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ABSTRACT

Neural information processing is an emerging new field, providing an alternative

form of computation for demanding tasks such as pattern recognition problems

which are usually reserved for human attention. Neural network computation i s

sought after where classification of input data is difficult to be worked out using

equations or sets of rules.

Technological advances in integrated circuits such as Field Programmable Gate

Array (FPGA) systems have made it easier to develop and implement hardware

devices based on these neural network architectures. The motivation in hardware

implementation of neural networks is its fast processing speed and suitability in

parallel and pipelined processing.

The project revolves around the design of an optimized neural network processor.

The processor design is based on the feedforward network architecture type with

BackPropagation trained weights for the Exclusive-OR non-linear problem.

Among the highlights of the project is the improvement in neural network

architecture through reconfigurable and recursive computation of a single hidden

layer for multiple layer applications. Improvements in processor organization were

also made which enables the design to parallel process with similar processors.

Other improvements include design considerations to reduce the amount of logic

required for implementation without much sacrifice of processing speed.
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CHAPTER 1

INTRODUCTION

1 INTRODUCTION

1.1 Background of Study

Neural networks is still considered a relatively new area of research, with

development picking up speed only in the 1990's since the first mathematical model

of the biological neuron waspresented by McCulloch and Pitts in the 1940's.Neural

networks are not confined to solely an attempt of replicating the human brain, it has

as well, wide reaching applicability and its concepts are incorporated into

applications such as optical character recognition, machine health monitoring as well

as stock market forecasting (Callan, 1999, p.2).

Neural networks can be implemented using software simulations and as fast

hardware devices. The former platform has been more often used for the

development of neural networks because it is cheaper and is more flexible for

research purposes. However, with the rapid advances in Field Programmable Gate

Array (FPGA) technology, the option to implement hardware based neural networks

now seems more appealing due to its customizability, relatively faster processing

speed and more importantly the infrastructure to tap into the neural network's

intrinsic property of parallel processing.

1.2 Problem Statement

The focus of most engineering and scientific groups on neural networks is to produce

working models of neural networks into hardware designs. These implementations

are usually made up of neural processing units known as neurons which take up

considerable amounts of logic gates to implement. Thus the complexity of a basic

neuron design affects very much the capacity of neurons which can be fitted into a
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fixed amount of silicon real estate. On the other hand, not much work has been put

into increasing the performance and processing speed of these neural network

processors. The successful addressing of these areas would pave the way for cheaper

and faster neural network processors.

1.3 Objectives and Scope of Study

The project undertaken will be focused on the optimization of FPGA based neural

network chips in terms of logic gate numbers, processing speed, and performance.

The project will be basically a study of neural networks and implementation of logic

design onto FPGA.

The targeted result of this project would be an FPGA implementation of a neural

network architecture which is suited for the supervised learning paradigm. The

connectivity of the feedforward neural network architecture would be of a multiple

layered type.

The end product would be an Artificial Neural Network FPGA implementation with

at least 2 inputs and 1 output. The architecture should be able to implement 2 or

more neuron hidden layers. Components inherent to a neuron such as multipliers,

adders and activation functions will be part of the overall design. The ultimate goal

of the project is to produce an optimized and functioning neural network processor

which is able to solve linear and nonlinear problems. The benchmark of the project

would be utilising the end product to solve the nonlinear Exclusive-OR (XOR)

problem.

Due to time constraint and design considerations, the supervised training phase of

the neural network would beperformed separately using the MetaNeural™ software.

The resultant weights and bias values for each connection between neurons would

then be directly programmed into the FPGA design.



CHAPTER 2

LITERATURE REVIEW AND THEORY

2 LITERATURE REVIEW AND THEORY

2.1 Artificial Neural Network

Common to neural network architectures are the simple processing units known as

"neurons" as is described in Figure 2.1 below. Neural networks are made of these

simple neurons with different architectures dictating how a collection of neurons are

interconnected as well as how calculations are made to adjust the weighted inputs

such that it can function as is intended.

Incoming
weighted

inputs from
other neurons

Figure 2.1: A single neuron model

Outgoing
weighted
outputs to

other neurons

Typical neural network architecture is made up of an input layer, one or more hidden

layers, and an output layer. The input layer merely acts as a buffer to external inputs,

whereas the output layer functions as a last stage hidden layer with the output

buffered and passed on to external outputs. The more interesting section of the neural

network would be the hidden layer(s) in which the neurons reside. The number of

input and output nodes for their respective layers is dependent on the application in

which the neural network was designed for. In example, an application which

recognizes alphabets using a 10 x 10 pixelizer (total 100 pixels) would require a

neural network which has 100 inputs and 26 outputs. However, there is no



convention in which the number of hidden layers to be used for a particular

application can be directly generated. To add to the confusion, the number of

neurons per hidden layer is also arbitrary. Thus the most optimized number of hidden

layers and neurons for each layer are largely decided using trial and error methods.

Figure 2.2 below is a typical neural network architecture used for applications which

require only 2 inputs and one output; the number of hidden layers and neurons are

chosen arbitrarily. Simple problems such as 2 input AND, OR or XOR can be solved

using this network configuration.

Input Layer I Hidden Layers I Output Layer

#1 #2

Figure 2.2: A 2-3-3-1 Neural Network Architecture

The connections between two neurons or nodes from adjacent layers have weights

which are multiplied to the output of the neuron/node which feeds to the neuron of

the subsequent layer. The coloured nodes represent storage for bias values which are

predetermined like the weights of each connection. Each neuron for each hidden

layer has its own unique bias value.

The combination of these weights and bias values allows a trained neural network

which is subjected to a set of inputs to provide a correct categorization of them as an

output. The processing of these weights in a neuron is divided into 2 stages:

Summation of weighted inputs and the mapping of the summation output to an

activation function. Firstly, all the weighted inputs from the preceding layer are



summed up together with a predetermined bias value. The result from this phase is

then normalised using an activation function such as the identity function, binary

threshold function or the sigmoid function. The normalised result is then fed into the

subsequent hidden layer where the cycle continues until the output layer is reached.

Figure 2.3 below illustrates the summation and activation function computations of a

neuron.

Figure 2.3: Computations within a Neuron

An important attribute of a neural network system based on weights is its capability

to learn and generalize variations in a set of inputs (Picton p., 1994 p.4). For

example, in character recognition applications, the same character 'A' can be written

in a multitude of ways, however these variations would produce the same output

when presented to a successfully trained and tested neural network.

2.2 Classification of Artificial Neural Network Models

Neural networks are organized and classified according to 4 attributes. These are:

learning paradigm, network architecture, network connectivity and learning

algorithm.

2.2.4 Learning Paradigm

The above concerns on the type of learning or training that a neural network is

subjected to, be it either supervised, unsupervised or a hybrid of both methods. The

learning paradigm determines which type of learning algorithm that can be used

when training the neural network.



2.2.5 Network Architecture

Generally there are two types of network architecture, feedforward and recurrent.

These architecture types are descriptions of how the interconnections between

neurons in a neural network are made. The connection type for the neural network in

Figure 2.2 is of the feedforward type.

2.2.6 Network Connectivity

Not to be confused with network architecture, network connectivity describes how

neurons are positioned within a neural network. For example, single layer

connectivity describes a neural network with only one hidden layer. Other

connectivity types are; Self Organizing Map, Multilayer and Hopfield. Connections

between hidden layers and neurons are decided by the network architecture.

2.2.7 Learning Algorithm

The learning algorithm deals with training the particular neural network chosen.

There are many types of learning algorithm such as BackPropagation, Associative

Memory, Madaline and more. The application of a particular learning algorithm

depends on its suitability with the three parameters mentioned earlier of a particular

neural network. For example, BackPropagation learning algorithm can only be

applied to a neural network which is based on supervised learning paradigm and has

feedforward architecture.

The taxonomy of Artificial Neural Network is shown in APPENDIX A1. A table

showing the similarities and differences between the Von Neumann computer model

and neural networks is available in APPENDIX B.

2.3 Field Programmable Gate Array (FPGA)

FPGA technology is given preference over other options such as VLSI (Very Large

Scale Integrated) circuit, ASIC (Application Specific Integrated Circuit) and

MPGA's (Mask Programmed Gate Arrays) for the implementation of neural

networks due to its flexibility to be reconfigured while providing all the advantages

inherent to hardware devices such as low sensitivity to electric noise and

Reproduced from [4] pg 6



temperature, memory of weight storage, processing speed and parallel processing.

Besides technical advantages, implementations on experimental projects using

FPGA's have lower non-recurring engineering costs as well as faster development

and implementation processes. With its reprogrammability features, any design

defects on FPGA can be easily corrected and tested, thus shortening the time-to-

market. Studies on computer architectures provide well documented optimization

techniques which can be incorporated into the neural network hardware design.

FPGA technology uses Hardware Description Language (HDL) to design circuits.

Among the more popular are VHDL and Verilog. Both HDL's are similarly

powerful and usage of either or both is up to preference. There are 3 different levels

at which a circuit design can be specified: behavioural, dataflow and structural.

Behavioural style of coding is at the highest level in terms of similarity with natural

language whereas the most specific is the structural style. Coding structurally would

make the design easier to synthesize and also provide more control over the physical

assignation of the circuit design. A design can be a specified using one or more

coding styles.

Hardware design using FPGAs are usually performed using both combinational and

sequential logic. These designs are specified using any of the three hardware

description methods; which are the structural, dataflow and behavioral. For design of

complex circuits, dataflow and behavioral styles are preferred because it frees the

designer from having to fully specify the connections and logic gates to be used.

Design of hardware using the dataflow method is used more often to design

combinational circuits. The use of the keyword "assign" in Verilog for the dataflow

method refers to a combinational logic assignment. On the other hand, behavioral

design method uses the "always" block for the design of sequential logic.

Specification of conditions such as "posedge" and "negedge" for certain signals

dictate when the procedural block is executed or triggered.

The Verilog hardware description language (HDL) is a very powerful simulation

language. However, only about 10% of its instructions are synthesizable [3].

Synthesis refers to the ability to successfully convert from codes to actual hardware



logic implementation. Thus the hardware designer has to be aware of which

instructions are synthesizable friendly as well as some designing rules that may

cause the design to not being able to be implemented in hardware. Instructions that

are not synthesizable are those which deal with timing parameters such as "time,

wait, initial, delay" and others such as "fork, join, defparam, UDP".

There are also other restrictions such as those concerning signals which are either

wires or registers. For example, it is illegal to connect two registers together inside a

module, which would be a common mistake for new designers who are usually

comfortable with software programming style of liberally using variables.

2.4 Optimizing the Design

To produce an optimized design, there are two things to consider, first would be the

algorithm of the design architecture, and second, the optimization of the

implementation itself. This section would be dedicated to the second kind of

optimization. Optimization of logic implementation would require the knowledge of

how FPGAs work. Xilinx FPGAs are made of arrays of Configurable Logic Blocks

which normally houses two 4-input LUTs feeding a pair of flip flops [2]. To produce

an optimized implementation, the designer has to constantly think of how the codes

will be implemented into hardware given the amount and type of available resources.

CLOCK

Figure 2.4: Suggested Module Boundary Selection and Register Assignment



Hardware designs are usually segregated into several modules which are then linked

to each other and controlled using a control unit which is made a state machine. Each

module i s b est d esigned t o h ave its m odule b oundaries a s specified i n Figure 2.4

which basically means that all outputs are to be buffered using registers. Using this

standardization would mean that synchronizing flip flops on inputs are not necessary.

The synthesizer optimizes combinational logic within modules. Therefore it would

be advisable that related combinational input and output of related signals to be

grouped together in the same module so that there would not be any redundancy

which is harder to detect if specified in separate modules. In hardware design,

sequential logic or state machines are preferably synchronous. This is to reduce

propagation delay as well as chances of timing problems occurring.

2.5 Completing the design

The next steps of the design process after the completion of the RTL (Register

Transfer Logic) codes would be the synthesis and the "place and route" process.

What the synthesis process does is to generate a netlist which is also a Verilog file

that represents the higher level Verilog codes presented to it into lower level

structural/gate level format. Information that is provided to the synthesis tool are for

the FPGA target chip model which will be used to invoke the appropriate library file

containing all physical and timing parameter information and implementation of

Verilog constructs into gates.

From synthesis, the designer would be able to know how fast the design could run,

which depends on many factors such as the longest length of combinatorial

propagation delay. For FPGA, problems usually encountered in ASIC design such as

clock skew and signal strengths do not have to be worried as this are already

accounted for by the FPGA library file by appropriately assigning clock and signal

buffers which are available in the FPGA chip itself. Thus the synthesis process is

rather straightforward for FPGA based designs, with design constraint usually

dependant on the achievable processing speed.

After successfully synthesizing, the netlist file is passed to the place and route

portion of the application to simulate the physical implementation of the design. This

process ensures that the design does not violate the boundary parameters of the target



FPGA chip.Itis alsopossible that manual routing maybe required to produce an

optimized design. The output of this process is a gate.v file which is also a Verilog

file which can be fed back into the RTL simulator for simulation. The process of

RTL coding synthesis and place and route is continuous and is repeated until the

specifications of the design are met.
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CHAPTER 3

METHODOLOGY AND PROJECT WORK

3 METHODOLOGY AND PROJECT WORK

3.1 Project Methodology

The project involves the completion of the following four stages; literature research,

specification of neural network architecture design, Field Programmable Gate Array

(FPGA) training and experimentation, FPGA implementation and training of neural

network, and optimization of FPGA design. The project design approach would be

based on the "waterfall" process model as shown in Figure 3.1 below.

Design
Specifications

iWUff.-i1

System
design

Module

Development and
Testing

% £"*

Module Integration
and System

Testing

Operation and
Optimization

Figure 3.1: ANN System Process Model for FPGA Implementation
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3.1.1 Literature Research

Early stages of the literature review were performed to enhance and widen the

author's knowledge on the different types of neural networks architecture. Later on,

research on FPGA technology and also a study on Hardware Description Language

(HDL) follow.

3.1.2 Specification of Neural Network Design

The next stage of the project was to specify the characteristic of the neural network

architecture to be designed and implemented onto FPGA. The specification of the

neural network architecture is important as it would serve as a guide and reference

for later design stages. Samples of specification to be included would be the number

of inputs and outputs, algorithms and architecture for logic blocks, functional

specification of the control logic as well as the expected results of the design.

3.1.3 FPGA Training and Experimentation

FPGA training and experimentation would be conducted in parallel with the

preceding stage to get familiarized with the devices and related HDL programming

software. Part of the experiments or exercises on FPGA would be to design modules

such as multipliers and fast adders and also to learn to write testbenches that will be

used to validate the functionality of the design. Aldec's Active HDL software would

be used to develop and simulate the functionality of the HDL codes.

3.1.4 FPGA Implementation and Testing of Neural Network

RTL implementation of neural network followed by optimization was performed

after sufficient skill is gained. Specified modules would be developed separately and

tested. These modules would then be integrated into a complete design. Testing at

both the Register Transfer Level (RTL) would be performed to ensure that the design

performs reliably. The supervised learning portion using the back propagation

algorithm of the design will be performed offline using a shareware program known

as MetaNeural™.

12



3.2 Equipments and Software Applications Used

3.2.1 Xilinx Virtex-II XC2V1000 Reference Board

Based on research on previous implementations of neural networks onto FPGA, the

designs documented usuallytake up a sizeable portion of the target FPGA chip used.

Some of the designs are even implemented using multiple FPGA chips. From this it

seems appropriate that the largest FPGA in terms of gate numbers available in our

labs be selectedfor the purpose of this project. Due to the experimental natureof the

project, a larger gated FPGA wouldeasily allow for variations of neural networks to

be designed and implemented. Restrictions on the design would then be minimal.

More features of the Virtex FPGA chip is discussed below.

"The highest performance designs are tailored for the target FPGA" as mentioned by

Coffman (pg 221 [3]). FPGA vendors such as Altera and Xilinx build their devices

differently from each other; their line of products which may very well vary between

themselves, differing in pin counts, routing density, logic block construct,

availability of RAM blocks and more. Therefore it is of much importance for an

HDL FPGA designer to find out about the limitations and advantages of the devices

they are dealing with.

The Virtex-II FPGA series are the latest devices offered by Xilinx. It is built using

0.15 micron lithography and 8-layer metal technology. Different from conventional

FPGA devices, the Virtex series is of a hardwired version. A hardwired FPGA

version improves the performance of conventional FPGA as well as contributing

towards a smaller silicon die footprint.

The FPGA chip that is used for the project is the Xilinx Virtex II XC2V1000-

4FG256C. This chip has 256 pins of which 172 are usable as input/output pins. As

like all Xilinx devices, the Virtex II chips are made up of an array of Configurable

Logic Blocks (CLB). Each of these CLB's contain function generators, carry logic,

arithmetic logic gates, wide function multiplexers and storage elements which will

be appropriately interconnected according to design. Unique to the Virtex board, is

built in resources for Look-Up Table (LUT) of up to 8 inputs, which is useful for

implementing mathematical functions such as a sigmoid function. The chip used also

13



has 40 blocks of 18kbits Select RAM resources which can be used to store

connection weights for the neural network. Another feature built into the device is 18

by 18 bit multipliers. Usage of these built in multipliers would considerably speed up

the design as compared to manually customized ones.

3.2.2 MetaNeural™

MetaNeural is a shareware program originally developed by Professor Mark J.

Embrechts of Rensselaer Polytechnic Institute, New York (USA) in 1988 as a

demonstration package for a lecture course. The application has since evolved and

given a user interface as seen in Figure 3.2. The application is used to train

feedforward neural network architecture using the BackPropagation learning

algorithm. The program is able to work with network architectures which have up to

3 hidden layers while allowing an arbitrary number ofneurons per hidden layer.

The list below summarizes the core features and user customization allowed by the

MetaNeural™ application. Items listed are illustrated inFigure 3.3.

• Specification of neural network architecture up to 3 hidden layers.

• Specification of number of training epochs.

• Error threshold to stop training

• Training rate which affects the amount of weight adjustment for each training

cycle.

• Selection of activation function type

• Easy text format for training pattern and test pattern input files.

The MetaNeural™ software application will be used in this project to supply the

values for connection weights and neuron biases to be designed into the FPGA

implementation of the neural network. The neural network for an intended

application can be trained given a set of training pattern which for this case would be

the truth table for the XOR logic.

14



i --n

(.'Lumiionils

Current Paiiimoteis Hunenl Status

liMrninu [p, T*! Nnixc % II it r ,. .

^fiinrnruii | >i

I'.il lilt*

••- H'X,

nhiHirji*

"l I" _" " "•""• "/
Miri: ..":::. :v

n i

J J1

U

4 i - t- r-

5.:! ••Im:::

Figure 3.2: Screenshot ofMetaNeural™ Main Interface

ft input nodes \'j • tt uulpul nrjui:*' 1
L

It hidden l.iyirii [j

It ntiitrt in 1 It mules in ? It nodus in 3

1 purh 1nnqlh |1 tt (Iridiums lUUuUU}
;tsKra3rciSrt<i"r»s£i

Lcciinintf ildli* !.2!i Upiljlo isvisiji H ion r

Mtiiiii.Titum r~,;i 1 inn 1iili:iiini i: 01

Ai.livjlion

\ uriLlion jrn.11 SkjiiiokI

IlinillRUltUIL' 1

I'.itltiin 1 He nuniim'S pal

• IK [*>ini:t

•:t Numbbi ut mpul NuU-

TMFigure 3.3: Screenshot of MetaNeural Network Setup Interface

15



3.3 Hardware Design Flow

The hardware implementation of the RFNNA processor is divided into several tasks.

The approach taken as seen in Figure 3.4 is to first define the modules that will be

present in the designsuch as the neuronmodule and activation function LUT.

Hardware

Description

HE

Finite State

Machine

TT

Block Diagram

Functional

Simulation

Figure 3.4: Design Flow for Verilog based Register Transfer Logic

The second step would be to design a control unit which is basically a state machine.

The state machine would provide control signals to all modules so that processing is

performed whenever it is intended. The block diagram editor provided with the

Aldec Active HDL compiler allows the designer to have an overview of the entire

design. This is also the place where the inputs and outputs of modules and state

machines are connected to each other.

The process of functional simulation and verification takes place in intermediate

module design stages and also for structural testing when the design is complete. The

verification process is performed by applying simulators either by using readily

available tools or by using a testbench. A testbench provides the designer with more

control regarding the stimulus which is subjected to the module unit under test.

Stimuli are essentially generated input signals inclusive of the clock which triggers

the module. The output of the module and intermediate net and register status are

checked for any discrepancies.

16



3.4 Functional Simulation Using Testbenches

Testbenches for this project are written using Verilog; however they are not

subjected to instruction and optimization constraints as imposed for synthesizable

modules. Timing parameters such as delays are applicable.

Modules are usually tested by asserting inputs and clocks going into the module. The

assertions of inputs are chosen to reflect actual operating as well as timing

conditions.
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Figure 3.5: Screenshot of Simulated Input Signals and Output Registers

The simulation signals are as shown in Figure 3.5, all status of inputs, outputs and

declared registers can be added into the watch window and monitored.

17



CHAPTER 4

RESULTS AND DISCUSSION

4 RESULTS AND DISCUSSION

Development of the optimized neural network processor is divided into two equally

important parts. The initial part was to comprehensively describe an optimized

architecture as well as specifications of the neural network that is to be implemented

into hardware, whereas the second part was to design the neural network processor

modules and optimize the organization of the neural network processor which is

based on the architecture specified in the first part.

Below is a description of the subtopics that will be discussed in this chapter:

Research and analysis performed on existing neural network implementation into

Field Programmable Gate Array (FPGA) and arithmetic computations in binary

circuits led to the discovery of an innovative hardware implementation architecture.

This implementation is termed and referred to from here onwards as the

Reconfigurable Feedforward Neural Network Architecture (RFNNA). More

discussion on this architecture is available under the heading Architecture

Optimization (4.1). A unique numbering convention to optimize the information

processing of a neural network has also been worked out with more discussion

available under Number Convention (4.2). A Visual Basic application was

produced to help model and analyze the implementation of both findings. A

description of the application is shown in the subtopic RFNNA Simulator (4.3).

With a comprehensive specification of the desired neural network, the project

proceeded with the actual hardware design of the neural network processor. Details

of the modules and how they are optimized in terms of organization are available

under Neural Network Processor Modules (4.4) and Multiplier Bus (4.5).



4.1 Architecture Optimization

4.1.1 Neural Network Architecture and Learning Algorithms

There are two types of neural network architectures: Feedforward and Recurrent

[13]. The former has the advantage of being less complex in its connections between

layers of neurons and there are no connections between neurons within the same

layer. The recurrent architecture on the other hand necessitates connections between

adjacent layers as well as connections intra layer.

Implementation wise, the feedforward architecture would be more appealing due to

the considerable amount of logic gates that would be saved without implementing

these extra connections. It may be argued that since a neural network application

may perform better in a particular type of architecture than another, one cannot just

take simplicity of implementation to choose between which architecture to be used.

However, the back propagation supervised learning algorithm which is widely used

in most applications works in feedforward neural network architecture. Having a

choice on which architecture to be used for a general purpose neural network FPGA

implementation, the feedforward architecture would inarguably be selected for its

simpler implementation and wide applicability.

Thus it is decided that a neural network architecture which is based on the

feedforward architecture be used for the FPGA design implementation in this

project. Since the training portion of the neural network function will be performed

separately, the architecture would allow all types of learning algorithms which fall

under the feedforward neural network architecture branch (refer APPENDIX A).

Besides the mentioned back propagation algorithm, other learning algorithms such as

the Adaptive Linear Network (Adaline), Multiple Adaptive Linear Networks

(Madaline) and Perceptron can be used.

4.1.2 RFNNA

Following the decision to use the feedforward neural network architecture as the

basis for implementing the design, more thought has been given to optimizing the

logic gate area in which this can be implemented. Review of other works [8][9] on

neural network implementation into FPGA mentions about time multiplexing the
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resources for connections between neurons. This however would slow down the

processing speed of the design.

Instead of time multiplexing the resources within a layer by reusing the same neuron

module for each neuron in a hidden layer, the resources for a hidden layer can be

time multiplexed so that a full parallel implementation of a neuron layer is reused by

subsequent hidden layers. This will overcome the disadvantage of reducing the

processing speed. The ability to pipeline the initialization of weights and other

resources while other stages are processing would make the design more efficient.

Taking the idea further by adding controls to determine the number of hidden layer

iterations and connectivity patterns, we would then have a multiple connection

architecture neural network at hand. This architecture is given the name

Reconfigurable Feedforward Neural Network Architecture (RFNNA).

4.1.3 RFNNA for XOR Problem

The RFNNA example shown in Figure 4.1 is developed to be able to solve the

nonlinear XOR problem. The circuit is designed to have only two inputs and one

output. The hidden layers have a maximum number of 2 neurons. The number of

hidden layers and neurons for each layer to be used is arbitrary and selectable. The

resources are designed to be fully utilized at each layer where the same resources are

used recursively for each hidden and final output layer computation.

Pipelining is used to update the value of weights for the next hidden layer's multiplier

during initialization as wellas when summation andmapping of activation function for

the current layer is being performed. Not included in the diagram is the control logic,

which controls the uploading of weights and activation of logic switches to ensure

proper network connections between registers. The logic switches connects and

disconnects accordingly to ensure proper network connectivity. The control logic also

determines the number of computation iterations which in turn depends on the number

of hidden layers selected. This logic switch shows the connection path for the output

layer.
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Figure 4.1: Reconfigurable FeedforwardNeural Network Architecture and Execution

Phase Diagram for XOR Problem

Of particular interest is the way the multiplier constants are updated. As seen in Figure

4.1, the weights for s ubsequent hidden layer which are storedin memorywould be

fetched and stored as the multiplier constants while the current layer is still executing

its summation and activation function transformation. This pipelined method reduces

the processing speed difference between this architecture from a full cascadedparallel

implementation.

4.2 Number Convention

There are 3 arithmetic operations that a neural network computes a s is shown in

Figure 2.3. These are multiplication, summation and conversion of inputs using an

activation function.

Generated weights of a trained neural network are not integers rather they are

represented using decimal numbers. As computation of arithmetic functions using
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logic circuits are in binary format, these decimal values would have to be substituted

using a suitable numbering convention in which the circuit is able to manipulate

with. The usual representation of decimal numbers in b inary format are the sign-

magnitude representation, twos complement representation and the floating point

representation.

4.2.1 Twos Complement and Floating Point Representation

Twos complement is a variation of number representation for integers. It is similar to

the sign magnitude representation for positive values but is different when

representing negative values. Unlike the sign magnitude representation, twos

complement does not use an extra MSB as a sign bit but is automatically represented

when translated to binary format. The main advantage of twos complement over sign

magnitude is that it simplifies mathematical operations such as addition and

subtraction, no extra logic is required to test for the polarity of the sign bit. Two's

complement and sign-magnitudenumbering convention are described as follows.

Sign Magnitude

n-2

N = ^T ai ifan.i —0 (equation 4.1)
i=a

N-2

N = -^2'a, ifan_i =1 (equation 4.2)
i=0

Twos Complement

N = -2"~lan_x+ ^2'a, (equation 4.3)
n-2

i=0

Floating point numbers are used when the numbers to be represented are spread

across a wide range. It is the binary equivalent of the decimals scientific notation. A

floating point number is divided into 3 sections(Figure 4.2); the sign bit, significand

or mantissa and the exponent.
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<— 8 bits —X 23 bits

y-
Sign Biased Exponent Significand

E.g.: 01001001110100010000000000000000= 1.638125 x 220

1 10010011 10100010000000000000000 = -1.638125x 220

Figure 4.2: 32-Bit Floating Point Format [7]

Mathematical operations performed using floating point representation is generally

more complex and require substantially more logic to implement when compared to

twos complement. Comparing multiplication operations between twos complement

and floating point representation, the whole multiplication operation of a twos

complement representation is performed only in the significand section of the

floating point representation. Extra logic is required to manipulate the exponent bits

to reflect the changes made by multiplying the significand of two floating point

numbers.

4.2.2 Fixed Point with Fractional Component

From findings, it is best that a floating point representation convention be avoided.

Besides being complex in its implementation, its significand component cannot be

directly used to address the LUT for which the activation function is to be

implemented. The storage of a number would also use much more memory.

Although the computation within a neural network contains decimal numbers which

may seem more suited for floating point implementation, usage of twos complement

or sign magnitude is possible due to the numbering range which is always limited

after each hidden layer by the sigmoid function (Figure 4.3) to between 0 and 1.
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Sigmoid Activation Function

-8 -2

Figure 4.3: Graphical Plot of a Sigmoid Function

From equation 4.4, the sigmoid function involves division and the natural

exponential function. Direct mathematical implementation of this function in

hardware would be difficult due to the number of mathematical steps involved when

the function is breakdown into fundamental operations such as add, subtract, divide

and multiply. Thus a Look-Up-Table (LUT) is used to plot out the function with the

value of "net" as its pointer.

Sigmoid Function

/(net) =
1

1+ exp(-net)
(equation 4.4)

This small and confined range of operation eases the use of twos complement

representation. Besides representing integers, twos complement representation can

also be used to represent fractions.

The size of each fraction equivalent to 1 binary value is determined by the accuracy

of the computation as well as hardware implementation constraints. As was

mentioned before in Chapter 3.2, the maximum implementable LUT size for the

Virtex 2FPGA chips is at8bits. This gives 28 = 256 memory words which are 8bits

wide. From observation of Figure 4.3, the sigmoid function provides distinct values
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between the ranges on the x-axis of-6.4 to 6.4. Corresponding values outside of this

range is clipped off to either 1 or 0. With the implementation of a sigmoid LUT and

8 bit addressing, the resolution for the entire range would be 6.4/256 = 0.025. An

extra bit is used to store the sign information.

This addressing step size of the LUT table is not to be confused with the twos

complement fraction size. This twos complement fraction size is dependent on the

multiplicand and multiplicand size for multiplication. Figure 4.4 below describes the

operation of neural network computation following the numbering convention

suggested.

8 lifts X

sfctts

SiomoMl LUT
{256 values)

Mutlij'ltcoiHl

ii lifts MSB 8*Hfc»S LSB

MSB LSB
8+iihfts

+ t 8+»i)it$

sJmsb 8 hits 8Mts LSB

~Y~

Figure 4.4: Description ofNeural Network Computation

The multiplier represents the weights of the connection where as the multiplicand is

the value of the presented input. The value of the multiplicand neverexceeds 1io and

is represented by an 8bit wide word whereas the multiplier is represented by ann-bit

wide word depending on the value of the weight. Notice that the multiplicand has no

sign bit as it is always positive. Multiplication of the multiplier and multiplicand

would yield a (8 + n) bit + 1 sign bit output. This output is then summed up with

other similar operations including the bias value in theneuron before being fed to the

25



sigmoid function. Bits 9 to 16 of the summation result are used to address the

sigmoid LUT. The value associated with the address is the sigmoid function

equivalent value of the pointer. To fully address 256 items of the sigmoid LUT, bits

9 to 16 of the summation result must fully vary between for decimal values 0 to

6.528 (value chosen instead of 6.4 for more straightforward correlation). For

example, to match the value of 6.528 the summation result would be

1111111IOOOOOOO2 or 65280io- From this, the twos complement fraction size can be

derived.

Max value = 65280i0

Range width = 6.528io

Fraction Size (N) = (6.528/65280)0 5= 0.01

E.g.:

Using twos complement fractional representation

Multiplicand =lio= 1/0.01 = 100steps=011001002

Multiplier = 6.528i0 - 6.528/0.01 = 653steps = 10100011012

By multiplying the above binary values, the result is as shown below.

10100011012

x 110Q100,

111111110D101DD2

With the bits 9 to16 all set tol, the highest value of the sigmoid LUT is accessed and

a corresponding result of 1 is provided. For binary values exceeding

1111111IOOOOOOOO2, the output would be automatically set to 1 whereas binary

values below 00000000111111112, the output will be set to 0. The value of weights

and neuron biases generated by the MetaNeural™ program and the value of sigmoid

outputs would be converted using this representation.
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4.3 RFNNA Simulator

This application was initially written by the author to help simulate the neural

network for the XOR problem using the RFNNA architecture. The simulation of

neural networks for up to 3 hidden layers with a maximum of 3 neurons per layer is

possible using this application. The weights used for the program utilizes the WGT

weight file as generated by the MetaNeural™ application. The simulator simulates

neural network operation by showing all internal mathematical computation and

result for a chosen network. Additional features such as accuracy adjustor for

adjusting the number of decimal places for mathematical operation can be used to

analyze how well a network performs and the margin of error caused by rounding

and truncating the numbers.

Figure 4.5 below shows the software simulating the first hidden layer of a 2-3-2-1

architecture for the XOR problem. The operation manual for the application is

included in APPENDIX C. More screenshots is available in APPENDIX D.
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Figure 4.5: Screenshot of RFNNA Simulator vl.3
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4.4 Neural Network Processor Modules

The RFNNA processor was designed using the modular method as was mentioned in

Chapter 3 Methodology. Figure 4.6 shows a basic block diagram for the hardware

implementation of the RFNNA processor. A more detailed and accurate block

diagram is available in APPENDIX E. All modules are individually designed based

on the specifications mentioned earlier and validated using testbenches. However

some adjustments were made to better suit the architecture for hardware

implementation. The adjustments made to a module will be discussed the module's

subtopic respectively

The final validation was performed after the control unit of the processor was

completed. The RTL simulation of the RFNNA processor for a 2-3-3-3-1 was

successful. The discussion in this section will be divided into the respective modules

available in the hardware implementation as shown in APPENDIX E.

OUTPUT MODULE

SIGMOID LUT AND WEIGHT ROM

MULTIPLICATION/
SUMMATION

MULTIPLICATION/
SUMMATION

MULTIPLICATION/
SUMMATION

xr,~,:

MULTIPLICAND BUS

O
O

I
o
r

c
z

Figure 4.6: Layout of 3 Neuron RFNNA Processor HDL Modules
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There are total 11 unique modules withinthe neural networkprocessor designed.

The modules are as follows (labels in brackets refer to the actual module name in the

design schematic):

1) Input Module (muxl)

2) Input Module Counter (muxl_cnt)

3) Bias and Weight ROM Module (values)

4) Bias and Weight Counter (values_cnt)

5) Neuron Module (neuron)

6) Neuron Output Multiplexer Module (mux2)

7) Neuron Output Multiplexer Counter (mux2_cnt)

8) Number Representation Converter Module (interface)

9) Activation Function LUT Module (activjunction)

10)Output Threshold Module (threshold)

11)Control Unit (Fub2)

The simulated 2-3-3-3-1 RFNNA processor is able to process a given set of XOR

inputs in 265 to 270 clock cycles depending on the combination of inputs provided.

This means that if the processor is running at a conservative speed of 10 MHz, the

number of XOR computations possible per second would be around 37000 to 37700.

4.4.1 Input Module (muxl)

The Input Module serves as buffer and multiplexer to external inputs as well as

outputs from the activation function. External inputs are first converted into its

equivalent value for arithmetic computation. For example, if the input is logic 1 the

equivalent value stored in the buffer (mult_reg) for multiplier values would be

01IOOIOO2. An all 0 word is provided if the input is logic 0.

The input module accepts and assigns values to external inputs to be stored into the

multiplier buffers concurrently. However the same buffers are written to sequentially

when data is passed from the activation function. No conversion is required for data

from the activation function. The control signals provided to the inputs sel_reg[l:0]

addresses the appropriate buffer in which the incoming data is supposed to be written

to. Besides receiving and storing data, the Input Module is also required to correctly

broadcast the values in its buffers onto the multiplier bus (refer to section 4.4.12

29



Multiplier Bus). Again, the sel_reg[l:0] is used to properly select which buffer is

being broadcast. To switch between broadcast and write mode, control signal from

the control unit to the input sel_inout is used. However the sel_inout control is nulled

when the sel_reg is in 2'b00 mode, which is when the external inputs are being read,

converted and stored into buffers. Figure 4.7 shows the waveform of module being

simulated.

Name Value | S,| i . 20 . i . 40 . i GO . i •00 i 100 i 120 i 140 , 1ED i T60 i 200 . 220 i Z-
<"•' in1 1 S !

^in2 1 ! :

& *• function in 15 ! 'i20* X240 X15

»• seljnout 1

jWrite mode Broadcastmode

I

33»- seljeg D

I Input numberdeterminesthemult^reg that is beingselected

! b> X' * X^ ft
«- elk D \ ruiJiJiJiixrirLJiixriJi^^

EB •* multipfier_out 204

Broadcast of data, ualue pointed tp bysel_teg

i b X^°4

i+iR= mult_reg1 100

Data Frometernal inputs are witter to buffer only when sel_jeg = 2'bOO

| j(0 X,aQX20* X10D

S R= mult_reg2

J±iRs mult reg3

100

0

I :j(o X,Q° X204 X,0D

i p X»* X°

Figure 4.7: Simulation Result for Input Module

The Verilog code for the Input Module is available in APPENDIX G. The testbench

for the simulation in Figure 4.7 is available in APPENDIX H.

4.4.2 Input Module Counter (muxlcnt)

The Input Module Counter provides the control signals to the Input module's

sel_reg[l :0] to select between the multiplier buffers. The counter counts from 0 to 3,

and loops back to 1, whenever there is a reset, the counter goes back to 0.

Figure 4.8: Mealy Machine for Input Module Counter
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The sel input signal comes from the Control Unit of the neural network processor.

The reset s ignal i s provided by the e xternal r eset. T he V erilog code for the I nput

Module Counter is available in APPENDIX I.

4.4.3 Bias and Weight ROM Module (values)

There are three Bias and Weight ROM modules in the designed processor. Each

module is similar to the other, differing only in the weight and bias values they carry.

Each module is dedicated to one neuron and stores bias and weight values for three

hidden layers and one output layer.

As in the Input Module, weight values are sequentially passed to the Neuron

Module. Each module has an internal counter which tells the module which weight

value is to be passed on. External signals to the modules layer[l :0] input tells which

layer the bias and weights value it can select from. The bias values stored in the

modules are in twos complement format while weight values are stored in sign

magnitude integer. The fraction size for the weight and bias values are different. The

fraction size for weight values is 0.01 whereas the fraction size for bias values is

0.0001.

Name Value S. . 2.0 i . 4.0 . i 6.0 . i • GO i 100 i 120 i 140 i 160

^clk 1 i ^niinnMWum^^^RfMMMjMJW

S! *- layer
Input

(x X"

E! •• bias_out 209323?

Bias values remain the same for one hidden layer

* X20G3G41

Si * multiplicand_aut 133D P X284 V13D $

m R= cnt 1 |
Counter selects weight value to be transmitted

<o » * »

b- sel 0 | |
Select pulses increments the modules counter

J | J | | |

^rst o i r

Figure 4.9: Simulation Result for Bias and Weight ROM Module

The Verilog code for the Bias and Weight ROM Module is available in APPENDIX

J. The testbench for the simulation in Figure 4.9 is available in APPENDIX K.
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4.4.4 Bias and Weight Counter (values_cnt)

The Bias and Weight Counter provides input to the layer[l:0j input of the Bias and

Weight Module. This counter keeps track and ofwhich hidden layer or output layer

the processor is in. Figure 4.10 shows the state machine for the counter.

Figure 4.10: Mealy Machine for Bias and Weight Counter

Thecounteris incremented by the sel signal from the ControlUnit of the neural

network processor. The reset signal is provided by the external reset. The Verilog

code for the Input Module Counter is available in APPENDIX L.

4.4.5 Neuron Module (neuron)

Instead of just using the "*" arithmetic operator to perform multiplication, there is a

need for more control from the process so that control bits can be incorporated into

the multiplication process.

add_out <= multiplier_in* multiplicand_in;

The control bits are important so that feedback such as when the multiplier,

multiplicand and bias values has been recorded or when the multiplication and

summation has completed can be provided back to the control unit. The control unit

would then determine the appropriate action required for the next operation in the

neuron module for the hidden layer iteration.

Multiplication for the neuron module uses the Add Shift Right (ASR) algorithm.

This algorithm is suited for unsigned binary multiplication which is the type of data

presented to it. Figure4.11 below shows the flowchart for the ASR algorithm.
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Figure 4.11: Flowchart for Unsigned Binary Multiplication

While the multiplication algorithm involves unsigned binary integer, the register

mult_sign stores the sign bit of the multiplicand. The sign bit will be a flag as to

whether the multiplication result need to be complemented before it is summed up

with the value stored in add out.
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Figure 4.12: SimulationResult for Neuron Module

33



Figure 4.12 shows the waveform showing all internal operations of the Neuron

module. There is only one multiplier per neuron, therefore multiplier and

multiplicand values provided by the Input Module and the Bias and Weight ROM

Module respectively are multiplied and summed up sequentially with the bias value

which is directly stored in the add_out register. The loading of values is different for

the starting of a hidden layer and the loading of values there after. Bias values are

only loaded once for every hidden layer into the Neuron Module whereas multiplier

and multiplicand values are loaded at every iteration. To differentiate between

starting of a hidden layer iteration and a normal iteration, two different stimulus

signals are provided, start and sel. The status_out register provides output that

signifies that values has been loaded intothe module and whenarithmetic operations

for a particular iteration have completed.

The Verilog code for the Neuron Module is available in APPENDIX M. The

testbench for the simulation in Figure 4.12 is available in APPENDIX N.

4.4.6 Neuron Output Multiplexer Module (mux2)

The purpose of the Neuron Output Multiplexer Module is to multiplex between the

outputs of the neurons such that only one output is passed through the activation

function. There is only one activation function in the processor and all neuron has to

share its use. This is because the implementation of an 8 bit wide LUT requires a lot

logic gates, thus it is not feasible to have dedicated activation function LUT's for

each neuron.
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Figure 4.13: Simulation Result forNeuron Output Multiplexer Module
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The module does not buffer the output from the Neuron Modules. It simultaneously

reads in the values and passes only one which is chosen by the sel[l:0] input to be

output.

The Verilog code for the Neuron Output Multiplexer Module is available in

APPENDIX O. The testbench for the simulation in Figure 4.12 is available in

APPENDIX P.

4.4.7 Neuron Output Multiplexer Counter (mux2_cnt)

The Neuron Output Multiplexer Counter's design and function is the same as that for

the Bias and Weight Counter. The output of the counter however is now used to

provide selection for the Neuron Output Multiplexer Module's sel[l:0].

The c ounter i s incremented by the sel s ignal from the Control U nit of the neural

network processor. The reset signal is provided by the external reset. The Verilog

code for the Input Module Counter is available in APPENDIX Q.

4.4.8 Number Representation Converter Module (interface)

The purpose of the interface is to convert the twos complement result from the

neuron module back to unsigned binary integer. This is because the twos

complement result for negative results would not be able to be used with the

activation function unless modifications were made to it. The other reason why the

interface is required is because it relieves each neuron modules from having extra

logic to perform the conversion. A centralized interface would reduce the number of

logic used, because the activation function is only accessed one at a time by each

neuron. The output of the interface would be an 8 bit wide word with a separate sign

bit and also a status flag bit.

The Verilog code for the Neuron Output Multiplexer Module is available in

APPENDIX R. The testbench for the simulation in Figure 4.14 is available in

APPENDIX S.
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Figure 4.14: Simulation Result for Neuron Representation Converter Module

4.4.9 Activation Function LUT Module (activfunction)

The LUT which is to be implemented and declared as a ROM block in the FPGA

device itself contains many redundant entries. Addressing the LUT is an 8 bit input

which has 256 entries. Using mathematical analysis, it is possible to reduce the ROM

usage from 256 x 8 bit word entries to 68 x 8 bit word entries. This is because there

are only 50 unique data that is being accessed in the LUT ranging from decimal

equivalent of 50 to 99.

All input combinations are accounted for with the help of mathematical analysis as

shown below. Several of the combinations can be grouped together for an entry thus

reducing the need for individual access for equivalent results.

Input LUT values

0 110010

1 110010

10 110011

11 110011

100 110100

i=)1 110101

110 110101

111 110110

1000 110111

1001 110111

1010 111000

1011 111000

1100 111001

1101 111010

1110 111010

1111 111011

Figure 4.15: Mathematical Analysis on Sigmoid LUT Values
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Inputs in each colored band in Figure 4.15 are grouped together to address a similar

LUT equivalent.

The inputs from the Number Representation Converter Module are used to address

the activation function LUT as well as to note the sign of the input argument. As was

mentioned before, the LUT tale can only address values from 50 to 99 corresponding

to the sigmoid range of 0.50 to 0.99. These values are only valid for positive

arguments. If the sign of the argument is negative, some manipulation of the LUT

result has to be performed. The LUT equivalent would be subtracted from 100 to

produce the correct answer.

Name Value |S. i . 2.0 . i . 4.0 . i 6.0 . i • SO i 100 i 120 i 140 i

W\ •" sumrnationjn 1D0 | (100

tvse| 0 I I I I

^clk 0 I jmnrL^^^muuTR^

»- sum_sign_in 0 I
Negative sign bit Positive sign bit

Ei •* functinnjaut 92 |
Manipulated equivalent (100- LUTvalue)

Value from LUT

Q_ X» X* fe

"* status_out 1 CL I I

R= status 1 I | | |

Figure 4.16: Simulation Result for Activation Function LUT Module

The Verilog code for the Activation Function LUT Module is available in

APPENDIX T. The testbench for the simulation in Figure 4.16 is available in

APPENDIX U.

4.4.10 Output Threshold Module (threshold)

The output Threshold Module is used to provide a categorization of the output to

whether it is a logic 1, logic 0 or in the indeterminate state. Output from the

Activation Function ROM Module is continuously processed to provide

classification. For logic 1 the output from the activation function must be in the

range of 0.9 to 1.0. For logic 0, the output must be in the range of 0.0 to 0.1. Any

other values would produce a high impedance output.
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Name ]Valuis S. i • 2.0 . i . 4.0 . i 60 . • . 80 i 100 i 120 i 1'

El »• functionjn h
i InputsfromActivationFunction

b »» > fe
^clk 1° ^njianTLruuuuiruiJL
»- sel \z

|o
i Logic 1 Indeterminate state Logic 0

i I
I 1

"** ready in

Figure 4.17: Simulation Result for Output Threshold Module

The Verilog code for the Output Threshold Module is available in APPENDIX V.

The testbench for the simulation in Figure 4.16 is available in APPENDIX W.

4.4.11 Control Unit (Fub2)

The Control Unit for this neural network processor has 10 distinct inputs and 10

distinct outputs. The Control unit is able to guide the rest of the modules to function

as intended as the right time. The sequence of operations is as stated in APPENDIX

F. The control unit was designed directly in the finite state machine editor and

converted to Verilog.

The Control Unit provides control signals to all modules except for the Number

Representation Converter Module and the Activation Function LUT Module. The

system is designed such that in case of a reset, the whole processor can be set back to

its initial state.

Name

R-lnl

R= In2

R= reset

H- Start

Value

SO

IG

S.I i .20-1 • 4.0 . i 60 . 80 i 100 1?0 ' 20 2S40 > 2660

Logic 0

I tZL
Logic 1

! O"

±± 11 | UIJIJIJI^^ JLlJlJQil^
! Correct Output

!1 ! b ->—• Outl

Jsr Ready
Processor ready Processor Busy

Figure 4.18: Simulation Result for RFNNA Processor
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Figure 4.17 shows the simulation for the whole neural network processor as one

working entity of the modules discussed earlier. The Ready flag, notifies the user

when the processor is available or when processing is complete.

The Verilog code for the Control Unit is available in APPENDIX X. The testbench

for the simulation in Figure 4.18 is available in APPENDIX Y.

4.5 Multiplier Bus

An additional improvement to the original RFNNA architecture would be the

inclusion of the multiplier bus for transmission of inputs for multiplication with

connection weights. The bus works by time multiplexing its resources for the

transmission ofmultiplier to each neuron available in the architecture.

RFNNA

Processor 1

RFNNA
Processor 2

RFNNA
Processor 3

Figure 4.19: RFNNA Processors Paralleled

This implementation of the multiplier bus would reduce the number of multipliers in

a neuron unit exponentially. Comparing with the previous architecture, the number

of multipliers required for N number neuron architecture would be N2 in total,

whereas the number of multipliers required now is only N. This would save a

significant amount of logic resources.
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The implementation of the multiplicand bus would also open up the possibility of

similar RFNNA processors to be paralleled as in Figure 4.19, thus increasing the

number of inputs, outputs and neurons. This ability would allow more application to

neural network processed as the number of inputs and outputs are no longer a

limitation
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CONCLUSION AND FUTURE IMPROVEMENT

5 CONCLUSION AND FUTURE IMPROVEMENT

5.1 Conclusion

The project can be rated as successful with the completion of the RTL designfor the

neural networkprocessor for the XOR problem. The objectives of optimizing the

implementation havebeen performed on two fronts: architecture and organization.

Through research and analysis the RFNNA architecture and the optimized

numbering convention have been specified. The RFNNA architecture is a space

efficient implementation for neural network onto hardware, where all hidden layers

use the same logic resources without sacrificing implementation speed. The twos

complement fixed point fraction on the other hand increases processing speed by

simplifying the computation of binary values and addressing of the sigmoid

activation function's LUT. In the process of analyzing the proposed architecture, an

application was also developed to helpsimulate andjustifyneural networks basedon

the RFNNA architecture. Organization improvements through the implementation of

the multiplicand bus enable the processor to process in parallel. The decision to use a

single activation function ROM module helps reduce implementation size so does

the recursive use of a single multiplier within each neuron.

All of the mentioned findings and implementation have contributed towards

achieving the objectives of the project in which an optimized FPGA hardware

implementation of neural networks in terms of size, speed and performance is

desired.
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5.2 Future Improvement

The project provides a strong foundation in which more sophisticated neural network

processors can be built upon. The FeedForward architecture utilising the

BackPropagation learning algorithm caters for a variety of applications in which fast

processing is a must. With this motivation in hand, it is viable for processors to be

designed catering for these needs.

Utilising the RFNNA design and hardware organization design methodologies

mentioned in this report will provide any beginner in neural network hardware

design much useful analysis. However there are still areas which can be improvedon

in terms of design and implementation. The author would suggest that future designs

would have a general purpose neural network processor design in mind.

This general purpose neural network processor ideally can be used for any

applications and can be parallel processed with similar processors so that the number

of inputs,outputs and neurons per layerwill not be a constraint. The processor would

only require the weight and bias values to be reprogrammed. These values can be

stored on external memory so that hardware reprogramming is not required. The

possibility of an ASIC implementation would be more plausible then. The processor

would also have external inputs which controls the number of hidden layers it can

process. For this, the designer must do away with a hardwired implementation of the

control unit.

With a general purpose neural network processor, implementations in ASIC

technology would provide faster processing and at lower prices, opening up the

possibility of neural network processing to a multitude of applications.
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Taxonomy of ANN Models
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APPENDIX B

Similarities and Differences between Neural Net and Von Neumann Computer.

Neural Net Von Neumann Computer

1. Trained (learning by example) by Programmed with instructions (if-then

adjusting the connection strengths, analysis based on logic)

thresholds and structure

2. Memory and processing elements are

collocated

Memory and processing separate

3. Parallel (discrete and continuous), and Sequential or serial, digital,

asynchronous synchronous (with a clock)

4. May be fault tolerant because of

distributed representation and large

scale redundancy

Not fault tolerant

5. Self organization during learning Software dependant

6. Knowledge stored is adaptable; Knowledge stored in an addressed

information is stored in the memory location is strictly replaceable

interconnection between neurons
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APPENDIX C

Operation of the RFNNA Simulator vl.3 Software Application

The RFNNA Simulator works in 2 simulation modes:

a) Direct Simulation
- In this mode, the user would be able to obtain instant results for the XOR problem for any given
input when the simulation button is pressed.
b) Controlled Simulation
- An extra command button "Next Sequence" will appear. In this mode the simulation will pause after
computation is performed on every hidden layer. To proceed to the next hidden layer, press on the
"Next Sequence" command button.

NOTICE:

Pattern files can be manually generated, examples of neural network architecture and corresponding
weight files are listed below:

Architecture WGT File

2-3-1 W2131.wgt
2-3-3-1 W22331.wgt

The wgt files are directly generated from the metaNeural software. However to be able to use it using
this software, the user has to use an appropriate naming convention.

Example:

W2131.wgt

W - All files must start with "W"

2 = Indicates the number of inputs
1 = Indicates the number of hidden layer
3 = Indicates the number of neurons for 1st hidden layer and so on
1 = Indicates the number of outputs

The WGT files will be automatically retrieved from c:\METACTRIA. Pleaseensure that the wgt files
provided are located into this directory. All WGT files generated using MetaNeural will be saved in
the same directory.
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APPENDIX D

Screenshots of RFNNA Simulator Performing XOR operation for 2-3-2-1
Neural Network Architecture.
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APPENDIX F

Module: Fub2
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APPENDIX G

Input Module (muxl)

//
//
// Title : mux_l.v
// Author : Ivan Teh Fu Sun
// University : University Teknologi Petronas

//
//

//
// Description : Interfaces btw inputs/LUT and neurons

//
//

module muxl (inl, in2, function_in, sel__inout, sel_reg, elk, multiplier_out);

input [7:0] function_in;
input inl,in2;
input sel_inout;
input [1:0] sel_reg;
input elk;
output [7:0] multiplier_out;
reg [7:0] multiplier_out ,-
reg [7:0] mult_reglj
reg [7:0] mult_reg2;
reg [7:0] mult_reg3,

always @ (posedge elk)
begin

if (sel_reg == 2'bOO)
begin
if (inl)

begin
mult_regl <= 6 'bOHOOlOO ;

end

else

begin
mult_regl <= 8'bOOOOOOOO;
end

if (in2)

begin
mult_reg2 <= 8 'bOHOOlOO;

end

else

begin
mult_reg2 <= 8'bOOOOOOOO;

end

mult_reg3 <= 8'bOOOOOOOO;

end

// outputs contents of buffers sequentially
if (sel_inout)

begin

case(sel_reg)
2'b01: multiplier_out <= mult_regl;

multiplier_out <= mult_reg2;
multiplier_out <= mult_reg3;

2'blO:

2'bll:

endcase

end

// stores output from activation function into respective buffers sequentially
else

begin
if (seljreg == 2'bOD

begin
mult_regl <= function_in;
end

if (sel_reg == 2'blO)
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begin

mult reg2 <= function in

end

if i(sel_reg == 2'bll)
begin

mult_reg3 <= function in

end

end

end

endmodule
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APPENDIX H

Testbench for Input Module

"timescale lps / lps

module TB_muxl;

reg [7:0] function_in;
reg inl,in2;
reg sel_inout;
reg [1:0] sel_reg;
reg elk;
wire [7:0] multiplier_out;

muxl UUT (inl, in2, function_in, sel_inout, sel_reg, elk, multiplier__out)

initial

begin

#0;

elk =l'bl;

sel_inout = 1'bO;
sel_reg = 2'b00;
function_in= 8'bllOOHOO;
inl <= 1'bl;

in2 <= 1'bl;

#20000;

sel_reg=2'b01;

#3 000 0;

sel_reg=2'bl0;

#4 000 0;

sel_reg=2'bll;

#40000;

sel_inout = 1'bl;

#45000;

function_in = 8'bllllOOOO;

#50000;

function_in = 8'bOOOOllll;
sel_reg = 2'b0 0;

end

always

begin

end

endmodule

#5000

elk = !clk,-
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//

//
// Title

// Author
// University

//
//

APPENDIX I

Input Module Counter (muxl_cnt)

muxl_cnt.v
Ivan Teh Fu Sun

University Teknologi Petronas

//
// Description : provides selection for mux_l module

//
//

module muxl_cnt [sel, reset, muxl_sel);

input sel;
input reset;
output [1:0] muxl_sel;
reg [1:0] muxl_sel;

always m (posedge reset or posedge sel
begin

if(reset)

muxl ael <-2'

else

begin

bOO;

case(muxl sel)

2'b00 muxl sel <- 2 bOl

2'b01 muxl sel <- 2 bio

2'bl0 muxl sel < = 2 bll

2'bll muxl se1 <- 2 bOl

endca se

end

endmodule

end
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APPENDIX J

Bias and Weight ROM Module (values)

//-
II
II
II
II
II
fi
ll
II
II
II
II
II
II-

Title

Author

University

neuronl_values .v
Ivan Teh Fu Sun

University Teknologi Petronas

Description : ROM block for bias and multiplicand values

Bias values are initial twos complement
Multiplicand values are initial unsigned binary

integer. MSB of multiplicand is the sign bit

module valuesl (sel, rst, elk, layer, bias_out, multiplicand_out)

input
input

input
input

output

output

reg

reg

reg

always

begin

end

sel,

rst;

elk;

[1:0] layer;

[20:0] bias^out;
[10:0] multiplicand_out;

[20:0] bias_out;
[10:0] multiplicand_out;
[1:0] cnt;

£ (posedge rst or posedge elk)

if (rst)

begin
cnt <=

end

2'b00;

always @ (posedge sel)
begin
if(layer == 2'b00)

begin

if (cnt == 2'bOO)

begin
multiplicand_out <= 11'bOOlOOOlllOO;
bias_out <= 21'bllllllOOlOOOOlOlOOOOl;
cnt <= cnt + 1;

end

if (cnt == 2'bOl)

begin

multiplicand_Out <= 11'bOOOlOOOOOlO;
cnt <= cnt + 1;

end

if(cnt == 2'bl0)

begin

multiplicand_out <= 11'bOOOOOOOOOOO;
cnt <= 2'bOO;

end

end

if(layer == 2'b01)
begin
if (cnt == 2'b00)

begin

multiplicand_out <= 11'blOlOOHOOlO;
bias out <= 21'blllllllll000010110101;
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cnt <= cnt + 1;

end

if (cnt == 2'bOl)

begin
multiplicand_Out <= 11'blOOllllOOOO; //-2.40
cnt <= cnt + 1;

end

if (cnt == 2'blO)
begin
multiplicand_out <= 11'bOOHOOlOOll; //4.03
cnt <= 2'b00;

end

end

if(layer == 2'blO)
begin

if(cnt == 2'b00)

begin
multiplicand__Out <= 11 'bOOlolllllll; //3.83
bias__Out <= 21'b000000000011101110011; //0.19
cnt <= cnt + 1;

end

if (cnt == 2'bOl)

begin
multiplicand_out <= 11 'blOlOllllllO; //-3.82
cnt <= cnt + 1;

end

if(cnt == 2'blO)

begin
multiplicand_out <= 11'blOOOlOOlOOO; //-0.72
cnt <= 2'b00;

end

end

if(layer == 2'bll)
begin
if (cnt == 2'b00)

begin
multiplicand_OUt <= 11'bOlOOlOOllOl; //5.89
bias_out <= 21'bllllllllll00001101010; //-0.18
cnt <= cnt + 1;

end

if (cnt == 2'bOl)

begin
multiplicand_out <= 11'bOOOOlliOlll; 1/1-19
cnt <= cnt + 1;

end

if (cnt == 2'blO)
begin
multiplicand_out <= 11'bllOlOOHOlO; //-6.66
cnt <= 2'b00;

end

end

end

endmodule
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APPENDIX K

Testbench for Bias and Weight ROM Module

~timescale lps / lps

module TB_valuesl;

reg sel ,•
reg rst;

reg elk;

reg [1:0] layer;
wire [20:0] bias_out;
wire [10-.0] multiplicand_out ,-

valuesl UUT (sel, rst, elk, layer, bias_out, multiplicand_out;

initial

begin

#0;

elk = 1'bO;

rst = 1'bl;

sel = 1'bO;

#6000

rst = 1'bO;

#10000 // first layer
layer = 2'bOO;

#15000

sel = 1'bl;

#16000

sel = 1'bO;

#25000

sel = 1'bl;

#26000

sel = 1'bO;

#35000

sel = 1'bl;

#36000

sel = 1'bO;

#40000 // second layer
layer = 2'bOl;

#45000

sel = 1'bl;

#46000

sel = 1'bO;

#55000

sel = 1'bl;

#56000

sel - 1'bO;

#65000

sel = 1'bl;

#66000

sel = 1'bO;
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#70000

layer = 2'bl0;

#75000

sel = 1 'bl;

#76000

sel = 1 'b0;

#85000

sel = 1''bl;

#86000

sel = 1 'b0;

#95000

sel = 1 1bl;

#96000

sel = 1 'b0;

#100000

rst = 1 'bl;

always
begin

end

#2500

elk =

#105000

rst = 1

end

!clk;

'b0;

endmodule
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//

II
II Title
// Author

// University

II
II

APPENDIX L

Bias and Weight Counter (valuescnt)

values_cnt.v
Ivan Teh Fu Sun

University Teknologi Petronas

//
// Description : provides selection for neuron_values module
//

//

module values_cnt (sel, reset, values_sel);

input sel;

input reset;

output [1: 0] values_sel ,-
reg [1:0] values sel;

always

begin

[posedge reset or posedge sel)

if(reset)

values_sel <=2 'bOO;
else

begin

end

case[values sel)

2'b00

2'bOl

2'blO

2'bll

endcase

values_sel <= 2'b01
values__sel <= 2'blO
values_sel <= 2'bll
values sel <- 2'bOO

end

endmodule
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APPENDIX M

Neuron Module (neuron)

II-
II
II
II
II
II
ti
ll
II
II
II
II
II
II
II
II

Title

Author

University

neuron_mult_sum2.v
Ivan Teh Fu Sun

University Teknologi Petronas

Description : Neuron block containing multiplication and summation blocks
Multiplication is using the AddShiftRight (ASR)
algorithm for unsigned binary.
Value of bias is initial twos complement

Value of multiplier and multiplicand is initial unsigned binary
integer.

module neuron2 (start, sel, elk, multiplier_in, multiplicand_in, bias_in,
add out,status out) ;

input start,-

input sel;

input clk;

input [7:0] multiplier in;
input [10:0] multiplicand in,-
input [20:0] bias in;

output [20:0] add out;

output status out;

reg status out;

reg [20:0] add out;

reg [20:0] AQ reg;

reg [9:0] M reg;

reg Mult sign;
reg add flag,-

reg [3:0] cnt;

//no sign bit, multiplier value is always positive

//output in twos complement
//Overflow bit included

//l means negative

always @ (posedge elk or posedge sel or posedge start)
begin

//loopl
if(start)

begin

AQ_reg[20:8]<= 13'b0;
AQ_reg[7:0] <= multiplier_in[7:0];
M_reg <= multiplicand_in[9:0];
cnt <= 4'b0;
Mult_sign <= multiplicand_in[10] ;
//XOR the sign bit, 1 means -ve
add_out <= bias_in[20 :0] ,•
status_out <= 1'bl;
// tells I/O module that values have been loaded
add_flag <= 1'bO;
end

//loopl
else if[sel)

begin
AQ_reg[20:8]<= 13'b0;
AQ_reg[7:0] <= multiplier_in [7:0];
M_reg <= multiplicand_in[9:0];

cnt <= 4'b0;

Mult_sign <= multiplicand_in [10] ,-
status_out <= 1'bl;
// tells I/O module that values have been loaded

add_flag <= 1'bO;
end

//loopl
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else if(cnt == 4'blOOl)

begin
if(status_out)

begin

add_out <= add_out + AQ_reg[20:0];
status_out <= 1'bO;
end

end

//loopl
else if(cnt != 4'blOOO)

begin

//loop2
if(cnt 1= 4'blOOl)

begin

//loop3
if(add_flag) //When Q = l

begin

AQ_reg[18:0] <= {1'b0,AQ_reg [18 :1]};
cnt <= cnt+1;

add_flag <= 1'b0;
end

else iff!add_flag)
begin
//loop4
if(AQ_reg[0])

begin

AQ_reg[18:8] <= AQ_reg[18:8] + M_reg;
add_flag <= 1'bl;

// status bit notifies that shift needs to take place
// elk not incremented because shift right has not occur

end

else if(!AQ_reg[0])
begin
AQ_reg[18:0] <= {l'bO,AQ_reg [18:1]
cnt <= cnt+1;

end

end

end

end

//loopl
else if(cnt == 4'bl000)

begin

if (Mult_sign)
//only multiplicand value can begin negative

begin

//thus changes initial sign depends solely on multiplicand's sign
if (AQ_reg != 0)

begin
AQ_reg <= {3'bill,~AQ_reg[17:0]};

//twos complement inversion, +1 not required
end

end

cnt <= cnt +1;

end

end

endmodule

61



APPENDIX N

Testbench for Neuron Module

"timescale lps / lps

module TB_neuron_mult__sum2 ;

reg start;

reg sel;
reg elk;
reg [8:0] multiplier_in; //MSB bit denotes sign
reg [10:0] multiplicand__in;
reg [20:0] bias_in;
wire [20:0] add_out;
wire status_out;

neuron2 UUT (start, sel, elk, multiplier_in, multiplicand^in, bias_in,
add out,status out);

initial

begin

endmodule

end

always

begin

end

#0;

elk = 0;

#10000;

multiplier_in = 9'bl00000100; //Q
multiplicand_in = 11'blOOOOOOOOlO; //M
bias_in = 21'hi;

#12000;

start = 1;

if(status_out)
begin

start=0;

multiplicand_in = ll'bOOOOOOOOl;
end

if(sel)

sel <= 0;

if (!status_out)
sel <= 1;

#5000;

elk = !clk;
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//
II
II Title
// Author

// University

II
II

APPENDIX O

Neuron Output Multiplexer Module (mux2)

mux_2.v

Ivan Teh Fu Sun

University Teknologi Petronas

//
// Description : Interface between neuronjnult_sum2 and activation_function's
// interface.
// Selects between the outputs of neurons initial hidden layer to begin
// presented to the neuron_AF_interface

//
//

module mux2 (add__inl, add_in2, add_in3, sel, elk, reset, add_out, status_out);

input [20:0] add_i.nl ;
input [20:0] add_in2;
input [20:0] add_in3;
input [1:0] sel;
input elk;
input reset;

output [20:0] add_OUt;
output status_out;
reg [20:0] add_out;
reg status_out;

always m(posedge elk or posedge reset)
begin

if (reset)

begin
status_out <= 1'bo;
end

else

end

end

endmodule

begin

if (sel == 2'bOO)

begin
add_out
status_out
end

if(sel == 2'bOl)

begin

add_out
status_out

end

if(sel == 2'blO)

begin

add_out
status_out

end

<= add_inl;
<= 1'bl;

<= add_in2;
<= 1'bl;

<= add_in3;
<= 1'bl;
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APPENDIX P

Testbench for Neuron Output Multiplexer Module

"timeseale lps / lps

module TB_mux2;

reg [20:0] add_inl;
reg [20:0] add_i.n2;
reg [20:0] add__in3;
reg [1:0] sel;
reg elk;

reg reset;

wire [20:0] add_out;
wire status_out;

mux2 UUT (add_inl,add_in2,add_in3,sel,clk,reset,add_out,status_out);

initial

begin

#0

elk = 0;

reset = 0;

#1000

add_inl = 21'bl;
add_in2 = 21'blO;
add_in3 = 21'bll;

#10000

sel = 2'b00;

reset = 1'bl;

#11000

reset = 1'bO;

#20000

sel = 2'bOl;

reset = 1'bl;

#21000

reset = 1'bO;

#30000

sel = 2'blO;

reset = 1'bl;

#31000

reset = 1'bO;

#40000

sel = 2'bll;

reset = 1'bl;

#41000

reset = 1'bO;

end

always

begin

end

endmodule

#5000

elk = !clk;
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//
II
II Title
// Author
// University

II
II

APPENDIX Q

Neuron Output Multiplexer Counter (mux2_cnt)

values_cnt.v
Ivan Teh Fu Sun

University Teknologi Petronas

//
// Description : provides selection for neuron_values module

//
//

module values_cnt (sel, reset, values_sel);

input sel;

input reset;
output [1:0] values_sel;
reg [1:0] values sel;

always ® (posedge reset or posedge sel)

begin

if(reset)

values sel <=2'b00;

else

begin
case(values sel)

2'b00 values sel < = 2 bOl

2 'bOl values sel <- 2 bio

2'blO values sel < = 2 bll

2'bll values sel <= 2 bOO

endcaf e

end

endmodule

end
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APPENDIX R

Number Representation Converter Module (interface)

//
II
II Title
// Author

// University

II
II

neuron_AF_interface.v
Ivan Teh Fu Sun

University Teknologi Petronas

//
// Description : Interface between neuron_mult_sum2 and activation_function.
// Converts 23 bit twos complement number into signed integer.
// Selects bits 9 to 16 and sign bit for output

//
//

module interface (sel, elk, add_in, status_out, sum_sign_out, sum_out) ;

input sel;
input clk;

input [20:0] add_in;
output status_out;
output sum_sign_out ;
output [7:0] sum_out;
reg [7:0] sum_out;
reg sum_sign_out;
reg status_out;

always @ (posedge sel or posedge elk)
begin

if(sel)

begin

sum_out <= add_in[15 :8] ;
sum_sign_out <= 0;
status_out <= 1 ; //used to indicate module processing, sel = 0
end

if(status_out)
begin
if(add_in[20])

begin
sum_sign_out <= 1;
sum_out <= -sum__out;
end

status_out <= 0;
end

end

endmodule
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APPENDIX S

Testbench for Number Representation Converter Module

"timescale lps / lps

module TB_neuron_AF_interface;

reg sel,elk;

reg [18:0] add_in;
wire sum_sign_out ,-
wire [7:0] sum_out;
wire status_out;

interface UUT (sel, elk, add_in, status___out, sum__sign_out, sum__out) ;

initial

begin

#0

sel = 0;

elk = 0;

add_in = 19'h00000;

#10000

sel = 1;

#20000

add_in = 19'h40800;

#50000

sel = 1;

end

always
begin

#500 0;

elk = !clk;

if(status_out)
sel = 0;

end

endmodule
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APPENDIX T

Activation Function LUT Module (active_function)

//

//
//
//

//
//
//•
//

//
//
//•

Title : activation_function.v
Author : Ivan Teh Fu Sun

University : University Teknologi Petronas

Description : ROM block for sigmoid activation function

module activ_function (summation_in, sel, elk, sum_sign_in, function_out,
status out);

input [7:0] summation_in;
input sel, elk, sum sign in;

output [7:0] function_out;
output status out;

reg [7:0] function_out;
reg status out;

reg status;

always @ (posedge elk )
begin

if (!sel)

begin

if(!status out)

begin

casex (summation_in)
8 bOOOOOOOx function out

8 bOOOOOOIX function_out
8 bOOOOOlOx function out

8 bOOOOOHO function_out
8 bOOOOOlll function_out
8 bOOOOlOOx function_out
8 bOOOOlOlx function out

8 bOOOOHOO function out

8 bOOOOHOl function__out
8 bOOOOlllx function out

8 bOOOlOOOx function_out
8 bOOOlOOlx function_out
8 boooioioo function out

8 bOOOlOlOl function_out
8 boooioiix function_out
8 bOOOHOOx function_out
8 bOOOHOlO function out

8 bOOOHOll function_out
8 bOOOlllOx function_out
8 bOOOllllx function_out
8 bOOlOOOOx function out

8 bOOlOOOlx function_out
8 booiooiox function_out
8 booiooilx function out

8 bOOlOlOOx function_out
8 bOOlOlOlx function_out
8 bOOlOHOx function_out
8 bOOlOlllx function out

8 booiiooox function_out
8 bOOHOOlx function_out
8 bOOHOlOx function_out
8 bOOHOllx function_out
8 bOOlllOOx function_out
8 bOOlllOlx function_out

8 bOOllllOx function_out
8 bOOlllllx function out

8 bOlOOOOOx function out
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APPENDIX U

Testbench for Activation Function LUT Module

"timescale lps / lps

module TB_activ_function;

reg [7:0] summation_in,-
reg sel;

reg elk;
reg sum_sign_in;
wire [7:0] function_out;
wire status_jout ;

activ_function UUT [summation_in, sel, elk, sum_sign_in, function_out, reset)

initial

begin
#0

elk = 1'bO;

sel = 1;
summation_in = 8'bOHOOlOO;
sum_sign_in = 1'bl;

#20000

sel = 0;

#50000

sel = 1;

summation_in = 8'b01100100;
sum_sign_in = 1'bO;

#60000

sel = 0;

end

always
begin

#5000

elk <= !clk;

end

endmodule
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APPENDIX V

Output Threshold Module (threshold)

ti
ll
It
II
It
II
II
II
II
II
II

Title

Author

University

threshold.v

Ivan Teh Fu Sun

University Teknologi Petronas

Description : Provides threshold values for the RFNNA output

module threshold (function in, elk, sel, out, ready)

input [7:0] function in

input elk;

input sel;

output out;

output ready ,-

reg ready;

reg out;

always @ (posedge elk or posedge sel)
begin

if (!se 1)

begin
ready <= 1'bl;
end

else

begin

casex(function in)

8'b0101100i out <= 1'bl;

8'b0101101x out <= l'b

8'bOlOlllxx out <= 1'bl;

8'bOllxxxxx out <= 1'bl;

8'b0000100x out <= l'b

8'bOOOOlOxO out <= 1'bO;

8'bOOOOOxxx out <= 1'bO;

default: out < =

endcase

ready <= 1'bO;
end

end

endmodule

1'bZ;
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APPENDIX W

Testbench for Output Threshold Module

'timescale lps / lps

module TB_threshold;

reg [7:0] function_in;
reg elk;

wire out;

threshold UUT (function_in, elk, sel, out, ready);

initial

begin

#0

elk = 1'bl;

#20000

function_in = 8'bOHOOOOO;

#40000

function_in = 8'b00100100;

#60000

function_in = 8'bOOOOOOll;

end

always

begin

#5000

elk = !clk;

end

endmodule
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// File
// Generated

// From

// By

APPENDIX X

Control Unit

e:\fypfpgaproj ectfolder\Neural Network
05/06/04 09:05:23
e:\fypfpgaprojectfolder\Neural Network
FSM2VHDL ver. 3.0.4.1

Neuron\compile\Fub2 .v

Neuron\src\Fub2.asf

"timescale Ins / lps

module Fub2 (AF_stat, elk, muxl_cnt, muxl_sel__cnt, muxl_sel_inout, mux2_cnt,
mux2_rst, mux2_sel_cnt, nl_stat, neuron_sel, neuron_start, p_ready, p__start, reset,
threshold_ready, values_rst, values_sel, vl_cnt2, vl_cnt, vl_sel_cnt) ,-

input AF_stat;
input elk;

input [1:0]muxl_cnt;
input [1:0]mux2_cnt;
input nl_stat;
input p_start;
input reset;

input threshold_ready;
input [1:0]vl_cnt2;
input [1:0]vl_cnt;
output muxl_sel_cnt;
output muxl_sel_inout;
output mux2_rst;
output mux2_sel_cnt ,-
output neuron_sel;
output neuron_start;

output p_ready;
output values_rst;
output values_sel;
output vl_sel_cnt;

wire AF_stat;
wire clk,-

wire [1:0]muxl_cnt;
reg muxl_sel_cnt, next_muxl_sel_cnt;
reg muxl_sel_inout, next_muxl_sel_inout;
wire [1:0]mux2_cnt;
reg mux2_rst, next_mux2_rst;
reg mux2_sel_cnt, next_mux2_sel_cnt;
wire nl_stat;
reg neuron_sel, next_neuron_sel;
reg neuron_start, next_neuron_start;

reg p_ready, next_p_ready;
wire p_start;
wire reset;

wire threshold_ready;
reg values_rst, next_values_rst,-
reg values_sel, next_values_sel;
wire [1:0]vl_cnt2;
wire [1:0]vl_cnt;
reg vl_sel_cnt, next_vl_sel__cnt;

// BINARY ENCODED state machine: SregO
// State codes definitions:

"define SI 5'b00000

-define S2 5'bOOOOl

"define S3 5'b00010

"define N entry 5'bOOOll

"define S5

"define S6

"define S7

"define S8

"define S9

"define S10 5

"define Sll

'bOOlOO

•booioi

'bOOHO

'bOOlll

•boiooo

'b01001

5'boioio

"define S12 5'bOlOll

'define S14 5 'bOHOO
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"define S15

"define SI6

"define SI7

"define S18

"define SI9

"define S20

5'b01101

5'b01110

5'b01111

5'bl0000

5'bl0001

5'bl0010

reg [4:0]CurrState^SregO, NextState_SregO;

// Diagram actions (continuous assignments allowed only: assign
// diagram ACTION

ti
ll Machine: SregO
//
//

// NextState logic (combinatorial)
//

always ® (p_start or vl_cnt2 or nl_stat or mux2_cnt or vl_cnt or AF_stat or
threshold_ready or muxl_sel__inout or muxl_sel_cnt or vl_sel_cnt or values_rst or
values_sel or neuron_sel or neuron_start or mux2_sel_cnt or mux2_rst or p_ready or
CurrState_SregO)
begin : SregO_NextState

NextState_SregO <= CurrState_SregO;
// Set default values for outputs and signals
next_muxl_sel_inout = muxl_sel_inout;
next_muxl_sel__cnt = muxl__sel_cnt;
next_vl_sel_cnt = vl_sel_cnt,
next_values_rst = values_rst,
next_values_sel = values_sel,
next_neuron_sel = neuron_sel;
next_neuron_start = neuron^start;
next_mux2_sel_cnt = mux2_sel_cnt;
next_mux2_rst = mux2_rst;

next_p__ready = p_ready;
case (CurrState_SregO) // synopsys parallel_case full_case

"SI:

begin

end

"S2:

begin

next muxl sel inout = 1'bO,

next_muxl_sel_cnt
next vl sel cnt =

1'bO;

'bO;

next_values_rst = 1'bl
next_values__sel = 1'bO
next_neuron_sel = 1'bO
next_neuron_start = 1'bO;
next_mux2_sel_cnt = 1'bO;
next_mux2_rst = 1'bl;
next_p__ready = 1'bl;
if (p_start)

NextState SregO <=

next_muxl_sel__cnt = 1'bl;
next_muxl_sel___inout = 1'bl;
next_values_rst = 1'bO;
next_values_sel = 1'bl;
next_p_ready = 1'bO;
NextState SregO <= "S3;

"S2;

end

"S3:

begin

next muxl sel cnt = 'bO;

next vl sel cnt = 1 bO;

next values sel = 1 bO;

next neuron start = 1'bl;

NextState SregO <= "N entry;

end

"N entry:
begin

next neuron start = 1'bO;

next neuron sel = 1 bO;

next values sel = 1 bl;

next muxl sel cnt = 1'bl;

if (vl cnt2 != 2'bll)
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end

~S5:

begin

end

"S6:

begin

end

~S7:

begin

end

"S8:

begin

end

"S9:

"S10:

begin

end

"Sll:

begin

end

"S12:

"S14:

begin

end

"S15 :

begin

end

"S16 :

begin

NextState_SregO <= ~S9;

next_neuron_sel = 1'bl;
next_yalues_sel = 1'bO;
next__muxl_sel_cnt = 1'bO;
if (vl_cnt2 == 2'bll)

NextState_SregO <= "S16;
else if (vl_cnt2 != 2'bll)

NextState_SregO <= "N_entry;

next_values_rst = l'bl;
next_muxl_sel_inout = 1'bO;
if (lnl_stat)

NextState SregO <= "S17;

next_values_rst = 1'bO;
next_mux2_rst = l'bl;
next_mux2_sel_cnt = 1'bO;
next_muxl_sel_cnt = 1'bO;
if (mux2_cnt == 2'blO)

NextState_SregO <= "Sll;
else if (vl_cnt == 2'bll)

NextState_SregO <= "S12;
else if (mux2_cnt != 2'blO)

NextState SregO <= "S10;

next_jnux2_sel_cnt = l'bl;
next_mux2_rst = 1'bO;
NextState__SregO <= "S18;

if (!nl_stat)
NextState SregO <= "S5;

next_muxl_sel_cnt = l'bl;
if (AF_stat)

NextState SregO <= "S8;

next_muxl__sel_cnt = l'bl;
next_mux2_sel_cnt = l'bl;
if (AF_stat)

NextState_SregO <= "S14;

if (AF_stat)
NextState__SregO <= "S19;

next_muxl_sel_cnt = 1'bO;
next_mux2_sel_cnt = 1'bO;
next_vl_sel_cnt = l'bl;
NextState_SregO <= "S15;

next_muxl_sel_inout = l'bl,
next_muxl_sel_cnt = l'bl;
next_values__rst = 1'bO;
next_values_sel = l'bl;
next_p_ready = 1'bO;
NextState_SregO <= "S3;

next neuron sel = 1'bO;
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NextState_SregO <= "S6;
end

"S17 :

begin

next_mux2_rst = 1'bO;
NextState_SregO <= "S7;

end

"S18 :

NextState_SregO <= "S7;
"S19:

if (threshold__ready)
NextState_SregO <= "S20;

"S20:

begin

next_p_ready = l'bl;
NextState_SregO <= "SI;

end

endcase

end

//

// Current State Logic (sequential)
//

always @ (posedge elk or posedge reset)
begin : SregO_CurrentState

if (reset)

CurrState_SregO <= "SI;
else

CurrState_SregO <= NextState_SregO;
end

//
// Registered outputs logic

always @ (posedge elk or posedge reset)

begin : SregO RegOutput

if (reset)

begin

muxl sel inout <= 1'bO;

muxl sel cnt <= 1'bO;

vl sel cnt <= 1'bO

values rst <= l'bl

values sel <= 1'bO

neuron sel =;= 1'bO

neuron start <= 1'bO;

mux2 sel cnt <= 1'bO;

mux2 rst <= l'bl;

end

p ready <= l'bl;

else

begin

muxl_sel_inout <= next_muxl_sel_inout,
muxl_sel_cnt <= next_muxl_sel_cnt;
vl_sel_cnt <= next_vl_sel_cnt;
values_rst <= next_values_rst,
values_sel <= next_values_sel,
neuron_sel <= next_neuron_sel,
neuron_start <= next_neuron_start;
mux2__sel__cnt <= next_mux2_sel_cnt ;
mux2_rst <= next_mux2__rst ;
p ready <= next_p_ready;

end

end

endmodule
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APPENDIX Y

Testbench for RFNNA Processor

"timescale lps / lps

module TB RFNNA processor;

reg Inl;

reg In2;

reg reset;

reg Start,-

reg elk;

wire Outl;

wire Ready;

RFNNA_Processor UUT (Inl,In2,Start,elk,reset,Outl,Ready)

initial

begin

end

always

begin

#0

elk = 0;

reset = 1;

#10000

Inl = 1'bO;

In2 = l'bl;

#30000

reset = 0;

#40000

Start = l'bl,-

#2750000

reset = 1;

#2800000

Start = l'bl,-

reset = 0;

if (!Ready)
Start = 1'bO;

#5000

elk = !clk;

end

endmodule
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