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ABSTRACT 

Hydroformylation of olefins with CO and Hz at total pressure of IS to 50 bar and 

temperature of 80 to l20°C, in presence of rhodium (Rh)-based homogeneous catalysts 

for production of aldehydes has demonstrated high yields and selectivity. Rh-based 

catalysts are expensive and the commercial viability of a process that uses such catalysts 

substantially depends on the efficiency of catalyst recovery and product separation. In 

this work, a novel temperature dependent multi-component solvent (TMS) or 

'thermomorphic solvent' system has been used as the reaction medium to investigate 

hydroformylation of two higher olefins - 1-octene and 1-dodecene - to synthesize the 

corresponding aldehydes at a lower pressure of 15-25 bar and temperature of 80 to 

100°C. Such a solvent mixture changes thermally from biphasic to monophasic with 

distribution of the products and of the catalyst in the non-polar and polar phases thus 

simplifying the process of separation and recycling of the catalyst. 

A TMS- system consisting of three components - propylene carbonate (PC), n­

dodecane and 1,4-dioxane was used in this study. The presence of 1,4-dioxane imparts 

the thermomorphic character to the solvent mixture. For a gas-liquid reaction, the 

solubility of the reactant gas in the liquid medium is an important parameter required for 

the interpretation of reaction kinetics. Therefore experimental measurement of solubility 

of the gaseous reactants - CO and Hz - in the individual components of the solvent as 

well as in their mixtures was performed up to a pressure of 1.5 MPa and temperature 

range of 298-343 K. The effects of solvent composition, partial pressures of the gaseous 

reactants - CO and Hz, reaction temperature and catalyst loading on the rate, yield and 

selectivity of the linear aldehydes were also investigated. At a reaction temperature of 

363 K and total pressure of 1.5 MPa and 0.68 mM HRh(CO)(PPh3)3, the conversion of 1-

octene and the yield of aldehyde were 97 % and 95 %, respectively. The aldehyde 

product was recovered in the non polar phase whereas the catalyst remained in the polar 

phase with low catalyst loss of 3 %. With a reaction-time of 2 h and a selectivity of 89 %, 

this catalytic system can be considered as highly reactive and selective. The rate was 

found to be first order with respect to catalyst, 1-octene and PH, . The rate vs. Pco 

resembled a typical case of substrate inhibited kinetics. 
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The solubility data have been correlated using three models - an empirical model 

based on the Henry's law, the regular solution theory with Yen and McKetta modification 

and the modified UNIF AC model. The accuracy of prediction with the second model 

without any adjustable constant was within 11.0 % whereas the UNIF AC model offered a 

better accuracy of 8.5 %. In the kinetic study a mechanistic rate model for the 

hydroformylation of higher olefins using Rh-based catalyst in a homogeneous system 

was developed by using ab initio technique of quantum chemical computation to identifY 

the rate-controlling steps in the reaction pathways. Computations were done for three 

olefins- 1-decene, 1-dodecene and styrene- by the restricted Hartree-Fock method at the 

second order Moller-Plesset level of perturbation theory and basis set of 6-31++G(d,p) 

using the GAMESS Pro 11.0 program package. Three generalized mechanistic rate 

models were developed on the basis of the reaction path analysis and experimental 

findings available in the literature. The rate model with oxidative H2-addition as the 

controlling step predicted the conversion of the three alkenes quite satisfactorily with an 

average deviation of±7.6 %. The UNIQUAC and UNIFAC models were used to model 

the catalyst and product recovery (at 298 K) of the hydroformylation of 1-octene. The 

average deviation of the calculated mole fractions from the experimental values for the 

UNIQUAC and UNIF AC method was ±6.5 % and ±8.2 %, respectively. 

The work done has established the potential of the thermomorphic solvent system and 

the rhodium phosphite complex catalyst for the hydrofonnylation of 1-octene and 1-

dodecene. In the range of conditions employed, the rate and selectivity calculated using 

the developed mechanistic rate model and selectivity model were in good agreement with 

experimental result. The work also concluded that the novel TMS system can be used to 

produce valuable fine chemicals from syngas and olefin at a lower operating cost. 
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ABSTRAK 

Hidroformilasi olefin dengan tindakbalas karbon monoksida dan hidrogen pada 

tekanan 15-50 bar dan suhu pada 353-393 K dengan kehadiran mangkin homogen 

berasaskan rodium (Rh) untuk pengeluaran alkanal telah menunjukkan hasil dan 

selektiviti yang tinggi. Mangkin berasaskan rodium (Rh) berharga tinggi dan daya hidup 

komersial sesuatu proses yang menggunakan mangkin tersebut bergantung kepada 

kecekapan pemulihan mangkin dan pengasingan produk. Di dalam penyelidikan ini, 

sistern multikomponen pelarut yang bergantung pada suhu (TMS) ataupun pelarut 

termomorfik telah digunakan sebagai media tindak balas untuk mengkaji tindak balas 

hidroformilasi menggunakan dua olefin berat - 1-oktena dan 1-dodekana - untuk 

menghasilkan alkanal pada tekanan yang lebih rendah 15-25 bar dan suhu pada 

353-373 K Bergantung kepada suhu, campuran pelarut tersebut berubah daripada dua 

fasa kepada satu fasa, dan pengasingan produk serta mangkin berlaku dalam fasa tidak­

polar dan polar. Keadaan ini memudahkan proses pengasingan dan kitar semula mangkin. 

Sistern TMS yang mengandungi tiga komponen - propenakarbonat (PC), n-dodekana 

dan 1,4-dioksana telah digunakan di dalam penyelidikan ini. Kehadiran 1,4-dioksana 

mernberi sifat termomorfik kepada campuran pelarut tersebut. Untuk tindak balas gas­

cecair, keterlarutan gas reaktan di dalam media cecair adalah salah satu parameter 

penting yang diperlukan untuk mentafsirkan tindakbalas kinetik. Oleh itu sukatan 

kelarutan gas reaktan - CO dan H2 - di dalam setiap komponen pelarut termasuk juga 

campuran pelarut telah diperolehi melalui eksperimen sehingga ke tekanan 1.5 MPa dan 

suhu dalam lingkungan 298-343 K. Kesan parameter proses seperti komposisi pelarut, 

tekanan reaktan gas - CO and H2, suhu tindak balas dan pengisian mangkin terhadap 

kadar tindak balas, hasil tindak balas dan selektiviti n-alkanal juga telah dikaji. Pada suhu 

tindak balas 363 K, tekanan 1.5 MPa dan 0.68 mM HRh(CO)(PPhJ)J, penukaran 1-

oktena dan hasil alkanal masing-masing adalah 97% dan 95%. Produk alkanal telah 

dipulihkan dalam fasa tidak-polar manakala, mangkin terkumpul dalam fasa polar 

bersama kehilangan mangkin yang rendah iaitu sebanyak 3%. Dalam tindak balas se!arna 

2 jam hasil eksperimen menunjukkan selektiviti sebanyak 89% dan sistem pemangkin ini 

boleh dianggap sebagai reaktif dan selektif. Kadar tindak balas didapati bertertib satu 
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terhadap mangkin, 1-oktena dan tekanan hidrogen. Kadar tindak balas terhadap tekanan 

karbon monoksida menyamai kinetik perencatan substrat. 

Data keterlarutan telah dihubungkaitkan menggunakan tiga models - model empirikal 

berdasarkan hukum Henry, teori larutan biasa bersama ubahsuai Yen dan McKetta dan 

model ubahsuai UNIF AC. Dengan menggunakan model kedua tanpa penyelarasan 

konstan, ketepatan penganggaran adalah sekitar lingkungan ±11 %, manakala model 

UNIFAC memberi ketepatan yang lebih baik iaitu sekitar ±8.5%. Di dalam kajian 

kinetik, model kadar mekanistik untuk hidroformilasi olefin berat menggunakan mangkin 

berasaskan-Rh di dalarn sistem homogen telah dihasilkan menggunakan teknik ab initio 

secara pengiraan kuantum kimia bagi mengenalpasti langkah penentu kadar di dalarn 

mekanisme tindak balas. Komputasi dijalankan untuk tiga olefin - 1-dekena, 1-dodekena 

dan stirena - menggunakan kaedah Hartree-Fock pada tahap Moller-Plesset tertib kedua 

daripada teori pertubasi dan set asas 6-31 ++G( d,p) menggunakan pakej program 

GAMESS Pro 11.0. Tiga model kadar mekanistik dihasilkan berasaskan analisa 

mekanisme tindak balas dan penemuan eksperimen yang tercatat dalarn penerbitan. 

Model kinetik berasaskan oksidatif H2-tarnbahan sebagai langkah penentu kadar 

manganggarkan perubahan ketiga-tiga olefin agak memuaskan dengan purata perbezaan 

±7.6 %. Model UNIQUAC dan UNIFAC telah digunakan untuk mentafsirkan proses 

pengasingan mangkin dan produk untuk hidroformilasi 1-oktena menggunakan sistem 

TMS. Dengan menggunakan model UNIFAC, ketepatan penganggaran adalah sekitar 

lingkungan ±8.2 %, manakala model UNIQUAC memberi ketepatan yang lebih baik iaitu 

±6.5%. 

Hasil keija ini telah membuktikan bahawa sistem TMS bersarna kompleks mangkin 

Rh-fosfit mempunyai potensi untuk tindak balas hidroformilasi 1-oktena dan 1-dodekana. 

Di dalam lingkungan keadaan yang digunakan, kiraan kadar tindakbalas dan selektiviti 

menggunakan model kadar mekanistik dan model selektiviti menyamai dengan keputusan 

eksperimen. Hasil keija ini juga telah merumuskan bahawa sistem TMS boleh digunakan 

bagi menghasilkan produk kimia bemilai tinggi daripada tindak balas singas dan olefin 

dengan kos operasi yang rendah. 
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CHAPTER! 

INTRODUCTION 

Homogeneous catalysis has traditionally been exploited for reactions in a single phase 

system. It is now an area rich with opportunities for the implementation of commercial 

reactions and processes in multiphasic solvent systems as well with the unique advantage 

of catalyst recovery and product separation. One of the examples of such cases is the 

temperature dependent multi-component solvent (TMS) or thermomorphic solvent 

system. This chapter summarizes the available information on hydroformylation m 

general and the use of thermomorphic solvent system as the reaction medium m 

particular. The limitations of hydroformylation of higher olefins using current industrial 

processes are also highlighted. The material presented here is intended as a general 

review for the subsequent chapters. More details specific to the chapter topics are 

addressed therein. 

1.1 Hydroformylation of Olefins 

Hydroformylation or the oxo reaction has provided a versatile route for the synthesis of a 

vast array of bulk and specialty chemicals. The hydroformylation products prepared on 

the largest scale are butyraldehyde and ethylhexanol (Bohnen and Cornils, 2003). Both of 

these are produced from propylene which is derived from natural gas. Either rhodium or 

cobalt phosphine complexes are employed as the catalyst. The second largest industrial 

application of hydroformylation is the production of Cs-C2o range alcohols which are the 

basic material of biodegradable detergents. This process starts with ethylene 

oligomerization, olefin isomerization and olefin metathesis, followed by 

hydroformylation. Collectively the olefin synthesis steps are referred to SHOP for Shell 

Higher Olefin Process (Weissermel and Arpe, 1997). 

In hydroformylation, reactions occur at the olefinic double bond with synthesis gas 

(carbon monoxide and hydrogen) in the presence of transition metal catalyst (rhodium or 

cobalt) to form linear (n) and branched (iso) aldehydes containing an additional carbon 

atom as primary products. The overall reaction can be represented by Eq. (1.1 ). 
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R~+H2 +CO 
0 R HYO 

-R-h-/C_o_c_a-ta-ly--<st~ R ~H + ~ 
n-product iso-product 

side reactions 
~R_. ••. ---· ·····-- . .,. ~R 

alkene isomerization alkene hydrogenation (1.1) 

The most important hydroformylation products are in the range C3-C19- The economic 

importance of hydroformylation synthesis is mainly based on butanal with a share of 

73 % of overall hydroformylation capacity. The n-butanal is converted to 2-ethylhexanol 

which is used in the production of dioctyl phthalate (DOP), a plasticizer that is used in 

the polyvinylchloride (PVC) applications. Until the mid 1970s, cobalt was used as 

catalyst in commercial processes (e.g., by BASF, Ruhrchemie, Kuhlmann). Because of 

the instability of cobalt carbonyl (HCo(C0)4) catalyst, the reaction conditions were 

significantly high with the pressure range of 20.0-35.0 MPa to avoid decomposition of 

the catalyst and deposition of the metallic cobalt. The ligand modification introduced by 

Shell researchers was a significant progress in hydroformylation (Johnson, 1985). The 

replacement of carbon monoxide with phosphines enhanced the selectivity towards linear 

aldehyde (n/iso) and the stability of cobalt carbonyl catalyst, leading to a reduction of the 

required carbon monoxide pressure. Table 1.1 shows the commercial hydroformylation 

catalyst systems. 

Table 1.1: Commercial Hydroformylation Catalyst Systems (Master, 1977) 

Company Catalyst System Temperature Pressure Selectivity n!iso Metal/olefin Typical 

(K) (MPa) (%) (!-olefin) (%) olefin 

Shell Co2(CO)(PBu3)z 433--473 5.0-30 80 6-8/1 0.5-1.0 C2-{;12 

Union HRh(CO)(PPh3)3 353-393 1.5-2.5 96 10-14/1 0.01 C2-{;4 

Carbide 

Ruhrchemie HRh(CO)(TPPTS)3 353-403 4.0-5.0 99 19 0.2 C2-C4 
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The HCo(CO)J(PR1) catalyst system is only used by Shell. It is tightly coupled to 

Shell's Higher Olefins Process (SHOP) that produces a C4 through C20 blend of linear, 

internal alkenes for hydroformylation to detergent grade alcohols. The electronic effect of 

substituting an electron donating alkylated phosphine for one of the carbonyl ligands to 

produce HCo(CO)J(PR3), results in stronger Co-CO bonding. The use ofHCo(C0)3(PR3) 

catalyst system operates at 5.0-10.0 MPa of pressure, and could be rnn at higher 

temperatures without any decomposition of catalyst to cobalt metal. Therefore, the 

catalyst and product are separated by distillation under reaction conditions. The electron­

donating phosphine ligand also increases the hydridic nature of the hydride ligand and 

dramatically increases the hydrogenation capabilities of the HCo(CO)J(PR3) catalyst. 

Therefore the aldehydes produced are subsequently hydrogenated by HCo(CO)J(PR3) to 

produce alcohols. The better hydrogenation ability, however, also results in increased 

alkene hydrogenation side-reactions producing alkanes that can range from 10-20 % of 

the product distribution (depending on the phosphine and reaction conditions). Because 

of the aldehyde hydrogenation step, the syngas (H2/CO) ratios of 2:1 (or slightly higher) 

are typically used. In addition, this catalyst is less active than HRh(CO)(PPh3)J and 

therefore higher reaction temperatures are used in conjunction with longer reaction times 

and larger reactor volumes. From a steric viewpoint the bulkier trialkylphosphine ligand 

favors formation of linear products with regioselectivities of 6-8: I. There is a phosphine 

cone angle cut-off at about 132°, after which the phosphine ligand's steric effects do not 

effects do not increase the product linear regioselectivity any further. 

During 1974-1976 Union Carbide Corporation (UCC) and Celanese increase the 

product linear regioselectivity any further. Corporation, independently, introduced 

rhodium-based catalysts, specifically, HRh(CO)(PPh3)3 on an industrial scale (Cornils 

and Herrmann, 2002). These processes combined the advantages of ligand modification 

with the use of rhodium as a catalyst metal. The rhodium catalyst is modified by ligands 

to form an active catalyst complex; phosphine ligands used in industry have been 

P(C6Hs) and P(C4H9), and triphenylphosphine oxide (TPPO) for homogeneous systems. 

Since the reaction conditions were much milder, the process was called 'low-pressure 

oxo' (LPO) process. Then low-pressure oxo (LPO) processes took the leading role and 

despite the higher price of rhodium, cobalt catalysts for the hydroformylation of propene 
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P(Ph-m-S03 ~a+)3 (TPPTS), a highly water soluble catalyst IS generated: 

HRh(CO)[P(Ph-m- S03 ~a l3h· In aqueous solution the catalyst essentially has a -9 

charge, making it totally insoluble in all but the most polar organic solvents. The use of a 

water soluble catalyst system brings substantial advantages for industrial practice, 

because the catalyst can be considered to be heterogeneous. The separation of catalyst 

solution and reaction products, including high-boiling by-products, is achieved by phase 

separation technique. Separation relies upon the fact that the product is insoluble in the 

catalyst phase and the two phases can be easily separated without exposing the system to 

any unnecessary thermal stress, which may lead to catalyst decomposition. The drive for 

this development arose from the wish to implement Rh catalysed hydroformylation, 

which is well documented as having greater reactivity under milder conditions than the 

commonly used process using cobalt catalysts. The success of this plant and more plants 

that have been built since, is shown in the volume of their output, over 500 000 tons per 

year of C4 products. The aqueous biphasic method shows low ligand and rhodium 

leaching from the aqueous phase; this along with the low cost of solvents made it an 

industrially attractive process. 

The optimised process uses a P:Rh ratio of at least 60/1 and by continuous addition of 

fresh ligand, to replace any oxidised phosphane, the catalyst lifetime can be prolonged. 

Excess TPPTS ligand is required for good n:iso selectivities, as with conventional 

Rh/PPh3 catalysts. The only drawback of the aqueous biphasic process is the poor 

solubility of higher olefins in water, resulting in lower activities for these substrates and 

thereby limiting the RCH/RP process to C3 and C4 substrates (Beller et a!, 1995). In order 

for the reaction to occur, the alkenes must have appreciable water solubility to migrate 

into the aqueous catalyst phase. Remigration of the aldehyde product· back into the 

organic phase allows easy phase separation of product from catalyst. The reaction is 

never homogeneous even with C3 and C4 alkenes and it is unclear whether the reaction 

occurs on dissolved alkene within the water droplets or only at the interface. Good 

mixing merely increases the area of the liquid-liquid interface and improves the transport 

of the alkene into the aqueous phase. Rather high linear to branched regioselectivities of 

16-19:1 for propylene can be obtained via this water soluble catalyst. Rates are slower 

than with conventional Rh/PPh3 catalysts due to lower alkene concentrations in the water 
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phase. The process is limited to the shorter chain alkenes (Cz-C4). Alkenes higher than 1-

pentene are not soluble enough in water. Celanese-Ruhrchemie currently operates several 

hydroformylation plants based on this water soluble rhodium catalyst technology. 

In its present form, the RCH/RP process is unsuitable for the hydroformylation of 

alkenes greater than C4, due to the limited solubility of such molecules in the aqueous 

catalyst phase. Some attempts have been made to adjust this process for the 

hydroformylation of higher olefins, in order to overcome their low solubility. Additives 

can be included in the reaction, such as alcohols and glycols (Purwanto and Delmas, 

1995). However, these only add to the cost of the process, as an extra separation step is 

required to remove them from the product. Alternatively increasing the organic solubility 

of the catalyst may increase the hydroformylation rates, but it is also likely to increase the 

loss ofRh and ligand to the organic phase. It seems more probable that a different solvent 

system or immobilisation (heterogenisation) of the catalyst would provide the desired 

results. 

1.2 Recent Technological Developments 

1.2.1. Aqueous Biphasic Catalysis 

Several techniques have been proposed to overcome the solubility and mass transport 

limitations that are typical in the conventional aqueous biphasic system for the 

hydroformylation of higher alkenes. Concerning two phase hydroformylation of higher 

olefins in an aqueous-organic reaction system, the different approaches can be 

categorized as follows: 

1. The use of water-soluble ligands with amphiphilic properties which will either 

improve the solubility of the higher olefins via formation of micelles or increase 

the reaction rate by preferential concentration of the catalyst complex close to the 

interface of the aqueous and the organic phase (Chen et a!., 1999; Karakhanov, 

1996) 

ii. Modification of the Rurhchemie/Rhone-Poulenc system with co-solvents such as 

polar, alcoholic solvents or by use of detergent cations, modified cyclodextrins 

and surfactants (Baumann eta!., 2002; Zhang eta!., 2002; Purwanto and Delmas 
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1995; Monteil eta!. 1994) to enhance the mutual solubility and the mobility of the 

components across the boundary. 

111. The principle of thermoregulated phase-transfer catalysis (TRPTC), originally 

developed by Bergbreiter et a!. (1998), which has been applied to two-phase 

hydroformylation by Jin et a!. (1997), Zheng et a!. (1998) and Liu et a!. (2003), 

which is based on a temperature-controlled switch of the catalyst system from the 

aqueous phase to the organic phase. 

IV. Immobilization of umnodified rhodium catalyst (i.e., without ligands) in the 

aqueous phase by using resin, polymeric, oligomeric water-soluble or mineral 

supports (Diwakar eta!., 2005; Chen and Alper, 1997; Terreros eta!., 1989). 

v. Supported aqueous-phase catalysis (SAPC) that involves absorption of an 

aqueous solution of a catalytic active organometallic complex onto a high surface 

area hydrophilic support material. (Riisager et a!., 2003; Zhu et a!., 2003; 

Jauregui-Haza et a!., 2001; Arhancet et a!., 1990) 

1.2.2. Non-aqueous Catalysis 

Non-aqueous approaches toward biphasic hydroformylation have been demonstrated by 

Horvath and Rabai (1994) with the use of a fluorous biphasic system containing a 

rhodium catalyst having partially fluorinated "ponytail" ligands. The technique is based 

on the limited miscibility of fluorinated solvent and fluorinated ligand in hydrocarbon. A 

biphasic system is mixture which has two phases or distinct layer. For example, a 

biphasic hydroformylation catalyst system was developed to take advantage of the 

unusual solvent characteristics of perfluorocarbons combined with typical organic 

solvents. Fluorous mixtures such as perfluoromethylcyclohexane (PFMCH/toluene) are 

immiscible at ambient temperature but become a single phase solution at an elevated 

temperature (Scott, 1948; Hildebrand and Cochran, 1949; Dorset, 1990). However, it is 

doubtful whether the fluorous biphasic would achieve any breakthrough in the large-scale 

industry, because of the toxicity of perfluorous solvents and ligands and risks related to 

ozone depletion (Liu eta!., 2002; Kollhofer and Plenio, 2003). Bianchini (1995) describe 

an alternative to fluorous biphasic systems using new ligand Na03S(C6H4)CH2C(CH2-

PPhz)J(sulphos) dissolved in light alcohols (methanol, ethanol). The hydroformylation 
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reaction of 1-hexene gives c7 alcohols in an alcohol/hydrocarbon system and c7 
aldehydes in an alcohol-water/hydrocarbon system. All rhodium is recovered in the polar 

phase at the end of the catalytic reactions. 
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Figure 1.2: Biphasic thermomorphic hydroformylation system 

In the recent time, a novel solvent system that itself reversibly changes from biphasic to 

monophasic as a function of temperature and known as a thermomorphic biphasic or 

temperature-depending multicomponent solvent (TMS) system has gained interest as the 

reaction medium. The use of TMS system allows performing a reaction in a single-phase 

at a high reaction temperature followed by a phase split at a lower temperature. The TMS 

systems consist of a polar solvent (sl) and nonpolar solvent (s2). In one of these 

components the catalyst is dissolved and the other one acts as extraction agent for the 
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reaction products. A semi-polar solvent (s3) operates as mediator for the two other 

solvents. Dependent on the composition and the temperature a mixture ofsl, s2, and s3 is 

either homogeneous or heterogeneous (Behr et a!., 2005a, 2005b; Behr and Roll, 2005; 

Behr and Fagenswisch, 2003). This new concept is especially suitable for reactions which 

have to be operated in single phase because of low solubilities of the reactants in the 

phase containing the catalyst. As illustrated in Figure 1.2, in these TMS-systems the 

reaction takes place in a single phase at an elevated reaction temperature, while lower 

temperatures (room temperature for example) cause the liquid to split up in two separate 

phases again. The catalyst remains in one of two phases and can be reused by simple 

phase separation. This concept combines the advantages of a reaction in a single phase 

system with the advantages of the catalyst recycling of a two-phase system. The TMS­

system was applied to a liquid phase peptide synthesis by using a cyclohexane-soluble 

platform in cyclohexane and typical organic solvents in a temperature range of288 to 338 

K (Chiba et a!., 2002). Behr and Miao (2004) used TMS- system for the rhodium­

catalyzed co-oligomerization of sunflower fatty acid methyl ester (SFAME) and ethylene 

with PC/SFAME/dioxane solvents system and in the absence of any tagged ligand. 

Similarly, the TMS- system was used in the hydroaminomethylation of 1-octene using 

PC/dodecane/morpholine solvent system (Behr and Roll, 2005). The isomerizing 

hydroformylation of trans-4-octene in the TMS-system of PC/dodecane/p-xylene has 

been carried out producing a very high conversion (about 99%) of the trans-4-octene and 

offering very attractive selectivities of n-nonanal ranging from 79 to 90% (Behr et a!. 

2005b), but a strong rhodium leaching as high as 47% was reported. On the other hand, 

Tijani and Ali (2006) has developed a thermomorphic biphasic rhodium system using an 

inexpensive and conventional ligand such as P(OPh)3 to catalyze the hydroformylation of 

higher olefins (>C6). However, neither kinetic nor thermodynamic data on the 

hydroformylation of higher olefins in the TMS-system are available in the literature. 

1.3 Problem Statement 

The catalytic hydroformylation of higher olefin faces several challenges. In the 

homogeneous process, the rhodium catalyst tends to undergo decomposition at the 

temperatures required for product separation through distillation. On the other hand, in 
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the biphasic process, the low solubility of the olefin reactant in the aqueous phase renders 

the reaction rates too low for commercialization purposes. In addition, both processes are 

limited by syngas solubility in the reaction phase (Master, 1977). Consequently, higher 

olefin hydroformylation is typically carried out in homogeneous organic solvents with 

inexpensive Co-based catalysts, whose activities are three-orders of magnitude lower 

than the Rh-based catalysts. In practice, as shown in Table 1.2, more severe conditions 

particularly high operating pressure and temperature are required to activate the cobalt 

catalysts and intensify the reaction. This leads to the high capital and maintenance costs. 

Further, the recovery and regeneration of cobalt catalysts during higher olefin 

hydroformylation are rather expensive and tedious due to large quantities of acid and 

alkaline solutions are involved in the demetalization step to recover the catalyst (Cornils 

and Hermann, 2002; Garton et a!, 2003). Therefore, the energy- and material-intensive 

nature of these processes poses both economical and environmental concerns. 

For this reason a biphasic process for the hydroformylation of higher olefins with 

more selective rhodium catalysts, which allows for a catalyst recycling by phase 

separation, would be highly desirable with lower operating pressure up to 20 bars. In 

addition the use of Rh catalyst offers significant reduction of capital, operating and 

maintenance cost. Since the Rh catalyst is an expensive material, the recovery and 

recycling of the catalyst would be a better option to reduce the operating cost. However, 

no catalytic system has been found which yields sufficiently high conversion rates and 

yet brings about a complete catalyst separation by decantation. Hence it is our hope that 

the desired process will contain features such as high catalyst activity, facile catalyst 

recovery, enhanced mass transfer, relatively mild operating conditions, and, above all, 

economic viability. 

1.4 Objectives of the Study 

The objectives of this research work are given as follows: 

1. To develop a novel temperature dependent multi-component solvent (TMS) 

system for the hydroformylation of higher olefins using Rh-phosphite catalyst. 

n. To study the effect of reaction conditions for the hydroformylation of 1-octene 

usmg Rh-phosphite catalyst m a TMS-system of propylene 
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carbonate/dodecane/1 ,4-dioxane by investigating the effect of total pressure, 

partial pressure of CO and Hz, temperature and concentration of 1-octene, 

phosphite ligand and catalyst on the total conversion of 1-octene and 

selectivity (nli). 

111. To determine the optimum process condition for the hydroformylation 

reaction of 1-octene using Rh-phosphite catalyst in a TMS-system of 

PC/dodecane/1 ,4-dioxane by evaluating the formation of total yield of 

aldehyde and selectivity to linear aldehyde (n ). 

IV. To develop the mechanistic and empirical rate model for the hydroformylation 

of higher olefins using Rh-based catalyst in a homogeneous system and fitting 

of the available experimental data. 

v. To study the liquid-liquid equilibrium (LLE) behavior and distribution of 1-

octene, nonanal, HRh(CO)(PPh3)3 catalyst and P(OPh)J in TMS-systern of 

PC/dodecane/1 ,4-dioxane. 

1.5 Scope ofthe Study 

The scope of this research is divided into the following section: 

1.5.1. Development of a novel TMS-system 

The TMS-systems consist of a polar and a non-polar solvent. The third solvent which is 

semi-polar acts as a mediator between the polar and the non-polar solvent. Dependent on 

the composition and temperature, a mixture of the polar, non-polar and semi-polar 

solvent is either homogeneous or heterogeneous. In this work, PC was chosen as the polar 

solvent because of the low solubility of alkenes in PC. Furthermore, PC was found to 

increase the activity of the Rh-catalyst to conversions of 95% as well as the selectivity to 

the linear aldehyde up to 95 % (Behr et a!., 2005b ). In addition, we have chosen long­

chain hydrocarbon, dodecane as the non-polar solvent as it poorly dissolves the catalyst 

but perfectly the reaction products. The TMS-system of PC/dodecane/p-xylene has 

proved to provide very high conversions (99%) of the trans-4-octene and a very attractive 

selectivities of n-nonanal ranging from 79 to 90% (Behr et a!., 2005b ). However, via reP­

investigations, a strong rhodium leaching of 47% was observed. The more p-xylene is 
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used, the more rhodium is transferred into the nonpolar dodecane phase. With this basis, 

I ,4-dioxane was chosen as the solvent mediator, because it has a greater polarity 

compared to p-xylene and we anticipated that it might reduce the effect of the catalyst 

leaching. In addition these solvents are preferred because of high boiling point, thermal 

stability, and inert nature with respect to the homogeneous catalyst, olefin, hydrogen, 

carbon monoxide and the hydroformylation products (Tijani and Ali, 2006; Behr et al., 

2005; Behr and Miao, 2004). The phase behaviour ofthe TMS-system (PC/dodecane/1,4-

dioxane) at different temperatures and composition was determined by the cloud point 

method at 298, 353 and 373 K. The big miscibility gap of this solvent system facilitates a 

good operating range for the hydroformylation. 

Solubilities of Hz and CO in pure solvent and solvent mixtures relevant to the 

hydroformylation process were also studied in this work, particularly in the TMS-systems 

involving propylene carbonate, dodecane and I ,4-dioxane. Isothermal gas solubility data 

(P-x data) for H2 and CO in propylene carbonate (PC), biphasic PC+dodecane mixtures, 

1:1 (v/v), and temperature dependent multi-component solvent (TMS)- system 

(PC/dodecane/1,4-dioxane) were determined over the temperature and pressure range of 

298-343 K and 0.1-1.5 MPa, respectively. The measured solubilities were tested against 

activity coefficient models based on the regular solution theory (RST) with Yen and 

McKetta extension for polar solvents and with UNIFAC group contribution method. 

1.5.2. Parametric Study of Reaction Variables 

Synthesis of n-nonanal, a commercially important fine chemical, by the hydroformylation 

reaction of 1-octene using a homogeneous catalyst consisting of HRh(PPh3)J(CO) 

catalyst precursor and P(OPh)3 in a TMS- system containing propylene carbonate (PC), 

dodecane and 1 ,4-dioxane was investigated. HRh(PPh3)J(CO) and P(OPh)J were chosen 

as the complex catalyst because polar phosphite ligands will favourably partition in the 

polar phase and therefore facilitating the catalyst recovery process. The easy availability 

of such phosphite ligands also provided a valuable and straightforward route to rhodium 

complexes. In addition, by using phosphite-modified catalyst, less reactive olefins such as 

1-octene and 2,3- dihydrofuran, are hydroformylated at much higher rates compared to 

those achieved with phosphine-modified catalysts Beller et a!., (1995). In determining the 
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optimum process condition, the effect of total pressure, partial pressure of CO and H2, 

temperature, concentration of 1-octene, catalyst loading, catalyst to ligand ratio on the 

selectivity (n/i), total conversion and yield of total aldehyde were identified. The detailed 

kinetics ofhydroformylation of two higher olefins (1-octene and 1-dodecene) using the 

above catalyst and reaction medium were also studied. The effect of concentration of the 

olefins, catalyst loading, partial pressure of CO and Hz and temperature on the rates of 

both reactions have been studied at three temperature- 353, 363 and 373 K. 

1.5.3. Development of Kinetic Models 

The present work uses ab initio quantum chemical computations to determine the 

energetics and reaction pathways of hydroformylation of higher alkenes using a rhodium 

complex homogeneous catalyst. The ab initio calculations of fragments of the potential 

energy surfaces of the HRh(CO)(PPhJ)J-catalyzed hydroformylation of 1-octene, 1-

decene, 1-dodecene and styrene were performed by the restricted Hartree-Fock method, 

at the second-order Moller-Plesset (MP2) level of perturbation theory, and basis set of 6-

31 ++G( d,p ). Generalized rate models were developed on the basis of above reaction path 

analysis and experimental findings available in the literature. The kinetic and equilibrium 

parameters of the models were estimated by nonlinear least square regression of available 

literature data. This forms to basis of application of the rate models for the experimental 

hydroformylation rate data in a TMS- system. 

1.5.4. Liquid-liquid equilibrium (LLE) Behavior and Distribution 

Four different temperatures (298, 313, 333 and 353 K) at atmospheric pressure were 

selected to study the ternary equilibrium system of the TMS- system (PC+l ,4-

dioxane+dodecane) in order to observe the binodal (solubility) curves and tie-lines. 

Understanding how the TMS- system affects the distribution of catalyst, reactants and 

products in terms of phase equilibrium thermodynamics is of utmost importance. 

Therefore, the distribution of 1-octene, nonanal, and HRh(CO)(PPh3)J catalyst in this 

system was measured at atmospheric pressure and two different temperatures (298 and 

308 K) to model the extraction efficiency for a typical reaction, the hydroformylation of 

1-octene. 
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CHAPTER2 

LITERATURE REVIEW 

A review of the kinetic study of hydroformylation reaction is presented in this 

chapter. An overview of the mechanism of reaction and solubility of the gaseous reactant 

- CO and H2 - illustrates the development of the mechanistic rate equation and factors 

that influence solvent selection. Following that, a review of liquid-liquid equilibrium and 

solute distribution studies highlights the considerations necessary for the 

hydroformylation reaction in the selected TMS- system. The material presented here is 

intended as a general reference for the subsequent chapters. More details specific to the 

chapter topics are addressed therein. 

2.1. Hydroformylation Catalyst 

Compounds of several transition metals catalyze hydroformylation to some extent, but 

the major interest lies in catalysis by cobalt or rhodium compounds. On the other hand, 

platinum and ruthenium catalysts are mainly subjects of academic interest, not thoroughly 

investigated by industrial researchers. The generally accepted order of hydroformylation 

activity for umnodified monometallic catalysis is as follow (Comils and Herrmann, 

2002): 

Rh ~Co> Ir, Ru > Os > Pt > Pd >Fe> Ni 

A typical hydroformylation catalyst can be represented by the formula 

HxMy(CO)z~ 

where M and L are metal atom and ligand, respectively. When n = 0, the catalyst is called 

umnodified. Coordination of the metal center by ligands other than CO or hydrogen are 

designated modified. For a modified catalyst, n is an integer of from I to 3. Huge number 

ofligand applications appear in the area ofhydroformylation, however the only classes of 

ligands used in industrial hydroformylation plants are substituted phosphines PRJ (R = 

C6H5, n-C4H9), triphenylphosphine oxide (TPPO) and phosphites, P(OR)J (Comils and 

Herrmann, 2002). Nitrogen substituted ligands have attracted some interest in oxo 
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research. Shell has patented the rhodium catalyzed hydroformylation of 2-propen-1-ol 

and 3-buten-2-ol using phosphinoarnines (Drent and Jager, 1995). However, in general 

nitrogen containing ligands such as amines, amides, or iso-nitriles showed low reaction 

rates due to their strong coordination to the metal center. Rhodium-triphenylphosphine 

oxide (TPPO) is used in the production of iso-nonanol by hydroformylation of octenes 

(Onada, 1993). This is the only example known of an oxidized phosphine ligand for an 

industrial application. Rhodium catalysts with phosphites are used in the 

hydroformylation of long-chain olefins due to their high catalytic activity (van Leeuwen 

et al., 1991). 

In the mid-1960s, Wilkinson and co-workers discovered that phosphine modified 

rhodium catalysts gave better selectivities to the desired linear aldehyde product and 

activities for alkene hydroformylation under lower temperatures and pressures than the 

common cobalt catalysts (Osborn et al., 1965). They also produced fewer by-products 

such as isomerised alkenes, alcohols esters and acetals than are produced with a cobalt 

catalyst. Generally, the industrial process operates with a high concentration of 

triphenylphosphine, for instance, the Union Carbide process for hydroformylation of 

propene operates with a P/Rh ratio of 106 (Foster et al, 2002). This high loading of 

phosphine leads to increase selectivity to the linear aldehyde product as the increased 

amount of PPh3 leads to more heavily substituted Rh complexes and increases the steric 

hindrance to the formation of branched products. 

In the triphenylphosphine modified rhodium catalysed hydroformylation, low 

phosphine concentration results in a low linear to branched ratio (approximately 3:1), 

similar to that of unmodified cobalt reaction and so industrial processes which utilize this 

catalytic system operate under a very high concentration of phosphine (Cornils and 

Herrmann, 2002; Cotton and Wilkinson, 1988). However, with the perfluorinated triaryl 

phosphine ligand, high selectivity can be achieved (6.3: I) at relatively low ligand 

concentrations (Rh: P(C6H4C6F 13)3 = 1: I 0). 

2.2. Mechanism of Hydroformylation 

Mechanism of the hydroformylation reaction is still poorly established and has not been 

clarified in every detail (Matsubara, 1997). Several differences in hydroformylation 
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mechanism are observed between modified and unmodified catalyst systems. Therefore it 

will be useful to discuss them separately. 

2.2.1. Unmodified Catalysts 

The mechanism for cobalt catalyzed hydroformylation was developed by Heck and 

Breslow in the early 1960s (van Leeuwen and Roobek, 1983). The mechanism can also 

be applied to unmodified rhodium complexes as well. Catalytic cycle of 

hydroformylation with unmodified cobalt catalyst is shown in Figure 2.1. The 

hydroformylation cycle consists of six elementary steps: 

Step 1: Coz(CO)s react with hydrogen to form two equivalents of the hydridometal 

carbonyl species HCo(C0)4. 

Step 2: Dissociation of CO to generate the unsaturated species HCo(C0)3 and 

coordination of an alkene. 

Step 3: Coordination of CO and hydride migration results in the formation of alkyl metal 

carbonyl species 

Step 4: Insertion of CO to give the Co(I)-acyl complex 

Step 5: Addition of hydrogen to the unsaturated Co(I)-acyl complex 

Step 6: Hydride migration results in the formation of aldehyde and the catalytic cycle is 

completed with the regeneration of active species HCo(C0)3. 

Kinetic studies support the HCo(C0)4 mechanism with a general rate expression 

given in Eq. (2.1). 

d(aldehyde) -l 
----'--d-

1 
"---'- = k[alkene ][catalyst][H zl[ CO] (2.1) 

The rate determining step was Hz addition to the Co(!)-acyl species, step 5. The inverse 

dependence on CO pressure is consistent with the mechanistic requirement for CO 

dissociation from the various saturated 18e species to open up a coordination site for 

alkene or Hz binding (Natta eta!., 1954). When using a 1:1 ratio ofHz/CO, the reaction 

rate is essentially independent of pressure due to the opposing orders of H2 and CO. 
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Increasing the Hz/CO ratio is of limited use for increasing the overall reaction rate 

because HCo(C0)
4 

is only stable under certain minimum CO partial pressures at a given 

temperature. 

0 0 
Ill q, Ill 
c c c H 

I ~~ 
O=C-Co-Co-C=O 

I c"'o o=c-co·''' ~ 
l'c~o 
c 

1 

'~ b c Ill Ill .---------~ 
(!j 0 o o [y. 

H~R 
H11,~r.:::R 
H.,.....l...,..co 

c 
0 

+ H21~ Rate _ CO 5 Determining 
Step 

111 "-CO 
0 

2 
~+alkene 

R H )I 1 c"'o 11-Co~~ 
I c~o 
c 
Ill 
0 anti-Markovnikov 

hydride addition 

1
1 to C=C bond to give 

3 
~ + CO linear alkyl 

+CO 

4 

Figure 2.1: Catalytic cycle ofhydroformylation for unmodified cobalt catalysts (van 

Leeuwen and Roobek, 1983). 

2.2.2. Phosphine Modified Catalysts 

Introduction of phosphine ligand into catalytic system brings some critical changes. 

HRh(CO)(PPh3)3 is believed to be the precursor of the active hydroformylation species. 

Model studies with this hydride complex provide explanation for different reaction 

behavior and indicated extensive dissociation of this complex. This means equilibrium 

exists between various substituted rhodium complexes before the catalytic cycle occurs 

as shown in Figure 2.2. Each catalytic species is assigned an individual reaction rate and 
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a characteristic product distribution. For example high phosphorus rhodium ratio and low 

partial pressure of carbon monoxide favor HRh(CO)(L)z complex which is assumed to 

give high linear aldehyde ratio (n/iso) as a result of steric effects. The mechanism for 

hydroformylation developed by Heck and Breslow (1961) for unmodified cobalt catalyst 

is valid with minor modification for phosphine modified rhodium catalysts. The catalytic 

cycle for phosphine modified rhodium catalysts was established by Wilkinson with two 

possible pathways - the associative and the dissociative mechanisms (Brown and 

Wilkinson, 1970). Both mechanisms start with five coordinated bisphosphine complex 

HRh(CO)z(PPhJ)z, but differ as regards to the primary reaction step, coordination of 

olefin to the rhodium center as shown in Figure 2.3. In associative mechanism (route A), 

olefins attach directly to the bisphosphine species, and after hydride migration step, 

alkylrhodium complex is obtained which is an intermediate of dissociative mechanism as 

well. 

+CO -L 
HRh(CO)L2 

il 
-CO 

linear product branched product 

Figure 2.2: Initial equilibria forming the active species, L = PPh3 or TPPTS. 

In dissociative mechanism (route D) two different coordinatively unsaturated 

complexes HRh(CO)(PPh3)2 and HRh(CO)z(PPhJ) can be formed by dissociation of CO 

or phosphine. Addition of alkene to this unsaturated complex (step I) is followed by 

hydride migration (step 2). After coordination of CO (step 3), insertion of CO (step 4) 

occurs to give a rhodium acyl complex. The unsaturated rhodium acyl complex 

undergoes hydrogenolysis (step 5) and completes the catalytic cycle with the regeneration 

of active species and the production of either the linear or the branched aldehyde. 
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HRh(CObL2 

~ D ~~ 
A 
R~ 

HRh(CObL HRh(CO)L2 

R~~ 
R 

R~~ 
R R 

Figure 2.3: Catalytic cycle of hydroformylation for phosphine modified rhodium 

catalysts (Brown and Wilkinson, 1970). 

Dissociative mechanism is generally accepted under industrial operating conditions 

(Evans et a!., 1968). The active species in this mechanism are unsaturated rhodium 

complexes containing one or two coordinated phosphine (HRh(C0)2(PPh3) or 

HRh(CO)(PPh3)2) formed by dissociation of phosphine or CO. It is widely believed that 

the n!iso ratio of the reaction is largely controlled by the competitive reaction of olefin 

with these unsaturated complexes. As a result of steric effect the species 

HRh(CO)z(PPh3) would be responsible for the formation of the branched aldehyde 

whereas HRh(CO)(PPh3)2 would be responsible for the formation of linear aldehyde. 

However, remarkable differences were observed between the catalytic activity and the 
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selectivity of the water soluble catalyst HRh(CO)(TPPTS)3 and organic soluble one 

(Horvath 1991). In the hydroformylation of propene, the latter shows much lower activity 

with an increased selectivity to linear products. This is explained by the high dissociation 

energy (30 kcal mor1
) ofTPPTS from HRh(CO)(TPPTS)3 (Horvath 1991). This energy 

is about 10 kcal mor1 higher than that necessary for dissociation of PPh3. The lower 

catalytic activity might be due to higher dissociation energy. On the other hand because 

of high dissociation of TPPTS, the equilibrium between active species shifts towards 

unsaturated complex with two phosphine ligand, thus leading higher linear to branched 

aldehyde ratio (nliso ). 

2.3. Kinetic Study 

The kinetics of the hydroformylation reactions is often represented by non-linear rate 

equations, some purely empirical and some are based on proposed mechanisms. A 

summary of kinetic studies in hydroformylation reaction is presented in Table 2.1. 

Kinetic modeling of hydroformylation of propylene and cyclohexene was studied by 

Natta et al. (1954) using Co-carbonyl catalyst. The reaction was found to be first order 

with olefin, catalyst and hydrogen but negative order dependent with CO. At constant 

PH , the rate increases with increasing Pco up to about I 0 atm but decreases with higher 
' 

Pco. Gholap et al. (1992) reported rate equations to represent kinetics of formation of 

both n- and isa-butyraldehyde in Co-carbonyl catalyzed hydroformylation of propylene. 

Deshpande and Chaudari (1988) investigated detailed kinetics of hydroformylation of 1 • 

hexene using HRh(CO)(PPh3)3 catalyst. The important observations were a strong 

substrate inhibition with respect to CO and a mild substrate inhibition with respect to 

olefins and requirement of a critical catalyst concentration. A similar kinetic model was 

also developed by Bhanage et al. (1997) to describe the kinetics of the HRh(CO)(PPh3) 3 

catalyzed hydroformylation of I -dodecene. The reaction is first order with respect to 

concentration of catalyst and partial pressure of hydrogen. However the partial pressure 

of CO inhibits the reaction above a threshold value. The kinetic order for I -dodecene is 

one in the lower concentration range while at higher concentration range, a zero order 

dependence was reported. In all these cases, the rate models proposed were empirical in 

spite of a reasonably well-understood mechanism for hydroformylation. 
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Table 2.1: A summary of kinetic studies involving hydroformylation reaction 

Reference Substrate Catalyst Rate Equation Remarks 

Natta eta!. propylene HCo(C0)4 k[substrate ][catalyst][H 2 ] • Reaction condition: T = 383-388 K; Pco 
r= = 0.3-5.4 MPa; PH1= 2.7-11 MPa; in (1954) [CO] toluene. 

Deshpande and 1-hexene HRh(CO)(PPh3)3 k[H 2] [CO][ catalyst][ substrate] • Reaction condition: T = 303-323 K; Pco 
r= 

(1 + K1 [substrate ])2·1(1 + K2 [ C0])2·5 = 0.074-1.693 MPa; PH1= 0.611-1.693 Chaudari (1988) 
MPa; in ethanol. 

• The E. was higher compared to the 
homogeneous system using toluene as 
solvent and as well as in biphasic 
system, 117.3 kJ ·mor1 

• Existence of a critical concentration of 
catalyst 

Gholap et a!. propylene Co2(CO)s k[H 2 ]055 [CO][catalyst]0·75 [substrate] 0·8 • Reaction condition: T = 383-423 K; P = 

(1992) r= 
(1 + K 1 [C0])2 

3.5-10.0 MPa; Pco = 1-7.5 MPa; PH1= 
2.5-7.5 MPa; in toluene. 

• The n/iso ratio was found to increase 
with increases in catalyst concentration 

and in the P co and PH, , but decreased 

with Increase Ill propylene 
concentration. 

• The E,: n-butyraldehyde = 54 kJ·mor' ; 
isobutyraldehyde = 82 kJ·mor1

• 

Divekar et a!. 1-decene HRh(CO)(PPh3)3 k[ H 2]1·5 [CO] [ cata/yst]12[ substrate] • Temperature range: 323-343 K 
r • The Ea was found to be 49.3 kJ·mor1 

(1993) (1 + K1[C0])3(1 + K 2[substrate]) 

and Equation (2.2) 
~- ------
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Table 2.1 (Continue) 

Reference Substrate Catalyst Rate Equation Remarks 

Purwanto and 1-octene [RhCl(l ,5-COD))z k[ H 2 ][ CO] [catalyst][ substrate] • Used biphasic system; aqueous phase: 2.0xl04 

r= 
(1 + Kl [C0])

2 
(1 + K 2 [H2 ]) 

m3
; organic phase: 0.5 x 104 m3 (octene/octane Delmas (1995) with TPPTS ligand 

= 3/7). 
• Reaction condition: T = 333-343 K; P = 1.5-
2.5 MPa; Cr/CRh = 8 in presence of ethanol as a 
cosolvent. 
• Selectivity to linear aldehyde=- 80%. 

Deshpande et al. 1-octene [RhC1(1,5-COD))z k[H 2][ CO][ catalyst] [substrate] • Reaction condition: Pco = 0.5-1.5 MPa; PHr 
r 

l+K1[C0])2 +K2[H2] +K3[H2][CO] 0.5-1.5 MPa; [1-octene]= 0.0055 to 0.0278 (1996) with TPPTS ligand 
kmolm-3

; T= 323-343 K; Cr/CRh=8, 
in the presence of ethanol as co-solvent 
• E, was found to be 65.8 kJ·mol"1 

Bhanage et al. 1-dodecene HRhCO(PPh3) 3 k[ H 2 ] [CO][ catalyst] [substrate] • Reaction condition: Pco = 0.17-2.04 MPa; 
r 

(1 + K 1 [C0])2 (I+ K 2 [substrate]) 
Pl!l= 0.68-1.7 MPa; [1-dodecene]= 0.18 to 2.2 (1997) 
kmolm-3

; T= 323-343 Kin toluene. 
• E, was found to be 57.12 kJ·morl 

Nair et al. (1999) styrene HRhCO(PPh3)J Equation (2.2) • Reaction condition: Pco = 0.3--4.12 MPa; Pl!l= 
1.03--4.12 MPa; [styrene]= 0.92 to 6.89 
kmolm-3

; T= 333-353 Kin toluene. 
• Rate was independent of [styrene] because of 
the higher concentration of styrene used. 
• Ea was found to be 68.802 kJ·mor' 

Palo and Erkey 1-octene HRh(CO)[P{p- k[H ]0.48[ I 1o.84[ 1o.s 
2 cata yst octene • Reaction condition: T=333 K; P=27.3 MPa 

(1999) (scCOz) CF3C6R,)3h r 
I+ K 1 [C0]2·2 
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Table 2.1 (Continue) 

Reference Substrate Catalyst Rate Equation Remarks 

Kiss et al. ethylene Rh(acac)(CO)z/PPh3 TOF- •Reaction conditions: Pco = 0.0081-0.56 
(1999) k (Pe H /[PPh3 ]) MPa; PH2= 0.29-0.75 MPa; T= 353-383 K, 

1 2 4 
Pethylene = 0.072-0.38 MPa, Cr./CRh = 3-50. 

1 + K1 (Pea I[PPh3 ]) + K 2 ([PPh3 ]! Pea) •Ethane selectivity increases with increasing 
T, indicating that the E, for olefin 
hydrogenation lS higher than 
ydroformylation. 

•The aldehyde hydrogenation selectivity is 
very low. 

• TheE, was found to be in the range of 76.3-
80.0 kJ·mol"1

• 

Zhang et al. 1-dodecene RhCl(CO) (TPPTS)z Equation (2.3) • Reaction condition: T= 353-373 K, P = 0.9-

(2002) 1.3 MPa. 
(with CTAB) •A semi -empirical rate equation was 

developed, combining mechanisms of 
homogeneous reaction with interfacial 
reaction of biphasic hydroformylation. 

• TheE, was found to be 72.8 kJ·mol"1
• 

Yang et al. 1-dodecene RhCl(CO)(TPPTS)2 [ r • Reaction condition: T= 373 K; P= l.lMPa 
k k k v 4 

(2002a) 
(with CTAB) 

r = AoN 1 [eTAB] 2 [substrate] 3 V: • CT AB was used to enhance the reaction rate 
oflong chain olefm and the ratio of n/iso .. 

• The extent of emulsification had a positive 
effect on conversion and a negative effect on 
regioselectivity, and consequently on the 
separation of the aqueous catalyst phase 
from the organic phase. 

··-- ·--
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Table 2.1 (Continue) 

Yang eta!. propylene RhCI(CO)(TPPTS)2 Equation (2.4) and (2.5) •Reaction conditions: T = 363-383 K, p = 

(2002b) (with CTAB) 
3.1MPa,pPropylene = 0.7MPa, Cr/CRh = 60-30. 

•The E, was found to be in the range of 75 to 
85 kJ·mor1

• 

•Molar ratio of normal/isomeric aldehyde 
varied from 3.9 to 56.1. 

• Plausible reaction pathway was proposed. 

Di wakar et a!. 1-hexene Rh-TPPTS (SAPC) kP P [substrate ] •Reaction condition: Pco = 0.34-5.52 MPa; 

(2005) 
H

2 
co 

PH1= 0.69-3.45 MPa; [1-hexene]= 0.25 to 1.0 r = 

(l+KbP~0 J 
kmolm-3

; T= 353-373 K. 
• The E, was found to be higher compared to 

homogeneous system, 84.37 kJ·mol'1. 

Rosales et a!. 1-hexene Rh( acac )(CO )2( dppe) K
1 
K

2
K

3 
[Rh][substrate ][CO] • Reaction condition: 353 K, 0.1-0.7 MPa H2 

(2007a) r= 
[CO]+ K

1
K

2 
[substrate] 

and 0.1-0.7 MPa CO in toluene. 
•Linear to branched ratios were in the range 2-

2.6 and independent of the reaction 
conditions, except when the syngas and CO 
pressure were increased, where a slight 
reduction of the n/iso ratio was observed. 

Rosales et a!. 1-hexene [Rh(COD)(PPh3) 2]PF6 K
1
K

2
Kl

4 
[Rh][substrate][H 

2
] •Reaction condition: P = 0.2-0.5 MPa and T= 

(2007b) r= 333 K for Rh and 373 K for Ir in toluene. 
[CO]+ K

1 
[H 

2
] • n/iso= 3.0 and 3.7 for Rh and -2 for Jr. 

• Plausible reaction pathways were proposed. 
Although similar in the main features, the two 
systems display notable differences in the 
values of the constants of the equilibria 
involved. 

24 



Nair et al. (1999) and Divekar et al. (1993) derived a rate equation of Equation 2.2 

considering the mechanism proposed by Evans et a!. (1968) for HRh(CO)(PPh3)3 

catalyzed hydroformylation of styrene and 1-decene, respectively. In deriving the 

mechanistic model, the elementary steps involve in the catalytic cycle were simplified. 

The rate models, derived assuming oxidative addition of hydrogen to Rh-acyl species as 

the rate determining step, were: 

r = kK1K2[H2 ][CO][catalyst][substrate] (2.2) 

I+ K2[CO] + K1K2[CO][substrate] + K1K2K3[C0] 2[substrate] + K1K2K3K4[cohsubstrate] 

This model predicted the negative order dependence with CO, a unique feature of kinetics 

of olefin hydroformylation. However, the physical meanings of the rate coefficients in the 

denominator were not discussed. Kiss et a!. (1999) also reported a mechanistic model for 

kinetics of ethylene hydroformylation using Rh(acac)(C0)2/PPh3 catalyst with unusual 

observations of first order with ethylene at higher PPh3 concentration. The complex 

kinetics and change in reaction orders have been explained as a result of shift in rate­

determining step under different conditions. 

The kinetics of biphasic hydroformylation of 1-dodecene catalyzed by 

RhCl(CO)(TPPTS)2 has been investigated in the presence of cationic surfactant, 

cetyltrimethyl ammonium bromide (CTAB) by Zhang et a!, (2002). The molar ratio of 

linear to branched aldehydes in the reaction product is rather high (up to 20) and the 

reaction rate was also significantly enhanced by the surfactant. In contrast to the earlier 

reports using homogeneous catalysts, in this case, substrate inhibition with CO was not 

observed. This is due to the lower range of dissolved CO concentrations as a result of its 

lower solubility in aqueous catalyst phase. An orthogonal experimental design was 

performed for analyzing the effects of catalyst, 1-dodecene and surfactant, ligand 

concentration as well as the volume ratio of organic phase to aqueous phase and 

temperature on the reaction rate and regioselectivity. The optimal reaction conditions are 

suggested by the margin and variance analyses of experimental data according to the 

reaction rate with suitable compromise of the ratio of normal/isomeric aldehydes and 

hydroformylation selectivity to aldehyde. A semi-empirical rate equation was developed, 
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combining the mechanism of homogeneous hydroformylation with interfacial reaction of 

biphasic hydroformylation: 

3.806x1018 exp(-8755 I T)p H Pco[catalyst][subtrate]WtrAB(V0 IV w)-1.44 1(1 +0.03423([P]I[Rh])) 
r 2 (2.3) 

(1 + 2657 exp(-25581T)p H )(1 + 1.672pcol(1 +3307[catalyst])(1 + 1.646[substrate])(1-44.26W CTAB) 
2 

This model indicates that the exponents of reactants (Hz, CO, 1-dodecene) are fractional 

for the initial reaction rate. The surfactant has important influence on the mechanism, 

hence on the reaction rate. Furthermore, the liquid-liquid dispersion and interfacial area 

are also greatly influenced by the surfactant and impose effects on reaction rate. The 

effect of co-solvent on kinetics of biphasic hydroformylation of 1-octene has been 

reported by Deshpande eta!. (1996) and by Purwanto and Delmas (1995) for a catalyst 

prepared from a precursor [Rh(COD)Cl]z and TPPTS ligand. Due to enhancement of 

solubility of CO in presence of the co-solvent, ethanol, a substrate inhibition with CO 

was observed as expected. However, ethanol reacts with nonanal to form acetals during 

the reaction. The formation of acetals were avoided by adding a buffer solution of sodium 

carbonate and bicarbonate (pH = 10). A mechanistic rate equation derived assuming the 

addition of olefin to the active catalyst as a rate-determining step was found to fit the data 

satisfactorily. A thermodynamic analysis concerning the solubilities of octane and gases 

in the reaction medium was studied by Purwanto and Delmas (1995) and a semiempirical 

kinetic model was used to describe the rate of reaction. 

Yang et a!. (2002a) investigated the effect of reaction engineering factors on biphasic 

hydroformylaton of 1-dodecene. Novel agitator configurations have been reported to be 

effective in promoting interphase mass transfer rate in the gas-liquid-liquid 

hydroformylation system, thus increasing the initial rate and improving the n!iso ratio of 

products. High initial rate and regioselectivity were achieved with increase in olefin and 

CTAB concentrations, and that high agitation speed or organic/aqueous phase volume 

ratio increased the initial reaction rate but inhibited linear aldehyde formation. An 

empirical macro-kinetic equation for the initial rate and the correlation of 

normal/isomeric aldehyde ratio was proposed to represent the kinetics. 
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Yang et a!. (2002b) studied the kinetics of RhCl(CO)(TPPTS)z/TPPTS catalyzed 

hydroformylation of propylene using an orthogonal experimental design method. The 

effects of several process variables on the initial rate of reaction were determined by 

margin and variance analysis. The rate was found to be in positive order with respect to 

hydrogen partial pressure and rhodium catalyst concentration, while higher CO, 

propylene partial pressure and TPPTS concentration showed substrate-inhibited kinetics. 

A power rate equation and a semi-empirical rate equation were presented: 

=1286 10s (-76.78)P. 0.251Sp -0.6403p -0.9808C 0.9789C -1.188 
r . x exp RT H, co P Rh L (2.4) 

(2.5) 

Further verification was performed on the applicability of the empirical models. Eqs. 

(2.4) and (2.5) were used to predict the pressure drop in the autoclave during 

hydroformylation runs. Both models represent well at the initial period of 

hydroformylation only and were not directly applicable to the circumstances with 

decreased total pressure in the autoclave. 

Palo and Erkey (1999) reported kinetics of hydroformylation of 1-octene in 

supercritical COz with HRh(CO)[p-CF3C6H4hh as a catalyst at 323 K and 27.3 MPa 

pressure. The reaction order was found to be 0.5 with both Hz and 1-octene, 0.84 with 

catalyst and a negative order with CO. The catalyst solubility in supercritical COz is 

reported to be higher than that in organic solvents and the critical catalyst concentration 

was not observed as in the conventional homogeneous catalyst. The main advantage of 

supercritical COz is the higher solubility of Hz, CO and catalyst, but for 

hydroformylation, the higher CO concentration is not desirable due to rate inhibition with 

CO and hence it is necessary to optimize the Hz/CO ratio for achieving higher rates in 

supercritical medium. 

Diwakar et a!. (2005) studied the kinetics of hydroformylation of 1-hexene using 

Rh/TPPTS complex exchanged on anion exchange resin to Amberlite IRA-93. The rate 

was found to be first order dependent on catalyst, 1-hexene concentrations and hydrogen 
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partial pressure. The inhibition in rate with enhanced CO pressure was observed. 

However, the inhibition is not as strong as that observed in other homogeneously 

catalyzed reaction, particularly in ethanolic solvent. A reasonable explanation for this 

behaviour was not provided. The hydroformylation of the isomerized hexenes was not 

favored over this catalyst, which was due to hindered access for 2-methylheptanal. The 

catalyst was also stable and could be recycled with no loss in activity or selectivity for 

five recycles. 

A mechanistic model representing the kinetics of the homogeneous hydroformylation 

of 1-hexene using rhodium catalyst formed by addition of I equiv. bidentate ligand of 

1,2-bis(diphenylphosphino)ethane (dppe) to Rh(acac)(C0)2 under mild reaction 

conditions (353 K, 0.1-0.7 MPa Hz and 0.1-0.7 MPa CO) in toluene was developed 

(Rosales et a!., 2007a). The reaction rate was found to be first-order in dissolved 

hydrogen concentration at pressures below 3 atm, but independent of this parameter at 

higher pressures. In both regimes (low and high Hz pressure), the initial rate was first­

order with respect to the concentration of Rh and fractional order with respect to 1-

hexene concentration. Increasing CO pressure had a positive effect on the rate up to a 

threshold value above which inhibition of the reaction was observed; the range of 

positive order on CO concentration is smaller when the total pressure is increased. The 

kinetic data and related coordination chemistry are consistent with a mechanism 

involving RhH(CO)(dppe) as the active species initiating the cycle, hydrogenolysis of the 

acyl intermediate as the rate-determining step of the catalytic cycle at low hydrogen 

pressure, and migratory insertion of the olefin into the metal-hydride bond as rate limiting 

at high hydrogen pressure. This catalytic cycle is similar to the one commonly accepted 

for HRh(CO)(PPh3)3. Rosales et a! (2007b) performed kinetic and mechanistic studies 

using rhodium and iridium complexes of the type [M(COD)(PPh3)2]PF6 (M = Rh, Ir) as 

catalyst precursors for the hydroformylation of 1-hexene under mild pressures (0.2-0.5 

MPa) and temperatures (333 K for Rh and 373 K for Ir) in toluene solution. For both 

complexes, the reaction proceeds according to the rate law 

K,K,K3k4 [M ][substrate ][H,][co] 
r = -;-~-'---'';--'~"-7-----'-=;c-=-=-""-c;;c-""" 

[co]' + K, [H,][co ]+ K,K2K 3 [substrate ][H,] 
(2.6) 

28 



The experimental data are consistent with the proposed general mechanism in which the 

transfer of the hydride to a coordinated olefin promoted by an entering CO molecule is 

the rate-determining step of the catalytic cycle. The kinetics of 1-hexene 

hydroformylation catalyzed by the iridium precursor are first order with respect to the 

catalyst and substrate concentrations and fractional order with respect to dissolved CO 

concentration, which tends to a highly negative order at high CO pressure. However, in 

contrast to the Rh pre-catalyst, the reaction rate varies in accord with a saturation curve 

with respect to hydrogen concentration, that is, a first order kinetics at low hydrogen 

concentration, which tends to zero order at high H2 concentration (P > 0.3 MPa). 

2.4. Influence of Process Parameters 

The effects of the major process parameters - namely, the olefin concentration, catalyst 

concentration, ligand concentration, total pressure, gas composition and temperature on 

the rate and selectivity have been reported (Bhaduri and Mukesh, 2000; van Leeuwen and 

Claver, 2000). Effect of temperature is almost similar for all type of catalysts 

(unmodified and modified cobalt and rhodium). The rate of the oxo synthesis increases 

with temperature. The n/isa ratio decreases for almost all olefins toward higher 

temperatures. The decrease of the n!isa ratio is more pronounced with modified rhodium 

catalysts. This tendency is inversed for a-olefins bearing a functional group which is 

directing the regioselectivity toward linear products (van Leeuwen and Claver, 2000). 

Raising the hydrogen partial pressure increases the reaction velocity and to some 

extent the n/isa ratio. However, hydrogen partial pressure has no significant effect on the 

n/isa ratio at high Pm (>60 bar). Increasing the carbon monoxide partial pressure has 

negative effect on the reaction rate at high Pea whereas positive effect at low Pea 

(Bianchi et a!., 1977). These are true for both unmodified and modified catalysts. 

Following equilibrium may be proposed for ligand modified catalyst: 

HM(CO)x + y PR3 ~ HM(CO)x-y(PRJ)Y + yCO 
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The equilibrium shifts to the right handside at low Pco and formation of linear aldehyde 

is favored. The n/iso ratio decreases with increasing Pco. At higher partial pressures the 

species HM(C0)4 becomes dominant, thus favoring the linear product again (Piacenti et 

al., 1970). The increasing ligand/metal ratio increases the n/iso ratio in general whereas 

the catalytic activity varies in a nonlinear fashion as a function of phosphine 

concentration (Figure 2.4). Reactivity reaches a maximum at a point where the selectivity 

of the reaction remains constant. 
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Figure 2.4: Effect of phosphine/rhodium (PPh3/HRh(CO)(PPhJ)J) ratio on reaction rate 

and selectivity (Comils and Herrmann, 1996). 

2.5. Solubility and Reaction Rate of Linear a-Olefin in Water. 

Under the conditions of the Ruhrchemie/Rhone-Poulenc process, the space-time yield of 

the hydroformylation reaction decreases with increasing chain length of the substrate. 

Table 2.2 summarizes the results of the batchwise hydroformylation of different a-olefin 

at 30-80 bar syngas pressure (Bahrmann eta!., 2004). Generally all substrate provide high 

selectivity toward linear products whereby the nliso ratio ranging from 94:6 to 100:0. 

However, the rate decreases by two orders of magnitude with the increasing chain length 

of the substrate from C5 to C 12· 
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Figure 2.5: Dependence of reaction rate on chain length of alkenes (Brady et a!. 1982) 

2.6. Solubility Study and Thermodynamic Modeling 

For a gas-liquid reaction, the solubility of the reactant gas in the liquid medium is an 

important parameter required for the interpretation of reaction kinetics and for reactor 

design. The simplest method of estimation of gas solubility is to use the Henry's law if 

the Henry's law constant is known or can be found out by fitting experimental solubility 

data. In the absence of sufficient and reliable data, thermodynamic models or techniques 

have proved to be useful for estimation of gas solubility. So far as the solubility of 

syngas (Hz/CO) in a hydroformylation solvent is concerned, all the above techniques 

have been used with varying degree of success. The regular solution theory (RST) has 

been used by several workers to interpret the solubilities of Hz and CO in different 

hydroformylation solvents (Still et a!., 2006; Jauregui-Haza et a!., 2004; Breman and 

Beenackers, 1996; Purwanto eta!., 1996; Radhakrishnan eta!., 1983). The average error 

of prediction has been less than 10% in most cases. Fredenslund eta!. (1977) proposed 

the UNIFAC group contribution method to predict the solubility of a gas in liquid. 

Antunes and Tassios (1983) used a modified Universal Functional Activity Coefficient 

(UNIFAC) model for prediction of Henry's constant for methane, nitrogen, and oxygen 

in alkane solvents and in water. Sander et a!. (1983) presented the UNIFAC 

thermodynamic parameters and results for the promising method developed by Mathias 

32 



and 0-Connel to predict the solubility of methane, ethane, ethylene, acetylene, hydrogen, 

oxygen, nitrogen, hydrogen sulphide, carbon monoxide and carbon dioxide in pure 

solvent and solvent mixtures. The method was found to be applicable at low pressures 

and temperature ranging from 210-475 K and to both polar and nonpolar solvents. Fahim 

and Elkilani (1991) predicted the solubility of hydrogen in naphtha reformate over a 

temperature range of 423 to 473 K by the UNIF AC method with an accuracy of± I 0 %. 

However, one of the principal limitations of the UNIF AC method is that group 

interaction parameters needed for solubility estimation may not always be available. 

Solubilities of Hz and CO in pure solvent and solvent mixtures relevant to the 

hydroformylation process are studied in this work, particularly in the temperature­

dependent multi-component solvent (TMS)-systems involving propylene carbonate, 

dodecane and 1 ,4-dioxane. These solvents are preferred because of high boiling point, 

thermal stability, and inert nature with respect to the homogeneous catalyst, olefin, 

hydrogen, carbon monoxide and the hydroformylation products (Tijani and Ali, 2006, 

Behr et al., 2005, Behr and Miao, 2004). However, neither experimental data nor any 

theoretical model on solubilities for CO and Hz in the TMS-system are available in the 

literature. 

2.7. Liquid-liquid Equilibrium (LLE) Study 

The issue of solvent selection for extraction or for use as a reaction medium has received 

increase interest in the recent time (Palo and Erkey, 1999; Behr et a!., 2005). 

Multicomponent solvent systems have been explored in order to achieve desired 

extraction properties while eliminating hazardous components making it relatively 

benign. Besides, a solvent system should be inexpensive, and easily recoverable, a good 

solvent should be relatively immiscible with feed components other than solute and have 

a different density from the feed to facilitate phase separation. Also, it must have a very 

high affinity for the solute, from which it should be easily separated by distillation or 

other simple separation processes. For instance, propylene carbonate (PC) is widely used 

as an extractant of aromatic hydrocarbons, in the petrochemical industries (Zaretskii, et 

a!., 2008). Therefore, we anticipate that PC will enable an effective extraction of the 

HRh(CO)(PPh3)3 catalyst and P(OPh)3 ligand due to the presence of the aromatic or 
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phenyl groups. Several models are available to correlate the LLE experimental data. 

Some are empirical such as those proposed by Margules and Van Laar (Novak et a!., 

1987); others, use the local composition concept, such as Wilson (1964) and NRTL 

(Renon and Prausnitz, 1968); still some others, such as UNIQUAC (Abrams and 

Prausnitz, 1975), have a more rational theoretical basis; and finally, a few such as ASOG 

(Kojima and Tochigi, 1979); and UNIFAC (Fredenslund 1989), use the group 

contribution method, in which the activity coefficients are calculated from the 

contributions of the various groups making up the molecules of the solution. 

A few LLE studies on the PC, dodecane and I ,4-dioxane have been reported and the 

more relevant ones are presented herein. In order to simulate the extraction of aromatics 

from reformate, Annesini et a!., (1985), studied the liquid-liquid equilibria for ternary 

systems paraffin-aromatic hydrocarbon-propylene carbonate at 20°C. The experimental 

data were correlated by means of the Non-Random Two Liquid (NRTL) and Universal 

Quasi-Chemical Activity Coefficients (UNIQUAC) models. Generally the NRTL 

equation gives root mean square values slightly lower than those of the UNIQUAC 

equation but the difference is not significant. Liquid-liquid equilibria for the ternary 

systems ( octane+toluene+propylene carbonate), (2,2,4-trimethylpentane+ethylbenzene+ 

propylene carbonate), (methylcyclohexane+benzene+propylene carbonate), and (1-

decene+toluene+propylene carbonate) were measured by Fahim and Merchant (1998) 

over a temperature range of 293 K to 348 K. The results were used to estimate the 

interaction parameters between each of the three compounds present in each system for 

the NRTL and the UNIQUAC equations and between each of the main groups of 

hydrocarbons (CH2, C=C, ACH, and ACCH2) and propylene carbonate for the UNIF AC 

model as a function of temperature. Among the three methods NRTL and UNIQUAC 

gave the best fit with root-mean-square deviation (rrnsd) of 1.3%. Recently, Chernyak 

(2008) studied the liquid-liquid equilibria of water/PC and water/butylene carbonate 

systems at atmospheric pressure and T of 280.65 to 293.15 K using analytical sampling 

techniques. The main method of composition analysis employed in this study was based 

on the samples' density measurements using vibrating tube densimeter. The experimental 

data were correlated with a NRTL model and the deviations between experimental and 

predicted values, were less than 0.15 %. 
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Liquid-liquid equilibria involving I ,4-dioxane was reported by Katayama (1999). The 

ternary systems methanol-cyclohexane and I ,3-dioxolane or I ,4-dioxane of cyclic ether 

compounds were measured in the range of277.79-308.64 K. His results indicate that the 

expanses of the two-liquid phase were related to the magnitude of the solubility 

parameters of the ethers. The results were well correlated by the UNIQUAC equation 

through minimizing the objective function with weighting factors. As for dodecane, the 

LLE data for the ternary mixtures of (methanol + aniline + n-octane) and (methanol + 

aniline+ n-dodecane) at T= 298.15 K and ambient pressure were reported to study the 

extraction efficiency of methanol or ethanol to recover aromatic hydrocarbons from 

refinery process streams (Mohsen-Nia et a!., 2008). The UNIQUAC and NRTL activity 

coefficient models satisfactorily correlated the LLE experimental data of the studied 

systems. It was found that the efficiency of methanol for the extraction of aniline from 

(aniline + n-dodecane) mixtures is higher than that for the extraction of aniline from 

(aniline + n-octane) mixtures. 

Robbins et a! (2007) presented the liquid-liquid equilibrium data that relates to the 

hydroformylation reaction. The LLE of the aqueous biphasic solvent system and the 

distribution of 1-octene and nonanal in four ternary systems: the n-hexane + THF + 

water, n-hexane + acetonitrile + water, n-hexane + 1 ,4-dioxane + water, and ethyl ether + 

1,4-dioxane +water were studied. The LLE and distribution were modeled using both the 

UNIQUAC and NRTL gE models. The ternary LLE results were accurately predicted for 

each system with both equations while only the UNIQUAC model was successful in 

predicting the product distribution coefficients. Lee and Peters (2004) used UNIF AC 

method to predict equilibrium phase partitioning behavior of a coso! vent in a two-phase 

nonaqueous phase liquid (NAPL)-water system. The work demonstrated how the 

UNIFAC model could be used to predict coso1vent-enhanced NAPL solubilization as 

well as co-solvent partitioning into the NAPL phase that could lead to alterations in 

volume, density, and viscosity of the phase. Although a number of research papers have 

appeared on the LLE of a multi-component solvent system, the experimental LLE data 

and thermodynamic modeling related to the TMS- system are not available in the 

literature. 
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2.8. Summary 

The most important applications of higher hydroformylation products are plasticizer 

alcohols in the Cs-Cil range and synthetic detergent alcohols in the C12-C18 range, with a 

worldwide consumption of 1.5 million tons and 1.2 million tons in 1995, respectively 

(Comils and Herrmann, 2004). Compared with cobalt, rhodium as catalyst metal is 

favorable with respect to the raw material economy and the energy balance in the 

hydroformylation of higher olefins. Since the use of a temperature-dependent multi­

component solvent (TMS) process, in which a catalyst is designed as a residue in one of 

the liquid phases and the product in the other liquid phase, can be an enabling approach 

for a commercial application of the hydroformylation process with high selectivity, 

efficiency, and ease of product recovery (Behr et al., 2005), it was proposed to perform 

experimental studies to develop the process of hydroformylation in TMS- systems 

involving the use of commercially available Rh-based catalyst, phosphite ligands and 

solvents. The challenge is to identify the appropriate solvent mediator since a correlation 

between the amount of the solvent mediator and the amount of catalyst leaching has been 

reported (Behr et al., 2005). The complex multistep mechanism also represents a 

challenge in the development of the mechanistic model. As a proof of concept, studies on 

the solubilities of the gaseous reactants, kinetics and distribution of solutes in the TMS­

system involving hydroformylation of higher olefins have been performed. 
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CHAPTER3 

DEVELOPMENT OF THE MECHANSITIC RATE MODEL USING AB INITIO 

CALCULATIONS 

Molecular simulation is a very powerful toolbox in modern molecular modeling, and 

enables us to follow and understand structure and dynamics with minute detail - literally 

on scales where motion of individual atoms can be tracked. This chapter highlights the ab 

initio quantum chemical computations on the intermediates formed at different steps of a 

hydroformylation reaction pathway in a homogeneous solvent system using rhodium 

phosphite catalyst. The ab initio computational methodology is found to be a reliable tool 

for arriving at the reaction energetics and pathways for this class of reactions. These 

information together with experimental data proves to be effective in developing 

macroscopic practically useful rate models. 

3.1. Kinetic Models 

Kinetic model for a chemical reaction is an equation which links the reaction rate with 

concentrations or pressures of reactants and constant parameters (normally rate 

coefficients and partial reaction orders). They can be used in the design or modification 

of chemical reactors to optimize product yield, more efficiently separate products, and 

eliminate enviroumentally harmful by-products and process economics study. There are 

two main approaches to developing kinetic models which are empirical or data based 

modeling and mechanistic or building models based on the mechanism of the reaction. 

The following will discuss differences between the two approaches. 

3.1.1. Developing Empirical Models 

An empirical model can be described as a model where the fitting capacities are the only 

criterion used. The aim is to describe the observed data as well as possible, using a 

convenient mathematical relationship without any knowledge about chemical processes 

or underlying mechanism (Costa and Kristbergsson, 2009). Therefore, empirical 

modeling much depends on the availability of representative data for model building and 
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validation. Apart from cause-and-effect between variables, not much else is required in 

terms of process knowledge and a trial and error approach is adopted 

3.1.2. Developing Mechanistic Models 

The development of mechanistic models uses fundamental knowledge of the interactions 

between reaction variables to define the model structure. Mechanistic modeling therefore 

does not require much data for model development, and hence is not subject to the 

idiosyncrasies in data. However, it requires a fundamental understanding of the physics 

and chemistry governing the process and therefore can be very time consuming. Very 

often, a model can be a combination of some mechanistic and empirical components 

which is called semi-empirical. Most researchers agree that semi-empirical models are 

inherently superior to empirical models as they give a better understanding of the 

chemical reaction. 

3.1.3. Empirical versus Mechanistic Models 

When available, mechanistic models can provide more realistic predictions, and more can 

be done with it in terms of analyses. For example, the details contained within a 

mechanistic model offer the opportunity to test the sensitivities of the process to 

meaningful entities such as activation energies; substrate inhibition effect, catalyst 

poisoning, etc. With very few exceptions, the parameters of data based models are just 

numbers encapsulating combined effects. Therefore, it is very difficult to attach physical 

meaning to them, and hence such sensitivity studies cannot be performed. Another 

comparison that is always made between the two modelling approaches is that of cost. 

Due to the complexity of many processes, mechanistic modelling is indeed very 

expensive in terms of human effort and expertise. As the mechanistic modelling approach 

forces a detailed examination of fundamental process behaviour, some of the cost is 

recovered in terms of increased 'deep' knowledge of process behaviour. Such benefits are 

intangible though, and are often discounted. In practice, empirical modeling can be 

expensive as well. It requires large amounts of 'representative' data, and in many 

instances, these can only be acquired by perturbing the process via planned experiments. 

Inevitably production will be disrupted, and the lost revenue can exceed the cost of hiring 
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someone to develop a mechanistic model. The advantage with empirical modelling lies in 

the fact that empirical modelling will deliver some form of working model in a much 

shorter time. 

3.2. Approaches to Kinetic Modeling 

Kinetics of industrially important hydroformylation of higher olefins have been reported 

by several workers. The kinetics of homogeneous hydroformylation of higher olefins 

using Rh-based catalyst has been studied by Palo and Erkey (1999), Bhanage et a!. 

(1997), Divekar et a!. (1993) and Deshpande and Chaudari (1988). However, the rate 

equations proposed were essentially empirical. Palo and Erkey (1999) studied the kinetics 

of hydroformylation of 1-octene in supercritical carbon dioxide (scC02) with 

HRh(CO)[P(p-CF3C6H4)3]3 at 50°C and 273 bar. The observed kinetic behaviour differs 

from the conventional systems using HRh(CO)(PPh3)3 in organic solvents. This may be 

due to several factors - scC02 solvent effects, the modified phosphine ligands, and the 

increased H2and CO concentrations relative to conventional systems. Chaudhari and co­

workers developed kinetic rate expressions using several different substrates (1-hexene, 

1-decene and 1-dodecene in organic solvent) and calculated the rate parameters and 

activation for each system (Bhanage eta!. (1997), Divekar eta!. (1993), Deshpande and 

Chaudari (1988). A mechanistic model was also proposed for the hydroformylation of 

styrene by Nair eta!. (1999) but was not used to develop a general kinetic equation for 

the hydroformylation of olefins. Details of the kinetic models are presented in Section 

2.3. Summarizing the observations reported in literature, it can be stated that the kinetic 

rate of hydroformylation has been found to be influenced positively by increasing the 

concentration of catalyst and hydrogen, whereas increased carbon monoxide exerted a 

negative effect. The apparent activation energy required for aldehyde formation has been 

found to be in the range from 30 to I 00 kJmor1
• 

In this work we make the first contribution to the study of the kinetics of 

hydroformylation of higher olefins, using a first principle method such as ab initio. The 

most widely used ligand in a homogeneous hydroformylation process 1s 

triphenylphosphine (PPh3). In the rhodium-PPh3 catalyzed hydroformylation, it has been 

established that hydridocarbonyl-tris(triphenylphosphine)rhodium (I) (HRh(CO)(PPh3)3) 
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is a direct catalyst precursor. In spite of the connnercial importance of the rhodium-PPh3 

catalyst, only limited data have been published on the kinetics of the hydroformylation 

reaction under the industrial operating conditions (T= 343-393 K, CO partial pressure= 

5-25 bar, H2 partial pressure = 5-25 bar, Rh loading = 1 mM and olefin concentration = 

0.1-2 M). The ab initio technique of quantum chemical computation was used to obtain 

the energetics and to identify the reaction pathways of Rh-catalyzed hydroformylation of 

higher olefins (1-octene, 1-decene, 1-dodecene and styrene) using low concentration of 

phosphine ligand. Since the available computational tools did not allow prediction of the 

kinetic parameters of the systems under study, the mechanistic model was developed 

based on the mechanism and pathways given by the ab initio calculation. Several 

simplifying assumptions were made to develop a generalized kinetic model based upon 

the well-documented mechanistic steps in homogeneous hydroformylation of olefins 

using Rh-based catalyst. It is assumed that 

1. the reaction has reached a steady-state, 

11. all but one of the reaction steps are in equilibrium, 

iii. the starting intermediate species at the reaction interface IS the complex 

HRh(COh(L)2, and 

IV. the total rhodium concentration remams constant and the catalyst is uniformly 

distributed over the cross section of the reactor, 

v. the concentration of dissolved CO and H2 is constant in the reaction mixture - this 

assumption is justified because the syngas is continuously added to a well-mixed 

reaction mixture (Ollis and Turchi, 1990). 

The kinetic constants were evaluated by fitting experimental hydroformylation data at 

different process conditions. The resulting activation energies matched remarkably well 

with that predicted by the quantum chemical method thereby validating its applicability 

to this class of homogeneous catalytic reactions. 
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3.3. Molecular modeling 

Molecular modeling based on quantum mechanical computations is emerging as a useful 

and reliable strategy of predicting energetics and kinetics of chemical reactions (Saeys et 

a!., 2005; Cavallotti et a!., 2007). The strategy has three major ramifications - the ab 

initio electronic structure and molecular orbital (MO) calculations, semi-empirical 

methods and molecular mechanics. Of the three, ab initio molecular orbital methods are 

the most accurate and consistent because they provide the best mathematical 

approximation to the actual system (Le Bris and Defranceschi, 2000). The term ab initio 

implies that the computations are based on the laws of quantum mechanics, the masses 

and charges of the electrons and atomic nuclei, and the values of fundamental physical 

constants (Hehre eta!., 1986). Virtually no conceptual approximations are involved. On 

the other hand, semi-empirical methods are based on the Hartree-Fock theory, using 

empirical corrections in order to improve performance (Streitwieser, 1961 ). The method 

is very important in computational chemistry for treating large molecules where the 

Hartree-Fock method without the approximations is too expensive. The use of empirical 

parameters appears to allow some inclusion of electron correlation effects into the 

methods. Within the framework ofHartree-Fock calculations, some pieces of information 

(such as two-electron integrals) are sometimes approximated or completely omitted. In 

order to correct for this loss, semi -empirical methods are parameterized, whereby results 

are fitted by a set of parameters, normally in such a way as to produce results that best 

agree with experimental data, but sometimes to agree with ab initio results. The term 

molecular mechanics refers to the use of Newtonian mechanics to model molecular 

systems. A group of molecules is treated as a collection of balls and springs rather than a 

quantum collection of electrons and nuclei. The potential energy functions and the 

parameters used in molecular mechanics are known as "force fields" (Roat-Malone, 

2002). Molecular mechanics can be used to study small molecules as well as large 

biological systems or material assemblies with many thousands to millions of atoms. 

Molecular orbital methods deal with solution of the Schrodinger' s equation 

H '¥ ( ) = •tz 8'¥ mol (f) 
mol mol t l 

8t 
(3.1) 
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where His the Hamiltonian operator representing the sum of kinetic and potential 

energies, n is Planck's constant, i is the imaginary unit, 'Fmit) is the wave function, 

which is the probability amplitude for different configurations of the system and tis time. 

For a chemical system a 'basis set' of functions is used that satisfy a series of rigorous 

mathematical approximations (Bell et a!., 2007). Improvement in calculations is obtained 

by the use of triple-split-valence basis sets, of which the only important one is 6-3110. 

Here there are 6 Gaussians for the core basis functions and the valence functions are split 

into three sets, comprising three, one, and one Gaussians, respectively. In general 

electronic structure calculations are often improved by adding functions corresponding to 

orbitals with a higher angular momentum than those that are occupied. For example p 

functions may be added to hydrogen, d functions to C, N, 0, and so forth, andjfunctions 

to transition metals. These are denoted by adding an asterisk to the basis set or specifying 

p, d functions, and so forth, for example, 

6-310* or 6-31G(d): Adds d functions to 2nd row elements (C, N, 0, etc.). 

6-310** or 6-31G(d,p): Adds d functions to 2nd row elements (C, N, 0, etc.) andp 

functions to H. 

For anions and atoms with lone pairs it may be that there is some electron density far 

from the nuclei. This can be handled by the addition of diffuse functions, which are broad 

Gaussian functions (small a coefficient) that are not readily calculated for isolated atoms, 

but are chosen by well-established rules of thumb. These functions are represented in the 

basis set specification by a + or ++ sign. Experience shows that the addition of 

polarization and diffuse functions to H atoms is not usually necessary, for example, 

6-31 +G: Adds diffuse functions to 2nd row elements (C,N, 0, etc.). 

6-31 ++G: Adds diffuse functions to 2nd row elements and H. 

Calculations involving the heavier atoms, for example, transition metals, can be very 

time-consuming owing to the large numbers of electrons involved and the fact that larger 
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basis sets are not available for heavier atoms. The problem can be reduced in size by 

restricting the full calculation to the valence electrons only and including the core 

electrons simply as an effective core potential (ECP). A number of these have been 

proposed, of which probably the most popular is the Los Alamos ECP (Bell et a!., 2007). 

In combination with double-zeta functions for the valence electrons, the Los Alamos ECP 

is used in the "LanL2DZ" basis set, which is often employed in calculations on molecules 

involving transition metals. 

Ab initio molecular orbital calculations are specified by 'model chemistry' (Hehre et 

a!., 1986). The accuracy and computational time depend upon the choice of the method 

and the basis set, the general structure and electronic state of the molecular system under 

study (e.g., charge and spin states), and the treatment of electron spin. Reasonable 

accuracy in moderate computer time may be achieved for larger molecules (n-1 0-30 

atoms) only by using the basic theory with minimal basis sets (i.e., H-F or Hartree-Fock 

approximation), whereas calculations on chemical reactions between simple diatomic 

molecules can be performed with the state-of-the-art model chemistries. For very large 

systems (n-50 atoms or more), an excessive computational time may be avoided with 

less sophisticated models, like semi-empirical methods and molecular mechanics (De Paz 

and Ciller, 1993). A brief review of the computational theories are given here. 

3.3.1. Electron Correlation Methods 

The major deficiency of the Hartree-Fock Self-Consistent Field (HF-SCF) method is that 

it treats each electron as moving under the influence of the average effect of all other 

electrons. A SCF approach to treating electron correlation was described in terms of an 

adjustable parameter, ~, in place of the nuclear charge, Z, in the one-electron 

wavefunction: 

( 
1 Jj:213 ¢b = ..[;; ., exp( -~ r) (3.2) 

where ~represents the effective nuclear charge interacting with one electron due to the 

presence of another and r, the distance from the nucleus to the electron (Shaik and 
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Hiberty, 2007). The Hamiltonian that describes this approximation (called the Fock 

operator) is given by: 

(3.3) 

where F is the Fock operator, J (called Coulomb integral) reflects the average interaction 

potential of electron i due to all other electrons, K is a second integral (called the 

exchange integral) and Z, the nuclear charge. Finding the Hartree-Fock one-electron 

wavefunctions is now equivalent to solving the eigenfunction equation: 

(3.4) 

Within this model, the interaction between solute and solvent is represented by an 

interaction potential, Bi, which is treated as a perturbation to the Hamiltonian hi of the 

solute molecule in vacuum. The interaction potential and eigenvalues e; are called orbital 

energies. Since \j/i is part of B, the solution is obtained iteratively whereby a set of \j/i are 

initially guessed, from which Bi is computed. The Fock operator is then used to solve for 

a new \j/i, which is used to compute a new Bi. This process is repeated until 'f/i becomes 

constant. However, this approach fails to account completely for Coulombic interactions 

between electrons causing them to repel each other. In other words motion of the 

electrons are said to be correlated, and electron correlation causes electrons to be further 

apart than as described by the HF-SCF approach. Electron correlation can be handled in 

quantum chemical calculations using Moller-Plesset perturbation theory or density 

functional theory. 

3.3.1.1. Moller-Plesset Perturbation Theory 

Perturbation theory is a well-established method in quantum mechanics for the solution 

of the Schriidinger equation, where the Hamiltonian can be represented by the addition of 

a small perturbation to one for which solutions are known. Simple examples of 

applications of perturbation theory are given in most introductory texts on quantum 

chemistry, where it is shown that improvements can be achieved by taking the 
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perturbation to successively higher orders. Electron correlation can be treated by a 

perturbation approach, since the problem that we are trying to solve is similar to the HF­

SCF solution. Moller and Plesset used a perturbation theory method to determine the 

correlation energy correction, following an HF-SCF calculation (Bell et a!., 2007). The 

perturbation can be truncated at second order (MP2), third order (MP3) or even higher 

orders (MP4 and MPS). This procedure is computationally intensive, especially for 

higher orders and even for small molecules can require several gigabytes of disk space 

for temporary storage of the integrals that are generated. Nevertheless, the effort is 

rewarded by results that give a much closer fit to experimental data than the HF-SCF 

method. 

3.3.1.2. Density Functional Theory 

Density functional theory (DFT) provides an alternative approach to electron correlation. 

The basis of this theory, developed by Hohenberg and Kohn in 1964, is the proof that the 

ground-state electronic energy is determined completely by the electron density, p. The 

aim of DFT methods is to design functionals connecting electron density with the energy. 

A functional equation is an equation where the unknown is a function itself. Thus 

although a wavefunction is a function, an energy depending on a wavefunction or 

electron density is a functional. A generalized DFT expression is (Bell et a!., 2007) 

Eorr[p ]=Ts[p ]+En,[p ]+ J[p ]+Ex,[p] (3.5) 

where Ts is the kinetic energy functional (S denotes that the kinetic energy is obtained 

from a Slater determinant), Ene is the electron-nuclear attraction functional, J is the 

Coulomb part of the electron-electron repulsion functional, and Exc represents the 

exchange correlation functional. The dependence of each of these terms on the electron 

density, p, is represented by p in brackets following each term. In practice, it is customary 

to use hybrid SCF-DFT methods in which the exchange energy is calculated by the HF 

method. A wide variety of hybrid methods are available, the one used most frequently is 

B3-LYP, which incorporates Becke's three parameter exchange functional (B3) (Becke, 

1993) with the Lee, Yang, and Parr correlation functional (LYP) (Lee et a!., 1988). 
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Hybrid DFT -SCF methods, in general, are particularly attractive because they are only 

marginally more computationally intensive then HF-SCF, yet provide results that are 

comparable with those obtained using the much more demanding MP perturbation 

method. 

3.3.2. Geometry Optimization 

In any quantum chemical calculation the first step requires optimization of the molecular 

geometry. Model building may be done using molecular visualization software, such as 

the Gaussian graphical interface GaussView, or by the ChemBio3D. Even when 

experimental structures are available it is still necessary to optimize the geometry at the 

level of theory we are using before attempting calculations of molecular properties (Le 

Bris and Defranceschi, 2000). Geometry optimization involves the mathematical 

procedure called nonlinear optimization, for which several algorithms have been 

developed. The energy and wavefunctions are computed for the initial guess of the 

geometry which is then modified iteratively until (i) an energy minimum has been 

identified and (ii) forces within the molecule become zero. ChemBio3D uses the 

Eigenvector Following (EF) routine as the default geometry optimization routine for 

minimization calculations. The EF approach minimise a Rayleigh-Ritz ratio 

,1_(y) = y'Hy 
y' 

(3.6) 

with respect to the vector y, where superscript t denotes the transpose. Therefore, /..(y) 

becomes the smallest eigenvalue of the Hessian H and y becomes the corresponding 

eigenvector. The numerical second derivative of the energy is used as an approximation 

to /..(y}, with E(Xo) the energy at pointXo in nuclear configuration space and s<l'::l: 

E(X0 +9' )+E(X0 -9')-2E(X0 } 

,1_(y)"' (9')' (3.7) 

Differentiating (Equation 3.7) gives 

i:JA VE(X0 +9')-VE(X0 -9') 
= 

8y (9')' 

2Ay 
2 . 

y 
(3.8) 
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In the present EF approach, the eigenvector obtained by minimising the above Rayleigh­

Ritz ratio was used as the direction of uphill search, and minimise in the tangent space 

using a gradient-based approach. The present calculations allowed a maximum of 10 

iterations in the variational calculation of the smallest Hessian eigenvalue and the 

corresponding eigenvector. There is no need to converge the eigenvector accurately at the 

beginning of a search (convergence only becomes important close to the transition state). 

Therefore, since the previous eigenvector is used as the starting point after the first step, a 

small number of iterations are most efficient. No tangent space minimizations were 

performed until the smallest non-zero eigenvector became negative and converged in two 

iterations or Jess. The variational calculation was deemed to be converged when the root­

mean-square gradient specified by Equation (3.5) fell below 0.15 eV A-3
. The EF step 

size along the eigenvector obtained variationally was set to 0.16 A until the 

corresponding eigenvalue became negative. Each stationary point optimization was 

deemed to be converged when the root -mean-square gradient fell below about 

0.001 eV A-1
. 

This can often be difficult for non rigid molecules, where there may be several energy 

minima, and some effort may be required to find the global minimum. Since an optimized 

geometry should result in zero forces within the molecule, all principal force constants 

should be positive and therefore not result in any imaginary vibrational frequencies. If 

there are one or more imaginary frequencies, then the geometry optimization has ended in 

a transition state rather than an energy minimum (Schlegel and Yarkony, 1994). The 

eigenvectors of the imaginary frequencies will then help to point in the direction of the 

structure corresponding to an energy minimum. Finding transition states is, of course, a 

necessary part of using quantum chemical methods to model reactions. 

3.4. The ab Initio Molecular Orbital Calculation 

The quantum mechanical description of chemical bonds is given by a space and time 

dependent probability distribution: the molecular wavefunction, '¥mot(!), defined by the 

Schriidinger equation (Eq. 3.1). For systems of more than two interacting particles, the 

Schriidinger equation cannot be solved exactly. Therefore, all ab initio calculations for 

molecules involve some level of approximation and indeed, some level of empirical 
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parameterisation. The standard MO treatment for most closed-shell molecules involves a 

spin-restricted Hartree-Fock self-consistent field (HF-SCF) calculation. HF-SCF 

calculations generally yield accurate molecular structures but are less successful at 

predicting molecular energies. The main source of error in HF calculations is neglect of 

electron correlation, which results in systematic overestimates of molecular energies. 

Different tools of varying complexities have been developed to enhance accuracy (Saeys 

et a!., 2002; Zhang et a!., 1999). 

Ab initio MO studies require a basis set of mathematical functions to solve the wave 

equation. Standard ab initio software packages provide a choice of basis sets that vary 

both in size and in their description of the electrons in different orbitals. Quantitative 

accuracy improves with the size of basis sets, since larger basis sets contain more 

adjustable parameters and thus offer better approximations of the true molecular wave 

functions. In general, ab initio MO studies on complex systems should begin with 

calculations using small basis sets, to obtain a qualitative assessment of molecular 

properties. For general use, the smallest standard basis set is recommended in the 

Gaussian 98 is 6-31G(d) package. A number of quantities such as molecular orbital 

energies, total energy from electronic and nuclear repulsion, heat of formation, dipole 

moment are obtainable from molecular orbital calculations. 

In exploring a potential energy surface for a reaction, normally the first step is to 

optimize the geometry of the relevant stationary points, i.e. the reactants, transition 

structure and products. To confirm a reaction mechanism, it may be necessary to prove 

that the particular transition structure found in the optimization connects the desired 

reactants and products. This can be done by following the path of steepest descent 

downhill from the transition structure toward the reactants and toward the products. 

Following the reaction path can also show whether the mechanism involves any 

intermediates between reactants and products. Although the path of steepest descent 

depends on the coordinate system, a change in the coordinate system does not change the 

nature of the stationary points and does not alter the fact that the energy decreases 

monotonically along the reaction path from the transition structure toward reactants or 

products. Thus any coordinate system can be used to explore the mechanism of a 

reaction. One system, the mass-weighted Cartesian coordinates, has special significance 
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for reaction dynamics, and the path of steepest descent in this coordinate system is called 

the intrinsic reaction coordinate (IRC) (Schlegel, 1994). 

It will be pertinent at this point to refer to the reported applications of the 

methodology to the study of energetics and kinetics of non-catalytic and catalytic 

reactions, both homogeneous and heterogeneous. Saeys et a!. (2005) developed a 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model for the hydrogenation 

of toluene based on the first-principles density functional theory calculations for the 

hydrogenation of benzene over Pt catalyst. The LHHW model is able to capture the main 

trends in the reaction pathways and rates. Rocha et a!. (2001) has performed a theoretical 

study on the homogeneous catalysis of isomerization of p-pinene, a hydroformylation 

precursor. The isomerization was investigated at three different levels of theory, HF, 

MP2 and MP4(SDQ), using 4 different size of basis set, 6-31 G, 6-31 G( d), 6-31 +G( d) and 

6-311++0( d,p) provided in the computational package. It was reported that the use of 

different basis set and the inclusion of the electron correlation effects had little influence 

on the relative stability of the p-pinene isomers but the effect on the energy barrier for the 

process was significant. Another theoretical study on the mechanism of the isomerization 

of !-butene catalyzed by Rh-complex has been reported by Luo et a!. (2005). The 

quantum mechanical calculations were carried out in the density functional theory 

framework to evaluate the potential energy profile and the reaction mechanisms involved. 

Rocha (2004) studied the reaction mechanisms involved in the last step of the catalytic 

cycle of the hydroformylation of alkene promoted by Pt-Sn catalyst, which is the 

hydrogenolysis process. Very recently, Cavallotti et a!. (2007) reported ab initio 

computational studies on cyclohexane oxidation leading to kinetic parameters of primary 

reactions. These results together with available experimental data were used to formulate 

and test a detailed kinetic model. 

The quantum approach still assumes a reaction scheme and then ab initio calculates 

the potential energy of intermediates and transition states. In this way the outline of a 

kinetic model with a sound theoretical basis is built that can be used to predict the 

macroscopic parameters of the process and to compare directly with experiment (a kind 

of benchmarking). In some cases it may be possible to predict the outcome of new 

chemical processes. 
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3.5. The Reaction Pathways 

The tentative reaction pathways for ab initio computation is shown in Figure 3.1 

(computations are confined to the reactions within the box). Qualitative reasoning and 

some available experimental observations form the basis of the scheme. According to 

van Leeuwen and Claver (2000), hydroformylation reactions are quite sensitive to 

experimental conditions such as the concentrations of catalyst, carbon monoxide, 

hydrogen, olefin and added ligand. At low Rh concentration, using HRh(PPh3)3CO as the 

catalyst precursor without addition of additional PPh3 ligands, substantial dissociation 

can occur with the formation of mono-phosphine or phosphine-free catalysts. Therefore, 

it is anticipated that at a high CO pressure of 20-40 bar and low PPh3 concentration, the 

PPh3 ligand of the catalyst precursor of HRh(PPh3)3CO (species A) can exchange with 

carbon monoxide to form B and C (Figure 3.1). The 31P NMR magnetization transfer 

experiments described by Brown and Kent (1987) also indicated that PPh3 dissociation 

from the RhL2 [L = ligand] complex B could occur at a significantly slower rate than the 

corresponding PPh3 dissociation from tris-triphenylphosphine complex, A. In addition, 

spectroscopic experiments have revealed that under hydroformylation conditions, 

rhodium tri(o-t-butylphenyl)phosphite complex is coordinated by only one phosphite, 

HRh[P(OAr)J](CO)J (Jongsma eta!., 1991). van der Veen eta!. (2000) claimed that the 

rate of hydroformylation is two orders of magnitude slower than the rate of carbon 

monoxide exchange of isomers of type B. The relative concentrations of these 

intermediates are controlled by the PPh3 and CO concentrations. Thus, we may conclude 

that the initiation of the catalytic cycle by dissociation of CO and PPh3 should not be rate 

determining since it has been found to be fast on the time-scale ofhydroformylation. 

Wilkinson suggested that species C, formed at a low concentration of PPh3, leads to a 

lower selectivity for linear aldehyde (linear: branched = 4: I) compared to 

hydroformylation reaction with additional amount of PPh3 (van Leeuwen, 2004). The 

overall steric hindrance at the rhodium metal of species B is low because two relatively 

small carbonyl ligands are coordinated next to two bulky triphenylphosphine, PPh3. 
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Figure 3.1: Plausible steps for rhodium catalyzed hydroformylation in the presence of 

low concentration of phosphine ligand. 
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Table 3.1: Description of the catalytic cycle in Figure 3.1. 

Step Description 

For PPh3 as the ligand (L), the starting complex is HRh(CO)(PPh3) 3 (complex A), 

which in the presence of carbon monoxide forms diphosphine intermediate, 

containing the phosphine ligands in equatorial positions ( ee) or one in an apical 

position and the other ligand in an equatorial position (ae). Brown and Kent 

(1987) found a preference for the "ee" isomer (i.e., complex B). The other possible 

isomer (ae) of the complex is not shown. 

2 At low Rh concentration, using HRh(CO)(PPh3) 3 as the precursor without addition 

of PPh3 ligand, substantial dissociation will occur to form monophosphine 

catalyst, complex C (Evans eta!., 1968). fu addition, according to Jongsma eta!. 

(1991), complex B may undergo exchange of ligand to form single coordinated 

PPh3 ligand, C, at high CO pressure. 

3 and 4 Reversible adclition/elimination of either Lor CO from B or C leads to the square­

planar intermediate D. 

5 Complex D associate with olefin to give complex E which eventually gives rise to 

the product aldehyde (n-or iso-) through a number of steps that follow. 

6 and 7 Complex E undergo a migratory insertion step to give square planar alkyl 

complexes F or G. Complex E can undergo ~-hydride elimination, thus leading to 

isomerization especially when higher alkenes are used (step 7). Wilkinson 

suggested that formation of species F, lead to higher linear aldehyde selectivity 

(n:iso = 20: 1), and that species G, containing only one phosphine, lead to a lower 

selectivity for linear aldehyde (n:iso = 4: I) (Evans eta!., 1968). 

8 and 9 

10 and 

II 

12 

13 and 

14 

Complex F (and also G) react further with CO to form trigonal bypiramidal 

complexes H (and also K). 

Complex H (and also K) undergo the second migratory insertion of the alkyl 

ligand to form acyl complexes J (and also Q). 

Complex J can react further with CO to give the saturated acyl intermediate M, 

which have been observed spectroscopically (Jongsma eta!., 1991). 

Complexes J (and Q) reacts with H2 to give the aldehyde product and gives back 

the unsaturated intermediate D. The reaction with H2 involves presumably 

oxidative addition and reductive elimination. 
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The rhodium center containing two weak phosphine donors and strongly electron 

withdrawing carbonyl ligands is predictably electron deficient. As a result, the carbonyl 

ligands are strongly bound and the fast dissociation of phosphine (structure C) and 

subsequent olefin addition results in high reaction rates. Hydride migration in a latter step 

results in the formation of the linear or branched rhodium alkyl complex, F and G (Figure 

3.1). The isomerization reaction is often ignored in developing the rate equation. Under 

the reaction condition, the rhodium alkyl complexes F and G can undergo either 

migratory insertion forming the rhodium acyl complex or ~-hydride elimination. As for 

the primary rhodium alkyl F, the ~-hydride elimination will lead to the initial substrate. 

However the secondary rhodium alkyl complex, G can form the !-alkene and a by­

product, internal 2-alkenes, by ~-hydride elimination. Since ~-hydride elimination is 

faster for the secondary rhodium alkyl than for the primary rhodium alkyl complex, high 

isomerization rates will reduce the formation of the branched rhodium acyl to a larger 

extent than the linear rhodium acyl. Another possible side reaction is the formation of the 

inactive tricarbonyl rhodium species M, from the addition of CO to the unsaturated 

rhodium acyl complex, J (Nair eta!., 1999; Musaev eta!., 1995). Further details of the 

reaction pathways are given in Table 3.1. It is also to be noticed that species N and P, 

which are not included in Figure 3.3 are dihydride acyl species and aldehyde-coordinate 

intermediate, respectively. Since, the transition state which involve aldehyde reductive 

elimination step was not selected for detailed study in our work, species N and P are not 

included in the catalytic cycle in Figure 3.1. However, the X-Y-Z structures of the 

species are provided in Appendices A, B and C. 

3.6. Computational Methodology 

A tentative mechanism of the reaction pathways is a pre-requisite of the ab initio 

computation (Matsubara, 1997). The quantum-chemical calculations at the Restricted 

Hartree-Fock (RHF) level may then be performed with the GAMESS (General Atomic 

Molecular and Electronic Structure System) Pro 11.0 program package and ChemBio3D 

11.0 as a frontend graphical user interface (GUI). ChemBio3D 11.0 allows building 

molecular species from atoms, and provides a means to generate or convert input files for 

the GAMESS program package. All geometries of transition states as well as 
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intermediates were optimized at the restricted Hartree-Fock (RHF)/6-31 G( d,p) level. For 

the energetics, the electron correlation calculations were performed with the frozen-core 

second-order Moller-Plesset (MP2) perturbation method, using basis sets 6-31++0( d,p) 

(Luo et al., 2005). We used two basis sets, basis set I for the RHF geometrical 

optimization and basis set II for the MP2 energy calculation and higher level calculations. 

The vibrational analysis and internal reaction calculations (IRC) were also performed to 

verify the transition states. The path of a chemical reaction can be traced from the 

transition state to the product(s) and/or to the reactant(s) using the IRC technique. The 

IRC describes the path of steepest descent from the transition state down to the local 

energy minimum. The path is computed in small steps simultaneously optimizing all 

atomic coordinates orthogonal to it thus constituting a sequence of constrained 

optimization subproblems. Vibrational frequencies were also calculated at the RHF/6-

31 G( d,p) level. Calculation of the harmonic vibrational frequencies for the transition state 

(TS) species revealed that each contained the single imaginary frequency required to 

classify it as a true TS. In all cases, electronic correlation was taken into account at the 

second order Moller-Plesset level in the frozen core approximation. A scaling factor of 

0.937 was used (Merrick et al., 2007). In addition, zero point energy (ZPE), which a 

quantum system possesses at 0 K in contrast to a classical system, was also calculated. 

The contribution of the ZPE that arises out of the residual vibration, to the reaction 

enthalpy and Gibbs free energy may sometimes be significant. Since ab initio ZPE 

calculations yield slightly higher values than actual, a scaling factor of 0. 89 was used 

(Pople et al., 1981 ). The contribution of ZPE to the PE was around 5% for most of the 

species involved in this study. Possible formation of isomers was taken into account in 

potential energy calculations. The equilibrium geometries of each species were first 

determined by optimizing the structures by ab initio RHF method using a 6-31 G( d,p) 

basis set. 
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Output: optimized molecular 
geomtery, energy and wavefunctions 

Optimize to transition state (IRC) 

pes 
Output: optimized molecular 

geomerty and potential energy at 
transition state 

• END 

determine a better guess 
of the molecular 
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Figure 3.2: Flowchart illustrating the steps involved in quantum chemical calculations of 

molecular structures. 
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A conformational analysis was carried out on the optimized geometries (ae or ee 

geometric isomers) by rotating the torsional angles of the ligands in steps of 30". The 

resulting conformers (a maximum of about 10,000) were further optimized by energy 

minimization. A conformer was retained if its energy varied by less than 2 kJmor1 from 

that of the most stable conformer. Thus, only the most stable conformers with lowest 

energy were selected. Figure 3.2 shows a flowchart for the steps involved in geometry 

optimization. 

Activation energies were calculated for the five transition structures of Rh-catalyzed 

hydroformylation of ethylene identified by Matsubara et al. ( 1997) (alkene insertion, H­

insertion onto alkene ligand, CO insertion, H2 oxidative addition and aldehyde reductive 

elimination). However, only three transition states with the three highest energy barrier 

(alkene insertion, CO insertion and Hz oxidative addition) were selected for detailed 

study. Structure of PH3 is chosen to mimic the organic phosphorus ligand PPh3 to avoid 

excessive computational time without appreciable loss of accuracy (Luo et al., 2005; 

Musaev, et al., 1995). 

3.6.1. Test Calculation 

Coutinho et al. (1997) reported experimental studies on hydroformylation of phosphino­

alkenes with hetero-bimetallic complex catalyst, (C0)4M(~-t-PPhz)zRhH(CO)(PPh3), 

where M = Cr, Moor W. They isolated a few intermediates in the reaction process and 

determined their structural parameters by spectroscopic and X-ray diffraction. Later on, 

Tang et al. (2007) reported a computational studies of the reaction steps and 

intermediates using Gaussian 03 package and compared some of their computed results 

with the experimental structural data of Coutinho et al (1997). Therefore in this work, the 

structural parameters (bond length and bond angle) of an 11-acyl intermediate [called 

A'/(Mo) in Tang et al., 2007] at MP2/6-31G(d,p) level were computed and compared 

with the Tang's computed data and Coutinho's experimental data obtained by X-ray 

crystallography. The structure of the 11-acyl intermediate and the comparison of 

calculated and experimental values are shown in Figure 3.3 and Table 3.2, respectively. 

The above comparison validates the accuracy of the above computed results at RHF 

MP2/6-3l(d,p) level. 
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fl 
Figure 3.3: Optimized structure of the the ,u-acyl complex A'(Mo) as an intermediate in 

hydroformylation using a hetero-bimetallic complex catalyst. 

Table 3.2: Optimized parameters for the .u-acyl complex A'(Mo) at the RHF/6-31 G( d,p) 

level (present work), computed results of Tang eta!. (2007) and Coutinho's experimental 

data obtained by X-ray crystallography. 

Bond length ("A)/ Calculated Calculated Experimental 

Bond angle (degree) (Present work) (Tang eta!, 2007) (Coutinho eta!., 1997) 

Rh-Mo 2.79 2.85 2.78 

Rh-P(2) 2.34 2.40 2.32 

Rh-P(3) 2.35 2.41 2.34 

Rh-C(ll) 2.05 2.06 2.05 

Rh-P(5) 2.34 2.34 2.29 

Mo-P(2) 2.49 2.52 2.47 

Mo-P(3) 2.47 2.51 2.49 

Mo-O 2.28 2.32 2.25 

Rh-Mo-P(2) 52.2 52.8 52.1 

Rh-Mo-P(3) 52.3 52.8 52.4 

Rh-Mo-0 66.0 65.0 66.4 

P(2)-Mo-P(3) 104.0 105.3 103.9 

P(2)-Mo-O 78.8 78.5 78.7 

Rh-Mo-C(ll) 72.0 72.2 71.9 
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3. 7. Results and Discussion 

3.7.1. Quantum Chemical Calculation 

As stated before, quantum chemical calculations are confined to the reactions within the 

dashed box in Figure 3 .1. The main reaction mechanism involves eight elementary steps, 

three of which pass through transition states (TS): (i) alkene insertion (step D to F), (ii) 

formation of acyl complex (step F to J), (iii) Hz oxidative addition (step J to N). These 

three reactions will be examined individually, and at the end the overall potential energy 

profile will be analyzed. 

3.7.1.1. Alkene Insertion: 

In this step, alkene ligand inserted into the Rh-H bond to generate an unsaturated Rh­

alkyl complex F (or G). The MP2 optimized geometry of the alkene insertion transition 

states TSl originating from Hz-alkene adducts El was displayed in Figure 3.5a. In 

proceeding from the Hz-alkene adducts to insertion transition states, the alkene ligand 

must rotate out of the equatorial plane and shifted upward in order to favor its alkene 

group to align with the axial hydride. As seen in Figure 3.5a, the alkene ligand in the 

transition states oriented itself intermediary between a perpendicular and parallel 

alignment. Simultaneously, the axial hydride bent toward the incoming alkene ligand to 

expedite insertion. Alkene insertion transition states TSl(El/Fl) and TSl(E2/F2) were 

located at the MP2 level: TSl(El/Fl) originating from the ee Hz-alkene adduct, along 

with TS 1 (E2/F2) originating from ea H2-alkene adduct. Vibrational frequency 

calculations confirmed that all two species are indeed transition states containing a single 

imaginary frequency. In each case animation of the normal mode for the single imaginary 

frequency displayed the desired nuclear displacements required for alkene insertion into 

the Rh-H bond. For evidence from the structures of the TSl(El/Fl) and TSl(E2/F2) 

confirmed by calculation of the IRC, TS 1 (E 1/F 1) generated the trans Rh-alkyl insertion 

product (Fl), while TSl(E2/F2) leads to the cis Rh-alkyl insertion product (F2). 
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Figure 3.4a: Selected geometrical parameters of optimized structures (A) of the 

transition state TS-1 (El/Fl) for the 1-dodecene insertion at RHF level. 

3.7.1.2. Formation of Acyl Complex: 

Along the reaction coordination, the axial alkyl ligand is bended toward the equatorial 

CO ligand before the three-member ringed, trigonal bypirimidal-like transition structure 

was formed as shown in Figure 3.4b. This distortion was coupled with a bending of the 

oxygen atom of the CO ligand away from the incoming alkyl group in order to decrease 

the steric and electronic repulsion. The bond angle Rh-C-0 changes from 178° in Hz to 

163° in TS 2(H2/J2) which indicated that the CO ligand also bent slightly to align with 

the incoming alkyl ligand. In the TS 2 structures the Rh--C(alkyl) bond was about 0.03 

nm longer than its value in species H while the C(alkyl)-C(CO) distance became shorter 

by about 0.2 nm. On the other hand, analysis on the bond orders also illustrate that the 

Rh-C (alkyl) bond was weakened while C (alkyl)-C(CO) was strengthened in the process 

and this conclusion accorded with the change of bond length. Additional, Rh-C (CO 
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insertion) bond is shortened by about 0.014 nm along the process from H to TS2, which 

demonstrates bond strengthening. However, the length ofRh-C (CO insertion) bond was 

elongated by about 0.015 nm from TS2 to insertion product J according to the much more 

decrease of bond order along this proceeding. The product of CO insertion had two 

isomers, Jl and J2. Obviously, J2 is a more stable isomer by a preferred energy in the 

range of6.7 to 7.5 kJ mor1 of II and these were confirmed by IRC calculations. 

Figure 3.4b: Optimized Bond lengths (A) of transition state TS-2 (HIIJI) for the CO 

insertion at the RHF level (1-octene ). 

3.7.1.3. H2 Oxidative Addition: 

The third transition state considered in this work was oxidative addition of H2 to the 

unsaturated four-coordinated complexes J to give rise to a dihydride acyl species N. 

Calculated at the MP2 level, the H2 addition step for all three substrates was predicted to 

be endothermic in the range of21.0 to 37.5 kJ mor1
. There were two possible attacking 

paths, one is when H2 molecular closed to the center metal parallel to P-Rh-C(CO) in J 

forming transition state TS3(J1/N1), the other was H2 molecular along with C(CO)-Rh­

C(CO) moves up to rhodium to give rise to TS3(J2/N2). TS3(Jl/N1) and TS3(J2/N2) 
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gave rise to oxidative addition products Nl and N2, respectively. The three-membered 

ring transition states TS3(Jl/Nl) and TS3(J2/N2) consisted of two hydrogen and 

rhodium, in which the H-H bond was elongated apparently than in free H2 molecular but 

not broken is shown in Figure 3.4c. The bond order of it decreased from 0.78 in free H2 

molecular to 0.5 in TS3 that also indicated the H-H bond was sharply weakened. 

Calculated at MP2 level of theory, the energy barrier for TS 3(J2/N2) was a little lower 

than the other pathway through TS3 (Jl/Nl ), therefore the reaction with H2 attacking 

along the C(CO)-Rh-C(CO) was regarded as the better one of the two possible paths. 

Calculation using 1-octene, 1-dodecene and styrene as substrate, the energy barrier for 

the two paths was in the range of 52.9 to 66.2 kJmol-1
• Finally, H-H bond was broken 

completely along with the two Rh-H bond formations and six coordinated species Nl 

and N2 are formed. Accordingly, the bond order of H-H was close to zero while that of 

Rh-H bond increased from about 0.24 to 0.39 in the transition state TS3 . 

...--1.606 

-H, 
1.122 

Figure 3.4c: Optimized structures (A) of the transition state TS-3 (Jl/Nl) for the H2 

oxidative addition at the RHF level (1-dodecene). 

The activation energies for the above three reaction steps of the alkenes were obtained 

from the potential energy values calculated by considering higher electron spin number 

(triplet). It may be mentioned that use of this higher spin number yielded more consistent 

values of the potential energy compared to those obtained by using the spin number 1 in 

our initial calculations. The tabulated values (Table 3.3) show that if both the 

coordinating groups (L, CO) are in equatorial positions (ee), the activation energy is 

generally less than that for the case of one ligand in equatorial and the other in apical ( ea) 
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positions. The variations in the activation energies for the transition states of the three 

alkenes can be explained in terms of steric hindrance or steric crowding of the alkyl 

ligands (van Rooy et al., 1996). Styrene, which has a bulky phenyl group, has the highest 

activation energy among the three olefins for all the transition states. The activation 

energy of the reactions of 1-dodecene are higher than the corresponding values of 1-

decene and can be explained on the same basis. X-Y-Z structures of the species at 

stationary points are provided in Appendices A, B and C. 

Table 3.3: Activation energies calculated at MP2level of theory 

Substrate Activation energy (kJ mor1
) 

Olefin insertion Acyl complex formation Hz oxidative addition 
ee (1) ae (2) ee (1) ae (2) ee (1) ae (2) 

1-Decene 39.0 41.4 39.4 40.3 52.9 59.6 

1-Dodecene 41.6 42.5 43.5 41.0 57.7 62.3 

Styrene 56.4 57.4 48.3 46.8 63.2 66.2 

3.7.1.4. The Potential Energy Profile: 

The potential energy profile of the hydroformylation of 1-decene, 1-dodecene and styrene 

are presented in Figures 3.5a, b and c, respectively. The reaction coordinate represents 

the progress along the reaction pathway. The active catalyst which mediates the catalytic 

cycle, is considered to be HRh(CO)z(PPh3) [Bin Figure 3.1]. The transition state of the 

insertion of alkene into Rh-complex (TS-1 ), formation of acyl complex (TS-2) and 

oxidative addition of Hz (TS-3) were optimized by the ab initio MO method to determine 

the potential energy surface of the intermediates. The Hz oxidative addition (TS- 3) were 

found to be endothermic and the alkene insertion (TS- 1) and CO insertion reaction (TS-

2), are exothermic. Similar results were reported for the hydroformylation of ethene by 

Musaev, et al. (1995). The largest barrier is the Hz oxidative addition step, in agreement 

with the experimental proposal that the Hz oxidative addition is rate determining. 
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Figure 3.5a: The potential energy profile of 1-decene hydroformylation reaction 
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Figure 3.5b: The potential energy profile of 1-dodecene hydroformylation reaction 
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Figure 3.5c: The potential energy profile of styrene hydroformylation reaction 

3.7.2. Development of the Mechanistic Rate Equation 

D1+ 
aldehyde 
-47.6 

Mechanistic rate equations for higher olefins were developed based on the reaction 

pathways depicted in Figure 3.1 using the conventional pre-equilibrium and quasi-steady 

state approximations. Three rate equations (M1, M2 and M3) have been developed 

corresponding to the three transition states identified by quantum chemical calculations. 

The following reaction steps are considered. 

kt, -1 

B +CO '<"' C 
kz, -2 

C..:D+CO 

Bk'',J D 
k,, -4 

D + RCHCH2 '<"' F + CO 
ks, -5 

D + RCHCH2 '<"' G 
k,;, -6 

F +CO '<"' J 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 



k, 
J +Hz -> RCHzCHzCHO + D 

J +COks#s M 

(3.15) 

(3.16) 

The Equations (3.9) to (3.16) and the simplifying assumptions were used to derive 

relationships between the rate of reaction and experimental parameters (i.e. 

concentrations of olefin, catalyst, dissolved CO, as well as H2). 

If the Hz oxidative addition is rate-controlling, the rate of reaction is given by 

(where k is the rate constant) (3.17) 

Considering the conservation ofthe catalytic species, the overall balance at steady state is 

described by 

[catalyst]= [B ]+ [c ]+ [D ]+ [F ]+[a]+ [J]+ [M] (3.18) 

where [catalyst] is the concentration of catalyst loaded. The concentration ofB, C, D, F, 

G and M are expressed in terms of J, 

[B]- J 
- KlK2K4K6[alkene] 

[J][co] 
[c] K2K4K6[alken~ 

[a]= KS[Jj 
K4K6 

[D)= [J] 
K4K6[alkene] 

(3 .19) 

(3.20) 

(3.21) 

(3.22) 
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[F]- [J] 
- K6[co] (3.23) 

[M] = KB[J][CO] (3.24) 

and hence [catalyst], 

[catalyst] 
[1](1 + Ki [cO]+ Kz[co]

2 
+ K3[alkene]+ K:[co}alkene]+ K5[coJa!kenel) 

*[ I J (3.25) 
K Leo alkene 

Equation (3 .25) is rearranged to obtain the expression for [ J] and in tum substituted in 

Equation (3 .17) to give the rate model (M I) of the following form: 

k[catalyst ][co ][alkene ][H2 ] 

Rate = I+ Kt [co]+ K; [co ]2 + K; [alkene]+ K; [co ][alkene]+ K; [co )2 [alkene] (
3 

·
26

) 

where k is the reaction rate constant of the rate determining step and Kt - K; are constants 

derived from the equilibrium constants of the reactions 3.9-3.16. This model is similar to 

the empirical model proposed by Bhanage et al. (1997), van Rooy et al. (1995), Divekar 

et al. (1993) and Deshpande and Chaudhari (1988). 

The second kinetic model (M2) was proposed considering the migration insertion of 

the alkene into R-H, as a rate limiting step (Eq. (3.12)). Therefore, the rate law is given 

by 

Rate = k4 [D ][olefin ] (3.27) 

Following the derivation outlined previously, the corresponding rate equation is 

Rate= k[catalystJcoJalkene] 

I+ Kt[cO]+ K;[co]
2 

+ K;[alkene]+ K;[coJalkene] 
(3.28) 
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Similarly, considering the formation of the acyl complex is rate-controlling (Eq. 3.14). 

The rate law is given by 

Rate = k6 [F ][co] (3.29) 

and the final form of the rate equation is 

Rate= k[catalyst!co!alkenelH2 ] 

1+ Kt[co]+ K;[co]2 + K;[a!kene]+ K;[coJalkene]+K;[H2 ] 
(3.30) 

Models Ml, M2 and M3 are called 'generalized models' corresponding to the three rate 

determining steps indicated by the quantum calculations and are independent of any 

particular olefin. The proposed rate equation (Ml) is also consistent with the 

experimental observations, indicating a first-order dependence on [H2] and [catalyst], first 

order in CO at low pressure and negative order at high pressures and fractional order in 

olefin concentration. The negative order with respect to CO concentration at high 

pressure may be explained by the accumulation of species M, which are outside of the 

cycle under these conditions and therefore should inhibit the rate of the reaction (Rosales 

eta!., 2007a). 

3. 7.3 Determination of the Rate Parameters 

Experimental hydroformylation rate data extracted from the published literature were 

used to evaluate the kinetic and equilibrium constants (k and K's) of each of the three 1-

alkenes. The data sources and the ranges of the process parameters (pressure, 

concentration, temperature) are listed in Table 3.4. The kinetic data used in the kinetic 

modeling is shown in Appendix D. The HRh(CO)(PPh3)3 catalyst in an organic solvent 

was used for the alkene substrates except for 1-octene for which HRh(CO)[P(p­

CF3C6Ic4)Jh was used as catalyst in supercritical carbon dioxide (scCOz) solvent. Since 

no side reactions were reported by the researchers under the stated experimental 

conditions, the rate data represented the overall hydroformylation of an alkene to the 

corresponding aldehyde (Nair et al, (1999); Bhanage eta!. (1997); Divekar eta!. (1993)). 
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Table 3.4: Range of experimental conditions used for development of the mechanistic 

rate equation 

Experimental conditions Bhanage et al. Divekar et al. Palo and Erkey Nair et al. 
(1997) (1993) (1999) (1999) 

Substrate olefm 1-Dodecene (C12) 1-Decene (C10) 1-0ctene ( c,) Styrene (C6) 

Cone. of catalyst (mol/m3
) 1.0-8.0 0-1.0 0.63-2.54 0.131-1.01 

Initial cone. of !-alkene 0.18-2.2 0-1.0 0-1.0 0.92-6.89 
(kmol/m3

) 

Pm (MPa) 0.68-1.7 0-1.38 5-13.8 1.03-4.12 
Pea (MPa) 0.17-2.04 0-8.11 5-13.8 0.3-4.12 
T('C) 50-70 50-70 50 60-80 
Reaction volume (mL) 25 not available not available 25 

Solvent toluene benzene scco, toluene 

Non-linear least square regression based on the criterion of minimization of the mean 

residual sum of squares (MRSS) was performed to determine the kinetic parameters using 

the Solver in Microsoft Excel2007. 

N 

L (Reale - R expt Y 
MRSS = ..!:;-"'1------ (3.31) 

where Nexpt is the number of experimental data, Npannn is number of model 

parameters, Reale and Roxpt represent calculated and experimental rates, respectively. 

Experimental rate data are available at different temperatures, partial pressures of CO and 

H2 as well as concentrations of the olefin and of the catalyst (Table 3.4). The kinetic and 

equilibrium constant values can be estimated by optimizing the objective function given 

by the Equation (3.31) on a set of constant temperature rate data. Alternatively, a global 

error minimization can be done by considering all the available rate data at different 

temperatures and process conditions for a particular olefin. The second method is 

recognized as a robust technique that avoids the possible pitfalls of ending the 

optimization process at a local minimum. 'Temperature centering' is a tested strategy of 

estimating temperature-dependent parameters by global optimization over the entire 

temperature range (Pant and Kunzru, 1997; Wojciechowski and Rice, 2003; Patel and 
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Pant, 2007). In this technique the activation energy of the rate-controlling reaction step 

and the pre-exponential factor were obtained from the Arrhenius equation with 

'temperature centering'. 

[-E(1 1)] k, = A1 exp -jf- T - Tm (3.32) 

Here Tm is introduced for temperature centering. It is usually chosen at the middle of the 

temperature range (it is Tm = 333 K in this study). An 'equilibrium constant', K, was 

similarly determined as a function of temperature using the van't Hoff equation also with 

temperature centering. 

, [t:.S Mf [I I )] K, = exp -:--Jt T- Tm (3.33) 

Suitable initial guess values are required for application of non-linear regression for 

parameter estimation using Equation (3.31) which, otherwise, may converge to local 

minima (Wojciechowski and Rice, 2003; Routray and Deo, 2005). In order to arrive at a 

suitable set initial guess values for global optimization over the entire experimental 

temperature range, isothermal rate data at individual temperatures were first fitted and the 

Arrhenius plots were done to make a judgment about the initial guess and the suitability 

of a model. The Arrhenius parameters from these plots were then used as the starting 

values for an "all up" fit of rate expression. A summary of the computational procedure 

is given in Figure 3.6. 

The error estimate gtven by Equation (3 .31) together with thermodynamic 

consistency of the calculated activation energy or negative kinetic parameter, if any, were 

used as the criteria of discrimination among the three macroscopic rate models (Patel and 

Pant, 2007; Hurtado et a!., 2004; Pengpanich et a!., 2002). Model M2 was rejected 

because of a high average standard error estimate ranging from 7% to 26% as shown in 

Appendix E. Model M3 displayed a non-linear Arrhenius plot besides a large error 

estimate (7% to 56%), therefore it was also rejected. 
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START 

t 
Input isothermal kinetic data 
(reaction rate vs. concentration of 
olefin, catalyst, partial pressure of 
H2 and CO) and proposed kinetic 
models (Eq. 3.36, 3.28 and 3.30) 

Set initial guess, i for all parameters J..---~ 

Using nonlinear regression, 
minimize MRSS (Eq. 3.31) subject 

to the constraint; k;o,O and K;o,O 

Output: optimized rate parameters 
and activation energy 

END 

Set new initial value 
i(new) = i(old) +I 

no 

no 

no 

Figure 3.6: Flowchart illustrating the steps involved in kinetic modeling 
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Table 3.5: Estimated Ml kinetic model parameters with 95% confidence limits. 

Substrate T k K' K; K' K; 
(K) 

1 3 

1-dodecene 323 3.Ixi04 1.24x 103 2.5x103 18.0 I.5xi04 

*3.4x104 

c" 333 6.0x104 500 1.5x105 5.0 1.1x103 

*5.8x104 

343 10.0xi04 202 0.5x105 2.2 9.4x103 

*9.9x104 

1-decene 323 3.9xl04 99.7 2.5x105 19.9 63.4 
*1.1x1013 

Cto 333 6.5x104 161 ].3x105 24.5 80.0 
*1.4xi013 

343 l.lx105 447 8.0x 104 33.5 93.0 
*2.8x1013 

styrene 333 4.7x104 13.7 3.9x104 5.2 3.0x104 

*1.6 
c, 343 9.8x104 9.0 9.0x102 11.4 3.5x 104 

*3.1 
353 21.3x104 5.0 3.0x102 13.0 3.7x104 

*6.6 
1-octene 323 2.2xi05 2.0x103 3.0x105 18.0 I.5x104 

c, *0.10 

(kmol, m3
, s units) 

*Activation energy and rate constant value reported in open literature: 
'Bhanage et al. (1997) 
"Divekar et al. (1993) 
'Nair et al.(l999) 

K' 5 
SEE 

9.0xi03 11.5 

4.0xi05 

3.0x105 

l.05x 105 13.0 

l.IOxi05 

1.40x 105 

2.59x105 2.0 

2.65x105 

2.95xl05 

8.0x105 4.0 

Ea 
(kJ.mo1"1

) 

69.7 

*57.1' 

46.2 

*49.2b 

63.0 

*68.8' 

The rate model Ml is able to describe tbe experimental data reasonably well over the 

whole range of pressure, olefin concentration and temperature. The estimated parameters 

as well as tbe activation energy and error estimates are presented in Table 3.5. These 

results suggest that a mechanism of reaction featuring oxidative addition of H2 to 

acylrhodium intermediate species as rate determining is appropriate for describing the 

hydroformylation of all the substrates. Rates ofhydroformylation of the olefins have been 

calculated for different concentrations and temperature using the generalized rate 

equation and estimated parameters. Comparisons of these calculated values with 

experimental data reported in the literature as well as the predictions of the reported 

empirical models shown in Figures 3.7, 3.8 and 3.9 appear to be satisfactory. 
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at temperature of 323 K. *References to experimental data: 1-octene, Palo and Erkey 

(1999); 1-decene, Divekar eta!. (1993); 1-dodecene, Bhanage eta!. (1997). 

2 
---Modeled (Literature) 

1.8 Modeled (Eq. 3 .26) • 
4 1-dodeeene 

1.6 • 1-deeene 
.,~ 1.4 + styrene 

"' "s 1.2 
~ c 

.0 
~ 

3j 0.8 
of 
~ 

"' 0.6 p:: 

0.4 

0.2 

0 

0 0.5 I 1.5 2 2.5 3 3.5 

Cone. ofl-alkenes (kmolm-3
) 

Figure 3.8: Experimental and predicted initial reaction rates vs. concentration of olefin, 

at temperature of 333 K. *References to experimental data: styrene, Nair et al.(1999); 1-

decene, Divekar eta!. (1993); 1-dodecene, Bhanage et a!. (1997). 
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Figure 3.9: Experimental and predicted initial reaction rates vs. concentration of olefin, 

at temperature of343 K. *References to experimental data: styrene, Nair et al. (1999); 1-

decene, Divekar et al. (1993); 1-dodecene, Bhanage et al. (1997). 

Since the concentration history of 1-dodecene during hydroformylation reaction IS 

reported by Bhanage et al. (1997), we could check the capability of the generalized model 

M1 to predict the concentration transient. The derivation of the rate equation that links 

concentrations of reactants with time is presented in Appendix F. The results presented 

in Figure 3.10 for three different temperatures further establish the accuracy of the 

proposed model. As a final check, we plotted the calculated and experimental rate data 

of all the olefins at different process conditions in the form of a parity diagram shown in 

Figure 3.11. The average prediction error is 7.6% while the maximum error is 13.0%. 
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Figure 3.10: Experimental and predicted concentration of 1-dodecene and CO or H2 as a 

function of contact time at temperature of 323, 333 and 343 K. References to 

experimental data: Bhanage et al.(1997). 
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Figure 3.11: Parity plots of the model predictions of the rate of hydroformylation of 

styrene, 1-octene, 1-decene and 1-dodecene in homogeneous system. 
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The rate parameter values were determined at 95% confidence interval. Since the 

confidence interval is narrow, the sample mean may be considered to be reasonably 

accurate estimates of the population mean values. In addition, the values of rate 

parameters in the denominator of the kinetic rate expression versus temperature (ln K vs 

1/1) yielded good correlation (R2
) ranging from 0.97 to 0.99. The parameters K,' in the 

denominator of Equation (3 .26) relate to the equilibrium constants of elementary steps in 

the reaction mechanism. The magnitudes of the parameters, that vary over a wide range, 

are representative of the importance of the different steps of the overall reaction. For 

instance, the large value of K; implies that the rate of dissociation and association of 

ligand, step 2 and 4 are high. However, the value of I<; suggests that step 3 occurs at 3 

orders of magnitude slower compared to step 4. On the other hand, difference of two 

orders of magnitude lower in the rate constant of the alkene insertion step (step 5 and 6) 

with respect to step 2 was also observed and reported in open literature (van Leeuwen et 

al., 2000). From the regressed value of~' the rate of the carbonyl insertion step (step 8) 

was found to be greater by one order of magnitude compared to the alkene insertion step. 

The rate constant, k, is close to the value reported by Bhanage et al ( 1997). 

Furthermore, comparing the regressed values of the rate constant, kat 333 K, the values 

ofk increase in the order of styrene (4.7xlO'), 1-dodecene (6.0 x 104
) and 1-decene (6.5 

x 1 04
) which are also supported by our calculated activation energies for Hz oxidative 

addition. On the other hand the rate constant ofhydroformylation of 1-octene (2.2xl05 at 

323 K) in scC02 is found to be greatest due to the rate enhancing effect of C02 (Koeken 

et al., 2006). 

A negative order with respect to Pco has been observed experimentally, and therefore 

the concentration term of CO is expected to appear raised to a higher power in the 

denominator than in the numerator (Helfferich, 2001). The regressed values of K; andK; 

for all four substrates are relatively large and suggest that the effect of the Pco inhibition 

on the rate of reaction is highly significant. The values of Kt' and K; are larger for 1-

dodecene, than for 1-decene, which in turn is larger than styrene. As P co increases the 

denominator increases significantly compared to the numerator leading to a rapid decline 
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in the reaction rate. It is also to be noticed that at high concentration of alkene and low 

PPh3 or CO concentrations leads to zero order in alkene, which has been observed 

experimentally for the high alkene/low PPh3 case. According to Helfferich (200 I), the 

rate equation giving an order between zero and plus one contains the respective 

concentration ([alkene]) as a factor in the numerator and in some but not all terms of the 

denominator, as it is seen in model M1, M2 and M3 [Eq.( 3.23), (3.25) and (3.27)]. 

The values of the rate constant for 1-dodecene, was found to be 2.5 times higher, than 

that of styrene, which confirms the good intrinsic reactivity of 1-dodecene in spite of its 

large molecular size. van Rooy et a!. (1995) also reported similar results whereby, the 

hydroformylation of styrene using Rh(C0)2(acac) as the catalyst precursor and tris(2-tert­

butyl-4-methylphenyl) phosphite as the ligand (T=40-100°C, Pco=2.5-44 bar, PH2 = 2.5-

50 bar, toluene as a solvent), the rate is three times lower than that of 1-octene. For the 

hydroformylation of 1-dodecene, the activation energy of 57.7 kJ·mol·1 (ee species) was 

obtained for the rate determining step, which is close to that reported by Bhanage et a!. 

(1997), 57.1 kJ·mol"1
. The average deviation of predictions is 11.5 %. As for 1-decene, an 

activation energy of 52.9 kJ·mo1"1 (ee species) was obtained, which is higher than that 

obtained from the empirical kinetic model (49.2 kJ-mol"1
) reported by Divekar et a! 

(1993). The average deviation of prediction is 13.0 %. However the rate equation predicts 

the rate of hydroformylation of styrene in toluene and 1-octene in scCOz with high 

accuracy. An activation energy of 63.2 kJ·mol"1 (ee species) was obtained, which is 

lower than that obtained from the mechanistic model, (68.8 kJ·mol"1
) reported by Nair et 

a!. (1999). The mechanistic equation reported by Nair eta!. (1999) was derived from the 

catalytic cycle described by Evans et a!. (1968) and the error between the predicted and 

experimental rate data was within ±5 %. On the other hand, the predictions of the rate 

data by using model M1 were found to be within a maximum error of ± 2.4 %. The 

relatively small error compared to 1-dodecene and 1-decene is probably due to the 

presence of the aromatic ring and shorter alkyl chain of styrene. The compact molecular 

structure of styrene has reduced the occurrence of the isomerization reaction compared to 

the long carbon chain of 1-dodecene and 1-decene. As for the rate of hydroformylation of 

1-octene in scC02, the average deviation in the predicted and observed rates was found to 

be in the range of± 4 %. This result also demonstrates that model M1 is able to predict 
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the rate of hydroformylation of higher alkenes in both organic solvent and scC02 

although several major differences exist between the conventional organic solvent-based 

system and the scCOz system. According to Palo and Erkey (1999), the major differences 

are the higher concentration of Hz and CO in the scCOz compared to those in organic 

solvent, higher total pressure of the scC02 system and significantly different fluid 

densities (p of scCOz = 0.2-0.9 g·cm·3 ) from those of organic systems (p ~ 0.7 g·cm·\ 

Besides the rate-determining step of TS-3 which is corroborated by experimental rate 

data for all the four higher alkenes, further match between the quantum chemical 

calculation results and the experimental data is evident from the magnitudes of the 

activation energies. The calculated (range of 52.9-59.6, 57.7-62.3 and 63.2-66.2 

kJ.mor1
) and experimental (49.2±6, 57.1±8 and 68.8±5 kJ-mor1

) relative energy of the 

third transition structure (TS 3) or the activation energy for the hydroformylation of 1-

decene, 1-dodecene and styrene, respectively are in reasonable agreement (Nair et a!., 

1999; Bhanage et al, 1997; Divekar, eta!., 1993). However, the ab initio computational 

approach overestimate the activation energy for the hydroformylation of 1-dodecene and 

1-decene although the activation energy values are close to the actual values obtained 

experimentally. The activation barrier relative to HRh(CO)(PPh3)3 catalyst is larger for 

styrene, than for 1-dodecene, which in tum is larger than 1-decene. This suggests that the 

observed reactivity seems to be influenced by the increased steric hindrance of the alkyl 

group ofthe alkene substrate. 
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CHAPTER4 

MATERIAL AND METHOD 

This chapter covers the details of the various experiments conducted as part of this 

work. The first section describes all the chemicals and gases used. Section 4.2 discusses 

the development of the TMS-system by performing the gas solubilities experiments. In 

Section 4.3 the reactor set-up and experimental procedure to study the effect of process 

parameters on the yield and selectivity of the linear aldehydes as well as the rate of 

reaction are described. The liquid-liquid equilibrium and solute distribution experiments 

are discusses in Section 4.4. Finally the analytical techniques are outlined in Section 4.5. 

4.1. Materials 

The following chemicals (supplier, purity) were used as received without further 

purification: propylene carbonate (Acros, 99.5%), dodecane (Acros, 98.0%), I ,4-dioxane 

(Fischer Scientific, 99.5%), 1-octene (Acros, 98.0%), 1-dodecene (Acros, 98.0%), 

nonanal (Acros, 98.5%), tridecanal (Acros, 98.0%) and triphenylphosphite (Acros, 

99.0%). Gas chromatograph (GC) analysis did not detect any appreciable peaks of 

impurities. The catalyst, HRh(CO)(PPh3)3 was purchased from ABCR, Germany, with 

purity of 98.0 %. Gas chromatographic analysis did not indicate any notable peaks of 

impurities. Hydrogen, carbon monoxide, nitrogen and syngas (I: I, I :2, I :3, 2: I, 3: I 

CO/H2) were supplied by Malaysian Oxygen (MOX), with purity of99.99 %. 

Densities of the solvents used in solubility study were measured with Mettler Toledo 

densimeter (model Densito 30P) and are given in Table 4.1, along with the literature 

values (Lide, 2005). The densimeter measures the density of solvent by the oscillating 

body method. After loading in the cell, the liquid was allowed to equilibrate until a steady 

reading was obtained in about I minute to a resolution of 0.0001 g cm-3. The densimeter 

was calibrated against distilled water. 
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Table 4.1: Physical properties of the pure components at T=298.15 K and P=101.325 

kPa. 

Compound 

Propylene carbonate 
Dodecane 
1,4-Dioxane 

4.2. Development of the TMS-System 

Expt. Lide (2005) 

1.2000 1.200 
0.7510 0.751 
1.0311 1.034 

Solubilities of Hz and CO in pure solvent and solvent mixtures relevant to the 

hydroformylation process are studied in this work, particularly in the temperature­

dependent multi-component solvent (TMS)-systems involving propylene carbonate, 

dodecane and 1 ,4-dioxane. These solvents are preferred because of high boiling point, 

thermal stability, and inert nature with respect to the homogeneous catalyst, olefin, 

hydrogen, carbon monoxide and the hydroformylation products (Tijani and Ali, 2006; 

Behr et a!., 2005; Behr and Miao, 2004). However, neither experimental data nor any 

theoretical model on solubilities for CO and Hz in the TMS-system are available in the 

literature. In the above context, the objectives ofthis work are to: 

1. experimentally determine solubilities of CO and Hz in different types of solvent 

systems which include single phase propylene carbonate (PC), biphasic mixture of 

PC+ dodecane, and TMS-system of PC+dodecane+l ,4-dioxane at temperature range 

of298-343 K, 

n. determine the Henry's law constant for solubility by data fitting, and 

iii. predict the gas solubilities by thermodynamic modeling using the regular solution 

theory (RST)-based model and the modified UNIF AC model and compare with the 

experimental data. 

4.2.1. Composition of the TMS- Systems 

The appropriate compositions of the TMS-system (PC+dodecane+1,4-dioxane) for the 

solubility study at different temperatures were determined by the cloud point method in 

an equilibrium glass cell. All mixtures were prepared by weighing with a Mettler balance 
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accurate to within ±104 g. A mixture of PC and dodecane (1.0 g; 5:1, 3:1, 1:1, 1:3, 1:5 

wt. ratio) was transferred into a 5 mL centrifuge tube and immersed in a silicone oil bath 

that was controlled within 1 K, under a stirring speed of 900 rpm. After having reached 

the desired temperature (298 K, 353 K and 373 K), a heterogeneous mixture of PC and 

dodecane was titrated with 1,4-dioxane until a homogeneous phase is formed. The 

transition from a heterogeneous mixture to a clear liquid phase was determined visually. 

The reliability of the method depends on the precision of the micro burette which had an 

accuracy of ±0.005 cm3
, and is limited by the visual inspection of the transition across the 

apparatus. The accuracy of the visual inspection of the transition is achieved by waiting 

approximately 5 minutes at the transition point and observing the heterogeneity. All 

visual experiments were repeated at least three times in order to ensure reproducibility. 

4.2.2. Determination ofthe Gas Solubility 

The solubilities of pure H2 and CO in PC, biphasic mixture of PC+dodecane and TMS­

systems of PC+dodecene+l,4-dioxane were measured by the absorption method as a 

function of the gas pressure (1-15 bar) and temperature (298-343 K) in a 300 mL capacity 

high pressure gas solubility cell (SOLTEQ model BP 22). As shown in Figure 4.1, the 

equipment consists of a gas mixing vessel and an equilibrium cell, each immersed in a 

heating jacket. A PTFE coated magnetic stir-bar placed within the cell in conjunction 

with an external magnet is used to stir the liquid phase inside the cell. Other supporting 

components include the vacuum pump, thermostat heating bath, liquid feed pump, and 

instrumentations such as mass flow controllers, pressure and temperature indicators. High 

accuracy pressure sensors and platinum RTD sensors are used for high accuracy pressure 

and temperature measurements. Figure 4.2 shows the photograph of the high pressure 

solubility unit. 
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Figure 4.1: Schematic of the high pressure solubility cell unit: 1- thermocouple; 2-

pressure transducer; 3- mixing vessel;4- equilibrium cell; 5- pressure relief valve 

Figure 4.2: High pressure solubility cell unit 
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4.2.2.1. Pressure Test 

After closing all valves, the gas solubility cell was tested for leakage by using SNOOP 

liquid leak detector (SNOOP, Swagelok). The unit was pressurized with N2 by opening 

valves V5, V6 and VlO until the pressure reading reads 6.0 MPa. When visible bubbles 

were observed, the equipment was de-pressurised before the lose connection was 

tightened to stop the gas leakage. When the pressure stabilized within 15 minutes, the 

pressure release valve was set at 3.0 MPa. 

4.2.2.2. Purging and Evacuation 

The unit was purged with Nz gas and fully evacuated before carrying out each solubility 

experiment. Purging was carried out before evacuation to avoid residue gas or liquid from 

passing through the vacuum pump during evacuation. Both the mixing vessel and the 

equilibrium cell were purged by allowing Nz gas to flow through the unit for 

approximately 10 minutes by setting the flow rate at FIC-3 to 8 NL/min. Opening valves 

V5, V7 and V8, the mixing vessel and an equilibrium cell were then evacuated using a 

turbomolecular vacuum pump (Model DCU-200, Pfeiffer Vacuum). A pressure 

transducer (Model DPI 150, Druck) having a precision of ±lx104 bar was used to 

measure the pressure in the gas reservoir and in the equilibrium cell. 

4.2.2.3. Solubility Experiment 

After achieving the specified level of vacuum, which is approximately 1 x 10-3 mbar, the 

temperature of the heating bath was set at a desired value and the bath circulation was 

allowed to start. The temperature of the liquid in the mixing cell and equilibrium cell 

were controlled within ±0.01 K and the temperature is measured by a digital 

thermometers (Model 7563, Yokogawa). Using the maximum flow rate, the gas was 

charged into the mixing vessel by opening the valves at the mass flow controller. 

Immediately the air drive supply was turned on to the gas booster Pl. The gas booster is 

air driven, and therefore the air pressure was regulated to control the boosting speed. 

Once the pressure of the mixing vessel has reached the desired pressure, the air drive 

supply to the gas booster was turned off and valve V4 was switched towards the bypass 

line. After thermal equilibrium was attained, the pressurized gas in the mixing vessel was 
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charged into the equilibrium cell up to the desired pressure by slowly opening valve V6. 

When the pressure and temperature of the mixing vessel and equilibrium cell are 

equalized, the solvent (200 mL) was then quickly introduced into the cell using a liquid 

feed pump, P3. The contents were stirred at 1000 rpm for about 1 hr to equilibrate the 

liquid phase with the gas. A few preliminary experiments showed that this time was 

sufficient for equilibriation. The total pressure change due to absorption was recorded on­

line as a function of time till it attained a steady and constant value, indicating saturation 

of the liquid phase. 

From the initial and final pressure readings, the solubility was calculated in mole 

fraction as: 

(4.1) 

where Xg represents the mole fraction of the solute gas in the liquid phase, P; and Pt are 

the initial and final pressure readings in the equilibrium cell; p" is the vapour pressure of 

the solvent; Vg and VL are the volumes of the gas and liquid phases, respectively; R is the 

gas constant; Tis the absolute temperature; and PL is the molar density of the liquid. The 

volume of the gas in the cell above the liquid is calculated by subtracting the measured 

volume of the liquid from the total volume of the cell. Within the temperature range of 

this study, propylene carbonate and dodecane have negligible vapour pressure. The 

vapour pressure of pure 1 ,4-dioxane was calculated with the Antoine equation 

log (P/kPa) =A - B/( C + TI"C) (4.2) 

where Pis the vapor pressure (kPa), T, the temperature ("C) and A, B and Care constants, 

which are 6.5564, 1554.679 and 240.337, respectively (Romero eta!., 2005). In order to 

ensure the applicability of the ideal gas law in Equation 4.1, the H2 and CO fugacity 

coefficients, were calculated using the Peng-Robinson equation of state (PR Ei:>S) 

ln¢1 = _b; (Z -1)-ln(Z -B)--A--,= 
1 

bm 2BJ2 
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(4.3) 

where Z is the compressibility factor and can be written as following: 

Z3 -(1-B)Z2 +(A-3Ji2 -2/J)Z-(AB-Jil -If) =0 (4.4) 

where Z is commonly defined as Z = (PV!RT) 

To calculate fugacity coefficient, ¢/using Equation (4.3) or the compressibility 

factor, Z using Equation (4.4), pure component parameters a; and b; were found from 

Equations (4.5) to (4.9), using critical properties in Table 4.2 where M is the molecular 

weight (g mor\ T,, the critical temperature, P,, the critical pressure and w, the acentric 

factor. 

a; (T) = a; (T,) x a (T,, w) 

where at critical point temperature 

a, (TJ = 0.45724 R'r,; 
pci 

and 

K; =0.37464+1.54226v; -0.2699?ml 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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Table 4.2: Critical properties and acentric factors used in the PR EoS 

Component M(gmoT) Tc(K) Pc(MPa) OJ Ref. 

Hz 2.016 32.98 1.293 -0.217 Phiong and Lucien 

(2002) 

co 28.00 132.9 3.499 0.066 Chapoy (2004) 

The value of the hydrogen and carbon monoxide fugacity coefficient, <l>;, calculated 

through the PR EoS is close to one (for example at 343.15 K and 1.5 MPa, <I>H, = 0.998 

and <I> co = 1.004). Hence, according to Peng and Robinson (1976), the vapour phase can 

be considered as an ideal gas. Here it is also assumed that under the equilibrium 

conditions the amount of dissolved gas in the liquid has negligible contribution to the 

liquid volume. 

4.3. Parameteric Study of Reaction Variables and Kinetic Study 

In the present work, the synthesis of n-nonanal and n-tridecanal, two commercially 

important linear aldehydes, by the hydroformylation reaction of 1-octene and 1-dodecene 

using a homogeneous catalyst consisting of HRh(PPh3)3(CO) and P(OPh)J in a TMS­

system composed of propylene carbonate, dodecane and 1 ,4-dioxane was studied. The 

reaction scheme for hydroformylation of 1-octene is shown in Figure 4.3. In the above 

context, the specific objectives of this work are to: 

(i) experimentally determine the effects of reaction parameters of the 

hydroformylation of 1-octene with HRhCO(PPh3)3/P(OPh)3 catalyst in TMS­

system ofPC/dodecane/1,4-dioxane over a temperature range of353-383 K, 

(ii) study the kinetics of the hydroformylation of 1-octene and 1-dodecene with the 

above catalyst and reaction medium, 

(iii) develop empirical as well as mechanistic rate models of the reaction and evaluate 

the rate parameters by fitting experimental data, and 

(iv) assess the validity and quality of the developed mechanistic rate model by fitting 

experimental hydroformylation data. 
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A+ H2 +CO 

,....--_.. B 

----------~--~~c 
HRh(CO)(PPh)3 

P(OPh)3 .__ _ _,. D 

A= 1-octene; B= nonanal 
C= 1-methyloctene; D= 2-octene 

Figure 4.3: Reaction products ofhydroformylation of 1-octene 

The reaction proceeds via catalytic addition of H and formyl (CHO) groups across 

the double bond of olefin to give aldehydes. The main steps in the catalytic cycle follow 

the Heck and Breslow mechanism developed for the cobalt-catalyzed oxo reaction (van 

Leeuwen, 2004). The kinetics ofthe reaction has been investigated at three temperatures -

353, 363 and 373 K. The initial rates of hydroformylation were determined under the 

range of condition shown in Table 4.3. Since the reaction occurs in the liquid phase but 

two of the reactants are supplied as gas, mass transfer limitation may influence the rate of 

reaction. This was tested by conducting the reaction at different stirrer speeds under 

unchanged experimental conditions. 

Table 4.3: Range of variables studied in the present work 

1-octene 1-dodecene 

Cone. of catalyst (kmohn ·3) 8.66x1o·5- 6.78xl04 8.66xlo-s- 3.46xl04 

Cone. of 1-olefins (kmolm-3
) 0.21-4.2 0.20-3.0 

PH(MPa) 0.3-1.5 0.3-1.5 

Pea (MPa) 0.3-1.5 0.1-1.5 

T(K) 353-383 353-383 

Reaction volume (mL) 240 220 

Hydroformylation of 1-octene and 1-dodecene were carried out in a 1.8 L stirred high 

pressure reactor (model: Parr 4843). A schematic and photograph of the experimental set 

up are shown in Figure 4.4 and Figure 4.5, respectively. The design of the reactor has 

been taken into account the safety features and sampling considerations such as to avoid 

syngas leakage and protection against high pressure gas. The experimental work was 
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carried out at maximum pressure and temperature of 2.5 MPa and 383 K, respectively, 

therefore the equipment was designed to withstand the above conditions. The top of the 

reactor was connected tightly to a tree carrying needle valves to secure gas and liquid 

sampling, pressure release valve and pressure gauge by means of a union using Teflon 

tape around the threads. The reactor was equipped with an automatic temperature control 

system, which included an external electric heating jacket and an internal cooling loop. A 

pressure transducer-monitor system with high precision was also connected to the reactor 

for on-line measurement of reactor pressure in the course of semi-batch hydroformylation 

reaction. 

1 2 
5 

Figure 4.4: Schematic of the experimental setup: (I) nitrogen; (2) syngas (CO/Hz); (3) 

cooling water in; (4) cooling water out; (5) high pressure reactor; (6) stirrer; (7) sampling 

valve; (T) thermocouple; (P) pressure gauge; (PT) pressure transducer; (PI) pressure 

indicator; (TI) temperature indicator. 
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Figure 4.5: Parr high pressure reactor 

4.3.1. Pressure Test 

Since the gaseous reactant, carbon monoxide is a highly toxic gas with a threshold limit 

value (TL V) of 25 ppm, the pressure test was performed regularly to verify leak-tightness 

of piping and components of the reactor (Silk, 1975). After closing all valves, the reactor 

was tested for leakage by using a liquid leak detector (SNOOP, Swagelok). The reactor 

was pressurized with Nz until the pressure reading reads 7.0 MPa. When visible bubbles 

were observed, the equipment was de-pressurised before the lose connection was 

tightened to stop the gas leakage. When the pressure stabilized within 15 minutes, the 

pressure release valve was set at 5.0 MPa. A portable CO gas detector was also placed 

adjacent to the reactor, for detecting CO leaks. 
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4.3.2. Reaction and Kinetic Measurement 

The feed mixture with the catalyst (220 mL) was taken in the PTFE holding vessel within 

the preheated reactor. Before starting the run, the reactor was purged with nitrogen and 

syngas successively, and then adjusted to the desired temperature. It was then pressurized 

with a mixture of CO and H2 to a desired total pressure gradually in avoiding the feed 

mixture from spilling out from the liner. The total pressure was monitored regularly and 

maintained constant during the whole run by using the pressure regulator. When over­

pressure was observed, some gas was released by opening the venting valve. The stirrer 

was set at 450 rpm while the reaction continued. Liquid samples (each less than 1 mL) 

were withdrawn at regular time intervals to follow the progress of the reaction. The 

reaction was stopped quickly by cooling down the mixture to the room temperature. The 

gas was vented out and the biphasic mixture was left to separate overnight (24 hr) using a 

separatory funnel. The recovery of the catalyst and product was determined by collecting 

samples from the nonpolar and polar phases. The analysis of reactants and products was 

carried out by a gas chromatographic method. Each type of experiment was repeated 

three times to check for reproducibility. Measurements are, in general, reproducible 

within a maximum of 10 % but often within a few per cent. 

4.3.3. Solubility Measurement 

The solubilities of pure H2 and CO in TMS-systems of PC/dodecene/1,4-dioxane with 

composition of 0.30/0.10/0.60 were measured by the absorption method at different 

pressures (0.1-2.5 MPa) and temperatures (353-373 K). Requisite volume of the solvent 

only was taken in the reactor which was then quickly pressurized. The contents were 

stirred at 450 rpm for about 1 hr to equilibrate the liquid phase with the gas. A few 

preliminary experiments showed that this time was sufficient for equilibriation. The total 

pressure change due to absorption was recorded on-line as a function of time till it 

attained a steady and constant value, indicating saturation of the liquid phase. From the 

initial and final pressure readings, the solubility was calculated in kmolm·3 as: 

[P; -(PI- pv)]Vg 

RTVL 
(4.1 0) 
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where CL represents the concentration of the solute gas in the liquid phase, Pi and P1 are 

the initial and final pressure readings in the reactor; p' is the vapour pressure of the 

solvent; Vg and VL are the volumes of the gas and liquid phases, respectively. In order to 

ensure the applicability of the ideal gas law in Eq. ( 4.1 0), the H2 and CO fugacity 

coefficients, were calculated using the Peng-Robinson equation of state as outlined in 

section 4.2.2.3. The reproducibility of the experimental measurement was checked by 

repeating a particular experiment 3 times. It was observed that the error in solubility 

values obtained was within 2-3 %. 

4.4. Liquid-liquid Equilibria 

Four different temperatures (298.15, 313.15, 333.15 and 353.15 K) at atmospheric 

pressure were selected to study the ternary equilibrium system of the TMS- system 

(PC+l,4-dioxane+dodecane) in order to obtain the binodal (solubility) curves and tie­

lines. The binodal (solubility) curves were determined by the cloud point method which 

is outlined in Section 4.2.1. The major central part of the solubility curves was obtained 

by titrating heterogeneous mixtures of PC and dodecane (1.0 g) with 1,4-dioxane until the 

turbidity has disappeared. End-point determinations of the tie-lines ofPC+dodecane+ 1,4-

dioxane were based on the independent analysis of the conjugate phases that were 

regarded as being in equilibrium. For this purpose, 1.5 g mixtures of known masses of the 

component lying within the heterogeneous phase were introduced into a sealed glass tube 

and were stirred vigorously by a magnetic stirrer for at least 5 hr and then left for 5 hr to 

settle down into raffinate (polar phase) and extract (nonpolar) layers. After phase 

equilibrium has been reached, samples of two layers were withdrawn with a syringe and 

their compositions were analyzed gas chromatographically. The HRh(CO)(PPh3)3 

catalyst concentration was analyzed by Atomic Absorption Spectrophotometer (AAS) 

with air-acetylene flame. All experiments were repeated at least two times as a check for 

accuracy. 
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4.4.1. Distribution Coefficient 

The distribution coefficients for 1-octene, nonanal, triphenylphosphite and 

HRh(CO)(PPh3)3 catalyst in the ternary systems were obtained at temperature of 298 K 

and 308 K. End-point determinations of the tie-lines of PC+dodecane+ 1,4-dioxane+ 1-

octene, PC+dodecane+ 1 ,4-dioxane+nonanal, PC+dodecane+ 1 ,4-dioxane+ 1-

octene+nonanal, PC+dodecane+ 1,4-dioxane+HRh(CO)(PPh3)3, PC+dodecane+ 1,4-

dioxane+ l-octene+nonanal+triphenylphosphite+HRh(CO)(PPh3)3 were determined by 

the same procedure as described for the TMS- system. 

4.5. Analytical Techniques 

4.5.1. Gas Chromatography 

The reaction products were determined by Shimadzu GC 2010 using BPX5 capillary 

column and flame ionization detector. The length and inner diameter of the column and 

the film thickness was 30 m, 0.25 mm and 0.25 J.tm, respectively. The column used is a 

non polar column, so the polar compounds are eluted quicker than non polar compound. 

Since the analysis involved non-polar and polar compounds thus, the polarity of the 

solvents would affect the retention time. The non-polar components in a mixture are 

separated according to their boiling points with a substance of lower boiling point being 

detected first. Helium was used as a carrier gas. For the separation of the organic 

products a heating program was applied. The initial temperature of the colunm was 

adjusted to 323 K and kept constant for 2 min, then the colunm was heated with a rate of 

293 K/min until 523 K and kept again constant at this temperature for 5 min. Products 

were identified by comparison of the retention times and spectral characteristics with 

authentic standard samples. Figures 4.4 and 4.5 show GC signal for hydroformylation of 

1-octene and 1-dodecene, respectively. 
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Figure 4.6: GC signal for hydroformylation of 1-octene (1: 1 ,4-dioxane, 2: 1-octene, 3: 

dodecane, 4: nonanal). 
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Figure 4.7: GC signal for hydroformylation of 1-dodecene (1: 1,4-dioxane, 2: dodecane, 

3: 1-dodecene, 4: 2-methyldodecanal, 5: tridecanal 

4.5.2. Atomic Absorption Spectroscopy 

Rhodium concentrations in both polar and non polar rich phases were determined after 

phase separation. Analysis was carried out by Hitachi ZSOOO. The measurement 

conditions were as follow: 343.5 nm wavelength, 0.2 nm gap, 0.4 air/acetylene ratio. The 

calibration curve of the Rh standard is presented in Appendix H. 
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CHAPTERS 

RESULTS AND DISCUSSION 

This chapter presents the results and discussion of the experimental work conducted. 

The first section focuses on the solubility of gaseous reactants - CO and H2 - in the 

individual components of the solvent as well as in their mixtures, and provides insight on 

how the different properties of the various gases and the solvent affect the solubility. 

Section 5.2 discusses the effect of reaction variables on the selectivity, conversion and 

yield of total aldehyde. Subsequently, section 5.3 presents the kinetics and modeling of 

the hydroformylation reaction of 1-octene and 1-dodecene using a homogeneous catalyst 

consisting ofHRh(PPh3)3(CO) and P(OPh)3 in a TMS- system composed of PC, dodecane 

and 1,4-dioxane. Finally, Section 5.4 provides the liquid-liquid equilibrium (LLE) 

behavior of the TMS system as well as the distribution of the reaction species in the non­

polar and polar phases. 

5.1. Development of the TMS- System 

5.1.1. TMS-systems: PC+Dodecane+1,4-Dioxane 

The phase diagram of this solvent system obtained by cloud titrations at 298, 353 and 

373 K are shown in Figure 5.1. The isothermal 3-component phase diagram 

(PC+dodecane+ 1,4-dioxane) shows a closed loop at all studied temperature. The big 

miscibility gap of this solvent system facilitated a good operating range for the 

hydroformylation. The miscibility gap or heterogeneous sphere of the system seems to 

decrease with increasing temperature. The possible operating points are defined by the 

area between the two binodal curves at the temperatures of298 K and 373 K. This point 

is located in the single-phase regime when the reaction temperature is above the phase 

separation temperature. Cooling down the reaction mixture to room temperature leads to 

the separation of the single phase into two phases. Therefore, the composition of the 

TMS-system selected for the solubility study was 1.31/1.29/7.40 weight ratio (point 1 in 

Figure 5.1). At this composition, the ternary mixture dissolved into a single phase at 

temperature range of298-343 K with the highest amount of 1,4-dioxane. 
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Figure 5.1: Phase diagram of the solvent system PC+dodecane+ 1,4-dioxane 

5.1.2. Solubility Data 

Figure 5.2 shows a plot of pressure vs. the mole fraction solubility of CO and Hz in PC, 

biphasic PC+dodecane mixture and TMS-system of PC+dodecane+ 1 ,4-dioxane. Within 

the temperature and pressure ranges of this study, the equilibrium pressure was found to 

be almost linear in the liquid phase mole fraction for all the systems, conforming to 

Hemy's law. Therefore the data are presented as equilibrium liquid phase mole fractions 

at 0.10325 MPa (1 atm) pressure of the gas. PC and TMS-systems have a considerably 

higher affinity for CO and Hz compared to the biphasic solvent mixture. Figure 5.2 also 

shows that the TMS-system, particularly, 1 ,4-dioxane, has a higher affinity for carbon 

monoxide compared to hydrogen, whereas hydrogen is more soluble in PC. The biphasic 

mixture which contains higher amount of non-polar dodecane contributed to the lower 

solubility of CO and Hz gas. Furthermore, the solubility of carbon monoxide in the three 

solvent systems does not vary significantly compared to hydrogen. Typical solubility data 

at 298 K for the three solvent systems are shown in Figure 5.2. 
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Figure 5.2: Experimental solubility of gases in PC, biphasic PC+dodecane mixture (I: 1) 

and TMS-systems ofPC+dodecane+1,4-dioxane (1.31:1.29:7.40) at 298 K. (A) CO; (B) 

H2. 

As it is seen in Figure 5.2 all liquids exhibit a relatively higher affinity for CO compared 

to H2, which is an expected behavior since solubility increases with increasing molecular 

weight of the solute. The attractive forces between the gas and solvent molecules 

involved in this study are mainly of the London dispersion type, which increases with 

increasing size and mass of the gas molecules (Fogg and Gerrard, 1991). In Figure 5.3, 

the solubility of CO and H2 in the solvent systems increases moderately with respect to 

temperature over the range of operating conditions, except for CO-propylene carbonate 

system. According to Le Chatelier's principle, an increase in the solubility with 

temperature indicates that the solution process is endothermic, and that the solubility is 

driven by the increase of disorder in the system. This phenomenon is common for gases 

having low solubilities (Prausnitz et a!., 1999). Similar results have been reported for 

other oxygen containing solvents (Still et a!., 2006; Deshpande et a!., 1996; Fogg and 

Gerrard, 1991) and nonpolar solvents (Nair eta!., 1999; Divekar eta!., 1993; Miller eta!., 

1990). 
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Figure 5.3: Experimental and predicted solubility of gases in PC, biphasic PC+dodecane 

mixture and TMS-systems of PC+dodecane+1,4-dioxane (1.31:1.29:7.40) at a partial 

pressure of 101.3 kPa. (A) CO; (B) Hz. 
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Figure 5.4: Experimental solubilities of Hz at partial pressure of 101.3 kPa as a function 

of temperature. References to experimental data: NX 795, Still et a!. (2006); naphtha, 

Fahim and Elki1ani, (1991); n-hexadecane, Hu and Xu, (1985); cyclohexane, Hu and Xu, 

(1985); benzene, Hu and Xu, (1985). 
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Figure 5.5: Experimental solubilies of CO at partial pressure of I 01.3 kPa as a function 

of temperature. References to experimental data: NX 795, Still et a!. (2006); n­

hexadecane, Hu and Xu, (1985); 2-methyl-1-propanol, Sander eta!., (1983). 

Figures 5.4 and 5.5 compares the solubility of Hz and CO from the current work with 

other organic solvents in open literature. The most notable attribute seen in these two 

figures is that CO is more soluble in non-polar solvent compared to Hz. Anthony (2004) 

reported that CO solubilities are not governed by its polarizability, even though CO has 

significant quadrupole moments. A reasonable explanation for this behaviour was not 

provided. On the other hand, the solubility of Hz is greatest in PC. The large dipole 

moment of PC as well as specific interactions between Hz and the carboxyl group are 

likely the governing forces leading to such high solubilities. The biphasic mixtures of 

PC+dodecane and n-hexadecane have basically the same solubility, although the biphasic 

mixture appears more soluble at higher temperature. The solubility of Hz in TMS-systems 

ofPC+dodecene+ 1,4-dioxane is higher compared to other non-polar solvents (naphtha, n­

hexadecane, cyclohexane and benzene) and polar solvent of 2,2,4-trimethyl-1,3-

pentanediolmono(2-methylpropanoate) (NX 795). This suggests that the interactions 

governing the higher solubility of Hz in TMS-systems are influenced by the presence of 
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the ether group of 1 ,4-dioxane. Within the studied temperature range the solubility of Hz 

increases with temperature in all cases. The maximum solubility (x2) values for CO and 

Hz in TMS-system are 0.0210 and 0.0172, respectively at temperature of 343 K. The 

TMS-system also shows high affinity for CO and Hz, which is comparable to the single 

phase propylene carbonate. The solubility data of the present work are compiled in 

Appendix G. 

5.1.3. Empirical Modeling 

The solubility data were fitted to the empirical equation (Fogg and Gerrard, 1991) at 1 

atm pressure using the following equation, 

B 
inx2=A+-+CinT 

T 
(5.1) 

where xz represents the mole fraction of the solute gas in the liquid phase, T is the 

absolute temperature and A, B and C are empirical constants. The accuracy of the 

empirical model is given by R2 that quantifies the goodness of fit and was calculated as 

follows: 

L:(y expt - Y P"d Y 
L~ expt - Y expt )' 

(5.2) 

where Yexpt is the experimental value, Ypred is the predicted value and Yapt is the mean of 

the experimental values. Plots of experimental and predicted solubility versus 

temperature are shown in Figure 5.3. It is found that the logarithmic empirical model is 

able to describe the experimental data with good accuracy over the whole range of the 

operating pressure and temperature except for Hz-PC and CO-PC systems. Table 5.1 

summarizes the values of the parameters A, Band C of Equation (5.1) and the parameter 

R2
• Still et al. (2006) also reported a good fit of Equation (5.1) for their solubility data on 

Hz-CO-NX795 system. The values of the optimized parameters are consistent with that 

reported in the literature. (Still et a!., 2006). The empirical model caunot be used to 

explain the behavior of a system. Nevertheless, such a model can be very useful to 
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predict the solubility within limited ranges of pressure and temperature. Thermodynamic 

models, on the other hand, are expectedly more robust and flexible than purely empirical 

models. Thermodynamic models also provide insights into the system being modeled. 

Table 5.1: Parameters in Equation (5.1) for Hz and CO solubilities at a partial pressure 

and temperature of 101.3 kPa and 298-343 K, respectively. 

Gas-Liquid System A B c R 

CO-PC 0.129 -300.0 -0.9833 0.802 

CO-biphasic 10.000 -1000.0 -2.3128 0.992 

CO-TMS systems 12.949 -1015.0 -2.7952 0.995 

CO-NX 795 *17.413 *-1398.4 *-3.4190 *0.985 

Hz-PC 17.486 -1200.0 -3.5218 0.750 

Hz-biphasic 4.994 -1050.0 -1.4912 0.998 

Hz-TMS systems 9.008 -1025.0 -2.1659 0.987 

Hz-NX 795 *10.972 *-1466.0 *-2.3931 *0.955 

*Values of the parameters A, B, C and R2 reported by Still et al. (2006) for H2-CO-NX 795 
system 

5.1.4. Thermodynamic modeling 

The regular solution theory (RST)-based model and the modified UNiversal Functional 

Activity Coefficient (UNIF A C) model are used to correlate and interpret the experimental 

solubility data. The regular solution model predicts activity coefficients from solubility 

parameters and the UNIFAC model uses the functional groups present on the molecules 

that make up the liquid mixture to calculate activity coefficients. By utilising interactions 

for each of the functional groups present on the molecules, as well as some binary 

interaction coefficients, the activity of each of the solutions can be calculated. The 

important advantage of RST is that its parameter is calculable without resorting to 

activity coefficient measurements. However, the parameters obtained may not be as 

accurate as those fitted to experimental data. On the other hand, the main advantages of 

the modified UNIFAC method are a better description of the real behavior in the dilute 
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region and that it can be applied more reliably for systems involving molecules of very 

different in size (Gmehling et a!., 1993). A comparison is then made of the prediction 

accuracy of the models. 

5.1.4.1. Prediction of H2 and CO Solubility by the RST- based Model 

A regular solution is a solution that diverges from the behavior of an ideal solution only 

moderately. In contrast to ideal solutions, regular solutions possess an enthalpy of mixing 

and the volumes are no longer strictly additive but must be calculated from the partial 

molar volumes that are a function of x. Two major assumptions were made in proposing 

the Regular Solution Theory (RST): 

1. The change in entropy and volume of mixing were considered to be negligible, 

u. The molecular interaction was primarily due to London Dispersion Forces (LDF). 

Solubility predictions of highly polar compounds based on solubility parameter 

difference were inconsistent due to the second assumption. The experimental solubility 

data for H2 and CO in the three solvent systems were compared with the theoretical 

predictions using the equations suggested by Prausnitz and Shair (1961) and Yen and 

McKetta (1962). Since modeling according to the RST is essentially limited to 

dissolution of nonpolar gases in nonpolar, non-assoaciating solvents, the modification to 

the RST by Yen and McKetta (Still et a!., 2006) was applied in order to extend the RST 

to polar solvents, such as PC and 1 ,4-dioxane. The activity models are presented below in 

the way they were used for the solubility calculations: 

RST: 

(5.3) 

RST withY en and McKetta correction: 
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(5.4) 

In Equations (5.3) and (5.4), the subscripts 2 and 1 represent the gas and liquid (solvent), 

respectively; x2 is the mole fraction of the dissolved solute in the solvent at atmospheric 

pressure (0.10325 MPa); f 2G(MPa) and J/(MPa) are the fugacities of pure gas and 

hypothetical liquid solute at atmospheric pressure, respectively; ¢ and tA are the volume 
1 2 

fraction of solvent and gas, respectively; v2 (m3·mor1
) is the molar volume of gas, and 

51 and <52 are the solubility parameters (J.m"3
)

112 for the solvent and the solute gas, 

respectively, R is the gas constant and Tis the absolute temperature. The regular solution 

theory also states that the solubility parameters and molar volume of solutes are 

independent of temperature. The o-values were obtained from Katayama and Nitta 

(Purwanto et a!., 1996). The quantity J!: was determined according to Prausnitz and 

Shair (1961). 

The solubility parameter ( 01) for PC, dodecane and 1 ,4-dioxane were calculated from 

the heat of vaporization as proposed by Hildebrand and Scott (1948) 

(5.5) 

where Ml, represents the heat of vaporization and v2 the molar volume of the solvent. 

The heat of vaporization is generally reported at the normal boiling temperature (Tb). The 

correlation proposed by Reid and Prausnitz (1987) was used to calculate Ml, at the five 

chosen temperatures of study: 

Ml -Mf 1-T, 
( )

0.375 

v,T- v,Tb 1- (T,)Tb 
(5.6) 

where Tc is the critical temperature of the solvent. The solubilities of CO and H2 in pure 

PC, dodecane and 1 ,4-dioxane were further used for calculating the solubilities of these 
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gases in a mixture of solvents by using the method proposed by Prausnitz and Shair 

(1961), and given by the following expression: 

I fz" (v,(o,-6)') -= --exp 
x 2 f 2G RT 

(5.7) 

where t5 is the average solubility parameter defined as 

(5.8) 

The liquid molar volumes, v2 and solubility parameters t5used in the modeling are listed 

in Table 5.2. 

Table 5.2: Parameters for modeling with RST model 

Compound v2 (cm3 mor1
) t5(MPa~'') Tc (K) Pc (MPa) 

at 25 oc at 25 oc 

Carbon monoxide 32.la 7.386 132.921 3.4991 

Hydrogen 37.3• 7.84b 33.18f 1.300f 

Propylene carbonate 84.82c 21.30d 778.10° 

Dodecane 84.07c 17.91 d 658.30[ 

1,4-Dioxane 226.82° 21.33d 588.15[ 

"Not required in modeling; 'Purwanto et al., (1996); bY en and McKetta (1962); °Calculated from 

molecular mass and density; dCalculated from Eq. (5.5); "Kolar et al., (2005); 'Washburn (2003) 

5.1.4.2. Prediction of Hz and CO Solubility by the Modified UNIFAC Group 

Contribution Model 

The UNIF AC group-contribution model has been extensively used to predict activity 

coefficients for nonelectrolytic liquid mixtures. The method has become a reliable tool 

for the prediction of vapor-liquid equilibrium (VLE) as well as gas-liquid equilibrium 

(GLE) data (Gmehling et a!., 1982; Hartounian and Allen, 1988; Fahim and Elkilani, 

1991) for systems for which little or no experimental information is available. UNIF AC 
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assumes that a physical property of the fluid is the sum of the contributions made by the 

functional groups of the molecule. In the model, molecules are broken down into 

functional groups and the mixture is treated as a mixture of groups. The properties of 

each group are assumed to be independent of the rest of the molecule to which it is 

attached. 

For a gas (component 2) dissolved in a solvent or solvent mixture (component 1) the 

gas phase fugacity becomes equal to the liquid phase fugacity at equilibrium. 

(5.9) 

The gas phase fugacity coefficients for Hz and CO calculated using the Peng-Robinson 

equation of state (PR-EoS) and were found to be close to unity and the gas-phase was 

assumed ideal. 

(5.10) 

where P is the total pressure and .Yz is the mole fraction of gas in the gas phase. For non­

volatile liquids such as dodecane and propylene carbonate, the mole fraction of the solute 

in the gas phase is unity. Liquid phase non-ideality can be taken into account through the 

activity coefficient. The fugacity of the solute in a solution can be written as 

(5.11) 

where xz and }'2 are the mole fraction and activity coefficient of the gas in the solution, 

while / 2° represents the fugacity of a hypothetical pure liquid whenever the temperature 

is greater than the critical temperature of the gas. The quantity fi cannot be determined 

experimentally (Wilhelm, 1986). So the expression may be modified in terms of the 

Henry's law constant for the solute in a 'reference solvent' as follows (Sander et al., 

1983): 

(5.12) 
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where r ~' is the infmite dilution activity coefficient of the gas in the reference solvent 

and H,_, is the Henry's law constant of the gas in the reference solvent. n-Propanol was 

selected as the reference solvent in this work. Equations (5.9) to (5.12) are used to obtain 

the mole fraction ofthe solute gas in the solution. 

YzP 
Xz = H ro 

2,rY 2,r 

(5.13) 

The activity coefficients may be determined by the UNIF AC group contribution method. 

Since UNIFAC model deals with functional groups present in the components, the 

application of the model requires all the interaction parameters between the groups 

present in the liquid and gas phase as function of temperature. Two modifications of 

UNIF AC have been used in this work. The first modification expresses interaction 

parameters as a linear function of temperature given by Equation (5.14). A constant 

enthalpy of solution is assumed. 

anm = Anm + Bnm (T- 273.15) (5.14) 

The second modification, suggested by Kikic et a!. (see Fahim and Elkilani, 1991), is 

concerned with the combinatorial activity coefficient according to the following 

expresswn 

where 

I c lnll'i 
nyi = 5 

lnq>i 
q 
, (B, +1-.pi)/Bi (xi+l-II'Yxi 

x.r.l/3 

lfli = "" I I 2/3 ; 
L..X .r. 
j J 1 

X·Y· 
ff'i ::;:; I I 

L:x .y. 
j j J 

(5.15) 

(5.16) 

The van der Waals relative volume and surface of the components (rand q), needed for 

UNIFAC calculations, are listed in Table 5.3. 
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Table 5.3: UNIFAC parameters rand q of the components 

Compound r q References 

Carbon monoxide 2.094 2.120 Li et al., 1997 

Hydrogen 0.832 1.141 Li eta!., 1997 

Propylene carbonate 3.282 2.736 Ali et a!., 2003 

Dodecane 17.092 14.192 Sander et a!., 1983 

1,4-Dioxane 3.185 2.640 Bandres et a!., 2007 

However, the UNIFAC parameters for the interaction between H2, CO and the functional 

groups present in the solvents (PC and 1,4-dioxane) as a function of temperature are not 

available in the literature. Therefore, it has been necessary to estimate these parameters 

before the suitability of the model can be tested. These parameters for the systems 

studied have been estimated by using one-half of the experimental solubility data set. In 

fact, the alternate data points of gas solubility (xz against pressure) were used for 

UNIF AC parameter estimation and the rest were used to test the applicability of the 

model. The Henry's law constant for hydrogen and carbon monoxide in the reference 

solvent (n-propanol),~, were calculated (Sander eta!., 1983) and subsequently the ratio 

(r; lr;;)"P was calculated from Equation (5.13). The following objective function was 

used to minimize the errors in the estimation ofUNIFAC interaction parameters between 

the gas (2) and the functional group 

r:p · =L[ln(y./y~)exp-ln(y./y~) 1 ]2 
mm n 1 1,r 1 I,r ca c 

(5.17) 

where r:p min is the objective function to be minimized, n is the number of data points and 

y; is the activity coefficient of the solute gas calculated by using modified UNIF AC. By 

using the new predicted interaction parameters presented in Table 5.4, the gas solubility 

in liquid and liquid mixtures can be calculated from Equation (5.13). The quality of the 

UNIF AC correlation, obtained as a result of the parameter regression, was also compared 

with the remaining data set. 
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Table 5.4: Modified UNIFAC group interaction parameters for Equation (5.14). 

anm Anm Bnm 
aco,Pc -339.4 -1.24 

apc,co 858.6 1.86 

acO,dioxane -363.1 1.45 

a dioxane, CO 490.6 6.37 

aH2,PC -440.1 0.57 

aPC,H2 1201.9 -3.96 

a H 2 ,dioxane -1747.5 6.00 

adioxane,H2 
300.0 -3.47 

5.1.3.3. Results of the Thermodynamic Modeling 

The experimental and predicted solubilities based on the RST and UNIF AC model are 

plotted and compared in Figures 5.6-5.8. As Figures 5.6, 5.7 and 5.8 displayed 

convincingly, the UNIF AC activity coefficient model leads to the best description of the 

experimental results. The mean relative deviation between experimental and predicted 

mole fraction solubilities is not more than 7.8 %. The RST and UNIFAC predictions for 

Hz in all three solvent systems were satisfactory with an average error 8.2 % and 5.8 %, 

respectively. UNIF AC also gave a fairly good prediction of the solubilities of CO in the 

three systems studied with an average deviations of 7.2 %. However, the RST based 

predictions for CO in pure PC and binary mixture PC/dodecane were found to agree 

within± 6.7 %, except for the tertiary TMS (PC+dodecane+l,4-dioxane) system which 

predicted with a maximum error of 14.8 %. This suggests that the regular-solution 

assumption, whereby the change in entropy and volume of mixing were considered to be 

negligible cannot be applied to the tertiary multi-component TMS system due to the large 

differences in size or molar volume between components. Still et al. (2005) and Cuevas et 

al. (1995) incorporated the Flory-Huggins entropy of mixing into the RST model and 

good agreement is observed with experimental data. In addition the RST based model did 

not give as good description compared to UNIF AC model, which is most likely due to the 

polarity of CO and the polarity of PC and 1 ,4-dioxane. 
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Figure 5.6: Solubility of CO and Hz in TMS-systems PC+dodecane+1,4-dioxane at a 

partial pressure of 101.3 kPa. Experimental (• •), modeled with regular solution theory 

(RST) with Yen and McKetta extension for polar solvent(-), and UNIFAC model(---). 
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Figure 5.7: Solubility of CO and Hz in biphasic PC+dodecane mixture at partial pressure 

of 101.3 kPa. Experimental (• •), modeled with regular solution theory (RST) with Yen 

and McKetta extension for polar solvent(-), and UNIF AC model ( ---). 
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Figure 5.8: Solubility of CO and H2 in propylene carbonate at partial pressure of 101.3 

kPa. Experimental (•, +), modeled with regular solution theory (RST) with Yen and 

McKetta extension for polar solvent (-), and UNIFAC model ( ---). 

Figure 5.9 shows the comparison of experimental and predicted values of solubility ofH2 

and CO in the studied solvent systems. The theoretical predictions of solubility by using 

modified UNIF AC were found to be within a maximum error of± 8.5 %, whereas RST 

with the extension of Yen and McKetta (1962) predicts within ±11.0% error. Modeling 

also showed that the RST based model can be used for prediction of CO and H2 gas 

solubilites in the studied solvent systems except for CO-TMS system. On the other hand, 

the UNIFAC model is able to describe the experimental data with a better accuracy over 

the whole range of the operating pressure and temperature. 
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Figure 5.9: Parity plots of the model predictions of the solubility of CO and H2 in PC, 

biphasic PC+dodecane mixture and TMS-systems PC+dodecane+ 1 ,4-dioxane at 

temperature range of 298-343 K. (A) UNIF AC model; (B) RST based model. 

5.2. Parametric Study of Reaction Variables 

5.2.1. Selection of Solvent Composition 

Figure 5.10 shows the phase diagram with the corresponding working points obtained by 

cloud-point titration. The hydroformylation of 1-octene has been carried out in 

PC/dodecane/1,4-dioxane with varying compositions, A, B, C and D listed in Table 5.10. 

At a reaction temperature of 90°C and syngas pressure of 1.5 MPa and 0.17 mM catalyst 

concentrations, the conversion of 1-octene and the yield of total aldehyde were 53 % and 

47 %, respectively. With a reaction-time of 2 h and a selectivity of approximately 90 %, 

this catalytic system can be considered as highly reactive and selective. 
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Figure 5-10: Phase diagram of the solvent system PC/dodecane/1,4 dioxane 

The total turnover number was 600 while the turnover frequency was 400 h-1
• The 

turnover number (TON) is the number of moles of product obtained by the number of 

moles ofRh catalyst used: 

TON= molesofaldehydeproduct 
moles of catalyst 

(5.18) 

The TON is a measure of the efficiency of a catalyst. Particularly in using expensive 

catalysts, the TON should be as high as possible to reduce the final production cost. On 

the other hand, the turnover frequency (TOF), is for describing the activity of the catalyst 

and is defined as: 

TOF=_3_ 
neal . t 

(5.19) 
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where n, is the moles of converted starting material, t is the time for conversion and neat is 

moles of catalyst. The TOF allows an evaluation of the performance between different 

catalytic systems. 

Upon reaction completion, the solution is phase separated by cooling to form the 

polar rich phase, PC and non-polar rich phase, dodecane. Gas chromatographic analysis 

of the two liquid phases obtained at the end of the reaction showed that the product 

preferentially remained in the nonpolar phase. The percentage yield of nonanal 

distributed into the non polar phase was found to be in the range of 67 to 85 %. Table 5.5 

shows that the n-selectivity increases at a higher PC concentration in the TMS-system. 

Similar results on the effect of PC concentration were reported by Behr et a!. (2005) for 

the hydroformylation of trans-1-octene using Rh(acac)(CO)z]/BIPHEPHOS catalyst. 

From the calculated turnover frequency (TOF), the TOF was well above 300 h·', showing 

high catalytic activity although significantly less concentration of catalyst was used 

compared to the amount of catalyst loading in industrial hydroformylation processes. The 

TOF obtained are comparable with the biphasic system for hydroformylation of 1-

dodecene (Zhang et a!., 2002). The solvent composition according to the operation point 

A (PC/dodecane/1,4-dioxane: 0.30/0.10/0.60) given in Table 5.5, was selected as a 

practical one for further study. 

Table 5.5: Effect of the composition ofTMS-systems. 

Serial PC/dodecane/1 ,4-dioxane Yield of total n/iso TON TOF,h. Rh loss,% 

[wt %] aldehyde [%] 

A 30.0/10.0/60.0 47.5 10.5:1 600.5 404.0 2.8 

B 25.5/13.5/61.0 47.0 9.7:1 574.9 383.3 3.0 

c 21.8115.8/62.4 47.9 9.5:1 463.2 308.8 6.3 

D 17.8/18.2/64.0 50.6 8.5:1 618.3 412.2 10.4 

Reaction conditions: P ~ 1.5 MPa, YHiYco ~ 1/1, HRh(CO)(PPh3) 3 ~ !.7xl04 kmol·m·3
, 1-octene ~ 1.9 

kmol·m·3
, P(OPh),!HRh(CO)(PPh3h ~ 12, temperature~ 363 K, reaction-time~ 2 h. 
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298 K 343 K 

Figure 5.11: An orgamc solvent mixture composed of PC/dodecane/1,4-dioxane 

(30.0/10.0/60.0) formed the biphasic system at 298 K (a lower PC layer was colored due 

to the presence of the catalyst). 

As shown in Figure 5.11, the catalyst remained in the propylene carbonate phase giving it 

a light yellow colour. However, the catalyst loss into the product or nonpolar phase was 

found to be within 2.8 to 10.4 % and it could be correlated to the polarity and the 

solubility of the solvent mediator in the product phase. 1,4-Dioxane proved to be a better 

solvent mediator with low catalyst loss of 3 % only compared top-xylene which caused a 

higher rhodium leaching of about 4 7 % (Behr et al, 2005b ). 

5.2.2. Effect of Reaction Parameters 

5.2.2.1. Effect of Catalyst Concentration 

Industrial hydroformylation processes carried out in a single phase solvent using rhodium 

catalyst generally require high catalyst loadings, up to I mM HRh(CO)(PPh3)3. In this 

study, a significantly less amount of catalyst was found to give satisfactory conversion 

and selectivity. In Figure 5.12, at catalyst concentration of 0.68 mM, the conversion of 1-

octene increased with time until it reached a plateau at 98 % conversion and reaction time 

of 2.0 h, indicating the end point of the reaction. The initial rate and conversion increased 

with the concentration of the HRhCO(PPh3)3 catalyst. After 2.0 h, conversion of 1-octene 

to C9-aldehyde increased from 50.0 to 95.3 % for a change of catalyst concentration from 

0.0866 to 0.68 mM. The yield of total aldehyde in nonpolar phase, dodecane increased 
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steadily from 0.0866 mM concentration of catalyst until it reached equilibrium at 0.68 

mM of catalyst concentration. The catalyst also increases the rate at which equilibrium is 

achieved. The rate of reaction decreases as the percent completion increases until the 

point where the system reaches dynamic equilibrium. The high rates of total reaction and 

yields of aldehydes may be due to the addition of excess P(OPh)3 ligand. According to 

Beller et a!., (1995), by using phosphite-modified catalyst, even less reactive olefins such 

as 1-octene, 2,3- and 2,5-dihydrofuran, !-butene and 2-butene are hydroformylated at 

much higher rates compared to those achieved with phosphine-modified catalysts. 

Similar observation was reported before in the case ofhydroformylation of 1-octene at 10 

bar and 353 K, where the addition of excess ligand (PPh3:Rh = 5:1 molar ratio) 

systematically led to high rates of hydroformylation and selectivity with reduced rates of 

isomerization and hydrogenation of the olefin (Huang eta!., 2004). 
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Figure 5.12: A: Time evolution of the yield of total aldehyde at different concentration of 
HRh(CO)(PPh3)3 catalyst; B: Effect of HRh(CO)(PPh3)3 concentration on the yield of 
total aldehyde and selectivity. Reaction conditions: P = 1.5 MPa, YmiYco = 111, T = 363 
K, 1-octene = 1.9 kmol·m·3, P(OPh)3/HRh(CO)(PPh3)3 = 12, PC/dodecane/1,4-dioxane= 
0.30/0.10/0.60. 
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Similarly, the regioselectivity for linear aldehyde increased with the increase of 

catalyst loading. The n-product was favoured under all conditions studied even though 

the regioselectivity to n-nonanal decreased with time. This could be attributed to the ratio 

of phosphite ligand (L) to rhodium metal affecting the coordination equilibrium of 

catalytic active species. According to the catalytic cycle of hydroformylation, with the 

increase of the ratio of phosphite ligand to rhodium metal, the rhodium metal complex 

converted from HM(CO)zL to HM(CO)L2 and then to HM(CO)L3, among which 

HM(CO)L2 was the main active species most favorable for the coordination and 

dissociation of reactants, exhibiting higher catalytic activity and selectivity. With 0.68 

mM HRh(CO)(PPh3)3, the conversion of 1-octene and the yield of total aldehyde were 

97% and 95 %, respectively. The n/iso aldehyde ratio was 8.4 and formation of only 1.6 

%of the 2-octene and 0.5 % of !-octane were observed after 2.0 has shown in Figure 

5.13 and 5.14. A comparison of conversion and selectivity ofhydroformylation reported 

in the literature for a few systems with that achieved in the present work is presented in 

Appendix H. The percentage yield of aldehyde distributed into the nonpolar phase was 

found to be in the range of 89.5 to 93.3 %. 
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Figure 5.13: Expanded GC signal for the formation for C9-aldehyde isomers (1: 2-

methyloctanal, 2: nonanal) 
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Figure 5.14: Expanded GC signal for the octene isomers and octane (1: 1-octene, 2: 2-

octene, 3: octane) 

5.2.2.2. Effect of Temperature 

The reaction temperature significantly influences the converston as well as the 

distribution of products due to enhanced isomerization of the double bonds and the 

dissociation of ligand from the catalytic complexes at higher temperature (van Leeuwen, 

2004). From the collision theory, an increase in temperature is accompanied by an 

increase in the reaction rate. Temperature is a measure of the kinetic energy of a system, 

so higher temperature implies higher average kinetic energy of molecules and more 

collisions per unit time. A general rule of thumb for most (not all) chemical reactions is 

that the rate at which the reaction proceeds will approximately double for each 10 K 

increase in temperature. Once the temperature reaches a certain point, the chemical 

species may be altered (e.g., decomposition ofligands and denaturing of proteins) and the 

rate of the chemical reaction will reduced. 

As it is seen in Figure 5.15, an increase in temperature from 353 to 373 K, increases 

the initial rate of the reaction. This suggests that an increase of temperature from 353 to 

373 K accelerated the formation of catalytic active species and enhanced the reaction 

activity. At a higher temperature of 383 K, the initial rate dropped thereafter which might 

be caused by the partial ligand degradation, leading to decrease of conversion of 1-octene 

and selectivity for aldehyde. Although the rate of reaction increases with temperature up 
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to 3 73 K, the percentage yield of aldehyde dropped significantly from 90 % to 72 % with 

respect to an increase of temperature from 363 K to 373 K. In addition at the higher 

temperature (3 73 K) an orange colour develops in the reaction mixture due to the 

decomposition of the triphenylphosphite ligand which simultaneously affects the activity 

and stability of catalyst (van Leeuwen and Claver, 2000). After 2.0 h, the total yield of 

aldehyde was as high as 95 % and the ratio of n/iso aldehydes was 8.4. Thus, a higher 

temperature increases the rate of the hydroformylation but decreases the n/iso ratio. The 

isomerization of 1-octene into other internal octenes are favorable at higher temperature 

and subsequently the concentrations of the branched octenes are enhanced, and hence 

lower n/iso ratio. The optimal temperature of 363 K was observed, offering the highest 

initial rate and reasonably high selectivity (n/iso = 8.8-9) for aldehyde. The percentage 

yield of aldehyde distributed into the nonpolar phase was found to be in the range of 84.2 

to 84.9 %. 
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Figure 5.15: A: Time evolution of the yield of total aldehyde at different reaction 
temperatures; B: Effect of temperature. Reaction conditions: P = 1.5 MPa, YH21Yco = 111, 
HRh(CO)(PPh3)3 = 6.8x104 kmol·m·3, 1-octene = 1.9 kmol·m·3, 

P(OPh)3/HRh(CO)(PPh3) 3 = 12, PC/dodecane/1,4-dioxane=0.30/0.1 0/0.60. 
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5.2.2.3. Effect of the Total Pressure of Syngas 

The effect of total pressure (ymiYco = 1/1) on the conversion of 1-octene, total yield of 

aldehyde and the selectivity are presented in Figure 5.16. An increase in the total pressure 

increased the rate and. conversion of 1-octene but the total yield of aldehydes were in the 

range of 88-90 % and did not vary significantly. However, with the increase of the total 

pressure, a decrease in selectivity of the linear aldehyde was observed. The n/iso ratio 

decreased from 7.7 at total pressure of 1.5 MPa to 3.8 at 2.5 MPa. Typical experimental 

results on conversion and selectivity are given in Table 5.6. 
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Figure 5.16: A: Yield of total aldehyde as a function of reaction time at different total 
syngas pressure; B: Effect of total pressure. Reaction conditions: ymiYco = 1/1, 
HRh(CO)(PPh3)3 6.8x104 kmol·m·3, 1-octene 1.9 kmol·m·3, 
P(OPh)3/HRh(CO)(PPh3)3 = 12, PC/dodecane/1,4-dioxane=0.30/0.10/0.60, temperature= 
363 K. 

The catalyst was found to be more stable at higher concentrations of dissolved CO 

and Hz (gas pressure = 2.0-2.5 MPa), and the initial light colour of the reaction mixture 

sustained. Deshpande et a!. (1992) reported that a higher partial pressure of CO could 

prevent the formation of inhibiting species that led to catalyst deactivation. Wilkinson 
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also reported the formation of orange dirhodium species, Rh2(CO)sLJ at a low partial 

pressure ofH2 and high Rh catalyst concentration (van Leeuwen and Claver, 2000). Since 

the formation of dirhodium species is a reversible process, at a high partial pressure of 

Hz, the active rhodium hydrides (HRh(CO)zLz) are regenerated and might be another 

cause for the positive rate response to increase in the total pressure of the syngas. The 

increase of total pressure led to an increase of catalytic activity. However, side­

hydrogenation and isomerization of 1-octene also increased at a pressure above 1.5 MPa, 

which made the selectivity for nonanal drop correspondingly. 

Table 5.6: Typical results on conversion of 1-octene, selectivity and yields. 

Temperature [catalyst] [1-octene] p Conversion of Yield of n/i 
K mol/m3 kmol/m3 atrn 1-octene aldehyde 

% % 
353 0.68 1.90 15.0 95.3 60.0 10.5 
363 0.68 1.90 15.0 97.2 95.0 8.4 
373 0.68 1.90 15.0 98.6 83.0 7.5 
383 0.68 1.90 15.0 99.1 68.0 7.0 
363 0.086 1.90 15.0 50.0 48.2 3.0 
363 0.18 1.90 15.0 53.0 47.0 5.0 
363 0.35 1.90 15.0 93.0 89.7 7.7 
363 0.35 1.90 20.0 95.3 89.0 5.5 
363 0.35 1.90 25.0 98.8 88.2 3.8 

Reaction conditions: H,!CO =I, reaction time= 2 h, catalyst:P(OPh)3 = 5:1 molar ratio 

5.2.2.4. Effect of CO/H2 Ratio 

The effect of composition of syngas on the conversion of 1-octene, total yield of 

aldehyde and the selectivity are presented in Figure 5.17. A decrease in the partial 

pressure of CO increased the rate and selectivity of the linear aldehyde but a decrease in 

the total yield of aldehydes was observed. A sudden increase of the total yield of 

aldehydes was observed when equimolar ratio of CO/H2 was used. The negative-order 

dependence with CO in a certain range of partial pressures appears to be a common 

feature in hydroformylation reaction, using HRh(CO)(PPh3) as a catalyst. As proposed by 

Evans eta!. (1968) the inhibition in the hydroformylation rates at higher CO pressures is 

mainly due to the formation of (RCO)Rh(C0)2(PPh3)2 and/or (RCO)Rh(CO),(PPh,) 

species which are unreactive toward hydrogen. These species are likely to be formed by 
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equilibrium reactions, thus reducing the effective concentration of the active catalytic 

species. The equilibrium leading to the formation of umeactive species will be more 

pronounced at higher pressures of CO causing a sharp decrease in the total yield of 

aldehydes and rate of reaction as observed in this work. At lower partial pressures of CO, 

the formation of these species is expected to be negligible, and therefore a positive-order 

dependence of the rate on Pco is observed. We also observed an increase in the rate of 

reaction with partial pressure of Hz. Regeneration of rhodium hydrides from dormant 

rhodium species formed by impurities is another cause for the positive rate response to 

raising the Hz pressure. 
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Figure 5.17: A: Yield of total aldehyde as a function of reaction time at different CO/Hz 
pressure ratio; B: Effect of CO/H2 ratio. Reaction conditions: p = 1.5 MPa, 
HRh(CO)(PPh3)3 2.1x10·4 kmol·m·3, 1-octene 1.9 kmol·m·3, 
P(OPh)3/HRh(CO)(PPh3)3 = 12, PC/deodecane/1,4-dioxane=0.30/0.I0/0.6017, 
temperature= 363 K. 

5.2.2.5. Effect of Ligand to Catalyst [P(OPhh/HRh(CO)(PPh3h) Ratio 

On the basis of the above catalytic results in 1-octene hydroformylation, an excess of 

P(OPh)3 was added to HRh(CO)(PPh3)3, and the effects of P(OPhh at 15 bar 

(Hz/CO =I) and 363 K was investigated. It is clearly seen from Figure 5.18 that addition 
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of excess P(OPh)3 systematically leads to great increases in the rates of hydroformylation 

and in the ratio of nliso aldehydes when the molar ratio of P(OPh)3:Rh is in the range of 

10-12 and eventually dropped thereafter. The need for excess ligand (L) arises from the 

facile Rh-L dissociation equilibrium shown in Figure 5.19 (van Leeuwen and Claver, 

2000). As the concentration of P(OPh)3 increases, the formation of inactive catalyst 

HRhL3 lowers the total yield. In addition, at high P(OPh)3 concentrations, where the 

catalyst resting state is (P(OPh3)J)Rh(CO)H, phosphite dissociation must occur to form 

the coordinatively unsaturated intermediates. This dissociation is suppressed by increased 

P(OPh3)3 concentration, which serves to reduce the concentration of active Rh species in 

the catalytic cycle. 
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Figure 5.18: A: Yields of total aldehyde as a function of reaction time at different ratio of 
ligand to catalyst concentration. B: Effect of P(OPh)3/HRh(CO)(PPh3)3 ratio. Reaction 
conditions: p = 1.5 MPa, HRh(CO)(PPh3)3 = 2.1xl0·4 kmol·m·3, 1-octene = 1.9 kmol·m·3, 
P(OPh)J/HRh(CO)(PPh3)3 = 12, PC/deodecane/1,4-dioxane=0.30/0.10/0.60, temperature 
= 363 K. 

With HRh(CO)(PPh3)3 concentration of 2.1x10"4 kmol·m·3 and P(OPh)3/Rh =12, the 

yield of total aldehyde went up to 48.0 %, the n!iso aldehyde ratio reached 8.0 after 2 h. 

The observations in catalytic behaviour of a phosphite-containing rhodium complex can 
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be interpreted in terms of electronic and steric factors of donor ligands. 

HRh(CO)(P(OPh)3) contains the strong electronegativity of the oxygen. Electron­

withdrawing ligands lead to a decrease of the back-donation to CO ligands via the 

rhodium by rc-back donation. Consequently, the Rh-CO bond is weaker in 

HRh(CO)(P(OPh)3)2 than in HRh(CO)(PPh3)2 so that the former can be catalytically 

more active than the latter for hydroformylation. This will affect the formation of species 

J (in Figure 5 .29), such that the rate of formation, or the equilibrium concentration 

mcreases. 

PPh3 
+CO 

PPh3 +CO co +CO co 
I -PP1l3 I -PPh3 I -PP!J3 I 

Ph P-Rh-H OC-Rh-H OC-Rh-H OC-Rh-H 
3 I +PP!J3 I +PP/13 I +PPh3 I 

PPh3 -CO PPh3 -CO PPh3 -CO 
co 

Inactive Selective C3talyst 
active. but not highly 3Ctive, 
very selective not selective 

Figure 5.19: HRh(CO)(PPh3)3 dissociation equilibrium 

Alkene complexation, giving complexes E, may also be accelerated or become more 

favored thermodynamically. Migratory insertions are not particularly sensitive to 

electronic properties of the ligand, but it is important to note that oxidative addition will 

slow down when electron-withdrawing ligands are used (Broussard et a!., 1993). 

HRh(CO)(P(OPh)3)2 presents a greater steric hindrance than PPh3 for the coordination of 

1-octene to the rhodium center and thus can lead to lower rates of the 1-octene reactions. 

The greater steric hindrance relatively favours anti-Markownikov addition (van Leeuwen 

and Claver, 2000), which can produce more nonanal than 2-methyloctanal and 2-octene. 

The addition of excess PPh3 makes a significant impact on the enhancement of catalytic 

activity and selectivity of rhodium complexes for 1-octene hydroformylation (Deshpande 

et al., 1993). Consistent with the results reported with other rhodium complex systems for 

1-octene hydroformylation, our catalyst systems in the presence of excess P(OPh)J 

(P(OPh)3:Rh = 12:1 molar ratio) show a marked increase in the n/iso aldehyde ratio and 

great decreases in the activities for the formation of 2-octene and n-octane. The increase 
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in the nliso aldehyde ratio and the suppression of the side reactions of 1-octene are 

mainly due to strong steric effect of P(OPh)J. However, the increase in the activity for the 

formation of aldehydes by addition of excess PPh3 or P(OPh)3 remains unclear. 

5.2.2.6. Effect of 1-0ctene Concentration 

As shown in Figure 5.20, a higher concentration of 1-octene increases the rate of the 

hydroformylation but the n/iso ratio in the product or non-polar phase was in the range 

6.0-6.5 and did not vary significantly. An increase in the 1-octene concentration resulted 

in a higher reaction rate and conversion of 1-octene, while the linear aldehyde selectivity 

remains unaffected. The increase in olefin concentration will predictably cause an 

increase of the addition of olefin to the active catalyst species B in Figure 5.29, to form 

the alkyl complex and hence will cause enhancement in the rates of reaction as observed. 
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Figure 5.20: A: Yield of total aldehyde as a function of reaction time at different 1-

octene concentrations; B: Effect of 1-octene concentration. Reaction conditions: p = 1.5 

MPa, YH21Yco =Ill, HRh(CO)(PPh3)3 = 1.73xl04 kmol·m·3, P(OPh)3/ HRh(CO)(PPh3)3 = 

12, PC/dodecane/1 ,4-dioxane=0.30/0.l 0/0.60, temperature= 363 K. 
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5.3. Kinetic Study 

5.3.1. Solubility of CO and H2 in TMS-system 

For the kinetic study, a knowledge of the solubility of gaseous reactants in the reaction 

medium is essential. Therefore, the solubilities of Hz and CO in TMS-system of 

PC/dodecane/1 ,4-dioxane (0.30/0.1 0/0.60) were determined using the high pressure 

reactor over the temperature and pressure range of 353-373 K and 0.1-2.5 MPa, 

respectively. The solubility of Hz and CO in the TMS system is linearly dependent on 

the pressure in the pressure range of 0.1 to 2.5 MPa as illustrated in Figure 5 .21. 
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Figure 5.21: Effect of partial pressure of Hz and CO on solubility 

Table 5.7: Solubility of Hz and CO m TMS-system of PC/dodecane/1,4-dioxane 

(0.30/0.1 0/0.60). 

Temperature 
(K) 

353 
363 
373 

Henry's law constant (m3·MPa·kmo1"1
) 

Hz CO 
10.13 8.05 
9.98 7.88 
9.79 7.56 
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The plots are linear with a high correlation coefficient (>0.995). Henry's law constants 

for solubilities of CO and Hz in TMS system of PC/dodecane/1,4-dioxane with 

composition of 0.30/0.10/0.60 are presented in Table 5.7. These values were used in the 

calculation of the concentrations of dissolved CO and Hz in the reaction medium. 

However, the temperature of 353 to 373 K has no significant effect on the solubility of 

both Hz and CO in TMS-system. 

5.3.2. Kinetics 

The initial rates of hydroformylation were determined under the range of condition 

shown in Table 4.3. Since the reaction occurs in the liquid phase but two of the reactants 

are supplied as gas, mass transfer limitation may influence the rate of reaction. The 

common technique to apply in order to avoid external mass transfer limitations is by 

conducting the reaction at increasing agitation speeds under unchanged experimental 

conditions. Once this variable does not affect the reaction rate, it can be concluded that 

external mass transfer effect is negligible and the reaction rate is in the chemical or slow 

kinetic regime. As shown in Figure 5.22, increase of the agitation speed above 430 rpm 

had no effect on the rate of reaction and existence of the kinetic regime was confirmed. 

3r---------------------, 

::2.5 / : : 
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0.5 -+- 1-octene 

---- 1-dodecene 
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350 400 450 500 550 600 
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Figure 5.22: Effect of agitation speed on the rate of reaction in hydroformylation of 
1-octene and 1-dodecene. Reaction conditions: p = 1.5 MPa, ymiYco = 111, 
HRh(CO)(PPh3)3 1.73x104 kmol·m·3, 1-olefins = 1.9 kmol·m·3, 
P(OPh)3/HRh(CO)(PPh3)3 = 12, PC/deodecane/1,4-dioxane=0.30/0.10/0.60, temperature 
= 363 K. 
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5.3.2.1. Effect of Catalyst Concentration 

Initial reaction rate as a function of catalyst concentration for the TMS system is plotted 

in Figure 5.23. The plots are linear with a high correlation coefficient (0.990). Therefore, 

the reaction rate shows a first order rate dependence on the concentration of catalyst over 

the concentration range studied. The studies conducted by Brown and Wilkinson (1970) 

and Chaudhari and co-workers (Deshpande et al., 1988,1992; Bhanage et al., 1997; 

Divekar et al., 1993; Nair et al., 1999) using HRh(CO)(PPh3)3 catalyst showed first-order 

rate dependence on catalyst concentration in benzene, toluene, or ethanol for several 

different unsaturated substrates. However, when vinyl acetate or 1-hexene was the 

substrate, Chaudhari noted a critical catalyst concentration ( C*) of 0.2-0.4x 10-3 kmolm-3, 

below which no reaction was observed. Beyond C*, the dependence on catalyst 

concentration was first order (Deshpande et al., 1988, 1989). The inactivity at low 

catalyst concentrations was attributed to a high substrate/catalyst ratio, leading to 

catalytically inactive dimer formation. This dimer formation probably involves the 

species F and G of Figure 5.30 (Palo and Erkey, 1999). The data lie on a curve that 

passes through the origin, indicating that there is no critical catalyst concentration in the 

TMS system using HRh(CO)(PPh3)3/P(OPh3)3 as catalyst when 1-octene is the substrate. 
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Figure 5.23: Effect of catalyst concentration on the rate of reaction. Reaction conditions: 
P = 1.5 MPa, YH21Yco = 111, 1-octene = 1.9 kmol·m-3, P(OPh)3/HRh(CO)(PPh3)3 = 12, 
PC/dodecane/1 ,4-dioxane=0.30/0.1 0/0.60. 
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5.3.2.2. Effect of 1-0ctene Concentration 

Initial reaction rate as a function of 1-octene concentration for the TMS system is plotted 

in Figure 5.24. 
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Figure 5.24: Effect of 1-octene concentration on the rate of reaction. Reaction 
conditions: P = 1.5 MPa, YH21Yco = 111, HRh(CO)(PPh3)3 = 1.73x10-3 kmol·m-3, 
P(OPh)3/HRh(CO)(PPh3)3 = 12, PC/dodecane/1 ,4-dioxane=0.30/0.1 0/0.60. 

The reaction rate shows a first order rate dependence on the concentration of catalyst over 

the concentration range studied. Substrate inhibition was absent over the range of 

substrate and catalyst concentrations selected, where the substrate/catalyst ratio varied 

from 580 to 2300. This may be due to several factors - solvent effects, the phosphite 

ligands, and the increased H2 and CO concentrations relative to conventional systems 

(Shaharun et a!., 2008). The parametric effect on the reaction kinetics was found to be 

similar to that observed for a homogeneous hydroformylation system under industrial 

operating conditions (van Leeuwen and Claver, 2000). The studies conducted by Brown 

and Wilkinson (1970) and Chaudhari and co-workers (Deshpande et a!., 1988,1992; 

Bhanage et a!., 1997; Divekar et a!., 1993; Nair et a!., 1999) using HRh(CO)(PPh3)3 

catalyst showed first-order rate dependence on catalyst concentration in benzene, toluene, 

or ethanol for several different unsaturated substrates. However, when vinyl acetate or 1-

hexene was the substrate, Chaudhari noted a critical catalyst concentration ( C*) of 0.2-
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0.4x 10-3 kmolm-3, below which no reaction was observed. Beyond C*, the dependence on 

catalyst concentration was first order (Deshpande et a!., 1988, 1989). The inactivity at 

low catalyst concentrations was attributed to a high substrate/catalyst ratio, leading to 

catalytically inactive dimer formation. This dimer formation probably involves the 

species F and G of Figure 5.30 (Palo and Erkey, 1999). The data lie on a curve that 

passes through the origin, indicating that there is no critical catalyst concentration in the 

TMS system using HRh(CO)(PPh3)3/P(OPh3)3 as catalyst when 1-octene is the substrate. 

5.3.2.3. Effect of Hydrogen Partial Pressure 

Initial reaction rate as a function of partial pressure of hydrogen for the TMS system is 

plotted in Figure 5.25. 
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Figure 5.25: Effect of partial pressure of H2 on the rate of reaction. Reaction conditions: 
Pea = 10 atm, 1-octene = 1.9 kmol·m-3, HRh(CO)(PPh3)3 = 1.73x104 kmol·m-3, 

P(OPh)3/HRh(CO)(PPh3)3 = 12, PC/dodecane/1 ,4-dioxane=0.30/0.l 0/0.60. 

The plots are also linear with a high correlation coefficient (0.995). Therefore, the 

reaction rate shows a first order rate dependence, which is commonly observed in 

conventional solvent system. It is important to note that, a first order rate dependence was 

observed, although the solubility of H2 is higher in the TMS system compared to the 
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conventional non polar solvent system. Such first-order dependency is commonly 

interpreted to mean that the oxidative addition of Hz (step II in Figure 5.30) is the rate 

determining step (Nair et al., 1999; Deshpande et al 1998; Bhanage et al., 1997). This 

result illustrates the usefulness of the TMS-system not only as an alternative solvent, but 

also as a mechanistic tool for investigating kinetic behavior over a much wider range of 

conditions than normally employed. 

5.3.2.4. Effect of Carbon Monoxide Partial Pressure 

Initial reaction rate as a function of partial pressure of carbon monoxide for the TMS 

system is plotted in Figure 5.26. 
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Figure 5.26: Effect of partial pressure of CO on the rate of reaction. Reaction conditions: 
PH, = 10 atrn, 1-octene = 1.9 kmol·m·3, HRh(CO)(PPh3)3 = 1.73x104 kmol·m·3, 

P(OPh)3/HRh(CO)(PPh3)3 = 12, PC/dodecane/1 ,4-dioxane=0.30/0.1 0/0.60. 

The rate was found to be inversely dependent on the CO partial pressure in the range of 

4.0 to 11.5 atm. Increasing Pco had no positive effect on the reaction rate at all, which is 

explained by the high initial concentration of CO in the reactor. The conventional system 

exhibits positive dependence on [CO] only at very low concentrations [(0-17)x 10·3 
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kmolm-3] and shows drastic rate inhibition at higher concentrations, due to the formation 

of inactive species M as illustrated Figure 5.30. These species are coordinatively 

saturated, so oxidative addition of Hz cannot take place, preventing aldehyde formation. 

Since the TMS system is performed at [CO] values of at least 0.046 kmol·m-3, the purely 

negative rate dependence on [CO] is expected. Generally, the parametric effects were 

found to be similar to that of kinetics in homogeneous system under the industrial 

operating conditions. According to van Leeuwen (2004), under the "standard" catalytic 

conditions (1.0-3.0 MPa, temperature 343-393 K, [Rh] = ;::;J0-3 kmol·m-3, [alkene]= 0.1-2 

kmol·m-3, [L] depending on complex stability) the rhodium phosphite catalyzed reaction 

is first order in the concentration of alkene, first order in the rhodium concentration, first 

order in hydrogen, and the reaction shows a negative order in ligand concentration 

(phosphine or CO, or both). 

5.3.3. Kinetic Modeling 

5.3.3.1. Empirical Model 

A comparison of the experimental rates of reaction and those predicted by the developed 

kinetic model of M1, M2 and M3 showed high average standard error estimate ranging 

from 15% to 45% besides having negative kinetic parameters. This result suggests that a 

different mechanism is operating when excess ligands are presence in the reaction 

system. Hence a new empirical and mechanistic model were developed for the 

hydroformylation of 1-octene and 1-dodecene in the TMS system of PC/dodecane/1,4-

dioxane using HRhCO(PPh3)3/P(OPh)3 catalyst for the ranges of process conditions listed 

in Table 4.2. Figure 5.27 is a typical profile obtained at 363 K and initial concentrations 

of 1.9 kmol·m-3 1-octene and 0.17 mol·m-3 HRh(CO)(PPh3)3. Similar profiles were 

obtained for 353 and 373 K. In each case, the reaction was allowed to proceed until the 

nonanal concentration was asymptotic to its equilibrium value. 

The concentration-time profiles of nonanal and 2-methyloctanal were curve fitted by 

a cubic polynomial ofthe form 

(5.20) 
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where [ Cald] is the concentration of aldehyde (kmol·m-3
) and tis the time (s), to determine 

the reaction rate of the formation of nonanal and 2-methyloctanal at the initial time. 

Values of the constants u, p, and y which were found are given in Table 5.8. The 

polynomials were subsequently differentiated to give reaction rates (in kmol·m·3·s-1
) as a 

function of time to produce initial reaction rates for fitting against those predicted by a 

suitable model. 
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Figure 5.27: Typical plot of concentrations of 1-octene, nonanal and 2-methyloctanal 

versus reaction time. 

Table 5.8: Constants in polynomial fitting nonanal concentration vs. time' 

T(K) ax 102 P X 105 y X 109 R 

(kmol·m-3
) (kmol·m·3s-1

) (kmol·m-3s-2) 

353 1.02 2.73 -2.57 0.985 

363 1.33 4.48 -4.34 0.987 

373 1.63 5.07 -4.64 0.980 

*Reaction conditions: P- 1.5 MPa, YH21Yco- Ill, 1-octene- 1.9 kmol·m·3
, HRh(CO)(PPh3) 3 ~ 1.73x!0"3 

kmol·m·3
, P(OPh),!HRh(CO)(PPh3), ~ 12, PC/dodecane/1,4-dioxane='0.30/0.10/0.60. 
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In order to validate the model, the rate versus concentration data was then used to 

determine the parameters by fitting with the experimental rate. The non-linear least 

square regression based on the criterion of minimization of the statistical parameter mean 

residual sum of squares ( tP) was performed to determine the selectivity and kinetic 

parameters. Activation energy was obtained by means of Arrhenius equation with 

'temperature centering' as outlined in Section 3.7.3. In the present study Tm = 363 K was 

used for temperature centering and parameter estimation. The following models were 

found to best fit the data at all the temperatures studied. 

k[ octene] [catalyst JPcoPH 
Rate= ' 

(I + KcoPco )m 

Selectivity= 0.75 [octener0
·
15 [catalyst] 0·

26 Pco -1.2 PH - 0
·
77 T"1.3 (LIR) 0

·
25 

2 

(5.21) 

(5.22) 

where [octene] is the concentration of 1-octene; [catalyst] is the concentration of 

HRh(CO)(P(OPh)J)J in the reaction mixture; Pco is the partial pressure of CO; PH2 is the 

partial pressure of H2; T is the absolute temperature and LIR is the ratio of 

P(OPh)J/HRh(CO)(PPh3)J. Table 5.9 summarizes the values of the optimized parameters 

and the average standard error of estimation (SEE) and tP values of the non-linear 

regression analysis for the empirical rate model (Equation (5.21)) at 353, 363 and 373 K. 

Table 5.9: Estimated kinetic model parameters with 95% confidence limit 

T k Kco m tPmin SEE 

(K) m3 kmor1 MPa·2 s·1 (MPa.1) (xlO"ll) (%) 

353 5.5 0.52 1.72 1.54 5.97 

363 11.1 1.18 1.60 5.00 6.35 

373 19.7 2.24 1.36 3.79 4.26 
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The rate constant, k increased with increasing temperature from 353 to 373 K. Generally, 

the rate constant doubled with every ten degree increase in temperature. However, the 

optimized values of the rate parameter, Kco. suggests that the effect of inhibition of CO 

on the rate of reaction increases with a change of temperature from 353 to 373 K. The 

optimized values of the rate parameter m (1.36 to 1.72) also suggests that the inhibition of 

CO in the TMS-system is comparatively lower compared to those in conventional organic 

solvent based system, biphasic system and scCOz which is probably due to the lower 

solubility of CO in the TMS- system (Palo and Erkey, 1999; Deshpande et a!., 1996; 

Divekar eta!., 1993; Deshpande and Chaudhari, 1988). 

The selectivity model (Equation (5.22)) describes the dependence of selectivity 

(n/iso) on the concentration of 1-octene and catalyst, partial pressure of Hz and CO and 

also the ratio of ligand to catalyst. The regressed values of the parameter for PH is -0.77 
2 

which means that the formation of branched aldehyde is more favoured at increasing Hz 

pressure. Similar findings were reported by van Rooy et a!. (1995) for the 

hydroformylation of styrene using Rh(CO)z(acac) as the catalyst precursor and tris(2-tert­

butyl-4-methylphenyl)phosphite as the ligand (T = 353 K, [Rh(CO)(acac)] = 0.25 

mol·m·3, P/Rh = 20, [styrene]= 0.89 kmol·m·3 in 20 mL of toluene). The regressed values 

of the parameter for Pco suggests that increases in Pco have a detrimental effect on the 

n:iso ratio. Mechanistically, increases in [CO] enhance the formation of the active species 

F over against the active species G (Figure 5.30). Since the CO ligand is much less 

sterically demanding than the phosphine, selectivity decreases as the [G]/[F] ratio 

increases. [1-0ctene]o does not significantly affect the final n:iso ratio. However, it was 

observed that selectivity decreased slightly over the course of the reaction for each 

experiment in this study. Similar results were observed for the hydoformylation of 1-

octene in scC02 solvent system (Palo and Erkey, 1999). However, in an aqueous biphasic 

solvent system, high selectivity was achieved with increase in olefin concentration (Yang 

et a!., 2002), whereby the reported parameter was 0.156. Catalyst concentration also had 

a direct effect on the n:iso ratio of the aldehyde products. Such selectivity dependence on 

catalyst concentration is typical of rhodium/phosphine systems and is related to the 

degree of phosphine dissociation from B in solution. The selectivity dependence on the 

ratio ofligand to catalyst concentration follows the same trend. The isomerization step is 
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slightly suppressed towards high ligand/metal ratios in homogeneous and microemulsion 

systems (Unveren, 2004 ). Under such conditions the metal center presents a more 

sterically hindered environment to the alkene and the formation of linear alkyl and acyl 

species are favored. As only the branched alkyl rhodium species will form internal 

alkenes, the amount of the internal alkenes diminish. With the ligand/metal ratio of 20, 

the internal octenes that are formed via isomerization are not hydroformylated as the 1-

octene conversion begins to decrease. As in the hydroformylation of other substrates such 

as styrene and cyclohexene in conventional solvent system, an increase in temperature 

leads to a considerable decrease of selectivity toward the linear aldehyde (van Leeuwen 

and Claver, 2000). 

A comparison of the experimental rates of reaction and selectivity and those predicted 

by the model are presented in Figures 5.28 and 5.29, respectively, for all the 

temperatures, which show a good agreement. 
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Figure 5.28: Parity plot of the experimental and calculated reaction rates using Eq .( 5.21 ). 
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Figure 5.29: Parity plot of the experimental and calculated selectivity (n/iso) using 

Equation (5.22). 

The prediction of the selectivity by using Equation (5.22) was found to be within ±3.2% 

error, whereas the rate equation predicts within ±5.5 % error. The activation energy was 

found to be 69.8 kJ.mor', which lies in the range of activation energy values (66-75 

kJ·mor1
) reported by other workers for the hydroformylation of 1-octene with different 

Rh-complexes by homogeneous, biphasic and supported aqueous phase catalysis, SAPC 

(Jauregui-Haza et al., 2001; Deshpande eta!., 1996; Hermann eta!., 1992; Arhancet et 

al., 1991). 

5.3.3.2. Mechanistic model 

In this work, a model based on key mechanisms is also proposed. The main objective is 

to establish a molecular mechanism for the hydroformylation of !-olefin in the presence 

of excess P(OPh)3 ligand. Experimental results have shown that the hydroformylation 

reaction is sensitive to experimental conditions. Therefore, the plausible reaction pathway 

described in Figure 5.30, for the hydroformylation reaction in the presence of excess 

ligand and Rh-catalyst is different than the one proposed in Chapter 3. 
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Qualitative reasomng and some available experimental observations as outlined in 

Section 3.5, form the basis of the scheme (van Leeuwen, 2004; van der Veen eta!., 2000; 

Musaev eta!, 1995; Jongsma et al., 1991; Brown and Kent, 1987). In the presence of 

excess ligand, the dissociation of phosphite ligand to form monophosphite catalyst is less 

feasible. According to van Leeuwen and Claver (2000), at moderate P(OPh)3 

concentrations, the resting state of the catalyst is B, which undergoes P(OPh)3 

dissociation to form selectively 4-coordinate intermediate D. Since the reaction was 

carried out using excess P(OPh)3 ligand, the complexes shown in Figure 5.30 contain at 

least two coordinated P(OPh)3 ligands. The reaction pathways depicted in Figure 5.30 

was used to develop mechanistic rate equations using the conventional quasi -steady state 

formalism. 

Assumptions used in Chapter 3 to develop the mechanistic model for the 

hydroformylation of higher olefins in homogeneous system were also applied. Three rate 

equations (Model AI, A2 and A3) have been developed corresponding to the three 

transition states identified by the quantum chemical calculations. The following reaction 

steps (Figure 5.30) are considered. 

B +CO """ C 
kz, -2 

B """D + CO 
k,, .J 

D + RCH=CHz """ F 
k,,.., 

D + CO+ RCH=CHz """ G 

F+ CO ~'f' 

J +Hz ~ RCHzCHzCHO + D 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Equations (5.23) to (5.28) and the simplifying assumptions were used to derive 

relationships between the rate of reaction and experimental parameters (i.e. 

concentrations of olefin, catalyst, dissolved CO, as well as Hz). Kinetic model (AI) has 

been developed using the oxidative addition of hydrogen as a rate determining step 

(RDS) (Equation (5.28)). Taking into account that the overall hydroformylation rate is 

given by the rate of this step, the rate equation is expressed as 
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(5.29) 

The following expressions for the concentrations of the different intermediates can be 

written in terms of the equilibrium constants of the reactions and intermediate J. 

[B]= [J] 
K

2
K

3
K

5 
[aiken~ 

(5.30) 

[D]- [J] 
- K

3
K

5
[co][alkene] 

(5.31) 

[c] Kl [J] [co] 
K

2
K

3
K

5 
[alkene] 

(5.32) 

[F] [J] 
(5.33) 

K
5 

[co] 

[G]= K4[J] 

K3K5 
(5.34) 

An expression for the concentration of the species [ J] can be obtained from a total 

catalyst balance at steady state. 

[Catalyst] = [B] + [C] + [D] + [F] + [J] (5.35) 

where [Catalyst] is the concentration of catalyst loaded and hence, 

[1{1 + K;[co]+K;[co]Z + K;[alkene]+ K;[alkene][coJ) 
[catalyst]= (5.36) 

K*[co ][alkene] 
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Equation (5.36) was rearranged to obtain the expression for [J] and in tum substituted in 

Equation (5.Z9) to give the rate Model AI ofthe following form: 

k[catalyst ][alkene][co J[ Hz J 
Rate= * 

I+ K; [co]+ K; [coj2 + K3 [alkene]+ K; [co][alkene] 
(5.37) 

where K * , K; -K; are constant derived from the equilibrium constants of elementary 

steps in the reaction mechanism in Figure 5.30. 

The second kinetic model (AZ) was proposed considering the migration insertion of 

the alkene into R-H, is assumed as a rate limiting step (Equation (5.Z5)). The rate of the 

reaction is given by 

Rate = k
3 

[D ][alkene] (5.38) 

The corresponding rate equation can be derived in the form (Model AZ) 

k[catalyst][alkene][coJ[ Hz] 
Rate= . (5.39) 

(1 + K;[coj2 + K;[a!kene]+ K;[co][alkenel)[ Hz]+ K;[co][a!kene] 

Similarly, considering the formation of the acyl complex is rate-controlling (Equation 

5 .Z7), the rate equation is expressed as 

Rate= k 5 [F ][co] (5.40) 

and the following rate equation (Model A3) was obtained 

Rate 
k[catalyst ][alkene][co] [ H2 J 

.,------------.,-------=----"--c,---------. (5.41) 
(1 + Kt[co] + K;[co]Z + K;[alkene]+ K;[co][alkeneJ)[ H2]+ K;[co][alkene] 
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The 'equilibrium constant', K, was similarly determined as a function of temperature 

using the van't Hoff equation also with temperature centering. The error estimate (SEE) 

given by Equation (3.6) together with thermodynamic consistency of the calculated 

activation energy or negative kinetic parameter, if any, were used as the criteria of 

discrimination among the three rate models (Patel and Pant, 2007; Hurtado et a!., 2004; 

Pengpanich et a!., 2002). 

As shown in Table E-2, Appendix E, Model A3 showed high average standard error 

estimate ranging from 7% to 15% besides having negative kinetic parameters. In addition 

the obtained activation energies are lower than the range of activation energy values (57-

75 kJmor1
) reported by other workers for the hydroformylation of 1-octene and 1-

dodecene with different Rh-complexes by homogeneous, biphasic and supported aqueous 

phase catalysis, SAPC (Jauregui-Haza et a!., 2003; Bhanage eta!., 1998; Deshpande et 

a!., 1996; Hermann et al., 1992; Arhancet eta!., 1991). On the other hand, Model A2 was 

rejected because it displayed a non-linear Arrhenius plot. As it is seen in Figure 5.31-

5.34, the rate model AI is able to describe the experimental data reasonably well over the 

whole range of pressure, concentrations of the olefins (1-octene and 1-dodecene) and 

temperature. 
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Figure 5.31: Effect of partial pressure of CO on the rate of hydroformylation of 1-octene (A) and 
1-dodecene(B). Reaction conditions: PH, = 1.5 MPa, 1-olefins = 1.9 kmol·m-3

, HRh(CO)(PPh3) 3 

= 1.73xl0-4 kmol·m-3
, P(OPh)31HRh(CO)(PPh3) 3 = 12, PC/dodecane/1,4-dioxane=0.30/0.J0/0.60. 
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Figure 5.32: Effect of partial pressure of H2 on the rate of hydroformylation of 1-octene (A) and 

1-dodecene (B). Reaction conditions: Pea= 1.0 MPa, YH21Yco = 1/1, 1-olefins = 1.9 kmol·m"3
, 

HRh(CO)(PPh3)3 = 1.73x!0-4 kmol·m·3
, P(OPh)3/HRh(CO)(PPh3) 3 = 12, PC/dodecane/1,4-

dioxane=0.30/0.l 0/0.60. 
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Figure 5.33: Effect of concentration of !-olefin on the rate of hydroformylation of 1-octene {A) 

and 1-dodecene (B). Reaction conditions: P = 1.5 MPa, YH21Yco = Ill, HRh(CO)(PPh3) 3 = 
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Figure 5.35: Parity plot of the model predictions of the rate of hydroformylation of 1-
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As Figure 5.35 displayed convincingly, the rate model Al describes the experimental 

data of both substrates satisfactorily. The estimated parameters as well as the activation 

energy and error estimates are presented in Table 5.1 0. 

Table 5.10: Estimated Al kinetic model parameters with 95% confidence limits 

Substrate T k K' K' K' K' SEE Ea I 2 3 4 

(K) (%) (kJ moi"1
) 

1-octene 353 5.1x10 0.88 0 4.5 66.3 

Cs 363 8.0x103 2.0x102 J.3x103 6.8x10·3 0 
373 J.Ox104 2.3x102 9.7xJ02 9.7xJ0·6 0 

1-dodecene 353 7.1x102 0.99 2.4x103 0.63 9.0x10·2 3.6 76.1 
cl2 363 J.3x103 5.28 2.2x103 0.17 4.8xJ0·2 

373 2.8x103 34.8 2.0x103 2.0x10·2 0.10 

Since a negative order with respect to Pea is observed experimentally, the concentration 

term of CO is raised to a higher power in the denominator than in the numerator 

(Helfferich, 2001). The regressed values of K;' andK; for both substrates are relatively 

large and suggest that the effect of the Pea inhibition on the rate of reaction is highly 

significant. As Pco increases the denominator increases significantly compared to the 

numerator leading to a rapid decline in the reaction rate. On the other hand, high 

concentration of alkene in the presence of excess P(OPh3)J ligand leads to a first order 

kinetic, and, in turn, the alkene-containing terms in the denominator is expected to have 

insignificant effect on the rate of reaction. 

Equation (5.37) explains the inverse order dependence of the reaction rate on 

dissolved carbon monoxide concentration at high CO pressure. The rate parameters in the 

denominator are derived from the equilibrium constants of elementary steps in the 

reaction mechanism. Therefore, the regressed rate parameters can be used to estimate the 

rate of the elementary steps. For instance, the large value of K; implies that the rate of 

dissociation and association ofligand, step 2 in Figure 5.30 is high. However, the value 

of Kt suggests that step 3 occurs at 3 orders of magnitude slower compared to step 2. On 

the other hand, difference of two orders of magnitude lower in the rate constant of the 
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alkene insertion step (step 5 and 6) with respect to step 3 was also observed and 

consistent with the experimental value reported in open literature (van Leeuwen, 2000). 

From the regressed value of(, the rate of the carbonyl insertion step (step 8) was found 

to be greater by three orders of magnitude compared to the alkene insertion step. 

Comparing the regressed values of the rate constant, k at 353, 363 and 373 K, the 

values of k are higher for 1-octene than 1-dodecene. Activation energy of 66.3 and 76.1 

kJ·mor1 were determined for the hydroformylation of 1-octene and 1-dodecene, 

respectively. Generally, the results suggest that the activation energy of the 

hydroformylation of higher olefins in the TMS-system is higher compared to the 

conventional organic solvent based system (46.2 to 69.7 kJ·mor1
). The average deviation 

between experimental and calculated rate of reaction was found to be in the range of ± 

4.0 %. Model AI seems to give a slightly better description compared to the empirical 

model (±5.5 %) but this could be mainly attributed to the great flexibility arising from 

their structure having five (model AI) instead of three (empirical model, Equation (5.22)) 

rate parameters. The results also support previous findings in demonstrating that under 

the experimental conditions listed in Table 4.3, the acylrhodium complex is the resting 

state and oxidative addition ofH2 is rate determining (van Leeuwen and Claver, 2000). 

5.4. Liquid-liquid Equilibrium Study 

This work presented the liquid-liquid ternary equilibrium data of a TMS-system 

consisting of PC, dodecane and 1 ,4-dioxane, at atmospheric pressure and four different 

temperatures (298.15, 313.15, 333.15 and 353.15 K). The distributions of 1-octene, 

nonanal, triphenylphosphite ligand and HRh(CO)(PPh3)3 catalyst were measured at 

atmospheric pressure and two different temperatures (298.15 and 308.15 K) to model the 

extraction efficiency for a typical reaction, the hydroformylation of 1-octene. The liquid­

liquid equilibria and solute distributions were also predicted using the UNIFAC and 

UNIQUAC models. 
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5.4.1. Liquid-liquid Equilibrium Data 

The experimental binodal curves of the TMS-system obtained by cloud titrations at 298, 

313, 333 and 353 K are shown in Figures 5.36, 5.37. 5.38 and 5.39, respectively. The 

isothermal3-component phase diagram (PC+dodecane+l,4-dioxane) shows a closed loop 

at all the experimental temperatures. 

0.1~~~· 
0~-*--¥--*--¥--*--¥--*--¥--¥~ 

PC I 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Dodecane 

Figure 5.36: LLE ternary diagram for PC+dodecane+l,4-dioxane at 298.15 K; (V) 

experimental binodal curve; (•) experimental tie lines data;(---) calculated (UNIQUAC) 

tie lines and (-) calculated (UNIFAC) tie lines. 
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Figure 5.37: LLE ternary diagram for PC+dodecane+l,4-dioxane at 313.15 K; (V) experimental 

binodal curve; (•) experimental tie lines data; (---) calculated (UNIQUAC) tie lines and (-) 

calculated (UNIF AC) tie lines. 

0.1 +-7<-*---7\~>E--7<-i~*---7~-7<. 
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PC I 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Dodecane 

Figure 5.38: LLE ternary diagram for PC+dodecane+J,4-dioxane at 333.15 K; (V) experimental 

binodal curve; (•) experimental tie lines data; (---) calculated (UNIQUAC) tie lines and (-) 

calculated (UNIF AC) tie lines. 
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Figure 5.39: LLE ternary diagram for PC+dodecane+1,4-dioxane at 353.15 K; (V) experimental 

binodal curve; (•) experimental tie lines data; (---) calculated (UNIQUAC) tie lines and (-) 

calculated (UNIF AC) tie lines. 

The miscibility gap or heterogeneous sphere of the system decreased with increasing 

temperature. The experimental tie-line compositions of the equilibrium phases at 298 and 

308 K for the (TMS-system+1-octene), (TMS-system + nonanal), (TMS-system+1-

octene+nonanal), and (TMS-system+ 1-octene+nonanal+ triphenylphosphite+catalyst) 

systems were summarized in Appendix J.To show the selectivity of the TMS-system in 

extracting the reactant (1-octene), product (nonanal), ligand (triphenylphosphite) and 

catalyst (HRh(CO)(PPh3)3), distribution coefficients (D;) for these compounds (1-octene, 

nonanal, triphenylphosphite, HRh(CO)(PPh3)3) are defined as follows: 

Weight fraction in nonpolar phase 

Weight fraction in polar phase 
(5.42) 

The distribution coefficients for each equilibrium system and temperature are given in 

significantly decreases the distribution coefficient of 1-octene and nonanal. According to 

Behr et a!. (2005), the addition of trans-4-octene into the ternary system of 
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PC+dodecane+p-xylene does not affect the position of the binodal curve. On the other 

hand, the addition of nonanal has a significant effect on the phase behavior of the solvent 

system. The binodal curves at 298 K and 353 K move closer to each other. However, the 

distributions of catalyst remain unchanged with or without the presence of 1-octene, 

nonanal and triphenylphosphite. The minimum distribution coefficient for 1-octene and 

nonanal are 1.33 and 1.75, respectively and on the other hand the maximum distribution 

coefficient for HRh(CO)(PPh3)3 and P(OPh)3 are 0.034 and 0.23, respectively. These 

results suggest that the extraction of 1-octene, nonanal, HRh(CO)(PPh3)3 and P(OPh)3 by 

the TMS-system from a l-octene+nonanal+HRh(CO)(PPh3)3+P(OPh)3 mixture is 

possible. The extraction capacity of the TMS- system at each temperature, plots D vs, x, 

for 1-octene, nonanal and HRh(CO)(PPh3)3 are given in Figures 5.40-5.42, respectively. 
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Figure 5.40: Distribution coefficient D of 1-octene as a function of the mass fraction x of 

1-octene in the non polar phase. 
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Figure 5.41: Distribution coefficient D of nonanal as a function of the mass fraction x of 

nonanal in the non polar phase. 
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Figure 5.42: Distribution coefficient D of HRh(CO)(PPh3)3 catalyst as a function of the 

mass fraction x of HRh(CO)(PPhJ)J in the non polar phase. 
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The capacity of the extraction of the TMS system towards 1-octene decreases with the 

concentration of 1-octene in non polar phase at both 298 and 308 K. However, the data in 

Table 5.11 shows that capacity of extraction of the TMS system towards nonanal and 

HRh(CO)(PPh3)3 increases with the concentration of nonanal and HRh(CO)(PPh3)3 in the 

nonpolar phase. The effect of temperature change on the distribution is expected because 

the phase behavior of the TMS system is temperature dependent. 

Table 5.11: Distribution coefficients of species in TMS- system 

TMS+octene 298.15 13.05 
7.78 
4.12 

308.15 8.33 
7.04 
3.70 

TMS+nonanal 298.15 22.96 
13.71 
18.40 

308.15 20.80 
12.02 
16.81 

TMS+HRh(CO)(PPh3) 3 298.15 0.0188 
0.0156 
0.0301 

308.15 0.0000 
0.0167 
0.0132 

TMS+ 1-octene+nonanal 298.15 12.69 21.25 
7.57 12.64 
4.04 17.59 
2.32 33.97 
2.92 2.63 

308.15 8.17 17.48 
6.85 11.39 
3.64 15.53 
2.01 26.66 
1.52 1.75 

149 



According to Sorensen and Art! (Chafer et a!., 2008), PC+dodecane+ I ,4-dioxane 

ternary system is a type-! system with only one liquid pair having very low miscibility 

(PC+dodecane) and two liquid pairs being miscible (PC+ 1,4-dioxane and 1,4-dioxane+ 

dodecane). In this system, the non polar phase is on an average 78 wt% dodecane while 

the polar phase contains up to 75 wt% 1,4-dioxane. From these results, a highly effective 

extraction of the polar catalyst is expected, with nonpolar products easily extracted using 

dodecane. The differences in organic partitioning arise mainly from differences in 

polarity of the semi-polar solvent used in each system. I ,4-Dioxane has a non polar 

backbone, which causes it to be soluble in nonpolar dodecane, but because 1 ,4-dioxane 

has a compact chemical structure and polar ether bonds, it is partially soluble in the C12 

nonpolar phase. The amphiphilic character of this molecule causes it to distribute 

favourably in the polar phase. Although this property may not allow for effective product 

extraction (Robbins eta!., 2007), it may be good for catalyst extraction. 

5.4.2 Thermodynamic modeling 

Liquid-liquid equilibrium (LLE) calculations were carried out by solving the 

thermodynamic criteria and mass balance equation 

2,x{ = 2,x[I =I 
i i 

(5.43) 

(5.44) 

where I and II represent equilibrium phases and x is liquid phase mole fraction and y the 

activity coefficient. Several models are available for the calculation of activity 

coefficients. In the present work UNIQUAC and UNIF AC models were used to correlate 

and interpret the experimental LLE data. The UNIQUAC and UNIF AC equations have 

found wide application for the description of liquid phase excess properties, owing to its 

sound theoretical background (Fredenslund, 1989; Robbins et a!., 2007; Fahim and 

Merchant, 1998). However, LLE data are often fitted by UNIQUAC, because it provides 

a satisfactory description for many typical mixtures and because it is relatively simple 
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with its only two adjustable parameters. Its wide range of applicability is also one of the 

advantages. A comparison is then made of the prediction accuracy of the models. 

5.4.2.1. UNIQUAC (UNiversal QUAsi-Chemical) model 

Abrams and Prausnitz (1975) extended the quasi-chemical theory of liquid mixtures to 

solutions containing molecules of different sizes. This extension is called the UNIQUAC 

theory. The UNIQUAC model consists of two parts, the combinatorial part, which 

describes the prominent entropic contribution and residual part, which is due to the 

intermolecular forces that are responsible for the enthalpy of mixing. The combinatorial 

part involves the sizes and shape of the molecules and requires only pure component 

data. The residual part depends on the intermolecular forces and involves two adjustable 

binary parameters. The UNIQUAC equation expresses the molar excess Gibbs energy as 

a sum of a combinatorial part and residual part. 

gE = gE (combinatorial) + gE (residual) (5.45) 

The combinatorial part accounts for differences in the size and shape of the molecules, 

whereas the residual contribution accounts for energetic interactions. 

The UNIQUAC activity coefficient for multicomponent systems is given by 

(5.46) 

where 

t, =G}cr,-q.)-Cr,-1) (5.47) 

z is a co-ordination number(= 10 usually), B. and¢. are the volume fraction and the 

surface area fraction of the component i, respectively and given by: 
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(5.48) 

(5.49) 

where r; is the molecular-geometric volume parameter of pure component, and q; is the 

molecular-geometric surface parameter of pure component that can be estimated by the 

Bondii's method. 

The interaction parameter is given by 

r .. =ex _Y {-G··J u T (5.50) 

where the interaction parameter au is a temperature dependent function which is assumed 

as 

(5.51) 

Thus, there are two binary parameters au and aji in the UNIQUAC model and these are 

found by fitting LLE data. 

5.4.2.2. The UNIFAC (UNIQUAC Functional Group Activity Coefficients) model 

The group contribution method is more effective in predicting the activity coefficient of 

the components compared to other methods. The effectiveness of this method depends on 

the division of solution into number of interacting groups. As the mutual behavior of 

interacting groups cannot be determined experimentally, only certain thermodynamic 

model can be used, where the interaction parameters are determined from the behavior of 
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a real system. The group contribution method, namely UNIFAC has found wide 

application in practice. 

The UNIF AC model is also based on the assumption that the contribution to the 

activity coefficient of component i can be separated into two parts, namely, combinatorial 

part (molecular size contribution) and residual part (intermolecular forces): 

lnr; =lnr( +lnr{ (5.52) 

The size of a molecule is accounted in the combinatorial part and the actual interaction 

between the groups is accounted in the residual part. The other assumption is that, the 

contribution from interaction between molecular groups can be expressed as the sum of 

the individual contributions of each solute group in the solution minus the sum of the 

individual contributions ofthe pure molecular species: 

lny{ = Ivm;{lnrm-lnr~l) 
m=l 

(5.53) 

where rm is the activity coefficient of group m in the mixture and r~> is the activity 

coefficient of group min pure compound i. rm are functions of group fraction. The group 

fraction is defined as 

(5.54) 

where Vk; is the content of the group k in molecules of component i, N the number of 

components and g is the number of various groups in the mixture. 

The combinatorial part of the UNIF AC equation can be expressed as follows: 

(5.55) 

where 
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(5.56) 

(5.57) 

q; and r; are proportional to the surface area and volume of molecule i, which were 

estimated on the basis of Rk and Qk values of the corresponding individual groups in the 

ith molecule, using the following relationship: 

where Vk; is the number of k groups in the molecule of component i. 

The residual part of the group activity coefficient was found using 

where 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

Interaction parameter \f'jk is considered to be dependent on temperature as given below 

(
-a jk J 

'I'jk =exp -y:- (5.62) 

where parameters ajk were estimated on the basis of experimental data (Magnussen et a!., 

1981). The van der Waals relative volume and surface of the components (r and q), 

needed for UNIQUAC and UNIF AC calculations, were estimated using group 
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contribution method and the required data were collected from Magnussen eta!. (1981) 

and Bondi (1964). Since the study ofLLE systems contain a maximum of7 components, 

the calculations of the residual component of the UNIQUAC and UNIFAC models 

will be too complex. Therefore, PC, dodecane and 1 ,4-dioxane molecules are considered 

to be one 'test' molecule which is called TMS. This has been assumed for simplicity. The 

estimated components surface area (r) and volume (q) are given in Table 5.12. 

Table 5.12: UNIF AC parameters rand q of the components 

Compound r q 

TMS (PC+dodecane+l,4-dioxane) 13.5629 12.790 

HRh(CO)(PPh3)3 12.210 10.778 

P(OPh)3 3.290 2.900 

1-0ctene 4.715 3.875 

Nonanal 6.620 5.576 

Propylene carbonate 3.584 3.178 

Dodecane 17.092 14.192 

1,4-Dioxane 3.185 2.640 

However, the UNIFAC and UNIQUAC parameters for the interaction between TMS 

(PC+dodecane+l,4-dioxane), HRhCO(PPh3)J, P(OPh)J and other functional groups 

studied are not available in the literature. Therefore, it has been necessary to estimate 

these parameters before the suitability of the model can be tested. These parameters for 

the systems studied have been estimated by using one-half of the experimental LLE data 

set. In fact, the alternate data points were used for parameter estimation and the rest were 

used to test the applicability of the model. The following objective function was used to 

minimize the errors in the estimation of the interaction parameters where n denotes tie­

lines k = 1 to n, phases j= 1 and 2, components i= 1 ,2 and 3, x•xp and xcal are the 

experimental and calculated liquid phase mole fraction, respectively. 

(5.63) 
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The interaction parameters of the UNIQUAC and UNIFAC model were estimated using 

different initial guess values. Different sets of the interaction parameters were obtained 

based on the different initial guess values with minimum error difference or for same 

error in the calculated values. These results indicate the importance of the initial guess, 

and the possibility of the multiple parameters sets resulting from the minimization 

procedure of the UNIQUAC model. This may be due to the inter-correlation of the 

interaction parameters. The estimated interaction parameters of UNIQUAC and UNIF AC 

equations are given in Table 5.13 and 5.14, respectively. 

Table 5.13: Binary interaction parameters ofUNIQUAC equation 

Temperature (K) i-j UNIQUAC interaction parameters (K) 
ar G·i 

298.15 K TMS-cata1yst -6934.9 468.9 

TMS-1-octene 6131.3 -467.2 

TMS-nonana1 310.9 -61.8 

TMS-tripheny1phosphite -6013.1 -203.7 

HRh(CO)(PPh3)r 1-octene -100.7 -1019.8 

HRh(CO)(PPh3) 3-nonana1 -79.6 79.5 

HRh(CO)(PPh3) 3- tripheny1phosphite 10.0 -486.4 

1-octene-nonana1 -232.7 -126.0 

1-octene-tripheny1phosphite 276.8 757.9 

Nonana1-tripheny1phosphite 12.0 2760.8 

308.15 K TMS-cata1yst -6934.9 400.3 

TMS-1-octene 6131.3 -460.6 

TMS-nonana1 335.6 -48.0 

TMS-tripheny1phosphite -6013.1 -175.8 

HRh(CO)(PPh3) 3-1-octene -311.7 -1019.8 

HRh(CO)(PPh3) 3-nonana1 -411.8 79.5 

HRh(CO)(PPh3) 3- tripheny1phosphite 10.0 -486.4 

1-octene-nonana1 -142.2 -125.5 

1-octene-tripheny1phosphite 276.8 808.4 

Nonana1-tripheny1phosphite 12.0 2760.7 
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Table 5.14: Interaction parameter a1k of the UNIF AC equation 

min CH3 C=C CHO 1MS P(OPh)3 HRh( CO )(PPh3) 3 

CH3 0 76.54 158.1 4671.05 1001.03 -2909.55 

C=C 292.3 0 -214.7 -293.92 -1141.79 1937.54 

CHO 146.1 517 0 5782.18 1333.07 1575.04 

TMS -9159.88 730.33 154.72 0 -2952.94 774.23 

P(OPh)3 845.93 6988.01 2149.36 -36.81 0 -3191.55 

HRh( CO )(PPh3) 3 -10.74 5207.96 1668.82 -566.36 -294.60 0 

Table 5.15: The average deviation (%) of the experimental data from the calculated 

weight fractions using UNIQUAC and UNIF AC model 

LLE system Temperature 

298.15 K 308.15 K 

UNIQUAC model 

TMS-1-octene 0.33 0.66 

TMS-nonanal 0.26 0.55 

TMS- HRh(CO)(PPh3)3 0.10 0.16 

TMS+ 1-octene+nonanal 0.42 0.86 

TMS+ 1-octene+nonanal+ 1.13 1.49 

triphenylphosphite+ HRh(CO)(PPh3)3 

UNIF AC model 

TMS-1-octene 0.30 1.38 

TMS-nonanal 0.81 1.95 

TMS- HRh(CO)(PPh3)3 3.31 3.30 

TMS+ 1-octene+nonanal 1.25 1.35 

TMS+ 1-octene+nonana1+ 3.05 3.09 

triphenylphosphite+ HRh(CO)(PPh3)3 
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Using the estimated interaction parameters of the models, the tie line data at different 

temperatures were predicted. The distribution coefficient of 1-octene, nonanal, 

triphenylphosphite and catalyst was also measured. The average deviation of the 

predicted results by UNIQUAC and UNIF AC methods were reported. The deviation is 

defined by the following equation: 

dev =...!._I Jx~• - x7xp J x I 00 
N i=I 

(5.64) 

where N is the number of experimental points and the superscripts 'exp' and 'cal' denote 

the experimental and calculated values, respectively. The average deviation of the 

calculated mole fractions from the experimental values for the UNIQUAC and UNIF AC 

method is shown in Table 5.15. The comparison of experimental tie line data of the 

ternary PC+ I ,4-dioxane+dodecane and TMS+ 1-octene+nonanal system with those 

calculated from the UNIQUAC and UNIFAC model is shown in Figure 5.36 to 5.39 and 

Figure 5.43 to 5.44, respectively. Both models fit the data well in the both ternary system 

at the given temperature. On the basis of the obtained deviations we conclude that both 

UNIQUAC and UNIFAC methods can be satisfactorily used to predict all the LLE 

system. However, UNIQUAC activity coefficient model leads to the best description of 

the experimental results for all LLE system. The limitation of the UNIQUAC model is 

the inability to explain the physical significance of the interaction parameters and their 

values. On the other hand, multiple set of interaction parameters is able to predict the 

LLE data equally good, hence the uniqueness of the interaction parameters was not there. 
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Figure 5.43: LLE ternary diagram for ternary (TMS+nonanal+ 1-octene) systems at 298.15 K; ( •) 

experimental tie lines data;(---) calculated (UNIQUAC) tie lines and(-) calculated (UNIFAC) 

tie lines. 

0 
TMS I 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1-0ctene 

Figure 5.44: LLE ternary diagram for ternary (TMS+nonanal+ 1-octene) systems at 308.15 K; (•) 

experimental tie lines data;(---) calculated (UNIQUAC) tie lines and(-) calculated (UNIFAC) 

tie lines. 
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While the predictions of the ternary behavior were similar for both UNIF AC and 

UNIQUAC, there was a significant difference in predicting the distribution coefficients 

as shown in Table 5.16. UNIQUAC predicted well the distribution coefficients in all LLE 

system. For the UNIFAC model, the prediction of the distribution of the HRh(CO)(PPh3)3 

catalyst deviated from the measured values by several orders of magnitude and 

consistently over predicted the concentration of 1-octene, nonanal and HRh(CO)(PPhJ)J 

catalyst in the polar phase. The deviations may be due to the limitations of the UNIF AC 

model. One deficiency is the limited availability of information on functional groups. In 

addition UNIF AC method only accounts for first-order structural differences and 

therefore, cannot distinguish between isomers or account for group-proximity effects 

within molecules. Therefore, further studies are required to better quantify the 

interactions between functionalities, as well as the role of molecular structure in 

multifunctional compounds. 

Table 5.16: Experimental and predicted distribution of 1-octene, nonanal and 

HRh(CO)(PPh1)3 in TMS+ l-octene+nonanal+P(OPh3)3+HRh(CO)(PPh3)3 system 

Dl-octene Dnonanal lJrJRh(CO)(PPhJ)J 

Expt UNJQUAC UNIFAC Expt UNIQUAC UNIFAC Expt UNIQUAC UNIFAC 

298K 

14.4 15.8 11.4 26.78 25.8 5.6 0.019 0.045 0.0036 

7.9 9.6 5.6 13.08 18.7 3.5 0.015 0.016 0.0075 

5.7 6.3 2.8 15.26 21.4 1.9 0.034 0.012 0.0014 

2.6 3.7 2.1 18.67 28.7 1.3 0.024 0.010 0.0034 

5.0 6.8 4.7 14.80 14.7 2.0 0.012 0.0097 0.0022 

308K 

8.2 9.9 6.1 24.93 29.3 5.2 0.016 0.025 0.0013 

6.9 7.9 5.8 10.71 17.8 3.2 0.013 0.038 0.0008 

3.6 4.3 2.7 12.49 16.2 1.7 0.033 0.052 0.0022 

2.0 3.8 1.7 16.80 21.9 1.2 0.022 0.012 0.0019 

1.5 2.7 0.6 9.50 13.5 1.9 0.009 0.0038 0.0021 
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5.5. Additional Validation ofUNIQUAC and UNIFAC Model 

Additional validation of the UNIQUAC and UNIFAC model was also performed to judge 

the overall model performance and provides one indication of expected model accuracy. 

The UNIFAC and UNIQUAC model were validated by comparing model predictions to 

existing LLE data obtained from the semi-batch hydroformylation reactor. It should be 

noted that the sample data used for model parameterization do not include reactor data 

Therefore the validation represents a "fair test" of the model's predictive abilities given 

the constraints of the data set. The experimental LLE data at temperature of 298 K were 

compared with those predicted using the UNIQUAC and UNIFAC model. As it is seen in 

Fignre 5.45, the theoretical predictions ofLLE data using UNIQUAC model were found 

to be within a maximum error of ±6.5 %, whereas UNIF AC predicts within ±8.2 % error. 

Modeling showed that the UNIF AC model can be used for prediction of solute 

distribution in the studied solvent systems. However, UNIQUAC model is able to 

describe the experimental data with a better accuracy over the whole range of the 

operating conditions. The predicted LLE data using UNIQUAC model was close to that 

obtained from reaction runs. The results also indicate that the UNIQUAC and UNIF AC 

model can be extended to predict the distribution data of real catalytic systems. 
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Figure 5.45: Parity plots of the model predictions of the LLE data of TMS+l­
octene+nonanal+triphenylphosphite+HRh(CO)(PPh3)3 system at temperature of 298 K. 
(A) UNIQUAC model; (B) UNIFAC model 
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CHAPTER6 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

In this work, a thermomorphic solvent (TMS) system composed of propylene carbonate 

(PC), dodecane and I ,4-dioxane were developed for investigating hydroformylation of 

two higher olefins - 1-octene and 1-dodecene, using a homogeneous catalyst consisting 

of HRh(PPh3)3(CO) and P(OPh)J. The study began with the determination of the 

solubilities of Hz and CO in pure solvent and solvent mixtures relevant to the 

hydroformylation process, particularly in the TMS-systems involving PC, dodecane and 

I ,4-dioxane. Findings indicated that PC and TMS-systems have a considerably higher 

affinity for CO and Hz compared to the biphasic solvent mixture. The measured 

solubilities were tested against empirical model and activity coefficient models based on 

the regular solution theory (RST) withY en and McKetta extension for polar solvents and 

the UNIF AC group contribution method. The logarithmic empirical model provided good 

fit to the experimental data except for Hz-PC and CO-PC systems. The theoretical 

predictions of solubility by using modified UNIF AC were found to be within a maximum 

error of± 8.5 %, whereas RST based model predicts within 11.0 % error. 

The effects of reaction condition including solvent composition, partial pressures of 

the gaseous reactants- CO and Hz, reaction temperature and catalyst loading on the yield 

and selectivity of the linear aldehydes were investigated. Experimental results show that 

the shift of equilibria between various active species with varied reaction conditions 

seems to be a determining factor in the hydroformylation reactions. Low ligand/metal 

ratios and high syngas pressure lead to the formation of unmodified rhodium carbon 

species with the characteristic of high reaction rates and low selectivities. Isomerization 

and hydroformylation were in competition in the reaction of 1-octene. Hydroformylation 

of isomerization products (2-octene, 3-octene) disturbs the initial linear aldehyde 

selectivity. This disturbance should be taken into consideration for process improvement. 

Moreover, the initial aldehyde selectivity seems to be affected by reaction conditions 

such as temperature, total pressure of syngas, partial pressure of CO and ligand to catalyst 
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ratio. No significant change was observed in the selectivity by varying the concentration 

of the substrate, olefin. In addition, it is observed that the TMS- system leads to an 

enhancement in the catalytic activity, which is also comparable with the one under 

homogeneous conditions. In the hydroformylation of 1-octene using TMS-system of 

PC/dodecane/1 ,4-dioxane, highest selectivity for n-nonanal with average activity is 

observed at temperature of 363 K, equimolar of CO/Hz, total syngas pressure of 1.5 MPa, 

ligand/catalyst ratio of 12 and TMS composition of 0.1/0.3/0.6. Although most of the 

rhodium in the TMS- system can be separated by simple phase separation, the determined 

rhodium loss (in the range of 0.6-6 ppm) is still not economically acceptable. Further 

separation process is required accompanied by the phase separation for the complete 

catalyst recovery. However, the thermomorphic solvent system proved to have potential 

as a reaction medium in practical applications of the higher olefins hydroformylation. 

Kinetic results obtained for the hydroformylation of 1-octene and 1-dodecene, are in 

good accordance with each other. The hydroformylation activity using 1-octene seems to 

be higher than 1-dodecene. The effects of concentration of the olefins, catalyst loading, 

partial pressure of CO and Hz and temperature on the rate of reaction have been studied at 

353, 363 and 373 K. The rate was found to be first order with respect to catalyst, 1-octene 

and partial pressure of Hz. The rate vs. Pco shows a typical case of substrate inhibited 

kinetics. The rate model with Hz-addition as the controlling step was found to represent 

the rate data. The rate model predicted the conversion of the two alkenes satisfactorily 

with an average absolute error of ±4.0 % only. 

Experimental liquid-liquid equilibrium (LLE) data for the ternary system 

PC+dodecane+ 1 ,4-dioxane at varying temperature and the distribution of 1-octene, 

nonanal, and HRh(CO)(PPh3)3 catalyst in this system indicate that the TMS- system may 

serve as a feasible reaction medium and could be useful in extracting products from 

systems containing recyclable amphiphilic ligands and organometallic catalysts. The 

experimental tie lines were compared to the values predicted by the UNIQUAC and 

UNIFAC models. UNIQUAC predicted well the distribution coefficients in all LLE 

systems. For the UNIF AC model, the predictions of distribution coefficient consistently 

over predicted the concentration of 1-octene, nonanal and HRh(CO)(PPh3)3 in the polar 

phase. The UNIFAC and UNIQUAC model were further validated by comparing model 
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predictions to existing LLE data obtained from the semi-batch hydroformylation reactor. 

The theoretical predictions of LLE data using UNIQUAC model were found to be within 

a maximum error of ±6.5 %, whereas UNIF AC predicts within ±8.2 % error indicating 

that both models can be extended to predict the distribution data of real catalytic systems. 

Mechanistic studies of the hydroformylation of higher olefins using Rh-phosphine 

catalyst were investigated using theoretical approaches. The ab initio computational 

methodology is found to be a reliable tool for arriving at the reaction energetics and 

pathways in the hydroformylation of higher olefins. These information together with 

experimental data proves to be effective in developing macroscopic practically useful rate 

models. Mechanism of reaction featuring oxidative addition of H2 to acylrhodium 

intermediate species as rate determining is found to describe the hydroformylation of all 

the four substrates - namely, 1-dodecene, 1-decene, 1-octene and styrene without the 

addition of free phosphine ligand. The rate model predicted the conversion of all the four 

olefins quite satisfactorily with an average deviation of 7.6 % and maximum deviation of 

13 %. As for the potential energy surface fitting, the current approach is still limited to 

small molecules. In this study, although the PPh3 was used in experiments, we had to use 

PH3 due to the computational limitations. This limitation comes from the lack of efficient 

representation of molecules, the complexity in computing the primary and secondary 

invariants, and the cost in obtaining the high quality ab initio energies. Considering the 

fast development of the computer techniques, it is still very promising to construct highly 

accurate potential energy surfaces for large molecule systems. 

6.2 Recommendations for Future Work 

The capabilities of computational chemistry have expanded rapidly over the last 3 - 4 

decades, as hardware has become orders of magnitude more powerful and software has 

become more efficient and sophisticated. In this study, the kinetic and equilibrium 

parameters of the kinetic models were estimated by nonlinear least square regression of 

experimental data. In future work it will be interesting to determine the kinetic and 

equilibrium parameters in the mechanistic model as well as the activation energy from 

the first-principles calculations, in combination with statistical mechanics, although some 

additional assumptions may be required to derive the pre-exponential factors. In order to 
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evaluate the accuracy of this approach, the predictions of the first-principles based kinetic 

model should be validated by comparison with experimental data for the 

hydroformylation of higher olefins. Similarly, the approach should also apply to the 

hydroformylation of higher olefins using Rh/P(OPh)3 catalyst in TMS- system. 

According to Matsubara eta!., (1997), the coordinatively unsaturated intermediates in the 

catalytic cycle are strongly coordinated and stabilized by a solvent olefin molecule, while 

the transition states are not solvated. However, we believe that higher olefin coordination 

to coordinatively unsaturated intermediates is less favourable kinetically because of the 

size of the carbon chain which would sterically inhibit an olefin from solvating the 

intermediate. Therefore, the role of solvation in hydroformylation of higher olefins 

should be assessed and compared with lower olefins. 

Developing a TMS-system with an efficient catalyst recycling capacity for 

hydroformylation of higher olefins should be a realistic possibility. The simple and 

efficient catalyst recycling concept gives the TMS-system the unique feature to perform 

hydroformylation reaction at a lower operating cost. An important aspect for industrial 

application is the complete recovery of the catalyst. Rhodium loss by organic phase after 

phase separation is in a range of 0.6-6 ppm in the nonpolar phase, therefore additional 

separation step is necessary for the total recovery of the expensive catalyst. Since basic 

task of separating catalyst from product has already be achieved by the phase separation 

additional membrane processes can enhance further work-up of the homogeneous 

catalyst. The Rh-phosphite catalyst can be separated using a solvent resistant 

nanofiltration (SRNF) membrane or a rugged inorganic membrane. For example, use of 

asymmetric polyamide membranes have been investigated in the nanofiltration of phase 

transfer catalysts and Wilkinson catalyst (chlorotris(triphenylphosphine)-rhodium(I), 

from reaction mixtures (Luthra eta!., 2002; Scarpello et a!., 2002) 
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Appendix A 

Key Structures Involved in the Catalytic Cycle of Hydroformylation of 1-Decene 

and Selected Parameters 
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Appendix B 

Key Structures Involved in the Catalytic Cycle of Hydroformylation of 1-Dodecene 

and Selected Parameters 
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AppendixC 

Key Structures Involved in the Catalytic Cycle of Hydroformylation of Styrene and 

Selected Parameters 
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AppendixD 

Kinetic Data for Hydroformylation of Higher Alkenes in Homogeneous System 

Table D-1: Kinetic data for hydroformylation of 1-dodecene at temperature of 323 K 

(Bhanage et al., 1997). 

Exp. Rate H, co 1-dodecene catalyst 

(kmohn-38 1
) (kmobn-3

) (kmo1m'3) (kmohn-3
) (kmohn-3

) 

0 0.00000 0.2248 0.36 0.0020 
7.50E-06 0.02145 0.2248 0.36 0.0020 

1.50E-05 0.04538 0.2248 0.36 0.0020 
1.80E-05 0.05611 0.2248 0.36 0.0020 

0 0.08977 0.0000 0.36 0.0020 
2.20E-04 0.08977 0.0066 0.36 0.0020 
1.60E-04 0.08977 0.0083 0.36 0.0020 
9.40E-05 0.08977 0.0140 0.36 0.0020 
6.00E-05 0.08977 0.0273 0.36 0.0020 
l.OOE-05 0.08977 0.1116 0.36 0.0020 
5.00E-06 0.08977 0.1405 0.36 0.0020 

0 0.08977 0.2248 0 0.0020 
1.50E-05 0.08977 0.2248 0.37 0.0020 
1.80E-05 0.08977 0.2248 0.75 0.0020 
2.00E-05 0.08977 0.2248 0.95 0.0020 
2.30E-05 0.08977 0.2248 1.45 0.0020 
2.50E-05 0.08977 0.2248 2.18 0.0020 

0 0.08977 0.2248 0.36 0.0000 
l.OOE-05 0.08977 0.2248 0.36 0.0010 
1.80E-05 0.08977 0.2248 0.36 0.0020 
3.00E-05 0.08977 0.2248 0.36 0.0040 
6.00E-05 0.08977 0.2248 0.36 0.0080 
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Table D-2: Kinetic data for hydroforrny1ation of 1-dodecene at temperature of 333 K 

(Bhanage et al., 1997). 

29 3 119 

Exp. Rate H, co 1-dodecene catalyst 

(kmoln13s1
) (kmolm.3) (kmo1m.3) (kmolm.3) (kmo1m-3

) 

0 0.00000 0.2286 0.3600 0.0020 
3.00E-05 0.02304 0.2286 0.3600 0.0020 
6.30E-05 0.04693 0.2286 0.3600 0.0020 
7.30E-05 0.05802 0.2286 0.3600 0.0020 
O.OOE+OO 0.09283 0.0000 0.3600 0.0020 
7.50E-04 0.09283 0.0059 0.3600 0.0020 
6.00E-04 0.09283 0.0084 0.3600 0.0020 
4.00E-04 0.09283 0.0143 0.3600 0.0020 
2.00E-04 0.09283 0.0277 0.3600 0.0020 
l.OOE-04 0.09283 0.0588 0.3600 0.0020 
6.00E-05 0.09283 0.1134 0.3600 0.0020 
3.50E-05 0.09283 0.1697 0.3600 0.0020 
O.OOE+OO 0.09283 0.2286 0.0000 0.0020 
4.40E-05 0.09283 0.2286 0.1800 0.0020 
6.30E-05 0.09283 0.2286 0.3800 0.0020 
8.10E-05 0.09283 0.2286 0.7000 0.0020 
9.20E-05 0.09283 0.2286 1.4500 0.0020 
9.80E-05 0.09283 0.2286 2.1800 0.0020 
O.OOE+OO 0.09283 0.2286 0.3600 0.0000 
3.50E-05 0.09283 0.2286 0.3600 0.0010 
6.00E-05 0.09283 0.2286 0.3600 0.0020 
1.20E-04 0.09283 0.2286 0.3600 0.0040 
2.30E-04 0.09283 0.2286 0.3600 0.0080 
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Table D-3: Kinetic data for hydroformylation of 1-dodecene at temperature of 343 K 

(Bhanage et al., 1997). 

28 I 117 

Exp. Rate H, co 1-dodecene catalyst 

(kmoln13s1
) (kmolm·3) (kmolm-3) (kmolm-3) (kmo1m-3) 

0 0.00000 0.2325 0.3600 0.0020 
1.03E-04 0.02402 0.2325 0.3600 0.0020 
1.99E-04 0.04893 0.2325 0.3600 0.0020 
2.30E-04 0.06050 0.2325 0.3600 0.0020 
O.OOE+OO 0.09680 0.0000 0.3600 0.0020 
1.60E-03 0.09680 0.0085 0.3600 0.0020 
1.13E-03 0.09680 0.0145 0.3600 0.0020 
6.25E-04 0.09680 0.0282 0.3600 0.0020 
1.88E-04 0.09680 0.1154 0.3600 0.0020 
1.25E-04 0.09680 0.1726 0.3600 0.0020 
O.OOE+OO 0.09680 0.2325 0.0000 0.0020 
1.48E-04 0.09680 0.2325 0.1800 0.0020 
1.90E-04 0.09680 0.2325 0.3800 0.0020 
2.20E-04 0.09680 0.2325 0.7000 0.0020 
2.50E-04 0.09680 0.2325 2.1500 0.0020 
O.OOE+OO 0.09680 0.2325 0.3600 0.0000 
l.OOE-04 0.09680 0.2325 0.3600 0.0010 
2.00E-04 0.09680 0.2325 0.3600 0.0020 
3.80E-04 0.09680 0.2325 0.3600 0.0040 
7.30E-04 0.09680 0.2325 0.3600 0.0080 
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Table D-4: Kinetic data for hydroformylation of styrene at temperature of 333 K (Nair et 

al., 1999). 

K H 29 3 II 9 

Exp. Rate H, co styrene catalyst 

(kmolm"3s 1
\ (kmolm.3) lkmolm.3) (kmolm.3) (kmolm"3

) 

0 0.00000 0.1714 3.4500 0.0010 
1.90E-05 0.03413 0.1714 3.4500 0.0010 
4.20E-05 0.06826 0.1714 3.4500 0.0010 
8.40E-05 0.13652 0.1714 3.4500 0.0010 

0 0.06962 0.0000 3.4500 0.0010 
9.73E-05 0.06962 0.0045 3.4500 0.0010 
8.94E-05 0.06962 0.0165 3.4500 0.0010 
7.50E-05 0.06962 0.0420 3.4500 0.0010 
6.84E-05 0.06962 0.0588 3.4500 0.0010 
5.92E-05 0.06962 0.0924 3.4500 0.0010 
5.00E-05 0.06962 0.1261 3.4500 0.0010 
4.21E-05 0.06962 0.1739 3.4500 0.0010 
3.16E-05 0.06962 0.2521 3.4500 0.0010 
2.50E-05 0.06962 0.3504 3.4500 0.0010 
O.OOE+OO 0.06962 0.1714 0.0000 0.0010 
4.05E-05 0.06962 0.1714 0.9000 0.0010 
4.17E-05 0.06962 0.1714 1.7000 0.0010 
4.28E-05 0.06962 0.1714 3.4000 0.0010 
4.40E-05 0.06962 0.1714 6.8700 0.0010 
O.OOE+OO 0.06962 0.1714 3.4500 0.0000 
5.25E-06 0.06962 0.1714 3.4500 0.0001 
l.IOE-05 0.06962 0.1714 3.4500 0.0003 
2.31E-05 0.06962 0.1714 3.4500 0.0005 
4.41E-05 0.06962 0.1714 3.4500 0.0010 
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Table D-5: Kinetic data for hydroformylation of styrene at temperature of 343 K (Nair et 

al., 1999). 

28 I 117 

Exp. Rate H, co styrene catalyst 

(kmolm.3s1
) (kmolm.3) (kmolm.3) (kmolm.3) (kmolm.3) 

0 0.00000 0.1744 3.4500 0.0010 
4.20E-05 0.03559 0.1744 3.4500 0.0010 
9.03E-05 0.07117 0.1744 3.4500 0.0010 
1.75E-04 0.14235 0.1744 3.4500 0.0010 
O.OOE+OO 0.07260 0.0000 3.4500 0.0010 
1.89E-04 0.07260 0.0046 3.4500 0.0010 
1.76E-04 0.07260 0.0168 3.4500 0.0010 
1.51E-04 0.07260 0.0427 3.4500 0.0010 
1.37E-04 0.07260 0.0598 3.4500 0.0010 
1.26E-04 0.07260 0.0872 3.4500 0.0010 
l.OIE-04 0.07260 0.1282 3.4500 0.0010 
8.94E-05 0.07260 0.1769 3.4500 0.0010 
6.71E-05 0.07260 0.2521 3.4500 0.0010 
5.52E-05 0.07260 0.3504 3.4500 0.0010 
O.OOE+OO 0.07260 0.1744 0.0000 0.0010 
8.89E-05 0.07260 0.1744 0.9000 0.0010 
9.00E-05 0.07260 0.1744 1.7000 0.0010 
9.05E-05 0.07260 0.1744 3.4000 0.0010 
9.22E-05 0.07260 0.1744 6.8700 0.0010 

0 0.07260 0.1744 3.4500 0.0000 
1.16E-05 0.07260 0.1744 3.4500 0.0001 
2.47E-05 0.07260 0.1744 3.4500 0.0003 
4.78E-05 0.07260 0.1744 3.4500 0.0005 
9.08E-05 0.07260 0.1744 3.4500 0.0010 
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Table D-6: Kinetic data for hydroformylation of styrene at temperature of 353 K (Nair et 

al., 1999). 

26 8 II 53 

Exp. Rate H, co styrene catalyst 

I (kmoim·\·1
) (kmolm.3) (kmolm.3) (kmolm·3) (kmolm.3) 

0 0.00000 0.1769 3.4500 0.0010 
9.14E-05 0.03731 0.1769 3.4500 0.0010 
2.00E-04 0.07463 0.1769 3.4500 0.0010 
3.84E-04 0.14925 0.1769 3.4500 0.0010 
O.OOE+OO 0.07612 0.0000 3.4500 0.0010 
4.39E-04 0.07612 0.0047 3.4500 0.0010 
4.05E-04 0.07612 0.0170 3.4500 0.0010 
3.45E-04 0.07612 0.0434 3.4500 0.0010 
3.25E-04 0.07612 0.0607 3.4500 0.0010 
2.75E-04 0.07612 0.0885 3.4500 0.0010 
2.34E-04 0.07612 0.1301 3.4500 0.0010 
1.97E-04 0.07612 0.1795 3.4500 0.0010 
1.63E-04 0.07612 0.2602 3.4500 0.0010 
1.25E-04 0.07612 0.3617 3.4500 0.0010 
O.OOE+OO 0.07612 0.1769 0.0000 0.0010 
1.97E-04 0.07612 0.1769 0.9000 0.0010 
2.00E-04 0.07612 0.1769 1.7000 0.0010 
1.97E-04 0.07612 0.1769 3.4000 0.0010 
2.01E-04 0.07612 0.1769 6.8700 0.0010 

0 0.07612 0.1769 3.4500 0.0000 
2.52E-05 0.07612 0.1769 3.4500 0.0001 
5.04E-05 0.07612 0.1769 3.4500 0.0003 
1.04E-04 0.07612 0.1769 3.4500 0.0005 
1.96E-04 0.07612 0.1769 3.4500 0.0010 
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Table D-7: Kinetic data for hydrofonnylation of 1-decene at temperature of 323 K 

(Divekar et al., 1993). 

Exp. Rate H, co 1-decene catalyst 

(kmolm"3s"1
) (kmolm"3

) (kmolm-3
) (kmolm-3

) (kmolm-3
) 

0 0.00000 0.1000 0.5280 0.0010 
9.57E-06 0.02010 0.1000 0.5280 0.0010 
2.97E-05 0.04053 0.1000 0.5280 0.0010 
8.42E-05 0.08106 0.1000 0.5280 0.0010 

0 0.04080 0.0000 0.5280 0.0010 
2.08E-04 0.04080 0.0087 0.5280 0.0010 
1.84E-04 0.04080 0.0202 0.5280 0.0010 
1.06E-04 0.04080 0.0404 0.5280 0.0010 
6.27E-05 0.04080 0.0606 0.5280 0.0010 
2.74E-05 0.04080 0.1029 0.5280 0.0010 
1.57E-05 0.04080 0.1538 0.5280 0.0010 
1.18E-05 0.04080 0.2038 0.5280 0.0010 
O.OOE+OO 0.04080 0.1000 0.0000 0.0010 
1.53E-05 0.04080 0.1000 0.2683 0.0010 
2.58E-05 0.04080 0.1000 0.5244 0.0010 
3.71 E-05 0.04080 0.1000 0.7927 0.0010 
5.81E-05 0.04080 0.1000 1.3170 0.0010 
9.19E-05 0.04080 0.1000 2.6460 0.0010 

Table D-8: Kinetic data for hydrofonnylation of 1-decene at temperature of 333 K 

(Divekar et al., 1993). 

Exp. Rate H, co 1-decene catalyst 

(kmolm-38 1
) (kmolm"3

) (kmolm-3
) (kmolm-3

) (kmolm-3
) 

0 0.00000 0.1076 0.5280 0.0010 
2.58E-05 0.02200 0.1076 0.5280 0.0010 
7.27E-05 0.04407 0.1076 0.5280 0.0010 
2.28E-04 0.08890 0.1076 0.5280 0.0010 
O.OOE+OO 0.04470 0.0000 0.5280 0.0010 
3.61E-04 0.04470 0.0106 0.5280 0.0010 
3.72E-04 0.04470 0.0231 0.5280 0.0010 
2.12E-04 0.04470 0.0442 0.5280 0.0010 
1.49E-04 0.04470 0.0663 0.5280 0.0010 
7.45E-05 0.04470 0.1096 0.5280 0.0010 
3.92E-05 0.04470 0.1634 0.5280 0.0010 
2.74E-05 0.04470 0.2192 0.5280 0.0010 
O.OOE+OO 0.04470 0.1076 0.0000 0.0010 
4.60E-05 0.04470 0.1076 0.2805 0.0010 
7.34E-05 0.04470 0.1076 0.5366 0.0010 
9.52E-05 0.04470 0.1076 0.7927 0.0010 
1.36E-04 0.04470 0.1076 1.3170 0.0010 
1.81 E-04 0.04470 0.1076 2.6340 0.0010 
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Table D-9: Kinetic data for hydroformylation of decene at temperature of 343 K 

(Divekar et al., 1993). 

Exp. Rate H, co 1-decene catalyst 

(kmolm·'s1
) (kmolm.3

) (kmolm.3
) (kmolm-3

) (kmolm-3
) 

0 0.00000 0.1148 0.5280 0.0010 
5.36E-05 0.02322 0.1148 0.5280 0.0010 
1.34E-04 0.04840 0.1148 0.5280 0.0010 
3.79E-04 0.09719 0.1148 0.5280 0.0010 
O.OOE+OO 0.04470 0.0000 0.5280 0.0010 
6.98E-04 0.04470 0.0125 0.5280 0.0010 
6.74E-04 0.04470 0.0240 0.5280 0.0010 
4.04E-04 0.04470 0.0471 0.5280 0.0010 
2.67E-04 0.04470 0.0702 0.5280 0.0010 
1.39E-04 0.04470 0.1163 0.5280 0.0010 
7.25E-05 0.04470 0.1760 0.5280 0.0010 
4.51E-05 0.04470 0.2346 0.5280 0.0010 
O.OOE+OO 0.04470 0.1148 0.0000 0.0010 
8.31E-05 0.04470 0.1148 0.2439 0.0010 
1.36E-04 0.04470 0.1148 0.5244 0.0010 
1.69E-04 0.04470 0.1148 0.7805 0.0010 
2.11 E-04 0.04470 0.1148 1.3170 0.0010 
2.53E-04 0.04470 0.1148 2.6460 0.0010 

Table D-10: Kinetic data for hydroformylation of 1-octene at temperature of 323 K 

(Palo and Erkey, 1999). 

Exp. Rate H, (kmolm co 1-octene catalyst 
(kmolm-3s 1

) ') (kmolm-3) (kmolm-3) (kmolm-3) 

O.OOE+OO 0.000 1.100 0.960 0.001 
1.50E-04 1.100 1.100 0.960 0.001 
2.40E-04 2.100 1.100 0.960 0.001 
2.70E-04 2.600 1.100 0.960 0.001 

0 1.000 0.000 0.960 0.001 
1.20E-04 1.000 1.100 0.960 0.001 
8.00E-05 1.000 1.600 0.960 0.001 
5.70E-05 1.000 2.200 0.960 0.001 
O.OOE+OO 1.100 1.100 0.000 0.001 
8.33E-05 1.100 1.100 0.410 0.001 
1.05E-04 1.100 1.100 0.680 0.001 
1.20E-04 1.100 1.100 0.950 0.001 
O.OOE+OO 1.100 1.100 0.960 0.000 
1.2E-04 1.100 1.100 0.960 0.001 

2.30E-04 1.100 1.100 0.960 0.001 
4.90E-04 1.100 1.100 0.960 0.003 
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AppendixE 

Estimated Rate Parameters 

Table E-1: Estimated rate parameters of Model M2 with 95% confidence limits. 

Substrate T k K' K' K' K' K' SEE E, 
I 2 3 4 5 

(kJ mor1
) (K) 

ModelM2 
1-dodecene 323 2.6x104 1.4x1Q4 2.5x1Q5 5.9x105 J.9X 104 9.0x105 25.8 88.3 

*3.4x104 

cl2 333 5.9x104 J.Ox1Q4 !.Ox 105 3.7x1Q5 J.5x104 5.0x1Q5 *57.1' 
*5.8x104 

343 ll.Ox104 0.77x1Q o.52x1o' 2.3x1Q5 J.2x104 3.0x105 

*9.9x104 4 

1-decene 323 !.Ox 104 7.0x103 z.ox 105 4.0x104 60.0 9.0x104 24.3 49.4 
*1.1x 1013 

Cw 333 3.0x104 8.0x103 J.3x10' 5.7x1Q4 900 J.2x 105 *49.0b 
*1.4x10 13 

343 5.0x104 2.5x103 8.Qx104 6.9x 104 J.2x103 J.4x 105 

*2.8x1013 

styrene 333 l.lx104 11.0 3.7x101 4.6 Ux105 SAx 105 9.7 74.5 
*1.6 

c, 343 J.Sx104 9.0 9.4X1Q1 0.50 s.sx104 6.0x105 *68.8' 
*3.1 

353 2.9x104 5.0 J.4X 102 0.050 6.0x104 4.8x105 

*6.6 
1-octene 323 3.2x105 1.4x 104 2.5x1Q5 5.9x105 J.9x104 9.0x1Q5 7.0 

c, *0.10 

ModelM3 Non-linear Arrhenius constant and relatively high <t>min 

(kmol, m3
, s units) 

*Activation energy and rate constant value reported in open literature: 
'Bhanage et al. ( 1997) 
bDivekar eta!. (1993) 
'Nair et a!.( 1999) 
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Table E-2: Estimated rate parameters of Model A2 with 95% confidence limits. 

Substrate T k K' K' K' K' K' SEE Ea 
(K) 

1 2 3 4 5 (kJ mor') 

ModelA3 7.0xlO 
1-octene 353 l.lxl03 5.3xl01 2.4xl01 2.4x 101 -4.3xi02 15.3 36.8 

Cw 363 2.0xl03 3.8xl02 -I.6xl02 l.lxl03 

3.4xl01 3.4xl01 

373 3.Ix!03 2.5xJ01 5.4xl02 1.2x 102 -8.5xl01 6.8xJ01 

1-dodecene 353 l.lx 103 5.7xi02 -l.lxJ02 -1.4xJ02 -4.IxJ03 3.0xi02 7.4 51.0 
cl2 363 I.8x 103 ].Oxi03 -I.2xl02 -1.4xi02 -4.lxi03 I.9xl02 

373 2.9xl03 4.9xl02 -5.3 x!02 -1.5xi02 -4.3xl03 6.6xi02 

ModelA2 Non-linear Arrhenius constant and relatively high <Pmin 

(kmol, m3
, s units) 
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AppendixF 

Derivation of the Rate Equation 

Rate equation is a differential equation, and it can be integrated in order to obtain an 

integrated rate equation that links concentrations of reactant with time. In a semi-batch 

reactor, the concentration of 1-dodecene varies as a function of time and hence, it was 

necessary to check the validity of the rate equation over the entire range of conditions 

involved in a batch reactor operated at higher conversions. The data was developed to 

observe the variation in the concentrations of 1-dodecene as a function of time, at 

constant Pco and PH2. Using model M1 (equation 3.14), the variation of the concentration 

of 1-dodecene can be expressed by the following mass balance equations for the kinetic 

regime: 

-d[ dodecene] k[ H 2 ] [CO] [catalyst] [ dodecene J 
dt (I+ Kco[C0] 2 )(l + Kdodecm[dodecene]) F-1 

with initial conditions, t = 0 and [ dodecene] = [ dodecene ]0 

For constant Hz and CO pressure conditions, the following equation for the variation of 

1-dodecene concentration with time can be derived, 

[dodecene]0 k[H2 ][CO][catalyst] F-2 
In + K dodecene ([ dodecene] 0 - [ dodecene J t ) = 2 [dodecenelt l+Kc

0
[CO] 

In deriving the equation, it was assumed that the change in reactant and products 

concentration do not affect the solubility of Hz and CO significantly. Using Equation (B-

2), the concentration of 1-dodecene, as a function of time was predicted for different 

temperatures and compared with literature data (Bhanage et a!., 1997). 
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AppendixG 

Table G-1: Solubility of CO at different pressure and temperature (x2), calculated solubility (X calc) and standard error of estimation 

(SEE) from the RST -based model. 

T- 298.15 K T-313.15K T- 323.15 K 
P(kPa) x, X calc SEE ("lo) P (kPa) x, X calc SEE(%) P(kPa) x, X calc SEE(%) 

Propylene carbonate 
131 0.00155 0.00150 3.22 122 0.00156 0.00152 2.56 128 0.00157 0.00155 1.27 
333 0.0048 0.0043 10.42 370 0.0049 0.0045 8.16 332 0.0049 0.0048 2.04 
535 0.0077 0.0079 2.62 613 0.0078 0.0082 5.13 523 0.0078 0.0084 7.69 
767 0.0106 0.0101 4.76 865 0.0107 0.0110 2.80 755 0.0109 0.0111 1.83 
995 0.0134 0.0129 3.73 1082 0.0136 0.0132 2.94 997 0.0138 0.0135 2.17 
1115 0.0160 0.0165 3.12 1315 0.0162 0.0164 1.23 1361 0.0163 0.0167 2.45 
1496 0.0183 0.0179 2.19 1489 0.0184 0.0187 1.63 1533 0.0184 0.0189 2.72 

Biphasic PC+dodecane 
136 0.00145 0.00152 4.83 117 0.00150 0.00155 3.33 156 0.00155 0.00157 1.29 
282 0.0042 0.0042 0.00 399 0.0043 0.0044 2.33 399 0.0045 0.0047 4.44 
574 0.0074 0.0077 4.05 576 0.0075 0.0080 6.67 576 0.0077 0.0082 6.49 
809 0.0110 0.0092 16.36 821 0.0112 0.0094 16.07 821 0.0113 0.0096 15.04 
1004 0.0135 0.0133 1.48 1005 0.0136 0.0136 0.00 1015 0.0138 0.0138 0.00 
1245 0.0163 0.0165 1.23 1355 0.0165 0.0168 1.82 1350 0.0165 0.0170 3.03 
1515 0.0180 0.0176 2.22 1523 0.0182 0.0178 2.20 1535 0.0183 0.0181 1.09 

TMS-systems PC+dodecane+ 1 ,4-dioxane 
125 0.00169 0.00165 2.37 120 0.00172 0.00167 2.91 138 0.00175 0.00171 2.29 
321 0.0050 0.0052 4.00 368 0.0053 0.0054 1.89 388 0.0056 0.0056 0.00 
610 0.0093 0.0089 4.30 595 0.0100 0.0092 8.00 625 0.0107 0.0095 11.21 
803 0.0125 0.0127 1.60 885 0.0130 0.0129 0.77 890 0.0135 0.0132 2.22 
1005 0.0147 0.0139 5.44 995 0.0149 0.0142 4.70 987 0.0150 0.0145 3.33 
1355 0.0173 0.0174 0.58 1116 0.0174 0.0176 1.15 1126 0.0178 0.0179 0.56 
1523 0.0198 0.0205 3.54 1515 0.0200 0.0207 3.50 1510 0.0205 0.0209 1.95 
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Table Gl (continue) 

r~ 333.15 K r~ 343.15 K 
P(kPa) x, Xcalc SEE(%) P(kPa) x, X calc SEE(%) 

Propylene carbonate 
131 0.00157 0.00157 0.00 145 0.00158 0.00159 0.63 
399 0.0052 0.0050 3.85 328 0.0050 0.0052 4.00 
622 0.0079 0.0085 7.59 576 0.0080 0.0087 8.75 
875 0.0109 0.0112 2.75 850 0.0111 0.0113 1.80 
1056 0.0139 0.0137 1.44 999 0.0140 0.0139 0.71 
1216 0.0165 0.0169 2.42 1189 0.0165 0.0171 3.64 
1495 0.0186 0.0190 2.15 1545 0.0187 0.0192 2.67 

Bipbasic PC+dodecane 
146 0.00158 0.00159 0.63 126 0.00160 0.00161 0.63 
362 0.0050 0.0049 2.00 378 0.0051 0.0051 0.00 
665 0.0078 0.0084 7.69 643 0.0081 0.0086 6.17 
788 0.0113 0.0098 13.27 885 0.0116 0.0100 13.79 
1006 0.0138 0.0140 1.45 1182 0.0144 0.0142 1.39 
1301 0.0165 0.0171 3.64 1315 0.0166 0.0173 4.22 
1503 0.0185 0.0183 1.08 1495 0.0187 0.0185 1.07 

TMS-systems PC+dodecane+ I ,4-dioxane 
122 0.00178 0.00174 2.25 135 0.00182 0.00176 3.30 
376 0.0055 0.0058 5.45 339 0.0056 0.0060 7.14 
576 0.0109 0.0098 10.09 592 0.0113 0.0100 11.50 
799 0.0133 0.0134 0.75 811 0.0140 0.0137 2.14 
995 0.0153 0.0147 3.92 1015 0.0155 0.0150 3.23 
1255 0.0181 0.0181 0.00 1242 0.0183 0.0183 0.00 
1496 0.0207 0.0211 1.93 1519 0.0210 0.0213 1.43 
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Table G-2: Solubility of H2 at different pressure and temperature (x2), calculated solubility (xcaic) and standard error of estimation 

(SEE) from the RST-based model. 

T- 298.15 K T~ 313.15 K T~ 323.15 K 
P(kPa) x, X calc SEE_(%) P(kPa) x, X calc SEE(%) P(kPa) x, X calc SEE(%) 

Propylene carbonate 
131 0.00135 0.00132 2.22 122 0.00138 0.00135 2.17 128 0.00139 0.00137 1.44 
333 0.0048 0.0047 2.08 370 0.0049 0.0050 2.04 332 0.0051 0.0053 3.92 
535 0.0075 0.0080 6.67 613 0.0076 0.0082 7.89 523 0.0077 0.0084 9.09 
767 0.0101 O.Dl05 3.96 865 0.0102 0.0107 4.90 755 0.0102 0.0109 6.86 
995 0.0124 0.0128 3.23 1082 0.0126 0.0129 2.38 997 0.0127 0.0130 2.36 
1215 0.0145 0.0149 2.76 1315 0.0147 0.0150 2.04 !361 0.0148 0.0153 3.38 
1496 0.0178 0.0175 1.69 1489 0.0179 0.0178 0.56 !533 0.0180 0.0181 0.56 

Biphasic PC+dodecane 
136 0.00092 0.00096 4.35 117 0.00098 0.00097 1.02 !56 0.00104 0.00099 4.81 
282 0.0022 0.0026 9.09 399 0.0024 0.0027 12.50 399 0.0027 0.0029 7.41 
574 0.0044 0.0046 4.55 576 0.0046 0.0049 6.52 576 0.0047 0.0051 8.51 
809 0.0072 0.0070 2.78 821 0.0073 0.0074 1.37 821 0.0075 0.0077 2.67 
1004 0.0093 0.0089 4.30 1005 0.0095 0.0094 1.05 !015 0.0098 0.0097 1.02 
1245 0.0103 0.0106 2.91 1355 0.0104 0.0107 2.88 !350 0.0106 0.0109 2.83 
1515 0.0126 0.0129 2.38 1523 0.0128 0.0130 1.56 !535 0.0129 0.0132 2.33 

TMS-systems PC+dodecane+ I ,4-dioxane 
125 0.00115 0.00118 2.61 120 0.00122 0.00120 1.64 !38 0.00126 0.00124 1.59 
321 0.0032 0.0029 9.38 368 0.0033 0.0033 0.00 388 0.0036 0.0035 2.78 
610 0.0059 0.0055 6.78 595 0.0060 0.0057 5.00 625 0.0062 0.0059 4.84 
803 0.0097 0.0095 2.06 885 0.0099 0.0097 2.02 890 0.0105 0.0101 3.81 
1005 0.0119 0.0122 2.52 995 0.0121 0.0123 1.65 987 0.0122 0.0126 3.28 
1355 0.0154 0.0158 2.60 1116 0.0155 0.0159 2.58 1126 0.0157 0.0161 2.55 
1523 0.0166 0.0167 0.60 1515 0.0168 0.0169 0.60 1510 0.0169 0.0173 2.37 
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Table G-2 (Continue) 

T= 333.15 K T= 343.15 K 
P(kPa) x, X calc SEE(%) P(kPa) x, X calc SEE(%) 

Propylene carbonate 
131 0.00140 0.00145 3.57 145 0.00140 0.00148 -5.71 
399 0.0051 0.0055 7.84 328 0.0051 0.0057 -11.76 
622 0.0077 0.0086 11.69 576 0.0082 0.0089 -8.54 
875 0.0103 0.0110 6.80 850 0.0103 0.0112 -8.74 
1056 0.0127 0.0133 4.72 999 0.0127 0.0135 -6.30 
1216 0.0148 0.0156 5.41 1189 0.0148 0.0158 -6.76 
1495 0.0181 0.0185 2.21 1545 0.0181 0.0188 -3.87 

Biphasic PC+dodecane 
146 0.00109 0.00103 5.50 126 0.00115 0.00108 6.09 
362 0.0028 0.0032 14.29 378 0.0031 0.0035 12.90 
665 0.0049 0.0053 8.16 643 0.0052 0.0056 7.69 
788 0.0078 0.0079 1.28 885 0.0080 0.0083 3.75 
1006 0.0099 0.0102 3.03 1182 0.0102 0.0106 3.92 
1301 0.0106 0.0115 8.49 1315 0.0109 0.0117 7.34 
1503 0.0129 0.0136 5.43 1495 0.0131 0.0139 6.11 

TMS-systems PC+dodecane+ I ,4-dioxane 
122 0.00129 0.00127 1.55 135 0.00133 0.00136 2.26 
376 0.0037 0.0038 2.70 339 0.0039 0.0043 10.26 
576 0.0062 0.0064 3.23 592 0.0065 0.0067 3.08 
799 0.0104 0.0108 3.85 811 O.Dl05 0.0112 6.67 
995 0.0124 0.0130 4.84 1015 0.0125 0.0133 6.40 
1255 0.0158 0.0165 4.43 1242 0.0160 0.0166 3.75 
1496 0.0169 0.0178 5.33 1519 0.0172 0.0182 5.81 
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Table G-3: Solubility of CO at different pressure and temperature (x2), calculated solubility (xcalc) and standard error of estimation 

(SEE) from the modified UNIF AC model. 

T- 298.15 K T-313.15K T- 323.15 K 
P(kPa) x, X calc SEE(%) P(kPa) x, Xcalc SEE ('Yo) P(kPa) x, Xcalc SEE(%) 

Propylene carbonate 
131 0.00155 0.00145 6.45 122 0.00156 0.00158 1.28 128 0.00157 0.00160 1.91 
333 0.0048 0.0050 4.17 370 0.0049 0.0052 6.12 332 0.0049 0.0054 10.20 
535 0.0077 0.0080 3.90 613 0.0078 0.0083 6.41 523 0.0078 0.0085 8.97 
767 0.0106 0.0109 2.83 865 0.0107 0.0112 4.67 755 0.0109 0.0114 4.59 
995 0.0134 0.0130 2.99 1082 0.0136 0.0135 0.74 997 0.0138 0.0137 0.72 
1115 0.0160 0.0155 3.13 1315 0.0162 0.0158 2.47 1361 0.0163 0.0160 1.84 
1496 0.0183 0.0188 2.73 1489 0.0184 0.0190 3.26 1533 0.0184 0.0192 4.35 

Biphasic PC+dodecane 
136 0.00145 0.00149 2.76 117 0.00150 0.00153 2.00 !56 0.00155 0.00156 0.65 
282 0.00423 0.0045 6.38 399 0.0043 0.0048 11.63 399 0.0045 0.0052 15.56 
574 0.0074 0.0078 5.41 576 0.0075 0.0081 8.00 576 0.0077 0.0084 9.09 
809 O.Ql 10 0.0115 4.55 821 0.0112 0.0118 5.36 821 0.0113 0.0121 7.08 
1004 0.0135 0.0140 3.70 1005 0.0136 0.0145 6.62 1015 0.0138 0.0147 6.52 
1245 0.0163 0.0168 3.07 1355 0.0165 0.0172 4.24 1350 0.0165 0.0175 6.06 
1515 O.Ql80 0.0175 2.78 1523 0.0182 0.0185 1.65 1535 0.0183 0.0187 2.19 

TMS-systems PC+dodecane+ I ,4-dioxane 
125 0.00169 0.00165 2.37 120 0.00172 0.00!69 1.74 138 0.00175 0.00173 1.14 
321 0.0050 0.0045 10.00 368 0.0053 0.0049 7.55 388 0.0056 0.0053 5.36 
610 0.0093 0.0099 6.45 595 0.0100 0.0105 5.00 625 0.0107 0.0109 1.87 
803 0.0125 0.0129 3.20 885 0.0130 0.0135 3.85 890 0.0135 0.0139 2.96 
1005 0.0147 0.0151 2.72 995 0.0149 0.0155 4.03 987 0.0150 0.0159 6.00 
1355 0.0173 0.0178 2.89 1116 0.0174 0.0182 4.60 1126 0.0178 0.0186 4.49 
1523 0.0188 0.0195 3.72 1515 0.0190 0.0199 4.74 1510 0.0191 0.0204 6.81 
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Table G-3 (Continue) 

T- 333.15 K T- 343.15 K 
P(kPa) x, X calc SEE(%) P(kPa) x, X calc SEE(%) 

Propylene carbonate 
131 0.00157 0.00157 0.00 145 0.00157 0.00159 1.27 
399 0.0052 0.0050 3.85 328 0.0050 0.0052 4.00 
622 0.0079 0.0085 7.59 576 0.0080 0.0087 8.75 
875 0.0109 0.0112 2.75 850 0.0111 0.0113 1.80 
1056 0.0139 0.0137 1.44 999 0.0140 0.0139 0.71 
1216 0.0165 0.0169 2.42 1189 0.0165 0.0171 3.64 
1495 0.0186 0.0190 2.15 1545 0.0187 0.0192 2.67 

Biphasic PC+dodecane 
146 0.00158 0.00159 0.63 126 0.00160 0.00161 0.63 
362 0.0050 0.0049 2.00 378 0.0051 0.0051 0.00 
665 0.0078 0.0084 7.69 643 0.0081 0.0086 6.17 
788 0.0113 0.0098 13.27 885 0.0116 0.0100 13.79 
1006 0.0138 0.0140 1.45 1182 0.0144 0.0142 1.39 
1301 0.0165 0.0171 3.64 1315 0.0166 0.0173 4.22 
1503 0.0185 0.0183 1.08 1495 0.0187 0.0185 1.07 

TMS-systems PC+dodecane+ 1,4-dioxane 
122 0.00178 0.00174 2.25 135 0.00182 0.00176 3.30 
376 0.0055 0.0058 5.45 339 0.0056 0.0060 7.14 
576 0.0109 0.0098 10.09 592 0.0113 0.0100 11.50 
799 0.0133 0.0134 0.75 811 0.0140 0.0137 2.14 
995 0.0153 0.0147 3.92 1015 0.0155 0.0150 3.23 
1255 0.0181 0.0181 0.00 1242 0.0183 0.0183 0.00 
1496 0.0207 0.0211 1.93 1519 0.0210 0.0213 1.43 
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Table G-4: Solubility of Hz at different pressure and temperature (x2), calculated solubility (xcaic) and standard error of estimation 

(SEE) from the modified UNIF AC model. 

T- 298.15 K T- 313.15 K T- 323.15 K 
P(kPa) Xz_ X calc SEE(%) P(kPa) x, X calc SEE(%) P(kPa) x, X calc SEE(%) 

Propylene carbonate 
131 0.00135 0.00137 1.48 122 0.00138 0.00138 0.00 128 0.00139 0.00140 0.72 
333 0.0048 0.0050 4.17 370 0.0049 0.0051 4.08 332 0.0051 0.0052 1.96 
535 0.0075 0.0074 1.33 613 0.0076 0.0075 1.32 523 0.0077 0.0076 1.30 
767 0.0101 0.0100 0.99 865 0.0102 0.0101 0.98 755 0.0102 0.0103 0.98 
995 0.0124 0.0123 0.81 1082 0.0126 0.0125 0.79 997 0.0127 0.0127 0.00 
1215 0.0145 0.0143 1.38 1315 0.0147 0.0145 1.36 1361 0.0148 0.0147 0.68 
1496 0.0178 0.0179 0.56 1489 0.0179 0.0180 0.56 1533 0.0180 0.0182 1.11 

Bipbasic PC+dodecane 
136 0.00092 0.00095 3.26 117 0.00098 0.00097 1.02 156 0.00104 0.00099 4.81 
282 0.0022 0.0024 9.09 399 0.0024 0.0025 4.17 399 0.0027 0.0028 3.70 
574 0.0044 0.0045 2.27 576 0.0046 0.0047 2.17 576 0.0047 0.0049 4.26 
809 0.0072 0.0073 1.39 821 0.0073 0.0075 2.74 821 0.0075 0.0077 2.67 
1004 0.0093 0.0091 2.15 1005 0.0095 0.0094 1.05 1015 0.0098 0.0097 1.02 
1245 0.0103 0.0102 0.97 1355 0.0104 O.Q105 0.96 1350 0.0106 0.0106 0.00 
1515 0.0126 0.0128 1.59 1523 0.0128 0.0130 1.56 1535 0.0129 0.0132 2.33 

TMS-systems PC +dodecane+ 1 ,4-dioxane 
125 0.00115 0.00118 2.61 120 0.00122 0.00121 0.82 138 0.00126 0.00124 1.59 
321 0.0032 0.0035 9.38 368 0.0035 0.0036 2.86 388 0.0037 0.0038 2.70 
610 0.0059 0.0062 5.08 595 0.0060 0.0064 6.67 625 0.0062 0.0066 6.45 
803 0.0097 0.0096 1.03 885 0.0099 0.0098 1.01 890 0.0105 0.0102 2.86 
1005 0.0119 0.0121 1.68 995 0.0121 0.0124 2.48 987 0.0124 0.0126 1.61 
1355 0.0154 0.0152 1.30 1116 0.0155 0.0155 0.00 1126 0.0157 0.0157 0.00 
1523 0.0166 0.0165 0.60 1515 0.0168 0.0167 0.60 1510 0.0169 0.0170 0.59 
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Table G-4: (Continue) 

T~ 333.15 K T~ 343.15 K 
P(kPa) x, Xcalc SEE(%) P(kPa) x, Xcalc SEE(%) 

Propylene carbonate 
131 0.00140 0.00142 1.43 145 0.00142 0.00143 0.70 
399 0.0051 0.0053 3.92 328 0.0053 0.0054 1.89 
622 0.0077 0.0078 1.30 576 0.0079 0.0079 0.00 
875 0.0103 0.0104 0.97 850 O.Ql05 0.0104 0.95 
1056 0.0127 0.0128 0.79 999 0.0129 0.0128 0.78 
1216 0.0148 0.0149 0.68 1189 0.0150 0.0149 0.67 
1495 0.0181 0.0183 1.10 1545 0.0185 0.0183 1.08 

Biphasic PC+dodecane 
146 0.00109 0.00105 3.67 126 0.00115 0.00110 4.35 
362 0.0028 0.0030 7.14 378 0.0031 0.0034 9.68 
665 0.0049 0.0051 4.08 643 0.0052 0.0055 5.77 
788 0.0078 0.0080 2.56 885 0.0080 0.0083 3.75 
1006 0.0099 0.0102 3.03 1182 0.0102 0.0105 3.05 
1301 0.0106 0.0109 2.83 1315 0.0109 0.0110 0.92 
1503 0.0129 0.0134 3.88 1495 0.0131 0.0136 3.82 

TMS-systems PC+dodecane+ 1,4-dioxane 
122 0.00129 0.00127 1.55 135 0.00133 0.00130 2.26 
376 0.0037 0.0039 5.41 339 0.0039 0.0042 7.69 
576 0.0062 0.0068 9.68 592 0.0065 0.0070 7.69 
799 0.0104 0.0105 0.96 811 0.0105 0.0108 2.86 
995 0.0124 0.0128 3.23 1015 0.0125 0.0131 4.80 
1255 0.0158 0.0159 0.63 1242 0.0160 0.0161 0.62 
1496 0.0169 0.0172 1.78 1519 0.0172 0.0175 1.74 
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AppendixH 

Table H-1: A summary of the effect of reaction conditions on the conversion and selectivity involving Rh-catalyzed hydroformylation 

reaction 

Reference Catalyst Precursor Substrate [Catalyst] p T t Solvent Olefin Conversion Yield of Aldehyde n/iso 

mollm3 bar K h {%) {%) 

Klein et a!. Rh(acac)(CO), 1-pentene 0.080 10 393 16 anisole 76.0 99.0 
(2001) NAPHOS; NAPHOS:Rh~5, 

Huang et a!. Rh.(C0)12 1-octene 11.6 10 353 1.5 THF 96.7 6.5 1.4 
(2004) 

Rh.(C0),2 + PPh3; P:Rh~5 97.7 93.1 2.4 

Rh.(CO)n/MCM-4l(NH2) 25.2 5.9 1.7 

Rh.(C0)12/MCM-41(NH2) + 98.9 95.9 2.7 
PPh3 ; P:Rh~5 

RhCl(PPh,), 20.1 21.4 3.0 

RhCl{PPh,)/ MCM-41(NH2) 73.6 61.0 2.9 

RhCl{PPh,)/ MCM-4l(NH2) + 92.9 94.5 2.7 
PPh3; P:Rh~5 

van Rooy et Rh( CO h( acac )tris(2-tertbutyl- 1-octene 0.1 10 353 toluene 44.0 1.9 
a!., (1995) 4-methylphenyl) phosphate; 

P:Rh~50 

Behr et a!. Rh(acac)(C0)2 4-octene 3.33 10 398 4 PC/ dodecane/ 99.0 9.0 
(2005) Biphephos; Biphephos:Rh ~ 5 p-xylene 

Tijani and Ali HRh(CO)(PPh,)3 1-octene 0.83 14 363 1.5 PC/heptane - 84.0 8.1 
(2006) P(OPh), ; P:Rh ~ 12 
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Table H-1: (Continue) 

Reference Catalyst Precursor Substrate [Catalyst] p T t Solvent Olefin Conversion Yield of Aldehyde n/i 
mol/m3 bar K h % (%) 

suarez et al. RhC1(CO)(TPPMS)2 1-hexene 0.19 68 373 1.5 biphasic 95.0 73.2 1.1 
(2006) [TPPMS~P(C6H5),(C6H,S03)] toluene/H20 

RhCl(CO)(TPPDS), 96.0 73.9 1.3 
[TPPDS~P(C6H5)(C6H,S03)2] 

RhCl(CO)(TPPTS)z 94.0 74.3 1.1 
[TPPTS~P(CJI,S03),] 

Present work HRh(CO)(PPh3) 3 1-octene 0.17 15 363 1.5 PC/dodecane/ 53.0 47.0 9.0 
P(OPh),; P:Rh ~ 12 1 ,4-dioxane 
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AppendixJ 

Kinetic Data 

Table J-1: Kinetic data, estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) 

from the empirical rate model. 

Hydroformylation of 1-octene with HRh(CO)(PPh3) 3/P(OPh)3 catalyst in TMS-system at temperature of 353 K. 

k 0.55 
Kco 0.52 
m 1.72 

[1-octene] [catalyst] PH2 Pco R expt Reale MRSS SEE %SEE 
0.19 8.66E-05 7.485 7.485 2.00E-05 2.13E-05 1.57273E-12 6.27E-02 6.27E+OO 
0.19 0.000173 7.485 7.485 4.00E-05 4.25E-05 6.04712E-12 6.15E-02 6.15E+OO 
0.19 0.000346 7.485 7.485 8.00E-05 8.49E-05 2.41885E-11 6.15E-02 6.15E+OO 
0.19 0.000644 7.485 7.485 1.55E-04 1.58E-04 9.33789E-12 1.97E-02 1.97E+OO 
0.1 1.73E-04 7.485 7.485 2.45E-05 2.23E-05 4.8097 4E-12 8.94E-02 8.94E+OO 

0.212 1.73E-04 7.485 7.485 5.20E-05 4.74E-05 2.13869E-11 8.89E-02 8.89E+OO 
0.29 1.73E-04 7.485 7.485 7.00E-05 6.48E-05 2.69779E-11 7.42E-02 7.42E+OO 
0.34 1.73E-04 7.485 7.485 8.33E-05 7.60E-05 5.35909E-11 8.79E-02 8.79E+OO 
0.39 1.73E-04 7.485 7.485 8.67E-05 8.72E-05 2.05087E-13 5.22E-03 5.22E-01 
0.19 1.73E-04 11.23 3.74 8.99E-05 8.79E-05 3.99698E-12 2.22E-02 2.22E+OO 
0.19 1.73E-04 10 4.98 7.06E-05 7.01E-05 2.25464E-13 6.73E-03 6.73E-01 
0.19 1.73E-04 7.485 7.48506 4.62E-05 4.25E-05 1 .39959E-11 8.10E-02 8.10E+OO 
0.19 1.73E-04 3.74 11.23 1.80E-05 1.63E-05 2.95579E-12 9.55E-02 9.55E+OO 

1.05807E-11 7.56E-01 5.82E+OO 
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Table J-2: Kinetic data, estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) from 

the empirical rate model. 

Hydroforrnylation of 1-octene with HRh(CO)(PPh3) 3/ P(OPh)3 catalyst in TMS-system at temperature of 363 K. 

k 1.11 
Kco 1.18 
m 1.60 

[1-octene] [catalyst] PH2 Pco Rexpt Reale MRSS SEE %SEE 
0.19 8.66E-05 7.485 7.485 2.50E-05 2.64E-05 1.9815E-12 5.63E-02 5.63E+OO 
0.19 0.000173 7.485 7.485 5.20E-05 5.28E-05 5.69011E-13 1.45E-02 1.45E+OO 
0.19 0.000346 7.485 7.485 1.00E-04 1.06E-04 3.03453E-11 5.51E-02 5.51E+OO 
0.19 0.000644 7.485 7.485 1.85E-04 1.96E-04 1.29511E-10 6.15E-02 6.15E+OO 
0.1 1.73E-04 7.485 7.485 3.05E-05 2.78E-05 7.42325E-12 8.94E-02 8.94E+OO 

0.212 1.73E-04 7.485 7.485 6.50E-05 5.89E-05 3. 76662E-11 9.44E-02 9.44E+OO 
0.29 1.73E-04 7.485 7.485 8.40E-05 8.05E-05 1.2112E-11 4.14E-02 4.14E+OO 
0.34 1.73E-04 7.485 7.485 1.00E-04 9.44E-05 3.13322E-11 5.60E-02 5.60E+OO 
0.39 1.73E-04 7.485 7.485 1.12E-04 1.08E-04 1.37997E-11 3.32E-02 3.32E+OO 
0.19 1.73E-04 11.23 3.74 9.77E-05 1.03E-04 2.56597E-11 5.18E-02 5.18E+OO 
0.19 1.73E-04 10 4.98 8.50E-05 8.31E-05 3.62952E-12 2.24E-02 2.24E+OO 
0.19 1.73E-04 7.485 7.48506 5.80E-05 5.28E-05 2.7519E-11 9.04E-02 9.04E+OO 
0.19 1.73E-04 3.74 11.23 2.45E-05 2.18E-05 7 .08915E-12 1.09E-01 1.09E+01 

2.00968E-11 6.66E-01 5.96E+OO 
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Table J-3: Kinetic data, estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) 

from the empirical rate model. 

Hydroformylation of 1-octene with HRh(CO)(PPh3) 3/ P(OPh)3 catalyst in TMS-system at temperature of 373 K. 

k 1.97 
Kco 2.24 
m 1.36 

[1-octene] [catalyst] Pm Pco 
0.19 8.66E-05 7.485 7.485 
0.19 0.000173 7.485 7.485 
0.19 0.000346 7.485 7.485 
0.19 0.000644 7.485 7.485 
0.1 1.73E-04 7.485 7.485 

0.212 1.73E-04 7.485 7.485 
0.29 1.73E-04 7.485 7.485 
0.34 1.73E-04 7.485 7.485 
0.39 1.73E-04 7.485 7.485 
0.19 1.73E-04 11.23 3.74 
0.19 1.73E-04 10 4.98 
0.19 1.73E-04 7.485 7.48506 

- 0.19 1.73E-04 3.74 11.23 

R expt Reale 

3.50E-05 3.63E-05 
7.00E-05 7.25E-05 
1.35E-04 1.45E-04 
2.60E-04 2.70E-04 
4.12E-05 3.81E-05 
8.50E-05 8.09E-05 
1.20E-04 1.11E-04 
1.37E-04 1.30E-04 
1.60E-04 1.49E-04 
1.20E-04 1.30E-04 
1.13E-04 1.08E-04 
8.00E-05 7.25E-05 
3.50E-05 3.21E-05 

214 

MRSS SEE %SEE 
1.63815E-12 3.66E-02 3.66E+OO 
6.13065E-12 3.54E-02 3.54E+OO 
9.90429E-11 7.37E-02 7.37E+OO 
9.59441E-11 3.77E-02 3.77E+OO 
9.45396E-12 7.46E-02 7.46E+OO 
1 . 70736E-11 4.86E-02 4.86E+OO 
8. 79603E-11 7.82E-02 7.82E+OO 
5.33788E-11 5.33E-02 5.33E+OO 
1.2619E-10 7.02E-02 7.02E+OO 

9.14029E-11 7.97E-02 7.97E+OO 
2.55121 E-11 4.47E-02 4.47E+OO 
5.66128E-11 9.41E-02 9.41E+OO 
8.35294E-12 8.26E-02 8.26E+OO 
4.18963E-11 7.27E-01 6.06E+OO 

5.97E+OO 



Table J-4: Estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) from the 

mechanistic rate model. 

Hydroformylation of 1-octene with HRh(CO)(PPh3)3/ P(OPh)3 catalyst in TMS-system at temperature of353 K 

k 5.11 E+03 
K1 * 1.22E+02 
K2* 1.50E+03 
K3* 8.80E-01 
K4* 8.12E-13 

[H2l [CO] [1-octene] [catalyst] Rexpt Rexpt X 10 Reale Reale X 10 MRSS SEE %SEE 
0.0747 0.0930 0.19 8.66E-05 2.200E-05 2.200E-01 2.293E-05 2.293E-01 8.712E-13 4.243E-02 4.243E+OO 
0.0747 0.0930 0.19 1.73E-04 4.400E-05 4.400E-01 4.581 E-05 4.581 E-01 3.290E-12 4.122E-02 4.122E+OO 
0.0747 0.0930 0.19 3.46E-04 9.000E-05 9.000E-01 9.163E-05 9.163E-01 2.649E-12 1.808E-02 1.808E+OO 
0.0747 0.0930 0.19 6.44E-04 1.700E-04 1.700E+OO 1.705E-04 1.705E+OO 2.956E-13 3.198E-03 3.198E+OO 
0.0747 0.0930 0.1 1.73E-04 2.454E-05 2.454E-01 2.419E-05 2.419E-01 1.241E-13 1.435E-02 1.435E+OO 
0.0747 0.0930 0.212 1.73E-04 5.200E-05 5.200E-01 5.108E-05 5.108E-01 8.471 E-13 1.770E-02 1.770E+OO 
0.0747 0.0930 0.29 1.73E-04 7.000E-05 7.000E-01 6.969E-05 6.969E-01 9.905E-14 4.496E-03 4.496E+OO 
0.0747 0.0930 0.34 1.73E-04 8.000E-05 8.000E-01 8.156E-05 8.156E-01 2.432E-12 1.949E-02 1.949E+OO 
0.0747 0.0930 0.39 1.73E-04 9.000E-05 9.000E-01 9.339E-05 9.339E-01 1.151E-11 3.770E-02 3.770E+OO 
0.1397 0.0124 0.19 1.73E-04 1.000E-04 1.000E+OO 1.100E-04 1.100E+OO 8.493E-37 9.216E-15 9.216E+OO 
0.1120 0.0373 0.19 1.73E-04 8.200E-05 8.200E-01 8.998E-05 8.998E-01 6.372E-11 9.734E-02 9.734E+OO 
0.0998 0.0618 0.19 1.73E-04 7.200E-05 7.200E-01 7.176E-05 7.176E-01 5.545E-14 3.271E-03 3.271E-01 
0.0747 0.0930 0.19 1.73E-04 4.800E-05 4.800E-01 4.581E-05 4.581 E-01 4.780E-12 4.555E-02 4.555E+OO 
0.0373 0.1395 0.19 1.73E-04 2.000E-05 2.000E-01 1.847E-05 1.847E-01 2.328E-12 7.629E-02 7.629E+OO 

Average: 8.454E-12 4.211E-01 4.161E+OO 

215 



Table J-5: Estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) from the 

mechanistic rate model. 

Hydroformylation of 1-octene with HRh(CO)(PPh3) 3/ P(OPh)3 catalyst in TMS-system at temperature of 363 K. 

k 8.01E+03 
K1 * 2.02E+02 
K2* 1.30E+03 
K3* 6.80E-03 
K4* 4.33E-14 

[H2l [CO] [1-octene] [catalyst] Rexpt RexptX 10" Reale Rca1e X 1 o• MRSS SEE %SEE 
0.0754 0.0949 0.19 8.66E-05 2.800E-05 2.800E-01 2.962E-05 2.962E-01 2.618E-12 5.779E-02 5.779E+OO 
0.0754 0.0949 0.19 1.73E-04 5.800E-05 5.800E-01 5.917E-05 5.917E-01 1.364E-12 2.014E-02 2.014E+OO 
0.0754 0.0949 0.19 3.46E-04 1.190E-04 1.190E+OO 1.183E-04 1.183E+OO 4.411 E-13 5.581E-03 5.581E+OO 
0.0754 0.0949 0.19 6.44E-04 2.220E-04 2.220E+OO 2.203E-04 2.203E+OO 3.045E-12 7.860E-03 O.OOOE+OO 
0.0754 0.0949 0.1 1.73E-04 3.000E-05 3.000E-01 3.114E-05 3.114E-01 1.303E-12 3.805E-02 3.805E+OO 
0.0754 0.0949 0.212 1.73E-04 6.800E-05 6.800E-01 6.602E-05 6.602E-01 3.926E-12 2.914E-02 2.914E+OO 
0.0754 0.0949 0.29 1.73E-04 9.200E-05 9.200E-01 9.031 E-05 9.031E-01 2.866E-12 1.840E-02 1.840E+OO 
0.0754 0.0949 0.34 1.73E-04 1.070E-04 1.070E+OO 1.059E-04 1.059E+OO 1.263E-12 1.050E-02 1.050E+OO 
0.0754 0.0949 0.39 1.73E-04 1.220E-04 1.220E+OO 1.214E-04 1.214E+OO 3.083E-13 4.551E-03 4.551E+OO 
0.1411 0.0127 0.19 1.73E-04 1.250E-04 1.250E+OO 1.250E-04 1.250E+OO 7.347E-40 2.168E-16 2.168E+OO 
0.1132 0.0381 0.19 1.73E-04 9.770E-05 9.770E-01 1.074E-04 1.074E+OO 9.372E-11 9.909E-02 9.909E+OO 
0.1008 0.0632 0.19 1.73E-04 8.600E-05 8.600E-01 8.854E-05 8.854E-01 6.468E-12 2.957E-02 2.957E+OO 
0.0754 0.0949 0.19 1.73E-04 6.000E-05 6.000E-01 5.917E-05 5.917E-01 6.924E-13 1.387E-02 1.387E+OO 
0.0377 0.1424 0.19 1.73E-04 2.500E-05 2.500E-01 2.519E-05 2.519E-01 3.762E-14 7.758E-03 7.758E-01 

Average: 1.180E-11 3.344E-01 4.867E+OO 
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Table J-6: Estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) from the 

mechanistic rate model. 

Hydroformylation of 1-octene with HRh(CO)(PPh3) 3/ P(OPh)3 catalyst in TMS-system at temperature of373 K. 

k 1.00E+04 
K1 * 2.25E+02 
K2* 9. 70E+02 
K3* 9.67E-06 
K4* 7.06E+OO 

[H2J [CO] [1-octene] [catalyst] R.xpt R.xpt X 10
4 

Reale Reate X 10
4 MRSS SEE %SEE 

0.0765 0.0990 0.19 8.66E-05 3.700E-05 3.700E-01 3.789E-05 3.7893E-01 7.971E-13 2.413E-02 2.413E+OO 
0.0765 0.0990 0.19 1.73E-04 7.500E-05 7.500E-01 7.570E-05 7.5698E-01 4.873E-13 9.307E-03 9.307E-01 
0.0765 0.0990 0.19 3.46E-04 1.490E-04 1.490E+OO 1.514E-04 1.5140E+OO 5.741E-12 1.608E-02 1.608E+OO 
0.0765 0.0990 0.19 6.44E-04 2.820E-04 2.820E+OO 2.818E-04 2.8179E+OO 4.441E-14 7.473E-04 7.473E-02 
0.0765 0.0990 0.1 1.73E-04 4.122E-05 4.122E-01 3.992E-05 3.9917E-01 1.697E-12 3.160E-02 3.160E+OO 
0.0765 0.0990 0.212 1.73E-04 8.500E-05 8.500E-01 8.442E-05 8.4424E-01 3.322E-13 6.781E-03 6.781E+OO 
0.0765 0.0990 0.29 1.73E-04 1.200E-04 1.200E+OO 1.153E-04 1.1529E+OO 2.214E-11 3.922E-02 3.922E+OO 
0.0765 0.0990 0.34 1.73E-04 1.400E-04 1.400E+OO 1.350E-04 1.3503E+OO 2.471E-11 3.550E-02 3.550E+OO 
0.0765 0.0990 0.39 1.73E-04 1.600E-04 1.600E+OO 1.547E-04 1.5472E+OO 2.785E-11 3.298E-02 3.298E+OO 
0.1431 0.0132 0.19 1.73E-04 1.500E-04 1.500E+OO 1.496E-04 1.4960E+OO 1.598E-13 2.665E-03 2.665E-01 
0.1148 0.0397 0.19 1.73E-04 1.250E-04 1.250E+OO 1.302E-04 1.3024E+OO 2.745E-11 4.191E-02 4.191E+OO 
0.1022 0.0659 0.19 1.73E-04 1.100E-04 1.100E+OO 1.101E-04 1.1012E+OO 1.324E-14 1.046E-03 1.046E-01 
0.0765 0.0990 0.19 1.73E-04 7.500E-05 7.500E-01 7.570E-05 7.5698E-01 4.873E-13 9.307E-03 9.307E-01 
0.0382 0.1486 0.19 1.73E-04 3.300E-05 3.300E-01 3.333E-05 3.3335E-01 1.120E-13 1.014E-02 1.014E+OO 

Average: 1.120E-11 2.614E-01 4.538E+OO 
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Table J-7: Kinetic data, estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) from 

the mechanistic rate model. 

Hydroformylation of 1-dodecene with HRh(CO)(PPh3) 3/ P(OPh)3 catalyst in TMS-system at temperature of 353 K. 

k 700.006 
K1* 0.986379 
K2* 2437.357 
K3* 0.624826 
K4* 0.996482 

[H2l [CO] [1-octene] [catalyst] R.xpt R.xpt X 10" Reale Reale X 104 MRSS SEE %SEE 

0.0748 0.0931 0.5 8.66E-05 9.500E-06 9.500E-02 9.347E-06 9.347E-02 2.340E-14 1.610E-02 1.610E+OO 
0.0748 0.0931 0.5 1.73E-04 2.000E-05 2.000E-01 1.867E-05 1.867E-01 1.762E-12 6.638E-02 6.638E+OO 
0.0748 0.0931 0.5 3.46E-04 3.700E-05 3.700E-01 3.734E-05 3.734E-01 1.190E-13 9.323E-03 9.323E-01 
0.0748 0.0931 0.2 8.66E-05 3.900E-06 3.900E-02 3.775E-06 3.775E-02 1.568E-14 3.211E-02 3.211 E+OO 
0.0748 0.0931 0.5 8.66E-05 9.200E-06 9.200E-02 9.347E-06 9.347E-02 2.162E-14 1.598E-02 1.598E+OO 
0.0748 0.0931 0.675 8.66E-05 1.200E-05 1.200E-01 1.255E-05 1.255E-01 3.011E-13 4.573E-02 4.573E+OO 
0.0499 0.0621 0.5 8.66E-05 8.800E-06 8.800E-02 8.690E-06 8.690E-02 1.219E-14 1.255E-02 1.255E+OO 
0.1272 0.0621 0.5 8.66E-05 2.200E-05 2.200E-01 2.216E-05 2.216E-01 2.510E-14 7.202E-03 7.202E+OO 
0.1496 0.0621 0.5 8.66E-05 2.550E-05 2.550E-01 2.607E-05 2.607E-01 3.235E-13 2.230E-02 2.230E+OO 
0.0499 0.0124 0.5 8.66E-05 1.100E-05 1.100E-01 1.100E-05 1.100E-01 1.545E-37 3.573E-14 3.573E-12 
0.0499 0.0248 0.5 8.66E-05 1.300E-05 1.300E-01 1.316E-05 1.316E-01 2.599E-14 1.240E-02 1.240E+OO 
0.0499 0.0373 0.5 8.66E-05 1.200E-05 1.200E-01 1.185E-05 1.185E-01 2.107E-14 1.210E-02 1.210E+OO 
0.0499 0.0621 0.5 8.66E-05 8.500E-06 8.500E-02 8.690E-06 8.690E-02 3.594E-14 2.230E-02 2.230E+OO 
0.0499 0.1242 0.5 8.66E-05 5.000E-06 5.000E-02 4.803E-06 4.803E-02 3.885E-14 3.942E-02 3.942E+OO 
0.0499 0.1863 0.5 8.66E-05 3.500E-06 3.500E-02 3.268E-06 3.268E-02 5.381 E-14 6.628E-02 6.628E+OO 

Average: 2.527E-13 3.802E-01 3.501E+OO 
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Table J-8: Kinetic data, estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) from 

the mechanistic rate model. 

Hydroformylation of 1-dodecene with HRh(CO)(PPh3) 3/ P(OPh)3 catalyst in TMS-system at temperature of 363 K. 

k 1366.306 
K1* 2218.616 
K2* 0.169272 
K3* 0.479424 
K4* 5.347078 

[H2l [CO] [1-octene] [catalyst] R.xpt Rexpt X 10
4 

Reale R"'' X 10
4 

MRSS SEE %SEE 
0.0756 0.0951 0.5 8.66E-05 2.000E-05 2.000E-01 1.961 E-05 1.961E-01 1.536E-13 1.960E-02 1.960E+OO 
0.0756 0.0951 0.5 1.73E-04 3.780E-05 3.780E-01 3.917E-05 3.917E-01 1.879E-12 3.627E-02 3.627E+OO 
0.0756 0.0951 0.5 3.46E-04 7.650E-05 7.650E-01 7.834E-05 7.834E-01 3.392E-12 2.408E-02 2.408E+OO 
0.0756 0.0951 0.2 8.66E-05 7.800E-06 7.800E-02 7.867E-06 7.867E-02 4.437E-15 8.540E-03 8.540E-01 
0.0756 0.0951 0.5 8.66E-05 2.000E-05 2.000E-01 1.961 E-05 1.961 E-01 1.536E-13 1.960E-02 1.960E+OO 
0.0756 0.0951 0.675 8.66E-05 2.600E-05 2.600E-01 2.643E-05 2.643E-01 1.807E-13 1.635E-02 1.635E+OO 
0.0504 0.0634 0.5 8.66E-05 1.800E-05 1.800E-01 1.824E-05 1.824E-01 5.973E-14 1.358E-02 O.OOOE+OO 
0.1285 0.0634 0.5 8.66E-05 4.600E-05 4.600E-01 4.652E-05 4.652E-01 2.737E-13 1.137E-02 1.137E+OO 
0.1512 0.0634 0.5 8.66E-05 5.350E-05 5.350E-01 5.473E-05 5.473E-01 1.521E-12 2.305E-02 2.305E+OO 
0.0504 0.0127 0.5 8.66E-05 2.500E-05 2.500E-01 2.500E-05 2.500E-01 2.155E-35 1.857E-13 1.857E+OO 
0.0504 0.0254 0.5 8.66E-05 2.900E-05 2.900E-01 2.849E-05 2.849E-01 2.577E-13 1.750E-02 1.750E+OO 
0.0504 0.0381 0.5 8.66E-05 2.450E-05 2.450E-01 2.515E-05 2.515E-01 4.269E-13 2.667E-02 2.667E+OO 
0.0504 0.0634 0.5 8.66E-05 1.830E-05 1.830E-01 1.824E-05 1.824E-01 3.093E-15 3.039E-03 3.039E-01 
0.0504 0.1268 0.5 8.66E-05 9.700E-06 9.700E-02 1.009E-05 1.009E-01 1.493E-13 3.984E-02 3.984E+OO 
0.0504 0.1903 0.5 8.66E-05 6.800E-06 6.800E-02 6.878E-06 6.878E-02 6.116E-15 1.150E-02 1.150E+OO 

Average. 7.692E-13 2.574E-01 3.755E+OO 
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Table J-9: Kinetic data, estimated rate parameters, mean residual sum of squares (MRSS) and standard error of estimation (SEE) 

from the mechanistic rate model. 

Kinetic data for the hydroformylation of 1-dodecene with HRh(CO)(PPh3)3/P(OPh)3 catalyst in TMS-system at temperature of373 K. 

k 2686.86 
K1* 2044.202 
K2* 0.019827 
K3* 0.101234 
K4* 34.81747 

[H2l [CO] [1-octene] [catalyst] R.xpt R.xpt X 10
4 

Reale Reale X 10 MRSS SEE %SEE 

0.0766 0.0992 0.5 8.66E-05 3.300E-05 3.300E-01 3.597E-05 3.597E-01 8.819E-12 8.999E-02 8.999E+OO 
0.0766 0.0992 0.5 1.73E-04 6.500E-05 6.500E-01 7.186E-05 7.186E-01 4.701 E-11 1.055E-01 1.055E+01 
0.0766 0.0992 0.5 3.46E-04 1.270E-04 1.270E+OO 1.437E-04 1.437E+OO 2.793E-10 1.316E-01 1.316E+01 
0.0766 0.0992 0.2 8.66E-05 1.450E-05 1.450E-01 1.439E-05 1.439E-01 1.143E-14 7.373E-03 7.373E-01 
0.0766 0.0992 0.5 8.66E-05 3.800E-05 3.800E-01 3.597E-05 3.597E-01 4.122E-12 5.343E-02 5.343E+OO 
0.0766 0.0992 0.675 8.66E-05 5.000E-05 5.000E-01 4.855E-05 4.855E-01 2.106E-12 2.903E-02 2.903E+OO 
0.0511 0.0662 0.5 8.66E-05 3.200E-05 3.200E-01 3.207E-05 3.207E-01 4.707E-15 2.144E-03 2.144E-01 
0.1303 0.0662 0.5 8.66E-05 8.500E-05 8.500E-01 8.177E-05 8.177E-01 1.040E-11 3.794E-02 3.794E+OO 
0.1533 0.0662 0.5 8.66E-05 1.000E-04 1.000E+OO 9.621E-05 9.621 E-01 1.440E-11 3.794E-02 3.794E+OO 
0.0511 0.0132 0.5 8.66E-05 4.300E-05 4.300E-01 4.300E-05 4.300E-01 4.284E-29 1.522E-10 1.522E+OO 
0.0511 0.0265 0.5 8.66E-05 4.700E-05 4.700E-01 4.676E-05 4.676E-01 5.734E-14 5.095E-03 5.095E-01 
0.0511 0.0397 0.5 8.66E-05 4.100E-05 4.100E-01 4.202E-05 4.202E-01 1.051E-12 2.500E-02 2.500E+OO 
0.0511 0.0662 0.5 8.66E-05 3.200E-05 3.200E-01 3.207E-05 3.207E-01 4.707E-15 2.144E-03 2.144E-01 
0.0511 0.1323 0.5 8.66E-05 2.000E-05 2.000E-01 1.899E-05 1.899E-01 1.012E-12 5.031E-02 5.031E+OO 
0.0511 0.1985 0.5 8.66E-05 1.300E-05 1.300E-01 1.334E-05 1.334E-01 1.147E-13 2.605E-02 2.605E+OO 

Average. 3.339E-11 5.272E-01 3.550E+OO 
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AppendixK 

AAS Standard Calibration Curve 

This appendix includes the AAS standard calibration curve for the quantitative analysis 

of rhodium. 
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Figure K-1: Rhodium standard curve 
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APPENDIXL 

Experimental Tie-Line Data 

Table L-1: Experimental tie-line data for TMS (PC+1,4-dioxane+dodecane)+l-octene 
system. 

Polar-rich phase (weight fraction) Non-polar rich phase (weight fraction) 
PC 1 ,4-dioxane dodecane 1-octene PC I ,4-dioxane dodecane 1-octene 
298.15 K 

0.1593 0.6596 0.1460 0.0351 0.1174 0.1380 0.2866 0.4580 
0.1992 0.6437 0.1202 0.0369 0.1276 0.1509 0.4345 0.2870 
0.2303 0.6074 0.1096 0.0527 0.1444 0.1522 0.4864 0.2170 

308.15 K 
0.1486 0.6656 0.1344 0.0514 0.2733 0.1480 0.1507 0.4280 
0.1935 0.6607 0.1112 0.0346 0.3929 0.1589 0.2045 0.2437 
0.1974 0.6459 0.1013 0.0554 0.3887 0.1599 0.2464 0.2050 

Table L-2: Experimental tie-line data for TMS (PC+1,4-dioxane+dodecane)+nonanal 
system. 

Polar-rich phase (weight fraction) Non-polar rich phase (weight fraction) 
PC I ,4-dioxane dodecane non anal PC I ,4-dioxane dodecane nonanal 
298.15 K 

0.1489 0.7225 0.1238 0.0048 0.1219 0.4206 0.3475 0.1100 
0.1739 0.6646 0.1506 0.0109 0.1253 0.3554 0.3693 0.1500 
0.1972 0.6325 0.1578 0.0125 0.0446 0.3405 0.3849 0.2300 

308.15 K 
0.1381 0.7300 0.1271 0.0048 0.1333 0.4195 0.3467 0.1006 
0.1724 0.6541 0.1649 0.0086 0.1018 0.4380 0.3565 0.1037 
0.1862 0.6439 0.1578 0.0121 0.0149 0.3760 0.4052 0.2039 
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Table L-3. Experimental tie-line data for TMS (PC+ 1,4-dioxane+dodecane)+ 1-
octene+nonanal system. 

Polar-rich Ehase (weight fraction) Non-Eolar rich Ehase (weight fraction) 
PC 1,4-dioxane dodecane 1-octene non anal PC 1 ,4-dioxane dodecane 1-octene nonanal 
298.15 K 
0.1079 0.7096 0.1460 0.0361 0.0004 0.0104 0.1380 0.3066 0.4580 0.0870 
0.0489 0.7837 0.1202 0.0379 0.0093 0.0146 0.1509 0.3045 0.2870 0.2430 
0.1563 0.6674 0.1096 0.0537 0.0130 0.0154 0.1522 0.3164 0.2170 0.2990 
0.0283 0.7774 0.1317 0.0565 0.0061 0.0629 0.1390 0.3081 0.1310 0.3590 
0.0600 0.5485 0.2026 0.0814 0.1075 0.0119 0.1276 0.3199 0.3580 0.1826 
308.15 K 
0.0772 0.7356 0.1344 0.0524 0.0004 0.0901 0.1480 0.2507 0.4280 0.0832 
0.1059 0.7407 0.1112 0.0356 0.0066 0.0919 0.1589 0.2845 0.2437 0.2210 
0.1731 0.6759 0.1013 0.0364 0.0134 0.0707 0.1599 0.2764 0.2050 0.2880 
0.1000 0.6947 0.1280 0.0702 0.0071 0.0783 0.1590 0.2958 0.1210 0.3459 
0.0822 0.6000 0.2057 0.0608 0.0514 0.1311 0.1386 0.2599 0.3248 0.1456 
0.1821 0.5399 0.1289 0.1094 0.0398 0.0996 0.1717 0.3885 0.2115 0.1287 

Table L-4: Experimental tie-line data for TMS (PC+1,4-dioxane+dodecane)+P(OPh)3+ 
HRh(CO)(PPh3)3+ 1-octene+nonanal system. 

Polar-rich phase (weight fraction) Non-Eolar rich Ehase (weight fraction) 
1,4- 1,4-

PC dioxane dodecane P(OPh)3 catalyst 1-octene nonanal PC dioxane dodecane P(OPh), catalyst 1-octene nonanal 

298.15 K 
0.0914 0.7300 0.0400 0.0957 0.0073 0.0056 0.0301 0.0080 0.4970 0.3190 0.0055 0.0011 0.1370 0.0324 
0.0930 0.7500 0.0166 0.0915 0.0037 0.0361 0.0091 0.0092 0.0830 0.8050 0.0098 0.0001 0.0534 0.0395 
0.1343 0.7526 0.0150 0.0109 0.0032 0.0770 0.0070 0.0031 0.1200 0.7520 0.0066 0.0001 0.0856 0.0326 
0.2127 0.7210 0.0154 0.0141 0.0053 0.0230 0.0085 0.1146 0.1485 0.5540 0.0020 0.0000 0.1275 0.0534 
0.1158 0.6830 0.0157 0.0811 0.0044 0.0610 0.0390 0.0117 0.1010 0.7110 0.0099 0.0001 0.1246 0.0417 
0.0419 0.7400 0.0281 0.0925 0.0031 0.0260 0.0684 0.0058 0.6310 0.2060 0.0085 0.0001 0.0740 0.0747 
308.15 K 
0.0825 0.6410 0.0376 0.1940 0.0071 0.0055 0.0323 0.0052 0.4759 0.3256 0.0050 0.0001 0.1530 0.0352 
0.0502 0.7850 0.0162 0.1000 0.0043 0.0356 0.0087 0.0063 0.0808 0.8146 0.0080 0.0001 0.0528 0.0375 
0.1206 0.7689 0.0140 0.0100 0.0026 0.0769 0.0070 0.0029 0.1190 0.7480 0.0060 0.0001 0.0859 0.0381 
0.1600 0.7709 0.0153 0.0120 0.0051 0.0287 0.0081 0.0601 0.1419 0.6024 0.0019 0.0003 0.1377 0.0557 
0.1302 0.6980 0.0155 0.0521 0.0043 0.0615 0.0385 0.0225 0.1000 0.6980 0.0099 0.0000 0.1246 0.0450 
0.0392 0.7387 0.0272 0.0903 0.0033 0.0372 0.0641 0.0058 0.6288 0.2134 0.0108 0.0001 0.0702 0.0710 
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