
Study on Intrusion Detection System for a Campus Network

by

Mazlina Shakirah Binti Zainal Abidin

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor ofTechnology (Hons)

(InformationTechnology)

JUNE 2005

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Study on Intrusion Detection System for a Campus Network

by

Mazlina Shakirah Binti Zainal Abidin

Approved by,

A project dissertation submitted to the

Information Technology Programme

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION TECHNOLOGY)

(Mr. Abdullah Sani b. Abd Rahman)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JUNE 2005

CERTIFICATION OF ORIGINALITY

This is to certifythat I am responsible for the work submitted in this project, that

the original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

MAZLINA SHAKimH BINTI ZAINAL ABIDIN

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT .

LIST OF FIGURES AND TABLES

ABBREVIATION AND NOMENCLATURES

ABOUT THIS DISSERTATION .

CHAPTER ^INTRODUCTION .

1.1 Background Study

1.2 Problem Statement

1.2.1 Problem Identification

1.2.2 Significant of the Project

1.3 Objectives and Scope of Study

1.3.1 The objectives.

1.3.2 Scope of Study.

CHAPTER 2: LITERATURE REVIEW AND THEORY

2.1 Before the Attack

2.2 During an Attack

2.3 After the Attack

2.4 Security Test Areas

2.5 Packet Sniffing

2.6 BriefDescription of SNORT.

CHAPTER 3: METHODOLOGY AND PROJECT WORK

3.1 Type of Attack

3.2 IDS Architecture

CHAPTER 4: RESULTS AND DISCUSSION

CHAPTER 5: CONCLUSION AND RECOMMENDATION

i

ii

iii

iii

iv

1

1

3

3

4

5

5

5

10

12

16

17

20

REFERENCES 21

APPENDICES 22

Appendix 1: Snort Configuration 22

Appendix 2: Snort Command Utilities 34

ABSTRACT

All final year students in UTP are required to undertake a final year project (FYP)

paper, which are a design and/or research-based subject. It requires student to do

research; design and/or development work in each discipline, especially on real-

world problems which would motivate student to produce practical solutions. This

project title is "Study on Intrusion Detection System for a Campus Network". It is a

research and development work project. The objective of the project is to make sure

student do a research in the area that relevant with specified title. Beside, student

also needs to make a test bed application that is used in implementing the IDS. This

project scope will focus on implementing the IDS in campus network and how to

simulate the attacks besides measure it effectiveness in detecting any intrusion.

ACKNOWLEDGEMENT

First and foremost, thank God for this opportunity and seeingme through sometruly

difficult times especially through the journey of completing this project. I would

like to express my warmest gratitude and appreciation to all parties who have

contributed towards the success of this Final Year Course Project.

I would like to express my appreciation especially to the following people:

• Mr. Abdullah Sani Abd. Rahman

Supervisor

• Mr. Mohammed Noor Ibrahim

IT/IS Final Year Project Coordinator

• Mrs. Vivian Yong Suet Peng

IT/IS Final Year Project Coordinator

Also my utmost gratitude goes to my family who help in many ways. Only Allah

may repay them.

This special thanks and appreciation also dedicated to all my colleagues and my

friends for their continued support, guidance and contribution to the success of this

Final Year Project. With the full cooperation from the various people above, I have

successfully achieved the objective of this project.

Thank You.

Figure 1

Figure 2

LIST OF FIGURES AND TABLES

Network View

IDS Architecture

ABBREVIATION AND NOMENCLATURES

1. IDS

2. NIDS

3. TCP/IP

4. DNS

5. IP

6. OSI

7. PC

8. IT

9. ARP

lO.DoS

ll.UDP

12. ICMP

Intrusion Detection System

Network Intrusion Detection System

Transmission Control Protocol/Internet Protocol

Domain Name System

Internet Protocol

Open Systems Interconnection

Personal Computer

Information Technology

Address Routing Protocol

Denial of Services

Unit Data Protocol

Internet Control Message Protocol

in

ABOUT THIS DISSERTATION

Chapter 1 - Introduction

Consists the basic information of the project, comprises of its background, its

problem statement, its objectives andthe scope involved. This section also described

the project overview andthe significant ofthis project.

Chapter 2 - Literature Review

This chapter contains the acknowledgedfindings on this field, consisting of relevant

theories, hypothesis, facts and data which are relevant to the objective and the

research ofthisproject.

Chapter 3 - Methodology and Tools Used

This chapter features the detailed description of methodology and procedure of

completing thisproject. This methodology is implemented in orderto ensure that the

project is running as required. The tools that is used for this project also is

discussed in this chapter.

Chapter 4 - Results and Discussion

This chapter reports the product details andfindings, which supports the project

work The maindiscussion andfinding here is a discussion about the resultobtained

and the intrusion detectionsystem effectiveness.

Chapter 5 - Conclusion and Recommendation

This chapter briefly states about theproject done and a few recommendations for

thefuture enhancement.

IV

CHAPTER 1

INTRODUCTION

Computer and networking technologies dominate much of our lives until today.

Many of us rely on these technologies everyday which all our works and

communications are enabled by these systems. Even as we rely on these systems,

we're painfullyawareof the flaws and imperfections in them.

In this network world, the needs for security and appropriate systems of control are

clear and the marching orders for those who would secure computer systems and

networks are ambitious indeed. The security achieved must be reasonable and

balance with the needs for privacy. It must be flexible enough to accommodate a

global range of statues and regulations besides consistent enough to track the

criminal across multiple jurisdictions.

The blend ofmanagement and technical measures isnecessary to meet these security

requirements, which is very complex. So, the area of audit and intrusion detection

has become an important part of computer and network security. The functions

provided by this technology serve the goals of security by providing trace back and

detection capabilities and also by monitoring the health and trustworthiness of other

security mechanism in the system.

1.1 Background of study

Intrusion detection is the process of monitoring the events occurring in a computer

system or network. It also inspects all inbound and outbound network activity and

identifies suspicious patterns that may indicate a network or system attack from

someone attempting to break into or compromise a system. This technology is

designed to monitor computer activities forthe purpose of finding security violations

which is varies from one organization to another organization. Intrusion detection

system spots malicious activity as it occurs and responds or alert the user

appropriately. Unfortunately accomplishing this full goal of intrusion detection is

not yet possible because networks are complex and the traffic and activities are

diverse besidesmost of the attacks are almost found daily. This situationrequires the

system to be updated frequently.

There are several ways to categorize an IDS:

1. Misuse Detection vs. Anomaly Detection

• In misuse detection, the IDS analyze the information it gathers and

compares it to large databases of attack signatures. Essentially, IDS is

looking for a specific attack that has already been documented. Like a

virus detection system, misuse detection software is only as good as the

database of attack signatures that it uses to compare packets against.

• In anomaly detection, the system administrator defines the baseline, or

normal, state of the network's traffic load, breakdown, protocol, and

typical packet size. The anomaly detector monitors network segments to

compare their state to the normal baseline and look for anomalies.

2. Network-based vs. Host-based systems

• In a network-based system, or NIDS, the individual packets flowing

through a network are analyzed. The NIDS can detect malicious packets

that are designed to be overlooked by a firewall's simplistic filtering

rules.

• In a host-based system, the IDS examines at the activity on each

individual computer or host.

3. Passive System vs. Reactive System

• In a passive system, the IDS detect a potential security breach, log the

information and signal an alert.

• In a reactive system, the IDS respond to the suspicious activity by

logging off a user or by reprogramming the firewall to block network

traffic from the suspected malicious source.

IDS attempts to detect unauthorized or malicious activities in a network or on a host

system based on signature based or anomaly based. Signature based allow IDS to

look for patterns that are known to be intrusive in packets or audit logs and anomaly

based allows ids to look for abnormal activity usually requires a template of normal

activity.

Though they both relate to network security, IDS is differs from a firewall in that a

firewall looks out for intrusions in order to stop them from happening but the IDS is

only detect them but do not stop them. The firewall limits the access between

networks in order to prevent intrusion and does not signal an attack from inside the

network while IDS evaluates a suspected intrusion once it has taken place and

signals analarm. IDS also watch for attacks that originate from within a system.

1.2 Problem Statement

1.2.1 Problem Identification

There were many complaints from the student about the performance of the network.

Most of them say that the network performance is slow and it affects their works

which require them to surf from the Internet. Network performance can become

slower when the transition rate is low or the connection bandwidth is less. This is

happen because many packets is transmitted in one time and each packet need to be

analyze before it is sendto the otherparty. During the packettransmission, some of

the packet sent may be dropped if the packet analyzer found some unknown

information in the packet. Then, there also some of the packet receiveddoesn't have

the information required and this packetmay send attacks to the network and it may

affect other data that is being transmitted.

In the network environment, there were various type of attacks occurs which will

affect the network performance such as malicious code, password crack, spoofing,

brute force attack, main-in-middle and others. Most of these attacks commonly come

from trusted network because the firewall that they used is only limit the access

between networks not the network inside. For example IP spoofing where the

intruder sends message to a computer with an IP address indicating that the message

is coming from the trusted network while the truth is not.

Nowadays there are many unknown attacks found in the network especially for

malicious code type. Most of attacks from this type are found everyday as new

comers where the detection system doesn't recognize it. These attacks may spread

out to other network area, which will be infected. Campus network currently used

firewall and also the anti virus software to patch any malicious code or other type of

attacks in the network. Even though they use firewall or antivirus for their

computers, the attack still can go into their computer because firewall only limit the

access between networks not the network inside.

1.2.2 Significant of the project

There were many types of attacks in the network nowadays that may cause our

system or our network not performs well. As there were many types of unknown

attacks, the writer has to come out with own rules that can detect any intrusion or

attacks that intrude trusted network. The rules are only detecting the unknown

packet but not prevent it from getting into the network.

From this research perhaps it will enhance the network effectiveness and minimize

the attackers' possibility to attack the computer or systems. It also hoped that the

writer could produce useful rules to prevent an intrusion in the network.

1.3 Objectives and Scope of Study

1.3.1 The objectives

• To identify thetype ofattacks that occurs incampus network

• To provide rules thatis used for intrusion detection system

• Produce a test bed environment to simulate the attacks

• To measure the effectiveness of IDS

1.3.2 Scope of study

The scope of study for this research project tends to focus on studying the intrusion

detection system concept and how it can manage the network management system.

Then, it also focuses on developing a framework that can improve the system to

detect the unknown attacks that intrude the network.

CHAPTER 2

LITERATURE REVIEW

Many IT organizations especially in tough economic times are trying to get more out

of what they already have and are asking vendors for more security functionality of

existing products that are already installed in their networks. Intrusion detection is a

type of network security that detects, identifies and isolates attempts to intrude or

make inappropriate use of computers.

Network intrusion can be simply broken into three areas which are Before the

Attack, During the Attack and After the Attack. It is very easy to break it down this

way but very hard to combat how someone might gain access to our network. If the

intrusions are performed for the purpose of gathering information or resource usage

rather than denial of service, the attacker will do everything in his or her power to

ensure that their presence is difficult to detect. This makes it even harder to detect

and trace what is happening within the network environment.

2.1 Before the Attack

Most of the companies work hard to take pro-active steps to prevent network

intrusions but they still happen and they still cause a lot of damage. However, if an

adversary spends enough investigatory time and has the appropriate technical

knowledge, they could get in if they are willing to work hard enough. As stated

previously, most of the network intrusions happen from inside the trusted network

completely bypassing the firewall. Most companies utilize a network based intrusion

detection system which is a distributed probe that monitors internal network

segments and looks for unauthorized traffic or requests.

A network intrusion detection system (NIDS) helps identify the fact that attacks may

be occurring. It is designed to detect, monitor and log potential security breaches.

Current network IDS products use a predominantly passive approach to collecting

data via protocol analysis garnered by watching traffic on the network. Each one

monitors the traffic on specific network segments. It gets copies of its segment's

traffic to inspect by "listening on promiscuous mode" and having its network

interface card bring in a copy of every packet it sees. It examines this packet and

attempts to determine whether they represent an intrusion attempt bycomparing it to

a list of known attack signatures. It does this by determining if the contents of the

packet contain the signature of a known attack method that is whether it contains a

stringof characters that matchesa specified patternor otherwise fits rules that define

known attack methods.

2.2 During an Attack

When someone is trying to attack or penetrate your network, it is commonly

understood that they are trying to access the data that is not for public. They try to

change or delete the company information, illegally use the server memory for their

own purposes and attempting to flood a particular device rendering it unusable to be

authorized users thereby creating a denial service attack.

Denial service attack is the common attack that can cause serious downtime. It looks

to send a tremendous amount of traffic via bogus server requests to your critical

servers. Your machine becomes overburdened and will be unable to respond to

normal requests. This is a very common attack to websites or key file servers. If

your machine is compromised, your machine's resources can be used in a denial of

service attack for anothertarget unbeknownst to you.

2.3 After the Attack

If an attack on your networkoccur, it is essential to do everything possible to ensure

that it can be detected and the traffic can be captured and analyzed. After you

identify that you are under attack or have been attacked, you cannot go back and

collect necessary raw network traffic to piece together what happened. The only

avenue at this point is to access log files of the critical machine hit in the attack,

provided you had the highest detailed logging turned on. Even with this information,

you could still be missing critical data. It is like trying to complete a jigsaw puzzle

without knowing the number of pieces available and how many are you missing.

You may not be able to understand what the picture even looks like.

2.4 Security Test Areas

A security test is performed with two types of attack which are passive attack and

intrusive attack. A passive attack is often a form of data collection which does not

directly influence or trespass upon the target system or network. An intrusive attack

however does not trespass upon target system or network and can be logged and

used to alarm the target system or network. The process of a security test

concentrates on evaluating the visibility, access, trust and alarm. All of this area is

concerned because it may give bad effect on network performance where it may

cause the network traffic become jammed.

2.5 Packet Sniffing

Sniffing program has been around for a long time in two forms which are

commercial packet sniffers and underground packet sniffers. Each of them is used to

help maintaining the networks and also is used to break intocomputers. In theory, it

is impossible to detect sniffing programs because they are passive. They only collect

packets but do not transmit anything. However, in practice it is sometimes possible

to detect sniffingprograms. A stand alone packet sniffer doesn't transmit any packet

but when installed non-stand alone in a normal computer, the sniffing program will

often generate traffic such as it might send out DNS reverse lookups in order to find

names associated with IP address.

2.6 Brief Description of SNORT

Snort is the product of Marty Roesch's mission to create an open source, lightweight

NIDS. His product become wildly popular and now is deployed at countless

organizations from small homes to large universities. While not designed

specifically for a high-bandwidth environment, Snort performs well even at high

traffic ingestion rates because it uses a simple but fast decoder and detection engine.

The basic Snort architecture is made up of three main parts which are the packet

decoder, detection engine and thealerting and logging system. The packet decoder is

based on libpcap and can collect TCP/IP traffic at a blinding rate. The packetdata is

decoded layer by layer up trough the OSI model until it is passed to the detection

engine.

Before the engine can compare any of the signatures in its database to the packets,

the packets data is passed trough a number of userconfigurable preprocessors. Then,

if any signature is match withthe signature in database, the third part of Snort which

is alert/log system will take the action prescribed. If configured, Snort will also

capture the packet data relating to the alert and store it on the hard drive. The alert

system will publish alerts to an area on the file system for the intrusion analyst to

examine or to a remote analysis through standard remote log formats like syslog or

smb messages.

Overall, all the literature review that I read before tell me about the definition,

concept, analysis schemes and how to understand the network traffic which is very

complicated and difficult to understand. It may take much time in order to

understand the traffic clearly.

CHAPTER 3

METHODOLOGY AND PROJECT WORK

Project methodology refers to the framework that is used to structure, plan and

control the process of intrusion detection system in the campus network. Creating

the rules for intrusion detection system involve reusability with open source

technology however limited knowledge about the existed open source acquire me to

have further reference about its usability and its functions. Lack of technical

capability and interdependences of various programming language and technology

requires ongoing internal testing and peer review of the different module compliant

to project scope.

In completing this project, I have used five steps or five phasesthat helps me to plan

and control the intrusion detection system. As to start my project, I had reviewed

about intrusion detection system in order to give me a clear view about intrusion

detection system and to help me narrow down the project scope. As intrusion

detection system function is for detecting any intrusion in the network, so the next

step is to identify the famous attack in network campus environment. When the

famous attacks type is identified, it willacquire us to findwayson how to detect that

attacks if it is exist in our network. In this case, we need to know its signatures and

then, we can detect it by analyzing the packet sent and packet received.

Next step is to setup the intrusion detection system in the campus network

environment. I have downloaded one of open source software from the Internet for

my IDS. The open source software that I use is Snort where it has some rules to

detect an intrusion in the network. This rules is created based on the attacks

signature and if the signature in the packet is suit or match with the specified

signature, then it will display an alert message that tell us what and where it is

happen. In order to setup the IDS, I run the IDS on my PC which is connected to the

others who are in the same area with me. Then, IDS will analyze the packet that is

10

sent through the network and it will store it in the log files. If there were an alert for

the packet sent, then it will be stored in the alert.ids files in bin folder. Here is the

view of some PCs that existed in this network:

ieoo.102.10

msza

160.0 10223 160 0 102.25 1800102.33 160 0.102.30

AZOY SAB-123 JUSTASURL INA

Fwiconn AbHCompuler BeltTech nolo rjtas

,180.0,102.82

PUSSYCAT

' Fujitsu" "

160 0 102 64

VISTA

Edimax Computer Company

180.0.10257
FARAlt

,160.0.102.54

FARULtYTBCDSPI

160 0102 38

NERVflNNA

CompaqComputsr

lap
100010257

SNNECCM

Mitao Ifitemsbonal

JAM
LOL

160.0,102,102

MUNI

LarBTaohnotogy

130 0 102 124
ZHU

160 0102.126

HOME-OT8DZEWK1T
Po Partner

Figure 1: Network View

As I apply Snort for my IDS, so there were some configuration that need to be done

according to the network environment where we need to specify the internal and

external network addresses.

Fourth step in this project is to simulate the attacks in the network. In this step, I

need to simulate the attacks in the network and understand on how it happens and

what it is all about. Then, the last step for this project is to measure the effectiveness

of the IDS. In order to measure it effectiveness, I will try to make a simple

application that can send attack randomly and then IDS will detect it according to

the signature pattern in the packet. The efficiency of the IDS needs to be measure

becauseIDS may send false positive alert to the user or to the network administrator.

So, this simple application is used to ensure that the attack that is sent into the

network is detected by the IDS. Then, the attack that is sent into the network will be

stored in the log files for further references and it also will be used to compare with

the Snort log files.

After IDS is run, I have some results that need to be analyzed. This result contains

the information from where and to where the data is transferred and it also shows on

11

which protocol that person used to transfer the data. The result gain needs to be

analyzed carefullybecause it may send false positive alert to the administrator.

In order to completethis project, it may require some tools that will be used in order

to setup network with IDS and it also will help me in understanding the concept

besides teach me something new about IDS. Some tools that I used in completing

this project are:

• Personal Computer

• Open Source Software - Snort

• Network Tools - such as network card, network cable, router or switches

3.1 Types of Network Attack

Nowadays, there were various type of attacks occurs in the network environment.

Attacks generally can be categorized in two areas which are passive and active. A

passive attack usually aimed at gaining access to penetrate the system without

compromising IT resources while an active attack results in an unauthorized state

change of IT resources. Most of attacks is coming from own enterprise's employees

or their business partners or customers which are internal or inside the network. If

the attacks is coming from outside or external which frequently via Internet, firewall

can help us to detect it because most of firewall used is designed to detect any

unauthorized activities from network outside.

Most of attack is not a single action but it is a series of individual events that is

developed in a coordinated manner. Here are some types of attacks that occur in the

network:

• Password cracking

It is an action that has been done to crack our password for any application

we used without our permission. The password can be cracked by using the

password cracker. A password cracker is an application program that is used

to identify an unknown or forgotten password to a computer or network

resources. It can also be used to help a human cracker obtain unauthorized

12

access to resources. Password crackers use two primary methods to identify

correct passwords which are brute-force and dictionary searches. When a

password cracker uses brute-force, it runs through combinations of

characters within a predetermined length until it finds the combination

accepted by the computer system. When conducting a dictionary search, a

password cracker searches each word in the dictionary for the correct

password. Password dictionaries exist for a variety of topics and

combinations of topics, including politics, movies, and music groups. Some

password cracker programs search for hybrids of dictionary entries and

numbers. For example, a password cracker may search for antsOl; ants02;

ants03, etc. This can be helpful where users have been advised to include a

number in their password. A password cracker may also be able to identify

encrypted passwords. After retrieving the password from the computer's

memory, the program may be able to decrypt it. Or, by using the same

algorithm as the system program, the password cracker creates an encrypted

version of the password that matches the original.

Malicious code such as virus, worms

The two most common types of malicious code attacks are the virus and the

worm. A virus is a program used to infect a computer. It is usually buried

inside another program known as a Trojan or distributed as a stand-alone

executable. Not all viruses are malicious in fact it is very few that cause

extensive damage to systems. Most viruses are simply practical jokes,

designed to make it appear, or scare recipients into thinking, that something

is wrong with Windows. Unfortunately, the viruses that are destructive are

often extremely destructive. A well-designed virus can disable an entire

network in a matter of minutes. Worms are often confused with viruses, but

they are very different types of code. A worm is self-replicating code that

spreads itself from system to system. A traditional virus requires manual

intervention to propagate itself, by copying it unknowingly to a floppy,

unwittingly embedding it in an attachment, or some other method. Worms do

not require assistance to spread because a worm can automatically e-mail

itself to other users, copy itself through the network, or even scan other hosts

13

for vulnerabilities and then attack those hosts. A worm resides in active

memory where the program is executed, itwill do what it is going todo, and

propagates itself. A virus typically overwrites, or attaches itself to, system

files. The distinction is often difficult to follow. It is not uncommon for a

virus tobe paired with a worm prior to launch. The virus does its job, and the

worm transports the virus to the next group of victims. Worms have become

much more dangerous with the advent of application integration. Many

worms take advantage ofcode that allows programs to automatically execute

code to automate common office tasks. E-mail applications are often

especially vulnerable to worms. Sometimes worms are sent as attachments

thatexecute when a user attempts to open them, butmore often themalicious

code can be executed simply by previewing the message, without even
reading the message.

Man in the middle attacks

Men in the middle attacks are much more onerous. Here, the attacker

intercepts traffic heading between two devices on the network. The attacker

can either monitor information or alter the data as it passes through the

network. Typically a man in the middle attack works like this: An attacker

sits on the network and watches traffic. When another user on the network

sends an ARP request to a network device, the attacker sends a response

saying the compromised machine is the requested device. Even if the actual

device responds, the second response will override the first. The user now

sends alldata destined for the original device to the compromised machine. It

is possible for an attacker to use this method to intercept enough data to

effectively monitor and log all network traffic and gain important

information such as usernames and passwords. Users may never know that

the traffic is being intercepted, because each packet will eventually be

forwarded onto its intended destination.

14

Spoofing

An IP spoofing attack is one in which the source IP address of a packet is

forged. There are generally two types of spoofing attacks: IP spoofing used

in DoS attacks and man in the middle attacks. IP spoofing-based DoS attacks

are relatively straightforward. An attacker sends a packet to the target host

with a forged IP address (SYN)—often an IP address in the RFC 1918

address space, though it does not have to be. The targeted host sends an

acknowledgement (ACK) and waits for a response. The response never

comes, and these unanswered queries remain in the buffer of the targeted

device. If enough spoofed queries are sent, the buffer will overflow and the

network device will become unstable and crash.

Brute force attack

It is a type of password attack that does not attempt to decrypt any

information but simply continue to try different passwords. For example a

brute-force attack may have a dictionary of all words and/or a listing of

commonly used passwords. To gain access to the account usinga brute-force

attack the program would try all the available words it has to gain access to

the account. Another type of brute-force attack is a program that runs

through all letters and/or letters andnumbers until it gets a match. Although

a brute-force attack may be able to gain access to an account eventually,

these types of attacks cantake several hours, days, months, andeven years to

run. The amount of time it takes to complete these attacks is dependent on

how complicated the password is. So it is advice to all users to change their

password frequently in order to avoid this attack.

Scanning ports and services

It includes ICMP scanning, UDP, and TCP Stealth Scanning. Prior to

sniffing a network an attacker has to gain access. Attackers gain access by

scanning devices on the network for vulnerabilities, then exploiting them.

Port scanning can either be targeted or random. An attacker interested in a

particular network will attempt to track down information about that network

15

and scan for vulnerabilities. Alternatively, attackers will put large net blocks

into a port scanner and let it run for days, trying to find any machine that is

available and able to be exploited. This highlights the difference between an

attacker and script kiddies.

3.2 IDS Architecture

As to setup my IDS in the network, I have design its architecture based on

thenetwork. I have installed Snort inworkstation no.5 (WS5) in the network,

then the IDS will examine the packet that is sent or received trough the

network.

Figure 2: IDS Architecture

16

CHAPTER 4

RESULTS AND DISCUSSION

Snort can be run in various modes from simply dumping sniffed traffic to the screen

where it is able to compare the network traffic with a pre-configured set of

signatures known as rules that are house in one or more files. Snort is typically run

on command line whether it is run on Windows or Unix host. The most common

practical command line options that has been used is -c snort.conf where it allows

user place snort in NIDS mode by informing it of the configuration file to be used.

The writer must customize this file for her site where this file is provided in the

Snort download directory.

Snort allows action to be assigned to each rule, indicating what to do when the rule

is triggered. Here is an example of a Snort file entry:

[**] iMMAP TCP ping [**]

03/12-13:33.51:880120 1.2.3.4:1029 -> 192.168.5.5:80

TCP TTL:46 TOS:0x0 ID:19678

******A* Seq . oxE4F00003 Ack: 0x0 Win: OxCOO

There is identifying message associated with the alert that the user can assign when

the rule is created or inform the analyst of the perceiving problem. The message for

the preceding alert is "NMAP TCP ping". Next is the date and timestamp followed

by IP address and port number. The arrow is the direction of traffic where it shows

the source is at left and the destination is on the right where the IP address and port

number is already specified after the arrow. The third line indicates that the traffic is

TCP, which has an arriving time-to-live (46), type of service value (0) and IP

identification number (19678). In the final line, it list the TCP flag set. 'A' signifies

that the acknowledgement flag is set followed by hexadecimal representation of TCP

sequence number, the acknowledgement number and the TCP window size. All of

these fields can providemore detailsaboutthe packetthat trigger the alert.

17

This alert appears because there is a rule examines TCP segments with an

acknowledgement flag setbut an accompanying acknowledgement value of 0.Most

of the time, when this is observed, it is telltale sign of nmap attempting to discover

live host. If the acknowledgement is allowed to reach the destination host, the host

should respond to the unsolicited acknowledgement with a reset, regardless of

whether the port is listening or not. That iswhy the message accompanying the alert

is "NMAP TCP ping".

Snort supports both header and payload inspection methods, which allow you to

fully specify ina single rule. There are many but the most important is the capability

to inspect and alter signatures. If the analyst can examine the signatures and the

packet that caused alert, there is a better chance to make a more accurate assessment.

Additionally, signatures that allow an analyst to look at any field from different

perspectives potentially improve the quality of IDS. In other words, it only allow

writer to create rules that inspect packets for a given IP, port or protocol however it

lacks the range to examine payloads or header fields on more granular level.

Benefit that we can gainby using Snort is it comes in a large set of rules. But then it

is not recommended to use all the rules on installation because the more active rules

used, the network traffic inspection becomes slower. So, I need to decide which

rulesare appropriate for a campus network depend of the typesof attack that occur.

The Snort format for defining packet signatures is now a de-facto standard for

publishing signatures. A rules file in Snort is constructed by collecting together a set

of rules that are applicable for a particular site. Simply collecting together the

thousands of Snort rules that have been defined is not a good strategy. Many of the

rules will generate false alert, reduce the network performance where the network

bandwidth will become slower and it also will reduce the value of the monitoring

system. In addition, the Snort application is designed to operate in the position of the

firewall, examining all the traffic on and off site in order to prevent unauthorized

access from outside. In this project, I assume that there is a firewall in place and my

job is to identifywhere the localhosts become compromised.

18

Most of the rules files which is located in rules folder is triggering the packet from

external network rather than internal network. Both of internal and external network

have been define in the configuration files where the external network means the

other packet that is sent by someone from other network that is not equal to internal

network.

19

CHAPTER 5

CONCLUSION AND RECOMMENDATION

Intrusion detection systems have generated a great deal of attention in the security

world. They present a vision of an ever-vigilant system sentinel, equipped with the

capability to assimilate quantities of information generated by complex system.

Intrusion detection systems allow users to optimize the penetrate-and-patch process

by sharing penetration knowledge between sites. Many users acknowledge that

penetrate and patch is not an optimal solution to system security problems.

However, it is the only available option for the user to perform secure design. In

addition, the event monitoring and attack recognition capabilities of intrusion

detection system enhance the security of a system in other ways. First, these

capabilities have a significant deterrent effect on attackers and it also can deal with

insider threat. Second, automated responses can disrupt some attacks at the outset

making the subsequent attacks more difficult to stage. Third, monitoring the

operation of the rest of the security infrastructure allows system security managers

to see when security protections are not functioning properly and to rectify the

situation before an attacker exploits. And finally, the information gained by

monitoring the system can sometimes make it easier to manage the system in other

ways, which will result in greater system reliability.

20

REFERENCES

[1] Broucek,V. & Turner, P (2003) "Intrusion Detection: Forensic Computing

Insights Arising From A Case Study on SNORT. In U.E Gattiker(Ed.),

EICAR Conference Best Paper

[2] Pete Herzog, 2001, "Open Source Security Testing Methodology Manual"

[3] Vic Lomet, "Using Network Troubleshooting Tools to Help with Network

Security: Solving Real-World Security Problems with Sniffer Portable and

Sniffer Distributed"

[4] Robert Graham, 14 Sept 2000 http://www.robertgraham.com/pubs/sniffmg-

faq.html

[5] Stephen Northcut, Judy Novak, Network Intrusion Detection, 3rd Edition,

New Riders

[6] Dr. Michael E.Whitman, Herbert J.Mattord, Principles of Information

Security, Thomson CourseTechnology

[7] James M.Kretchman, Open Source Network Administration, Prentice Hall

[8] http://www.snort.org

21

Configure your server lists. This allows snort to only look for
#attacks to systems that have a service up. Why look for HTTP
#attacks if you are not running a web server? This allows quick
#filtering based on IP addresses
These configurations MUST follow the same configuration scheme as
#defined above for $HOME_NET.

List of DNS servers on your network
var DNS_SERVERS $HOME_NET

List of SMTP servers on your network
var SMTP_SERVERS $HOME_NET

List of web servers on your network
var HTTP_SERVERS $HOME_NET

List of sql servers on your network
var SQL_SERVERS $HOME_NET

List of telnet servers on your network
var TELNET_SERVERS $HOME_NET

List of snmp servers on your network
var SNMP_SERVERS $HOME_NET

Configure your service ports. This allows snort to look for
iattacks destined to a specific application only on the ports that
#application runs on. For example, if you run a web server on port
#8081, set your HTTP^PORTS variable like this:
#

var HTTP_PORTS 8081
#

Port lists must either be continuous [eg 80:8080], or a single
#port [eg 80].

We will adding support for a real list of ports in the future.

Ports you run web servers on
#

Please note: [80,8080] does not work.
If you wish to define multiple HTTP ports,
#

var HTTP_PORTS 80
include somefile.rules

var HTTP_PORTS 8080
include somefile.rules

var HTTP_PORTS 80

Ports you want to look for 5HELLCODE on.
var SHELLCODE_PORTS !80

Ports you do oracle attacks on
var 0RACLE_PORTS 1521

other variables

#

AIM servers. AOL has a habit of adding new AIM servers, so
#instead of modifying the signatures when they do, we add them to
#this list of servers.

23

var AIM_SERVERS
[64.12.24.0/24,64.12.25.0/24,64.12.26.14/24,64.12.28.0/24,64.12.29.0
/24,64.12.161.0/24,64.12.163.0/24,205.188.5.0/24,205.188.9. 0/24]

Path to your rules files (this can be a relative path)
Note for Windows users: You are advised to make this an absolute
#path,

such as: c:\snort\rules

var RULE_PATH c:\snort\rules

Configure the snort decoder

#

Snort's decoder will alert on lots of things such as header
truncation or options of unusual length or infrequently used top
#options

#

#

Stop generic decode events:
#

config disable_decode_alerts
#

Stop Alerts on experimental TCP options
#

config disable_tcpopt_experimental_alerts
#

Stop Alerts on obsolete TCP options
#

config disable_tcpopt_obsolete_alerts
#

Stop Alerts on T/TCP alerts
#

In snort 2.0.1 and above, this only alerts when a TCP option is
#detected that shows T/TCP being actively used on the network. If
#this is normal behavior for your network, disable the next option.
#

config disable__tcpopt_ttcp_alerts
#

Stop Alerts on all other TCPOption type events:
#

config disable_tcpopt_alerts
#

Stop Alerts on invalid ip options
#

config disable_ipopt_alerts

Configure the detection engine
===============================

#

Use a different pattern matcher in case you have a machine with
#very limited resources:

#

config detection: search-method lowmem

###

Step #2: Configure preprocessors

#

General configuration for preprocessors is of
the form

preprocessor <name of processors Configuration options>

24

Configure Flow tracking module
#

#

The Flow tracking module is meant to start unifying the state
#keeping mechanisms of snort into a single place. Right now, only a
#portscan detector is implemented but in the long term, many of the
#stateful subsystems of snort will be migrated over to becoming flow
#plugins. This must be enabled for flow-portscan to work correctly.
#

See README.flow for additional information
#

preprocessor flow: stats_interval 0 hash 2

frag2: IP defragmentation support
#

This preprocessor performs IP defragmentation. This plugin will
#also detect people launching fragmentation attacks (usually DoS)
#against hosts. No arguments loads the default configuration of the
#preprocessor, which is a 60 second timeout and a 4MB fragment
#buffer.

The following (comma delimited) options are available for frag2
timeout [seconds] - sets the number of [seconds] that
#unfinished fragment will be kept around waiting for completion,
#if this time expires the fragment will be flushed
memcap [bytes] - limit frag2 memory usage to [number] bytes
(default: 4194304)
#

min_ttl [number] - minimum ttl to accept
#

ttl_limit [number] - difference of ttl to accept without
#alerting will cause false positves with router flap
#

Frag2 uses Generator ID 113 and uses the following SIDS
for that GID:

SID Event description

1 Oversized fragment (reassembled frag > 64k bytes;
2 Teardrop-type attack

an

stream4: stateful inspection/stream reassembly for Snort
#

Use in concert with the -z [all|est] command line switch to defeat
#stick/snot against TCP rules. Also performs full TCP stream
#reassembly, stateful inspection of TCP streams, etc. Can
#statefully detect various portscan types, fingerprinting, ECN, etc.

stateful inspection directive
no arguments loads the defaults (timeout 30, memcap 8388608)
options (options are comma delimited):
detect__scans - stream4 will detect stealth portscans and generate
#alerts when it sees them when this option is set
#detect_state_problems - detect TCP state problems, this tends to be
#very noisy because there are a lot of crappy ip stack
#implementations out there

#

25

#disable_evasion_alerts - turn off the possibly noisy mitigation of
#overlapping sequences.
#

#

min_ttl [number] - set a minium ttl that snort will accept
#to stream reassembly
#

ttl_limit [number] - differential of the initial ttl on a
#session versus the normal that someone may be playing games.
Routing flap may cause lots of false positives.
#

keepstats [machine]binary] - keep session statistics, add
#"machine" to get them in a flat format for machine reading, add
#"binary" to get them in a unified binary output
format

#noinspect - turn off stateful inspection only timeout [number] -
#set the session timeout counter to [number] seconds,
#default is 30 seconds

memcap [number] - limit stream4 memory usage to [number] bytes
log_flushed_streams - if an event is detected on a stream this
#option will cause all packets that are stored in the stream4
#packet buffers to be flushed to disk. This only works when logging
#in pcap mode!
#

Stream4 uses Generator ID 111 and uses the following SIDS
for that GID:

SID Event description
-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Stealth activity
Evasive RST packet

Evasive TCP packet retransmission
TCP Window violation

Data on SYN packet
Stealth scan: full XMAS

Stealth scan: SYN-ACK-PSH-URG

Stealth scan: FIN scan

Stealth scan: NULL scan

Stealth scan: NMAP XMAS scan

Stealth scan: Vecna scan

Stealth scan: NMAP fingerprint scan stateful detect
Stealth scan: SYN-FIN scan

TCP forward overlap

preprocessor stream4: detect_scans, detect_state_problems,ttl_limit
150

tcp stream reassembly directive
no arguments loads the default configuration
Only reassemble the client,
Only reassemble the default list of ports (See below),
Give alerts for "bad" streams

#

Available options (comma delimited):
clientonly - reassemble traffic for the client side of a
#connection only
serveronly - reassemble traffic for the server side of a
#connection only
both - reassemble both sides of a session

noalerts - turn off alerts from the stream reassembly stage of
#stream4

26

ports [list] - use the space separated list of ports in [list],
#"all"

will turn on reassembly for all ports, "default"
#will turn

on reassembly for ports 21, 23, 25, 53, 80, 143,
#110, 111

and 513

preprocessor stream4_reassemble:both

http_inspect: normalize and detect HTTP traffic and protocol
#anomalies

#

lots of options available here. See doc/README.http_inspect.
Unicode.map should be wherever your snort.conf lives, or given
a full path to where snort can find it.
preprocessor http_inspect: global iis_unicode_map Unicode.map 1252

preprocessor http_inspect_server: server default \
profile all ports { 80 8080 8180 } oversize_dir_length 500

#

Example unqiue server configuration
#

#preprocessor http_inspect__server: server 1.1.1.1 \
ports { 80 3128 8080 } \
flow_depth 0 \
ascii no \

double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
oversize_dir_length 300 \
no alerts

rpc_decode: normalize RPC traffic
#

RPC may be sent in alternate encodings besides the usual 4-byte
#encoding

that is used by default. This plugin takes the port numbers that
#RPC

services are running on as arguments - it is assumed that the
igiven ports

are actually running this type of service. If not, change the
#ports or turn
it off.

The RPC decode preprocessor uses generator ID 106
#

arguments: space separated list
alert_fragments - alert on any rpc fragmented TCP data
no_alert_multiple__requests - don't alert when >1 rpc query is in a
#packet

no_alert_large_fragments - don't alert when the fragmented
sizes exceed the current packet size
no_alert_incomplete - don't alert when a single segment
exceeds the current packet size

preprocessor rpc_decode: 111 32771

bo: Back Orifice detector

27

#

Detects Back Orifice traffic on the network. Takes no arguments
#in 2.0.

#

The Back Orifice detector uses Generator ID 105 and uses the
following SIDS for that GID:
SID Event description
#

1 Back Orifice traffic detected

preprocessor bo

telnet^decode: Telnet negotiation string normalizer
#

This preprocessor "normalizes" telnet negotiation strings from
#telnet and ftp

traffic. It works in much the same way as the http_decode
#preprocessor,

searching for traffic that breaks up the normal data stream of a
#protocol and

replacing it with a normalized representation of that traffic so
#that the

"content" pattern matching keyword can work without requiring
#modifications.

This preprocessor requires no arguments.
Portscan uses Generator ID 109 and does not generate any SID
#currently.

preprocessor telnet_decode

Flow-Portscan: detect a variety of portscans
#

Note: The Flow preprocessor (above) must first be enabled for
#Flow-Portscan to

work.

#

This module detects portscans based off of flow creation in the
#flow

preprocessors. The goal is to catch one->many hosts and one->many
ports scans.

#

Flow-Portscan has numerous options available, please read
README.flow-portscan for help configuring this option.

Flow-Portscan uses Generator ID 121 and uses the following SIDS
#for that GID:

SID Event description
#

1 flow-portscan: Fixed Scale Scanner Limit Exceeded
2 flow-portscan: Sliding Scale Scanner Limit Exceeded
3 flow-portscan: Fixed Scale Talker Limit Exceeded
4 flow-portscan: Sliding Scale Talker Limit Exceeded

preprocessor flow-portscan: \
talker-sliding-scale-factor 0.50 \
talker-fixed-threshold 30 \

talker-sliding-threshold 30 \
talker-sliding-window 20 \
talker-fixed-window 30 \

scoreboard-rows-talker 30000 \

server-watchnet [10.2.0.0/30] \

28

server-ignore-limit 200 \
server-rows 65535 \

server-learning-time 14400 \
server-scanner-limit 4 \

scanner-sliding-window 20 \
scanner-sliding-scale-factor 0.50 \
scanner-fixed-threshold 15 \
scanner-sliding-threshold 40 \
scanner-fixed-window 15 \

scoreboard-rows-scanner 30000 \

src-ignore-net [192.168.1.1/32,192.168.0.0/24] \
dst-ignore-net [10.0.0.0/30] \
alert-mode once \

output-mode msg \
tcp-penalties on

arpspoof
#

Experimental ARP detection code from Jeff Nathan, detects ARP
#attacks,

unicast ARP requests, and specific ARP mapping monitoring. To
#make use of

this preprocessor you must specify the IP and hardware address of
#hosts on

the same layer 2 segment as you. Specify one host IP MAC combo
#per line.

Also takes a "-unicast" option to turn on unicast ARP request
#detection.

Arpspoof uses Generator ID 112 and uses the following SIDS for
#that GID:

Event description

Unicast ARP request

Etherframe ARP mismatch (src)

Etherframe ARP mismatch (dst)

ARP cache overwrite attack

#preprocessor arpspoof

ttpreprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00
preprocessor arpspoof detect host: 192.168.40.1 f0:Of:00:f0:Of:00

SID

#

1

2

3

4

Performance Statistics
#

Documentation for this is provided in the Snort Manual. You
#should read it.

It is included in the release distribution as doc/snort_manual.pdf
#

preprocessor perfmonitor: time 300 file /var/snort/snort.stats
#pktcnt 10000

##

Step #3: Configure output plugins
#

Uncomment and configure the output plugins you decide to use.
#General

configuration for output plugins is of the form:
#

output <name_of_plugin>: <configuration_options>
#

29

alert_syslog: log alerts to syslog
#

Use one or more syslog facilities as arguments. Win32 can also
#optionally

specify a particular hostname/port. Under Win32, the default
#hostname is

'127.0.0.1', and the default port is 514.
#

[Unix flavours should use this format...]
output alert_syslog: L0G_AUTH LOG_ALERT
#

[Win32 can use any of these formats...]
output alert_syslog: L0G_AUTH LOG__ALERT
output alert_syslog: host=hostname, LOG_AUTH LOG_ALERT
output alert_syslog: host=hostname:port, LOG_AUTH LOG_ALERT

log__tcpdump: log packets in binary tcpdump format
#

The only argument is the output file name.
#

output log_tcpdump: snort.log

database: log to a variety of databases
#

See the README, database file for more information about
tconfiguring
and using this plugin.
#

output database: log, mysql, user=root password=test dbname=db
#host=localhost

output database: alert, postgresql, user=snort dbname=snort
output database: log, odbc, user=snort dbname=snort
output database: log, mssql, dbname=snort user=snort password=test
output database: log, oracle, dbname-snort user^snort
#password=test

unified: Snort unified binary format alerting and logging
#

The unified output plugin provides two new formats for logging and
#generating

alerts from Snort, the "unified" format. The unified format is a
#straight

binary format for logging data out of Snort that is designed to be
#fast and

efficient. Used with barnyard (the new alert/log processor), most
#of the

overhead for logging and alerting to various slow storage
#mechanisms such as

databases or the network can now be avoided.

#

Check out the spo_unified.h file for the data formats.
#

Two arguments are supported.
filename - base filename to write to (current time t is
#appended)

limit - maximum size of spool file in MB (default: 128)
#

output alert_unified: filename snort.alert, limit 128
output log_unified: filename snort.log, limit 128

30

You can optionally define new rule types and associate one or more
#output

plugins specifically to that type.
#

This example will create a type that will log to just tcpdump.
ruletype suspicious

(
type log

output log_tcpdump: suspicious.log
}
#

EXAMPLE RULE FOR SUSPICIOUS RULETYPE:

suspicious tcp $HOME_NET any -> $HOME_NET 6667 (msg:"Internal IRC
#Server";)

#

This example will create a rule type that will log to syslog and a
#mysql

database:

ruletype redalert

{
type alert
output alert_syslog: LOG_AUTH LOG_ALERT
output database: log, mysql, user=snort dbname=snort
#host=localhost

}

#

EXAMPLE RULE FOR REDALERT RULETYPE:

redalert tcp $HOME_NET any -> $EXTERNAL_NET 31337 \
(msg:"Someone is being LEET"; flags:A+;)

#

Include classification & priority settings
Note for Windows users: You are advised to make this an absolute

#path,

such as: c:\snort\etc\classification.config
#

#var RULE_PATH c:\snort\etc\

var RULE_PATH c:\snort\etc
include $RULE_PATH\classification.config

#

Include reference systems
Note for Windows users: You are advised to make this an absolute

#path,

such as: c:\snort\etc\reference.config
#

var RULE_PATH c:\snort\etc\

var RULE_PATH c:\snort\etc\

include $RULE_PATH\reference.config

##
Step #4: Customize your rule set
#

Up to date snort rules are available at http://www.snort.org
#

The snort web site has documentation about how to write your own
#custom snort

rules.

31

#

The rules included with this distribution generate alerts based on
Ion

suspicious activity. Depending on your network environment, your
#security

policies, and what you consider to be suspicious, some of these
#rules may

either generate false positives ore may be detecting activity you
#consider to

be acceptable; therefore, you are encouraged to comment out rules
#that are

not applicable in your environment.
#

The following individuals contributed many of rules in this
#distribution.

#

Include all relevant rulesets here

#

The following rulesets are disabled by default:
#

web-attacks, backdoor, shellcode, policy, porn, info, icmp-info,
#virus,

chat, multimedia, and p2p
#

These rules are either site policy specific or require tuning in
#order to not

generate false positive alerts in most environments.
#

Please read the specific include file for more information and
README.alert_order for how rule ordering affects how alerts are
#triggered.
%===

var RULE_PATH c:\snort\rules

include $RULE_PATH/local.rules
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet.rules
include $RULE_PATH/rpc.rules
include $RULE_PATH/rservices.rules
include $RULE_PATH/dos.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/tftp.rules
include $RULE_PATH/web-cgi.rules
include $RULE_PATH/web-coldfusion.rules
include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-misc.rules
include $RULE_PATH/web-client.rules
include $RULE_PATH/web-php.rules
include $RULE_PATH/sql.rules
include $RULE_PATH/xll.rules
include $RULE_PATH/icmp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules
include $RULE_PATH/attack-responses.rules

32

include $RULE_PATH/oracle.rules
include $RULE_PATH/mysql.rules
include $RULE_PATH/snmp.rules
include $RULE_PATH/smtp.rules
include $RULE_PATH/imap.rules
include $RULE_PATH/pop2.rules
include $RULE_PATH/pop3.rules
include $RULE_PATH/nntp.rules
include $RULE_PATH/other-ids.rules

#include $RULE_PATH/web-attacks.rules
#include $RULE_PATH/backdoor.rules
#include $RULE_PATH/shellcode.rules
Hnclude $RULE_PATH/policy.rules
Hnclude $RULE_PATH/porn.rules
Hnclude $RULE_PATH/info.rules
Hnclude $RULE_PATH/icmp-info.rules
Hnclude $RULE_PATH/virus.rules
#include $RULE_PATH/chat.rules
#include $RULE_PATH/multimedia.rules
Hnclude $RULE_PATH/p2p.rules
Hnclude $RULE_PATH/experimental.rules

Include any thresholding or suppression commands. See
#threshold.conf in the

<snort src>/etc directory for details. Commands don't necessarily
#need to be

contained in this conf, but a separate conf makes it easier to
#maintain them.

Note for Windows users: You are advised to make this an absolute

#path,
such as: c:\snort\etc\threshold.conf

Uncomment if needed.

include threshold.conf

33

Appendix 2 : Snort Command Utilities

USAGE: snort [-options] <filter options>

snort /SERVICE /INSTALL [-options] <filter options>

snort /SERVICE /UNINSTALL

snort/SERVICE/SHOW

Options:

-A Set alert mode: fast, full, console, or none (alert file alerts only)

-b Log packets in tcpdump format (muchfaster!)

-c <rules> Use Rules File <rules>

-C Print out payloads with character data only (no hex)

-d Dump the Application Layer

-e Display the second layer header info

-E Log alert messages to NTEventlog. (Win32 only)

-f Turn off fflushQ calls after binary log writes

-F <bpf> Read BPF filters from file <bp&>

-h <hn> Home network = <hn>

-i <if> Listen on interface <if>

-I Add Interface name to alert output

-k <mode> Checksum mode (all,noip,notcp,noudp,noicmp,none)

-I <ld> Log to directory <ld>

-L <file> Log to this tcpdump file

-n <cnt> Exit after receiving <cnt> packets

-N Turn off logging (alerts still work)

-o Change the rule testing order to Pass|Alert|Log

-O Obfuscate the logged IP addresses

-p Disable promiscuous mode sniffing

-P <snap> Set explicit snaplen of packet (default: 1514)

-q Quiet. Don't show bannerand status report

-r <tf> Read and process tcpdump file <tf>

-R <id> Include 'id' in snort_intf<id>.pid file name

-s Logalertmessages to syslog

-S <n=v> Set rules file variable n equal to value v

34

-T Test and report on the current Snort configuration

-U Use UTC for timestamps

-v Be verbose

-V Show version number

-W Lists available interfaces. (Win32 only)

-w Dump 802.11 management and control frames

-X Dump the raw packet data starting at the link layer

-y Include year in timestamp in the alert and log files

-z Set assurance mode, match on established sesions (for TCP)

-? Show this information

<Filter Options> are standard BPF options, as seen in TCPDump

35

