.Je: \

Ok Cancel J&Dp'ji

Figure 4.12: ADODC property pages

Ge/ieial| At,:h-„-njcdicr RecordSourte]Color | Font

Con.ri jia L'f-e

j ju •r."ii-l.irii.,in

! Tabic orStoredProcedure Narre
I

. CL-mri^ndTchl|j3L]

CLE! -tHLMg-'iBia:-^

OK | C.-ral

J

1

"3

£ppV

MelL

H-!p

Figure 4.13: Record source for ADODC property pages

34

*!

Another important feature in this project is the database. A database systemis a program

that organizes, manipulates, retrieves and reports data. Using database as a data, we can

take advantage of Visual Basic's Data control to access the database from within the

Visual Basic applications. The Data control makes it easy to retrieve data and display

values from a database file without using any or VB's specific file-related commands.

The Data control makes database access simple. A field is a column of data inside a file.

A database application manages the data in a record and field format. The database

however, doesn't necessarily store data in records and fields in a table-like format, but

the database makes the data appear to program in that format. VB takes advantage of

this format and retrieves data in the record and field format no matter how the database

physically stores the data.

. i1- -fwft V*- -•.•a /fl..-iSt- „i„ i'i -« . -_T- • _ • 'sJ i ,• i— -- H-h-*!

_jren-idtor'-'u^bs^irh.jn^ Opcrai.njr idi | hhLtTirY & ShulCc^T
i" -.'-•" "" ic :cro !af i
1UU ;B25 I6.4 10.0098 1400
re liro I7.9 €oTri pT"'

ll! , i?5 [SOO (7.5 :6.0110 W' '

Figure 4.14: Data fields in the database of generators

One challenge when using access is that we must often describe parts of the database to

VB. VB cannot magically understand the database structure. When placing the Data

control on the form, we'll have to tell the control the structure of the data and tell the

Data control which parts of the data to access so that the control can properly retrieve

data. For example, by setting appropriate property values, we must tell the Data control

the name of database, the table and the fields to access.

A table is a logical collection of data in a database. A database might contain several

tables. Some databases, such as Microsoft Access, store all the related database files in a

single global file called the database file. Inside the database, the individual groups of

records and fields are called tables. Other database systems, such as dBASE, keep track

35

of a database's data in multiple files. When we use a database such a Microsoft Access,

we must describe both the overall database and the individual table name within the

database that the Data control is to use.

A bound control is a control we can link to a database, via the Data control, that displays

and updates database records if the user modifies the data in the bound control. In most

database applications, code is required. If the user is to add new records and delete old

ones, for example, code is needed. For simple displaying and updating of existing data,

however, the Data control, labels and text boxes can do all the work. Below is the

example ofcoding to delete the records.

Private SubcmdDelete_Click()

On Error GoTo DeleteErr

With Dotal.Recordset

MoveFirst

Do While Not.EOF

If.Fields(O) = txtNo Then

.Delete

Dotal .Refresh

Call cmdNewjOlick

al = MsgBox(nData has been remove", vblnformation)

Exit Sub

Else

MoveNext

End If

Loop

End With

Exit Sub

DeleteErr:

MsgBox Err.Description

End Sub

36

CHAPTERS

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Unit commitment problem is a problem that must be frequently solved by a power utility

company to economically determine a schedule of what combinations units will be used

to meet the forecast demand and operating constraints such as spinning reserve

requirements, over a short time horizon. In this project we are going to redesign the

existing Visual Basic programming so that it can run and simulate more than 10

generators. In order to achieve this goal, the understanding in Visual Basic and

knowledge in Unit Commitment are the main requirement. During the first semester of

Final Year Design Project, the author is concentrating more on the literature review and

gaining knowledge in both Unit Commitment and Visual Basic. For Visual Basic, the

author learns on how to use it by referring to reference book and also learn from

Information Technology (IT) student. In the first stage, authors rewrite the VB coding

done by previous student andtryto runit. During first stage, there are many errors occur

in simulating the previous programming. Author overcomes the problem by referring to

the Visual Basic expert form IT department.

Visual Basic software is suitable to use in solving the Unit Commitment problem

because it is a powerfulprogramming and easy to learn. The way we use VB software is

similarto whenwe are usingnormalWindows program.

37

5.2 Recommendations

In solving the Unit Commitment problem, we are not bounded to use only the Visual

Basic software. There are many other programming software that can be used such as

Visual Basic .NET, Microsoft Visual C++, and Macromedia Dream Weaver.

For the second recommendation, we can use another type of database software besides

the Microsoft Access 97. hi this projectwe only involve in simple and small data fields,

so for more complex or big database, we can apply more powerful database software

like Microsoft Access latest version, SQL Server, FoxPro, Dbase, and Btrieve.

38

REFERENCES

Secondary Sources

[1] Power System Analysis, John J. Grainger and William D. Stevenson, Jr.,

McGraw Hill International Editions

[2] Power Generation Operation and Control, Allen J. Wood and Bruce F.

Wollenberg, Wiley-Interscience

[3] Teach Yourself VisualBasic 6, Scott Warner, Osborne, McGraw Hill

[4] Visual Basic 6 Programming, Blue Book, Peter G. Aitken, Cordis

[5] VisualBasic 6 Black Book, Steven Holzner, Corolis

[6] Learning Visual Basic Through Applications, Clayton E. Crooks II, Charles

River Media

[7] Visual Basic 6, Greg Perry with Sanjaya Hettihewa, SAMS Publishing

[8] VisualBasic 6from the Ground Up, Gary Cornell, McGraw Hill

[9] Visual Basic 6 Programming, Business Application With A Design Perspective,

Jeffrey J. Tsay, Prentice Hall

[10] Visual Basic 'An Object Oriented Approach", McMonnies, Alistair, Pearson

Education Limited

39

[11] Power System Analysis and Design (Second Edition), Glover, J.D, PWS

Publishing Company, Boston (1994)

[12] Control of Generation and Power Flow on Interconnected System, Cohn N.,

John Wiley & Sons, Ine (1986)

[13] Power System Analysis, Bergen, A.R., Prentice Hall

Internet

[1] http:// lemons.inescn.pt/artigo41.pdf

[2] http://www.eepe.swan.ac.uk/upec/programme/abstract/a394.pdf

[3] http://www.ima.rndh.se/tom/tom-papers/co-PSCC 1999 trondheim.ps

40

APPENDIXI

Coding for Generator Data form

Private Sub cmdClose_Click()
Unload Me

End Sub

Private Sub cmdDelete_Click()

On Error GoTo DeleteErr

With Datal .Recordset

.MoveFirst

Do While Not .EOF

If.Fields(0) = txtNoThen
.Delete

Datal .Refresh

Call cmdNew_Click
al = MsgBox("Data has been remove", vblnformation)

Exit Sub

Else

.MoveNext

End If

Loop
End With

Exit Sub

DeleteErr:

MsgBox Err.Description

End Sub

Private Sub cmdFirst_Click()
With Datal .Recordset

.MoveFirst

txtNo.Text - .Fields(O)
txtMin.Text = .Fields(l)

41

APPENDIXI

txtMax.Text = .Fields(2)
txtFuel.Text = .Fields(3)
txtTime.Text = .Fields(4)
txtCostText = .Fields(5)

End With

End Sub

Private Sub cmdLast_Click()
With Datal .Recordset

.MoveLast

txtNo.Text = .Fields(0)
txtMin.Text = .Fields(l)
txtMax.Text = .Fields(2)
txtFuel.Text = .Fields(3)
txtTime.Text = .Fields(4)
txtCost-Text = .Fields(5)

End With

End Sub

Private Sub cmdNew_Click()

On Error GoTo AddErr

txtNo.Text = ""

txtMin.Text =""

txtMax.Text-""

txtFuel.Text = ""

txtTime.Text = ""

txtCostText-""

Exit Sub

AddErr:

MsgBox Err.Description

End Sub

Private Sub cmdNext_Click()

current_position = Datal .Recordset.AbsolutePosition
Datal .Recordset.MoveLast

total_records = Datal .Recordset.RecordCount
If current_position - total_records -1 Then

42

APPENDIXI

Exit Sub

Else

Datal .Recordset.AbsolutePosition= current_position
End If

With Datal .Recordset

.MoveNext

txtNo.Text = .Fields(O)
txtMin.Text-.Fields(l)
txtMax.Text - .Fields(2)
txtFuel.Text = .Fields(3)
txtTime.Text - .Fields(4)
txtCost.Text = .Fields(5)

End With

End Sub

Private Sub cmdPrevious_Click()
If Datal .Recordset.AbsolutePosition = 0 Then Exit Sub

With Datal .Recordset

.MovePrevious

txtNo.Text - .Fields(O)
txtMin.Text = .Fields(l)
txtMax.Text - .Fields(2)
txtFuel.Text = .Fields(3)
txtTime.Text - .Fields(4)
txtCost.Text = .Fields(5)

End With

End Sub

Private Sub cmdResult_Click()
frmConsumer. Show

Unload Me

End Sub

Private Sub cmdSave_Click()

On Error GoTo UpdateErr

With Datal .Recordset

.MoveFirst

Do While Not .EOF

If.Fields(0)-txtNoThen

43

APPENDIXI

MsgBox "Duplicate No. Data cannot be saved. Please enter new number",
vbCritical

Exit Sub

Else

.MoveNext

End If

Loop
End With

If txtNo.Text = "" Or txtMin.Text - "" Or txtMax.Text = "" Or txtFuel.Text - "" Or

txtTime.Text - "" Or txtCost.Text = "" Then

MsgBox "Please complete the fields properly", vbCritical
Exit Sub

End If

With Datal .Recordset

.AddNew

.Fields(O) - txtNo.Text

.Fields(l) = txtMin.Text

.Fields(2) = txtMax.Text

.Fields(3) = txtFuel.Text

.Fields(4) = txtTime.Text

.Fields(5) = txtCost.Text

.Update
End With

Exit Sub

UpdateErr:
MsgBox Err.Description

End Sub

Private Sub cmdSearch_Click()
frmSearch.Show

End Sub

44

APPENDIXI

Coding for Consumer Load Demand form

Private Sub cmdOK_Click()
gConsumerLoad = txtlnput.Text
frmResult.Show

Unload Me

End Sub

Coding for Search form

Private Sub cmdFind_Click()

is_datafound = False

With frmGeneratorl .Datal .Recordset

.MoveFirst

Do While Not .EOF

If .Fields(O) = txtGenNo.Text Then

frmGeneratorl .txtNo.Text = .Fields(O)
frmGeneratorl.txtMin.Text = .Fields(l)
frmGeneratorl .txtMax.Text = .Fields(2)
frmGeneratorl .txtFuel.Text = .Fields(3)
frmGeneratorl .txtTime.Text = ,Fields(4)
frmGeneratorl .txtCost.Text - .Fields(5)

is_datafound = True

Exit Do

Else

.MoveNext

End If

Loop
End With

If is_datafound = False Then
MsgBox "Sorry, record not found", vblnformation

End If

Unload Me

End Sub

45

APPENDIXI

Coding for Result form

Option Explicit

Dim mConsumerLoad As Integer
Dim mGenNo As Integer
Dim mTotRow As Integer
Dim Time(l To 15) As Currency
Dim Cost(l To 15) As Currency
Dim Fuel(l To 15) As Currency
Dim pg(l To 15) As Currency
Dim f(l To 15) As Currency
Dim kira As Integer
Dim index As Double

Dim at As Double

Dim lambda As Currency
Dim Tot_Prod_Cost As Double
Dim a(15) As Currency
Dim x As Integer
Dim b(15) As Currency
Dim c(15) As Currency
Dim bt As Currency
Dim z As Integer

Private Sub cmdGeneratorl_Click()

With adcGen.Recordset

Do Until .EOF

.MovePrevious

Loop
End With

frmGeneratorl .Show

Unload Me

End Sub

Private Sub Form_Load()

Dim col As Integer
x = 15

mGenNo = adcGen.Recordset.RecordCount

46

APPENDIXI

mConsumerLoad = gConsumerLoad

'If adcGen2.Recordset.BOF = False Then

With adcGen2.Recordset

.MoveFirst

Do Until .EOF

.Delete

.MoveNext

Loop
End With

End If

GetData

TotalRow

End Sub

Private Sub GetData()

Dim index As Integer
Dim i As Integer

index = 15

If adcGen.Recordset.BOF = False Then

With adcGen.Recordset

.MoveFirst

Do Until .EOF

Fuel(index) = .Fields(3)
Time(index) - .Fields(4)
Cost(index) = .Fields(5)
.MoveNext

index = index - 1

Loop
End With

End If

End Sub

Private Sub TotalRow()

Dim i As Long
Dim lup As Integer

47

APPENDIXI

Dim start As Integer
Dim tmp As String
Dim row As Long
Dim balance As Integer
Dim Mx_col As Integer
Dim col As Integer
Dim h As Integer
Dim j As Integer
Dim y As Integer
Dim v As Integer
Dim bits As Integer
Dim ctr As Integer
Dim k As Integer
Dim number As Integer
Dim Total_loops As Currency

'Generate possible combination

Totaljoops - 2 ATotalJoops

For j = 1 To 15

List1.clear

Mx_col=j
ReDim s2(2 AMx_col, Mx_col) As String * 1
For col = 1 To Mx_col

bits = 0

ctr = 0

For i = 1 To 2 AMx_col
s2(i, Mx_col - col + 1) = bits
ctr - ctr + 1

If ctr = 2 A(col -1) Then
Ifbits = 0Then

bits - 1

Else

bits = 0

End If

ctr = 0

End If

Nexti

Next col

For row = 1 To 2 AMx_col
tmp -""
Fori = lToMx col

48

APPENDIXI

tmp = tmp & s2(row, i)
Nexti

Listl.Addltem tmp
Next row

SendKeys "{END}+{HOME}"
Nextj

End Sub

Private Sub calcat()

Dim v As Integer
Dim sumat As Currency

'For each c contain value i

at - a(l) + a(2) + a(3) + a(4) + a(5) + a(6) + a(7) + a(8) + a(9) + a(10) + a(l1) + a(12) +
a(13) + a(14) + a(15)

If at >0 Then

at=l/at

Ifx = 15 - kiraThen

For v-15 To x

sumat = Fuel(x) / Time(x)
sumat = sumat + suamt

x = x -1

Nextv

Else

sumat = Fuel(x) / Time(x)
End If

bt = at * sumat

lambda = (at * mConsumerLoad) + bt
pg(x) = (lambda - Fuel(x)) / Time(x)
f(x) = ((Time(x) / 2) * pg(x) A2) + (Fuel(x) * pg(x)) + (Cost(x))
Tot_Prod_Cost - Tot_Prod__Cost + f(x)

End If

End Sub

49

APPENDIXI

Private Sub insertdb()

'input to database

Dim row As Long
Dim s2(32768, 40000) As Long

With adcGen2.Recordset.AddNew

adcGen2.Recordset("LoadDemand") = mConsumerLoad
adcGen2.Recordset("IncreFuei") = lambda
Cl=s2(l, 1)
C2 = s2(2, 1)
C3 = s2(3,1)
C4 = s2(4, 1)
C5 = s2(5, 1)
C6 = s2(6, 1)
C7 = s2(7, 1)
C8-s2(8, 1)
C9 = s2(9, 1)
C10 = s2(10,1)
Cll=s2(ll,l)
C12 = s2(12,l)
C13 = s2(13,l)
C14 = s2(14,1)
C15 = s2(15,1)
PGl=pg(l)
PG2 = pg(2)
PG3=pg(3)
PG4 = pg(4)
PG5=pg(5)
PG6-pg(6)
PG7 = pg(7)
PG8-pg(8)
PG9 = pg(9)
PGlO-pg(lO)
PGll=pg(ll)
PG12-pg(12)
PG13=pg(13)
PG14-pg(14)
PG15=pg(15)
Fl=f(l)
F2 = f(2)
F3 = f(3)
F4 = f(4)

50

APPENDIXI

!F5 = f(5)
!F6 = f(6)
!F7 - f(7)
!F8 = f(8)
!F9 = f(9)
!F10 = f(10)
!Fll = f(ll)
!F12 = f(12)
!F13 = f(13)
!F14 = f(14)
!F15-f(15)
ITotalProductionCost = Tot_Prod_Cost

adcGen2.Recordset.Update
adcGen2.Recordset.MoveNext

End With

End Sub

Private Sub clear()

at = 0

bt = 0

Tot_Prod_Cost-0
lambda = 0

For z = 1 To 15

a(z) = 0

Nextz

End Sub

51

