
UNIVERSITI

TEKNOLOGI

PETRONAS

Multiclient Validation System with Multiboot Image Support
Using

Preboot Execution Environment (PXE) Technology

by

Ngee Tze Shik

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

Electrical & Electronics Engineering

MAY 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar -^
31750 Tronoh G^
Perak Darul Ridzuan •%& -Vo

r-

CERTIFICATION OF APPROVAL

Multiclient Validation System with Multiboot Image Support

Using Preboot Execution Environment (PXE) Technology

by

Ngee Tze Shik

Approved by,

A project dissertation submitted to be the

Electrical and Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Mr. Noohul Basheer Zain Ali

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

NGEE TZE SHIK

ABSTRACT

A software validation is a confirmation by examination and provisions of objective

evidence that software specifications conform to user needs and intended uses, and

that the particular requirements implemented through software can be consistently

fulfilled. In practise, most of the software validation are done manually, which is not

time efficient and hardly to achieve accurate results, especially involving multiple

operating s ystem environments. Therefore, the idea of remote boot validation test

using Preboot Execution Environment (PXE) protocol is evolved.

The objective of this project is basically to design, built and test a Multiclient

Validation System with Multiboot Image Support by using PXE protocol. The

system would eventually allow client machines to perform validation tests

automatically in the different operating system environment. This validation system

gives a complete routine check on the compatibility and errors of the softwareto

hardware devices.

The scope of this project is planned to ensure the feasibility of the project to be

carried out within thegiven timeframe. This project can be broken downtotwo

major stages. The first stage will involve preliminary literature review, design and

built a single client validation system to understand the operation of multiboot image

support in PXE protocol. Comprehension of system development language like

Visual C and JScript is vital since the system coding would be done entirely using

those languages. It is envisaged that the major part of the system is designed, built

and tested during the first half of the project duration (first semester). The second

major stage is to implement the multiclient support feature for the validation system.

in

ACKNOWLEDGEMENT

The author would like to take this opportunity to express his gratitude and thank

several parties who have facilitated him at one stage or another, through the process

of designing and building the project.

* The author's family and friends, for giving him the discipline, encouraging him,

and bearingwith him, during this rather difficultand time consuming project.

» Mr. Zuki, UTP, the coordinator of Final Year Project, for his guidance and

dedication in handling and making this Final Year Project a successful one.

» Mr. Noohul BasheerZain Ali, UTP, for sparing much of his time to supervise the

author throughout the length of the project.

* Mr. Seth Nair, Remesh, Intel Technology (M) Sdn. Bhd., for giving the author a

golden opportunity participate a multinational company project. His guidance

and support are crucial to this project.

* Mr. Musa, UTP, for providing the necessary assistance during several phase of

project.

* Universiti Teknologi PETRONAS, for providing the author with the necessary

foundation and resources to embark on this project.

IV

PXE

PDK

NIC

WfM

TCP/IP

DHCP

TFTP

BIOS

BBS

NSB

HDD

PXEPDK

API

DOS

MBR

OS

UNIDI

WSH

POST

CHS

TCO

NBP

ABBREVIATIONS AND NOMENCLATURES

Preboot Execution Environment

Product Development Kit

Network Interface Card

Wired for Management

Transmission Control Protocol / Internet Protocol

Dynamic Host Configuration Protocol

Trivial File Transfer Protocol

Basic Input Output System

BIOS Boot Specification

Network Service Boot

Hard Disk Drive

PXE Product Development Kit

Application Program Interface

Diskette Operating System

Master Boot Record

Operating System

Universal Network Interface

Window Script Host

Power On Self Test

Cylindrical, Head, Sector

Total Cost Ownership

Network Bootstrap Program

TABLE OF CONTENTS

CERTIFICATION i

ABSTRACT iii

ACKNOWLEDGEMENT iv

ABBREVIATIONS AND NOMENCLATURE v

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study ... 1

1.2 Problem Statement ... 2

1.2.1 Problem Identification. . 2

1.2.2 Significant of the Project . 3

1.3 Objectives and Scope of Study . 4

1.3.1 The Relevancy of the Project. 4

1.3.2 Feasibility of the Project . 5

within the Scope and Time

frame

CHAPTER 2: LITERATURE REVIEW .

2.1 Overview of Multiclient Validation

System

Technical Support for Multclient

Validation System

Essential knowledge for Project

Implementation

2.2

2.3

CHAPTER 3: METHODOLOGY .

3.1 Procedure Identification

3.2 Tools Required

6

6

10

16

17

17

27

VI

CHAPTER 4: RESUTS AND DISCUSSION

4.1 Finding and Discussion

CHAPTER 5: CONCLUSION

5.1 Proj ect Relevancy

5.2 Conclusion

5.3 Recommendations

5.4 Suggested Future Work for

Expansion and Continuation

REFERENCES

APPENDIXES

28

28

46

46

47

47

48

50

51

vti

LIST OF FIGURES

Figure 1 Intel Remote Boot Access Process

Figure 2 Intel® 810 Chipset Block Diagram

Figure 3 Multiclient Validation System Physical Layout

Figure 4 Server and Client Interaction in DHCP Protocol

Figure 5 PXE Client Responses to DHCP Server Containing a Proxy DHCP

Service

Figure 6 Multiclient Validation System Design Life Cycle

Figure 7 Remote Boot Validation Tests in PXE Environment Process

Flowchart.

Figure 8 System Construction Process

Figure 9 Network Interface Sub-System Development Process

Figure 10 PXE Configuration Utility Interface

Figure 11 Validation Application Sub-System Development Process

Figure 12 Partition Changing Sub-System Development Process

Figure 13 Master Boot Record

Figure 14 General Flow of Partition Changing Application

Figure 15 Booting Sequence Sub-System Development Process

Figure 16 Booting Sequence Process Operation Flow

Figure 17 Remote Boot Sub-System Development Process

Figure 18 DOS Memory Map

Figure 19 Remote Boot Sub-System Development Process

Figure 20 Normal PC Boot Sequence

Figure 21 PC Boot Sequence with Preboot

Figure 22 PXE Remote Boot Operation Flow

LIST OF TABLES

Table 2.1 Knowledge base for the Multiclient Validation Systemproject

Table 3.1 Identified Sub-System Specifications

APPENDIXES

Appendix A Overview of Remote Boot

Appendix B Overview of Preboot

Appendix C Master Boot Record Source Code

Appendix D Master Boot Record Information Table

Appendix E Unassembling MBR Using Debug Application

Appendix F Multiclient Validation System Hardware Layout

Appendix G Project Gantt Chart

IX

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

The primary goal of software validation is to demonstrate that the completed

software e nd p roduct complies with e stablished s oftware a nd s ystem requirement.

The correctness and completeness of the system requirements should be addressed as

part of the design validation process for the device. Software validation is the

confirmation that all software requirements have been met and that all software

requirements are traceable to the system requirements. Software validation is a

required component of the design validation of a critical device. Whereas the

software validation conforms that all software requirements have been met, the

design validation goes further to confirm that the critical device itself meets user

needs and intended uses.

1.1 Background of Study

This project is generally a subset of a software validation life cycle for validating

computer graphic driver. This project will provides evidences that all graphic

drivers' requirements have been implemented correctly and completely and are

traceable to system requirements. Compatibility and functionality of the graphic

driver in different operating system environment and computer architecture will be

tested. A conclusion that graphic driver is validated is high dependent upon

comprehensive software testing, inspections, analyses, and other verification tasks

performed at each stage of the software validation life cycle. In this project, testing

of software functionality in a simulated use environment is typically control by an

embedded technology that store in server and network interface card (NIC) namely,

Preboot Execution Environment (PXE). Besides monitoring validation testing, PXE

also responsible for setting the active partitions in hard disk and provide multiclient

support when multiple testing platforms are connected to the server for validation

purpose. Having done this, the consistency, completeness and correctness of the

graphic driver could be studied and subsequently used as the evidence to conform

that the validation output meets all of the specific requirements.

1.2 Problem Statement

1.2.1 Problem Identification

Eventually, software validation is a matter of developing a "level confidence" that

the system meets all requirements and user expectations for the software automated

functions and features of the system. There is a common challenge in developing the

level confidence in software validation process, where most of the validation

processes are manually performed. The level of confidence will vary depending on

the validation engineer's full concentration and observation during the validation

process, especially in detecting and analysing the defects found in specifications

documents, estimates of defects remaining, testing coverage, and others. These

unnecessary human errors will affectthe acceptable level of confidence indirectly

before the software is being released.

Situation becomes worse when multiple operating system environments are

involved. Extra time and resources need to spend on setting up the numerous of

testing platforms with different computer architecture and operating systems.

Because of its complexity, the validation process for software is even more tightly

controlled than for hardware, in order to prevent problems that cannot be easily

detected later in the development process. For these and other reasons, software

engineering needs an even greater level of managerial skill and control than

hardware engineering.

In order to solve all the problems that has been mentioned e arlier, a client-server

interaction system need to be designed to detect the defects automatically during the

validation process automatically. PXEprotocol is used as the vital solution, which

acts as the communication link between server and testing platforms. Therefore it is

a need to understand the PXE protocol in terms of its operation and requirements on

individual testing platforms. The knowledge of the behaviour and pattern of PXE

protocol in response to individual testing platform would subsequently enable inter

connection of various testing platform to the server without any protocol conflict.

Once the multiple testing platforms are connected to the PXE server, validation tests

will be executed in first operating system environment automatically. After the tests

are being performed, PXE protocol will switch the testing platform into the next

active partition, where different operating system will be loaded. The same

validation test is repeated in the newly loaded operating system environment until all

the operating systems have beentested out. This multiclient validation system is able

to report errors anddefects thathave been detected along the validation process. This

feature will enhancethe compatibility and stability of the designed software.

1.2.2 Significant of the project

Software validation includes confirmation of conformance to all software

specifications and confirmation thatall software requirements are traceable to the

system specifications. Confirmation is an important partof the design validation to

ensure that all aspects of the device conform to user needs and intended uses. All of

the confirmation can be achieved with the output of this project. Towards the end of

the semester, a Multiclient Validation System prototype that could handle multiboot

images support on different testing platforms will be completed. The core of the

Multiclient Validation System prototype would be a Windows NT4server with PXE

protocol, which is basically the required communication protocol that automatically

executes the validation tests and active partition changing process. This system can

increase theusability andreliability of the device, resulting in decreased failure rates,

fewer recalls and corrective actions, less risk to users, and reduced liability to

manufacturers. It can also reduce long-term costs by making it easier and less costly

to reliable modify software and revalidate software changes.

1.3 Objective and Scope of Study

1.3.1 Relevancy of the project

The final year project would require students to put what they have learned in their

past 4 years in UTP into a practice. First and foremost is the network

communication, and followed by software programming. The details pertaining to

the computer network would be picked up later in the course of Data and Computer

Communication and Computer System Architecture. Nevertheless, the early

exposure would prove advantageous and the courses later would serve to further

enhance students' understanding and knowledge on computer networking. Examples

of knowledge that student would require and have picked up in their university

includes: Data and Computer Networks, Software Engineering, Introduction to C++

Programming as well as Computer System Architecture.

Then there are also JScript, Batch Script, C programming and network

communication interface on hands experience gained towards the end of the project.

Basically, most of the courses are not yet to be offered in UTP but it would be good

to be able to pick up these skills. For scripting and computer network interface,

studentwould basicallyneed to start from the basic as there is no prior experience in

that area.

At the completion of this project, student is expected to achieve the following

objectives:

I. To develop a multiclient validation system with PXE protocol in multiboot

image support.

II. To develop a communication interface, which handle the file sending and

receiving processes in between the PXE server and testing platforms.

III. To develop real life applications that can handle the software validation and

partition changing application.

1.3.2 Feasibility of the project within the Scope and Timeframe

With reference to the Gantt chart created for this project, the suggested time

allocation should be sufficient. The preliminary portion of the project focuses on the

acquirement of knowledge and skills which are vital to kick start the research. The

later stages of the project would target primarily on building up the skills through

practical work and familiarization of the tools and software to be used in the design

stage. Overall, the progress as projected in the Gantt chart seems realistic and

achievable taking into consideration the amount of work to be done in the specified

timeframe.

Towards the completion of the multiclient support sub-system is the main objective

for this project. Additional work required to improve the project is included under

"Chapter 5 Results and Discussion".

CHAPTER 2

LITERATURE REVIEW AND THEORY

2. LITERATURE REVIEW & THEORY

Almost every corporate PC purchased since 1998 is "Wired for Management"

(WfM) compliant. WfM is an industry standard, initiated by Intel to improve the

manageability of client PC systems, and is part of the Intel and Microsoft PC98

specification. The Preboot Execution Environment (PXE) is part of the WfM

specification. PXE is defined on a foundation of industry-standard Internet protocols

and services that are widely deployed in the industry, namely Transfer Control

Protocol / Internet Protocol (TCPIP), Dynamic Host Configuration Protocol (DHCP),

and Trivial File Transfer Protocol (TFTP). These standardize the form of the

interactions between clients and servers.

2.1 Overview of Multiclient Validation System

The Multiclient Validation System is a robust network connection of testing

platforms and server that serve as one of sophisticated tools for validation engineers

to accomplish their validities goals in software based graphic driver design. The

unique Intel remote-boot solution provided by PXE protocol allows a testing

platform to boot up its multiple operating systems automatically from the different

active partition in its local hard disk. This is a cost-effective, robust and easy-to-

manage network solution to develop a "level confidence" that the software meets all

requirements and user expectations for the software automated functions and features

of the system.

In this system, each testing platform contains a Network Boot Read Only Memory

(ROM), which integrating PXE protocol into the Basic Input/Output System (BIOS).

PXE have the functionality of enables the start-up and c onfiguration between the

server and the testing platforms. This is commonly known as network boot process

(or remote boot process, please refer Appendix A). With features specifically

designed to ensure the c onsistency, completeness and correctness of the designed

graphic driver is being produced and tested in multiple operating systems

environment, the Multiclient Validation System is a flexible, reliable and affordable

means of bringing powerful computer assisted tool in the laboratory.

2.1.1 How the Remote Boot Utility Works

The main utility that used to remotely boot the testing platform from a server is the

Intel® PXE Remote Boot Utility. It was initially designed by Intel, with input from

several other vendors including 3Com, HP, Dell, Compaq, and Phoenix

Technologies. PXE works with a network interface card (NIC) in the PC, and makes

the NIC a boot device. The PXE vision is to "Make the network interface a standard,

industry-accepted PC boot device." This means adding the NIC to the traditional list

of standard boot devices, such as floppy drives, hard disks, and CD-ROMs, that load

the operating system or set up programs on the PC. It allows the client PC to

"network boot." Booting from the network opens up a vast array of management and

support features.

PXE boots the client PC from the network by transferring a "boot image file" from a

server. This file can be the operating system for the client PC or a Preboot agent that

performs client management tasks. Since PXE is not operating system specific, the

image file can load any OS. It provides support for network booting, of embedded

and other operating systems. Because PXE works with the NIC, it requires a PXE-

enabled NIC. Most currently available NICs do support PXE, including those from

3Com, Intel, Digital, RealTek, and SMC.

PXE is available either as a boot ROM chip that add to the NIC, or as part of the

system BIOS if the network interface is on the motherboard. PXE is specific to a

type of NIC; a boot ROM for one type will not work on another type of NIC. A

client PC may have PXE installed, but it may not be enabled by the BIOS. Most PCs

support the BIOS Boot Specification (BBS), or other methods that let user order the

PC's boot devices from a BIOS setup screen. To perform a remote boot process

select PXE as the first boot device in system BIOS once the system is power on.

Some BBS systems also support Network Service Boot (NSB). With NSB, user can

set PXE lower in the boot order. A message, such as "Press F12 to boot from

network" will appear while the PC boots. In this secure system is needed. The two

main uses of network booting today are for installing an OS in a brand new client PC

that has no operating system, (or re-installing in a client PC where the operating

system has failed), and booting into a guaranteed "clean" system. Below is the

sequence of process that takes place in remote boot process.

PC

PC ««**** «6«»

cives© h. «rte.«issues

dmcp re-atefcs* wis*

fiia ttcm m» s«fw

viaTFfP

jrogmoiy at fecaivca

When complete,
KonueX'» pasjs«a to

and ptagtams tmm
iho sofviw 'via. TFTP

SERVER

H«sl w*Jh DHCP
uv*c# replies vriiii

BOOT SERVER

Pmxj>' DHCP jSH&irvica
repiie* watt Bool
Sefwr 0* address

natwortt Bool Pterins
ttie 10 ta» PC via "ft*!*"

Figure 1 Intel Remote Boot Access Process

2.1.2 Elements of the Intel Multiclient Validation System

2.1.2.1 Testing Platforms

In this system, testing platform with different Intel® architecture chipsets is used to

check the compatibility of the designed graphic driver in different operating system

environment. A typical block diagram of a testing platform motherboard based on

Intel® 810 Chipset is shown below.

Figure 2 Intel® 810 Chipset Block Diagram

The 82559 fast Ethernet controller, with an integrated 10/100 Mbps physical layer

device, is Intel's leading solution for PCI board LAN designs. This is the main

controller that monitors and performs the remote boot process.

All the testing platforms are configured with 4 active partitions hard disk drives

(HDD), where 4 different operating systems have been installed. As a result, they are

robust, cost-effective, have fewer points of failure, and require less maintenance, yet

do not sacrifice the performance and power necessary for validation engineers to

achieve the benefits o f c omputer-assisted v alidation process in different c omputer

architecture platforms. The configuration takes up less testing platforms in the

laboratory and is not subject to insertion additional systems found in the typical

graphic driver validation laboratory.

2.1.2.2 Centralized Server

The Multiclient Validation System incorporates the concepts of shared resources and

centralized server management to offer affordable, low-maintenance solutions for

validation process. This design allows the deployment of cost-effective testing

platforms equipped with the processing power to handle sophisticated validation

tasks, but relies on the server for all other resources such as applications software

and storage.

In Multiclient Validation System Windows NT 4 operating system serves as the

operating s ystem on server. The validation process is made possible by using the

PXE Product Development Kit (PXE PDK)

The PXE Product Development Kit is a solution that allows validation engineer to

boot testing platforms remotely with/without a hard disk drive in the Preboot

Execution Environment. A bootable floppy disk needs to be configured for remote

boot process. The boot disk is then converted to a boot image with the PXE Product

Development Kit. The PXE Product Development Kit provides the necessary

services such as the boot server, TFTP protocols and APIs to download the boot

image from the server to testing platforms upon power up. The testing platform then

executes the boot image locally and boots up into the different operating system

environment. The testing platforms are connected to the Windows NT4 Server

through a network switch and the PXE server serves as main control station for the

entire testing platforms. Figure 3 shows the physical layout of the Multiclient

Validation System.

10

The

Validation

Engineer
Preparing the
Boot linage »
File

The Images Send Cast to
All Testing Platforms

PXE Server

I I 1

Testing Platform Reveive Images

Figure 3 Multiclient Validation System Physical Layout

2.2 Technical Support for Multiclient Validation System

2.2.1 Dynamic Host Configuration Protocol (DHCP) Server

3.
Testing
Platform will

Load

Validation

tools

automatically

Dynamic Host Configuration Protocol (DHCP) is a TCP/IP standard for simplifying

management of host IP configuration. The DHCP standard provides for the use of

DHCP servers as a way to manage dynamic allocation of IP addresses and other

related configuration details to DHCP-enabled clients on user network. Every

computer on a TCP/IP network must have a unique computer name and IP address.

The IP address (together with its related subnet mask) identifies both the host

computer and the subnet to which it is attached. When user moves a computer to a

different subnet, the IP address must be changed. DHCP will dynamically assign an

IP address to a client from a DHCP server IP address database on local network:

11

DHCP server

IP address
database

DHCP clients

Figure 4 Server and Client Interaction in DHCP Protocol

2.3 Essential knowledge for Project Implementation

The knowledge that should pick in the course of project implementation are:

* Computer Networking To understand the fundamental PXE service that

provides communication link between server

and testing platforms. There is also a need to

understand the PXE protocol and the

relationship b etween s tandard D HCP p rotocols

before designing multiclient support sub

system.

* Visual C++ programming To design

a) Programs that able to change the hard disk's

active partitions. This is crucial when the

testing platform is changing from current

operating system environment to the next

active operating system environment.

b) Program that able to update the server

registry every time when the testing platform

is restart. Once the registry has been updated,

server will decided whether the testing

platform should change to active partition or

boot up with the current operating system.

12

c) E dit t he PXE s ervice source c ode to e nable

multiclient support features.

* Java Script This is the primary script that would be used to

perform the validation tests on design graphic

driver. Thus, it is vital to familiarize with the

functionality of the Java script.

* Batch Script A batch script is being used to download and

execute the partition changing application in

remote boot environment.

Table 2.1: Knowledge base for the Multiclient Validation System project

13

CHAPTER 3

METHODOLOGY

3 METHODOLOGY & PROJECT WORK

The plan for this project is drawn across two semesters. The design and

implementation phases of Multiclient Validation System are shown in Figure 5.

There are basically 8 major steps, which reduces the scope for rework during system

development.

3.1 Procedure Identification

3.1.1 Preliminary Investigation

The purpose of the preliminary investigation is twofold. First, it defines the

perceived problems opportunities, and directives that triggered the project and access

the risk of pursuing the project. Second, and assuming the project is worth looking

at, the preliminary investigation phase must also establish the project charter, which

defines the project scope, objective, and schedule after collecting factual

information from the current users concerning the perceived problems, causes and

effects. The preliminary investigation typically includes the following tasks:

a) Define problems statement.

b) Negotiate preliminary scope.

c) Plan the project.

d) Present the project and plan.

14

ricimiiii.il %

lll\L'sll!>.lllli|l

-" - Project Charter

Scope Issue _t__

I'mMi-in

\n.ilvsK

Model of Project and System Scope

Model of Exsiting System

' _.__r_ _. ;ment Objectives
Unanticipated >

Mode] of System Srequirement

Problem

Requirement Issue

Problems, Opportunities and
Directives

Kl i|inunii nit
\n.iKsi\

Requirement Statement

Scope Issue
Hit Mill)

\u.il\Nii I Model ofalternative, technical solution

Decision Issue

. .^j,..,. -J System Proposal

S\ skin j

lh.-M!!ll

t
Design Issue

J- Model of alternative, technical solution

Design Specificatio,B^& '̂

< iniMiiK-iiim

Validation Issue

'unctional System

^tll'lll

\ .ilulatum

I -n * iimiiiiiiuh •+• , Complete Solution-

Figure 5: Multiclient Validation System Design Life Cycle

3.1.2 Problem Analysis

The problem analysis provides a more through understanding of the problems,

opportunities, and directives that triggered the project. It always starts with studyand

analysis the existing system. The problem analysis provides a more through

understanding of the problems that triggered the project. As shown in Figure 5, the

15

key input is the project charter from preliminary investigation phase. The problem

analysis phase typically includes the following tasks.

a) Study the problem domain

b) Analyze problems and opportunities.

c) Establish improvement objectives.

d) Update project plan.

The primary deliverable of the problem analysis phase is system improvement

objectives. These objectives define the operational criteria on which any new system

will be evaluated. For instance, one of the defined objective states the new system

must perform the validation performance automatically, as mentioned in section

1.2.2 Significant of the Project.

3.1.3 Requirement Analysis

The next phase of the methodology is to define and prioritize requirements. This is

called the requirement analysis. The requirement analysis is intended to discover the

requirements for the system as a whole. This is perhaps the most important phase of

the methodology. The requirement analysis phase typically includes the following

tasks.

a) Define requirement.

b) Analyze abstract functional requirements.

c) Trace and complete requirements.

d) Prioritize requirements.

e) Update project plan.

The deliverable for the requirement analysis phase is requirement statement. This

statement is usually concentrates on deriving on these two types of requirements.

a) Abstract function requirements

The basic functions that the multiclient validation system must provide are:

16

i. Carry out selected validation process in different operating systems,

ii. Changing the operating system environment from one active partition to the

other when finished validation process in one particular operating system

environment.

iii. Support multiple testing platforms at the same time.

b) System Properties

There are non-functional emergent system properties, which are not directly

concerned with the abstract functional requirement:

i. Results and error will be saved in the system log file in server to prove the

validity of the designed software,

ii. The system reducing the validation cost and time consume of setting up

multiple operating system platforms.

3.1.4 Decision Analysis

Given the requirement statement, there are usually numerous alternative ways to

design a new validation system to fulfill those requirements. The purposes of

decision analysis is to identify solutions, analyze the feasibility of the solutions from

technical, operational, economics, schedule and risk aspect, and recommend the best

solution to be designed.

The decision analysis phases typically include the following tasks:

a) Identify solutions.

b) Analyze solutions.

c) Compare solutions.

d) Update project plan.

e) Recommend a solution.

After completing the tasks that has been mentioned above, the decision analysis

phase concludes with approved system proposal, which recommends a system

17

solution. In this solution, there are 6 sub-systems being recommended, which govern

all the functional requirements and essential specification.

a) Network Interface

b) Validation Application

c) Remote Boot Integration

d) Partition Changing Sequence

e) Booting Sequence

f) Multiclient System Support

3.1.5 System Design

The purpose of the design phase is to transform the requirement statement from the

requirement analysis into design specification for construction. The main activity

involved in this process is specifying design specifications. Different specifications

that individually or collectively meet the requirements are identified as below:

* Networking Interface A stand alone server will be setup with the

following protocols to serve as client-server

interaction support:

a) TCP/IP - provides interaction between

server and testing platform. It also assigns a

static IP address to the server.

b) DHCP - have capability of automatic

allocation of reusable network addresses and

additional configuration option.

c) TFTP - service used to transfer the boot

image file from the server to the client system.

* Validation Application The primary script that would be used to link all

the validation tools into a single application.

Once this application has been, a text file will

be created to inform the server. The validation

application will be written in JScript.

* Partition Changing Application Partition changing application will access to the

Master Boot Record (MBR) directly and change

the active partition into next operating system.

This application will be written in C

programming.

* Remote Boot Integration A batch script is being used to call perform the

partition changing application in remote boot

system environment. After the active partition

has been changed, the script will load the latest

active operating system into client system.

♦Booting Sequence PXE Server Registry needed to be edited to

specify the booting sequence for client system.

* Multiclient Support Support multiple testing platforms, which

connecting to the server at the same time. Make

sure only the user-defined boot image is being

loaded to the specific testing platform.

Table 3.1: Identified Sub-System Specification

3.1.6 Construction

Given some levelof design specifications, sub systems for the design are constructed

and tested. The purposeof the construction phase is twofold:

i) Tobuild and testa system thatfulfills design requirement andspecifications,

ii) To implement the interfaces between new system andexisting systems.

During construction phase, the identified specification has been realized by building

some application programs, and user and system interfaces. Some of these

components may already exist. As components are constructed, they are typically

validated before demonstrate to user to solicit feedback. In this project, every

specification has been developed into a single sub-system for a complete system.

Figure 6 shows the steps to realize all the specifications that have been mentioned

before.

19

Identified

Specifications

V-inmk lnli'il.iiL'

Slllt Slslrill

X.iliil.i

\|)|)lllMll<lll

Sull-Mstl'lll

r
I'.il 111 lull < h.lll!!lll!<

Mill *s\slrill

Ki'lllnU' limit

Siih-Msluii

UiiiiljllL! Vl|llL'Ilt.l

Sllll ^Wl'lll

Mljlllilirill Ml|)|l<lll
'sill) S\s(|'|||

O

Sub-System

Development

I Ii.ipi/i- I'M

I
lilllllllll1^ MlllU.llf

\ .lIllLlllUll

\|i|ilii.iiiuii in
,l.i\.i M^ript

I
ItlllllllH^ I'.l I 111 iilll

I ll.lll^lll'i

\|i|llHMlKIII in
V isii.il (. • t

I
I •hi I'M

I!.Hiti Stripl

I

I'M "sinli **rtu|i

— i

M'jiiiilliiu I I'sini"

p. Vl^m illnti It still ii

M^iuiilim IiMiiiu

.1

lil a I'M Si-ni'i > \|<>iiiiihiii Ii'siih-1 j
Raisin

\
XilllllKHI.ll Vl WT

f iillllHUI.lli'MI

Figure 6: Construction Process

J

.1

• - > < milium.ilioji Ii-siiii"

One important aspect ofconstruction is conducting integration process, which taking

independently developed sub-systems and putting them to make up a complete

20

system. The integration process will basically do in incremental integration where

all the sub-system is integrated one at a time. This incremental process is the most

appropriate approach for two reasons:

i) It is usually impossible to schedule all the different sub-system development

so that all development is completed at the same time.

ii) Incremental integration reduces the cost of error location. If many sub

systems are simultaneously integrated, an error that arises during testingmay

be located in any of these sub-systems.

While this may appear to be a simple process, but many problem arise in this stage:

i) The integration environment is not the same as the environmentassumedby

the developers of the system.

ii) When a single sub-system is integrated with an already working system, error

might be occur and are probably in the newly integrated sub-systems or in the

interactions between the existing sub-systems and the new sub-system.

3.1.7 System Validation

System validation is tended to show that this system conforms to its specification and

meets the expectations that have been identified earlier. The sub-systems are

integrated to make up the system. This process is concerned with finding errors that

result from unanticipated interaction between sub-systems and sub-system interface

problems. It is also concerned with validating that the system meets it functional and

non-functional requirements and testingthe emergentsystemproperties.

3.2 Tools Required

3.3.1 Software

* Intel PXE Product Development Kits

* Intel PXE Software Development Kits

* Microsoft 32-bit C/C++* v5.00

21

* Microsoft 16-bit C/C++ vl .52c

* Microsoft 16-bit Assembler* v6.13

* MKS* Toolkit for Windows NT v6.1, or later

3.3.2 Hardware

* Intel InBusiness 8-Port 10/100 Fast Hub

* Linksys Preconnect 4 station KVM monitor switch.

* Intel EtherExpress PRO PCI Network Interface Cards.

* Intel 82810 Chipset Systems.

The detail layout of the system is shown in APPENDIX F.

22

CHAPTER 4

RESULTS AND DISCUSSION

4.1 FINDINGS AND DISCUSSION

According to the design specification, the multiclient validation systemis made up of

6 main sub-systems, whereeach sub-system is playingdifferentrole in the system. In

order to verify that operational system comes out as intended in the design

specification, each sub-system created is validate to make sure all the build

applications are functioning well according to the project specification and can

integrate with each another. The completion of each sub-system will display the

overall process of the main system.

Figure 7 shows the overall system flow with PXE protocol. Initially a server with

Dynamic Host ConfigurationProtocol (DHCP) service is network connected with

testing platform through a network hub. After the testing platform is beingpowered

on, it will automatically start the network booting process without performing the

normal local boot from hard disk. This can be configuring by entering system BIOS

and change the boot priority to LAN boot.

Once the testing platform is successful get into network booting process, the testing

platform will request an IP address from the server. The server will assign a unique

IP address to each of the requesting client. After receiving the IP address, PXE

protocol will be loaded into testing platformfrom the server. Next, testingplatform

will read the boot server list and selectthe 1st booting sequence from the PXE boot

menu. (In this case, the author select APITEST boot server as the only active boot

server)

23

I
DHCP assign IP

••* {.••wA-"™|

i

Store in Server- Shared Directory

Start network

i

J

J

I

Figure 7: Remote Boot Validation Tests in PXE Environment ProcessFlowchart.

For first time boot, the testing platform will start with reading APITEST boot server.

A boot server is channel in PXE server, where testing platform can received the

name of an executable DOS image on the chosen boot server. Testing platform has

been directed to download DOS image file from APITEST boot server into testing

platform's memory. At this point, the testing platform state must meet certain

requirement include the availability of certain areas of the testing platform's main

memory, and the availability of basic network I/O services. After finished

downloading, DOS image file will be executed from the memory and calling

partition changing application to modify the Master Boot Record (MBR) in hardisk.

24

This time, the 1st active partition in the local disk is set to active status. A text file

will be created and stored in the server server-shared directory. Testing platform will

be rebooting and ready to load the first operating system.

After completing the partition changing process, testing platform will start booting

with local boot, where operating system that stored in the 1st active partition will be

loaded. "Local Boot" is a special case in remote boot process. Once "Local Boot"

has been selected, testing platform will silently halt the network boot process and

jump to the next boot device as listed in the system BIOS boot order, which is hard

disk drive.

Once the Windows OS is successfully loaded, the validation tests will be executed

automatically to check the compatibility of the graphic driver. This validation

process is a continuous process, where it cannot be disturb by any external interrupt

or unexpected errors. If one of the tests is failing to complete, it will recorded into a

text file and stored in the server's network-share directory. Similarly, a text file will

be created and stored in the server's network-share directory once the validation

process is complete.

The PXE server plays an important role in this system. Once the testing platform is

rebooting after performing a complete set of validation tests, a registry editor

program will edit the PXE menu registry automatically once a text file have been

created in server-shared directory. It will inform the server to set the next boot server

for the testing platform. This time, APITEST will be selected so that testingplatform

can change into the next active partition, where different operating system will be

loaded. The same process will be continuing until all the operating system has been

tested.

4.1.1 Network Interface Sub-System Development

l.iiuiliiri/t'iMLh I'M 'i, } I'M Vnci

Figure 8: NetworkInterface Sub-System Development Process

25

This sub-system development is basically to set up the network interface between

server and testing platform with PXE protocol. Basically there are 2 main steps

involved in the sub-system development.

a) Familiarize with PXE

PXE offers standardization to process uses for network booting such as:

1. Booting diskless system such as thin client and dedicated system

2. Deploying software and OS for new systems

3. Automating system maintenance such as backups and validation.

PXE service is not operating system specific; it loads the image file of any OS to the

client PC. It provides support for network booting, of embedded and other operating

system. The PXE server can be on the same server as DHCP or on a different sever,

so PXE can add into an existing network without affecting the existing DHCP server

or configuration. The PXE server watches for special DHCP requests which include

a tag identifying the client as a PXE client. If the discovery request includes the tag,

the PXE server replies to the client with configuration information, including the

name of a boot image file.

Network Bootstrap Program is used to invoke the initial bootstrap before loading any

OS or disk boot manager. Bootstrap is a short program loaded by the BIOS upon

system start up. BIOS have no information about the environment and cannot

initialise the system beyond putting the hardware into a known state. It is necessary

to load an appropriate operating environment by loading bootstrap from a known

location and transfer control.

b) PXE Server Set Up

1. Operating System Installation.

To develop a remote boot system with PXE protocol, a server with Microsoft

Windows NT 4.0 Server operating system with Dynamic Host Configuration

26

Protocol (DHCP) service has been installed. DHCP have capability of automatic

allocation of reusable network addresses and additional configuration option.

2. Network Interface Set Up

During network interface installation, TCP/IP service needs to be installed and

assign a static IP address to the server. Make sure that the network interface card

(NIC) driver has been installed with the Windows NT 4 Server installation CD. This

is because there are some of the files needed to copy from the CD to build the

RAMDISK images. This followed by DHCP service. Make sure a valid scope is

created on DHCP server.

3. PXE Product Development Kit Installation

After the server has been set up, PXE Product Development Kit (PDK) is installed.

PXE PDK contains binaries and programming utilities to install the PXE ROM

image into the FLASH memory on Intel EtherExpress PRO PCI Network Interface

Card. Make sure PXE PDK is installed with the Windows NT 4 Server CD. This is

because there are some of the files needed to copy from the CD to build the

DOSUNDI and APITEST RAMdisk images. Figure 9 shows the PXE PDK

configuration utility interface. Boot server of APITEST is selected as the foundation

to build the boot image that performs the remote boot.
S~ PXE Coriliiiiiralion Utility

Rnil|j

pioxyDHCPSeiver

fwi'l Client Boot Menu

Ifljgj IA32EFI[UND!j

• -|B^; IAB4 EFI lUNDi
fSH BStiap

Bool Server

.M«} I WinNT

fat*"! DDSUNDI

|b°°S| APITEST

pwsj BlStiap

_l JJ

',jjW-dows 2000 RIS Rediiectoi 65534

Figure 9: PXE ConfigurationUtility Interface

27

In this project, the PXE PDK is being installed on the same host server as the DHCP

service. In PXE PDK, there is a service called proxyDHCP, which is configured to

support boot clients of the Intel X86PC architecture that have a network interface.

The DHCP Class Identifier (option 60) is needed to add to the DHCP server to

inform the client that PXE proxyDHCP service is available on the same host as the

DHCP service.

4. Testing Platform Network Boot Configuration

In network boot process, there must be always have 2 PCs connecting each another

to enhance the ability to communicate with each another. One of the PC will be the

server and the other PC is the client PC. After installing PXE PDK, make the

Network Interface Card is being selected as the first boot device, which can

configure in the BIOS Setup.

Most PCs support the BIOS Boot Specification (BBS), or other method that let the

user to order the PC's boot devices from a BIOS setup screen. To perform a network

boot each time the PC is powered on, select PXE as the first boot device. Even if the

platform does not support BBS, client may still be able to reorder the Network

Interface Card to be the first boot device in the BIOS setup as many manufacturers

have implemented proprietary methods.

5. PXE API Test Environment Configuration.

Three different types ofboot servers are provided in PXE PDK.

a) Packet analysis

b) UNDI Stress Test

c) PXE API Test.

Only PXE API test has been carried out for the purpose of understanding. API stands

for Application Program Interface, which is the specific method prescribed by a

computer operating system or by an application program by which a programmer

writing an application program can make requests of the operationsystem or another

28

application. An API can be contrasted with a graphical user interface to an operating

system or a program.

The PXE specification contains a list of API calls that must be implemented by a

PXE boot ROM. These API test program attempts to verify all API calls for their

existence. It also verifies the contents of all the registers modified by the call. The

test results are stored in a log file on the client and on the proxyDHCP server.

4.1.2 Validation Application Sub-System Development

| Buikliii" ^<liu in'
I .limlLIIIA'Ullil \:llll1.lllllll

|Mli,i, I• \|i|ilk.iluilllll .!._ v U"'"'11''" Millie
. J .1.1% ;i Nci int !

1 J

Figure 10: Validation Application Sub-System Development Process

In familiarizing the Java Script, research was done through Microsoft MSDN

website which contains all fundamental and advanced Jscript programming code.

Jscript is an interpreted, object-based scripting language. Although it has fewer

capabilities than full-fledged object-oriented languages like C++, Jscript is more than

sufficiently powerful for its intended purposes. In this sub-system, Windows Script

Host has been used as a Host. The basic definition, function, assignation, classes,

structure, etc of Jscript programming has been learned. Windows Script Host (WSH)

and ActiveXObject form the basic structure of the program as these coding

techniques are able to access and control the operating system.

Windows Script Host (WSH) is a Windows administration tool. WSH creates an

environment for hosting scripts. That is, when a script arrives at user computer,

WSH plays the part of the host — it makes objects and services available for the

script and provides a set of guidelines within which the script is executed. Among

other things, Windows Script Host manages security and invokes the appropriate

script engine. It brings simple, powerful, and flexible scripting to the Windows

platform, which allowing running scripts from both the Windows desktop and the

29

command prompt. Windows Script Host is ideal for non- interactive scripting needs,

such as logon scripting, administrative scripting, and machine or software

automation. With combination of these scripting tools, the program was successfully

created attachments with all the testing components.Jscript is case sensitive to lower

and upper class letter, in order to avoid error, made sure that the letters assigned

properly.

In this project, JScript is used to link up all the validation tools into a single

application, which being used to validate the designed graphic driver. By just drag

the script and move to Start | All Program | Start-up, the script will run automatically

every time when the system is rebooting. Only one tool is being demonstrated

because the ideal script needs about 3 hours to complete.

4.1.3 Partition Changing Sub-System Development

\ [linililiii'i I'.n ilium j
lilllllll.HI/l-M.l-1lT " .• <ll.lll»llli! Mji.llllllIIl JiMlllt.

Ilni>iki-i..i<l , M MipliiJiiun •»'
1 \ isusil € i -

Figure 11: Partition Changing Sub-System Development Process

In this development step, research on Master Boot Record (MBR) has been carrying

out. Reading materials on disassembly of MBR and assembly code for searching,

reading and setting active partition of the master boot record are needed to realize.

4.1.3.1 What is Master Boot Record?

Master Boot Record (MBR) is the information in the first sector of any hard disk or

diskette that identifies how and where an operating system is located so that it can be

boot (loaded) into the computer's main storage or random access memory. The

Master Boot Record is also sometimes called the "partition sector" or the "master

partition table" because it includes a table that locates each partition that the hard

disk has been formatted into. (Refer to Appendix C for Master Boot Record Codes).

30

The MBR program code starts at offset 0000. The MBR messages start at offset

008b. The partition table starts at offset Olbe and the signature is at offset Olfe.

(Refer to Appendix D for Master Boot Record Information Table).

When the computer is powered up, the CPU will start executing the BIOS-ROM

program. The BIOS runs Power On Self Test (POST) to test and initialise the

system. Then it will execute the MBR. It then loads the MBR sector into memory at

location O000:7C00 and checks for a 0xAA55 signature at the end of the sector. The

MBR codes will loads the kernel of the operating system in the active partition,

while the kernel will loads the rest of the operating system. The kernel is what tells

the big chip that controls user computer to do what user wants the program that

users're using to do.

So, how is the system able to access to the Master Boot Record (MBR) and change

the active partition and load different operating system? In order to modify the MBR,

BIOS interrupts has bee used. There are a few numbers of interrupts available such

as Interrupt 13h for reading and writing onto the disk and Interrupt 19h for rebooting.

The most important interrupts will be Interrupt 13h as it provides functions for direct

access of the hard disk. This is important especially for booting, since at this moment

no operating system and no hard disk drivers are loaded. The INT 13h uses the CHS

(cylinder, head and sector) notation with a width of 24 bits in order to address a boot

sector in a disk.

The master boot record is always located at cylinder 0, head 0, and sector 1, the first

sector on the disk. This is the consistent starting point that the disk will always use.

When a computer starts and the BIOS boots the machine, it will always look at this

first sector for instructions and information on how to proceed with the boot process

and load the operating system. The master boot record (Figure 12) contains the

following structures:

* Master Partition Table: This small bit of code that is referred to as a table

contains a complete description of the partitions that are contained on the hard disk.

When the developers designed the size of this master partition table, they left just

enough room for the description of four partitions, hence the four partition (four

31

physical partitions) limit. One of these partitions is marked as active, indicating that

it is the one that the computer should used to continue the boot process.

* Master Boot Code: The master boot record is the small bit of computer code

that the BIOS loads and executes to start the boot process. This code, when fully

executed, transfers control to the boot program stored on the boot (active) partition to

load the operating system.

Several problems were encountered in accomplishing this task especially in figure

out the way to use the INT 13h to access to the MBR. The initial plan is to use a

simple program called DEBUG to edit, display or manipulate the MBR. This has to

be done in Diskette Operating System (DOS) mode because MBR is not accessible

during normal window operating system. Some basics command that application

uses are the (A) ssemble, (U) nassemble and the (W) rite commands. (Refer to

Appendix E for Unassembling MBR using Debug Application).

By using DEBUG program, the system is able to manipulate the MBR. But

Microsoft has changed its version of MBR from Windows 95 to Windows 95se. A

far more complicated MBR was introduced for high version of Windows. Since this

system require changing the active partition of the hard disk. So it is time consuming

to rewrite the whole Master Boot Record to suit each of every operating system. The

best way is to write a program similar to the operating system boot loader to change

the active partition of the hard disk without override the MBR. Besides that writing

directly to a hard disk using sector numbers will most likely result in loss of data or

even corrupted the hard drive

The other alternative way would be using the FDISK program, which can found in

Windows Start-up Disk to achieve the same objective. Manipulation of the source

code has been carried out to generate the application by using Microsoft Visual C++

compiler. The FDISK utility provides capability in partitioning the hard drives.

Partitioning a hard disk is a process of defining areas of the disk to be used by

operating systems as volumes. FDISK allows the user to delete or create partitions

and set active partition on the hard disk drive. Focus has been putting on reading and

writing the Master Boot Record and the partition table. Additional BIOS functions

32

j5-"SiL-+p^;

a--Kfcfrfe ffiffiv WTPOffiSff

rwatHUKH

Master Boot Code

SSSSSTPSS

Master Partition Table

mo

EF •? 2F WW

Boot Indicator

• Determines which partition to boot from.
• 00 = inactive and 80 = active.

- Only one partition marked as 80 at one time

-> Executable code

-> boot indicator

-> starting head

-> starting sector
cylinder

-> partiton type

[—| -> ending head

[fpfl -> ending sector &
cylinder

pm -> the starting sector
-> no. of sectors in

partition

-> executable signature

Figure 12: Master Boot Record

library have been added during the compilation and building of the program. The

general flow of the change partition program codes was listed in Figure 13.

33

M
a
in

fu
n

c
ti

o
n

i
ii

i
\.

,i
i.

i

O

R
ew

ri
i"

.
M

li
N

(\
d

u
n

i-
|

Ik
l.

n
il

i
i"

I
\
.

i"
1

.u
p

p
ii

r

"I
,x

O
b

i
i«

'
I'

.i
ii

rM
'i

i

^S
L

oo
ki

ip
l.

ih
k

,>

v

r
\

A
ss

ig
n

s

6

*
* 1.

Fi
rs

t
V

ar
ia

bl
e

is
an

in
te

ge
r

th
at

is
th

e
co

un
ta

rg
um

en
ts

o
f

th
e

se
c
o

n
d

v
a
ri

a
b

le
.

2.
S

ec
on

d
V

ar
ia

bl
e

is
an

ar
ra

y
re

pr
es

en
ti

ng
co

m
m

an
ds

en
te

re
d

by
th

e
us

er
o

ft
he

pr
og

ra
m

.
3.

T
hi

rd
V

ar
ia

bl
e

en
vp

is
an

ar
ra

y
o

fs
tr

in
gs

re
pr

es
en

ti
ng

th
e

v
a
ri

a
b

le
se

t
in

u
se

r'
s

e
n

v
ir

o
n

m
e
n

t.

Iz

In
it

ia
ls

C>

ti<
.i

h
"-

i.
Ii

k
p.

iM
iik

'U
i

L
A

.
ii

t'
^

!l
i

•\
«.

'lM
In

il
iC

I

m
ii

i
H

i/
-

<
li

s

R
e
a
d

M
e

o
I

(
.i

ll
I

ll
l'

ll
l

II

F
ig

ur
e

13
:G

en
er

al
Fl

ow
of

Pa
rt

iti
on

C
ha

ng
in

gA
pp

lic
at

io
n

3
4

4.1.4 Booting Sequence Sub-System Development

I ihlini! I'M Nriiii- Xl^iuillim li^Um:

Figure 14: Booting Sequence Sub-System Development Process

The basic operation flow for booting sequence process is shown in Figure 15.

Figure 15: Booting Sequence Process Operation Flow

35

In order knowing the booting sequence, the testing platform has to perform the

following steps:

1. The testing platform must generate a file to tell the server that it has

performed the required operation and task. This can be done by writing a script or a

batch file that will create a new text document, which can be identified by the server.

2. To generate a new text document, modified version of autoexec.bat and

validation JScript has been made by adding a new command (echo> xxx.txt to batch

script and fso.createtextfile ("xxx.txt") to validation JScript). Since the testing

platform had mapped to the server-shared directory, the server will be able to read

the newly created text document.

3. When the testing platform remote booting the DOS image file, the batch

script in the image will set up the environment to changes the active partition from

one to another. On the other hand, validation will be loaded after the testing platform

has change to another active partition.

4. In responds of the server, a program has been developed to read the files

generated by the testing platform. It will continuously read the files and edit the PXE

menu registry. This program will determine whether the testing platform should

remote boot the DOS image or start loading operating system from local boot.

5. Then the program will closes all open files and go into sleep mode for 10

seconds. This will provide sufficient resources for the Testing platformto remote

boot the image file and increases the responds time in writing a new text file, else the

server will be lagging and decreases the speed of image and files transferring

Although the result of the project is satisfying but there is one disadvantage. The

boot sequence only changes after the time limit reaches and only one boot sequence

36

that able to be booted. This will be a problem for too many clients booting at once

from the server as the server will not able to identify which boot sequence to be boot.

4.1.5 Remote Boot Sub-System Development

< if.Mr Ki'iiiutt' ISiml

M.llTll|)])i»k

\Il!ihiiIiiii li'-iinji <;

Mmlilt :lll1nt.,XL>L-.l>.it

.MXl Lllllllli n_\s

< it.iif itiinijiiii-

IM)S|lllll«e

Figure 16: Remote Boot Sub-System Development Process

a) Create Remote Boot Startup Disk

The first activity to perform is to create a remote boot start up disk. MS-DOS 6.22

system boot disk image has been selected due to one of the software requirement

by PXE PDK. This OS image (start up disk image) provides an environment for

the testing platform to run the partition changing application later. There are 2

methods where a boot disk can be created. One is using format /s instruction in the

DOS operating system environment. The second method is using boot disk utility,

where can be downloaded from the Internet.

Just make sure these three files are inside the boot disk, command.com,

msdos.sys and io.sys. The rest of the files can be deleted for space saving

purposes. After this, make sure that these additional files are also being inserted

into the disk:

a) HIMEM.SYS

b) RAMDRIVE.SYS

c) M0RE.COM

d) FC.EXE

37

e) AUTOEXEC.BAT

f) CONFIG.SYS

HIMEM.SYS is a system driver, which manages extended memory and is

generally located as a companion to EMM386.SYS. It coordinates the use of

extended memory, including the high memory area (HMA), so that no application

or devices driver attempt to use the same memory area at the same time. Generally

it's located within the CONFIG.SYS file using DEVICE command. This allows

the system to load the driver when it is booted or at starting up.

EMM386.EXE - expended memory system gives user computer access to the

upper memory area, beyond the convention 640K. It's usually used in combination

with HIMEM.SYS driver. EMM 386.EXE allows computer to use its hard disk

drive as extended memory to simulate expanded memory. It allows user to load

programs and other system drivers into upper memory blocks (UMB). UMB is the

sections of memory that reside between 640K and 1MB. Sections of this memory

are set aside for specific tasks but much is unused. Only microcomputer with an

80386 microprocessor, or better, can use this command. Below is the memory

map for the DOS operation system.

DOS Pgm Area

1280 bytes

Area set aside for

tracking BIOS. DOS,
and user intenupts;
plus BIOS data.

Upper memory
pages A-F used for
device control and

memory paging.

DOS Memory Map

Extended Memory

HMA controlled

byHIMEM.5Y5

Extended memory is
available to advanced

CPUs.

Expanded memory is moved into
upper memory in 94K page
increments as needed.

Expanded Memory (B4K pages)

Figure 17: DOS Memory Map

RAMDRIVE.SYS is a system driver that allows the computer to use part of its

random access memory (RAM) to act in the place of a physical hard disk drive.

The driver must be loaded in the CONFIG.SYS file so that it is mounted when

38

the system starts or is booted. A RAMDRIVE can greatly increase the speed of

some often repeated disk read/write operations and can be configured as the

default for these operations.

The MORE command displays output from a file one screen ay a time with

prompting for additional screens of information.

FC is used to compare the contents of two files for similarities and differences.

SMARTDRV is used to configure the SMART Drive software, which creates

and manages the disk cache, which is used for extendedmemory. Although it can

be invoked at the command prompt, the program is generally run within the

AUTOEXEC.BAT file so that it initialises at every boot and start up.

CONFIG.SYS file loads device drivers and setup memory management. The

AUTOEXEC.BAT file loaded after config.sys during system boot. This file

launches programs that help set the operating environment and loading necessary

terminate-and-stay resident(TSR) programs. TSRprogramsrun in the background

but provide system with added functionality.

b) Modify the autoexecbat and the config.sys contents

APITEST Boot server is selected as the foundation to build the boot image that

performs the remote boot. The related files of the APITEST such as the autoexec.bat

and config.sys can be found in the following path:

%ROOT_DIRECTORY%\ProgramFiles\Intel\PXE\PDK\System\Image\x86\UNDI

\APITEST\mkimage.

In order to produce the customized-boot image, modification of the autoexec.bat and

the config.sys has been carried on.

c) Building DOS image.

39

Get into the Server's command prompt and run the command mkimage.exe in the

following path:

%ROOT_DIRECTORY%\ProgramFiles\Intel\PXE\PDK\System.

This mkimage.exe application files is used to create a DOS boot diskette image

(such as APITEST.1). An image file named test.bin will be created with the size

of 1.44 MB. Copy and paste the file to test folder. There are two image files in

this directory, namely APITEST.O and APITEST.1. APITEST.O is a bootstrap

environment image. This image is used to verify that the machine can run the OS

image in the next layer. Download the next layer and set up the machine to run the

next layer. After pasting the image, rename the file test.bin to APITEST.1. Before

this, don't forget to delete the original APITEST.1 file inside this folder.

4.1.6 Multiclient Support Sub-System Development

(ir.itni" NlllliL-Ioilt

I'M Ki-MM|\ | He

M^mi illiiu I r-lni« <C

r
*>|imlu I111' M \(Ulihi'ss in

I'M. UlUML'\ I-Ik",

i iuii|iilc .mil Uuilil I'M

Figure 18: Remote Boot Sub-System Development Process

Basically, the final task at hand is to complete the multiclient support sub-system and

integrating this sub-system with the rest to form a complete graphic driver validation

system. The approach to develop this sub-system is pretty straight forward. By using

back the same PXE registry that has been created in booting sequence sub-system,

specific the MAC Address for each of the testing platform in the file.

MAC Address, or also called as Absolute Address is an address that is permanently

assigned to a specific storage location in memory. This means that, all testing

40

platforms will have their own PXE registry file. Whenever a validation engineer

needs to validation a testingplatform, he just needs to make sure that he is executing

the correct PXE registry file with the correct MAC Address. With all these,

numerous validation processes can run parallel at the same time.

41

CHAPTER 5

CONCLUSSION

The project is basically in the working scope of utilizing the knowledge that has been

acquired in 5 years of study. During the project design and implementation, more

stones unturned in each step of progress that has been made. There are many other

knowledge bases that need to pick up to complete this project. All these basically add

more challenge to current task and would inevitably add more learning curve to the

project.

5.1 Proj ect Relevancy

After working on the project for so many months we have found that it is a relevant

project to prove the two points. First, that part of the project can be successfully

conducted and completed using free tools. We have used free software whetheropen

source or other wise, at every step of process. Second, that an individual today can

accomplish what took a team of engineers to accomplish several decades ago by

building on existing work.

In addition, this project is very unique, as it benefits the past and present. This is

because the system is a system that has been around. It benefits the past, as in

recreating a compatible system from the past, we have managed to make several

improvement to it to improve performance. It also benefits the present as the

validation jobs are easier to perform compare to past.

42

At last, the project is a feasible one. With limited time and resources, we had

sufficiently achieved the main objective of the project. The prototype has been

implemented and although some bugs still exit in the design, most of them have been

worked out and the processor is generally working. It is capable of executing in all

operating system but they are probably still some bugs left to be ironed out.

5.2 Conclusion

In conclusion, the project looks promising with a lot of learning curves. A lot of

skills and knowledge need to be picked up prior to the implementation of the core of

the project. The undertaking of the project would provide a better solution for the

software and driver validation process. The successful completion of the project

could pave a way to the progress of bigger project that is currently being carried out

by the external supervisor in Intel, Penang. Generally, the outline of the project had

already been clearly justified and the preliminary stage of the project would focus

primarily on gathering all the information pertaining to the projectwhich is basically

the PXE protocol and Visual C programming. The Gantt chart created in this report

would provide a guideline on the progress of the project and would also serve to list

the design steps necessary for the successful of the project.

5.3 Recommendations

5.3.1 Soft Copy Submissions

The author would like to suggest that the FYP submission of reports be done in PDF

or DOC format instead of present print outs especially for weekly logbook reports.

This is because the amount of paper generated is tremendous. If students could move

towards a paperless method of submission, we would help save environment as well

as reduce the hassle of submission. With the use of the UTP network, students could

establish a local server for submission and distribution of FYP reports and updates. It

couldbe supervised and controlled by one of the EE technicians doing the paperwork

today.

43

5.3.2 Open Source Contributions

The author would like to suggest that UTP provide continues contributions to the

open source community. All FYP students' works should be made open source.

There are many things that students can learn from open source and thus students

should actively contribute to it. Open source allows students to learn things that are

not taught in books and classrooms. It provides practical examples of knowledge

application that is used in the industry as well as tips and tricks that are never taught

except through real examples.

5.4 Suggested Future Work for Expansion and Continuation

Basically, the task at hand is to complete all sub-systems and integrating them

together to form a complete Multiclient Validation System. The assembling of each

sub-system requires student to understand all the programs that sending to the testing

platform and their functionality.

The first sub-system would initially be difficult to design and comprehend, but with

the successful implementation of subsequent sub-systems, the last sub-system, which

is multiclient support, would inevitably be much easier to design since more

experience, knowledge and exposure on the basic principle functionality have been

acquired.

The suggested future work for expansion and continuation would be improving the

multiclient support sub-system, which is not fully implemented in this project. It can

be improve by editing the PXE protocol source code so that the server can support

validation process for multiple testing platforms without creating specific MAC

Address for every single testing platform in the PXE Registry File. Once the

machine address has been detected, a table will be created to store all machine

address variables. From the table, validation engineer will specify the boot image file

and boot server for each testing platform to download. This will be eliminating

conflicts on getting the same image boot file.

44

The PXE ROM Image with newly editing PXE source code can be installed into the

FLASH memory on Intel EtherExpress PRO PCI Network Interface Card (NIC).

With this additional feature, the validation work will become simpler and easier

compare with the past.

Overall, the knowledge bases that I will need to pick up in my project are as follow:

1. Network Programming (Visual C++)

2. PXE Configuration Utility Interface (Visual C++)

3. Preboot Execution Environment (PXE) Protocol

Judging from the progress right now, it is a strong confidence that the project could

be completed in time. However, a lot of effort needs to be put in not only to acquire

all the knowledge base stated above but also to manipulate and apply them into the

project.

45

REFERENCES

1. Intel Wired For Management (WJM),2002

<http://www.intei.com/labs/manage/wfm/>

2. AppDeploy.com :FAQ .Preboot Execution Environment (PXE, PiXiE),2003

<http://appdeplov.com/faq/pxe.shtml>

3. Preboot Execution Environment -Microsoft Internet Explorer, 2003

<http://www.eu.microsoft.com/windows2000/techinfo/reskit/en-

us/default.asp?url=/wmdows2000/techinfo/reskit/en-

us/distrib/dseddpl UEPI.asp>

4. MicrosoftMSDN website, 2003<http://msdn.rnicrosoft.com/>

5. Intel Corporation - EmbeddedIntel(R)Architecture in Communications,

2004 <http://www.intel.com/platforms/applied/eiacomm/index.htm

6. Peter G. Brierley, 1997, "New Perspective on Microsoft Windows NT4

server 4.0", Collin Country Community College.

7. Ian Sommerviile, 2001, "Software Engineering 6th Edition", Addison Wesley.

46

APPENDIX A

Overview of Remote Boot

The issue of the high total cost of ownership (TCO) of PCs in a corporate

environment is well understood by the IT community today. The main question now

is: What is the best solution for the TCO problem? There are many products

available that help address this issue, ranging from simple, low-cost, single-task

"tools" to costly, complex, multiple-task client m anagement products. One of the

solutions i s using remote b oot (or network boot) w here a c omputer that does not

relies on local resources to start, but uses centralized remote resources instead.

The common problem faced by IT managers in remote boot is to ensure that client

systems in their enterprises can boot appropriate software images using appropriate

configuration parameters. These selected boot images and configuration parameters

must be acquired from selected servers in the enterprise as dictated by the needs of

the particular environment, the capabilities or mission of the user, the resources

available within the client, etc. Furthermore, these clients should boot consistently

and in an interoperable manner regardless of the sources or vendors of the software

and the hardware of both client and server machines.

There are several advantages and uses for network booting:

* Booting diskless systems such as thin clients and dedicated systems

* Deploying software and OS for new systems

* Automating system maintenance such as backups

* Automating system checking such as virus scanning

*• Ensuring security where a guaranteed secure system is needed

The two main uses of remote boot today are installing an OS in a brand new client

PC that has no operating system, (or re-installing in a client PC where the operating

system has failed), and booting into a guaranteed "clean" system. By booting a brand

new system or a defective-OS system from the network, user can install a new OS

and/or applications without visiting each client PC with a stack of installation CDs.

47

APPENDIX A

Settingup a new client PC is as simple as connecting it to the network and powering

it on. User can setup user servers to automatically detect the new clients and start

installing the new software. This can dramatically reduce administration time. The

administrator no longer has to physically visit to reinstall the software when a user's

computer crashes. A remote boot does the re-install. It may now be more efficient to

simply reinstall the entire user's software than to try to determine the problem with

the existing installation. When user boot from the network, user get a guaranteed

"clean" boot, with no boot-time viruses or user modified files. The system boot files

are stored on the server where they are protected from infection.

Remote boot process also can be used to scan for viruses, ensuring that the local hard

drive is clean before user boot from it. These tools include the Preboot Execution

Environment (PXE) server side components and utilities to build boot image files.

They enable administrators to set up a network booting environment to perform

specific client management tasks using off-the-shelf utilities.

In summary, using Preboot Execution Environment, a newly installed networked

client machine should be able to enter a heterogeneous network, acquire for itself a

network address from a DHCP server, and then download a NBP to set itself up. This

sets the stage to enable IT managers to customize the manner in which their network

client machines go through a network-based booting process.

48

APPENDIX B

OVERVIEW OF PREBOOT

This section discusses Preboot, which can be another weapon in the IT manager's

arsenal for tackling the TCO problems. Preboot is not a tool that performs specific

tasks, but rather a framework that can be used to centrally deploy various client

management tools.

As the name suggests, Preboot occurs before the operating system (OS) is loaded.

The primary distinctive aspect of Preboot is the download of a boot image file from a

boot server on the network, and the execution of this boot image on the client PC. To

do this, the client PC must be equipped with remote boot firmware, as described

later. Figure 19 shows a normal PC boot sequence without Preboot. Figure 20 shows

the PC boot sequence with legacy Preboot capability. In Preboot environments, the

PC normally reboots when the Preboot phase is completed

Power On/
Remote Wake

Up

BIOS perform;
POST

BIOS identifies

highest priority
boot device

(hard disk)

Control

transferred

to hard disk

Figure 19: Normal PC Boot Sequence

OS is loaded

m\d executed

from the hard

disk

Power On/
Remote Wake
Up _*»

BIOS performs
POST

-**

BIOS Identifies

highest priority
boot device

(network boot
ROM)

-**•-

Control

transferred
to network

boot ROM
H»-

Networkboot

RONS down

loads boot

linage file from
hoo\ server

I

♦
Control

transferred to

boot image
file -

Boot image
file executes

desired

management

tasks

-

Management
tasks are

complete -#*

PC reboots

Figure 20: PC Boot Sequence with Preboot

49

APPENDIX B

The boot image file that is downloaded and executed on the client PC determines

what actions are performed during the Preboot phase. A boot image file is the

consolidation of the contents of a regular boot diskette (or diskettes) into one file.

Typically boot image files contain two sets of files. The first set are files necessary to

boot a PC, such as a small OS. To minimize the size of the boot image file (thus

minimizing its download time) and to minimize the amount of memory needed to

store the boot image file, the OS used during a Preboot session is typically a small,

lightweight OS. DOS is the OS most commonly used during a Prebootphase.

The second set of files is those needed to perform the desired tasks. This is where the

power of Preboot is unleashed. Programs, tools, utilities, and batch/script files can be

included to perform a desired task on the client PC, as long as they are supported by

the OS that is being used. The programs that are executed during the Preboot phase

are often called "Preboot tasks." The types of Preboot tasks that are performed in a

Preboot session are:

* Hard disk imaging. There are many imaging tools available today. They can be

used to roll out OS installations and corporate desktops to client PCs.

* Virus scanning, especially of the boot sector.

* System updates, such as updating the client PC's BIOS to the latest version using

a flash utility.

* Checking the existence and integrity of critical files.

There are two methods for executing Preboot tasks:

1 Include all the files necessary to perform the Preboot task in the boot image file.

In this case, the files will be loaded into and executed from the client PC's

memory.

2 Include only the files necessary to connect to and log into a file server where the

Preboot task files are located. Execute the task from the server.

APPENDIX B

50

Three elements are needed to set up a Preboot environment:

1. Client remote boot firmware.

Remote boot firmware must be available on the client PC. When a PC boots, this

firmware will communicate with a remote boot server to download the boot image

file in the PC's memory and then execute the boot image. The firmware is usually

located in an Option ROM on a network interface card (NIC) or integrated into the

PC BIOS (Basic Input Output System). There are various remote boot protocols, but

the specification that has become the industry standard is the Preboot Execution

Environment (PXE) specification, which is part of the Wired for Management

(WfM) specification. Most enterprise PCs purchased over the last two years typically

have PXE firmware already included.

2. Remote boot services.

Remote boot services must be installed on a server that will act as the remote boot

server. This can be an existing server or a new server that is added to an existing

network. When using the PXE network booting method, four services are usually

required: Dynamic Host Configuration Protocol (DHCP), PXE, Proxy DHCP (when

the PXE service is installed on a boot server separate from the DHCP server), and

Trivial File Transfer Protocol (TFTP). The DHCP service required is the usual one

that issues IP addresses to the client PCs. Typically, most TCP/IP-based networks

already have a DHCP service running. DHCP services are available with most

network operating systems, including Windows NT and Windows 2000. The Proxy

DHCP service is needed to supply the PXE client with the IP address of the PXE

service. The service cannot run on the same server as the DHCP service. The PXE

service supplies the PXE client with the filename of the boot image file to be

downloaded. The TFTP service is a simple form of FTP. It is used to transfer the

boot image file from the remote boot server to the PXE client. The Proxy DHCP,

PXE, and TFTP services may be available with some network operating systems or

they can be purchased from third-party vendors.

51

APPENDIX B

3. Administrator tools.

Some miscellaneous tools are needed to do various tasks such as boot image file

creation. There are products available that c ontain this functionality. Preboot is a

framework that can be used to centrally deploy various client management tools over

a network. It allows DOS-based tools and utilities to be executed prior to the client's

ultimate OS being loadedfrom the local hard disk. Settingup a Prebootenvironment

and executing client management tools, either on a regular basis with every boot or

only when needed, can help reduce system maintenance costs and increase

maintenance efficiency.

52

APPENDIX C

MASTER BOOT RECORD SOURCE CODE

This sector is initially loaded into memory at 0000:7c00 but it immediately relocates
itself to 0000:0600.

BEGIN: NOW AT 0000:7C00,

Disable int's

Set stack seg to 0000

Set stack ptr to 7c00

SI now 7c00

ES now 0000:7c00

DS now 0000:7c00

Allow int's

Clear direction

DI now 0600

Move 256 words (512

bytes)

Move MBR from

0000:7c00

to 0000:0600

Jmp to NEW LOCATION

RELOCATE

0000::7C00 FA

0000;:7C01 33C0

0000::7C03 8ED0

0000;:7C05 BC007C

0000::7C08 8BF4

0000::7C0A 50

0000::7C0B 07

0000::7C0C 50

0000;:7C0D IF

0000;:7C0E FB

0000::7C0F FC

0000;:7C10 BF0006

0000;:7C13 B90001

0000:7C16 F2

0000:7C17 A5

0000:7C18 EA1D060000

CLI

XOR AX, AX

MOV SS, AX

MOV SP, 7C00

MOV SI,.SP

PUSH AX

POP ES

PUSH AX

POP DS

STI

CLD

MOV DI,.0600

MOV CX, 0100

REPNZ

MOVSW

JMP 0000:061D

NEW_LOCATION:

0000:061D BEBE07 MOV SI,07BE

0000:0620 B304 MOV BL, 04

NOW AT 0000:0600

point to first table
entry-

There are 4 table

entries

SEARCH LOOP1:

ENTRY

0000:0622 803C80

0000:0625 740E

0000:0627 803C00

entry?

0000:062A 751C

0000:062C 83C610

0000:062F FECB

0000:0631 75EF

table

0000:0633 CD18

SEARCH FOR AN ACTIVE

CMP BYTE PTR [SI] ,80 Is this the active

entry?

JZ FOUND_ACTIVE Yes

CMP BYTE PTR [SI] ,00 Is this an inactive

JNZ NOT_ACTIVE No

ADD SI,+10 incr table ptr by 16

DEC BL deer count

JNZ SEARCH_LOOPl jmp if not end of

INT GO TO ROM BASIC

53

FOUND_ACTIVE:

0000:0635 8B14 MOV DX,[SI]

0000:0637 8B4C02 MOV CX, [SI +02:

0000:063A 8BEE MOV BP,SI

SEARCH_LOOP2:

ACTIVE ENTRY

FOUND THE ACTIVE ENTRY

Set DH/DL for INT 13
call

Set CH/CL for INT 13

call

Save table ptr

MAKE SURE ONLY ONE

0000:063C 83C610 ADD

0000:063F FECB DEC

0000:0641 741A JZ

0000:0643 803C00 CMP

0000:0646 74F4 JZ

SI,+10 incr table ptr by 16
BL deer count

READ_BOOT jmp if end of table
BYTE PTR [SI],00 is this an inactive

entry?

SEARCH LOOP2 yes

NOT_ACTIVE:
ENTRY FOUND

0000:0648 BE8B06

DISPLAY MSG:

MOV SI,068B

MORE THAN ONE ACTIVE

Display "Invld prttn
tbl"

DISPLAY MESSAGE LOOP

0000:064B AC

0000:064C 3C00

0000:064E 740B

0000:0650 56

0000:0651 BB0700

0000:0654 B40E

0000:0656 CD10

0000:0658 5E

0000:0659 EBF0

LODSB get char of message
CMP AL, 00 end of message
JZ HANG yes

PUSH SI save SI

MOV BX,0007 screen attributes

MOV AH, 0E output 1 char of

message

INT 10 to the display
POP SI restore SI

JMP DISPLAY_MSG do it again

HANG:

0000:065B EBFE JMP HANG

READ BOOT:

BOOT RECORD

0000;;065D BF0500

INT13RTRY:

MOV DI,.0005

0000;:0660 BB007C MOV BX, 7C00

0000;:0663 B80102 MOV AX,.0201

0000;:0666 57 PUSH DI

0000;:0667 CD13 INT 13

0000::7c00

0000::0669 5F POP DI

0000;:066A 730C JNB INT130K

HANG THE SYSTEM LOOP

sit and stay!

READ ACTIVE PARITION

INT 13 retry count

INT 13 RETRY LOOP

read 1 sector

save DI

read sector into

restore DI

jmp if no INT 13

54

0000:066C 33C0

0000:066E CD13

0000:0670 4F

0000:0671 75ED

0000:0673 BEA306

0000:0676 EBD3

XOR AX,AX

INT 13

DEC DI

JNZ INT13RTRY

MOV SI,06A3

JMP DISPLAY MSG

call INT 13 and

do disk reset

deer DI

if not zero, try
again

display "Errr ldng \
systm"

jmp to display loop

INT130K: INT 13 ERROR

0000:0678 BEC206 MOV

0000:067B BFFE7D MOV

0000:067E 813D55AA CMP

0000:0682 75C7 JNZ

0000:0684 8BF5 MOV

0000:0686 EA007C0000 JMP

POINTING TO

ENTRY

SI,06C2

DI,7DFE

WORD PTR [DI],AA55

DISPLAY_MSG

SI,BP

0000:7C00

"missing op sys"

point to

signature

is signature

correct?

no

set SI

JUMP TO THE BOOT

SECTOR

WITH SI

PART TABLE

Messages here.

0000:0680 49 6e76616c * Inval*

0000:0690 69642070 61727469 74696f6e 20746162 *id partition tab*

0000:06a0 6c650045 72726f72 206c6f61 64696e67 *le.Error loading*
0000:06b0 206f7065 72617469 6e672073 79737465 * operating syste*
0000:06c0 6d004d69 7373696e 67206f70 65726174 *m.Missing operat*

0000:06d0 696e6720 73797374 656d00 *ing system. *

Data not used.

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

06d0

06e0

06f0

0700

0710

0720

0730

0740

0750

0760

0770

0780

0790

07a0

07b0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 00000000 * *

00000000 0000. ... * *

The partition table starts at 0000:07be. Each partition table
entry is 16 bytes. This table defines a single primary partition

which is also an active (bootable) partition.

0000:07b0 8001 **

0000:07c0 0100060d fef83e00 00000678 OdOOOOOO * x....*

0000:07d0 00000000 00000000 00000000 00000000 * *

0000:07e0 00000000 00000000 00000000 00000000 * *

55

0000:07f0 00000000 00000000 00000000 0000.... *

The last two bytes contain a 55AAH signature.

0000:07f0 55aa * U.

56

APPENDIX D

MASTER BOOT RECORD INFORMATION TABLE

Partition ;=SectPr' ;-Cl&n;gth: 5.i2;.byfe?3]f

Offset; ;;Byte;s;; Meaning

0:0E3h - 446 •: -•'boot iPader code

xmk. : W: . 1. .partition; entry
ICEM : " 16 • . 2>. -partition.- entry
lMl - • m • ; - 3-.-""partition- entry
lift ... ,...m;;...; .;. 4;. ;$art;iiipri entry
lEKh =••3. •" - signature- ;;£55;h AAh

B;artit;ion Gentry.' (length IS? bytes'!

C5ff. Bytes Meaning'

QiOh 1 .
Qlh 1 :

02 h 1 -

03ttv . 1 ;i.

Mh 1 -:

Q€h 1 I

Offl 1

81% . 1 ..

0M 4-'

O'Ch 4 :

•l-Qfr == :aetij-~ve; partition-;/-1 QEhr =?• n!Ptf ;a£tive '
&epin .pf:.;;p;art;it,ipn ;thead;.njirrtb^r|, .;
&gih Pf;. pait:itlo;n;-(seetbr; numbe;r| ,: .-,[%] \ ••
;i;e:5ip "pf'- partition :;t^iirider' nuiftjserfl ^[^"];.
pa;|ttit|.p;n;;ip;>,...-. ... %...v 2,.-h,.
dn;|--'bf! .;par^t|tiop';(head;fnuii^er|:-"
|rl|' ©f- p^Itition^t^e^t:!1^- niimberf ;;. !:;[*3'~
•end- p-f?;:pa^tit;io:h ;.(cylinder; number); ; ~[:t-3'k
|ei." sectors =(# sec. t® 'be;gin';pf' partition;
nurfber' Pfy sectors- |n.;partitlon "';

57

APPENDIX E

UNASSEMBLING MBR USING DEBUG APPLICATION

We were able to unassembled, display and save the MBR to a text file in MS-

DOS using Microsoft DEBUG. The following shown the commands to obtained

the MBR:

D:\>DEEUG

-A 100

xxxx:xxxx MOV AX,2 01

xxxxixxxx MOV BX,2 00

xxxx:xxxx MOV CX,1

xxxx:xxxx MOV DX,8 0

xxxx:xxxx INT 13

xxxx:xxxx INT 3

to dash prompt

-G=100

lOOh

-D 200

Optional

-RBX

register

-RCX

register

-N MBR_BIN.TXT

-W 200

-=a

(Start DEBUG program)

Assemble the following at offset 100

Read 1 sector

into memory at offset 200h
from Cylinder 0, Sector 1

Head 0, on Drive # 80h (81h for 2nd drive,

82h for 3rd, etc.)

Interrupt for Disk/Diskette functions
Breakpoint instruction

Press ENTER an extra time here to return

,-Start program execution at memory offset

,-This will display first 128 bytes of MBR -

;Length of file - High 2 bytes in BX

;Type in 0 at : prompt

,-Length of file - Low 2 bytes in CX

;Type in 200 at : prompt (200h = 512d bytes;
/Enter a name for the file

/Write BX:CX bytes to filename starting at
memory offset 200h

/Onit T)Rhi;gr rptnrn to DOR rommand prompt

58

APPENDIX F

MUTLICLIENT VALIDATION SYSTEM PHYSICAL LAYOUT

High Peiformanca PXEHostSewer

MonBorCainecHai

Figure 21 Multiclient Validation System Physical Layout

59

ID1
3

l4
~

1
5

l6
~

1
7

1
9

~20~

2
4

~25~

2
6

"27~

2
8

"29"

3
0

~
3

T

3
2

3
4

~35"

3
8

~39~

T
a
s
k

N
a
m

e

M
ulticlient

V
alidation

System
w

ith
M

ultibootIm
ageSupporton

PX
E

5
th

Y
ea

r
1

s
t

S
e
m

e
ste

r
G

a
n

tt
C

h
a

r
t

D
u

ra
tio

n
S

ta
rt

F
in

ish
O

c
to

b
e
r

2
0

0
3

N
o

v
e
m

b

ij
Selection

ofProjectTopics
ij

Title:M
ulticlientV

alidation
System

w
ilh

M
ultibootIm

age
SupportonPX

E

^
Prelim

inaryResearch
W

ork
ij

U
nderstanding

Problem
Statem

ent
[nSj

Literacture
Review

on
Proposed

Project
jnij

ProjectPlanning

|o
^

PreparePrelim
inary

R
eport

^•j
Subm

ission
ofPrelim

inaryReport

\
ProjectW

ork
j[

Setup
PX

E
ServerinW

indow
sN

T4
Serverenvironm

ent
\

Rem
ote

BootD
O

S
O

perating
System

Jpt^
Pratices

in
V

isualC
+

+
and

JavaProgram
m

ing

[5^
B

uilding
theSoftw

are
V

alidation
A

pplication
in

Java
Script

[g^
PrepareProgressR

eport

^
5

Subm
ission

ofProgressR
eport

j
ProjectW

ork
Continue

[^3
Building

the
Partition

Changing
A

pplication
inV

isualC++
j

Editing
the

Batch
ScriptinPX

E
Source

Code
^

Editing
the

serverregistry
file

]
Prepareinterim

ReportFinalD
raft

j
Subm

ission
ofinterim

ReportFinalD
raft

j
Prepare

O
ralPresentation

j
O

ralPresentation

I
Subm

ission
ofInterim

R
eport

5
d

a
y

s

1
d

a
y

M
o

n
7

/2
1

/0
3

F
ri

7
/2

5
/0

3

F
ri

7
/2

5
/0

3

F
ri

7
/2

5
/0

3

A
u

g
u

st
2

0
0

3
|S

eptem
ber

2003
17[20|23|26|29|1

|4
|7

|1Q|13J16J19|22[25|28J311
3

|6
|9

|12|15J18|21
[24|27|30|3

|6
|9

|12|15|18|21
|24J27l30|2

J5
|8

2
w

k
s

M
o

n
7

/2
8

/0
3

F
ri

8
/8

/0
3

1
d

ay
M

on
7

/2
8

/0
3

M
on

7
/2

8
/0

3

4
d

a
y

s
T

u
e

7
/2

9
/0

3
Fri

8
/1

/0
3

1
d

a
y

S
a
t

8
/2

/0
3

S
u

n
8

/3
/0

3

4
d

a
y

s
M

on
8

/4
/0

3
Fri

8
/8

/0
3

1
d

a
y

F
ri

8
/1

5
/0

3
F

ri
8

/1
5

/0
3

5
.2

w
k

s
S

u
n

8
/1

0
/0

3
F

ri
9

/1
2

/0
3

6
d

a
y

s
S

u
n

8
/1

0
/0

3
S

u
n

8
/1

7
/0

3

1
d

a
y

M
o

n
8

/1
8

/0
3

M
o

n
8

/1
8

/0
3

1
.8

w
k

s
T

u
e

8
/1

9
/0

3
S

a
t

8
/3

0
/0

3

2
w

k
s

M
o

n
9

/1
/0

3
F

ri
9

/1
2

/0
3

4
d

a
y

s
T

u
e

9
/9

/0
3

F
ri

9
/1

2
/0

3

1
d

a
y

F
ri

9
/1

2
/0

3
F

ri
9

/1
2

/0
3

3
0

d
a
y

s?
M

o
n

9
/1

5
/0

3
F

ri
1

0
/2

4
/0

3

2
w

k
s

M
o

n
9

/1
5

/0
3

S
u

n
9

/2
8

/0
3

2
w

k
s

M
o

n
9

/2
9

/0
3

S
u

n
1

0
/1

2
/0

3

1
w

k
M

o
n

1
0

/1
3

/0
3

S
a
t

1
0

/1
8

/0
3

0
.8

w
k

s
M

o
n

1
0

/2
0

/0
3

T
h

u
1

0
/2

3
/0

3

1
d

a
y

Fri
1

0
/2

4
/0

3
Fri

1
0

/2
4

/0
3

1
w

k
F

ri
1

0
/2

4
/0

3
T

h
u

1
0

/3
0

/0
3

1
w

k
M

o
n

1
0

/2
7

/0
3

F
ri

1
0

/3
1

/0
3

1
d

ay
Fri

1
0

/3
1

/0
3

Fri
1

0
/3

1
/0

3

7
/2

5

n
D

•

8
/1

5

9
/1

2

Z
]

1
0

/2
4

1
0

/3
1

M
u

lticlien
t

V
alidation

System
w

ith
M

u
ltib

ootIm
age

Supporton
P

X
E

5
th

Y
ea

r
2

n
d

S
e
m

e
ste

r
G

a
n

tt
C

h
a

r
t

ID
T

a
s
k

N
a
m

e
D

u
ra

tio
n

S
ta

rt
F

in
ish

|February
2004

M
a
rc

h
2

0
0

4
A

pril
2

0
0

4
|M

ay
2

0
0

4

19|22|25i28|3113
16|9

|12|15|1
Si21J24[27

Il4|7|10|13|16|l9[22j25i28j3
1|3

16|9
}l2|15|18|2li24|27|30j3

(6
|9

]12
1

P
rojectW

eek
20

davs
M

on
1/19/04

Fri2/13/04
Solving

L
astSem

esterProblem
2°days

M
on

1/19/04
Fri2/13/04

P
rojectP

lannins
1

day
M

on
1/19/04

M
on

1/19/04

Prepare
Progress

R
eport1

5
davs

M
on

2/9/04
Fri2/13/04

Subm
ission

o
fP

rogress
R

eport1
1dav

Fri2/13/04
Fri2/13/04

P
roject

W
ork

4w
ks

M
on

2/16/04
Fri3/12/04

C
o

n
firm

th
e

C
onference

D
etails

1
dav

Fri2/20/04
Fri2/20/04

D
etecting

M
achine

A
ddress

11
davs

M
on

2/16/04
M

on
3/1/04

D
esign

M
ulticlientSupportSub-System

9
davs

Tue
3/2/04

Fri3/12/04
PrepareProgress

R
eport

5
days

M
on

3/8/04
Fri3/12/04

Subm
ission

o
fProgress

R
eport2

1dav
Fri3/12/04

Fri3/12/04

P
rojectW

ork
C

ontinue
4wks

M
on3/15/04

Fri4/9/04
System

V
alidation

1wk
M

on3/15/04
Sun

3/21/04
Prepare

E
xtended

A
bstract

1wk
M

on
3/22/04

Sun
3/28/04

PrepareE
xhibition

1wk
M

on
3/29/04

Sun
4/4/04

PrepareD
issertation

2
wks

M
on

3/29/04
Fri4/9/04

Prepare
O

ralPresentation
1wk

M
on4/12/04

Fri4/16/04

O
ralP

resen
tation

1
w

k
M

on
4/12/04

Fri4/16/04

Subm
ission

o
fD

issertation
1dav

Fri4/23/04
Fri4/23/04

Subm
ission

o
fE

xtended
A

bstract
1dav

Fri4/30/04
Fri4/30/04

^

•

•

_
.

23
]

4

"$
2/13

567
p

-

8
G

r~
|

91
0

1
1

^
|

3/12
1

2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

$
4/23

2
6

2
7

£
}

4/3U

I
T

a
c
L

-
t

\
M

ilA
«

;rn
n

p
m

E
x

te
rn

a
l

T
a
s
k

s
I

I

