Optimization of FPGA Based Neural Network Processor

by

Ivan Teh Fu Sun

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

JUNE 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan ¥
e
5575
L6459
26004

L Newrof weluoyes
9 Bl .. Tegonit

CERTIFICATION OF APPROVAL

Optimization of FPGA Based Neural Network Processor

by
Ivan Teh Fu Sun
A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

/

(Mr. Noohul Basheer bin Zain Ali)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work 1s my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

IVAN TﬁH FU SUN

il

ABSTRACT

Neural information processing is an emerging new field, providing an alternative
form of computation for demanding tasks such as pattern recognition problems
which are usually reserved for human attention. Neural network computationis
sought after where classification of input data is difficult to be worked out using

equations or sets of rules.

Technological advances in integrated circuits such as Field Programmable Gate
Array (FPGA) systems have made it easier to develop and implement hardware
devices based on these neural network architectures. The motivation in hardware
implementation of neural networks is its fast processing speed and suitability in

parallel and pipelined processing.

The project revolves around the design of an optimized neural network processor.
The processor design is based on the feedforward network architecture type with
BackPropagation trained weights for the Exclusive-OR non-linear problem.
Among the highlights of the project is the improvement in neural network
architecture through reconfigurable and recursive computation of a single hidden
layer for multiple layer applications. Improvements in processor organization were
also made which enables the design to parallel process with similar processors.
Other improvements include design considerations to reduce the amount of logic

required for implementation without much sacrifice of processing speed.

iii

ACKNOWLEDGEMENT

I would like to thank Mr. Noohul Basheer bin Zain Ali for his guidance and support
which without this project would not have completed. I would also like to thank Dr.
Varun Jeoti for his advice and all the staff in the Electrical and Electronics

Engineering faculty for their time and technical expertise.
Special thanks to Professor Mark J. Embrechts from Rensellaer Polytechnic Institute,
Troy, New York for the use of his MetaNeural™ software which have been an

mtegral part of the project.

Last but not least, to my family and friends who had been a tremendous source of

moral and mental support before and present.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL

CERTIFICATION OF ORIGINALITY

ABSTRACT .
ACKNOWLEDGEMENT .
CHAPTER 1: INTRODUCTION .
1.1 Background of Study .
1.2 Problem Statement
1.3 Objectives and Scope of Study
CHAPTER 2: THEORY .
2,1 Artificial Neural Network
2.2 Classification of Artificial Neural Network Models
2.3 Field Programmable Gate Array (FPGA)
2.4 Optimizing the Design .
2.5 Completing the Design
CHAPTER 3: METHODOLOGY .
3.1 Project Methodology . .
3.2 Equipments and Software Apphcatlons Used
3.3 Hardware Design Flow
3.4 Functional Simulation Using Testbenches
CHAPTER 4: RESULTS AND DISCUSSION
4.1 Architecture Optimization
4.2 Number Convention .
4.3 RFNNA Simulator . .
44 RFNNA Processor Modules .
4.5 Multiplier Bus.
CHAPTER 5: CONCLUSION AND FUTURE IMPROVEMENT
5.1 Conclusion .
52 Future Improvement .
REFERENCES

i

fii

43

APPENDICES 4577

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figuare 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19

A single neuron model
A 2-3-3-1 Neural Network Architecture

Computations within a Neuron

Module Boundary Selections and Register Assignment
ANN System Process Model for FPGA Implementation
Screenshot of MetaNeural ™

Screenshot of MetaNeural ™ Network Setup Interface

Main Interface

Design Flow for Verilog based Register Transfer Logic
Screenshot of Simulated Input Signals and Output Registers
Reconfigurable Feedforward Neural Network Architecture and
Execution Phase Diagram for XOR Problem

32-Bit Floating Point Format

Graphical Plot of a Sigmoid Function

Description of Neural Network Computation

Screenshot of RFNNA Simulator v1.3

Layout of 3 Neuron RFNNA Processor HDL Modules
Simulation Result for Input Module

Mealy Machine for Input Module Counter

Simulation Result for Bias and Weight ROM Module
Mealy Machine for Bias and Weight Counter

Flowchart for Unsigned Binary Multiplication

Simulation Result for Neuron Module

Simulation Result for Neuron Output Multiplexer Module
Simulation Result for Neuron Representation Converter Module
Mathematical Analysis on Sigmoid LUT Values

Simulation Result for Activation Function LUT Module
Simulation Result for Qutput Threshold Module

Simulation Result for RENNA Processor

REFNNA Processors Paralleled

vi

CHAPTER 1

INTRODUCTION

1 INTRODUCTION

1.1 Background of Study

Neural networks is still considered a relatively new area of research, with
development picking up speed only in the 1990’s since the first mathematical model
of the biological neuron was presented by McCulloch and Pitts in the 1940’s. Neural
networks are not confined to solely an attempt of replicating the human brain, it has
as well, wide reaching applicability and its concepts are incorporated into
applications such as optical character recognition, machine health monitoring as well

as stock market forecasting (Callan, 1999, p.2).

Neural networks can be implemented using software simulations and as fast
hardware devices. The former platform has been more often used for the
development of neural networks because it is cheaper and is more flexible for
research purposes. However, with the rapid advances in Field Programmable Gate
Array (FPGA) technology, the option to implement hardware based neural networks
now seems more appealing due to its customizability, relatively faster processing
speed and more importantly the infrastructure to tap into the neural network’s

intrinsic property of parallel processing.

1.2 Problem Statement

The focus of most engineering and scientific groups on neural networks is to produce
working models of neural networks into hardware designs. These implementations
are usually made up of neural processing units known as neurons which take up
considerable amounts of logic gates to implement. Thus the complexity of a basic

neuron design affects very much the capacity of neurons which can be fitted into a

fixed amount of silicon real estate. On the other hand, not much work has been put
into increasing the performance and processing speed of these neural network
processors. The successful addressing of these areas would pave the way for cheaper

and faster neural network processors,

1.3 Objectives and Scope of Study

The project undertaken will be focused on the optimization of FPGA based neural
network chips in terms of logic gate numbers, processing speed, and performance.
The project will be basically a study of neural networks and implementation of logic

design onto FPGA.

The targeted result of this project would be an FPGA implementation of a neural
network architecture which is suited for the supervised learning paradigm. The
connectivity of the feedforward neural network architecture would be of a multiple

layered type.

The end product would be an Artificial Neural Network FPGA implementation with
atleast 2 inputs and 1 output. The architecture should be able to implement 2 or
more neuron hidden layers. C omponents inherent to a neuron such as multipliers,
adders and activation functions will be part of the overall design. The ultimate goal
of the project is to produce an optimized and functioning neural network processor
which is able to solve linear and nonlinear problems. The benchmark of the project
would be utilising the end product to solve the nonlinear Exclusive-OR (XOR)

problem.

Due to time constraint and design considerations, the supervised training phase of
the neural network would be performed separately using the MetaNeunral™ software.
The resuitant weights and bias values for each connection between neurons would

then be directly programmed into the FPGA design.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2 LITERATURE REVIEW AND THEORY

2.1 Artificial Neural Network

Common to neural network architectures are the simple processing units known as
“neurons” as is described in Figure 2.1 below. Neural networks are made of these
simple neurons with different architectures dictating how a collection of neurons are
interconnected as well as how calculations are made to adjust the weighted inputs

such that it can function as is intended.

Incomin \ / Qutgoin
weightec% \:“ O . weighteg
inputs from . : outputs to
other neurons / \ other neurons

Figure 2.1: A single neuron model

Typical neural network architecture is made up of an input layer, one or more hidden
layers, and an output layer. The input layer merely acts as a buffer to external inputs,
whereas the output layer functions as a last stage hidden layer with the output
buffered and passed on to external outputs. The more interesting section of the neural
network would be the hidden layer(s) in which the neurons reside. The number of
input and output nodes for their respective layers is dependent on the application in
which the neural network was designed for. In example, an application which
recognizes alphabets using a 10 x 10 pixelizer (total 100 pixels) would require a

neural network which has 100 inputs and 26 outputs. However, there is no

convention in which the number of hidden layers to be used for a particular
application can be directly generated. To add to the confusion, the number of
neurons per hidden layer is also arbitrary. Thus the most optimized number of hidden
layers and neurons for each layer are largely decided using trial and error methods.
Figure 2.2 below is a typical neural network architecture used for applications which
require only 2 inputs and one output; the number of hidden layers and neurons are
chosen arbitrarily. Simple problems such as 2 input AND, OR or XOR can be solved

using this network configuration.

Input Layer

| Hidden Layers |
| # w02 |
I I

Output Layer

Figure 2.2: A 2-3-3-1 Neural Network Architecture

The connections between two neurons or nodes from adjacent layers have weights
which are multiplied to the output of the neuron/node which feeds to the neuron of
the subsequent layer. The coloured nodes represent storage for bias values which are
predetermined like the weights of each connection. Each neuron for each hidden

layer has its own unique bias value.

The combination of these weights and bias values allows a trained neural network
which is subjected to a set of inputs to provide a correct categorization of them as an
output. The processing of these weights in a neuron is divided into 2 stages:
Summation of weighted inputs and the mapping of the summation output to an

activation function. Firstly, all the weighted inputs from the preceding layer are

summed up together with a predetermined bias value, The result from this phase is
then normalised using an activation function such as the identity function, binary
threshold function or the sigmoid function. The normalised result is then fed into the
subsequent hidden layer where the cycle continues until the output layer is reached.
Figure 2.3 below illustrates the summation and activation function computations of a

ncurom.

Wy{x}

Wy{x)

Wy{x)

bias,

Figure 2.3: Computations within a Neuron

An important attribute of a neural network system based on weights is its capability
to learn and generalize variations in a set of inputs (Picton p., 1994 p.4). For
example, in character recognition applications, the same character ‘A’ can be written
in a multitude of ways, however these variations would produce the same output

when presented to a successfully trained and tested neural network.

2.2 Classification of Artificial Neural Network Models

Neural networks are organized and classified according to 4 attributes. These are:
learning paradigm, network architecture, network connectivity and leaming

algorithm.

2.2.4 Learning Paradigm
The above concerns on the type of leaming or training that a neural network is
subjected to, be it either supervised, unsupervised or a hybrid of both methods. The
learning paradigm determines which type of learning algorithm that can be used

when training the neural network.

2.25 Network Architecture
Generally there are two types of network architecture, feedforward and recurrent.
These architecture types are descriptions of how the interconnections between
neurons in a neural network are made. The connection type for the neural network in

Figure 2.2 is of the feedforward type.

2.2.6 Network Connectivity
Not to be confused with network architecture, network conmectivity describes how
neurons are positioned within a neural network. For example, single layer
connectivity describes a neural network with only one hidden layer. Other
connectivity types are; Self Organizing Map, Multilayer and Hopfield. Connections

between hidden layers and neurons are decided by the network architecture.

2.2.7 Learning Algorithm
The leamming algorithm deals with training the particular neural network chosen.
There are many types of learning algorithm such as BackPropagation, Associative
Memory, Madaline and more. The application of a particular learning algorithm
depends on its suitability with the three parameters mentioned earlier of a particular
neural network. For example, BackPropagation learning algorithm can only be
applied to a neural network which is based on supervised learning paradigm and has

feedforward architecture.

The taxonomy of Artificial Neural Network is shown in APPENDIX A'. A table
showing the similarities and differences between the Von Neumann computer model

and neural networks is available in APPENDIX B.

2.3 Field Programmable Gate Array (FPGA)

FPGA technology is given preference over other options such as VLSI (Very Large
Scale Integrated) circuit, ASIC (Application Specific Integrated Circuit) and
MPGA’s (Mask Programmed Gate Arrays) for the implementation of neural
networks due to its flexibility to be reconfigured while providing all the advantages

inherent to hardware devices such as low sensitivity to electric noise and

! Reproduced from [4] pg 6

temperature, memory of weight storage, processing speed and parallel processing.
Besides technical advantages, implementations on experimental projects using
FPGA’s have lower non-recurring engineering costs as well as faster development
and implementation processes. With its reprogrammability features, any design
defects on FPGA can be easily corrected and tested, thus shortening the time-to-
market. Studies on computer architectures provide well documented optimization

techniques which can be incorporated into the neural network hardware design.

FPGA technology uses Hardware Description Language (HDL) to design circuits.
Among the more popular are VHDL and Verilog. Both HDL’s are similarly
powerful and usage of either or both is up to preference. There are 3 different levels
at which a circuit design can be specified: behavioural, dataflow and structural.
Behavioural style of coding is at the highest level in terms of similarity with natural
language whereas the most specific is the structural style. Coding structurally would
make the design easier to synthesize and also provide more control over the physical
assignation of the circuit design. A design can be a specified using one or more

coding styles.

Hardware design using FPGAs are usually performed using both combinational and
sequential logic. These designs are specified using any of the three hardware
description methods; which are the structural, dataflow and behavioral. For design of
complex circuits, dataflow and behavioral styles are preferred because it frees the

designer from having to fully specify the connections and logic gates to be used.

Design of hardware using the dataflow method is used more often to design
combinational circuits. The use of the keyword “assign” in Verilog for the dataflow
method refers to a combinational logic assignment. On the other hand, behavioral
design method uses the “always” block for the design of sequential logic.
Specification of conditions such as “posedge” and “negedge” for certain signals

dictate when the procedural block is executed or triggered.

The Verilog hardware description language (HDL) is a very powerful simulation
langnage. However, only about 10% of its instructions are synthesizable [3].

Synthesis refers to the ability to successfully convert from codes to actual hardware

logic implementation. Thus the hardware designer has to be aware of which
instructions are synthesizable friendly as well as some designing rules that may
cause the design to not being able to be implemented in hardware. Instructions that
are not synthesizable are those which deal with timing parameters such as “time,

wait, initial, delay” and others such as “fork, join, defparam, UDP”.

There are also other restrictions such as those concerning signals which are either
wires or registers. For example, it is illegal to connect two registers together inside a
module, which would be a common mistake for new designers who are usually

comfortable with software programming style of liberally using variables.
2.4 Optimizing the Design

To produce an optimized design, there are two things to consider, first would be the
algorithm of the design architecture, and second, the optimization of the
implementation itself. This section would be dedicated to the second kind of
optimization. Optimization of logic implementation would require the knowledge of
how FPGAs work. Xilinx FPGAs are made of arrays of Configurable Logic Blocks
which normally houses two 4-input LUTs feeding a pair of flip flops [2]. To produce
an optimized implementation, the designer has to constantly think of how the codes

will be implemented into hardware given the amount and type of available resources.

MODULE

! I
; l
; val |
; Logic L) i
; I
i

f i

Figure 2.4: Suggested Module Boundary Selection and Register Assignment

Hardware designs are usually segregated into several modules which are then linked
to each other and controlled using a control unit which is made a state machine. Each
module is best designed to have its module boundaries as specified in Figure 2.4
which basically means that all outputs are to be buffered using registers. Using this

standardization would mean that synchronizing flip flops on inputs are not necessary.

The synthesizer optimizes combinational logic within modules. Therefore it would
be advisable that related combinational input and output of related signals to be
grouped together in the same module so that there would not be any redundancy
which is harder to detect if specified in separate modules. In hardware design,
sequential logic or state machines are preferably synchronous. This is to reduce

propagation delay as well as chances of timing problems occurring.
2.5 Completing the design

The next steps of the design process after the completion of the RTL (Register
Transfer Logic) codes would be the synthesis and the “place and route™ process.
What the synthesis process does is to generate a netlist which 1s also a Verilog file
that represents the higher level Verilog codes presented to it into lower level
structural/gate level format. Information that 1s provided to the synthesis tool are for
the FPGA target chip model which will be used to invoke the appropriate library file
containing all physical and timing parameter information and implementation of

Verilog constructs into gates.

From synthesis, the designer would be able to know how fast the design could run,
which depends on many factors such as the longest length of combinatorial
propagation delay. For FPGA, problems usually encountered in ASIC design such as
clock skew and signal strengths do not have to be wortied as this are already
accounted for by the FPGA library file by appropriately assigning clock and signal
buffers which are available in the FPGA chip itself. Thus the synthesis process is
rather straightforward for FPGA based designs, with design constraint usually

dependant on the achievable processing speed.

After successfully synthesizing, the netlist file is passed to the place and route
portion of the application to simulate the physical implementation of the design. This

process ensures that the design does not violate the boundary parameters of the target

FPGA chip. Itis also possible that manual routing m aybe required to produce an
optimized design. The output of this process is a gate.v file which is also a Verilog
file which can be fed back into the RTL simulator for simulation. The process of
RTL coding sy nthesis and place and route is continuous and is repeated until the

specifications of the design are met.

10

CHAPTER 3

METHODOLOGY AND PROJECT WORK

3 METHODOLOGY AND PROJECT WORK

3.1 Project Methodology

The project involves the completion of the following four stages; literature research,
specification of neural network architecture design, Field Programmable Gate Array
(FPGA) training and experimentation, FPGA implementation and training of neural
network, and optimization of FPGA design. The project design approach would be

based on the “waterfall” process model as shown in Figure 3.1 below.

Design
Specifications

v
Module
Development and
Testing

Module Integration
and System
Testing

Y

Operation and
Optimization

Figure 3.1: ANN System Process Model for FPGA Implementation

11

3.1.1 Literature Research
Early stages of the literature review were performed to enhance and widen the
author’s knowledge on the different types of neural networks architecture. Later on,
research on FPGA technology and also a study on Hardware Description Language
(HDL) follow.

3.1.2 Specification of Neural Network Design
The next stage of the project was to specify the characteristic of the neural network
architecture to be designed and implemented onto FPGA. The specification of the
neural network architecture is important as it would serve as a guide and reference
for later design stages. Samples of specification to be included would be the number
of inputs and outputs, algorithms and architecture for logic blocks, functional

specification of the control logic as well as the expected results of the design.

3.1.3 FPGA Training and Experimentation
FPGA ftraining and experimentation would be conducted in parallel with the
preceding stage to get familiarized with the devices and related HDL programming
software. Part of the experiments or exercises on FPGA would be to design modules
such as multipliers and fast adders and also to learn to write testbenches that will be
used to validate the functionality of the design. Aldec’s Active HDL software would
be used to develop and simulate the functionality of the HDL codes.

3.14 FPGA Implementation and Testing of Neural Network
RTL implementation of neural network followed by optimization was performed
after sufficient skill is gained. Specified modules would be developed separately and
tested. These modules would then be integrated into a complete design. Testing at
both the Register Transfer Level (RTL) would be performed to ensure that the design
performs reliably. The supervised learning portion using the back propagation
algorithm of the design will be performed off line using a shareware program known

as MetaNeural ™.,

12

3.2 Equipments and Software Applications Used

321 Xilinx Virtex-1I XC2V1000 Reference Board
Based on research on previous implementations of neural networks onto FPGA, the
designs documented usually take up a sizeable portion of the target FPGA chip used.
Some of the designs are even implemented using multiple FPGA chips. From this 1t
seems appropriate that the largest FPGA in terms of gate numbers available in our
labs be selected for the purpose of this project. Due to the experimental nature of the
project, a larger gated FPGA would easily allow for variations of neural networks to
be designed and implemented. Restrictions on the d esign would then be minimal.

More features of the Virtex FPGA chip is discussed below.

“The highest performance designs are tailored for the target FPGA” as mentioned by
Coffiman (pg 221 [3]). FPGA vendors such as Altera and Xilinx build their devices
differently from each other; their line of products which may very well vary between
themselves, differing in pin counts, routing density, logic block comnstruct,
availability of RAM blocks and more. Therefore it is of much importance for an
HDL FPGA designer to find out about the limitations and advantages of the devices
they are dealing with.

The Virtex-II FPGA series are the latest devices offered by Xilinx. It is built using
0.15 micron lithography and 8-layer metal technology. Different from conventional
FPGA devices, the Virtex series is of a hardwired version. A hardwired FPGA
version improves the performance of conventional FPGA as well as contributing

towards a smaller silicon die footprint.

The FPGA chip that is used for the project is the Xilinx Virtex I XC2V1000-
4FG256C. This chip has 256 pins of which 172 are usable as input/output pins. As
like all Xilinx devices, the Virtex II chips are made up of an array of Configurable
Logic Blocks (CLB). Each of these CLB’s contain function generators, carry logic,
arithmetic logic gates, wide function multiplexers and storage clements which will
be appropriately interconnected according to design. Unique to the Virtex board, is
built in resources for Look-Up Table (LUT) of up to & inputs, which is useful for

implementing mathematical functions such as a sigmoid function. The chip used also

13

has 40 blocks of 18kbits Select RAM resources which can be used to store
connection weights for the neural network. Another feature built into the device is 18
by 18 bit multipliers. Usage of these built in multipliers would considerably speed up

the design as compared to manually customized ones.

3.2.2 MetaNeural™

MetaNeural ™

Embrechts of Rensselaer Polytechnic Institute, New York (USA) in 1988 as a

is a shareware program originally developed by Professor Mark J.

demonstration package for a lecture course. The application has since evolved and
given a user interface as seen in Figure 3.2. The application is used to train
feedforward neural network architecture using the BackPropagation learning
algorithm. The program is able to work with network architectures which have up to

3 hidden layers while allowing an arbitrary number of neurons per hidden layer.

The list below summarizes the core features and user customization allowed by the

MetaNeural ™ application. Items listed are illustrated in Figure 3.3.

. Specification of neural network architecture up to 3 hidden layers.

. Specification of number of training epochs.

. Error threshold to stop training

. Training rate which affects the amount of weight adjustment for each training
cycle.

. Selection of activation function type

. Easy text format for training pattern and test pattern input files.

The Metal\TeuralT]_vI software application will be used in this project to supply the
values for connection weights and neuron biases to be designed into the FPGA
implementation of the neural network. The neural network for an intended
application can be trained given a set of training pattern which for this case would be

the truth table for the XOR logic.

14

e

it i

RS
i i

100
ad
0

Sg%‘g‘g:%%

el o
‘Momen} gg§ s
o .o

umvi;g%ﬁ

i A A

Figure 3.3: Screenshot of MetaNeural™ Network Setup Interface

15

3.3 Hardware Design Flow

The hardware implementation of the RFNNA processor is divided into several tasks.
The approach taken as seen in Figure 3.4 is to first define the modules that will be

present in the design such as the neuron module and activation function LUT.

Hardware
Description

T

Finite State
Machine

1 T

Block Diagram

| §

Functional
Simulation

Figure 3.4: Design Flow for Verilog based Register Transfer Logic

The second step would be to design a control unit which is basically a state machine.
The state machine would provide control signals to all modules so that processing is
performed whenever it is intended. The block diagram editor provided with the
Aldec Active HDL compiler allows the designer to have an overview of the entire
design. This is also the place where the inputs and outputs of modules and state

machines are connected to each other.

The process of functional simulation and verification takes place in intermediate
module design stages and also for structural testing when the design is complete. The
verification process is performed by applying simulators either by using readily
available tools or by using a testbench. A testbench provides the designer with more
control regarding the stimulus which is subjected to the module unit under test.
Stimuli are essentially generated input signals inclusive of the clock which triggers
the module. The output of the module and intermediate net and register status are

checked for any discrepancies.

16

3.4 Functional Simulation Using Testbenches

Testbenches for this project are written using Verilog; however they are not
subjected to instruction and optimization constraints as imposed for synthesizable

modules. Timing parameters such as delays are applicable.

Modules are usually tested by asserting inputs and clocks going into the module. The

assertions of inputs are chosen to reflect actual operating as well as timing

conditions.
o ok 1 Iy Py A ey Sy N ey Oy N
% in_multiplicand BE 00 Y84 YGE 7B X8z fec 86 AU fAA o4
o jn_multiplicandR sady 0 m
5 jin_neuronRasst 0 L1
303 ¥ in_weight DuBE 0dGd Yoosd ¥oose Ypove ¥opez foosc ¥ooss opAD fooaA {ooBé |
?:ﬁ*oul_summalion A4 - WHHRRNZT GRHNNAEE | KoRieK98)(xxxmmw)t
1% B+ 1ag_muliplicationButter 0007054 0000000 0002710 o0DzFds ¥nond204 Xooo4ca0 — Ypoos40D XDaD7DE4
18 Re reg_summatianBufter 0014BER { " yiodond Yoac2710 W}(ﬂansasa YOLOE4ER YDOHEER

Figure 3.5: Screenshot of Simulated Input Signals and Output Registers

The simulation signals are as shown in Figure 3.5, all status of inputs, outputs and

declared registers can be added into the watch window and monitored.

17

CHAPTER 4

RESULTS AND DISCUSSION

4 RESULTS AND DISCUSSION

Development of the optimized neural network processor 1s divided into two equally
important parts. The initial part was to comprehensively describe an optimized
architecture as well as specifications of the neural network that is to be implemented
into hardware, whereas the second part was to design the neural network processor
modules and optimize the organization of the neural network processor which 1s

based on the architecture specified in the first part.

Below 1s a description of the subtopics that will be discussed in this chapter:

Research and analysis performed on existing neural network implementation into
Field Programmable Gate Array (FPGA) and arithmetic computations in binary
circuits led to the discovery of an innovative hardware implementation architecture.
This implementation is termed and referred to from here onwards as the
Reconfigurable Feedforward Neural Network Architecture (RFNNA). More
discussion on this architecture is available under the heading Architecture
Optimization (4.1). A unique numbering convention to optimize the information
processing of a neural network has also been worked out with more discussion
available under Number Convention (4.2). A Visual Basic application was
produced to help model and analyze the implementation of both findings. A
description of the application is shown in the subtopic RFNNA Simulator (4.3).
With a comprehensive specification of the desired neural network, the project
proceeded with the actual hardware design of the neural network processor. Details
of the modules and how they are optimized in terms of organization are available

under Neural Network Processor Modules (4.4) and Multiplier Bus (4.5).

18

4.1 Architecture Optimization

4.1.1 Neural Network Architecture and Learning Algorithms
There are two types of neural network architectures: Feedforward and Recurrent
[13]. The former has the advantage of being less complex in its connections between
layers of neurons and there are no c onnections between neurons within the same
layer. The recurrent architecture on the other hand necessitates connections between

adjacent layers as well as connections intra layer.

Implementation wise, the feedforward architecture would be more appealing due to
the considerable amount of logic gates that would be saved without implementing
these e xtra connections. It may be argued that since a neural network application
may perform better in a particular type of architecture than another, one cannot just
take simplicity of implementation to choose between which architecture to be used.
However, the back propagation supervised learning algorithm which 1s widely used
in most applications works in feedforward neural network architecture. Having a
choice on which architecture to be used for a general purpose neural network FPGA
implementation, the feedforward architecture would inarguably be selected for its

simpler implementation and wide applicability.

Thus it is decided that a neural network architecture which is based on the
feedforward architecture be used for the FPGA design implementation in this
project. Since the training portion of the neural network function will be performed
separately, the architecture would allow all types of learning algorithms which fall
under the feedforward neural network architecture branch (refer APPENDIX A).
Besides the mentioned back propagation algorithm, other learning algorithms such as
the Adaptive Linear Network (Adaline), Multiple Adaptive Linear Networks

{Madaline} and Perceptron can be used.

4.1.2 RFNNA
Following the decision to use the feedforward neural network architecture as the
basis for implementing the design, more thought has been given to optimizing the
logic gate area in which this can be implemented. Review of other works [8][9] on

neural network implementation into FPGA mentions about time multiplexing the

19

resources for connections between neurons. This however would slow down the

processing speed of the design.

Instead of time multiplexing the resources within a layer by reusing the same neuron
module for each neuron in a hidden layer, the resources for a hidden layer can be
time multiplexed so that a full parallel implementation of a neuron layer is reused by
subsequent hidden layers. This will overcome the disadvantage of reducing the
processing speed. The ability to pipeline the initialization of weights and other
resources while other stages are processing would make the design more efficient.
Taking the idea further by adding controls to determine the number of hidden layer
iterations and connectivity patterns, we would then have a multiple connection
architecture neural network at hand. This architecture is given the name

Reconfigurable Feedforward Neural Network Architecture (RFNNA).

4.1.3 RFNNA for XOR Problem
The RFNNA example shown in Figure 4.1 is developed to be able to solve the
nonlinear XOR problem. The circuit is designed to have only two inputs and one
output. The hidden layers have a maximum number of 2 neurons. The number of
hidden layers and neurons for each layer to be used is arbitrary and selectable. The
resources are designed to be fully utilized at each layer where the same resources are

used recursively for each hidden and final output layer computation.

Pipelining is used to update the value of weights for the next hidden layer’s multiplier
during initialization as well as when summation and mapping of activation function for
the current layer is being performed. Not included in the diagram is the control logic,
which controls the uploading of weights and activation of logic switches to ensure
proper network connections between registers, The logic switches connects and
disconnects accordingly to ensure proper network connectivity. The control logic also
determines the number of computation iterations which in turn depends on the number
of hidden layers selected. This logic switch shows the connection path for the output

layer.

20

H
i 1 treuron
‘ unit

b
H
4
i
H
H
; ; A -
I i ! t
3 : N ‘
E x1 » ! §
H H H » Z - ﬂX) m-j—--hO/
In, i i ; i
] * ;
. % fOF [ms]
§ 2 i L 1
§ § e T e
n, .
¢ § 3 i
: % L=k fix)
% , i
H dﬁs xg i
i H
H i
H i
i i
i §
Fropagation : + ; -
oycle through b | b " " '
L1 Piddan k 4 4 1 Weight and connection resonfiguration
layer % % £ Y} periodtor subsequent biddenlayer "
3 e §
% t, % ;

Figure 4.1: Reconfigurable Feedforward Neural Network Architecture and Execution
Phase Diagram for XOR Problem

Of particular interest is the way the multiplier constants are updated. As seen in Figure
4.1, the weights for subsequent hidden layer which are stored in memory would be
fetched and stored as the multiplier constants while the current layer is still executing
its summation and activation function transformation. This pipelined method reduces
the processing speed difference between this architecture from a full cascaded parallel

implementation.

4.2 Number Convention

There are 3 arithmetic operations that a neural network computes as is shown in
Figure 2.3. These are multiplication, summation and conversion of inputs using an

activation function.

Generated weights of a trained neural network are mnot integers rather they are

represented using d ecimal numbers. As computation o f arithmetic functions using

21

logic circuits are in binary format, these decimal values would have to be substituted
using a suitable numbering convention in which the circuit is able to manipulate
with, The usual representation of decimal numbers in binary format are the sign-
magnitude representation, twos complement representation and the floating point

representation.

4.2.1 Twos Complement and Floating Point Representation
Twos complement is a variation of number representation for integers. It is stmilar to
the sign magnitude representation for positive values but is different when
representing negative values. Unlike the sign magnitude representation, twos
complement does not use an extra MSB as a sign bit but is automatically represented
when translated to binary format. The main advantage of twos complement over sign
magnitude is that it simplifies mathematical operations such as addition and
subtraction, no extra logic is required to test for the polarity of the sign bit. Two’s |

complement and sign-magnitude numbering convention are described as follows.

Sign Magnitude
=2
N = ZZ'ai ifas =0 fequation 4.1)
i=0
[
N = =Y 2'q, ifa,1=1 (equation 4.2)
i=0
Twos Complement
n-2
N = -2"a,_+ > 2q (equation 4.3)

i=0

Floating point numbers are used when the numbers to be represented are spread
across a wide range. It is the binary equivalent of the decimals scientific notation. A
floating point number is divided into 3 sections (Figure 4.2); the sign bit, significand

or mantissa and the exponent.

22

<— B8 bits —»4 23 hits >
/ ’ l \A
Sign Biased Exponent Significand

E.g.: 010010011 10100010000000000000000 = 1.638125 x 2°°
110010011 10100010000000000000000 = -1.638125 x 2*°

Figure 4.2: 32-Bit Floating Point Format [7]

Mathematical operations performed using floating point representation is generally
more complex and require substantially more logic to implement when compared to
twos complement. Comparing multiplication operations between twos complement
and floating point representation, the whole multiplication operation of a twos
complement representation is performed only in the significand section of the
floating point representation. Extra logic is required to manipulate the exponent bits
to reflect the changes made by multiplying the significand of two floating point

numbers.

4.2.2 Fixed Point with Fractional Component
From findings, it is best that a floating point representation convention be avoided.
Besides being complex in its implementation, its significand component cannot be
directly used to address the LUT for which the activation function is to be

implemented. The storage of a number would also use much more memory.

Although the computation within a neural network contains decimal numbers which
may seem more suited for floating point implementation, usage of twos complement
or sign magnitude is possible due to the numbering range which is always limited

after each hidden layer by the sigmoid function (Figure 4.3) to between 0 and 1,

23

Sigmoid Activation Function

1.2

Y
3

=]
=

/

P

[==]
\ (=2}

o

BN

A

[=]

-8 -6 -4 -2 0 2 4 6 8

Figure 4.3: Graphical Plot of a Sigmoid Function

From equation 4.4, the sigmoid function involves division and the natural
exponential function. Direct mathematical implementation of this function in
hardware would be difficult due to the number of mathematical steps involved when
the function is breakdown into fundamental operations such as add, subtract, divide
and multiply. Thus a Look-Up-Table (LLUT) is used to plot out the function with the

value of “net” as its pointer.

Sigmoid Function

f(net) = 1 (equation 4.4)
1+ exp(—net)

This small and confined range of operation eases the use of twos complement
representation. Besides representing integers, twos complement representation ¢ an

also be used to represent fractions.

The size of each fraction equivalent to 1 binary value is determined by the accuracy
of the computation as well as hardware implementation constraints. As was
mentioned before in Chapter 3.2, the maximum implementable LUT size for the
Virtex 2 FPGA chips is at 8 bits. This gives 2 = 256 memory words which are 8 bits

wide. From observation of Figure 4.3, the sigmoid function provides distinct values

24

between the ranges on the x-axis of -6.4 to 6.4. Corresponding values outside of this
range is clipped off to either 1 or 0. With the implementation of a sigmoid LUT and
8 bit addressing, the resolution for the entire range would be 6.4/256 = 0.025. An

extra bit is used to store the sign information.

This addressing step size of the LUT table is not to be confused with the twos
complement fraction size. This twos complement fraction size is dependent on the
multiplicand and multiplicand size for multiplication. Figure 4.4 below describes the

operation of neural network computation following the numbering convention

suggested.
_ uti;)ﬁsr Kutiplicoasd
X B[weas] = [fuse gen bits Lse]
WSB LSB
l«] 8+n bits | -
| Sa1s bits | «—
8 bits
— E] msai 2 hits] 3 bits Lssl
S —
Sigmold LUT
£256 values)

Figure 4.4: Description of Neural Network Computation

The multiplier represents the weights of the connection where as the multiplicand is
the value of the presented input. The value of the multiplicand never exceeds 1,9and
is represented by an 8 bit wide word whereas the multiplier is represented by an n-bit
wide word depending on the value of the weight. Notice that the multiplicand has no
sign bit as it is always positive. Multiplication of the multiplier and muitiplicand
would yield a (8 + n) bit + 1 sign bit output. This output is then summed up with

other similar operations including the bias value in the neuron before being fed to the

25

sigmoid function. Bits 9 to 16 of the summation result are used to address the
sigmoid LUT. The value associated with the address is the sigmoid function
equivalent value of the pointer. To fully address 256 items of the sigmoid LUT, bits
9 to 16 of the summation result must fully vary between for decimal values 0 to
6.528 (value chosen instead of 6.4 for more straightforward correlation). For
example, to match the value of 6.528 the summation result would be

111111110000000; or 652801¢. From this, the twos complement fraction size can be

derived.

Max value = 6528010

Range width = 6.5281¢

Fraction Size (N) = (6.528/65280)°°=0.01
Eg.:

Using twos complement fractional representation
Multiplicand =10 = 1/0.01 = 100geps = 01100100,
Multiplier = 6.528 = 6.528/0.01 = 653 e = 1010001101,

By multiplying the above binary values, the result is as shown below.

1010001101,
X 1100104,
1111111100101 00,

With the bits 9 tol6 all set tol, the highest value of the sigmoid LUT is accessed and
a corresponding result of 1 is provided. For binary values exceeding
1111111100000000,, the output would be automatically set to 1 whereas binary
values below 0000000011111111,, the output will be set to 0. The value of weights
and neuron biases generated by the MetaNeural™ program and the value of sigmoid

outputs would be converted using this representation.

26

4.3 RFNNA Simulator

This application was initially written by the author to help simulate the neural
network for the XOR problem using the RENNA architecture. The simulation of
neural networks for up to 3 hidden layers with a maximum of 3 neurons per layer is
possible using this application. The weights used for the program utilizes the WGT
weight file as generated by the MetaNeural™ application. The simulator simulates
neural network operation by showing all internal mathematical computation and
result for a chosen network. Additional features such as accuracy adjustor for
adjusting the number of decimal places for mathematical operation can be used to
analyze how well a network performs and the margin of error caused by rounding

and truncating the numbers.

Figure 4.5 below shows the software simulating the first hidden layer of a 2-3-2-1

architecture for the XOR problem. The operation manual for the application is

included in APPENDIX C. More screenshots is available in APPENDIX D.

Fle Abod
-~ NN Architectura Faramet
¢ Musber ofinpullsy 17 it . Masberof Outputis} B
i Musmber of Hidden Laginfel. 5577 * Similon Accuacyin “o1
hmﬁ’e'f ?2 ‘“‘j Daci::aé Points: i FM-‘:J
Humbier of Neiiore Per Hidden Laver
Hidkden Layer 81 Hiddan Laper H2
B o T

Figure 4.5: Screenshot of RFNNA Simulator v1.3

27

4.4 Neural Network Processor Modules

The RFNNA processor was designed using the modular method as was mentioned in
Chapter 3 Methodology. Figure 4.6 shows a basic block diagram for the hardware
implementation of the RFNNA processor. A more detailed and accurate block
diagram is available in APPENDIX E. All modules are individually designed based
on the specifications mentioned earlier and validated using testbenches. However
some adjustments were made to better suit the architecture for hardware
implementation. The adjustments made to a module will be discussed the module’s

subtopic respectively

The final validation was performed after the control unit of the processor was
completed. The RTL simulation of the RFNNA processor for a 2-3-3-3-1 was
successful. The discussion in this section will be divided into the respective modules

available in the hardware implementation as shown in APPENDIX E.

QUTPUT MODULE
il 44
SIGMOID LUT AND WEIGHT RO 5
- 2
w
- 2
S T el Tt Ak Gl Jebeik EET: (R
E MULTIPLICATIONS MULTIPLICATIONS HMULTIPLICATION] =
Zz SUBMMATION SUMMATION SUMBMATHON
S g0 Jc S ENRE JUPS Sy S
-—0! MULTIPLICAND BUS

Figure 4.6: Layout of 3 Neuron RFNNA Processor HDL Modules

28

There are total 11 unique modules within the neural network processor designed.

The modules are as follows (labels in brackets refer to the actual module name in the

design schematic):
1) Input Module (muxl)
2) Input Module Counter (mux1_cnt}
3) Bias and Weight ROM Module (values)
4) Bias and Weight Counter (values_cnt)
5) Neuron Module (neuron}
6) Neuron Output Multiplexer Module (mux2)
7} Neuron Output Multiplexer Counter (mux2_cnt)
8) Number Representation Converter Module (interface)
9) Activation Function LUT Module (activ_function)
10) Output Threshold Module (threshold)
11) Control Unit (Fub2)

The simulated 2-3-3-3-1 RFNNA processor is able to process a given set of XOR
inputs in 265 to 270 clock cycles depending on the combination of inputs provided.
This means that if the processor is running at a conservative speed of 10 MHz, the

number of XOR computations possible per second would be around 37000 to 37700.

4.4.1 Input Module (mux1)
The Input Module serves as buffer and multiplexer to external inputs as well as
outputs from the activation function. External inputs are first converted into its
equivalent value for arithmetic computation. For example, if the input is logic 1 the
equivalent value stored in the buffer (mult_reg) for multiplier values would be

(1100100,. An all 0 word is provided if the input is logic 0.

The input module accepts and assigns values to external inputs to be stored into the
multiplier buffers concurrently. However the same buffers are written to sequentially
when data is passed from the activation function. No conversion is required for data
from the activation function, The control signals provided to the inputs sel_reg[1:0]
addresses the appropriate buffer in which the incoming data is supposed to be written
to. Besides receiving and storing data, the Input Module is also required to correctly

broadcast the values in its buffers onto the multiplier bus (refer to section 4.4.12

29

Multiplier Bus). Again, the sel reg[1:0] is used to properly select which buffer is

being broadcast. To switch between broadcast and write mode, control signal from

the control unit to the input sel_inout is used. However the sel_inout control is nulled

when the sel reg is in 2°b00 mode, which is when the external inputs are being read,

converted and stored into buffers. Figure 4.7 shows the waveform of module being

simulated.
N ame Value v o200 40, 0 BD. v .BO 4 MO0 4 d20 . WO 180 . B0 4 200 ¢ 220 , 2
e il 1
B ng 1
& e funetion_jin 15 204 Yoo G
Write mode Broadsast mode
& el ihout 1
Input number determines the mult_reg that is being selected
 » sel_reg D (5 ¥i e b E
Lalv! ' 0 [l
Broadcast of data, value pointed to by sel_teg
[-0 multiplizr_out 204 o i
Data from exterral inputs are written to buffer only when ssi reg = 2'b00
FHE= mult_regl 100
= 204 {00
1 R= mult_reg2 100 (@ i Yo 6
#R= mult_reg3 ¢ {0 Y X

Figure 4.7: Simulation Result for Input Module

The Verilog code for the Input Module is available in APPENDIX G. The testbench
for the simulation in Figure 4.7 is available in APPENDIX H.

44.2

Input Module Counter (mux1_cnt)

The Input Module Counter provides the control signals to the Input module’s

sel reg[1:0] to select between the multiplier buffers. The counter counts from 0 to 3,

and loops back to 1, whenever there is a reset, the counter goes back to 0.

Figure 4.8: Mealy Machine for Input Module Counter

30

The sel input signal comes from the Control Unit of the neural network processor.
The reset signal is provided by the external reset. The Verilog code for the Input
Module Counter is available in APPENDIX 1.

4.4.3 Bias and Weight ROM Module (values)
There are three Bias and Weight ROM modules in the designed processor. Each
module is similar to the other, differing only in the weight and bias values they carry.
Each module is dedicated to one neuron and stores bias and weight values for three

hidden layers and one output layer.

As in the Input Module, weight values are sequentially passed to the Neuron
Module. Each module has an internal counter which tells the module which weight
value is to be passed on. External signals to the modules layer[1:0] input tells which
layer the bias and weights value it can select from. The bias values stored in the
modules are in twos complement format while weight values are stored in sign
magnitude integer. The fraction size for the weight and bias values are different. The
fraction size for weight values is 0.01 whereas the fraction size for bias values is

0.0001.

MName ; Valie 15, 1200 40 BD. o .BO Mo . @0 « ™MD . 50

2 ok 1 [I [l] IIUUUHUHUUUUUUUUUUUI—IUU“UU

Input selects the set of bias and weight values to be transmitted

& e Japer 1 TG
Bias walues remain the same for ane hidden layer
= bias_put 2093297 G G041
i @ multiplicand_out 11330 3 Aaed h D X
Counter selects weight value to be transmitted
#R=cnt 1 {U ;\{1 XE xﬂ

Seleet pulses incramients the modules counker

" ’ S S N Se—
& rst 0 B

Figure 4.9: Simulation Result for Bias and Weight ROM Module

The Verilog code for the Bias and Weight ROM Module is available in APPENDIX
J. The testbench for the simulation in Figure 4.9 is available in APPENDIX K.

31

4.4.4 Bias and Weight Counter (values_cnt)
The Bias and Weight Counter provides input to the layer[1:0] input of the Bias and
Weight Module. This counter keeps track and of which hidden layer or output layer

the processor is in. Figure 4.10 shows the state machine for the counter.

5él

Figure 4.10: Mealy Machine for Bias and Weight Counter

The ¢ ounter is incremented by the sel signal from the Control Unit of the neural
network processor. The reset signal is provided by the external reset. The Verilog
code for the Input Module Counter is available in APPENDIX L.

4.4.5 Neuron Module (neuron)

LI T2

Instead of just using the arithmetic operator to perform multiplication, there is a
need for more control from the process so that control bits can be incorporated into

the multiplication process.

add out <= multiplier in* multiplicand in;

The control bits are important so that feedback such as when the muliiplier,
multiplicand and bias values has been recorded or when the multiplication and
summation has completed can be provided back to the control unit. The control unit
would then determine the appropriate action required for the next operation in the

neuron module for the hidden layer iteration.

Multiplication for the neuron module uses the Add Shift Right (ASR) algorithm.
This algorithm is suited for unsigned binary multiplication which is the type of data
presented to it. Figure 4.11 below shows the flowchart for the ASR algorithm.

32

A= b0
0= Multiplier
1 = Malipticand
nte= 10

Shift A,G
Cut=Ont +

5] Yes

\‘Qz’ﬁ/

Figure 4.11: Flowchart for Unsigned Binary Multiplication

While the multiplication algorithm involves unsigned binary integer, the register

mult_sign stores the sign bit of the multiplicand. The sign bit will be a flag as to

whether the multiplication result need to be complemented before it is summed up

with the value stored in add_out.

Nams Value v o200 o460 B0, B0 0 00 ¢ RE . WD . 160 . B0 . 200 (230
signifies start of 1 hidden layer, takes in values for multipher, multiplizand and bias
B~ gtayt 0 —-'--“-'-|~]
prompts madule ko take invalues, except bias
& sel 0 I
® el i l [| l f
e mulighe_in 14 ¥
® & multiphcand in 1 2 iz i
A * bias_in nonoot _yfoootor
Loading of bias value Bias vafue + Multiplieation resuit
i
B8 add_out TFFFFC (kR YO0t IFFFFB
Sgnifies that walues have been recorded Arlthenetic pperation completed
+# slatus_out 1 U
#R= AQ_reg 000040 RHRRKR
HR=M_reg 601 ooz Xoon
R= Mult_sign i} |
Re zdd_flag 0
R ont 4 G 118 R B O G O G B I I O D < D GO

Figure 4.12: Simulation Result for Neuron Module

33

Figure 4.12 shows the waveform showing all internal operations of the Neuron
module. There is only one multiplier per neuron, therefore multiplier and
multiplicand values provided by the Input Module and the Bias and Weight ROM
Module respectively are multiplied and summed up sequentially with the bias value
which is directly stored in the add_out register. The loading of values is different for
the starting of a hidden layer and the loading of values there after. Bias values are
only loaded once for every hidden layer into the Neuron Module whereas multiplier
and multiplicand values are loaded at every iteration. To differentiate between
starting of a hidden layer iteration and a normal iteration, two different stimulus
signals are provided, start and sel. The status_out register provides output that
signifies that values has been loaded into the module and when arithmetic operations

for a particular iteration have completed.

The Verilog code for the Neuron Module is available in APPENDIX M. The
testbench for the simulation in Figure 4.12 is available in APPENDIX N.

4.4.6 Neuron Qutput Multiplexer Module (nux2)
The purpose of the Neuron Qutput Multiplexer Module is to multiplex between the
outputs of the neurons such that only one output is passed through the activation
function. There is only one activation function in the processor and all neuron has to
share its use. This is because the implementation of an 8 bit wide LUT requires a lot

logic gates, thus it is not feasible to have dedicated activation function LUT’s for

gach neuron.
Mame Vae]s] o .zo..ep. . en...80 0 mO o 0 0 MO B0
i & add_in 000001 (]
i % add_inZ 000002 §{goooo2
= add_in3 ooooo3 o X0oooo3
@ - spl 3 B X e A
> ck 1 NGl i iyigiy iy
Selection ot owtput oecurs when reset= 1
B reset 0 _I_L__l__-—l J__._I———’__.
Ciutputs from neurons selected cae at a time
2 add ot 000003+ ememr YaooonT Ypaoaoe Yo00003
® stalus_out D] | | | l—_J—_—I__

Figure 4.13: Simulation Result for Neuron Output Multiplexer Module

34

The module does not buffer the output from the Neuron Modules. It simultaneously
reads in the values and passes only one which is chosen by the sel[1:0] input to be

output.

The Verilog code for the Neuron Output Multiplexer Module is available in
APPENDIX O. The testbench for the simulation in Figure 4.12 is available in
APPENDIX P.

4.4.7 Neuron OQutput Multiplexer Counter (mux2_cnt)
The Neuron Output Multiplexer Counter’s design and function is the same as that for
the Bias and W eight Counter. The output of the counter however is now used to

provide selection for the Neuron Output Multiplexer Module’s sel[1:0].

The counter 1s incremented by the sel signal from the Control U nit of the neural
network processor. The reset signal is provided by the external reset. The Verilog

code for the Input Module Counter is available in APPENDIX Q.

4.4.8 Number Representation Converter Module (interface)
The purpose of the interface is to convert the twos complement result from the
neuron module back to unsigned binary integer. This is because the twos
complement result for negative results would not be able to be used with the
activation function unless modifications were made to it. The other reason why the
interface is required is because it relieves each neuron modules from having extra
logic to perform the conversion. A centralized interface would reduce the number of
logic used, because the activation function is only accessed one at a time by each
neuron. The output of the interface would be an 8 bit wide word with a separate sign

bit and also a status flag bit.

The Verilog code for the Neuron Qutput Multiplexer Module is available in
APPENDIX R. The testbench for the simulation in Figure 4.14 is available in
APPENDIX S.

35

'N_ame e “ {Value o 2.0 o400 B0 4 BB 0 W00 0 0 0 WO 4 1D 4 18D 4 200 4 20 4 240
input signal triggers the madule

P sel] _I—l ﬂ l-—l
- clk 1 E l i [
Positive value Megative value
F e add in 140800 |put values from Meuron Output Multipleser Module
booooo Y{oedado {40800
Netifias when aroutput is ready to be read
- status_out] D-] !_| I_l
Logic1 signff'ies that the output walue has been complemented
B sum_gign_awt |1 I::l |
Values is complemented Frst betore being copied
% ® sum_out 7 Bits o 16 are directly copied for «ve values
i o0 Yoa XF7

Figure 4.14: Simulation Result for Neuron Representation Converter Module

4.4.9 Activation Function LUT Module (activ_function)
The LUT which is to be implemented and declared as a ROM block in the FPGA
device itself contains many redundant entries. Addressing the LUT is an 8 bit input
which has 256 entries. Using mathematical analysis, it is possible to reduce the ROM
usage from 256 x 8 bit word entries to 68 x § bit word entries. This is because there
are only 50 unique data thatis being accessed in the LUT ranging from decimal

equivalent of 50 to 99,

All input combinations are accounted for with the help of mathematical analysis as
shown below. Several of the combinations can be grouped together for an entry thus

reducing the need for individual access for equivalent results.

LUT values

110011

111010
111011

Figure 4.15: Mathematical Analysis on Sigmoid LUT Values

36

Inputs in each colored band in Figure 4.15 are grouped together to address a similar

LUT equivalent.

The inputs from the Number Representation Converter Module are used to address
the activation function LUT as well as to note the sign of the input argument. As was
mentioned before, the LUT tale can only address values from 50 to 99 corresponding
to the sigmoid range of 0.50 to 0.99. These values are only valid for positive
arguments. If the sign of the argument is negative, some manipulation of the LUT
result has to be performed. The LUT equivalent would be subtracted from 100 to

produce the correct answer.

Mama Value 5f 2. .40, 8., .80 ., WE ., 20 , WO .,
® summation_jn 100 {100
#- ggl 0] |]
- ok o U UL
Megative zign bit Pasitive sign bit

B- sLIM_sigh_in 1] I

Manipulated equivalerit [1'I'JU - LUT walue]

H # function_out g2 Yalue from LUT
4 Y82 & a2
& shatus_ out 1 D—]—l l_
R= status 1 T

Figure 4.16: Simulation Result for Activation Function LUT Module

The Verilog code for the Activation Function LUT Module is available in
APPENDIX T. The testbench for the simulation in Figure 4.16 is available in
APPENDIX U.

4.410 Output Threshold Module (threshold)
The output Threshold Module is used to provide a categorization of the output to
whether it is a logic 1, logic 0 or in the indeterminate state. Output from the
Activation Function ROM Module is continuously processed to provide
classification. For logic 1 the output from the activation function must be in the
range of 0.9 to 1.0. For logic 0, the output must be in the range of 0.0 to 0.1. Any

other values would produce a high impedance output.

37

Name = IVae |S] +.20...40. BE.. .80 . WO . f2 . *
Inputs from Activation Function
7 B L
£ function_ir 3 5 o a5 e
B nlk 1] I 1 I I l
B sel z
Legis 1 Indeterminate state Lagic ¢
put] 1
| E—
2 gady 1]

Figure 4.17: Simulation Result for Qutput Threshold Module

The Verilog code for the Qutput Threshold Module is available in APPENDIX V.
The testbench for the simulation in Figure 4.16 is available in APPENDIX W,

4.4.11 Control Unit (Fub2)
The Control Unit for this neural network processor has 10 distinct inputs and 10
distinct outputs. The Control unit is able to guide the rest of the modules to function
as intended as the right time. The sequence of operations is as stated in APPENDIX
F. The control unit was designed directly in the finite state machine editor and

converted to Verilog.

The Control Unit provides control signals to all modules except for the Number
Representation C onverter Module and the Activation Function LUT Module. The
system is designed such that in case of a reset, the whole processor can be set back to

its initial state.

Name Valus 5] + 20 400 B0, .80 0 W0 0 RO 20 . 2540 . 2680 .
Lagic "
Eogie 1
R= In2 1
Re reset 0
R: Stat 0 | .
Rx ol 1 II UUUUUUULJUUUUL
Correct Cutput
& Jut] 1 N
Pronessor ready Frocessor Busy Processtr Ready
w Ready 1 17

Figure 4.18: Simulation Result for RFNNA Processor

38

Figure 4.17 shows the simulation for the whole neural network processor as one
working entity of the modules discussed earlier. The Ready flag, notifies the user

when the processor is available or when processing is complete.

The Verilog code for the Control Unit is available in APPENDIX X. The testbench
for the simulation in Figure 4.18 is available in APPENDIX Y.

4.5 Multiplier Bus

An additional improvement to the original RFNNA architecture would be the
inclusion of the multiplier bus for transmission of inputs for multiplication with
connection weights. The bus works by time multiplexing its resources for the

transmission of multiplier to each neuron available in the architecture.

RFNNA
e Processor1 .
7
S o —i—
2 | RFNNA
1. £ Processor 2 i
B
RFNNA
Lo Processor3 |

Figure 4.19: RENNA Processors Paralleled

This implementation of the multiplier bus would reduce the number of multipliers in
a neuron unit exponentially. Comparing with the previous architecture, the number
of multipliers required for N number neuron architecture would be N* in total,
whereas the number of multipliers required now is only N. This would save a

significant amount of logic resources.

39

The mmplementation of the multiplicand bus would also open up the possibility of
similar RENNA processors to be paralleled as in Figure 4.19, thus increasing the
number of inputs, outputs and neurons. This ability would allow more application to
neural network processed as the number of inputs and outputs are no longer a

limitation

40

CONCLUSION AND FUTURE IMPROVEMENT

5 CONCLUSION AND FUTURE IMPROVEMENT

5.1 Conclusion

The project can be rated as successful with the completion of the RTL design for the
neural network processor for the XOR problem. The objectives of optimizing the

implementation have been performed on two fronts: architecture and organization.

Through research and analysis the RFNNA architecture and the optimized
numbering convention have been specified. The RENNA architecture is a space
efficient implementation for neural network onto hardware, where all hidden layers
use the same logic resources without sacrificing implementation speed. The twos
complement fixed point fraction on the other hand increases processing speed by
simplifying the computation of binary values and addressing of the sigmoid
activation function’s LUT. In the process of analyzing the proposed architecture, an
application was also developed to help simulate and justify neural networks based on
the RENNA architecture. Organization improvements through the implementation of
the multiplicand bus enable the processor to process in parallel. The decision to use a
single activation function ROM module helps reduce implementation size so does

the recursive use of a single multiplier within each neuron.

All of the mentioned findings and implementation have comntributed towards
achieving the objectives of the project in which an optimized FPGA hardware
implementation of neural networks in terms of size, speed and performance is

desired.

41

5.2 Future Improvement

The project provides a strong foundation in which more sophisticated neural network
processors can be built upon. The FeedForward architecture utilising the
BackPropagation learning algorithm caters for a variety of applications in which fast
processing is a must. With this motivation in hand, it is viable for processors to be

designed catering for these needs.

Utilising the RFNNA design and hardware organization design methodologies
mentioned in this report will provide any beginner in neural network hardware
design much useful analysis. However there are still areas which can be improved on
in terms of design and implementation. The author would suggest that future designs

would have a general purpose neural network processor design in mind.

This general purpose neural network processor ideally can be used for any
applications and can be parallel processed with similar processors so that the number
of inputs, outputs and neurons per layer will not be a constraint. The processor would
only require the weight and bias values to be reprogrammed. These values can be
stored on external memory so that hardware reprogramming is not required. The
possibility of an ASIC implementation would be more plausible then. The processor
would also have external inputs which controls the number of hidden layers it can
process. For this, the designer must do away with a hardwired implementation of the

control unit.
With a general purpose neural network processor, implementations in ASIC

technology would provide faster processing and at lower prices, opening up the

possibility of neural network processing to a multitude of applications.

42

REFERENCES

[1]

(3]

[6]

[7]

[9]

Callan R. 1999, Essence of Neural N etworks, Hertfosrdshire, Prentice Hall

BEurope.

Bose N.K., Liang P. 1996, Neural Network Fundamentals with Graphs,
Algorithms and Applications, McGraw-Hill, Singapore.

Coffman, K. 1999, Real World FPGA Design with Verilog, Prentice Hall,

New Jersey.

Picton, Phil 1994, Introduction to Neural Networks, MacMillan Press LTD,

London.

Sundararajan N., Saratchandran P. 1998, Parallel Architectures for Artificial
Neural Networks, IEEE Computer Society, Los Alamitos, California.

Vaughn B., Jonathan R., Alexander M. 1999, Architecture and CAD for
Deep-Submicron FPGA's, Kluwer Academic Publishers, Massachusetts.

William S tallings 2 003, Computer Organization and Architecture, Prentice
Hall, New Jersey.

J. Zhu, G.J. Milne and B.K. Gunther, Towards An FPGA Based
Reconfigurable ~ Computing Environment for — Neural Network

Implementations, in Proceedings of IEE Conference on Artificial Neural

Networks, 1999: p. 661-666
Eldredge, J.G. and B.L Hutchings, Design Methodologies for Partially

Reconfigured Systems, in Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines, 1994: p. 78-84.

43

[10]

[11]

[12]

[13]

[14]

Brown, S. and Vranesic, Z. 2003, Fundamentals of Digital Logic with
Verilog Design, McGraw Hill.

Ciletti, M. 2002, Advanced D igital Design with the Verilog HDL, Prentice
Hall, New Jersey.

Szabo T., Feher B. and Horvath G. 1998, Neural Network Implementation
Using Distributed Arithmetic, in Proceedings of the 2" International

Conference on Knowledge Based Intelligent Electronic Systems

Haykin S. 1999, Neural Networks — A Comprehensive Foundation, Prentice
Hall New Jersey, p 23

Gschwind, M. V. Salapura. and O. Maischberger, Space Efficient Neural

Network Implementation, in Proceedings of the 2" ACM Workshop on Field
Programmable Gate Arrays, 1994. p. 23-28

44

APPENDIX A

Taxonomy of ANN Models

Adificial
Neual

Nebmode

45

Leatning Hetok P HetH gl L0INING
P awdigm Frohtedure Corng vty Algoithm
RTRL
Recusrent BP
Solfman —
ARY MAP
Supenized
Leamin
ol f Madaine
-——-—-i{ Ryl Laami -
Feedfoman #{BackPropagation |
et Single Laver} v { Paroeptran]
Willshiaw and Van
» derbaishers’s
Iethod
it
T
] ART |
Unsupandzed
Leaning Ve
Lingkars S0 Festure
MultiLayer Exisatfion
FesdFommant =] Bangers hiehod |
mm Sanger's Method
Oja's Method
» —m o Ciusteing and
Hybsd "“"W‘“ ' Bayslan Leaming
Leate -
o] REF Netreic Chustering and Least
Squawe Leaming

APPENDIX B

Similarities and Differences between Neural Net and Von Neumann Computer.

Neural Net

Von Neumann Computer

Trained (learning by example) by
adjusting the connection strengths ,

threshoelds and structure

Memory and processing elements are

collocated

Parallel (discrete and continuous), and

asynchronous

May be fault tolerant because of
distributed representation and large

scale redundancy
Self organization during learning
Knowledge stored is adaptable;

information is stored in the

interconnection between neurons

Programmed with instructions (if-then

analysis based on logic)

Memory and processing separate

Sequential or serial, digital,

synchronous (with a clock)

Not fault tolerant

Software dependant

Knowledge stored in an addressed

memory location is strictly replaceable

46

APPENDIX C

Operation of the RFNNA Simulator v1.3 Software Application

The RFNNA Simulator works in 2 simulation modes:

ay Direct Simulation

- In this mode, the user would be able to obtain instant results for the XOR problem for any given
input when the simulation button is pressed.

b) Controlled Simulation

- An extra command button "Next Sequence” will appear. In this mode the simulation will pause afier
computation is performed on every hidden layer. To proceed to the next hidden layer, press on the
"Next Sequence” command button.

NOTICE:

Pattern files can be manually generated, examples of neural network architecture and corresponding
weight files are listed below:

Architecture WGT File
2-3-1 W2131. wet
2-3-3-1 W22331.wet

The wgt files are directly generated from the metaNeural software. However to be able to use it using
this software, the user has to use an appropriate naming convention.

Example:
W2131 wgt

W = All files must start with "W"

2 = Indicates the number of inputs

1 = Indicates the number of hidden layer

3 = Indicates the number of neurcns for 1st hidden layer and so on
1 = Indicates the number of outputs

The WGT files will be automatically retrieved from ¢ X\METACTRL\. Please ensure that the wgt files

provided are located into this directory. All WGT files generated using MetaNeural will be saved in
the same directory.

47

APPENDIX D

Screenshots of RFNNA Simulator Performing XOR operation for 2-3-2-1
Neural Network Architecture.

LB pirchitenkirs

A

oo U5 gaen [

4 peinbes giinputet 17 o o ' Namber of Dugaifst- - Asiet Newat et

. i Mesiins i it Lo

- Hidden Layer B PlibdeiLaper B2

FR: R

Ulberdboss T)

o s i Asenyin TR
§_; i P Deeiial Py - »?3-

T et heigghigt

232 1. RFNNA Computation (Output Layer)

48

oF

ploysaLs

fpeey g——m—
wog.

lipaes

(e (g wogoun)|

] |

| —

A XTANHddV

LORoUR AR

R
uEs |
lano"enms . eS|

- AmeTuspmng 42

03 XN
wssi|
[
0: e
s
1t
ZUCISU T SenIRA
Eis
wsea| _
p|—] gsanjen s
D tosamien
(oD TR —
yroTsmcys, Ha| — i - R
" o - . 5LN
foazhne ppe lgpziei e Joihact ® =
Y=Y
orgRline iR C(ni1 MsAR|

Zucinau

v

(o bmpdnin

Zsehea

o] -
[p—

ot pusogdnma - i |

(: L es " nin

GénneTsen (iipete

ﬁnwﬁs.muvm

S

e sy

fuddewppe (OTIIMTRRE

b e Tiopmen 2| —

e

ﬂmmm_ﬂ TPl

APPENDIX F

Module: Fub2
threshold_ready y neuron_sel
AF_stat »neuron_start
muxi_cni[:0]
v_cnif1:0)
muwé_cnt{1:0]

Sreg0

threshold ready

Imuecl_sel_cnt = 1'bC;
Imw_sel cnt=1'bd;

M_sel_cnt= 1'b1;

mux1_sel_cnt = 1'bt;

mu2_sel_crt = T'b1]

vl cnf==2'p11

/—md_sel_imut=1'b0;
imud]_sel_cnt = 1'ha;

T M_sel_cnt= 1'b0;
T Values_rst = 1'b1;
values_sel = 1h0;

p_start

neuron_se! = 1'b0;
neurcn_start = 1'b0;
mwe_sel_cnt= 1'b0;
mwe_rst=1'b1;
p_ready= 1'b1;

mwct_sel_inout = 1'b1
muxd_sel_cnt= 1'b1;
walues-rst= 1'b0;
velues_sel = T,
p_ready= 1'b0; .

mux1_sel_cnt= 1'b1;
muwxd_se!_inout = 1'b1;
Malues_rst= 1'b0;
\ Malues_sel = 1'b1;
p_ready= 1'b0;
muxd_sel_cnt="b0;
M_sel_cnt= 1'b0;
values_sel = 1'b0;
reuron_start= V'b;

vl cni2 = 2°611

peuron_sel = 1'b7;
alues_sel = 1'h0;
e _sel_cnt= 1'd0;

neuron_start= 1'b0;
neuron_sel = 1'b0;
walues_sel = 1'b1;
muxi_sel_cnt= 1'b1

atues_rst= 1'b1;
muxd_sel_inout = 100,

AF_staf

falues_rst= 760, |
miu_rst= 1'b1;

mu2_sel_cnt= 1'b0;
mux_sel_cnt = 1'b0;

APPENDIX G
Input Module (mux1)

// Title omux_1.v
// author : Ivan Teh Fu Sun
// University : University Teknologi Petronas

module muxl {in1, in2, function_in, sel inout, sel_reg, clk, multiplier_out);

input [7:0] function_in;

input inl,in2;

input sel_inout;
input [1:0] sel reg;

input clk;

output [7:0] multiplier out;

reg {7:0] multiplier out;
reg [7:0] mult_regl;

reg [7:0] mult_reg2;

reg [7:0] mult_regq3;

always @ (posedge c¢lk)
begin

if (sel_reg == 2'b00)

begin
if (inl)
begin
mult_regl o= 8'b01100100;
end
else
begin
malt regl <= 8'L00000000;
end
if{in2)
begin
mult_reg2 <= 8'b01100100;
angd
else
begin
mult_reg2 <= 8'b00000C0O0;
end
mult_regs <= 8'b00000000C;
end

// outputs contents of buffers seguentially

if (sel_inout)
begin
case (sel_reg)
2'b01l: multiplier out <= mult_regl;
2'b10: multiplier out <= mult_reg?;
2'bil: multiplier out <= mult_regl;
endcase
end

// storas output from activation functicn into respective buffers sequentially

else
begin
if (sel_reg == 2'b01)
begin
mult regl <= function_in;
end

if (gel reg == 2'b10)

51

begin

mult_reg2
end
if (sel_reg == 2'bll)}
begin
mult_reg3l
end
end
end
endmodule

<=

52

function_in;

function_in;

APPENDIX H
Testbench for Input Module

“timescale 1ps / lps

module TB muxl;

reg [7:0] function_in;
reg inl, in2;

reg gel_inout;

reg [1:0] sel reg;

reg clk;

wire [7:0] multiplier_out;

muxi UUT (inl, in2, function_in, sel inocut, sel_reg, clk, multiplier out);

initial
begin

#0:

clk =1'bl;

sel inout = 1'bC;

sel reg = 2'h00;
function_in= 8'h11001100;
inl <= 1'bl;

in2 <= 1'bi;

#20000;
sel reg=2'b01;

#30000;
sel_reg=2'bl0;

#40000;
sel_reg=2'bll;

#40000;
sel_inout = 1'bi;

#45000;
function_in = 8'b11110000;

#50000;
function_in = 8'b00001111;
sel reg = 2'b00;

end
always
begin
#5000
clk = !clk;
end
endmodule

APPENDIX I

Input Module Counter (mux1_cnt)

// Title : muxl_cnt.v
// Author : Ivan Teh Fu Sun
// University : University Teknologi Petronas

H
r

module muxl cnt (sel, reset, muxi_sel);

input gel;
input reset;
output [1:0] muxl_sel;

reg [1:0] wmuxl_sel;

alwayg @ (poseddge reset or posedge sel)

begin
if (reset)
muxl sel <=2'h00;
elae
begin
case (muxl sel)
2'b00: muxl_sel <= 2'b0l;
2'b0L: muxl_sel «= 2'bl0;
2'pl0: muxl_sel <= 2'bli;
2'bll: muxl_sel <= 2'b01;
endcase
end
end
endmodule

54

APPENDIX J
Bias and Weight ROM Module (values)

F o mmm o e e e e
i

// Title : neuronl values.v

// huthor ;: Ivan Teh Fu Sun

// University : University Teknologi Petronas

/7

Jmmmm e
/7

// Descripticn : ROM block for bias and multiplicand values

// Bias values are initial twos complement

/7 Multiplicand values are initial unsigned binary

/7 integer. MSB of multiplicand ig the sign bit

I
e R R b e e R LR R L TR e e

module valuesl (sel, rst, clk, layer, bias_out, multiplicand_ocut)};

input sel;
input rst;
input clk;

input [1:0] layer;
output [20:0] Dbias_out;
output [10:0] multiplicand out;

req [20:0] bias_out;
reg [10:0] multiplicand_cut;
reg [1:0] cnt;

always @ (posedge rst or posedge clk)

begin
if {(rst)
begin
cnt <= 2'b00;
end
end

always @ (posedge sel)
begin
if{layer == 2'ho0)}
begin
if (ent == 2'b00)
begin
multiplicand out <= 11'b00100011100; //2.84
bias_out <= 21'b111111001000010100001; //-2.84
cnt <= cnt + 1;
end

if{ent == 2'b01)
begin
multiplicand cut <= 11'b00010000C10; f/71.30
cnt <= cnt + 1;
end

if{cnt == 2'bl0)
begin
multiplicand_cut <= 11'h00000000000; //0.0
ont <= 2'b00;
end

end

if{layer == 2'b01)

begin

if (cnt == 2'b00}
begin
multiplicand ocut <= 11'bl10100110010; //-3.086
bias_out ¢e= 21'b111111111000010110101; //-0.39

55

ont <= cnk + 1;
end

if (cnt == 2'b01)
begin

ent

multiplicand_ocut <= 11'H10011110000; /{-2.40
<= cnt + 1;
end

if (cnt == 2'%10)
begin
multiplicand_out <= 11'b00110010011;
cnt

/74.03
<= 2'h00;

end
end

if{layer == 2'b

10)
begin
if (cnt == 2'b00)
begin
multiplicand_out <= 11'b00101111111; //3.83
bias_out <= 21'b00000000OD0L1101110011; //0.19
cnt <= cnt + 1;
end
if {ent == 2'b01)
begin
multiplicand out <= 11'h10101111110; //-3.82
cnt <= gnt + 1;
end
if{ent == 2'bl0O)
begin
multiplicand out <= 11'b10001C0L000; f/-0.712
cnt <= 2'b00;
end
end
if(layer == 2'bll}
begin
if{ent == 2'b0O0)
begin
multiplicand_out <= 11'b010010013101; f/5.89
bias_out <= 21'b111111111100001101010; //-0.18
ont <= ¢ont + 1;
end
if (cnt == 2'b01}
begin
multiplicand out <= 11'b00001110111; //1.19
cntc <= cnt + 1;
end
if {cnt == 2'b10)
begin .
multiplicand out <= 11'b11010011010; //-6.66
cnt <= 2'b00;
end
end
end
endmodule

EE===Ei===;;==ii=EEE=======;;==ii==EEE===i==;;;;=iE==EE===========E===============

56

APPENDIX K
Testbench for Bias and Weight ROM Module

“timescale 1ps

/ 1ips

module TB_wvaluesi;

reg

reg

reg

req [1:0]
wire [20:03
wire [10:0]

sel;

rst;

clk;

layer;

bilas_ocut;
multiplicand out;

valuesl UUT (sel, rst, clk, layer, bias out, multiplicand out};

initial

begin
#0;
clk 1'k0;
rat 1'bl;
sal = 1'b0;

]

#6000
ret = 1'h0;

#10000 // first layer
layer = 2'b00;

#15000
sel = 1'bl;

#16000
sel = 1'b0;

#25000
gel = 1'bl;

#26000
gsel = 1'bo;

#35000
gel = 1'bl;

#36000 .
sel = 1'b0;

#40000 // second laver
layer = 2'b01;

#45000

sel = 1'bl;

#46000

sel = 17b0;

#55000

sel = 1!'bl;

#56000

sel = 1'b0;

#65000

sel = 1'bl;

#66000

sel = 1'h0;

57

#70000
layer = 2'bio; // third layer

#75000
sel = 1'bl;

#76000
sel = 1'b0;

#85000
sel = 1'hl;

#B6000
sel = 1'b0;

#35000
sel = 1'bl;

#96000
sel = 1'b0;

#100000
ret = 1'bl;

#105000
rst = 1'b0;
end
always
begin
#2500
clk = lclk;
end

endmodule

58

APPENDIX L

Bias and Weight Counter (values_cnt)

// Title : values ont.v
// AButhor : Ivan Teh Fu Sun
// University : University Teknologi Petronas

/7
/

// Description : provides selection for neuron_values module

H

module values_cnt {sel, reset, values_sel);

input sel;
input reset;
output [1:0] values sel;

reg [1:0] values_sel;

always @ {posedge reset or posedge sel)

begin
if {reset}
values_gel <=2°h00;
else
begin
case(values_sel)
2'b00: values_sel <= 2'b01;
2'b0l: wvalues_sel <= 2'bl10;
2'bl¢: values_sel <= 2'bll;
2'bl1: values_sel <= 2'b00;
endcase
end
end
endmodule

59

APPENDIX M

Neuron Module (neuron)

F R e e e e
/

/! Title : neuron_mult_sum2.v

// Author : Ivan Teh Fu Sun

// University : University Teknologi Petronas

H

F A et
/

// Description : Neuron block containing multiplication and summation blocks

17 Multiplication is using the AddShiftRight (ASR}

/f algorithm for unsigned binary.

144 Value of bias is initial twos complement

17 Value of multiplier and multiplicand is initial unsigned binary

14 integer.

/I
e

module neuron2 (start, sel, c¢lk, multiplier in, multiplicand_in, bias_in,
add_cut, status_out) ;

input start;
input sel;
input clk;

input [7:0] multiplier_in; //no sign bit, multiplier value is always positive
input [10:0] multiplicand_in;

input [20:0] bias_in;

output [20:0] add_out;

output status_out;

reg statusg_ocut;

reg [20:0] add out; //output in twos complement
reg [20:0] AQ reg; //overflow bit included

reg [e:0] M_reg;

reg Mult_sign; //1 means negative

reg add flag;

reg [3:0] ont;

always @ (posedge clk or posedge sel or posedge start)

begin

//loopl

if (start)
begin
AQ reg[20:8}<= 13'b0;
AQ_reg{7:0] <= multiplier_in[7:0];
M reg <= multiplicand_in[5:01;
cnt <= 4'bh0;
Mult_sign <= multiplicand in[10] ;
//%¥0R the sign bit, 1 means -ve
add_out <= bias_in[20:0];
status_out <= 1'bl;
// tells 1/0 module that values have been loaded
add _flag <= 1'b0;
end

//loopl

else if(zel)
begin
AQ reg[20:8]<= 13'D0;
AQ reg[7:0] <= multiplier_in{7:0];
M_reg «= multiplicand_in[9:0];
cnt <= 4'b0;
Mult_sign <= multiplicand_in[10];
status_out <= 1'bl;

// tells I/0 module that values have been loaded

add flag <= 1'b0;
end

//loopl

60

else if{cnt == 4'b1001)

begin
if{status_out)
begin
add out <= add_out + AQ regl[20:0];
status_out <= 1'b0;
end
end
//loopl
else if{cnt != 47H1000)
begin
//loopz
if{cnt 1= 4'bl001)
begin
//Lloop3
if {add_£flag) //When Q0 =1
begin
AQ regl18:0] <= {1'b0,AQ reg[18:11};
cnt <= ¢nt+1;
add flag <= 1'b0;
end

else if (ladd_flag)
begin
//loop4
if{ag reglol}
begin
AQ regllB:8] <= AQ regl[id:B] + M_reg;
add flag <= 1'bl;
// statug bit notifies that shift needs to take place
// clk not incremented because shift right has not occur
end

eise if ({1AQ regl[O])

begin
AQ regl18:0] <= {1'D0O,AQ reg[l18:1]};
¢nt <= cnt+l;
end
end
end
and
//loopl
else if(cnt == 4'b1l00Q)
begin

if (Mult_sign)
//only multiplicand value can begin negative
begin
//thus changes initial sign depends solely on multiplicand’s sign
if (ARQ _reg != 0)
begin
AQ reg <= {3'blll, ~-AQ reg[17:0]};
//twos complement inversion, +1 not required
end
end

cnt <= cnt +1;
end
end
endmodule

—————————— ——— ——————————————]
61

APPENDIX N
Testbench for Neuron Module

“timescale 1ps / lps

module TB neurcn mult sum2;

reg start;

reg sel;

reg clk;

reg [8:¢] wmultiplier in; //MSB bit denctes sign
reg [10:0] wmultiplicand in;

reg [20:0] bias_in;

wire [20:0] add out;

wire status_out;

neuron2 UUT {start, sel, clk, multiplier_in, multiplicand_in, bias in,
add_out,status_out) ;

initial
begin
#0;
clk = 0;

#10000;

multiplier_in = 9'bl00000100; 7/
muitiplicand in = 11'b10000000010; //M
bias_in = 21'hl;

#12000;
start = 1;

end

always
begin
if {status_out}
begin
start=0;
multiplicand in = 11'k0Q0000R0COL;
end

if (sel}
gel «= 0;

if(lstatus_out)
gsel «= 1;

#5000;
clk = lelk;

endmodule

J et ettt
/i
// Title mux_2.v
/7 Buthor Ivan Teh Fu Sun
// University University Teknologi Petronas
7
F R e b et bbbt
7/
// Description Interface between neuron mult sum2 and activation_function's
/7 interface.
i Selects between the outputs of neurons initial hidden layer to begin
/ presented to the neuron_AF_interface
/
e s
module mux2 {add_inl, add_in2, add_in3, sel, c¢lk, reset, add_out, status_out);
input [20:0] add_inl;
input [20:0] add in2;
input [20:0] add_in3;
input [1:0] sel;
input clk;
input reset;
output {20:0] add_out;
output status_out;
rey [20:0] add_out;
reg gtatusg_ocut;
always @{posedge clk or posedge reset)
begin
if (reset)
begin
status_out <= 1'b0;
end
else
begin
if(gel == 2'b0O0)
begin
add out <= add_inl;
status_out <= 1'bl;
end
if {sel == 2'B01)
begin
add_out <= add_in2;
status_out <= 1'bl;
end
if(gel == 2'Db10)
begin
add_out <= add_in3;
status_ouk <= 1'bl;
end
end
end
endmodule

e ————e e ——————
e

APPENDIX O

Neuron Qutput Multiplexer Module (muax2)

63

APPENDIX P
Testbench for Neuron Output Multiplexer Module

“timescale 1ps / 1lps

module TB_mux2;

reg [20:0]) add_ini;

reg [20:0} add in2;

reg [20:0] add_in3;

reqg [1:0) sel;

reg clk;
reg reget;
wire [20:0] add_out;

wire status_ocut;

mux2 UUT {add inl,add_in2,add in3,sel,clk,reset,add _out,status_out);

initial
begin

#0

clk = 0;
reset = 0;

#1000

add_inl = 21'bl;
add_in2 21'b10;
add_in3 = 21'b11;

#10000
sel = 2'b00;
reset = 1'bl;
#11000

reset = 1'b0;

#20000
sel = 2'b0l;
reset = 1'bl;
#21000

reset = 1'b0;

#30000
sel = 2'bl0;
reset = 1'bl;
#31000

reset = 1'b0;

#40000

sel = 2'bl11;
reset = 1'bl;
#41000

reset = 1'b0;

end
always
begin
#5060
clk = !clk;
end
endmodule

APPENDIX Q

Neuron Output Multiplexer Counter (mux2_cnt)

// Title : values_cnt.v
// huthor ;: Ivan Teh Fu Sun
// University : University Teknologi Petronas

// Description : provides selection for neuron_values module

/o

module values_cnt (sel, reset, values_sel);

input sel;

input reset;
output [1:0] values_sel;

reg [1:0] values sel;

always @ (posedge reset or posedge sel)

begin
if (reset)
values_sel <=2'b00;
else
begin
case{values sel)
2'b00: wvalues_sel <= 2'b01;
2'h0l: wvalues sel <= 2'bl0;
2'b10: wvalues_sel <= 2'bl11;
2'bl1l: walues_sel <= 2'b00;
endcase
end
end
endmodule

65

APPENDIX R

Number Representation Converter Module (interface)

LA e i
/f

// Title : neurcn AF_interface.v

// Author : Ivan Teh Fu Sun

// University : University Teknologi Petronas

/7

f e oo
r

// Description : Interface between neuron_mult_sum2 and activation_functicn.

/i Converts 23 bit twos complement number into signed integer.

I7 Selects bits 9 to 16 and sign bit for output

[

F e e

module interface (sel, clk, add in, status_cut, sum_sign_out, sum_out)

i

input sel;

input clk;

input [20:0] add _in;

output status_out;

output sum_sign_out;

output [7:0] sum_out;

req [7:0} sum_out;

reg sum_sign_ouk;
reg status_out;

always @ [posedge sel or posedge clk}
begin

if (sel)
begin
sum_out <= add in[15:8];
sum_sign_out <= 0;
status_out <= 1 ; //ugsed to indicate module processing, sel = 0
end

if (status_out)

begin

if (add_in[20])
begin
sum_sign_out <= 1;
sum_out <= ~sum out;
end
status out <= 0

end

end
endmodule

66

APPENDIX S

Testbench for Number Representation Converter Module

“timescale 1ps / 1ps

module TB_neuron AF interface;

reg sel,clk;

reg [18:0]1 add_in;

wire sum_sign_out;
wire [7:0] sum_out;

wire status_ocut;

interface UUT (sel, clk, add in, status_out, sum sign oukt, sum out);

initial
begin

#o

sel = 0;
clk = 0;
add_in = 19'h00000;
#10000

sel = 1;

#20000
add_in = 19'h40800;

#50000
gel = 1;
end
always
begin
#5000;
clk = !clk;

if (status_out)
sel = 0;
end
endmodule

67

APPENDIX T

Activation Function LUT Module (active_function)

[/ Title
// Author
// University

activation_function.v
Ivan Teh Fu Sun
: University Teknologil Petronas

module activ_function (summation_in, sel, clk, sum_sign_in, function out,
gtatus_out};

input [7:0] summation in;

input sel, clk, sum_sign_in;
output [7:0] function_out;

output status_out;

reg [7:0] functicn_out;

reg status_out;

reg status;

alwaye @ [(posedge clk }

begin

if (!sel)

begin

if{i{status_out}

begin

casex {summation_in)

8'b00G00000x:
8'b00000CO1X:
8'h0000010x:
8'b00000110:
8'b00000111:
8'b0000100X:
8'b0000101x:
8'h00001100:
8'b00001101:
8'b0000111x:
8'b0001000x:
8'b0001001x:
8'b00010100:
8'b00010101:
8'b0001011x:
8'b0001100x:
8'b00011010:
8'b00011011:
8'b0001110x:
8'b0001111x:
8'b0010000x:
8'h0010001x:
8'b0010010x:
8'b0010011x:
8'b0010100%:
8'b0010101x:
8'b0010110x:
8'b0010111x:
8'b0011000x:
8'b0011001x:
8'b0011010x:
8'b0011011x:
B'H0011100x:
8'b0011101x:
8'b0011110x:
B'b0011111x:
B'b0LI00000K:

function out
functicn_out
function_out
function_out
functicn_out
function out
function_out
function out
function_out
function_out
function_out
function ocut
function out
function ocut
function_cut
function_cut
function_out
function_out
function_out
function out
function out
function_out
function_ocut
function_out
function_out
function_out
function_out
function out
function_out
function_out
function_out
function_out
function_out
function out
function_out
function_out
function out

68

8'b00110010;
8'b00110011;
8'b00110100;
8'b00110101;
8'b00110110;
8'b00110111;
8'b00111000;
8'b00111001;
B'b0C111010;
8'b00111011;
8'h00111100;
8'b0C111101;
8'b00111110;
B8'b0O0111111;
B'b01000000;
8'101000001;
B'b0O10000OYL;
8'b01000010;
8'b01000011;
8'Hb01000100;
81'H01000L01;
8'001000110;
8'b01000111;
8'b01001000;
8'h01001001;
8'b01001010;
2'b01001011;
8'h01001100;
8'b01001101;
8'b01001110;
8'b01001111;
8'b01010000;
8'b01010001;
8'b01010001;
8'b01010010;
8'b01010011;
8'h01010011;

8'b0100001x:
8'b0100010X:
B'b0100011xX:
8'h0100100x
8'b0100101x:
8'b0100110x%:
8'p0100111x:
8'b0101000x%:
8'b0101001x:
8'b0101010x:
B8'501010110:
8'b01010111:
8'h010110xx%:
8'b010111xx:
B'b011000xx:
8'k0110010x%:
B8'H0110011x%:
8'p011010xx:
B8'D011011xx%:
8'b011100xx:
B'b011101xx:
B'b011110xx:
8'h011111xx:
8'h10000xMx:
B'D1000LXEX:
8'b10010xxx:
8'010011xx%:
8'bl010xxXxXx:
8'k101100Xx%:
8'h101101xx:
8'b10111xxx:
B'bllxxxxxx:

// no default required because

function_ocut
function_out
function_out
function out
function_out
function_ out
function_cut
function _out
function_out
function_out
function_out
function_out
function out
function out
function_ocut
function out
function_out
function_ocut
function_ocut
function out
function_ocut
function ocut
function_out
function_out
function_out
function out
function_out
function_cut
function_ocut
function_out
function_cut
function out

all conditions

8'b01010100;
8'b01010101;
8'101010101%;
8'b01010110;
8'b01010111;
8'b01010111;
8'b01011000;
8'b01011000;
8'b01011001;
8'b01011601;
8'b01011001;
8'k01012010;
8'b01011010;
g'bol1011011;
8'bk01011100;
8'b01011100;
8'b01011101;
8'b01011101;
8'b010111190;
8'b01011119;
8'b01011111;
8'b01011111;
8'501100000;
B'b01100000;
8'b0110G6001;
B'b01100001;
B'201100010;
8'501100010;
8'001100010;
8'b01100011;
8'01100011;
8'b01100011;
are defined

function out <= 8'b01100100 - function out;

status_out <= 1'bl;
status <=1'bl;

endcase
status <= 1'h0;
end
end
else
begin
status_out <=1'bo;
end
if(!status)
begin
if {sum sign_in}
begin
end
end
end
endmedule

69

APPENDIX U
Testbench for Activation Function LUT Module

- ————— o

“timescale 1ps / 1ps

module TB_activ_function;

reg [7:0] summation_in;
reg sel;

reg clk;

reg sum_gign_in;
wire [7:01 function out;
wire status_out;

activ_function UUT (summation_in, sel, c¢lk, sum sign_in, function out, reset) ;

initial
begin
#0
clk = 1'bo;
sel = 1;

summation_in = 8'b01100100;
sum_sign_in = 1'bl;

#20000
sel = 0;

#50000

sel = 1;

summation in = 8'b01100100;
sum_sgign_in = 1'b0;

#60000
gel = 0;

end

always
begin

#5000

clk <= Ilc¢lk;
end

endmodule

70

APPENDIX V
Output Threshold Module (threshold)

/7 Title : threshold.v
// Author : Ivan Teh Fu Sun
// University : University Teknoleogi Petronas

module threshold (function_in, clk, sel, out, ready);

input {7:¢] function_in;

input clk;
ingut sel;
output out;
output ready;
reg ready;
rey out;

always @ {posedge clk or posedge sel}

begin
if (!sel)
begin
ready <= 1'bi;
end
else

begin
casex (function_in}
8'b01011001: out <= 17bhl;
8'b0101101x: out <= 1'bl;
8'b010111xx: out <= 1'bil;
8'hOL1xXXX¥K: out <= 1'bl;
8'b000CL00x: out <= 1'bG;
8'b0000C10OX0: out <= 1'b0;
8'h00000xXXX: out <= 1'b0;
default: out <= 1'bZ;
endcase
ready <= 1'b0;
end

end

endmodule

71

APPENDIX W
Testbench for Qutput Threshold Module

“timescale ips / 1lps

module TB_threshold;

reg [7:0] functicn in;
reg clk;
wire out;

thresheld UUT (function in, clk, sel, out, ready);

initial
begin

#0
clk = 1'bl;

#20000
function _in = 8'b01100000;

#40000
function_in = 8'b00L00100;

#60000
function_in = 8'bCCO00OLL;

end
always

begin

#5000
clk = !clk;

end
endmedule

72

APPENDIX X

Control Unit
im0
// File : e:\fypfpgaprojectfolder\Neural Network 3 Neuron\compile\Fub2.v
// Generated : 05/06/04 09:05:23
// From : e:\fypfpgaproject folder\Neural Network 3 Neuron\src\Fub2.asf
// By : FEM2VHDL ver. 3.0.4.1

“timescale 1Ins / 1psz

module Fub2 (AF stat, clk, muxl_cnt, muxl_sel cnt, muxl_ sel_inout, mux2_cat,
mux2_rst, mux2_sel cnt, nl stat, neuron sel, neuron_ start, p_ready, p_start, reset,
threshold_ready, wvalues_rst, values_sel, vl_cnt2, vl_ent, vl_sel_cnty};

input AF stat;

input clk;

input [1:0]muxl_cnt;
input [1:0)mux2_cnt;
input nl stat;

input p_start;

input reset;

input thresheold ready;
input [1:0]vl_cnt2;
input [1:0]vl cnt;
ocutput muxl_sel_cnt;
cutput muxl_sel inout;
ocutput muxZ_rst;
cutput mux2 sel_cnt;
output neurcn sel;
output neurcn start;
output p_ready;

output values rst;
output values_sel;
output vl_sel cnt;

wire AF_sgtat;

wire clk;

wire {1:0)muxl_cnt;

reg muxl_sel cnt, next_muxl sel cnt;
reg muxl_sel inout, next muxl sel inout;
wire [1:0lmux2 cnt;

reg mux2_rst, next_mux2_ rat;

reg mux2_gel_cnt, next_mux2_sel_cnt;
wire nl_stat:;

reg neuron sel, next neurcon sel;

reg neuron_start, next_ neuron_start;
reg p_ready, next_p_ready;

wire p start;

wire reset;

wire threshold ready;

reg values_rst, next_values_rst;

reg values_sel, next_values_sel;
wire [1:0]v1l_cnt2;

wire [1:0lvI_cnt;

reg vl_sel cnt, next_wvl_sel cnt;

// BINARY ENCODED atate machine: SregQ
// Btate codes definitions:
“define 81 5'b00000

“define 82 5'b00001

“define 83 5'b00010

“define N entry 5'b00011
“define 85 5'DO0L00C

“define 56 5'b00101

“define 87 5'bh00110

“define 58 5'b001l1

“define §% 5'b01000C

“define 510 5'b01001
“define S11 5'b0101D
“define 812 5'b01l011
“define 814 5'b01100

73

“define 515 5'b01101
“define S16 5'b01110
“define 817 &'bol111
“define 518 5'bl0000
“define 519 5'bhl0001
“define 520 5'bloOgl0

reg [4:0]CurrState_ Sreg0, NextState Sreg0;

// Diagram actions (continuous assignments allowed only: assign ...)
// diagram ACTION

always @ (p_start or vl_cnt2 or nl_stat or mux2_cnt or vl_cnt or AF stat or
threshold ready or muxl_sel incut or muxl_sel_cnt or vl_sel_cnt or values_rst or
values_sel or neuron_sgel or neuron_start or mux2_sel cnt or mux2 _rst or p_ready or
CurrState_Sreg0)
begin : Sregl NextState

NextState Sreg0 <= CurrState_SregQ;

// Set default values for outputs and signals

next_muxl_sel inout = muxl_sel inout;

next_muxl_sel cnt = muxl_sel cnt;

next_vl_sel_cnt = vl_gel_cnk;

next_values_rst = values_rst;

next_values_sel = values_sel;

next_neuron_sel = neuron_sel;

next_neuron_start = neuron start;

next_mux2_sel_cnt = mux2_sel cnt;

next_mux2_rst = mux2 rst;

next_p ready = p_ready;

cage (CurrState_Sreg0) // synopsys parallel case full case

“S1:

begin
next _muxl_sel_ inout = 1'b0;
next_muxl_gel_ecnt = 1'bo;
next_vl_sel cnt = 1'b0;
next_values_rst = 1'bl;
next_values_sel = 1'b0;
next_neurcn_sel = 1'b0;
next_neurcn_start = 1'b0;
next_mux2_sel_aont = 1'bo;
next_mux2_rst = 1'bl;
next_p ready = 1'bi;
if {p_start)

NextState_SregQ <= “52;

end

t82:

begin
next_muxl_sel cnt = 1'bl;
next muxl sel inout = 1'bl;
next_values_rst = 1'b0;
next_values_sel = 1'bi;
next_p ready = 1'b0;
NextState_Sreg0d <= "83;

end

"83:

begin
next_muxl_sel_cnt = 'b0;
next_vl _s@el cnt = 1'b0;
next_values_sel = 1'Db0;
next neuron_start = 1'bl;
NextState Sreg0 <= "N_entry;

end

"N_entry:

begin

next_neurcon_start = 1'bo;
next_neurcn_sel = 1'b0;
next_values_sel = 1'bl;
next muxl_sel _cnt = 1'bl;
if (vl_cntz != 2'bll)

74

NextState Sreg0 <= "89;

end
“85:
begin
next_neurcn_sel = 1'bl;
next_valueg_sel = 1'h0;
next_muxl sel ont = 1'b0;
if {vl_ecnt2 == 2'b1l)
Next.State_ Sreg0 <= "516&;
elge if (vl cnt2 = 2'bll)
NextState Sreg(<= "N_entry;
end
“86:
begin
next_values rst = 1'bl;
next_muxl_sel_inout = 1'b0;
if {(inl_stat)
NextState Sregl <= “517;
end
“87:
begin
next_values_rst = 1'b0;
next _mux2 rst = 1'bl;
next mux2 sel _ont = 1'ho;
next_muxl_sel cnt = 1'b0;
if (mux2_ent == 2'bl0O)
NextState_ Sregld <= "S11;
else if (vl_cnt == 27b11)
NextState_Sregl <= "§12;
else if (mux2_cnt != 2'b10)
NextState Sregl <= “510;
end
"g8:
begin
next mux2 sel ont = 1'bl;
next mux2 rst = 1'b0;
NextState Sreg0 <= “518;
end
"89:
if {inl_stat)
NextState Sreg0 <= “85;
“510:
begin
next_muxl_sel_cnt = 1'bl;
if (AF_stat)
NextState Sreg0 <= “88;
end
“81l:
begin
next _muxl sel cnt = 1'bl;
next mux2 sel ent = 1'bl;
if (AF_stat)
NextState_Sreg(<= “S514;
end
“glz2:
if {AF stat)
NextState Sreg0 <= “S19;
“g14
begin
next_muxl _sel ont = 1'b0;
next mux2_ sel_cnt = 1'bo;
next_vl_sel _cnt = 1'bl;
NextState_Sregl <= “S515;
end
“815:
begin
next_muxl_sgel_inout = 1'bl;
next_muxl sel cnt = 1'bl;
next _wvalues_rst = 17b0;
next values_sel = 1'bl;
next_p ready = 1'b0;
NextState Sregd <= “83;
end
"Sl6:
begin

next_neuron_sel = 1'bG;

75

NextState_SregQ <= "56;

end
tg817:
begin
next _mux2_rst = 1'b0;
NextState Sregl <= “57;
end
“s18:
NextState_Sreq0 <= “§7;
~8l9
if {threshold ready)
NextState_Sreg0 <= ~S20;
“820:
begin
next_p ready = 1'bl;
NextState_SregQ <= "“5l;
end
endcase
end
e
// Current State Logic ({sequential)
Jfm e

always @ (posedge clk or posedge reset)
begin : Sreg0_CurrentState
if (reset)
CurrState_Sregl <= "81;

else
Currstate_Sregl <= Nextstate Sreql;
end
e
// Registered outputs logic
J]-m =T

always @ (posedge clk or posedge reset})
begin : Sreg0_RegCutput

if {reset)

begin
muxl_sel_inout <= 1'b0;
muxl_sel cnt <= 1'b0;
vl sel ont <= 1'b0;
values _rst <= 1'bl;
values_sel <= 1'b0;
neuron_sel <= 1'b0;
neuron_start <= 1'b0;
mux2_sel _cnt <= 1'b0;
mux2_rst <= 1'bl;
p_ready <= 1'bl; -

end

else

begin
muxl_sel_inout <= next_muxl_sel_inout;
muxl_sel_cnt <= next_muxl_sel_cnt;
vl sel ecnt <= next_vl_sel cnt;
values_rst <= next_values_rst;
values_sel <= next values_sgel;
neuron sel <= next_neuron_sel;
neuron_start <= next neuron_start;
mux2_ sel cnt <= next mux2 sel cnt;
mux2 rst <= next_mux2 rst;
p_ready <= next_p ready;

end

endmodule

76

APPENDIX Y
Testbench for RENNA Processor

“timescale 1ps / 1ps

module TB_RFNNA prccessor;

reg Inl;
reqg In2;
reg reset;
reg S8tart;
reg c¢lk;
wire Qutl;
wire Ready;

RFNNA Processor UUT (Inl, In2,Start,clk,reset,Outl,Ready) ;

initial

begin
#0
clk = 0;
regset = 1;
#10000
Inl = 1'h0;
In2 = 1'hl;
#30000
reset = 0;
#40000
Start = 1'bl;
#2750000
reget = 1;
#2800000
Start = 1'bl;
reset = 0;

end

always

begin

if {!Ready)
Start = 1'bo;

#5000
clk = Iclk;

end

endmodule

e e ——————————— .
L ————————————————§

77

